WorldWideScience

Sample records for regulating cellular metabolism

  1. Cellular metabolism

    International Nuclear Information System (INIS)

    Hildebrand, C.E.; Walters, R.A.

    1977-01-01

    Progress is reported on the following research projects: chromatin structure; the use of circular synthetic polydeoxynucleotides as substrates for the study of DNA repair enzymes; human cellular kinetic response following exposure to DNA-interactive compounds; histone phosphorylation and chromatin structure in cell proliferation; photoaddition products induced in chromatin by uv light; pollutants and genetic information transfer; altered RNA metabolism as a function of cadmium accumulation and intracellular distribution in cultured cells; and thymidylate chromophore destruction by water free radicals

  2. Metabolic regulation of cellular plasticity in the pancreas.

    Science.gov (United States)

    Ninov, Nikolay; Hesselson, Daniel; Gut, Philipp; Zhou, Amy; Fidelin, Kevin; Stainier, Didier Y R

    2013-07-08

    Obese individuals exhibit an increase in pancreatic β cell mass; conversely, scarce nutrition during pregnancy has been linked to β cell insufficiency in the offspring [reviewed in 1, 2]. These phenomena are thought to be mediated mainly through effects on β cell proliferation, given that a nutrient-sensitive β cell progenitor population in the pancreas has not been identified. Here, we employed the fluorescent ubiquitination-based cell-cycle indicator system to investigate β cell replication in real time and found that high nutrient concentrations induce rapid β cell proliferation. Importantly, we found that high nutrient concentrations also stimulate β cell differentiation from progenitors in the intrapancreatic duct (IPD). Furthermore, using a new zebrafish line where β cells are constitutively ablated, we show that β cell loss and high nutrient intake synergistically activate these progenitors. At the cellular level, this activation process causes ductal cell reorganization as it stimulates their proliferation and differentiation. Notably, we link the nutrient-dependent activation of these progenitors to a downregulation of Notch signaling specifically within the IPD. Furthermore, we show that the nutrient sensor mechanistic target of rapamycin (mTOR) is required for endocrine differentiation from the IPD under physiological conditions as well as in the diabetic state. Thus, this study reveals critical insights into how cells modulate their plasticity in response to metabolic cues and identifies nutrient-sensitive progenitors in the mature pancreas. Copyright © 2013 Elsevier Ltd. All rights reserved.

  3. Cellular metabolism regulates contact sites between vacuoles and mitochondria

    NARCIS (Netherlands)

    Hönscher, Carina; Mari, Muriel; Auffarth, Kathrin; Bohnert, Maria; Griffith, Janice; Geerts, Willie; van der Laan, Martin; Cabrera, Margarita; Reggiori, Fulvio; Ungermann, Christian

    2014-01-01

    Emerging evidence suggests that contact sites between different organelles form central hubs in the coordination of cellular physiology. Although recent work has emphasized the crucial role of the endoplasmic reticulum in interorganellar crosstalk, the cooperative behavior of other organelles is

  4. Engineering Cellular Metabolism

    DEFF Research Database (Denmark)

    Nielsen, Jens; Keasling, Jay

    2016-01-01

    Metabolic engineering is the science of rewiring the metabolism of cells to enhance production of native metabolites or to endow cells with the ability to produce new products. The potential applications of such efforts are wide ranging, including the generation of fuels, chemicals, foods, feeds...... of metabolic engineering and will discuss how new technologies can enable metabolic engineering to be scaled up to the industrial level, either by cutting off the lines of control for endogenous metabolism or by infiltrating the system with disruptive, heterologous pathways that overcome cellular regulation....

  5. Epigenetics and Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Wenyi Xu

    2016-01-01

    Full Text Available Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc. is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the processing of epigenetic memory. Here, we summarize the recent research progress in the epigenetic regulation of cellular metabolism and discuss how the dysfunction of epigenetic machineries influences the development of metabolic disorders such as diabetes and obesity; then, we focus on discussing the notion that manipulating metabolites, the fuel of cell metabolism, can function as a strategy for interfering epigenetic machinery and its related disease progression as well.

  6. FIH Regulates Cellular Metabolism through Hydroxylation of the Deubiquitinase OTUB1.

    Directory of Open Access Journals (Sweden)

    Carsten C Scholz

    2016-01-01

    Full Text Available The asparagine hydroxylase, factor inhibiting HIF (FIH, confers oxygen-dependence upon the hypoxia-inducible factor (HIF, a master regulator of the cellular adaptive response to hypoxia. Studies investigating whether asparagine hydroxylation is a general regulatory oxygen-dependent modification have identified multiple non-HIF targets for FIH. However, the functional consequences of this outside of the HIF pathway remain unclear. Here, we demonstrate that the deubiquitinase ovarian tumor domain containing ubiquitin aldehyde binding protein 1 (OTUB1 is a substrate for hydroxylation by FIH on N22. Mutation of N22 leads to a profound change in the interaction of OTUB1 with proteins important in cellular metabolism. Furthermore, in cultured cells, overexpression of N22A mutant OTUB1 impairs cellular metabolic processes when compared to wild type. Based on these data, we hypothesize that OTUB1 is a target for functional hydroxylation by FIH. Additionally, we propose that our results provide new insight into the regulation of cellular energy metabolism during hypoxic stress and the potential for targeting hydroxylases for therapeutic benefit.

  7. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  8. Perspectives in metabolic engineering: understanding cellular regulation towards the control of metabolic routes.

    Science.gov (United States)

    Zadran, Sohila; Levine, Raphael D

    2013-01-01

    Metabolic engineering seeks to redirect metabolic pathways through the modification of specific biochemical reactions or the introduction of new ones with the use of recombinant technology. Many of the chemicals synthesized via introduction of product-specific enzymes or the reconstruction of entire metabolic pathways into engineered hosts that can sustain production and can synthesize high yields of the desired product as yields of natural product-derived compounds are frequently low, and chemical processes can be both energy and material expensive; current endeavors have focused on using biologically derived processes as alternatives to chemical synthesis. Such economically favorable manufacturing processes pursue goals related to sustainable development and "green chemistry". Metabolic engineering is a multidisciplinary approach, involving chemical engineering, molecular biology, biochemistry, and analytical chemistry. Recent advances in molecular biology, genome-scale models, theoretical understanding, and kinetic modeling has increased interest in using metabolic engineering to redirect metabolic fluxes for industrial and therapeutic purposes. The use of metabolic engineering has increased the productivity of industrially pertinent small molecules, alcohol-based biofuels, and biodiesel. Here, we highlight developments in the practical and theoretical strategies and technologies available for the metabolic engineering of simple systems and address current limitations.

  9. Epigenetics and Cellular Metabolism

    OpenAIRE

    Wenyi Xu; Fengzhong Wang; Zhongsheng Yu; Fengjiao Xin

    2016-01-01

    Living eukaryotic systems evolve delicate cellular mechanisms for responding to various environmental signals. Among them, epigenetic machinery (DNA methylation, histone modifications, microRNAs, etc.) is the hub in transducing external stimuli into transcriptional response. Emerging evidence reveals the concept that epigenetic signatures are essential for the proper maintenance of cellular metabolism. On the other hand, the metabolite, a main environmental input, can also influence the proce...

  10. The Emerging Role of Skeletal Muscle Metabolism as a Biological Target and Cellular Regulator of Cancer-Induced Muscle Wasting

    Science.gov (United States)

    Carson, James A.; Hardee, Justin P.; VanderVeen, Brandon N.

    2015-01-01

    While skeletal muscle mass is an established primary outcome related to understanding cancer cachexia mechanisms, considerable gaps exist in our understanding of muscle biochemical and functional properties that have recognized roles in systemic health. Skeletal muscle quality is a classification beyond mass, and is aligned with muscle’s metabolic capacity and substrate utilization flexibility. This supplies an additional role for the mitochondria in cancer-induced muscle wasting. While the historical assessment of mitochondria content and function during cancer-induced muscle loss was closely aligned with energy flux and wasting susceptibility, this understanding has expanded to link mitochondria dysfunction to cellular processes regulating myofiber wasting. The primary objective of this article is to highlight muscle mitochondria and oxidative metabolism as a biological target of cancer cachexia and also as a cellular regulator of cancer-induced muscle wasting. Initially, we examine the role of muscle metabolic phenotype and mitochondria content in cancer-induced wasting susceptibility. We then assess the evidence for cancer-induced regulation of skeletal muscle mitochondrial biogenesis, dynamics, mitophagy, and oxidative stress. In addition, we discuss environments associated with cancer cachexia that can impact the regulation of skeletal muscle oxidative metabolism. The article also examines the role of cytokine-mediated regulation of mitochondria function regulation, followed by the potential role of cancer-induced hypogonadism. Lastly, a role for decreased muscle use in cancer-induced mitochondrial dysfunction is reviewed. PMID:26593326

  11. Adamantyl Glycosphingolipids Provide a New Approach to the Selective Regulation of Cellular Glycosphingolipid Metabolism*

    OpenAIRE

    Kamani, Mustafa; Mylvaganam, Murugesapillai; Tian, Robert; Rigat, Brigitte; Binnington, Beth; Lingwood, Clifford

    2011-01-01

    Mammalian glycosphingolipid (GSL) precursor monohexosylceramides are either glucosyl- or galactosylceramide (GlcCer or GalCer). Most GSLs derive from GlcCer. Substitution of the GSL fatty acid with adamantane generates amphipathic mimics of increased water solubility, retaining receptor function. We have synthesized adamantyl GlcCer (adaGlcCer) and adamantyl GalCer (adaGalCer). AdaGlcCer and adaGalCer partition into cells to alter GSL metabolism. At low dose, adaGlcCer increased cellular GSLs...

  12. Mitochondrial uncoupling proteins regulate angiotensin-converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies.

    Science.gov (United States)

    Dhamrait, Sukhbir S; Maubaret, Cecilia; Pedersen-Bjergaard, Ulrik; Brull, David J; Gohlke, Peter; Payne, John R; World, Michael; Thorsteinsson, Birger; Humphries, Steve E; Montgomery, Hugh E

    2016-07-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin-converting enzyme (ACE) is the central component of endocrine and local tissue renin-angiotensin systems (RAS), which also regulate diverse aspects of whole-body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3-55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. © 2016 The Authors. BioEssays published by WILEY Periodicals, Inc.

  13. Mitochondrial uncoupling proteins regulate angiotensin‐converting enzyme expression: crosstalk between cellular and endocrine metabolic regulators suggested by RNA interference and genetic studies

    Science.gov (United States)

    Maubaret, Cecilia; Pedersen‐Bjergaard, Ulrik; Brull, David J.; Gohlke, Peter; Payne, John R.; World, Michael; Thorsteinsson, Birger; Humphries, Steve E.; Montgomery, Hugh E.

    2015-01-01

    Uncoupling proteins (UCPs) regulate mitochondrial function, and thus cellular metabolism. Angiotensin‐converting enzyme (ACE) is the central component of endocrine and local tissue renin–angiotensin systems (RAS), which also regulate diverse aspects of whole‐body metabolism and mitochondrial function (partly through altering mitochondrial UCP expression). We show that ACE expression also appears to be regulated by mitochondrial UCPs. In genetic analysis of two unrelated populations (healthy young UK men and Scandinavian diabetic patients) serum ACE (sACE) activity was significantly higher amongst UCP3‐55C (rather than T) and UCP2 I (rather than D) allele carriers. RNA interference against UCP2 in human umbilical vein endothelial cells reduced UCP2 mRNA sixfold (P sACE suggests a novel means of crosstalk between (and mutual regulation of) cellular and endocrine metabolism. This might partly explain the reduced risk of developing diabetes and metabolic syndrome with RAS antagonists and offer insight into the origins of cardiovascular disease in which UCPs and ACE both play a role. PMID:27347560

  14. 'Biomoleculas': cellular metabolism didactic software

    International Nuclear Information System (INIS)

    Menghi, M L; Novella, L P; Siebenlist, M R

    2007-01-01

    'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios

  15. New features on the environmental regulation of metabolism revealed by modeling the cellular proteomic adaptations induced by light, carbon and inorganic nitrogen in Chlamydomonas reinhardtii

    Directory of Open Access Journals (Sweden)

    Stéphanie Gérin

    2016-08-01

    Full Text Available Microalgae are currently emerging to be very promising organisms for the production of biofuels and high-added value compounds. Understanding the influence of environmental alterations on their metabolism is a crucial issue. Light, carbon and nitrogen availability have been reported to induce important metabolic adaptations. So far, the influence of these variables has essentially been studied while varying only one or two environmental factors at the same time. The goal of the present work was to model the cellular proteomic adaptations of the green microalga Chlamydomonas reinhardtii upon the simultaneous changes of light intensity, carbon concentrations (CO2 and acetate and inorganic nitrogen concentrations (nitrate and ammonium in the culture medium. Statistical design of experiments (DOE enabled to define 32 culture conditions to be tested experimentally. Relative protein abundance was quantified by two dimensional differential in-gel electrophoresis (2D-DIGE. Additional assays for respiration, photosynthesis, and lipid and pigment concentrations were also carried out. A hierarchical clustering survey enabled to partition biological variables (proteins + assays into eight co-regulated clusters. In most cases, the biological variables partitioned in the same cluster had already been reported to participate to common biological functions (acetate assimilation, bioenergetic processes, light harvesting, Calvin cycle and protein metabolism. The environmental regulation within each cluster was further characterized by a series of multivariate methods including principal component analysis and multiple linear regressions. This metadata analysis enabled to highlight the existence of a clear regulatory pattern for every cluster and to mathematically simulate the effects of light, carbon and nitrogen. The influence of these environmental variables on cellular metabolism is described in details and thoroughly discussed. This work provides an overview

  16. Understanding Regulation of Metabolism through Feasibility Analysis

    NARCIS (Netherlands)

    Nikerel, I.E.; Berkhout, J.; Hu, F.; Teusink, B.; Reinders, M.J.T.; De Ridder, D.

    2012-01-01

    Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism is rarely controlled via enzyme levels only, but

  17. Cellular energy metabolism in T-lymphocytes.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Sawitzki, Birgit; Hoff, Paula; Buttgereit, Frank

    2015-01-01

    Energy homeostasis is a hallmark of cell survival and maintenance of cell function. Here we focus on the impact of cellular energy metabolism on T-lymphocyte differentiation, activation, and function in health and disease. We describe the role of transcriptional and posttranscriptional regulation of lymphocyte metabolism on immune functions of T cells. We also summarize the current knowledge about T-lymphocyte adaptations to inflammation and hypoxia, and the impact on T-cell behavior of pathophysiological hypoxia (as found in tumor tissue, chronically inflamed joints in rheumatoid arthritis and during bone regeneration). A better understanding of the underlying mechanisms that control immune cell metabolism and immune response may provide therapeutic opportunities to alter the immune response under conditions of either immunosuppression or inflammation, potentially targeting infections, vaccine response, tumor surveillance, autoimmunity, and inflammatory disorders.

  18. Regulation of Mitochondrial Function and Cellular Energy Metabolism by Protein Kinase C-λ/ι: A Novel Mode of Balancing Pluripotency

    Science.gov (United States)

    Mahato, Biraj; Home, Pratik; Rajendran, Ganeshkumar; Paul, Arindam; Saha, Biswarup; Ganguly, Avishek; Ray, Soma; Roy, Nairita; Swerdlow, Russell H.; Paul, Soumen

    2014-01-01

    Pluripotent stem cells (PSCs) contain functionally immature mitochondria and rely upon high rates of glycolysis for their energy requirements. Thus, altered mitochondrial function and promotion of aerobic glycolysis is key to maintain and induce pluripotency. However, signaling mechanisms that regulate mitochondrial function and reprogram metabolic preferences in self-renewing vs. differentiated PSC populations are poorly understood. Here, using murine embryonic stem cells (ESCs) as a model system, we demonstrate that atypical protein kinase C isoform, PKC lambda/iota (PKCλ/ι), is a key regulator of mitochondrial function in ESCs. Depletion of PKCλ/ι in ESCs maintains their pluripotent state as evident from germline offsprings. Interestingly, loss of PKCλ/ι in ESCs leads to impairment in mitochondrial maturation, organization and a metabolic shift toward glycolysis under differentiating condition. Our mechanistic analyses indicate that a PKCλ/ι-HIF1α-PGC1α axis regulates mitochondrial respiration and balances pluripotency in ESCs. We propose that PKCλ/ι could be a crucial regulator of mitochondrial function and energy metabolism in stem cells and other cellular contexts. PMID:25142417

  19. Yeast two-hybrid screens imply involvement of Fanconi anemia proteins in transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

    Science.gov (United States)

    Reuter, Tanja Y; Medhurst, Annette L; Waisfisz, Quinten; Zhi, Yu; Herterich, Sabine; Hoehn, Holger; Gross, Hans J; Joenje, Hans; Hoatlin, Maureen E; Mathew, Christopher G; Huber, Pia A J

    2003-10-01

    Mutations in one of at least eight different genes cause bone marrow failure, chromosome instability, and predisposition to cancer associated with the rare genetic syndrome Fanconi anemia (FA). The cloning of seven genes has provided the tools to study the molecular pathway disrupted in Fanconi anemia patients. The structure of the genes and their gene products provided few clues to their functional role. We report here the use of 3 FA proteins, FANCA, FANCC, and FANCG, as "baits" in the hunt for interactors to obtain clues for FA protein functions. Using five different human cDNA libraries we screened 36.5x10(6) clones with the technique of the yeast two-hybrid system. We identified 69 proteins which have not previously been linked to the FA pathway as direct interactors of FANCA, FANCC, or FANCG. Most of these proteins are associated with four functional classes including transcription regulation (21 proteins), signaling (13 proteins), oxidative metabolism (10 proteins), and intracellular transport (11 proteins). Interaction with 6 proteins, DAXX, Ran, IkappaBgamma, USP14, and the previously reported SNX5 and FAZF, was additionally confirmed by coimmunoprecipitation and/or colocalization studies. Taken together, our data strongly support the hypothesis that FA proteins are functionally involved in several complex cellular pathways including transcription regulation, cell signaling, oxidative metabolism, and cellular transport.

  20. Metabolic regulation of inflammation.

    Science.gov (United States)

    Gaber, Timo; Strehl, Cindy; Buttgereit, Frank

    2017-05-01

    Immune cells constantly patrol the body via the bloodstream and migrate into multiple tissues where they face variable and sometimes demanding environmental conditions. Nutrient and oxygen availability can vary during homeostasis, and especially during the course of an immune response, creating a demand for immune cells that are highly metabolically dynamic. As an evolutionary response, immune cells have developed different metabolic programmes to supply them with cellular energy and biomolecules, enabling them to cope with changing and challenging metabolic conditions. In the past 5 years, it has become clear that cellular metabolism affects immune cell function and differentiation, and that disease-specific metabolic configurations might provide an explanation for the dysfunctional immune responses seen in rheumatic diseases. This Review outlines the metabolic challenges faced by immune cells in states of homeostasis and inflammation, as well as the variety of metabolic configurations utilized by immune cells during differentiation and activation. Changes in cellular metabolism that contribute towards the dysfunctional immune responses seen in rheumatic diseases are also briefly discussed.

  1. Ultrasound enhances calcium absorption of jujube fruit by regulating the cellular calcium distribution and metabolism of cell wall polysaccharides.

    Science.gov (United States)

    Zhi, Huanhuan; Liu, Qiqi; Xu, Juan; Dong, Yu; Liu, Mengpei; Zong, Wei

    2017-12-01

    Ultrasound has been applied in fruit pre-washing processes. However, it is not sufficient to protect fruit from pathogenic infection throughout the entire storage period, and sometimes ultrasound causes tissue damage. The goal of this study was to investigate the effects of calcium chloride (CaCl 2 , 10 g L -1 ) and ultrasound (350 W at 40 kHz), separately and in combination, on jujube fruit quality, antioxidant status, tissue Ca 2+ content and distribution along with cell wall metabolism at 20 °C for 6 days. All three treatments significantly maintained fruit firmness and peel color, reduced respiration rate, decay incidence, superoxide anion, hydrogen peroxide and malondialdehyde and preserved higher enzymatic (superoxide dismutase, catalase and peroxidase) and non-enzymatic (ascorbic acid and glutathione) antioxidants compared with the control. Moreover, the combined treatment was more effective in increasing tissue Ca 2+ content and distribution, inhibiting the generation of water-soluble and CDTA-soluble pectin fractions, delaying the solubilization of Na 2 CO 3 -soluble pectin and having lower activities of cell wall-modifying enzymes (polygalacturonase and pectate lyase) during storage. These results demonstrated that the combination of CaCl 2 and ultrasound has potential commercial application to extend the shelf life of jujube fruit by facilitating Ca 2+ absorption and stabilizing the cell wall structure. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  2. Mitochondrial dysfunction and cellular metabolic deficiency in Alzheimer's disease.

    Science.gov (United States)

    Gu, Xue-Mei; Huang, Han-Chang; Jiang, Zhao-Feng

    2012-10-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disorder. The pathology of AD includes amyloid-β (Aβ) deposits in neuritic plaques and neurofibrillary tangles composed of hyperphosphorylated tau, as well as neuronal loss in specific brain regions. Increasing epidemiological and functional neuroimaging evidence indicates that global and regional disruptions in brain metabolism are involved in the pathogenesis of this disease. Aβ precursor protein is cleaved to produce both extracellular and intracellular Aβ, accumulation of which might interfere with the homeostasis of cellular metabolism. Mitochondria are highly dynamic organelles that not only supply the main energy to the cell but also regulate apoptosis. Mitochondrial dysfunction might contribute to Aβ neurotoxicity. In this review, we summarize the pathways of Aβ generation and its potential neurotoxic effects on cellular metabolism and mitochondrial dysfunction.

  3. Translation Factors Specify Cellular Metabolic State

    Directory of Open Access Journals (Sweden)

    Juan Mata

    2016-08-01

    Full Text Available In this issue of Cell Reports, Shah et al. present evidence that a subcomplex of the eIF3 translation initiation factor regulates translation of mRNAs encoding components of the mitochondrial electron transport chain and glycolytic enzymes, thus linking translational control with energy metabolism.

  4. Metabolic regulation of yeast

    Science.gov (United States)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  5. Molecular processes in cellular arsenic metabolism

    International Nuclear Information System (INIS)

    Thomas, David J.

    2007-01-01

    Elucidating molecular processes that underlie accumulation, metabolism and binding of iAs and its methylated metabolites provides a basis for understanding the modes of action by which iAs acts as a toxin and a carcinogen. One approach to this problem is to construct a conceptual model that incorporates available information on molecular processes involved in the influx, metabolism, binding and efflux of arsenicals in cells. This conceptual model is initially conceived as a non-quantitative representation of critical molecular processes that can be used as a framework for experimental design and prediction. However, with refinement and incorporation of additional data, the conceptual model can be expressed in mathematical terms and should be useful for quantitative estimates of the kinetic and dynamic behavior of iAs and its methylated metabolites in cells. Development of a quantitative model will be facilitated by the availability of tools and techniques to manipulate molecular processes underlying transport of arsenicals across cell membranes or expression and activity of enzymes involved in methylation of arsenicals. This model of cellular metabolism might be integrated into more complex pharmacokinetic models for systemic metabolism of iAs and its methylated metabolites. It may also be useful in development of biologically based dose-response models describing the toxic and carcinogenic actions of arsenicals

  6. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-11-09

    Terpenoid oils, resins, and waxes from plants are important renewable resources. The objective of this project is to understand the regulation of terpenoid metabolism using the monoterpenes (C[sub 10]) as a model. The pathways of monoterpene biosynthesis and catabolism have been established, and the relevant enzymes characterized. Developmental studies relating enzyme levels to terpene accumulation within the oil gland sites of synthesis, and work with bioregulators, indicate that monoterpene production is controlled by terpene cyclases, the enzymes catalyzing the first step of the monoterpene pathway. As the leaf oil glands mature, cyclase levels decline and monoterpene biosynthesis ceases. Yield then decreases as the monoterpenes undergo catabolism by a process involving conversion to a glycoside and transport from the leaf glands to the root. At this site, the terpenoid is oxidatively degraded to acetate that is recycled into other lipid metabolites. During the transition from terpene biosynthesis to catabolism, the oil glands undergo dramatic ultrastructural modification. Degradation of the producing cells results in mixing of previously compartmentized monoterpenes with the catabolic enzymes, ultimately leading to yield decline. This regulatory model is being applied to the formation of other terpenoid classes (C[sub 15] C[sub 20], C[sub 30], C[sub 40]) within the oil glands. Preliminary investigations on the formation of sesquiterpenes (C[sub 15]) suggest that the corresponding cyclases may play a lesser role in determining yield of these products, but that compartmentation effects are important. From these studies, a comprehensive scheme for the regulation of terpene metabolism is being constructed. Results from this project wail have important consequences for the yield and composition of terpenoid natural products that can be made available for industrial exploitation.

  7. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1991-01-01

    During the last grant period, we have completed studies on the key pathways of monoterpene biosynthesis and catabolism in sage and peppermint, and have, by several lines of evidence, deciphered the rate-limiting step of each pathway. We have at least partially purified and characterized the relevant enzymes of each pathway. We have made a strong case, based on analytical, in vivo, and in vitro studies, that terpene accumulation depends upon the balance between biosynthesis and catabolism, and provided supporting evidence that these processes are developmentally-regulated and very closely associated with senescence of the oil glands. Oil gland ontogeny has been characterized at the ultrastructural level. We have exploited foliar-applied bioregulators to delay gland senescence, and have developed tissue explant and cell culture systems to study several elusive aspects of catabolism. We have isolated pure gland cell clusters and localized monoterpene biosynthesis and catabolism within these structures, and have used these preparations as starting materials for the purification to homogeneity of target regulatory'' enzymes. We have thus developed the necessary background knowledge, based on a firm understanding of enzymology, as well as the necessary experimental tools for studying the regulation of monoterpene metabolism at the molecular level. Furthermore, we are now in a position to extend our systematic approach to other terpenoid classes (C[sub 15]-C[sub 30]) produced by oil glands.

  8. Understanding Regulation of Metabolism through Feasibility Analysis

    Science.gov (United States)

    Nikerel, Emrah; Berkhout, Jan; Hu, Fengyuan; Teusink, Bas; Reinders, Marcel J. T.; de Ridder, Dick

    2012-01-01

    Understanding cellular regulation of metabolism is a major challenge in systems biology. Thus far, the main assumption was that enzyme levels are key regulators in metabolic networks. However, regulation analysis recently showed that metabolism is rarely controlled via enzyme levels only, but through non-obvious combinations of hierarchical (gene and enzyme levels) and metabolic regulation (mass action and allosteric interaction). Quantitative analyses relating changes in metabolic fluxes to changes in transcript or protein levels have revealed a remarkable lack of understanding of the regulation of these networks. We study metabolic regulation via feasibility analysis (FA). Inspired by the constraint-based approach of Flux Balance Analysis, FA incorporates a model describing kinetic interactions between molecules. We enlarge the portfolio of objectives for the cell by defining three main physiologically relevant objectives for the cell: function, robustness and temporal responsiveness. We postulate that the cell assumes one or a combination of these objectives and search for enzyme levels necessary to achieve this. We call the subspace of feasible enzyme levels the feasible enzyme space. Once this space is constructed, we can study how different objectives may (if possible) be combined, or evaluate the conditions at which the cells are faced with a trade-off among those. We apply FA to the experimental scenario of long-term carbon limited chemostat cultivation of yeast cells, studying how metabolism evolves optimally. Cells employ a mixed strategy composed of increasing enzyme levels for glucose uptake and hexokinase and decreasing levels of the remaining enzymes. This trade-off renders the cells specialized in this low-carbon flux state to compete for the available glucose and get rid of over-overcapacity. Overall, we show that FA is a powerful tool for systems biologists to study regulation of metabolism, interpret experimental data and evaluate hypotheses. PMID

  9. Linking metabolomics data to underlying metabolic regulation

    Directory of Open Access Journals (Sweden)

    Thomas eNägele

    2014-11-01

    Full Text Available The comprehensive experimental analysis of a metabolic constitution plays a central role in approaches of organismal systems biology.Quantifying the impact of a changing environment on the homeostasis of cellular metabolism has been the focus of numerous studies applying various metabolomics techniques. It has been proven that approaches which integrate different analytical techniques, e.g. LC-MS, GC-MS, CE-MS and H-NMR, can provide a comprehensive picture of a certain metabolic homeostasis. Identification of metabolic compounds and quantification of metabolite levels represent the groundwork for the analysis of regulatory strategies in cellular metabolism. This significantly promotes our current understanding of the molecular organization and regulation of cells, tissues and whole organisms.Nevertheless, it is demanding to elicit the pertinent information which is contained in metabolomics data sets.Based on the central dogma of molecular biology, metabolite levels and their fluctuations are the result of a directed flux of information from gene activation over transcription to translation and posttranslational modification.Hence, metabolomics data represent the summed output of a metabolic system comprising various levels of molecular organization.As a consequence, the inverse assignment of metabolomics data to underlying regulatory processes should yield information which-if deciphered correctly-provides comprehensive insight into a metabolic system.Yet, the deduction of regulatory principles is complex not only due to the high number of metabolic compounds, but also because of a high level of cellular compartmentalization and differentiation.Motivated by the question how metabolomics approaches can provide a representative view on regulatory biochemical processes, this article intends to present and discuss current metabolomics applications, strategies of data analysis and their limitations with respect to the interpretability in context of

  10. Altered Cellular Metabolism Drives Trained Immunity.

    Science.gov (United States)

    Sohrabi, Yahya; Godfrey, Rinesh; Findeisen, Hannes M

    2018-04-04

    Exposing innate immune cells to an initial insult induces a long-term proinflammatory response due to metabolic and epigenetic alterations which encompass an emerging new concept called trained immunity. Recent studies provide novel insights into mechanisms centered on metabolic reprogramming which induce innate immune memory in hematopoietic stem cells and monocytes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Regulation of Metabolic Activity by p53

    Directory of Open Access Journals (Sweden)

    Jessica Flöter

    2017-05-01

    Full Text Available Metabolic reprogramming in cancer cells is controlled by the activation of multiple oncogenic signalling pathways in order to promote macromolecule biosynthesis during rapid proliferation. Cancer cells also need to adapt their metabolism to survive and multiply under the metabolically compromised conditions provided by the tumour microenvironment. The tumour suppressor p53 interacts with the metabolic network at multiple nodes, mostly to reduce anabolic metabolism and promote preservation of cellular energy under conditions of nutrient restriction. Inactivation of this tumour suppressor by deletion or mutation is a frequent event in human cancer. While loss of p53 function lifts an important barrier to cancer development by deleting cell cycle and apoptosis checkpoints, it also removes a crucial regulatory mechanism and can render cancer cells highly sensitive to metabolic perturbation. In this review, we will summarise the major concepts of metabolic regulation by p53 and explore how this knowledge can be used to selectively target p53 deficient cancer cells in the context of the tumour microenvironment.

  12. Computational model of cellular metabolic dynamics

    DEFF Research Database (Denmark)

    Li, Yanjun; Solomon, Thomas; Haus, Jacob M

    2010-01-01

    of the cytosol and mitochondria. The model simulated skeletal muscle metabolic responses to insulin corresponding to human hyperinsulinemic-euglycemic clamp studies. Insulin-mediated rate of glucose disposal was the primary model input. For model validation, simulations were compared with experimental data......: intracellular metabolite concentrations and patterns of glucose disposal. Model variations were simulated to investigate three alternative mechanisms to explain insulin enhancements: Model 1 (M.1), simple mass action; M.2, insulin-mediated activation of key metabolic enzymes (i.e., hexokinase, glycogen synthase......, by application of mechanism M.3, the model predicts metabolite concentration changes and glucose partitioning patterns consistent with experimental data. The reaction rate fluxes quantified by this detailed model of insulin/glucose metabolism provide information that can be used to evaluate the development...

  13. [Regulation of terpene metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1992-01-01

    This report describes accomplishments over the past year on understanding of terpene synthesis in mint plants and sage. Specifically reported are the fractionation of 4-S-limonene synthetase, the enzyme responsible for the first committed step to monoterpene synthesis, along with isolation of the corresponding RNA and DNA cloning of its gene; the localization of the enzyme within the oil glands, regulation of transcription and translation of the synthetase, the pathway to camphor biosynthesis,a nd studies on the early stages and branch points of the isoprenoid pathway.

  14. NAD(H) and NADP(H) Redox Couples and Cellular Energy Metabolism.

    Science.gov (United States)

    Xiao, Wusheng; Wang, Rui-Sheng; Handy, Diane E; Loscalzo, Joseph

    2018-01-20

    The nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) and NADP + /reduced NADP + (NADPH) redox couples are essential for maintaining cellular redox homeostasis and for modulating numerous biological events, including cellular metabolism. Deficiency or imbalance of these two redox couples has been associated with many pathological disorders. Recent Advances: Newly identified biosynthetic enzymes and newly developed genetically encoded biosensors enable us to understand better how cells maintain compartmentalized NAD(H) and NADP(H) pools. The concept of redox stress (oxidative and reductive stress) reflected by changes in NAD(H)/NADP(H) has increasingly gained attention. The emerging roles of NAD + -consuming proteins in regulating cellular redox and metabolic homeostasis are active research topics. The biosynthesis and distribution of cellular NAD(H) and NADP(H) are highly compartmentalized. It is critical to understand how cells maintain the steady levels of these redox couple pools to ensure their normal functions and simultaneously avoid inducing redox stress. In addition, it is essential to understand how NAD(H)- and NADP(H)-utilizing enzymes interact with other signaling pathways, such as those regulated by hypoxia-inducible factor, to maintain cellular redox homeostasis and energy metabolism. Additional studies are needed to investigate the inter-relationships among compartmentalized NAD(H)/NADP(H) pools and how these two dinucleotide redox couples collaboratively regulate cellular redox states and cellular metabolism under normal and pathological conditions. Furthermore, recent studies suggest the utility of using pharmacological interventions or nutrient-based bioactive NAD + precursors as therapeutic interventions for metabolic diseases. Thus, a better understanding of the cellular functions of NAD(H) and NADP(H) may facilitate efforts to address a host of pathological disorders effectively. Antioxid. Redox Signal. 28, 251-272.

  15. A Cellular Perspective on Brain Energy Metabolism and Functional Imaging

    KAUST Repository

    Magistretti, Pierre J.

    2015-05-01

    The energy demands of the brain are high: they account for at least 20% of the body\\'s energy consumption. Evolutionary studies indicate that the emergence of higher cognitive functions in humans is associated with an increased glucose utilization and expression of energy metabolism genes. Functional brain imaging techniques such as fMRI and PET, which are widely used in human neuroscience studies, detect signals that monitor energy delivery and use in register with neuronal activity. Recent technological advances in metabolic studies with cellular resolution have afforded decisive insights into the understanding of the cellular and molecular bases of the coupling between neuronal activity and energy metabolism and pointat a key role of neuron-astrocyte metabolic interactions. This article reviews some of the most salient features emerging from recent studies and aims at providing an integration of brain energy metabolism across resolution scales. © 2015 Elsevier Inc.

  16. MO-DE-206-02: Cellular Metabolism of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Cherry, S. [University of California-Davis (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  17. MO-DE-206-01: Cellular Metabolism of FDG

    Energy Technology Data Exchange (ETDEWEB)

    Pratx, G. [Stanford University (United States)

    2016-06-15

    In this symposium jointly sponsored by the World Molecular Imaging Society (WMIS) and the AAPM, luminary speakers on imaging metabolism will discuss three impactful topics. The first presentation on Cellular Metabolism of FDG will be given by Guillem Pratx (Stanford). This presentation will detail new work on looking at how the most common molecular imaging agent, fluoro-deoxy-glucose is metabolized at a cellular level. This will be followed by a talk on an improved approach to whole-body PET imaging by Simon Cherry (UC Davis). Simon’s work on a new whole-body PET imaging system promises to have dramatic improvement in our ability to detect and characterize cancer using PET. Finally, Jim Bankson (MD Anderson) will discuss extremely sophisticated approaches to quantifying hyperpolarized-13-C pyruvate metabolism using MR imaging. This technology promises to compliment the exquisite sensitivity of PET with an ability to measure not just uptake, but tumor metabolism. Learning Objectives: Understand the metabolism of FDG at a cellular level. Appreciate the engineering related to a novel new high-sensitivity whole-body PET imaging system. Understand the process of hyperpolarization, how pyruvate relates to metabolism and how advanced modeling can be used to better quantify this data. G. Pratx, Funding: 5R01CA186275, 1R21CA193001, and Damon Runyon Cancer Foundation. S. Cherry, National Institutes of Health; University of California, Davis; Siemens Medical SolutionsJ. Bankson, GE Healthcare; NCI P30-CA016672; CPRIT PR140021-P5.

  18. Metabolic-flux dependent regulation of microbial physiology.

    Science.gov (United States)

    Litsios, Athanasios; Ortega, Álvaro D; Wit, Ernst C; Heinemann, Matthias

    2018-04-01

    According to the most prevalent notion, changes in cellular physiology primarily occur in response to altered environmental conditions. Yet, recent studies have shown that changes in metabolic fluxes can also trigger phenotypic changes even when environmental conditions are unchanged. This suggests that cells have mechanisms in place to assess the magnitude of metabolic fluxes, that is, the rate of metabolic reactions, and use this information to regulate their physiology. In this review, we describe recent evidence for metabolic flux-sensing and flux-dependent regulation. Furthermore, we discuss how such sensing and regulation can be mechanistically achieved and present a set of new candidates for flux-signaling metabolites. Similar to metabolic-flux sensing, we argue that cells can also sense protein translation flux. Finally, we elaborate on the advantages that flux-based regulation can confer to cells. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Interplay of drug metabolizing enzymes with cellular transporters.

    Science.gov (United States)

    Böhmdorfer, Michaela; Maier-Salamon, Alexandra; Riha, Juliane; Brenner, Stefan; Höferl, Martina; Jäger, Walter

    2014-11-01

    Many endogenous and xenobiotic substances and their metabolites are substrates for drug metabolizing enzymes and cellular transporters. These proteins may not only contribute to bioavailability of molecules but also to uptake into organs and, consequently, to overall elimination. The coordinated action of uptake transporters, metabolizing enzymes, and efflux pumps, therefore, is a precondition for detoxification and elimination of drugs. As the understanding of the underlying mechanisms is important to predict alterations in drug disposal, adverse drug reactions and, finally, drug-drug interactions, this review illustrates the interplay between selected uptake/efflux transporters and phase I/II metabolizing enzymes.

  20. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds.

    Science.gov (United States)

    Swanson, David L; King, Marisa O; Culver, William; Zhang, Yufeng

    Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (M sum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in M sum , we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.

  1. Interconnectivity of human cellular metabolism and disease prevalence

    International Nuclear Information System (INIS)

    Lee, Deok-Sun

    2010-01-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease–gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery

  2. Interconnectivity of human cellular metabolism and disease prevalence

    Science.gov (United States)

    Lee, Deok-Sun

    2010-12-01

    Fluctuations of metabolic reaction fluxes may cause abnormal concentrations of toxic or essential metabolites, possibly leading to metabolic diseases. The mutual binding of enzymatic proteins and ones involving common metabolites enforces distinct coupled reactions, by which local perturbations may spread through the cellular network. Such network effects at the molecular interaction level in human cellular metabolism can reappear in the patterns of disease occurrence. Here we construct the enzyme-reaction network and the metabolite-reaction network, capturing the flux coupling of metabolic reactions caused by the interacting enzymes and the shared metabolites, respectively. Diseases potentially caused by the failure of individual metabolic reactions can be identified by using the known disease-gene association, which allows us to derive the probability of an inactivated reaction causing diseases from the disease records at the population level. We find that the greater the number of proteins that catalyze a reaction, the higher the mean prevalence of its associated diseases. Moreover, the number of connected reactions and the mean size of the avalanches in the networks constructed are also shown to be positively correlated with the disease prevalence. These findings illuminate the impact of the cellular network topology on disease development, suggesting that the global organization of the molecular interaction network should be understood to assist in disease diagnosis, treatment, and drug discovery.

  3. 'Biomoleculas': cellular metabolism didactic software

    Energy Technology Data Exchange (ETDEWEB)

    Menghi, M L [Chair of Physiology and Biophysics, Facultad de Ingenieria, Universidad Nacional de Entre Rios, CC 57 Suc 3, Parana 3100, Entre Rios (Argentina); Novella, L P [Chair of Physiology and Biophysics, Facultad de Ingenieria, Universidad Nacional de Entre Rios, CC 57 Suc 3, Parana 3100, Entre Rios (Argentina); Siebenlist, M R [Chair of Physiology and Biophysics, Facultad de Ingenieria, Universidad Nacional de Entre Rios, CC 57 Suc 3, Parana 3100, Entre Rios (Argentina)

    2007-11-15

    'Biomoleculas' is a software that deals with topics such as the digestion, cellular metabolism and excretion of nutrients. It is a pleasant, simple and didactic guide, made by and for students. In this program, each biomolecule (carbohydrates, lipids and proteins) is accompanied until its degradation and assimilation by crossing and interrelating the different metabolic channels to finally show the destination of the different metabolites formed and the way in which these are excreted. It is used at present as a teaching-learning process tool by the chair of Physiology and Biophysics at the Facultad de Ingenieria - Universidad Nacional de Entre Rios.

  4. Metabolic signals in sleep regulation: recent insights

    Directory of Open Access Journals (Sweden)

    Shukla C

    2016-01-01

    Full Text Available Charu Shukla, Radhika Basheer Department of Psychiatry, VA Boston Healthcare System, Harvard Medical School, West Roxbury, MA, USA Abstract: Sleep and energy balance are essential for health. The two processes act in concert to regulate central and peripheral homeostasis. During sleep, energy is conserved due to suspended activity, movement, and sensory responses, and is redirected to restore and replenish proteins and their assemblies into cellular structures. During wakefulness, various energy-demanding activities lead to hunger. Thus, hunger promotes arousal, and subsequent feeding, followed by satiety that promotes sleep via changes in neuroendocrine or neuropeptide signals. These signals overlap with circuits of sleep-wakefulness, feeding, and energy expenditure. Here, we will briefly review the literature that describes the interplay between the circadian system, sleep-wake, and feeding-fasting cycles that are needed to maintain energy balance and a healthy metabolic profile. In doing so, we describe the neuroendocrine, hormonal/peptide signals that integrate sleep and feeding behavior with energy metabolism. Keywords: sleep, energy balance, hypothalamus, metabolism, homeostasis

  5. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism

    DEFF Research Database (Denmark)

    Casanovas, Albert; Sprenger, Richard R; Tarasov, Kirill

    2015-01-01

    Elucidating how and to what extent lipid metabolism is remodeled under changing conditions is essential for understanding cellular physiology. Here, we analyzed proteome and lipidome dynamics to investigate how regulation of lipid metabolism at the global scale supports remodeling of cellular...

  6. Integrating cellular metabolism into a multiscale whole-body model.

    Directory of Open Access Journals (Sweden)

    Markus Krauss

    Full Text Available Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development.

  7. Integrating Cellular Metabolism into a Multiscale Whole-Body Model

    Science.gov (United States)

    Krauss, Markus; Schaller, Stephan; Borchers, Steffen; Findeisen, Rolf; Lippert, Jörg; Kuepfer, Lars

    2012-01-01

    Cellular metabolism continuously processes an enormous range of external compounds into endogenous metabolites and is as such a key element in human physiology. The multifaceted physiological role of the metabolic network fulfilling the catalytic conversions can only be fully understood from a whole-body perspective where the causal interplay of the metabolic states of individual cells, the surrounding tissue and the whole organism are simultaneously considered. We here present an approach relying on dynamic flux balance analysis that allows the integration of metabolic networks at the cellular scale into standardized physiologically-based pharmacokinetic models at the whole-body level. To evaluate our approach we integrated a genome-scale network reconstruction of a human hepatocyte into the liver tissue of a physiologically-based pharmacokinetic model of a human adult. The resulting multiscale model was used to investigate hyperuricemia therapy, ammonia detoxification and paracetamol-induced toxication at a systems level. The specific models simultaneously integrate multiple layers of biological organization and offer mechanistic insights into pathology and medication. The approach presented may in future support a mechanistic understanding in diagnostics and drug development. PMID:23133351

  8. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium

    Directory of Open Access Journals (Sweden)

    Zhongyan Lu

    2018-03-01

    Full Text Available Background/Aims: In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. Methods: RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive. In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. Results: The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. Conclusions: These results indicated that the

  9. High-Concentrate Diet-Induced Change of Cellular Metabolism Leads to Decreases of Immunity and Imbalance of Cellular Activities in Rumen Epithelium.

    Science.gov (United States)

    Lu, Zhongyan; Shen, Hong; Shen, Zanming

    2018-01-01

    In animals, the immune and cellular processes of tissue largely depend on the status of local metabolism. However, in the rumen epithelium, how the cellular metabolism affects epithelial immunity, and cellular processes, when the diet is switched from energy-rich to energy-excess status, with regard to animal production and health, have not as yet been reported. RNA-seq was applied to compare the biological processes altered by an increase of dietary concentration from 10% to 35% with those altered by an increase of dietary concentration from 35% to 65% (dietary concentrate: the non-grass component in diet, including corn, soya bean meal and additive. High concentrate diet composed of 35% grass, 55% corn, 8% soya bean meal and 2% additive). In addition to the functional analysis of enriched genes in terms of metabolism, the immune system, and cellular process, the highly correlated genes to the enriched metabolism genes were identified, and the function and signaling pathways related to the differentially expressed neighbors were compared among the groups. The variation trends of molar proportions of ruminal SCFAs and those of enriched pathways belonging to metabolism, immune system, and cellular process were altered with the change of diets. With regard to metabolism, lipid metabolism and amino acid metabolism were most affected. According to the correlation analysis, both innate and adaptive immune responses were promoted by the metabolism genes enriched under the 65% concentrate diet. However, the majority of immune responses were suppressed under the 35% concentrate diet. Moreover, the exclusive upregulation of cell growth and dysfunction of cellular transport and catabolism were induced by the metabolism genes enriched under the 65% concentrate diet. On the contrary, a balanced regulation of cellular processes was detected under the 35% concentrate diet. These results indicated that the alterations of cellular metabolism promote the alterations in cellular

  10. Uncovering transcriptional regulation of metabolism by using metabolic network topology

    DEFF Research Database (Denmark)

    Patil, Kiran Raosaheb; Nielsen, Jens

    2005-01-01

    in the metabolic network that follow a common transcriptional response. Thus, the algorithm enables identification of so-called reporter metabolites (metabolites around which the most significant transcriptional changes occur) and a set of connected genes with significant and coordinated response to genetic......Cellular response to genetic and environmental perturbations is often reflected and/or mediated through changes in the metabolism, because the latter plays a key role in providing Gibbs free energy and precursors for biosynthesis. Such metabolic changes are often exerted through transcriptional...... therefore developed an algorithm that is based on hypothesis-driven data analysis to uncover the transcriptional regulatory architecture of metabolic networks. By using information on the metabolic network topology from genome-scale metabolic reconstruction, we show that it is possible to reveal patterns...

  11. Activation and Regulation of Cellular Eicosanoid Biosynthesis

    Directory of Open Access Journals (Sweden)

    Thomas G. Brock

    2007-01-01

    Full Text Available There is a growing appreciation for the wide variety of physiological responses that are regulated by lipid messengers. One particular group of lipid messengers, the eicosanoids, plays a central role in regulating immune and inflammatory responses in a receptor-mediated fashion. These mediators are related in that they are all derived from one polyunsaturated fatty acid, arachidonic acid. However, the various eicosanoids are synthesized by a wide variety of cell types by distinct enzymatic pathways, and have diverse roles in immunity and inflammation. In this review, the major pathways involved in the synthesis of eicosanoids, as well as key points of regulation, are presented.

  12. Role of SUMO-specific protease 2 in reprogramming cellular glucose metabolism.

    Directory of Open Access Journals (Sweden)

    Shuang Tang

    Full Text Available Most cancer cells exhibit a shift in glucose metabolic strategy, displaying increased glycolysis even with adequate oxygen supply. SUMO-specific proteases (SENPs de-SUMOylate substrates including HIF1α and p53,two key regulators in cancer glucose metabolism, to regulate their activity, stability and subcellular localization. However, the role of SENPs in tumor glucose metabolism remains unclear. Here we report that SUMO-specific protease 2 (SENP2 negatively regulates aerobic glycolysis in MCF7 and MEF cells. Over-expression of SENP2 reduces the glucose uptake and lactate production, increasing the cellular ATP levels in MCF7 cells, while SENP2 knockout MEF cells show increased glucose uptake and lactate production along with the decreased ATP levels. Consistently, the MCF7 cells over-expressing SENP2 exhibit decreased expression levels of key glycolytic enzymes and an increased rate of glucose oxidation compared with control MCF7 cells, indicating inhibited glycolysis but enhanced oxidative mitochondrial respiration. Moreover, SENP2 over-expressing MCF7 cells demonstrated a reduced amount of phosphorylated AKT, whereas SENP2 knockout MEFs exhibit increased levels of phosphorylated AKT. Furthermore, inhibiting AKT phosphorylation by LY294002 rescued the phenotype induced by SENP2 deficiency in MEFs. In conclusion, SENP2 represses glycolysis and shifts glucose metabolic strategy, in part through inhibition of AKT phosphorylation. Our study reveals a novel function of SENP2 in regulating glucose metabolism.

  13. Regulation of ARE-mRNA Stability by Cellular Signaling

    DEFF Research Database (Denmark)

    Damgaard, Christian Kroun; Lykke-Andersen, Jens

    2013-01-01

    but as a response to different cellular cues they can become either stabilized, allowing expression of a given gene, or further destabilized to silence their expression. These tightly regulated mRNAs include many that encode growth factors, proto-oncogenes, cytokines, and cell cycle regulators. Failure to properly...

  14. TOR, the Gateway to Cellular Metabolism, Cell Growth, and Disease.

    Science.gov (United States)

    Blenis, John

    2017-09-21

    Michael N. Hall is this year's recipient of the Lasker Basic Medical Research Award for the identification of the target of rapamycin, TOR. TOR is a master regulator of the cell's growth and metabolic state, and its dysregulation contributes to a variety of diseases, including diabetes, obesity, neurodegenerative disorders, aging, and cancer, making the TOR pathway an attractive therapeutic target. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  15. Effects of Lysine deficiency and Lys-Lys dipeptide on cellular apoptosis and amino acids metabolism.

    Science.gov (United States)

    Yin, Jie; Li, Yuying; Han, Hui; Zheng, Jie; Wang, Lijian; Ren, Wenkai; Chen, Shuai; Wu, Fei; Fang, Rejun; Huang, Xingguo; Li, Chunyong; Tan, Bie; Xiong, Xia; Zhang, Yuzhe; Liu, Gang; Yao, Jiming; Li, Tiejun; Yin, Yulong

    2017-09-01

    Lysine (Lys) is a common limiting amino acids (AA) for humans and animals and plays an important role in cell proliferation and metabolism, while metabolism of Lys deficiency and its dipeptide is still obscure. Thus, this study mainly investigated the effects of Lys deficiency and Lys-Lys dipeptide on apoptosis and AA metabolism in vitro and in vivo models. Lys deficiency induced cell-cycle arrest and apoptosis and upregulated Lys transporters in vitro and in vivo. SLC7A11, a cystine-glutamate antiporter, was markedly upregulated by Lys deficiency and then further mediated cystine uptake and glutamate release, which was negatively regulated by cystine and glutamate transporters. Meanwhile, Lys deprivation upregulated pept1 expression, which might improve Lys-Lys dipeptide absorption to compensate for the reduced Lys availability. Lys-Lys dipeptide alleviated Lys deficiency induced cell-cycle arrest and apoptosis and influenced AA metabolism. Furthermore, the mammalian target of rapamycin signal might be involved in sensing cellular Lys starvation and Lys-Lys dipeptide. Altogether, these studies suggest that Lys deficiency impairs AA metabolism and causes apoptosis. Lys-Lys dipeptide serves as a Lys source and alleviates Lys deficiency induced cellular imbalance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. APP Metabolism Regulates Tau Proteostasis in Human Cerebral Cortex Neurons

    Directory of Open Access Journals (Sweden)

    Steven Moore

    2015-05-01

    Full Text Available Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer’s disease (AD. To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons.

  17. Regulation of Cellular and Molecular Functions by Protein ...

    Indian Academy of Sciences (India)

    ... a high-energy linkage. The free energy of hydrolysis 1 of protein bound tyrosine phosphate ... protein kinases, cdc2 kinase (which regulates cell division cycle) and related cdc ... residues in response to extracellular signals such as hormones or growth factors. ... involved in regulating glycogen metabolism. The activity of.

  18. Connections Between Metabolism and Epigenetics in Programming Cellular Differentiation.

    Science.gov (United States)

    Chisolm, Danielle A; Weinmann, Amy S

    2018-04-26

    Researchers are intensifying efforts to understand the mechanisms by which changes in metabolic states influence differentiation programs. An emerging objective is to define how fluctuations in metabolites influence the epigenetic states that contribute to differentiation programs. This is because metabolites such as S-adenosylmethionine, acetyl-CoA, α-ketoglutarate, 2-hydroxyglutarate, and butyrate are donors, substrates, cofactors, and antagonists for the activities of epigenetic-modifying complexes and for epigenetic modifications. We discuss this topic from the perspective of specialized CD4 + T cells as well as effector and memory T cell differentiation programs. We also highlight findings from embryonic stem cells that give mechanistic insight into how nutrients processed through pathways such as glycolysis, glutaminolysis, and one-carbon metabolism regulate metabolite levels to influence epigenetic events and discuss similar mechanistic principles in T cells. Finally, we highlight how dysregulated environments, such as the tumor microenvironment, might alter programming events.

  19. Piezo proteins: regulators of mechanosensation and other cellular processes.

    Science.gov (United States)

    Bagriantsev, Sviatoslav N; Gracheva, Elena O; Gallagher, Patrick G

    2014-11-14

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    Science.gov (United States)

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular development, volume regulation, cellular migration, proliferation, and elongation. Mutations in human Piezo proteins have been associated with a variety of disorders including hereditary xerocytosis and several syndromes with muscular contracture as a prominent feature. PMID:25305018

  1. Prolyl hydroxylase domain enzymes: important regulators of cancer metabolism

    Directory of Open Access Journals (Sweden)

    Yang M

    2014-08-01

    Full Text Available Ming Yang,1 Huizhong Su,1 Tomoyoshi Soga,2 Kamil R Kranc,3 Patrick J Pollard1 1Cancer Biology and Metabolism Group, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK; 2Institute for Advanced Biosciences, Keio University, Mizukami, Tsuruoka, Yamagata, Japan; 3MRC Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK Abstract: The hypoxia-inducible factor (HIF prolyl hydroxylase domain enzymes (PHDs regulate the stability of HIF protein by post-translational hydroxylation of two conserved prolyl residues in its α subunit in an oxygen-dependent manner. Trans-4-prolyl hydroxylation of HIFα under normal oxygen (O2 availability enables its association with the von Hippel-Lindau (VHL tumor suppressor pVHL E3 ligase complex, leading to the degradation of HIFα via the ubiquitin-proteasome pathway. Due to the obligatory requirement of molecular O2 as a co-substrate, the activity of PHDs is inhibited under hypoxic conditions, resulting in stabilized HIFα, which dimerizes with HIFβ and, together with transcriptional co-activators CBP/p300, activates the transcription of its target genes. As a key molecular regulator of adaptive response to hypoxia, HIF plays important roles in multiple cellular processes and its overexpression has been detected in various cancers. The HIF1α isoform in particular has a strong impact on cellular metabolism, most notably by promoting anaerobic, whilst inhibiting O2-dependent, metabolism of glucose. The PHD enzymes also seem to have HIF-independent functions and are subject to regulation by factors other than O2, such as by metabolic status, oxidative stress, and abnormal levels of endogenous metabolites (oncometabolites that have been observed in some types of cancers. In this review, we aim to summarize current understandings of the function and regulation of PHDs in cancer with an emphasis on their roles in metabolism. Keywords: prolyl hydroxylase domain (PHD

  2. Thermodynamic Aspects and Reprogramming Cellular Energy Metabolism during the Fibrosis Process

    Directory of Open Access Journals (Sweden)

    Alexandre Vallée

    2017-11-01

    Full Text Available Fibrosis is characterized by fibroblast proliferation and fibroblast differentiation into myofibroblasts, which generate a relaxation-free contraction mechanism associated with excessive collagen synthesis in the extracellular matrix, which promotes irreversible tissue retraction evolving towards fibrosis. From a thermodynamic point of view, the mechanisms leading to fibrosis are irreversible processes that can occur through changing the entropy production rate. The thermodynamic behaviors of metabolic enzymes involved in fibrosis are modified by the dysregulation of both transforming growth factor β (TGF-β signaling and the canonical WNT/β-catenin pathway, leading to aerobic glycolysis, called the Warburg effect. Molecular signaling pathways leading to fibrosis are considered dissipative structures that exchange energy or matter with their environment far from the thermodynamic equilibrium. The myofibroblastic cells arise from exergonic processes by switching the core metabolism from oxidative phosphorylation to glycolysis, which generates energy and reprograms cellular energy metabolism to induce the process of myofibroblast differentiation. Circadian rhythms are far-from-equilibrium thermodynamic processes. They directly participate in regulating the TGF-β and WNT/β-catenin pathways involved in energetic dysregulation and enabling fibrosis. The present review focusses on the thermodynamic implications of the reprogramming of cellular energy metabolism, leading to fibroblast differentiation into myofibroblasts through the positive interplay between TGF-β and WNT/β-catenin pathways underlying in fibrosis.

  3. Regulation of Mammalian Metabolism by Facilitated Transport Across the Inner Mitochondrial Membrane

    OpenAIRE

    Vacanti, Nathaniel Martin

    2015-01-01

    The enzymes and reactions of the metabolic network provide cells with a means to utilize the energy stored in substrate chemical bonds and to rearrange those bonds to form biosynthetic building blocks. The chapters of this dissertation are all independent bodies of work exploring how the metabolic network influences and regulates cellular function or dysfunction. Chapter 1, titled "Exploring Metabolic Pathways that Contribute to the Stem Cell Phenotype", is a case study on how the metabolic n...

  4. AMPK regulates metabolism and survival in response to ionizing radiation

    International Nuclear Information System (INIS)

    Zannella, Vanessa E.; Cojocari, Dan; Hilgendorf, Susan; Vellanki, Ravi N.; Chung, Stephen; Wouters, Bradly G.; Koritzinsky, Marianne

    2011-01-01

    Background and purpose: AMPK is a metabolic sensor and an upstream inhibitor of mTOR activity. AMPK is phosphorylated by ionizing radiation (IR) in an ATM dependent manner, but the cellular consequences of this phosphorylation event have remained unclear. The objective of this study was to assess whether AMPK plays a functional role in regulating cellular responses to IR. Methods: The importance of AMPK expression for radiation responses was investigated using both MEFs (mouse embryo fibroblasts) double knockout for AMPK α1/α2 subunits and human colorectal carcinoma cells (HCT 116) with AMPK α1/α2 shRNA mediated knockdown. Results: We demonstrate here that IR results in phosphorylation of both AMPK and its substrate, ACC. IR moderately stimulated mTOR activity, and this was substantially exacerbated in the absence of AMPK. AMPK was required for IR induced expression of the mTOR inhibitor REDD1, indicating that AMPK restrains mTOR activity through multiple mechanisms. Likewise, cellular metabolism was deregulated following irradiation in the absence of AMPK, as evidenced by a substantial increase in oxygen consumption rates and lactate production. AMPK deficient cells showed impairment of the G1/S cell cycle checkpoint, and were unable to support long-term proliferation during starvation following radiation. Lastly, we show that AMPK proficiency is important for clonogenic survival after radiation during starvation. Conclusions: These data reveal novel functional roles for AMPK in regulating mTOR signaling, cell cycle, survival and metabolic responses to IR.

  5. Fibroblast Growth Factor Signaling in Metabolic Regulation.

    Science.gov (United States)

    Nies, Vera J M; Sancar, Gencer; Liu, Weilin; van Zutphen, Tim; Struik, Dicky; Yu, Ruth T; Atkins, Annette R; Evans, Ronald M; Jonker, Johan W; Downes, Michael Robert

    2015-01-01

    The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance, and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed. In this review, we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also, the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  6. Osmosensory mechanisms in cellular and systemic volume regulation

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Kapus, András; Hoffmann, Else K

    2011-01-01

    Perturbations of cellular and systemic osmolarity severely challenge the function of all organisms and are consequently regulated very tightly. Here we outline current evidence on how cells sense volume perturbations, with particular focus on mechanisms relevant to the kidneys and to extracellular...

  7. Regulation of trehalose metabolism in Saccharomyces

    International Nuclear Information System (INIS)

    Panek, A.D.; Costa-Carvalho, V.L.A.; Ortiz, C.H.D.; Dellamora-Ortiz, G.M.; Paschoalin, V.M.F.; Panek, A.C.

    1984-01-01

    The regulation of trehalose metabolism in Saccharomyces is studied by construction of mutants with specific lesions, cloning of genes involved in the regulation of trehalose synthase and of trehalase, as well as, isolation and purification of enzymes from the various mutants constructed. (M.A.C.) [pt

  8. Glucose metabolism regulates T cell activation, differentiation and functions

    Directory of Open Access Journals (Sweden)

    Clovis Steve Palmer

    2015-01-01

    Full Text Available The adaptive immune system is equipped to eliminate both tumors and pathogenic microorganisms. It requires a series of complex and coordinated signals to drive the activation, proliferation and differentiation of appropriate T cell subsets. It is now established that changes in cellular activation are coupled to profound changes in cellular metabolism. In addition, emerging evidence now suggest that specific metabolic alterations associated with distinct T cell subsets may be ancillary to their differentiation and influential in their immune functions. The Warburg effect originally used to describe a phenomenon in which most cancer cells relied on aerobic glycolysis for their growth is a key process that sustain T cell activation and differentiation. Here we review how different aspects of metabolism in T cells influence their functions, focusing on the emerging role of key regulators of glucose metabolism such as HIF-1α. A thorough understanding of the role of metabolism in T cell function could provide insights into mechanisms involved in inflammatory-mediated conditions, with the potential for developing novel therapeutic approaches to treat these diseases.

  9. The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism.

    Science.gov (United States)

    Lill, Roland; Hoffmann, Bastian; Molik, Sabine; Pierik, Antonio J; Rietzschel, Nicole; Stehling, Oliver; Uzarska, Marta A; Webert, Holger; Wilbrecht, Claudia; Mühlenhoff, Ulrich

    2012-09-01

    Mitochondria play a key role in iron metabolism in that they synthesize heme, assemble iron-sulfur (Fe/S) proteins, and participate in cellular iron regulation. Here, we review the latter two topics and their intimate connection. The mitochondrial Fe/S cluster (ISC) assembly machinery consists of 17 proteins that operate in three major steps of the maturation process. First, the cysteine desulfurase complex Nfs1-Isd11 as the sulfur donor cooperates with ferredoxin-ferredoxin reductase acting as an electron transfer chain, and frataxin to synthesize an [2Fe-2S] cluster on the scaffold protein Isu1. Second, the cluster is released from Isu1 and transferred toward apoproteins with the help of a dedicated Hsp70 chaperone system and the glutaredoxin Grx5. Finally, various specialized ISC components assist in the generation of [4Fe-4S] clusters and cluster insertion into specific target apoproteins. Functional defects of the core ISC assembly machinery are signaled to cytosolic or nuclear iron regulatory systems resulting in increased cellular iron acquisition and mitochondrial iron accumulation. In fungi, regulation is achieved by iron-responsive transcription factors controlling the expression of genes involved in iron uptake and intracellular distribution. They are assisted by cytosolic multidomain glutaredoxins which use a bound Fe/S cluster as iron sensor and additionally perform an essential role in intracellular iron delivery to target metalloproteins. In mammalian cells, the iron regulatory proteins IRP1, an Fe/S protein, and IRP2 act in a post-transcriptional fashion to adjust the cellular needs for iron. Thus, Fe/S protein biogenesis and cellular iron metabolism are tightly linked to coordinate iron supply and utilization. This article is part of a Special Issue entitled: Cell Biology of Metals. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. [Aging and metabolism: changes and regulation].

    Science.gov (United States)

    Ortiz, Genaro Gabriel; Arias-Merino, Elva D; Velázquez-Brizuela, Irma E; Pacheco-Moisés, Fermín P; Flores-Alvarado, Luis J; Torres-Sánchez, Erandis D; Cortés-Enríquez, Fernando; González-Renovato, Erika D; Ortiz-Velázquez, Irma G

    2012-09-01

    Studies about the effects of aging in the physiology and metabolism are increasingly, one of its objectives is to help implement programs to improve the quality of life and prevent disability in elderly. It is relevant to mention that, during aging, there is a natural metabolic deceleration, a series of changes in the regulation of energy are produced, which contributes to loss of weight and fat; the changes in the regulation of caloric intake contribute to increase the susceptibility to energy imbalance both positive and negative, which is associated with a deterioration in health. However, to grow old, is not a death sentence for metabolism, on the other hand, it can be controlled by maintaining an active lifestyle, coupled with this, research has shown that the metabolism'can be regulated by a synchronized clock (circadian rhythms), which is mediated by regulatory proteins, this relationship ensures the proper functioning of the cells and therefore good health. The aim of this review is to provide updated information on the energy- metabolism-regulation and its relationship with the great variety of components involved in energy expenditure that accompany aging, to analyze the regulation of this system to improve the quality of life and maintenance of health in old age.

  11. Cellular regulation of the structure and function of aortic valves

    Directory of Open Access Journals (Sweden)

    Ismail El-Hamamsy

    2010-01-01

    Full Text Available The aortic valve was long considered a passive structure that opens and closes in response to changes in transvalvular pressure. Recent evidence suggests that the aortic valve performs highly sophisticated functions as a result of its unique microscopic structure. These functions allow it to adapt to its hemodynamic and mechanical environment. Understanding the cellular and molecular mechanisms involved in normal valve physiology is essential to elucidate the mechanisms behind valve disease. We here review the structure and developmental biology of aortic valves; we examine the role of its cellular parts in regulating its function and describe potential pathophysiological and clinical implications.

  12. Balancing cellular redox metabolism in microbial electrosynthesis and electro fermentation - A chance for metabolic engineering.

    Science.gov (United States)

    Kracke, Frauke; Lai, Bin; Yu, Shiqin; Krömer, Jens O

    2018-01-01

    More and more microbes are discovered that are capable of extracellular electron transfer, a process in which they use external electrodes as electron donors or acceptors for metabolic reactions. This feature can be used to overcome cellular redox limitations and thus optimizing microbial production. The technologies, termed microbial electrosynthesis and electro-fermentation, have the potential to open novel bio-electro production platforms from sustainable energy and carbon sources. However, the performance of reported systems is currently limited by low electron transport rates between microbes and electrodes and our limited ability for targeted engineering of these systems due to remaining knowledge gaps about the underlying fundamental processes. Metabolic engineering offers many opportunities to optimize these processes, for instance by genetic engineering of pathways for electron transfer on the one hand and target product synthesis on the other hand. With this review, we summarize the status quo of knowledge and engineering attempts around chemical production in bio-electrochemical systems from a microbe perspective. Challenges associated with the introduction or enhancement of extracellular electron transfer capabilities into production hosts versus the engineering of target compound synthesis pathways in natural exoelectrogens are discussed. Recent advances of the research community in both directions are examined critically. Further, systems biology approaches, for instance using metabolic modelling, are examined for their potential to provide insight into fundamental processes and to identify targets for metabolic engineering. Copyright © 2017 International Metabolic Engineering Society. Published by Elsevier Inc. All rights reserved.

  13. Cellular metabolic rates from primary dermal fibroblast cells isolated from birds of different body masses.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Williams, Joseph B

    2014-10-01

    The rate of metabolism is the speed at which organisms use energy, an integration of energy transformations within the body; it governs biological processes that influence rates of growth and reproduction. Progress at understanding functional linkages between whole organism metabolic rate and underlying mechanisms that influence its magnitude has been slow despite the central role this issue plays in evolutionary and physiological ecology. Previous studies that have attempted to relate how cellular processes translate into whole-organism physiology have done so over a range of body masses of subjects. However, the data still remains controversial when observing metabolic rates at the cellular level. To bridge the gap between these ideas, we examined cellular metabolic rate of primary dermal fibroblasts isolated from 49 species of birds representing a 32,000-fold range in body masses to test the hypothesis that metabolic rate of cultured cells scales with body size. We used a Seahorse XF-96 Extracellular flux analyzer to measure cellular respiration in fibroblasts. Additionally, we measured fibroblast size and mitochondrial content. We found no significant correlation between cellular metabolic rate, cell size, or mitochondrial content and body mass. Additionally, there was a significant relationship between cellular basal metabolic rate and proton leak in these cells. We conclude that metabolic rate of cells isolated in culture does not scale with body mass, but cellular metabolic rate is correlated to growth rate in birds. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. The dynamic regulation of NAD metabolism in mitochondria

    Science.gov (United States)

    Stein, Liana Roberts; Imai, Shin-ichiro

    2012-01-01

    Mitochondria are intracellular powerhouses that produce ATP and carry out diverse functions for cellular energy metabolism. While the maintenance of an optimal NAD/NADH ratio is essential for mitochondrial function, it has recently become apparent that the maintenance of the mitochondrial NAD pool also has critical importance. The biosynthesis, transport, and catabolism of NAD and its key intermediates play an important role in the regulation of NAD-consuming mediators, such as sirtuins, poly-ADP-ribose polymerases, and CD38/157 ectoenzymes, in intra- and extracellular compartments. Mitochondrial NAD biosynthesis is also modulated in response to nutritional and environmental stimuli. In this article, we discuss this dynamic regulation of NAD metabolism in mitochondria to shed light on the intimate connection between NAD and mitochondrial function. PMID:22819213

  15. Shaping the landscape: Metabolic regulation of S1P gradients

    Science.gov (United States)

    Olivera, Ana; Allende, Maria Laura; Proia, Richard L.

    2012-01-01

    Sphingosine-1-phosphate (S1P) is a lipid that functions as a metabolic intermediate and a cellular signaling molecule. These roles are integrated when compartments with differing extracellular S1P concentrations are formed that serve to regulate functions within the immune and vascular systems, as well as during pathologic conditions. Gradients of S1P concentration are achieved by the organization of cells with specialized expression of S1P metabolic pathways within tissues. S1P concentration gradients underpin the ability of S1P signaling to regulate in vivo physiology. This review will discuss the mechanisms that are necessary for the formation and maintenance of S1P gradients, with the aim of understanding how a simple lipid controls complex physiology. PMID:22735358

  16. The Factor Inhibiting HIF Asparaginyl Hydroxylase Regulates Oxidative Metabolism and Accelerates Metabolic Adaptation to Hypoxia.

    Science.gov (United States)

    Sim, Jingwei; Cowburn, Andrew S; Palazon, Asis; Madhu, Basetti; Tyrakis, Petros A; Macías, David; Bargiela, David M; Pietsch, Sandra; Gralla, Michael; Evans, Colin E; Kittipassorn, Thaksaon; Chey, Yu C J; Branco, Cristina M; Rundqvist, Helene; Peet, Daniel J; Johnson, Randall S

    2018-04-03

    Animals require an immediate response to oxygen availability to allow rapid shifts between oxidative and glycolytic metabolism. These metabolic shifts are highly regulated by the HIF transcription factor. The factor inhibiting HIF (FIH) is an asparaginyl hydroxylase that controls HIF transcriptional activity in an oxygen-dependent manner. We show here that FIH loss increases oxidative metabolism, while also increasing glycolytic capacity, and that this gives rise to an increase in oxygen consumption. We further show that the loss of FIH acts to accelerate the cellular metabolic response to hypoxia. Skeletal muscle expresses 50-fold higher levels of FIH than other tissues: we analyzed skeletal muscle FIH mutants and found a decreased metabolic efficiency, correlated with an increased oxidative rate and an increased rate of hypoxic response. We find that FIH, through its regulation of oxidation, acts in concert with the PHD/vHL pathway to accelerate HIF-mediated metabolic responses to hypoxia. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    OpenAIRE

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cel...

  18. Sequential metabolic phases as a means to optimize cellular output in a constant environment.

    Science.gov (United States)

    Palinkas, Aljoscha; Bulik, Sascha; Bockmayr, Alexander; Holzhütter, Hermann-Georg

    2015-01-01

    Temporal changes of gene expression are a well-known regulatory feature of all cells, which is commonly perceived as a strategy to adapt the proteome to varying external conditions. However, temporal (rhythmic and non-rhythmic) changes of gene expression are also observed under virtually constant external conditions. Here we hypothesize that such changes are a means to render the synthesis of the metabolic output more efficient than under conditions of constant gene activities. In order to substantiate this hypothesis, we used a flux-balance model of the cellular metabolism. The total time span spent on the production of a given set of target metabolites was split into a series of shorter time intervals (metabolic phases) during which only selected groups of metabolic genes are active. The related flux distributions were calculated under the constraint that genes can be either active or inactive whereby the amount of protein related to an active gene is only controlled by the number of active genes: the lower the number of active genes the more protein can be allocated to the enzymes carrying non-zero fluxes. This concept of a predominantly protein-limited efficiency of gene expression clearly differs from other concepts resting on the assumption of an optimal gene regulation capable of allocating to all enzymes and transporters just that fraction of protein necessary to prevent rate limitation. Applying this concept to a simplified metabolic network of the central carbon metabolism with glucose or lactate as alternative substrates, we demonstrate that switching between optimally chosen stationary flux modes comprising different sets of active genes allows producing a demanded amount of target metabolites in a significantly shorter time than by a single optimal flux mode at fixed gene activities. Our model-based findings suggest that temporal expression of metabolic genes can be advantageous even under conditions of constant external substrate supply.

  19. Piezo Proteins: Regulators of Mechanosensation and Other Cellular Processes*

    OpenAIRE

    Bagriantsev, Sviatoslav N.; Gracheva, Elena O.; Gallagher, Patrick G.

    2014-01-01

    Piezo proteins have recently been identified as ion channels mediating mechanosensory transduction in mammalian cells. Characterization of these channels has yielded important insights into mechanisms of somatosensation, as well as other mechano-associated biologic processes such as sensing of shear stress, particularly in the vasculature, and regulation of urine flow and bladder distention. Other roles for Piezo proteins have emerged, some unexpected, including participation in cellular deve...

  20. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  1. Role of nitric oxide in cellular iron metabolism.

    Science.gov (United States)

    Kim, Sangwon; Ponka, Prem

    2003-03-01

    Iron regulatory proteins (IRP1 and IRP2) control the synthesis of transferrin receptors (TfR) and ferritin by binding to iron-responsive elements (IREs) which are located in the 3' untranslated region (UTR) and the 5' UTR of their respective mRNAs. Cellular iron levels affect binding of IRPs to IREs and consequently expression of TfR and ferritin. Moreover, NO*, a redox species of nitric oxide that interacts primarily with iron, can activate IRP1 RNA-binding activity resulting in an increase in TfR mRNA levels. We have shown that treatment of RAW 264.7 cells (a murine macrophage cell line) with NO+ (nitrosonium ion, which causes S-nitrosylation of thiol groups) resulted in a rapid decrease in RNA-binding of IRP2, followed by IRP2 degradation, and these changes were associated with a decrease in TfR mRNA levels. Moreover, we demonstrated that stimulation of RAW 264.7 cells with lipopolysaccharide (LPS) and interferon-gamma (IFN-gamma) increased IRP1 binding activity, whereas RNA-binding of IRP2 decreased and was followed by a degradation of this protein. Furthermore, the decrease of IRP2 binding/protein levels was associated with a decrease in TfR mRNA levels in LPS/IFN-gamma-treated cells, and these changes were prevented by inhibitors of inducible nitric oxide synthase. These results suggest that NO+-mediated degradation of IRP2 plays a major role in iron metabolism during inflammation.

  2. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    Energy Technology Data Exchange (ETDEWEB)

    Zhdanov, Alexander V., E-mail: a.zhdanov@ucc.ie [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Waters, Alicia H.C. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland); Golubeva, Anna V. [Alimentary Pharmabiotic Centre, University College Cork, Bioscience Institute, Western Road, Cork (Ireland); Papkovsky, Dmitri B. [School of Biochemistry and Cell Biology, University College Cork, Cavanagh Pharmacy Building, College Road, Cork (Ireland)

    2015-01-01

    Changes in availability and utilisation of O{sub 2} and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O{sub 2}. Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O{sub 2} and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O{sub 2} and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O{sub 2} and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells.

  3. Differential contribution of key metabolic substrates and cellular oxygen in HIF signalling

    International Nuclear Information System (INIS)

    Zhdanov, Alexander V.; Waters, Alicia H.C.; Golubeva, Anna V.; Papkovsky, Dmitri B.

    2015-01-01

    Changes in availability and utilisation of O 2 and metabolic substrates are common in ischemia and cancer. We examined effects of substrate deprivation on HIF signalling in PC12 cells exposed to different atmospheric O 2 . Upon 2–4 h moderate hypoxia, HIF-α protein levels were dictated by the availability of glutamine and glucose, essential for deep cell deoxygenation and glycolytic ATP flux. Nuclear accumulation of HIF-1α dramatically decreased upon inhibition of glutaminolysis or glutamine deprivation. Elevation of HIF-2α levels was transcription-independent and associated with the activation of Akt and Erk1/2. Upon 2 h anoxia, HIF-2α levels strongly correlated with cellular ATP, produced exclusively via glycolysis. Without glucose, HIF signalling was suppressed, giving way to other regulators of cell adaptation to energy crisis, e.g. AMPK. Consequently, viability of cells deprived of O 2 and glucose decreased upon inhibition of AMPK with dorsomorphin. The capacity of cells to accumulate HIF-2α decreased after 24 h glucose deprivation. This effect, associated with increased AMPKα phosphorylation, was sensitive to dorsomorphin. In chronically hypoxic cells, glutamine played no major role in HIF-2α accumulation, which became mainly glucose-dependent. Overall, the availability of O 2 and metabolic substrates intricately regulates HIF signalling by affecting cell oxygenation, ATP levels and pathways involved in production of HIF-α. - Highlights: • Gln and Glc regulate HIF levels in hypoxic cells by maintaining low O 2 and high ATP. • HIF-α levels under anoxia correlate with cellular ATP and critically depend on Glc. • Gln and Glc modulate activity of Akt, Erk and AMPK, regulating HIF production. • HIF signalling is differentially inhibited by prolonged Glc and Gln deprivation. • Unlike Glc, Gln plays no major role in HIF signalling in chronically hypoxic cells

  4. The Life Cycle of L. pneumophila: Cellular Differentiation Is Linked to Virulence and Metabolism

    Directory of Open Access Journals (Sweden)

    Giulia Oliva

    2018-01-01

    Full Text Available Legionella pneumophila is a gram-negative bacterium that inhabits freshwater ecosystems, where it is present in biofilm or as planktonic form. L. pneumophila is mainly found associated with protozoa, which serve as protection from hostile environments and as replication niche. If inhaled within aerosols, L. pneumophila is also able to infect and replicate in human alveolar macrophages, eventually causing the Legionnaires' disease. The transition between intracellular and extracellular environments triggers a differentiation program in which metabolic as well as morphogenetic changes occur. We here describe the current knowledge on how the different developmental states of this bacterium are regulated, with a particular emphasis on the stringent response activated during the transition from the replicative phase to the infectious phase and the metabolic features going in hand. We propose that the cellular differentiation of this intracellular pathogen is closely associated to key metabolic changes in the bacterium and the host cell, which together have a crucial role in the regulation of L. pneumophila virulence.

  5. Cellular energy metabolism maintains young status in old queen honey bees (Apis mellifera).

    Science.gov (United States)

    Lu, Cheng-Yen; Qiu, Jiantai Timothy; Hsu, Chin-Yuan

    2018-05-02

    Trophocytes and oenocytes of queen honey bees are used in studies of cellular longevity, but their cellular energy metabolism with age is poorly understood. In this study, the molecules involved in cellular energy metabolism were evaluated in the trophocytes and oenocytes of young and old queen bees. The findings indicated that there were no significant differences between young and old queen bees in β-oxidation, glycolysis, and protein synthesis. These results indicate that the cellular energy metabolism of trophocytes and oenocytes in old queen bees is similar to young queen bees and suggests that maintaining cellular energy metabolism in a young status may be associated with the longevity of queen bees. Fat and glycogen accumulation increased with age indicating that old queen bees are older than young queen bees. © 2018 Wiley Periodicals, Inc.

  6. Regulation of brown adipocyte metabolism by myostatin/follistatin signaling

    Directory of Open Access Journals (Sweden)

    Rajan eSingh

    2014-10-01

    Full Text Available Obesity develops from perturbations of cellular bioenergetics, when energy uptake exceeds energy expenditure, and represents a major risk factor for the development of type 2 diabetes, dyslipidemia, cardiovascular disease, cancer, and other conditions. Brown adipose tissue (BAT has long been known to dissipate energy as heat and contribute to energy expenditure, but its presence and physiological role in adult human physiology has been questioned for years. Recent demonstrations of metabolically active brown fat depots in adult humans have revolutionized current therapeutic approaches for obesity-related diseases. The balance between white adipose tissue (WAT and BAT affects the systemic energy balance and is widely believed to be the key determinant in the development of obesity and related metabolic diseases. Members of the transforming growth factor-beta (TGF-β superfamily play an important role in regulating overall energy homeostasis by modulation of brown adipocyte characteristics. Inactivation of TGF-β/Smad3/myostatin (Mst signaling promotes browning of white adipocytes, increases mitochondrial biogenesis and protects mice from diet-induced obesity, suggesting the need for development of a novel class of TGF-β/Mst antagonists for the treatment of obesity and related metabolic diseases. We recently described an important role of follistatin (Fst, a soluble glycoprotein that is known to bind and antagonize Mst actions, during brown fat differentiation and the regulation of cellular metabolism. Here we highlight various investigations performed using different in vitro and in vivo models to support the contention that targeting TGF-β/Mst signaling enhances brown adipocyte functions and regulates energy balance, reducing insulin resistance and curbing the development of obesity and diabetes.

  7. Design, synthesis and cellular metabolism study of 4'-selenonucleosides.

    Science.gov (United States)

    Yu, Jinha; Sahu, Pramod K; Kim, Gyudong; Qu, Shuhao; Choi, Yoojin; Song, Jayoung; Lee, Sang Kook; Noh, Minsoo; Park, Sunghyouk; Jeong, Lak Shin

    2015-01-01

    4'-seleno-homonucleosides were synthesized as next-generation nucleosides, and their cellular phosphorylation was studied to confirm the hypothesis that bulky selenium atom can sterically hinder the approach of cellular nucleoside kinase to the 5'-OH for phosphorylation. 4'-seleno-homonucleosides (n = 2), with one-carbon homologation, were synthesized through a tandem seleno-Michael addition-SN2 ring cyclization. LC-MS analysis demonstrated that they were phosphorylated by cellular nucleoside kinases, resulting in anticancer activity. The bulky selenium atom played a key role in deciding the phosphorylation by cellular nucleoside kinases. [Formula: see text].

  8. Computational Modelling of the Metabolic States Regulated by the Kinase Akt

    Directory of Open Access Journals (Sweden)

    Ettore eMosca

    2012-11-01

    Full Text Available Signal transduction pathways and gene regulation determine a major reorganization of metabolic activities in order to support cell proliferation. Protein Kinase B (PKB, also known as Akt, participates in the PI3K/Akt/mTOR pathway, a master regulator of aerobic glycolysis and cellular biosynthesis, two activities shown by both normal and cancer proliferating cells. Not surprisingly considering its relevance for cellular metabolism, Akt/PKB is often found hyperactive in cancer cells. In the last decade, many efforts have been made to improve the understanding of the control of glucose metabolism and the identification of a therapeutic window between proliferating cancer cells and proliferating normal cells. In this context, we have modelled the link between the PI3K/Akt/mTOR pathway, glycolysis, lactic acid production and nucleotide biosynthesis. We used a computational model in order to compare two metabolic states generated by the specific variation of the metabolic fluxes regulated by the activity of the PI3K/Akt/mTOR pathway. One of the two states represented the metabolism of a growing cancer cell characterised by aerobic glycolysis and cellular biosynthesis, while the other state represented the same metabolic network with a reduced glycolytic rate and a higher mitochondrial pyruvate metabolism, as reported in literature in relation to the activity of the PI3K/Akt/mTOR. Some steps that link glycolysis and pentose phosphate pathway revealed their importance for controlling the dynamics of cancer glucose metabolism.

  9. Involvement of Sib Proteins in the Regulation of Cellular Adhesion in Dictyostelium discoideum▿ †

    OpenAIRE

    Cornillon, Sophie; Froquet, Romain; Cosson, Pierre

    2008-01-01

    Molecular mechanisms ensuring cellular adhesion have been studied in detail in Dictyostelium amoebae, but little is known about the regulation of cellular adhesion in these cells. Here, we show that cellular adhesion is regulated in Dictyostelium, notably by the concentration of a cellular secreted factor accumulating in the medium. This constitutes a quorum-sensing mechanism allowing coordinated regulation of cellular adhesion in a Dictyostelium population. In order to understand the mechani...

  10. Arctigenin preferentially induces tumor cell death under glucose deprivation by inhibiting cellular energy metabolism.

    Science.gov (United States)

    Gu, Yuan; Qi, Chunting; Sun, Xiaoxiao; Ma, Xiuquan; Zhang, Haohao; Hu, Lihong; Yuan, Junying; Yu, Qiang

    2012-08-15

    Selectively eradicating cancer cells with minimum adverse effects on normal cells is a major challenge in the development of anticancer therapy. We hypothesize that nutrient-limiting conditions frequently encountered by cancer cells in poorly vascularized solid tumors might provide an opportunity for developing selective therapy. In this study, we investigated the function and molecular mechanisms of a natural compound, arctigenin, in regulating tumor cell growth. We demonstrated that arctigenin selectively promoted glucose-starved A549 tumor cells to undergo necrosis by inhibiting mitochondrial respiration. In doing so, arctigenin elevated cellular level of reactive oxygen species (ROS) and blocked cellular energy metabolism in the glucose-starved tumor cells. We also demonstrated that cellular ROS generation was caused by intracellular ATP depletion and played an essential role in the arctigenin-induced tumor cell death under the glucose-limiting condition. Furthermore, we combined arctigenin with the glucose analogue 2-deoxyglucose (2DG) and examined their effects on tumor cell growth. Interestingly, this combination displayed preferential cell-death inducing activity against tumor cells compared to normal cells. Hence, we propose that the combination of arctigenin and 2DG may represent a promising new cancer therapy with minimal normal tissue toxicity. Crown Copyright © 2012. Published by Elsevier Inc. All rights reserved.

  11. Chronic innate immune activation of TBK1 suppresses mTORC1 activity and dysregulates cellular metabolism.

    Science.gov (United States)

    Hasan, Maroof; Gonugunta, Vijay K; Dobbs, Nicole; Ali, Aktar; Palchik, Guillermo; Calvaruso, Maria A; DeBerardinis, Ralph J; Yan, Nan

    2017-01-24

    Three-prime repair exonuclease 1 knockout (Trex1 -/- ) mice suffer from systemic inflammation caused largely by chronic activation of the cyclic GMP-AMP synthase-stimulator of interferon genes-TANK-binding kinase-interferon regulatory factor 3 (cGAS-STING-TBK1-IRF3) signaling pathway. We showed previously that Trex1-deficient cells have reduced mammalian target of rapamycin complex 1 (mTORC1) activity, although the underlying mechanism is unclear. Here, we performed detailed metabolic analysis in Trex1 -/- mice and cells that revealed both cellular and systemic metabolic defects, including reduced mitochondrial respiration and increased glycolysis, energy expenditure, and fat metabolism. We also genetically separated the inflammatory and metabolic phenotypes by showing that Sting deficiency rescued both inflammatory and metabolic phenotypes, whereas Irf3 deficiency only rescued inflammation on the Trex1 -/- background, and many metabolic defects persist in Trex1 -/- Irf3 -/- cells and mice. We also showed that Leptin deficiency (ob/ob) increased lipogenesis and prolonged survival of Trex1 -/- mice without dampening inflammation. Mechanistically, we identified TBK1 as a key regulator of mTORC1 activity in Trex1 -/- cells. Together, our data demonstrate that chronic innate immune activation of TBK1 suppresses mTORC1 activity, leading to dysregulated cellular metabolism.

  12. Hydroxylamine derivatives for regulation of spermine and spermidine metabolism.

    Science.gov (United States)

    Khomutov, M A; Weisell, J; Hyvönen, M; Keinänen, T A; Vepsäläinen, J; Alhonen, L; Khomutov, A R; Kochetkov, S N

    2013-12-01

    The biogenic polyamines spermine, spermidine, and their precursor putrescine are present in micro-to-millimolar concentrations in all cell types and are vitally important for their normal growth. High intracellular content of spermine and spermidine determines the multiplicity of the cellular functions of the polyamines. Many of these functions are not well characterized at the molecular level, ensuring the ongoing development of this field of biochemistry. Tumor cells have elevated polyamine level if compared with normal cells, and this greatly stimulates the search for new opportunities to deplete the intracellular pool of spermine and spermidine resulting in decrease in cell growth and even cell death. O-Substituted hydroxylamines occupy their own place among chemical regulators of the activity of the enzymes of polyamine metabolism. Varying the structure of the alkyl substituent made it possible to obtain within one class of chemical compounds highly effective inhibitors and regulators of the activity of all the enzymes of putrescine, spermine and spermidine metabolism (with the exception of FAD-dependent spermine oxidase and acetylpolyamine oxidase), effectors of the polyamine transport system, and even actively transported in cells "proinhibitor" of ornithine decarboxylase. Some principles for the design of specific inhibitors of these enzymes as well as the peculiarities of cellular effects of corresponding O-substituted hydroxylamines are discussed.

  13. Metabolic regulation of neuronal plasticity by the energy sensor AMPK.

    Directory of Open Access Journals (Sweden)

    Wyatt B Potter

    Full Text Available Long Term Potentiation (LTP is a leading candidate mechanism for learning and memory and is also thought to play a role in the progression of seizures to intractable epilepsy. Maintenance of LTP requires RNA transcription, protein translation and signaling through the mammalian Target of Rapamycin (mTOR pathway. In peripheral tissue, the energy sensor AMP-activated Protein Kinase (AMPK negatively regulates the mTOR cascade upon glycolytic inhibition and cellular energy stress. We recently demonstrated that the glycolytic inhibitor 2-deoxy-D-glucose (2DG alters plasticity to retard epileptogenesis in the kindling model of epilepsy. Reduced kindling progression was associated with increased recruitment of the nuclear metabolic sensor CtBP to NRSF at the BDNF promoter. Given that energy metabolism controls mTOR through AMPK in peripheral tissue and the role of mTOR in LTP in neurons, we asked whether energy metabolism and AMPK control LTP. Using a combination of biochemical approaches and field-recordings in mouse hippocampal slices, we show that the master regulator of energy homeostasis, AMPK couples energy metabolism to LTP expression. Administration of the glycolytic inhibitor 2-deoxy-D-glucose (2DG or the mitochondrial toxin and anti-Type II Diabetes drug, metformin, or AMP mimetic AICAR results in activation of AMPK, repression of the mTOR pathway and prevents maintenance of Late-Phase LTP (L-LTP. Inhibition of AMPK by either compound-C or the ATP mimetic ara-A rescues the suppression of L-LTP by energy stress. We also show that enhanced LTP via AMPK inhibition requires mTOR signaling. These results directly link energy metabolism to plasticity in the mammalian brain and demonstrate that AMPK is a modulator of LTP. Our work opens up the possibility of using modulators of energy metabolism to control neuronal plasticity in diseases and conditions of aberrant plasticity such as epilepsy.

  14. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Regulation of metabolism by the Mediator complex.

    Science.gov (United States)

    Youn, Dou Yeon; Xiaoli, Alus M; Pessin, Jeffrey E; Yang, Fajun

    2016-01-01

    The Mediator complex was originally discovered in yeast, but it is conserved in all eukaryotes. Its best-known function is to regulate RNA polymerase II-dependent gene transcription. Although the mechanisms by which the Mediator complex regulates transcription are often complicated by the context-dependent regulation, this transcription cofactor complex plays a pivotal role in numerous biological pathways. Biochemical, molecular, and physiological studies using cancer cell lines or model organisms have established the current paradigm of the Mediator functions. However, the physiological roles of the mammalian Mediator complex remain poorly defined, but have attracted a great interest in recent years. In this short review, we will summarize some of the reported functions of selective Mediator subunits in the regulation of metabolism. These intriguing findings suggest that the Mediator complex may be an important player in nutrient sensing and energy balance in mammals.

  16. CREBH Regulates Systemic Glucose and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Yoshimi Nakagawa

    2018-05-01

    Full Text Available The cyclic adenosine monophosphate (cAMP-responsive element-binding protein H (CREBH, encoded by CREB3L3 is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα, has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.

  17. Studies on the mechanism of quinone action on hormonal regulation of metabolism in the rat liver

    International Nuclear Information System (INIS)

    Cheng, E.Y.

    1989-01-01

    The mechanism of quinone actions in liver cell metabolism had been investigated using menadione as a model compound. Previous reports suggested that quinones and free radicals could produce perturbations in cellular calcium homeostasis. Since calcium plays an important role in the regulation of cellular metabolic processes, then regulation of cytosolic calcium concentrations, and thus of cellular metabolism, by calcium-mobilizing hormones such as phenylephrine and vasopressin could possibly be modified by quinones such as menadione. Methods used to approach this hypothesis included the assay for activation of glycogen phosphorylase, an indirect index of calcium mobilization; the determination of calcium mobilization with 45 Ca efflux exchange and with fluorescent calcium indicator fura-2; and the measurement of phosphatidylinositides, an important link in the membrane-associated receptor-mediated signal transduction mechanism

  18. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  19. APP metabolism regulates tau proteostasis in human cerebral cortex neurons.

    Science.gov (United States)

    Moore, Steven; Evans, Lewis D B; Andersson, Therese; Portelius, Erik; Smith, James; Dias, Tatyana B; Saurat, Nathalie; McGlade, Amelia; Kirwan, Peter; Blennow, Kaj; Hardy, John; Zetterberg, Henrik; Livesey, Frederick J

    2015-05-05

    Accumulation of Aβ peptide fragments of the APP protein and neurofibrillary tangles of the microtubule-associated protein tau are the cellular hallmarks of Alzheimer's disease (AD). To investigate the relationship between APP metabolism and tau protein levels and phosphorylation, we studied human-stem-cell-derived forebrain neurons with genetic forms of AD, all of which increase the release of pathogenic Aβ peptides. We identified marked increases in intracellular tau in genetic forms of AD that either mutated APP or increased its dosage, suggesting that APP metabolism is coupled to changes in tau proteostasis. Manipulating APP metabolism by β-secretase and γ-secretase inhibition, as well as γ-secretase modulation, results in specific increases and decreases in tau protein levels. These data demonstrate that APP metabolism regulates tau proteostasis and suggest that the relationship between APP processing and tau is not mediated solely through extracellular Aβ signaling to neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-01-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD+ is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD+ homeostasis is essential for proper cellular function and aberrant NAD+ metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD+ metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD+ metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD+ metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD+ metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD+ metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD+-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD+ intermediates, and their potential roles in NAD+ homeostasis. To date, it remains unclear how NAD+ and NAD+ intermediates shuttle between different

  1. Regulation of NAD+ metabolism, signaling and compartmentalization in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kato, Michiko; Lin, Su-Ju

    2014-11-01

    Pyridine nucleotides are essential coenzymes in many cellular redox reactions in all living systems. In addition to functioning as a redox carrier, NAD(+) is also a required co-substrate for the conserved sirtuin deacetylases. Sirtuins regulate transcription, genome maintenance and metabolism and function as molecular links between cells and their environment. Maintaining NAD(+) homeostasis is essential for proper cellular function and aberrant NAD(+) metabolism has been implicated in a number of metabolic- and age-associated diseases. Recently, NAD(+) metabolism has been linked to the phosphate-responsive signaling pathway (PHO pathway) in the budding yeast Saccharomyces cerevisiae. Activation of the PHO pathway is associated with the production and mobilization of the NAD(+) metabolite nicotinamide riboside (NR), which is mediated in part by PHO-regulated nucleotidases. Cross-regulation between NAD(+) metabolism and the PHO pathway has also been reported; however, detailed mechanisms remain to be elucidated. The PHO pathway also appears to modulate the activities of common downstream effectors of multiple nutrient-sensing pathways (Ras-PKA, TOR, Sch9/AKT). These signaling pathways were suggested to play a role in calorie restriction-mediated beneficial effects, which have also been linked to Sir2 function and NAD(+) metabolism. Here, we discuss the interactions of these pathways and their potential roles in regulating NAD(+) metabolism. In eukaryotic cells, intracellular compartmentalization facilitates the regulation of enzymatic functions and also concentrates or sequesters specific metabolites. Various NAD(+)-mediated cellular functions such as mitochondrial oxidative phosphorylation are compartmentalized. Therefore, we also discuss several key players functioning in mitochondrial, cytosolic and vacuolar compartmentalization of NAD(+) intermediates, and their potential roles in NAD(+) homeostasis. To date, it remains unclear how NAD(+) and NAD(+) intermediates

  2. Metabolism and Regulation of Glycerolipids in the Yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Henry, Susan A.; Kohlwein, Sepp D.; Carman, George M.

    2012-01-01

    Due to its genetic tractability and increasing wealth of accessible data, the yeast Saccharomyces cerevisiae is a model system of choice for the study of the genetics, biochemistry, and cell biology of eukaryotic lipid metabolism. Glycerolipids (e.g., phospholipids and triacylglycerol) and their precursors are synthesized and metabolized by enzymes associated with the cytosol and membranous organelles, including endoplasmic reticulum, mitochondria, and lipid droplets. Genetic and biochemical analyses have revealed that glycerolipids play important roles in cell signaling, membrane trafficking, and anchoring of membrane proteins in addition to membrane structure. The expression of glycerolipid enzymes is controlled by a variety of conditions including growth stage and nutrient availability. Much of this regulation occurs at the transcriptional level and involves the Ino2–Ino4 activation complex and the Opi1 repressor, which interacts with Ino2 to attenuate transcriptional activation of UASINO-containing glycerolipid biosynthetic genes. Cellular levels of phosphatidic acid, precursor to all membrane phospholipids and the storage lipid triacylglycerol, regulates transcription of UASINO-containing genes by tethering Opi1 to the nuclear/endoplasmic reticulum membrane and controlling its translocation into the nucleus, a mechanism largely controlled by inositol availability. The transcriptional activator Zap1 controls the expression of some phospholipid synthesis genes in response to zinc availability. Regulatory mechanisms also include control of catalytic activity of glycerolipid enzymes by water-soluble precursors, products and lipids, and covalent modification of phosphorylation, while in vivo function of some enzymes is governed by their subcellular location. Genome-wide genetic analysis indicates coordinate regulation between glycerolipid metabolism and a broad spectrum of metabolic pathways. PMID:22345606

  3. Identification of circular RNAs from the parental genes involved in multiple aspects of cellular metabolism in barley

    DEFF Research Database (Denmark)

    Shirvanehdeh, Behrooz Darbani; Noeparvar, Shahin; Borg, Søren

    2016-01-01

    circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular...... protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes...... and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs’ functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear...

  4. Glycogen metabolism and the homeostatic regulation of sleep

    KAUST Repository

    Petit, Jean-Marie

    2014-11-16

    In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named “glycogenetic” hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.

  5. Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses.

    Science.gov (United States)

    Webb, Tonya J; Carey, Gregory B; East, James E; Sun, Wenji; Bollino, Dominique R; Kimball, Amy S; Brutkiewicz, Randy R

    2016-08-01

    Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5(')-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Nuclear magnetic resonance studies of metabolic regulation

    International Nuclear Information System (INIS)

    Sillerud, L.O.; Han, C.H.; Whaley, T.W.

    1983-01-01

    Nuclear magnetic resonance (NMR) techniques for the detection of the metabolic transformations of biological compounds labeled with stable isotopes, particularly carbon-13 have been explored. We have studied adipose tissue in the intact rat, the exteriorized epididymal fat pad, and the isolated adipocyte. Triacylglycerol metabolism in adipose tissue is regulated by lipogenic factors (insulin, corticosterone, thyroxine, and growth hormone) and lipolytic factors (glucagon and catecholamines). The synthesis of triglyceride from 5.5 mM glucose was stimulated by about 4-fold by 10 nM insulin. Triglyceride synthesis from glucose in the presence of insulin occurred at a rate of 330 nmol/hr/10 6 cells. Since the NMR signals from free and esterified fatty acids and glycerol are distinct, we could directly measure the rate of hormone-stimulated lipolysis. Epinephrine (10 μM) gave a lipolytic rate of 0.30 μmol/hr/10 6 cells as monitored by free-glycerol appearance in the medium. 13 C NMR provides a superior method for the measurement of triglyceride metabolism since it directly measures the changes in the substrates and products in situ

  7. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B

    2014-01-01

    In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  8. Cellular metabolic rate is influenced by life-history traits in tropical and temperate birds.

    Directory of Open Access Journals (Sweden)

    Ana Gabriela Jimenez

    Full Text Available In general, tropical birds have a "slow pace of life," lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR, proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR], using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal's life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species.

  9. Cellular Metabolic Rate Is Influenced by Life-History Traits in Tropical and Temperate Birds

    Science.gov (United States)

    Jimenez, Ana Gabriela; Van Brocklyn, James; Wortman, Matthew; Williams, Joseph B.

    2014-01-01

    In general, tropical birds have a “slow pace of life,” lower rates of whole-animal metabolism and higher survival rates, than temperate species. A fundamental challenge facing physiological ecologists is the understanding of how variation in life-history at the whole-organism level might be linked to cellular function. Because tropical birds have lower rates of whole-animal metabolism, we hypothesized that cells from tropical species would also have lower rates of cellular metabolism than cells from temperate species of similar body size and common phylogenetic history. We cultured primary dermal fibroblasts from 17 tropical and 17 temperate phylogenetically-paired species of birds in a common nutritive and thermal environment and then examined basal, uncoupled, and non-mitochondrial cellular O2 consumption (OCR), proton leak, and anaerobic glycolysis (extracellular acidification rates [ECAR]), using an XF24 Seahorse Analyzer. We found that multiple measures of metabolism in cells from tropical birds were significantly lower than their temperate counterparts. Basal and uncoupled cellular metabolism were 29% and 35% lower in cells from tropical birds, respectively, a decrease closely aligned with differences in whole-animal metabolism between tropical and temperate birds. Proton leak was significantly lower in cells from tropical birds compared with cells from temperate birds. Our results offer compelling evidence that whole-animal metabolism is linked to cellular respiration as a function of an animal’s life-history evolution. These findings are consistent with the idea that natural selection has uniquely fashioned cells of long-lived tropical bird species to have lower rates of metabolism than cells from shorter-lived temperate species. PMID:24498080

  10. ATM-mediated Snail Serine 100 phosphorylation regulates cellular radiosensitivity

    International Nuclear Information System (INIS)

    Boohaker, Rebecca J.; Cui, Xiaoli; Stackhouse, Murray; Xu, Bo

    2013-01-01

    Purpose: Activation of the DNA damage responsive protein kinase ATM is a critical step for cellular survival in response to ionizing irradiation (IR). Direct targets of ATM regulating radiosensitivity remain to be fully investigated. We have recently reported that ATM phosphorylates the transcriptional repressor Snail on Serine 100. We aimed to further study the functional significance of ATM-mediated Snail phosphorylation in response to IR. Material and methods: We transfected vector-only, wild-type, the Serine 100 to alanine (S100A) or to glutamic acid (S100E) substitution of Snail into various cell lines. We assessed colony formation, γ-H2AX focus formation and the invasion index in the cells treated with or without IR. Results: We found that over-expression of the S100A mutant Snail in HeLa cells significantly increased radiosensitivity. Meanwhile the expression of S100E, a phospho-mimicking mutation, resulted in enhanced radio-resistance. Interestingly, S100E could rescue the radiosensitive phenotype in ATM-deficient cells. We also found that expression of S100E increased γ-H2AX focus formation and compromised inhibition of invasion in response to IR independent of cell survival. Conclusion: ATM-mediated Snail Serine 100 phosphorylation in response to IR plays an important part in the regulation of radiosensitivity

  11. SREBP-regulated lipid metabolism: convergent physiology - divergent pathophysiology.

    Science.gov (United States)

    Shimano, Hitoshi; Sato, Ryuichiro

    2017-12-01

    Cellular lipid metabolism and homeostasis are controlled by sterol regulatory-element binding proteins (SREBPs). In addition to performing canonical functions in the transcriptional regulation of genes involved in the biosynthesis and uptake of lipids, genome-wide system analyses have revealed that these versatile transcription factors act as important nodes of convergence and divergence within biological signalling networks. Thus, they are involved in myriad physiological and pathophysiological processes, highlighting the importance of lipid metabolism in biology. Changes in cell metabolism and growth are reciprocally linked through SREBPs. Anabolic and growth signalling pathways branch off and connect to multiple steps of SREBP activation and form complex regulatory networks. In addition, SREBPs are implicated in numerous pathogenic processes such as endoplasmic reticulum stress, inflammation, autophagy and apoptosis, and in this way, they contribute to obesity, dyslipidaemia, diabetes mellitus, nonalcoholic fatty liver disease, nonalcoholic steatohepatitis, chronic kidney disease, neurodegenerative diseases and cancers. This Review aims to provide a comprehensive understanding of the role of SREBPs in physiology and pathophysiology at the cell, organ and organism levels.

  12. Metabolic regulation of mycobacterial growth and antibiotic sensitivity.

    Directory of Open Access Journals (Sweden)

    Seung-Hun Baek

    2011-05-01

    Full Text Available Treatment of chronic bacterial infections, such as tuberculosis (TB, requires a remarkably long course of therapy, despite the availability of drugs that are rapidly bacteriocidal in vitro. This observation has long been attributed to the presence of bacterial populations in the host that are "drug-tolerant" because of their slow replication and low rate of metabolism. However, both the physiologic state of these hypothetical drug-tolerant populations and the bacterial pathways that regulate growth and metabolism in vivo remain obscure. Here we demonstrate that diverse growth-limiting stresses trigger a common signal transduction pathway in Mycobacterium tuberculosis that leads to the induction of triglyceride synthesis. This pathway plays a causal role in reducing growth and antibiotic efficacy by redirecting cellular carbon fluxes away from the tricarboxylic acid cycle. Mutants in which this metabolic switch is disrupted are unable to arrest their growth in response to stress and remain sensitive to antibiotics during infection. Thus, this regulatory pathway contributes to antibiotic tolerance in vivo, and its modulation may represent a novel strategy for accelerating TB treatment.

  13. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    OpenAIRE

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundam...

  14. The Hunger Games: p53 regulates metabolism upon serine starvation.

    Science.gov (United States)

    Tavana, Omid; Gu, Wei

    2013-02-05

    Cancer cells reprogram their metabolism to support a high proliferative rate. A new study shows that, upon serine starvation, the tumor suppressor p53 activates p21 to shift metabolic flux from purine biosynthesis to glutathione production, which enhances cellular proliferation and viability by combating ROS (Maddocks et al., 2013). Copyright © 2013 Elsevier Inc. All rights reserved.

  15. [Regulation of terpene metabolism]. Progress report

    International Nuclear Information System (INIS)

    Croteau, R.

    1986-01-01

    Studies on the regulation of monoterpene metabolism in M. piperita were conducted. All of the steps from the acyclic precursor geranyl pyrophosphate to the various menthol isomers have been demonstrated. The first intermediate to accumulate in vivo is d-pulegone. The emphasis has been on the demonstration, partial purification and characterization of the relevant enzymes in the pathway. The studies on the isopiperitenol dehydrogenase and isopiperitenone isomerase have been completed. We are not studying the endocyclic double-bond reductase (NADPH-dependent) and, based on substrate specificity studies and the previously demonstrated isomerization of cis- isopulegone to pulegone, are now virtually convinced that the major pathway to menthol(s) in peppermint involves reduction of isopiperitenone to isopulegone and isomerication of isopulegone to pulegone. 16 refs., 1 fig

  16. Ras signaling in aging and metabolic regulation.

    Science.gov (United States)

    Slack, Cathy

    2017-12-07

    Aberrant signal transduction downstream of the Ras GTPase has a well-established role in tumorigenesis. Mutations that result in hyperactivation of Ras are responsible for a third of all human cancers. Hence, small molecule inhibitors of the Ras signal transduction cascade have been under intense focus as potential cancer treatments. In both invertebrate and mammalian models, emerging evidence has also implicated components of the Ras signaling pathway in aging and metabolic regulation. Here, I review the current evidence for Ras signaling in these newly discovered roles highlighting the interactions between the Ras pathway and other longevity assurance mechanisms. Defining the role of Ras signaling in maintaining age-related health may have important implications for the development of interventions that could not only increase lifespan but also delay the onset and/or progression of age-related functional decline.

  17. Identification of Circular RNAs From the Parental Genes Involved in Multiple Aspects of Cellular Metabolism in Barley

    Directory of Open Access Journals (Sweden)

    Behrooz eDarbani

    2016-06-01

    Full Text Available RNA circularization made by head-to-tail back-splicing events is involved in the regulation of gene expression from transcriptional to post-translational levels. By exploiting RNA-Seq data and down-stream analysis, we shed light on the importance of circular RNAs in plants. The results introduce circular RNAs as novel interactors in the regulation of gene expression in plants and imply the comprehensiveness of this regulatory pathway by identifying circular RNAs for a diverse set of genes. These genes are involved in several aspects of cellular metabolism as hormonal signaling, intracellular protein sorting, carbohydrate metabolism and cell-wall biogenesis, respiration, amino acid biosynthesis, transcription and translation, and protein ubiquitination. Additionally, these parental loci of circular RNAs, from both nuclear and mitochondrial genomes, encode for different transcript classes including protein coding transcripts, microRNA, rRNA, and long non-coding/microprotein coding RNAs. The results shed light on the mitochondrial exonic circular RNAs and imply the importance of circular RNAs for regulation of mitochondrial genes. Importantly, we introduce circular RNAs in barley and elucidate their cellular-level alterations across tissues and in response to micronutrients iron and zinc. In further support of circular RNAs' functional roles in plants, we report several cases where fluctuations of circRNAs do not correlate with the levels of their parental-loci encoded linear transcripts.Keywords: circular RNAs, coding and non-coding transcripts, leaves, seeds, transfer cells, micronutrients, mitochondria

  18. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis

    Science.gov (United States)

    Watanabe, Miki; Muraleedharan, Ranjithmenon; Lambert, Paul F.; Lane, Andrew N.; Romick-Rosendale, Lindsey E.; Wells, Susanne I.

    2017-01-01

    The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos). To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA) that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth. PMID:28558019

  19. Overexpression of the human DEK oncogene reprograms cellular metabolism and promotes glycolysis.

    Directory of Open Access Journals (Sweden)

    Marie C Matrka

    Full Text Available The DEK oncogene is overexpressed in many human malignancies including at early tumor stages. Our reported in vitro and in vivo models of squamous cell carcinoma have demonstrated that DEK contributes functionally to cellular and tumor survival and to proliferation. However, the underlying molecular mechanisms remain poorly understood. Based on recent RNA sequencing experiments, DEK expression was necessary for the transcription of several metabolic enzymes involved in anabolic pathways. This identified a possible mechanism whereby DEK may drive cellular metabolism to enable cell proliferation. Functional metabolic Seahorse analysis demonstrated increased baseline and maximum extracellular acidification rates, a readout of glycolysis, in DEK-overexpressing keratinocytes and squamous cell carcinoma cells. DEK overexpression also increased the maximum rate of oxygen consumption and therefore increased the potential for oxidative phosphorylation (OxPhos. To detect small metabolites that participate in glycolysis and the tricarboxylic acid cycle (TCA that supplies substrate for OxPhos, we carried out NMR-based metabolomics studies. We found that high levels of DEK significantly reprogrammed cellular metabolism and altered the abundances of amino acids, TCA cycle intermediates and the glycolytic end products lactate, alanine and NAD+. Taken together, these data support a scenario whereby overexpression of the human DEK oncogene reprograms keratinocyte metabolism to fulfill energy and macromolecule demands required to enable and sustain cancer cell growth.

  20. The logics of metabolic regulation in bacteria challenges biosensor-based metabolic engineering

    Directory of Open Access Journals (Sweden)

    Matthieu Jules

    2017-12-01

    Full Text Available Synthetic Biology (SB aims at the rational design and engineering of novel biological functions and systems. By facilitating the engineering of living organisms, SB promises to facilitate the development of many new applications for health, biomanufacturing, and the environment. Over the last decade, SB promoted the construction of libraries of components enabling the fine-tuning of genetic circuits expression and the development of novel genome engineering methodologies for many organisms of interest. SB thus opened new perspectives in the field of metabolic engineering, which was until then mainly limited to (overproducing naturally synthesized metabolic compounds. To engineer efficient cell factories, it is key to precisely reroute cellular resources from the central carbon metabolism (CCM to the synthetic circuitry. This task is however difficult as there is still significant lack of knowledge regarding both the function of several metabolic components and the regulation of the CCM fluxes for many industrially important bacteria. Pyruvate is a pivotal metabolite at the heart of the CCM and a key precursor for the synthesis of several commodity compounds and fine chemicals. Numerous bacterial species can also use it as a carbon source when present in the environment but bacterial, pyruvate-specific uptake systems were to be discovered. This is an issue for metabolic engineering as one can imagine to make use of pyruvate transport systems to replenish synthetic metabolic pathways towards the synthesis of chemicals of interest. Here we describe a recent study (MBio 8(5: e00976-17, which identified and characterized a pyruvate transport system in the Gram-positive (G+ve bacterium Bacillus subtilis, a well-established biotechnological workhorse for the production of enzymes, fine chemicals and antibiotics. This study also revealed that the activity of the two-component system (TCS responsible for its induction is retro-inhibited by the level of

  1. Metabolic fuels: regulating fluxes to select mix.

    Science.gov (United States)

    Weber, Jean-Michel

    2011-01-15

    Animals must regulate the fluxes of multiple fuels to support changing metabolic rates that result from variation in physiological circumstances. The aim of fuel selection strategies is to exploit the advantages of individual substrates while minimizing the impact of disadvantages. All exercising mammals share a general pattern of fuel selection: at the same %V(O(2,max)) they oxidize the same ratio of lipids to carbohydrates. However, highly aerobic species rely more on intramuscular fuels because energy supply from the circulation is constrained by trans-sarcolemmal transfer. Fuel selection is performed by recruiting different muscles, different fibers within the same muscles or different pathways within the same fibers. Electromyographic analyses show that shivering humans can modulate carbohydrate oxidation either through the selective recruitment of type II fibers within the same muscles or by regulating pathway recruitment within type I fibers. The selection patterns of shivering and exercise are different: at the same %V(O(2,max)), a muscle producing only heat (shivering) or significant movement (exercise) strikes a different balance between lipid and carbohydrate oxidation. Long-distance migrants provide an excellent model to characterize how to increase maximal substrate fluxes. High lipid fluxes are achieved through the coordinated upregulation of mobilization, transport and oxidation by activating enzymes, lipid-solubilizing proteins and membrane transporters. These endurance athletes support record lipolytic rates in adipocytes, use lipoprotein shuttles to accelerate transport and show increased capacity for lipid oxidation in muscle mitochondria. Some migrant birds use dietary omega-3 fatty acids as performance-enhancing agents to boost their ability to process lipids. These dietary fatty acids become incorporated in membrane phospholipids and bind to peroxisome proliferator-activated receptors to activate membrane proteins and modify gene expression.

  2. Linking high-resolution metabolic flux phenotypes and transcriptional regulation in yeast modulated by the global regulator Gcn4p

    DEFF Research Database (Denmark)

    Moxley, Joel F.; Jewett, Michael Christopher; Antoniewicz, Maciek R.

    2009-01-01

    . However, the potential of systems biology approaches is limited by difficulties in integrating metabolic measurements across the functional levels of the cell despite their being most closely linked to cellular phenotype. To address this limitation, we developed a model-based approach to correlate m......RNA and metabolic flux data that combines information from both interaction network models and flux determination models. We started by quantifying 5,764 mRNAs, 54 metabolites, and 83 experimental C-13-based reaction fluxes in continuous cultures of yeast under stress in the absence or presence of global regulator...... of metabolic flux (i.e., use of different reaction pathways) by transcriptional regulation and metabolite interaction density (i.e., level of pairwise metabolite-protein interactions) as a key biosynthetic control determinant. Furthermore, this model predicted flux rewiring in studies of follow...

  3. Regulation of cellular pH: From molecules to membranes

    Science.gov (United States)

    Grabe, Michael David

    The vacuolar H+-ATPase (V-ATPase) is a universal class of proton pumps responsible for creating and maintaining acidic milieus in both intracellular and extracellular spaces. In the first chapter, I develop a mechanochemical model of this enzyme based upon the counter-rotation of adjacent subunits. The mathematical approach details a general integrated method for describing the mechanical and chemical reactions that occur in motor systems. A novel escapement is proposed for how the protons cross the protein-bilayer interface, and it is shown how this movement couples to ATP hydrolysis. This model reproduces a variety of experimental data while providing a framework for understanding the function of the enzyme's subunits. Specifically, it explains how ATP hydrolysis can uncouple from proton movement, which has important consequences for cellular energetics and pH regulation. Until now only an equilibrium theory of organelle acidification has been proposed; however, recent experiments show that large proton leaks prevent many cellular compartments from reaching thermodynamic equilibrium. The characterization of the V-ATPase is used in the second chapter in order to develop a unified model of organelle acidification based on the interplay of ion pumps and channels and the physical characteristics of the organelle. This model successfully describes the time dependent acidification of many different organelle systems. It accurately predicts both the electrical and concentration dependent terms of the chemical potential. In conjunction with fluorescence experiments, I determined the first measurements of the proton permeability of organelles along the secretory pathway. These measurements allowed me to make the first estimates of the number of V-ATPases in each compartment by analyzing the resting pH's of the respective organelles. I found a decrease in permeability from the endoplasmic reticulum (ER) (51 x 10-4 cm/s) to the Golgi (21 x 10-4 cm/s) to the mature secretory

  4. Co-regulation of metabolic genes is better explained by flux coupling than by network distance.

    Directory of Open Access Journals (Sweden)

    Richard A Notebaart

    2008-01-01

    Full Text Available To what extent can modes of gene regulation be explained by systems-level properties of metabolic networks? Prior studies on co-regulation of metabolic genes have mainly focused on graph-theoretical features of metabolic networks and demonstrated a decreasing level of co-expression with increasing network distance, a naïve, but widely used, topological index. Others have suggested that static graph representations can poorly capture dynamic functional associations, e.g., in the form of dependence of metabolic fluxes across genes in the network. Here, we systematically tested the relative importance of metabolic flux coupling and network position on gene co-regulation, using a genome-scale metabolic model of Escherichia coli. After validating the computational method with empirical data on flux correlations, we confirm that genes coupled by their enzymatic fluxes not only show similar expression patterns, but also share transcriptional regulators and frequently reside in the same operon. In contrast, we demonstrate that network distance per se has relatively minor influence on gene co-regulation. Moreover, the type of flux coupling can explain refined properties of the regulatory network that are ignored by simple graph-theoretical indices. Our results underline the importance of studying functional states of cellular networks to define physiologically relevant associations between genes and should stimulate future developments of novel functional genomic tools.

  5. More to NAD+ than meets the eye: A regulator of metabolic pools and gene expression in Arabidopsis.

    Science.gov (United States)

    Gakière, Bertrand; Fernie, Alisdair R; Pétriacq, Pierre

    2018-01-05

    Since its discovery more than a century ago, nicotinamide adenine dinucleotide (NAD + ) is recognised as a fascinating cornerstone of cellular metabolism. This ubiquitous energy cofactor plays vital roles in metabolic pathways and regulatory processes, a fact emphasised by the essentiality of a balanced NAD + metabolism for normal plant growth and development. Research on the role of NAD in plants has been predominantly carried out in the model plant Arabidopsis thaliana (Arabidopsis) with emphasis on the redox properties and cellular signalling functions of the metabolite. This review examines the current state of knowledge concerning how NAD can regulate both metabolic pools and gene expression in Arabidopsis. Particular focus is placed on recent studies highlighting the complexity of metabolic regulations involving NAD, more particularly in the mitochondrial compartment, and of signalling roles with respect to interactions with environmental fluctuations most specifically those involving plant immunity. Copyright © 2018 Elsevier Inc. All rights reserved.

  6. Histone variants and lipid metabolism

    NARCIS (Netherlands)

    Borghesan, Michela; Mazzoccoli, Gianluigi; Sheedfar, Fareeba; Oben, Jude; Pazienza, Valerio; Vinciguerra, Manlio

    2014-01-01

    Within nucleosomes, canonical histones package the genome, but they can be opportunely replaced with histone variants. The incorporation of histone variants into the nucleosome is a chief cellular strategy to regulate transcription and cellular metabolism. In pathological terms, cellular steatosis

  7. A Quantitative Study of Oxygen as a Metabolic Regulator

    Science.gov (United States)

    Radhakrishnan, Krishnan; LaManna, Joseph C.; Cabrera, Marco E.

    1999-01-01

    An acute reduction in oxygen (O2) delivery to a tissue is generally associated with a decrease in phosphocreatine, increases in ADP, NADH/NAD, and inorganic phosphate, increased rates of glycolysis and lactate production, and reduced rates of pyruvate and fatty acid oxidation. However, given the complexity of the human bioenergetic system and its components, it is difficult to determine quantitatively how cellular metabolic processes interact to maintain ATP homeostasis during stress (e.g., hypoxia, ischemia, and exercise). Of special interest is the determination of mechanisms relating tissue oxygenation to observed metabolic responses at the tissue, organ, and whole body levels and the quantification of how changes in tissue O2 availability affect the pathways of ATP synthesis and the metabolites that control these pathways. In this study, we extend a previously developed mathematical model of human bioenergetics to provide a physicochemical framework that permits quantitative understanding of O2 as a metabolic regulator. Specifically, the enhancement permits studying the effects of variations in tissue oxygenation and in parameters controlling the rate of cellular respiration on glycolysis, lactate production, and pyruvate oxidation. The whole body is described as a bioenergetic system consisting of metabolically distinct tissue/organ subsystems that exchange materials with the blood. In order to study the dynamic response of each subsystem to stimuli, we solve the ordinary differential equations describing the temporal evolution of metabolite levels, given the initial concentrations. The solver used in the present study is the packaged code LSODE, as implemented in the NASA Lewis kinetics and sensitivity analysis code, LSENS. A major advantage of LSENS is the efficient procedures supporting systematic sensitivity analysis, which provides the basic methods for studying parameter sensitivities (i.e., changes in model behavior due to parameter variation

  8. Decoding the dynamics of cellular metabolism and the action of 3-bromopyruvate and 2-deoxyglucose using pulsed stable isotope-resolved metabolomics.

    Science.gov (United States)

    Pietzke, Matthias; Zasada, Christin; Mudrich, Susann; Kempa, Stefan

    2014-01-01

    Cellular metabolism is highly dynamic and continuously adjusts to the physiological program of the cell. The regulation of metabolism appears at all biological levels: (post-) transcriptional, (post-) translational, and allosteric. This regulatory information is expressed in the metabolome, but in a complex manner. To decode such complex information, new methods are needed in order to facilitate dynamic metabolic characterization at high resolution. Here, we describe pulsed stable isotope-resolved metabolomics (pSIRM) as a tool for the dynamic metabolic characterization of cellular metabolism. We have adapted gas chromatography-coupled mass spectrometric methods for metabolomic profiling and stable isotope-resolved metabolomics. In addition, we have improved robustness and reproducibility and implemented a strategy for the absolute quantification of metabolites. By way of examples, we have applied this methodology to characterize central carbon metabolism of a panel of cancer cell lines and to determine the mode of metabolic inhibition of glycolytic inhibitors in times ranging from minutes to hours. Using pSIRM, we observed that 2-deoxyglucose is a metabolic inhibitor, but does not directly act on the glycolytic cascade.

  9. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    Energy Technology Data Exchange (ETDEWEB)

    McClure, Janela [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Margineantu, Daciana H. [Department of Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Sweet, Ian R. [Department of Medicine (Division of Metabolism, Endocrinology, and Nutrition), University of Washington, Seattle, WA (United States); Polyak, Stephen J., E-mail: polyak@uw.edu [Department of Laboratory Medicine, University of Washington, Seattle, WA (United States); Department of Global Health, University of Washington, Seattle, WA (United States)

    2014-01-20

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases.

  10. Inhibition of HIV by Legalon-SIL is independent of its effect on cellular metabolism

    International Nuclear Information System (INIS)

    McClure, Janela; Margineantu, Daciana H.; Sweet, Ian R.; Polyak, Stephen J.

    2014-01-01

    In this report, we further characterized the effects of silibinin (SbN), derived from milk thistle extract, and Legalon-SIL (SIL), a water-soluble derivative of SbN, on T cell metabolism and HIV infection. We assessed the effects of SbN and SIL on peripheral blood mononuclear cells (PBMC) and CEM-T4 cells in terms of cellular growth, ATP content, metabolism, and HIV infection. SIL and SbN caused a rapid and reversible (upon removal) decrease in cellular ATP levels, which was associated with suppression of mitochondrial respiration and glycolysis. SbN, but not SIL inhibited glucose uptake. Exposure of T cells to SIL (but not SbN or metabolic inhibitors) during virus adsorption blocked HIV infection. Thus, both SbN and SIL rapidly perturb T cell metabolism in vitro, which may account for its anti-inflammatory and anti-proliferative effects that arise with prolonged exposure of cells. However, the metabolic effects are not involved in SIL's unique ability to block HIV entry. - Highlights: • Silibinin (SbN) and Legalon-SIL (SIL) are cytoprotective mixtures of natural products. • SbN and SIL reduce T cell oxidative phosphorylation and glycolysis in vitro. • SIL but not SbN blocks entry of multiple HIV isolates into T cells in vitro. • SIL's suppression of HIV appears independent of its effects on T cell metabolism. • Metabolic effects of SIL and SbN may be relevant in inflammatory diseases

  11. Regulation of metabolic networks by small molecule metabolites

    Directory of Open Access Journals (Sweden)

    Kanehisa Minoru

    2007-03-01

    Full Text Available Abstract Background The ability to regulate metabolism is a fundamental process in living systems. We present an analysis of one of the mechanisms by which metabolic regulation occurs: enzyme inhibition and activation by small molecules. We look at the network properties of this regulatory system and the relationship between the chemical properties of regulatory molecules. Results We find that many features of the regulatory network, such as the degree and clustering coefficient, closely match those of the underlying metabolic network. While these global features are conserved across several organisms, we do find local differences between regulation in E. coli and H. sapiens which reflect their different lifestyles. Chemical structure appears to play an important role in determining a compounds suitability for use in regulation. Chemical structure also often determines how groups of similar compounds can regulate sets of enzymes. These groups of compounds and the enzymes they regulate form modules that mirror the modules and pathways of the underlying metabolic network. We also show how knowledge of chemical structure and regulation could be used to predict regulatory interactions for drugs. Conclusion The metabolic regulatory network shares many of the global properties of the metabolic network, but often varies at the level of individual compounds. Chemical structure is a key determinant in deciding how a compound is used in regulation and for defining modules within the regulatory system.

  12. Metabolic rate regulates L1 longevity in C. elegans.

    Directory of Open Access Journals (Sweden)

    Inhwan Lee

    Full Text Available Animals have to cope with starvation. The molecular mechanisms by which animals survive long-term starvation, however, are not clearly understood. When they hatch without food, C. elegans arrests development at the first larval stage (L1 and survives more than two weeks. Here we show that the survival span of arrested L1s, which we call L1 longevity, is a starvation response regulated by metabolic rate during starvation. A high rate of metabolism shortens the L1 survival span, whereas a low rate of metabolism lengthens it. The longer worms are starved, the slower they grow once they are fed, suggesting that L1 arrest has metabolic costs. Furthermore, mutants of genes that regulate metabolism show altered L1 longevity. Among them, we found that AMP-dependent protein kinase (AMPK, as a key energy sensor, regulates L1 longevity by regulating this metabolic arrest. Our results suggest that L1 longevity is determined by metabolic rate and that AMPK as a master regulator of metabolism controls this arrest so that the animals survive long-term starvation.

  13. A Laboratory Experiment on Muscular Metabolism and Fatigue Using the Isolated Frog Muscle Preparation.

    Science.gov (United States)

    Ianuzzo, C. David; And Others

    1987-01-01

    Describes an experiment which demonstrates the association of particular metabolic biochemical changes and muscular fatigue. Highlights applications related to cellular energy metabolism, metabolic regulation, and muscle energetics. (ML)

  14. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors.

    Science.gov (United States)

    Montgomery, David C; Sorum, Alexander W; Guasch, Laura; Nicklaus, Marc C; Meier, Jordan L

    2015-08-20

    The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the metabolic regulation of lysine acetyltransferase (KAT) enzymes. Using a novel chemoproteomic probe, we identify a previously unreported interaction between palmitoyl coenzyme A (palmitoyl-CoA) and KAT enzymes. Further analysis reveals that palmitoyl-CoA is a potent inhibitor of KAT activity and that fatty acyl-CoA precursors reduce cellular histone acetylation levels. These studies implicate fatty acyl-CoAs as endogenous regulators of histone acetylation, and suggest novel strategies for the investigation and metabolic modulation of epigenetic signaling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Regulation of terpene metabolism. Progress report, 1983

    International Nuclear Information System (INIS)

    Croteau, R.

    1986-01-01

    Studies on the metabolism of terpenes by peppermint (Menta piperita) are described. The studies describe the characterization of enzymes involved in the biosynthesis and catabolism of terpenes and the ultrastructure of the oil glands. 10 refs. (DT)

  16. Control of alanine metabolism in rat liver by transport processes or cellular metabolism.

    OpenAIRE

    Fafournoux, P; Rémésy, C; Demigné, C

    1983-01-01

    1. Factors governing hepatic utilization of alanine were studied in vivo and in vitro in rats adapted to increasing dietary protein. 2. Hepatic alanine utilization was enhanced 5-fold with a 90%-casein diet, compared with a 13%-casein diet. The increased uptake resulted from enhanced fractional extraction in the presence of high concentrations of alanine in the portal vein. 3. The increase in alanine metabolism on high-protein diets was associated with an increase in alanine aminotransferase ...

  17. [Regulation of terpene metabolism]. [Mentha piperita, Mentha spicata

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-01-01

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  18. Regulation of Specialized Metabolism by WRKY Transcription Factors

    Science.gov (United States)

    Schluttenhofer, Craig; Yuan, Ling

    2015-01-01

    WRKY transcription factors (TFs) are well known for regulating plant abiotic and biotic stress tolerance. However, much less is known about how WRKY TFs affect plant-specialized metabolism. Analysis of WRKY TFs regulating the production of specialized metabolites emphasizes the values of the family outside of traditionally accepted roles in stress tolerance. WRKYs with conserved roles across plant species seem to be essential in regulating specialized metabolism. Overall, the WRKY family plays an essential role in regulating the biosynthesis of important pharmaceutical, aromatherapy, biofuel, and industrial components, warranting considerable attention in the forthcoming years. PMID:25501946

  19. Volatile profiling reveals intracellular metabolic changes in Aspergillus parasiticus: veA regulates branched chain amino acid and ethanol metabolism

    Directory of Open Access Journals (Sweden)

    Roze Ludmila V

    2010-08-01

    Full Text Available Abstract Background Filamentous fungi in the genus Aspergillus produce a variety of natural products, including aflatoxin, the most potent naturally occurring carcinogen known. Aflatoxin biosynthesis, one of the most highly characterized secondary metabolic pathways, offers a model system to study secondary metabolism in eukaryotes. To control or customize biosynthesis of natural products we must understand how secondary metabolism integrates into the overall cellular metabolic network. By applying a metabolomics approach we analyzed volatile compounds synthesized by Aspergillus parasiticus in an attempt to define the association of secondary metabolism with other metabolic and cellular processes. Results Volatile compounds were examined using solid phase microextraction - gas chromatography/mass spectrometry. In the wild type strain Aspergillus parasiticus SU-1, the largest group of volatiles included compounds derived from catabolism of branched chain amino acids (leucine, isoleucine, and valine; we also identified alcohols, esters, aldehydes, and lipid-derived volatiles. The number and quantity of the volatiles produced depended on media composition, time of incubation, and light-dark status. A block in aflatoxin biosynthesis or disruption of the global regulator veA affected the volatile profile. In addition to its multiple functions in secondary metabolism and development, VeA negatively regulated catabolism of branched chain amino acids and synthesis of ethanol at the transcriptional level thus playing a role in controlling carbon flow within the cell. Finally, we demonstrated that volatiles generated by a veA disruption mutant are part of the complex regulatory machinery that mediates the effects of VeA on asexual conidiation and sclerotia formation. Conclusions 1 Volatile profiling provides a rapid, effective, and powerful approach to identify changes in intracellular metabolic networks in filamentous fungi. 2 VeA coordinates the

  20. Integration of Genome Scale Metabolic Networks and Gene Regulation of Metabolic Enzymes With Physiologically Based Pharmacokinetics.

    Science.gov (United States)

    Maldonado, Elaina M; Leoncikas, Vytautas; Fisher, Ciarán P; Moore, J Bernadette; Plant, Nick J; Kierzek, Andrzej M

    2017-11-01

    The scope of physiologically based pharmacokinetic (PBPK) modeling can be expanded by assimilation of the mechanistic models of intracellular processes from systems biology field. The genome scale metabolic networks (GSMNs) represent a whole set of metabolic enzymes expressed in human tissues. Dynamic models of the gene regulation of key drug metabolism enzymes are available. Here, we introduce GSMNs and review ongoing work on integration of PBPK, GSMNs, and metabolic gene regulation. We demonstrate example models. © 2017 The Authors CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals, Inc. on behalf of American Society for Clinical Pharmacology and Therapeutics.

  1. Soluble Fms-Like Tyrosine Kinase-1 Alters Cellular Metabolism and Mitochondrial Bioenergetics in Preeclampsia

    Directory of Open Access Journals (Sweden)

    Lissette C. Sánchez-Aranguren

    2018-03-01

    Full Text Available Preeclampsia is a maternal hypertensive disorder that affects up to 1 out of 12 pregnancies worldwide. It is characterized by proteinuria, endothelial dysfunction, and elevated levels of the soluble form of the vascular endothelial growth factor receptor-1 (VEGFR-1, known as sFlt-1. sFlt-1 effects are mediated in part by decreasing VEGF signaling. The direct effects of sFlt-1 on cellular metabolism and bioenergetics in preeclampsia, have not been established. The goal of this study was to evaluate whether sFlt-1 causes mitochondrial dysfunction leading to disruption of normal functioning in endothelial and placental cells in preeclampsia. Endothelial cells (ECs and first-trimester trophoblast (HTR-8/SVneo were treated with serum from preeclamptic women rich in sFlt-1 or with the recombinant protein. sFlt-1, dose-dependently inhibited ECs respiration and acidification rates indicating a metabolic phenotype switch enhancing glycolytic flux. HTR-8/SVneo displayed a strong basal glycolytic metabolism, remaining less sensitive to sFlt-1-induced mitochondrial impairment. Moreover, results obtained in ECs exposed to serum from preeclamptic subjects demonstrated that increased sFlt-1 leads to metabolic perturbations accountable for mitochondrial dysfunction observed in preeclampsia. sFlt-1 exacerbated mitochondrial reactive oxygen species (ROS formation and mitochondrial membrane potential dissipation in ECs and trophoblasts exposed to serum from preeclamptic women. Forcing oxidative metabolism by culturing cells in galactose media, further sensitized cells to sFlt-1. This approach let us establish that sFlt-1 targets mitochondrial function in ECs. Effects of sFlt-1 on HTR-8/SVneo cells metabolism were amplified in galactose, demonstrating that sFlt-1 only target cells that rely mainly on oxidative metabolism. Together, our results establish the early metabolic perturbations induced by sFlt-1 and the resulting endothelial and mitochondrial dysfunction

  2. Fat metabolism during exercise: mechanisms of regulation

    Directory of Open Access Journals (Sweden)

    Monique da Silva Gevaerd

    2006-12-01

    Full Text Available Fats are important energetic fuel to exercise. However, the regulation of fat uptake during exercise is unclear. The main objective of this review was to focus on physiological control mechanisms of mobilization, transport and fat uptake during exercise. The articles of fat metabolism were searched in Pubmed and Lilacs indexes. Classical and current papers were preferred. Evidence suggests that transport of fatty acids (FA from extracellular to intracellular spaces could be the main factor to limit fatty acid uptake. Future studies on fat uptake during exercise can focus on this mechanism. In intense exercise, the lower blood fl ow in the adipose tissue and higher fatty acid reesterifi cation rate impairs fat uptake during exercise. Supplementation of the FA has been used, however, the ideal quantities and forms to prevent gastrointestinal discomfort were not yet determined. In the biological point of view, intramuscular reserve of FA could be more effi cient, because is not necessary to FA to cross the cell membrane. RESUMO Os lipídios são considerados importantes fontes energéticas para a realização de exercícios físicos. Entretanto, os mecanismos de regulação do consumo desse substrato durante o exercício não estão totalmente esclarecidos. O objetivo principal da presente revisão foi abordar mecanismos fisiológicos de controle da mobilização, transporte e utilização de gordura durante o exercício. Os trabalhos indexados no banco de dados Pubmed e Lilacs sobre metabolismo de gordura, foram analisados e os clássicos e recentes foram preferencialmente utilizados. A partir dos dados recentes da literatura, especula-se que o transporte de ácidos graxos do meio extracelular para o meio intracelular pode constituir um dos principais mecanismos limitantes no consumo desse substrato. Estudos sobre o consumo de lipídios durante o exercício devem ser focados sobre esse mecanismo. Em exercício intenso, o menor fl uxo de sangue

  3. Temporal dynamics and regulation of lake metabolism

    DEFF Research Database (Denmark)

    Stæhr, Peter Anton; Jensen, Kaj Sand

    2007-01-01

    and minima from fall to spring after broad-scale changes in irradiance, temperature, mixing depth, and biomass and growth rate of the algal community and concentrations of inorganic nutrients. Lake metabolism was annually balanced (mean GPP :R 1.04 in 2003 and 1.01 in 2004), with net autotrophy occurring...

  4. Cellular growth in plants requires regulation of cell wall biochemistry.

    Science.gov (United States)

    Chebli, Youssef; Geitmann, Anja

    2017-02-01

    Cell and organ morphogenesis in plants are regulated by the chemical structure and mechanical properties of the extracellular matrix, the cell wall. The two primary load bearing components in the plant cell wall, the pectin matrix and the cellulose/xyloglucan network, are constantly remodelled to generate the morphological changes required during plant development. This remodelling is regulated by a plethora of loosening and stiffening agents such as pectin methyl-esterases, calcium ions, expansins, and glucanases. The tight spatio-temporal regulation of the activities of these agents is a sine qua non condition for proper morphogenesis at cell and tissue levels. The pectin matrix and the cellulose-xyloglucan network operate in concert and their behaviour is mutually dependent on their chemical, structural and mechanical modifications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Matriptase autoactivation is tightly regulated by the cellular chemical environments.

    Directory of Open Access Journals (Sweden)

    Jehng-Kang Wang

    Full Text Available The ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells. The acid-accelerated autoactivation can be attenuated by chloride, a property that may be part of a safety mechanism to prevent unregulated matriptase autoactivation. Additionally, the thio-redox balance of the environment also modulates matriptase autoactivation. Using the cell-free system, we show that matriptase autoactivation is suppressed by cytosolic reductive factors, with this cytosolic suppression being reverted by the addition of oxidizing agents. In living cells, we observed rapid induction of matriptase autoactivation upon exposure to toxic metal ions known to induce oxidative stress, including CoCl2 and CdCl2. The metal-induced matriptase autoactivation is suppressed by N-acetylcysteine, supporting the putative role of altered cellular redox state in metal induced matriptase autoactivation. Furthermore, matriptase knockdown rendered cells more susceptible to CdCl2-induced cell death compared to control cells. This observation implies that the metal-induced matriptase autoactivation confers cells with the ability to survive exposure to toxic metals and/or oxidative stress. Our results suggest that matriptase can act as a cellular sensor of the chemical environment of the cell that allows the cell to respond to and protect itself from changes in the chemical milieu.

  6. The Lin28/let-7 Axis Regulates Glucose Metabolism

    NARCIS (Netherlands)

    Zhu, Hao; Shyh-Chang, Ng; Segre, Ayellet V.; Shinoda, Gen; Shah, Samar P.; Einhorn, William S.; Takeuchi, Ayumu; Engreitz, Jesse M.; Hagan, John P.; Kharas, Michael G.; Urbach, Achia; Thornton, James E.; Triboulet, Robinson; Gregory, Richard I.; Altshuler, David; Daley, George Q.

    2011-01-01

    The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by inhibiting let-7 biogenesis. We have uncovered unexpected roles for the Lin28/let-7 pathway in regulating-metabolism. When overexpressed in mice, both

  7. Ornithine: the overlooked molecule in the regulation of polyamine metabolism

    Science.gov (United States)

    Rajtilak Majumdar; Lin Shao; Rakesh Minocha; Stephanie Long; Subhash C. Minocha

    2013-01-01

    We overexpressed a mouse ornithine decarboxylase gene under the control of a constitutive and an estradiol-inducible promoter in Arabidopsis thaliana to increase our understanding of the regulation of polyamine metabolism. Of particular interest was the role of the substrate ornithine not only in the regulation of polyamine biosynthesis, but also in...

  8. Cancer metabolism meets systems biology: Pyruvate kinase isoform PKM2 is a metabolic master regulator

    OpenAIRE

    Fabian V Filipp

    2013-01-01

    Pyruvate kinase activity is controlled by a tightly woven regulatory network. The oncofetal isoform of pyruvate kinase (PKM2) is a master regulator of cancer metabolism. PKM2 engages in parallel, feed-forward, positive and negative feedback control contributing to cancer progression. Besides its metabolic role, non-metabolic functions of PKM2 as protein kinase and transcriptional coactivator for c-MYC and hypoxia-inducible factor 1-alpha are essential for epidermal growth factor receptor acti...

  9. Regulation of sucrose metabolism in higher plants: localization and regulation of activity of key enzymes

    Science.gov (United States)

    Winter, H.; Huber, S. C.; Brown, C. S. (Principal Investigator)

    2000-01-01

    Sucrose (Suc) plays a central role in plant growth and development. It is a major end product of photosynthesis and functions as a primary transport sugar and in some cases as a direct or indirect regulator of gene expression. Research during the last 2 decades has identified the pathways involved and which enzymes contribute to the control of flux. Availability of metabolites for Suc synthesis and 'demand' for products of sucrose degradation are important factors, but this review specifically focuses on the biosynthetic enzyme sucrose-phosphate synthase (SPS), and the degradative enzymes, sucrose synthase (SuSy), and the invertases. Recent progress has included the cloning of genes encoding these enzymes and the elucidation of posttranslational regulatory mechanisms. Protein phosphorylation is emerging as an important mechanism controlling SPS activity in response to various environmental and endogenous signals. In terms of Suc degradation, invertase-catalyzed hydrolysis generally has been associated with cell expansion, whereas SuSy-catalyzed metabolism has been linked with biosynthetic processes (e.g., cell wall or storage products). Recent results indicate that SuSy may be localized in multiple cellular compartments: (1) as a soluble enzyme in the cytosol (as traditionally assumed); (2) associated with the plasma membrane; and (3) associated with the actin cytoskeleton. Phosphorylation of SuSy has been shown to occur and may be one of the factors controlling localization of the enzyme. The purpose of this review is to summarize some of the recent developments relating to regulation of activity and localization of key enzymes involved in sucrose metabolism in plants.

  10. Metabolic Regulation of a Bacterial Cell System with Emphasis on Escherichia coli Metabolism

    Science.gov (United States)

    Shimizu, Kazuyuki

    2013-01-01

    It is quite important to understand the overall metabolic regulation mechanism of bacterial cells such as Escherichia coli from both science (such as biochemistry) and engineering (such as metabolic engineering) points of view. Here, an attempt was made to clarify the overall metabolic regulation mechanism by focusing on the roles of global regulators which detect the culture or growth condition and manipulate a set of metabolic pathways by modulating the related gene expressions. For this, it was considered how the cell responds to a variety of culture environments such as carbon (catabolite regulation), nitrogen, and phosphate limitations, as well as the effects of oxygen level, pH (acid shock), temperature (heat shock), and nutrient starvation. PMID:25937963

  11. Metabolic Regulation of Methionine Restriction in Diabetes.

    Science.gov (United States)

    Yin, Jie; Ren, Wenkai; Chen, Shuai; Li, Yuying; Han, Hui; Gao, Jing; Liu, Gang; Wu, Xin; Li, Tiejun; Kim, Sung Woo; Yin, Yulong

    2018-03-30

    Although the effects of dietary methionine restriction have been investigated in the physiology of aging and diseases related to oxidative stress, the relationship between methionine restriction and the development of metabolic disorders has not been explored extensively. This review summarizes studies of the possible involvement of dietary methionine restriction in improving insulin resistance, glucose homeostasis, oxidative stress, lipid metabolism, the pentose phosphate pathway, and inflammation, with an emphasis on the fibroblast growth factor 21 and protein phosphatase 2A signals and autophagy in diabetes. Diets deficient in methionine may be a useful nutritional strategy in patients with diabetes. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Regulation of uric acid metabolism and excretion.

    Science.gov (United States)

    Maiuolo, Jessica; Oppedisano, Francesca; Gratteri, Santo; Muscoli, Carolina; Mollace, Vincenzo

    2016-06-15

    Purines perform many important functions in the cell, being the formation of the monomeric precursors of nucleic acids DNA and RNA the most relevant one. Purines which also contribute to modulate energy metabolism and signal transduction, are structural components of some coenzymes and have been shown to play important roles in the physiology of platelets, muscles and neurotransmission. All cells require a balanced quantity of purines for growth, proliferation and survival. Under physiological conditions the enzymes involved in the purine metabolism maintain in the cell a balanced ratio between their synthesis and degradation. In humans the final compound of purines catabolism is uric acid. All other mammals possess the enzyme uricase that converts uric acid to allantoin that is easily eliminated through urine. Overproduction of uric acid, generated from the metabolism of purines, has been proven to play emerging roles in human disease. In fact the increase of serum uric acid is inversely associated with disease severity and especially with cardiovascular disease states. This review describes the enzymatic pathways involved in the degradation of purines, getting into their structure and biochemistry until the uric acid formation. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. [Effects of different trophic modes on growth characteristics, metabolism and cellular components of Chlorella vulgaris].

    Science.gov (United States)

    Kong, Weibao; Wang, Yang; Yang, Hong; Xi, Yuqin; Han, Rui; Niu, Shiquan

    2015-03-04

    We studied the effects of trophic modes related to glucose and light (photoautotrophy, mixotrophy and heterotrophy) on growth, cellular components and carbon metabolic pathway of Chlorella vulgaris. The parameters about growth of algal cells were investigated by using spectroscopy and chromatography techniques. When trophic mode changed from photoautotrophy to mixotrophy and to heterotrophy successively, the concentrations of soluble sugar, lipid and saturated C16/C18 fatty acids in C. vulgaris increased, whereas the concentrations of unsaturated C16, C18 fatty acids, proteins, photosynthetic pigments and 18 relative amino acids decreased. Light and glucose affect the growth, metabolism and the biochemical components biosynthesis of C. vulgaris. Addition of glucose can promote algal biomass accumulation, stimulate the synthesis of carbonaceous components, but inhibit nitrogenous components. Under illumination cultivation, concentration and consumption level of glucose decided the main trophic modes of C. vulgaris. Mixotrophic and heterotrophic cultivation could promote the growth of algal cells.

  14. Localization, kinetics and metabolism of labelled monoclonal antibodies on a cellular level

    International Nuclear Information System (INIS)

    Steinstraesser, A.; Kuhlmann, L.; Zimmer, M.; Schwarz, A.

    1988-01-01

    In order to gain insight into the mechanisms, the localization, kinetics and metabolism of preparations labelled with 131 J and 111 In were examined on a cellular level. Micro-autoradiography for histological assessment of the storage tissue in the organs was complemented by cytological examination methods for assessing the extent of internalisation of the antibodies, and the metabolism of the antibodies in the cytosol fraction could be followed up by chromatography. One of the major results is that even with the complete antibody, accumulation in the liver cells proceeds very rapidly and protein degradation is practically completed within twenty-four hours. In the tumor, however, internalisation plays a minor part (about 80 p.c. of the antibodies remain bound to the membrane). Rapid accumulation of the antibodies by the tubulus epithelium of the kidney causes the intensive image of the renal scintiscan. (orig./MG) [de

  15. The cell cycle regulator protein P16 and the cellular senescence of dental follicle cells.

    Science.gov (United States)

    Morsczeck, Christian; Hullmann, Markus; Reck, Anja; Reichert, Torsten E

    2018-02-01

    Cellular senescence is a restricting factor for regenerative therapies with somatic stem cells. We showed previously that the onset of cellular senescence inhibits the osteogenic differentiation in stem cells of the dental follicle (DFCs), although the mechanism remains elusive. Two different pathways are involved in the induction of the cellular senescence, which are driven either by the cell cycle protein P21 or by the cell cycle protein P16. In this study, we investigated the expression of cell cycle proteins in DFCs after the induction of cellular senescence. The induction of cellular senescence was proved by an increased expression of β-galactosidase and an increased population doubling time after a prolonged cell culture. Cellular senescence regulated the expression of cell cycle proteins. The expression of cell cycle protein P16 was up-regulated, which correlates with the induction of cellular senescence markers in DFCs. However, the expression of cyclin-dependent kinases (CDK)2 and 4 and the expression of the cell cycle protein P21 were successively decreased in DFCs. In conclusion, our data suggest that a P16-dependent pathway drives the induction of cellular senescence in DFCs.

  16. Diphtheria toxin translocation across cellular membranes is regulated by sphingolipids

    International Nuclear Information System (INIS)

    Spilsberg, Bjorn; Hanada, Kentaro; Sandvig, Kirsten

    2005-01-01

    Diphtheria toxin is translocated across cellular membranes when receptor-bound toxin is exposed to low pH. To study the role of sphingolipids for toxin translocation, both a mutant cell line lacking the first enzyme in de novo sphingolipid synthesis, serine palmitoyltransferase, and a specific inhibitor of the same enzyme, myriocin, were used. The serine palmitoyltransferase-deficient cell line (LY-B) was found to be 10-15 times more sensitive to diphtheria toxin than the genetically complemented cell line (LY-B/cLCB1) and the wild-type cell line (CHO-K1), both when toxin translocation directly across the plasma membrane was induced by exposing cells with surface-bound toxin to low pH, and when the toxin followed its normal route via acidified endosomes into the cytosol. Toxin binding was similar in these three cell lines. Furthermore, inhibition of serine palmitoyltransferase activity by addition of myriocin sensitized the two control cell lines (LY-B/cLCB1 and CHO-K1) to diphtheria toxin, whereas, as expected, no effect was observed in cells lacking serine palmitoyltransferase (LY-B). In conclusion, diphtheria toxin translocation is facilitated by depletion of membrane sphingolipids

  17. Glucose stimulates intestinal epithelial crypt proliferation by modulating cellular energy metabolism.

    Science.gov (United States)

    Zhou, Weinan; Ramachandran, Deepti; Mansouri, Abdelhak; Dailey, Megan J

    2018-04-01

    The intestinal epithelium plays an essential role in nutrient absorption, hormone release, and barrier function. Maintenance of the epithelium is driven by continuous cell renewal by stem cells located in the intestinal crypts. The amount and type of diet influence this process and result in changes in the size and cellular make-up of the tissue. The mechanism underlying the nutrient-driven changes in proliferation is not known, but may involve a shift in intracellular metabolism that allows for more nutrients to be used to manufacture new cells. We hypothesized that nutrient availability drives changes in cellular energy metabolism of small intestinal epithelial crypts that could contribute to increases in crypt proliferation. We utilized primary small intestinal epithelial crypts from C57BL/6J mice to study (1) the effect of glucose on crypt proliferation and (2) the effect of glucose on crypt metabolism using an extracellular flux analyzer for real-time metabolic measurements. We found that glucose increased both crypt proliferation and glycolysis, and the glycolytic pathway inhibitor 2-deoxy-d-glucose (2-DG) attenuated glucose-induced crypt proliferation. Glucose did not enhance glucose oxidation, but did increase the maximum mitochondrial respiratory capacity, which may contribute to glucose-induced increases in proliferation. Glucose activated Akt/HIF-1α signaling pathway, which might be at least in part responsible for glucose-induced glycolysis and cell proliferation. These results suggest that high glucose availability induces an increase in crypt proliferation by inducing an increase in glycolysis with no change in glucose oxidation. © 2017 Wiley Periodicals, Inc.

  18. The Methionine Transamination Pathway Controls Hepatic Glucose Metabolism through Regulation of the GCN5 Acetyltransferase and the PGC-1α Transcriptional Coactivator*

    OpenAIRE

    Tavares, Clint D. J.; Sharabi, Kfir; Dominy, John E.; Lee, Yoonjin; Isasa, Marta; Orozco, Jose M.; Jedrychowski, Mark P.; Kamenecka, Theodore M.; Griffin, Patrick R.; Gygi, Steven P.; Puigserver, Pere

    2016-01-01

    Methionine is an essential sulfur amino acid that is engaged in key cellular functions such as protein synthesis and is a precursor for critical metabolites involved in maintaining cellular homeostasis. In mammals, in response to nutrient conditions, the liver plays a significant role in regulating methionine concentrations by altering its flux through the transmethylation, transsulfuration, and transamination metabolic pathways. A comprehensive understanding of how hepatic methionine metabol...

  19. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  20. Cellular lead toxicity and metabolism in primary and clonal osteoblastic bone cells

    International Nuclear Information System (INIS)

    Long, G.J.; Rosen, J.F.; Pounds, J.G.

    1990-01-01

    A knowledge of bone lead metabolism is critical for understanding the toxicological importance of bone lead, as a toxicant both to bone cells and to soft tissues of the body, as lead is mobilized from large reservoirs in hard tissues. To further understand the processes that mediate metabolism of lead in bone, it is necessary to determine lead metabolism at the cellular level. Experiments were conducted to determine the intracellular steady-state 210 Pb kinetics in cultures of primary and clonal osteoblastic bone cells. Osteoblastic bone cells obtained by sequential collagenase digestion of mouse calvaria or rat osteosarcoma (ROS 17/2.8) cells were labeled with 210 Pb as 5 microM lead acetate for 20 hr, and kinetic parameters were determined by measuring the efflux of 210 Pb from the cells over a 210 -min period. The intracellular metabolism of 210 Pb was characterized by three kinetic pools of 210 Pb in both cell types. Although the values of these parameters differed between the primary osteoblastic cells and ROS cells, the profile of 210 Pb was remarkably similar in both cell types. Both types exhibited one large, slowly exchanging pool (S3), indicative of mitochondrial lead. These data show that primary osteoblastic bone cells and ROS cells exhibit similar steady-state lead kinetics, and intracellular lead distribution. These data also establish a working model of lead kinetics in osteoblastic bone cells and now permit an integrated view of lead kinetics in bone

  1. The PTEN protein: cellular localization and post-translational regulation.

    Science.gov (United States)

    Leslie, Nick R; Kriplani, Nisha; Hermida, Miguel A; Alvarez-Garcia, Virginia; Wise, Helen M

    2016-02-01

    The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) phosphatase dephosphorylates PIP3, the lipid product of the class I PI 3-kinases, and suppresses the growth and proliferation of many cell types. It has been heavily studied, in large part due to its status as a tumour suppressor, the loss of function of which is observed through diverse mechanisms in many tumour types. Here we present a concise review of our understanding of the PTEN protein and highlight recent advances, particularly in our understanding of its localization and regulation by ubiquitination and SUMOylation. © 2016 Authors; published by Portland Press Limited.

  2. Regulation of flux through metabolic cycles

    International Nuclear Information System (INIS)

    Walsh, K.

    1984-01-01

    The branchpoint of the tricarboxylic acid and glyoxylate shunt was characterized in the intact organism by a multidimensional approach. Theory and methodology were developed to determine velocities for the net flow of carbon through the major steps of acetate metabolism in E. coli. Rates were assigned based on the 13 C-NMR spectrum of intracellular glutamate, measured rates of substrate incorporation into end products, the constituent composition of E. coli and a series of conservation equations which described the system at steady state. The in vivo fluxes through the branchpoint of the tricarboxylic acid and glyoxylate cycles were compared to rates calculated from the kinetic constants of the branchpoint enzymes and the intracellular concentrations of their substrates. These studies elucidated the role of isocitrate dehydrogenase phosphorylation in the Krebs cycle and led to the development of a generalized mathematical description of the sensitivity of branchpoints to regulatory control. This theoretical analysis was termed the branchpoint effect and it describes conditions which result in large changes in the flux through an enzyme even though that enzyme is not subject to direct regulatory control. The theoretical and experimental characterization of this system provided a framework to study the effects of enzyme overproduction and underproduction on metabolic processes in the cell. An in vivo method was developed to determine the extent to which an enzyme catalyzes a rate-controlling reaction. The enzyme chosen for this study was citrate synthase

  3. Nutritional regulation of bile acid metabolism is associated with improved pathological characteristics of the metabolic syndrome

    DEFF Research Database (Denmark)

    Liaset, Bjørn; Hao, Qin; Jørgensen, Henry Johs. Høgh

    2011-01-01

    Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated by e...... metabolism can be modulated by diet and that such modulation may prevent/ameliorate the characteristic features of the metabolic syndrome.......Bile acids (BAs) are powerful regulators of metabolism, and mice treated orally with cholic acid are protected from diet-induced obesity, hepatic lipid accumulation, and increased plasma triacylglycerol (TAG) and glucose levels. Here, we show that plasma BA concentration in rats was elevated...... with induction of genes involved in energy metabolism and uncoupling, Dio2, Pgc-1a, and Ucp1, in interscapular brown adipose tissue. Interestingly, the same transcriptional pattern was found in white adipose tissue depots of both abdominal and subcutaneous origin. Accordingly, rats fed SPH-based diet exhibited...

  4. Metabolic Discrimination of Select List Agents by Monitoring Cellular Responses in a Multianalyte Microphysiometer

    Directory of Open Access Journals (Sweden)

    John Wikswo

    2009-03-01

    Full Text Available Harnessing the potential of cells as complex biosensors promises the potential to create sensitive and selective detectors for discrimination of biodefense agents. Here we present toxin detection and suggest discrimination using cells in a multianalyte microphysiometer (MMP that is capable of simultaneously measuring flux changes in four extracellular analytes (acidification rate, glucose uptake, oxygen uptake, and lactate production in real-time. Differential short-term cellular responses were observed between botulinum neurotoxin A and ricin toxin with neuroblastoma cells, alamethicin and anthrax protective antigen with RAW macrophages, and cholera toxin, muscarine, 2,4-dinitro-phenol, and NaF with CHO cells. These results and the post exposure dynamics and metabolic recovery observed in each case suggest the usefulness of cell-based detectors to discriminate between specific analytes and classes of compounds in a complex matrix, and furthermore to make metabolic inferences on the cellular effects of the agents. This may be particularly valuable for classifying unknown toxins.

  5. Overfeeding, autonomic regulation and metabolic consequences.

    NARCIS (Netherlands)

    Scheurink, A.J.W.; Balkan, B; Strubbe, J.H.; van Dijk, G.; Steffens, A.B

    The autonomic nervous system plays an important role in the regulation of body processes in health and disease. Overfeeding and obesity (a disproportional increase of the fat mass of the body) are often accompanied by alterations in both sympathetic and parasympathetic autonomic functions. The

  6. Central nervous system regulation of intestinal lipid and lipoprotein metabolism.

    Science.gov (United States)

    Farr, Sarah; Taher, Jennifer; Adeli, Khosrow

    2016-02-01

    In response to nutrient availability, the small intestine and brain closely communicate to modulate energy homeostasis and metabolism. The gut-brain axis involves complex nutrient sensing mechanisms and an integration of neuronal and hormonal signaling. This review summarizes recent evidence implicating the gut-brain axis in regulating lipoprotein metabolism, with potential implications for the dyslipidemia of insulin resistant states. The intestine and brain possess distinct mechanisms for sensing lipid availability, which triggers subsequent regulation of feeding, glucose homeostasis, and adipose tissue metabolism. More recently, central receptors, neuropeptides, and gut hormones that communicate with the brain have been shown to modulate hepatic and intestinal lipoprotein metabolism via parasympathetic and sympathetic signaling. Gut-derived glucagon-like peptides appear to be particularly important in modulating the intestinal secretion of chylomicron particles via a novel brain-gut axis. Dysregulation of these pathways may contribute to postprandial diabetic dyslipidemia. Emerging evidence implicates the central and enteric nervous systems in controlling many aspects of lipid and lipoprotein metabolism. Bidirectional communication between the gut and brain involving neuronal pathways and gut peptides is critical for regulating feeding and metabolism, and forms a neuroendocrine circuit to modulate dietary fat absorption and intestinal production of atherogenic chylomicron particles.

  7. Proteomic evidences for rex regulation of metabolism in toxin-producing Bacillus cereus ATCC 14579.

    Directory of Open Access Journals (Sweden)

    Sabrina Laouami

    Full Text Available The facultative anaerobe, Bacillus cereus, causes diarrheal diseases in humans. Its ability to deal with oxygen availability is recognized to be critical for pathogenesis. The B. cereus genome comprises a gene encoding a protein with high similarities to the redox regulator, Rex, which is a central regulator of anaerobic metabolism in Bacillus subtilis and other Gram-positive bacteria. Here, we showed that B. cereus rex is monocistronic and down-regulated in the absence of oxygen. The protein encoded by rex is an authentic Rex transcriptional factor since its DNA binding activity depends on the NADH/NAD+ ratio. Rex deletion compromised the ability of B. cereus to cope with external oxidative stress under anaerobiosis while increasing B. cereus resistance against such stress under aerobiosis. The deletion of rex affects anaerobic fermentative and aerobic respiratory metabolism of B. cereus by decreasing and increasing, respectively, the carbon flux through the NADH-recycling lactate pathway. We compared both the cellular proteome and exoproteome of the wild-type and Δrex cells using a high throughput shotgun label-free quantitation approach and identified proteins that are under control of Rex-mediated regulation. Proteomics data have been deposited to the ProteomeXchange with identifier PXD000886. The data suggest that Rex regulates both the cross-talk between metabolic pathways that produce NADH and NADPH and toxinogenesis, especially in oxic conditions.

  8. Sirtuins as regulators of the yeast metabolic network

    Directory of Open Access Journals (Sweden)

    Markus eRalser

    2012-03-01

    Full Text Available There is growing evidence that the metabolic network is an integral regulator of cellularphysiology. Dynamic changes in metabolite concentrations, metabolic flux, or networktopology act as reporters of biological or environmental signals, and are required for the cellto trigger an appropriate biological reaction. Changes in the metabolic network are recognizedby specific sensory macromolecules and translated into a transcriptional or translationalresponse. The protein family of sirtuins, discovered more than 30 years ago as regulators ofsilent chromatin, seems to fulfill the role of a metabolic sensor during aging and conditions ofcaloric restriction. NAD+/NADH interconverting metabolic enzymes glyceraldehyde-3-phosphate dehydrogenase and alcohol dehydrogenase, as well as enzymes involved inNAD(H, synthesis provide or deprive NAD+ in close proximity to Sir2. This influence sirtuinactivity, and facilitates a dynamic response of the metabolic network to changes inmetabolism with effects on physiology and aging. The molecular network downstream Sir2,however, is complex. In just two orders, Sir2’s metabolism-related interactions span half ofthe yeast proteome, and are connected with virtually every physiological process. Thus,although it is fundamental to analyze single molecular mechanisms, it is at the same timecrucial to consider this genome-scale complexity when correlating single molecular eventswith phenotypes such as aging, cell growth, or stress resistance.

  9. Diurnal Regulation of Cellular Processes in the Cyanobacterium Synechocystis sp. Strain PCC 6803: Insights from Transcriptomic, Fluxomic, and Physiological Analyses

    Directory of Open Access Journals (Sweden)

    Rajib Saha

    2016-05-01

    Full Text Available Synechocystis sp. strain PCC 6803 is the most widely studied model cyanobacterium, with a well-developed omics level knowledgebase. Like the lifestyles of other cyanobacteria, that of Synechocystis PCC 6803 is tuned to diurnal changes in light intensity. In this study, we analyzed the expression patterns of all of the genes of this cyanobacterium over two consecutive diurnal periods. Using stringent criteria, we determined that the transcript levels of nearly 40% of the genes in Synechocystis PCC 6803 show robust diurnal oscillating behavior, with a majority of the transcripts being upregulated during the early light period. Such transcripts corresponded to a wide array of cellular processes, such as light harvesting, photosynthetic light and dark reactions, and central carbon metabolism. In contrast, transcripts of membrane transporters for transition metals involved in the photosynthetic electron transport chain (e.g., iron, manganese, and copper were significantly upregulated during the late dark period. Thus, the pattern of global gene expression led to the development of two distinct transcriptional networks of coregulated oscillatory genes. These networks help describe how Synechocystis PCC 6803 regulates its metabolism toward the end of the dark period in anticipation of efficient photosynthesis during the early light period. Furthermore, in silico flux prediction of important cellular processes and experimental measurements of cellular ATP, NADP(H, and glycogen levels showed how this diurnal behavior influences its metabolic characteristics. In particular, NADPH/NADP+ showed a strong correlation with the majority of the genes whose expression peaks in the light. We conclude that this ratio is a key endogenous determinant of the diurnal behavior of this cyanobacterium.

  10. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  11. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    Science.gov (United States)

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  12. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  13. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  14. Investigating the Cellular and Metabolic Responses of World-Class Canoeists Training: A Sportomics Approach

    Directory of Open Access Journals (Sweden)

    Wagner Santos Coelho

    2016-11-01

    Full Text Available (1 Background: We have been using the Sportomics approach to evaluate biochemical and hematological changes in response to exercise. The aim of this study was to evaluate the metabolic and hematologic responses of world-class canoeists during a training session; (2 Methods: Blood samples were taken at different points and analyzed for their hematological properties, activities of selected enzymes, hormones, and metabolites; (3 Results: Muscle stress biomarkers were elevated in response to exercise which correlated with modifications in the profile of white blood cells, where a leukocyte rise was observed after the canoe session. These results were accompanied by an increase in other exercise intensity parameters such as lactatemia and ammonemia. Adrenocorticotropic hormone and cortisol increased during the exercise sessions. The acute rise in both erythrocytes and white blood profile were probably due to muscle cell damage, rather than hepatocyte integrity impairment; (4 Conclusion: The cellular and metabolic responses found here, together with effective nutrition support, are crucial to understanding the effects of exercise in order to assist in the creation of new training and recovery planning. Also we show that Sportomics is a primal tool for training management and performance improvement, as well as to the understanding of metabolic response to exercise.

  15. Oxygen sensing PLIM together with FLIM of intrinsic cellular fluorophores for metabolic mapping

    Science.gov (United States)

    Kalinina, Sviatlana; Schaefer, Patrick; Breymayer, Jasmin; Bisinger, Dominik; Chakrabortty, Sabyasachi; Rueck, Angelika

    2018-02-01

    Otical imaging techniques based on time correlated single photon counting (TCSPC) has found wide applications in medicine and biology. Non-invasive and information-rich fluorescence lifetime imaging microscopy (FLIM) is successfully used for monitoring fluorescent intrinsic metabolic coenzymes as NAD(P)H (nicotinamide adenine dinucleotide (phosphate)) and FAD+ (flavin adenine dinucleotide) in living cells and tissues. The ratio between proteinbound and free coenzymes gives an information about the balance between oxidative phosphorylation and glycolysis in the cells. The changes of the ratio reflects major cellular disorders. A correlation exists between metabolic activity, redox ratio and fluorescence lifetime during stem cell differentiation, neurodegenerative diseases, and carcinogenesis. A multichannel FLIM detection system was designed for monitoring the redox state of NAD(P)H and FAD+ and other intrinsic fluorophores as protoporphyrin IX. In addition, the unique upgrade is useful to perform FLIM and PLIM (phosphorescence lifetime imaging microscopy) simultaneously. PLIM is a promising method to investigate oxygen sensing in biomedical samples. In detail, the oxygen-dependent quenching of phosphorescence of some compounds as transition metal complexes enables measuring of oxygen partial pressure (pO2). Using a two-channel FLIM/PLIM system we monitored intrinsic pO2 by PLIM simultaneously with NAD(P)H by FLIM providing complex metabolic and redox imaging of living cells. Physico-chemical properties of oxygen sensitive probes define certain parameters including their localisation. We present results of some ruthenium based complexes including those specifically bound to mitochondria.

  16. [Regulation of terpene metabolism.] Progress report

    International Nuclear Information System (INIS)

    Croteau, R.

    1984-01-01

    This research program represents a very broad-based approach to understanding the biochemistry of the monoterpene and sesquiterpene constituents of the essential oils. This program includes basic research on the pathways, enzymes and mechanisms of terpene biosynthesis and catabolism, on the physiology of essential oil production, and on the morphology and development of oil glands, as well as practical approaches to manipulating essential oil composition and yield. As a natural extension of research on monoterpene biosynthesis and catabolism in sage and peppermint we have explored some aspects of possible regulatory mechanisms. Tentative evidence has been obtained for developmental regulation of the levels of biosynthetic and catabolic enzymes. 10 refs., 8 figs

  17. Redox regulation in metabolic programming and inflammation.

    Science.gov (United States)

    Griffiths, Helen R; Gao, Dan; Pararasa, Chathyan

    2017-08-01

    Energy metabolism and redox state are intrinsically linked. In order to mount an adequate immune response, cells must have an adequate and rapidly available energy resource to migrate to the inflammatory site, to generate reactive oxygen species using NADPH as a cofactor and to engulf bacteria or damaged tissue. The first responder cells of the innate immune response, neutrophils, are largely dependent on glycolysis. Neutrophils are relatively short-lived, dying via apoptosis in the process of bacterial killing through production of hypochlorous acid and release of extracellular NETs. Later on, the most prevalent recruited innate immune cells are monocytes. Their role is to complete a damage limitation exercise initiated by neutrophils and then, as re-programmed M2 macrophages, to resolve the inflammatory event. Almost twenty five years ago, it was noted that macrophages lose their glycolytic capacity and become anti-inflammatory after treatment with corticosteroids. In support of this we now understand that, in contrast to early responders, M2 macrophages are predominantly dependent on oxidative phosphorylation for energy. During early inflammation, polarisation towards M1 macrophages is dependent on NOX2 activation which, via protein tyrosine phosphatase oxidation and AKT activation, increases trafficking of glucose transporters to the membrane and consequently increases glucose uptake for glycolysis. In parallel, mitochondrial efficiency is likely to be compromised via nitrosylation of the electron transport chain. Resolution of inflammation is triggered by encounter with apoptotic membranes exposing oxidised phosphatidylserine that interact with the scavenger receptor, CD36. Downstream of CD36, activation of AMPK and PPARγ elicits mitochondrial biogenesis, arginase expression and a switch towards oxidative phosphorylation in the M2 macrophage. Proinflammatory cytokine production by M2 cells decreases, but anti-inflammatory and wound healing growth factor

  18. Regulation of glucose metabolism in T cells; new insight into the role of Phosphoinositide 3-kinases

    Directory of Open Access Journals (Sweden)

    David K Finlay

    2012-08-01

    Full Text Available Naïve T cells are relatively quiescent cells that only require energy to prevent atrophy and for survival and migration. However, in response to developmental or extrinsic cues T cells can engage in rapid growth and robust proliferation, produce of a range of effector molecules and migrate through peripheral tissues. To meet the significantly increased metabolic demands of these activities, T cells switch from primarily metabolizing glucose to carbon dioxide through oxidative phosphorylation to utilizing glycolysis to convert glucose to lactate (termed aerobic glycolysis. This metabolic switch allows glucose to be used as a source of carbon to generate biosynthetic precursors for the production of protein, DNA and phospholipids, and is crucial for T cells to meet metabolic demands. Phosphoinositide 3-kinases (PI3K are a family of inositol lipid kinases linked with a broad range of cellular functions in T lymphocytes that include cell growth, proliferation, metabolism, differentiation, survival and migration. Initial research described a critical role for PI3K signaling through Akt (also called Protein kinase B for the increased glucose uptake and glycolysis that accompanies T cell activation. This review article relates this original research with more recent data and discusses the evidence for and against a role for PI3K in regulating the metabolic switch to aerobic glycolysis in T cells.

  19. TXNIP regulates peripheral glucose metabolism in humans

    DEFF Research Database (Denmark)

    Parikh, Hemang; Carlsson, Emma; Chutkow, William A

    2007-01-01

    combined human insulin/glucose clamp physiological studies with genome-wide expression profiling to identify thioredoxin interacting protein (TXNIP) as a gene whose expression is powerfully suppressed by insulin yet stimulated by glucose. In healthy individuals, its expression was inversely correlated...... expression is consistently elevated in the muscle of prediabetics and diabetics, although in a panel of 4,450 Scandinavian individuals, we found no evidence for association between common genetic variation in the TXNIP gene and T2DM. CONCLUSIONS: TXNIP regulates both insulin-dependent and insulin......-independent pathways of glucose uptake in human skeletal muscle. Combined with recent studies that have implicated TXNIP in pancreatic beta-cell glucose toxicity, our data suggest that TXNIP might play a key role in defective glucose homeostasis preceding overt T2DM....

  20. The role of bile acids in metabolic regulation.

    Science.gov (United States)

    Vítek, Libor; Haluzík, Martin

    2016-03-01

    Bile acids (BA), long believed to only have lipid-digestive functions, have emerged as novel metabolic modulators. They have important endocrine effects through multiple cytoplasmic as well as nuclear receptors in various organs and tissues. BA affect multiple functions to control energy homeostasis, as well as glucose and lipid metabolism, predominantly by activating the nuclear farnesoid X receptor and the cytoplasmic G protein-coupled BA receptor TGR5 in a variety of tissues. However, BA also are aimed at many other cellular targets in a wide array of organs and cell compartments. Their role in the pathogenesis of diabetes, obesity and other 'diseases of civilization' becomes even more clear. They also interact with the gut microbiome, with important clinical implications, further extending the complexity of their biological functions. Therefore, it is not surprising that BA metabolism is substantially modulated by bariatric surgery, a phenomenon contributing favorably to the therapeutic effects of these surgical procedures. Based on these data, several therapeutic approaches to ameliorate obesity and diabetes have been proposed to affect the cellular targets of BA. © 2016 Society for Endocrinology.

  1. Fenofibrate suppresses cellular metabolic memory of high glucose in diabetic retinopathy via a sirtuin 1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Jun; Wang, Na; Zheng, Bingqing; Li, Tao; Gu, Qing; Xu, Xun; Zheng, Zhi

    2015-10-01

    Inflammation is a major contributing factor in the development of diabetic microvascular complications, regardless of whether improved glycaemic control is achieved. Studies have increasingly indicated that fenofibrate, a lipid‑lowering therapeutic agent in clinical use, exerts a potential anti‑inflammatory effect, which is mediated by sirtuin 1 (SIRT1; an NAD+‑dependent deacetylase) in endothelial cells. The aim of the present study was to investigate the inhibitory effect of fenofibrate on metabolic memory (via the regulation of SIRT1), and inflammatory responses in cell and animal models of diabetic retinopathy (DR). The data demonstrated that high glucose treatment in human retinal endothelial cells (HRECs) inhibited the expression and deacetylase activity of SIRT1. The reduction of SIRT1 expression and deacetylase activity persisted following a return to normal glucose levels. Furthermore, nuclear factor‑κB expression was observed to be negatively correlated with SIRT1 expression and activity in HRECs under high glucose levels and the subsequent return to normal glucose levels. Fenofibrate treatment abrogated these changes. Knockdown of SIRT1 attenuated the effect of fenofibrate on high glucose‑induced NF‑κB expression. In addition, fenofibrate upregulated SIRT1 expression through peroxisome proliferator‑activated receptor α in high glucose‑induced metabolic memory. These findings indicate that fenofibrate is important in anti‑inflammatory processes and suppresses the cellular metabolic memory of high glucose‑induced stress via the SIRT1‑dependent signalling pathway. Thus, treatment with fenofibrate may offer a promising therapeutic strategy for halting the development of DR and other complications of diabetes.

  2. Insulin Action in Brain Regulates Systemic Metabolism and Brain Function

    OpenAIRE

    Kleinridders, Andr?; Ferris, Heather A.; Cai, Weikang; Kahn, C. Ronald

    2014-01-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in t...

  3. Acetyl-CoA carboxylase in Reuber hepatoma cells: variation in enzyme activity, insulin regulation, and cellular lipid content.

    Science.gov (United States)

    Bianchi, A; Evans, J L; Nordlund, A C; Watts, T D; Witters, L A

    1992-01-01

    Reuber hepatoma cells are useful cultured lines for the study of insulin action, lipid and lipoprotein metabolism, and the regulation of acetyl-CoA carboxylase (ACC), the rate-limiting enzyme of fatty acid biosynthesis. During investigations in different clonal lines of these cells, we have uncovered marked intercellular variability in the activity, enzyme content, and insulin regulation of ACC paralleled by differences in cellular neutral lipid (triglyceride) content. Two contrasting clonal lines, Fao and H356A-1, have been studied in detail. Several features distinguish these two lines, including differences in ACC activity and enzyme kinetics, the content of the two major hepatic ACC isozymes (Mr 280,000 and 265,000 Da) and their heteroisozymic complex, the extent of ACC phosphorylation, and the ability of ACC to be activated on stimulation by insulin and insulinomimetic agonists. As studied by Nile Red staining and fluorescence-activated cell sorting, these two lines also display marked differences in neutral lipid content, which correlates with both basal levels of ACC activity and inhibition of ACC by the fatty acid analog, 5-(tetradecyloxy)-2-furoic acid (TOFA). These results emphasize the importance of characterization of any particular clonal line of Reuber cells for studies of enzyme regulation, substrate metabolism, and hormone action. With respect to ACC, studies in contrasting clonal lines of Reuber cells could provide valuable clues to understanding both the complex mechanisms of intracellular ACC regulation in the absence and presence of hormones and its regulatory role(s) in overall hepatic lipid metabolism.

  4. Citrus Flavonoids as Regulators of Lipoprotein Metabolism and Atherosclerosis.

    Science.gov (United States)

    Mulvihill, Erin E; Burke, Amy C; Huff, Murray W

    2016-07-17

    Citrus flavonoids are polyphenolic compounds with significant biological properties. This review summarizes recent advances in understanding the ability of citrus flavonoids to modulate lipid metabolism, other metabolic parameters related to the metabolic syndrome, and atherosclerosis. Citrus flavonoids, including naringenin, hesperitin, nobiletin, and tangeretin, have emerged as potential therapeutics for the treatment of metabolic dysregulation. Epidemiological studies reveal an association between the intake of citrus flavonoid-containing foods and a decreased incidence of cardiovascular disease. Studies in cell culture and animal models, as well as a limited number of clinical studies, reveal the lipid-lowering, insulin-sensitizing, antihypertensive, and anti-inflammatory properties of citrus flavonoids. In animal models, supplementation of rodent diets with citrus flavonoids prevents hepatic steatosis, dyslipidemia, and insulin resistance primarily through inhibition of hepatic fatty acid synthesis and increased fatty acid oxidation. Citrus flavonoids blunt the inflammatory response in metabolically important tissues including liver, adipose, kidney, and the aorta. The mechanisms underlying flavonoid-induced metabolic regulation have not been completely established, although several potential targets have been identified. In mouse models, citrus flavonoids show marked suppression of atherogenesis through improved metabolic parameters as well as through direct impact on the vessel wall. Recent studies support a role for citrus flavonoids in the treatment of dyslipidemia, insulin resistance, hepatic steatosis, obesity, and atherosclerosis. Larger human studies examining dose, bioavailability, efficacy, and safety are required to promote the development of these promising therapeutic agents.

  5. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation

    Science.gov (United States)

    Niessen, Carien M.; Leckband, Deborah; Yap, Alpha S.

    2013-01-01

    This review addresses the cellular and molecular mechanisms of cadherin-based tissue morphogenesis. Tissue physiology is profoundly influenced by the distinctive organizations of cells in organs and tissues. In metazoa, adhesion receptors of the classical cadherin family play important roles in establishing and maintaining such tissue organization. Indeed, it is apparent that cadherins participate in a range of morphogenetic events that range from support of tissue integrity to dynamic cellular rearrangements. A comprehensive understanding of cadherin-based morphogenesis must then define the molecular and cellular mechanisms that support these distinct cadherin biologies. Here we focus on four key mechanistic elements: the molecular basis for adhesion through cadherin ectodomains; the regulation of cadherin expression at the cell surface; cooperation between cadherins and the actin cytoskeleton; and regulation by cell signaling. We discuss current progress and outline issues for further research in these fields. PMID:21527735

  6. Iron-Restricted Diet Affects Brain Ferritin Levels, Dopamine Metabolism and Cellular Prion Protein in a Region-Specific Manner

    Directory of Open Access Journals (Sweden)

    Jessica M. V. Pino

    2017-05-01

    Full Text Available Iron is an essential micronutrient for several physiological functions, including the regulation of dopaminergic neurotransmission. On the other hand, both iron, and dopamine can affect the folding and aggregation of proteins related with neurodegenerative diseases, such as cellular prion protein (PrPC and α-synuclein, suggesting that deregulation of iron homeostasis and the consequential disturbance of dopamine metabolism can be a risk factor for conformational diseases. These proteins, in turn, are known to participate in the regulation of iron and dopamine metabolism. In this study, we evaluated the effects of dietary iron restriction on brain ferritin levels, dopamine metabolism, and the expression levels of PrPC and α-synuclein. To achieve this goal, C57BL/6 mice were fed with iron restricted diet (IR or with normal diet (CTL for 1 month. IR reduced iron and ferritin levels in liver. Ferritin reduction was also observed in the hippocampus. However, in the striatum of IR group, ferritin level was increased, suggesting that under iron-deficient condition, each brain area might acquire distinct capacity to store iron. Increased lipid peroxidation was observed only in hippocampus of IR group, where ferritin level was reduced. IR also generated discrete results regarding dopamine metabolism of distinct brain regions: in striatum, the level of dopamine metabolites (DOPAC and HVA was reduced; in prefrontal cortex, only HVA was increased along with the enhanced MAO-A activity; in hippocampus, no alterations were observed. PrPC levels were increased only in the striatum of IR group, where ferritin level was also increased. PrPC is known to play roles in iron uptake. Thus, the increase of PrPC in striatum of IR group might be related to the increased ferritin level. α-synuclein was not altered in any regions. Abnormal accumulation of ferritin, increased MAO-A activity or lipid peroxidation are molecular features observed in several neurological

  7. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    NARCIS (Netherlands)

    D. Splinter (Daniël); D.S. Razafsky (David); M.A. Schlager (Max); A. Serra-Marques (Andrea); I. Grigoriev (Ilya); J.A.A. Demmers (Jeroen); N. Keijzer (Nanda); K. Jiang (Kai); S. Poser; A. Hyman (Anthony); C.C. Hoogenraad (Casper); S.J. King (Stephen); A.S. Akhmanova (Anna)

    2012-01-01

    textabstractCytoplasmic dynein is the major microtubule minus-end-directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein-dynactin interaction are poorly understood. In this study, we focus on dynein-dynactin recruitment to cargo by the

  8. Regulation of Ketone Body Metabolism and the Role of PPARα

    Directory of Open Access Journals (Sweden)

    Maja Grabacka

    2016-12-01

    Full Text Available Ketogenesis and ketolysis are central metabolic processes activated during the response to fasting. Ketogenesis is regulated in multiple stages, and a nuclear receptor peroxisome proliferator activated receptor α (PPARα is one of the key transcription factors taking part in this regulation. PPARα is an important element in the metabolic network, where it participates in signaling driven by the main nutrient sensors, such as AMP-activated protein kinase (AMPK, PPARγ coactivator 1α (PGC-1α, and mammalian (mechanistic target of rapamycin (mTOR and induces hormonal mediators, such as fibroblast growth factor 21 (FGF21. This work describes the regulation of ketogenesis and ketolysis in normal and malignant cells and briefly summarizes the positive effects of ketone bodies in various neuropathologic conditions.

  9. Regulation of cellular communication by signaling microdomains in the blood vessel wall.

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W; Johnstone, Scott R; Biwer, Lauren A; Mutchler, Stephanie; Isakson, Brant E

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function.

  10. Regulation of Cellular Communication by Signaling Microdomains in the Blood Vessel Wall

    Science.gov (United States)

    Billaud, Marie; Lohman, Alexander W.; Johnstone, Scott R.; Biwer, Lauren A.; Mutchler, Stephanie; Isakson, Brant E.

    2014-01-01

    It has become increasingly clear that the accumulation of proteins in specific regions of the plasma membrane can facilitate cellular communication. These regions, termed signaling microdomains, are found throughout the blood vessel wall where cellular communication, both within and between cell types, must be tightly regulated to maintain proper vascular function. We will define a cellular signaling microdomain and apply this definition to the plethora of means by which cellular communication has been hypothesized to occur in the blood vessel wall. To that end, we make a case for three broad areas of cellular communication where signaling microdomains could play an important role: 1) paracrine release of free radicals and gaseous molecules such as nitric oxide and reactive oxygen species; 2) role of ion channels including gap junctions and potassium channels, especially those associated with the endothelium-derived hyperpolarization mediated signaling, and lastly, 3) mechanism of exocytosis that has considerable oversight by signaling microdomains, especially those associated with the release of von Willebrand factor. When summed, we believe that it is clear that the organization and regulation of signaling microdomains is an essential component to vessel wall function. PMID:24671377

  11. Obestatin as a regulator of adipocyte metabolism and adipogenesis

    Science.gov (United States)

    Gurriarán-Rodríguez, Uxía; Al-Massadi, Omar; Roca-Rivada, Arturo; Crujeiras, Ana Belén; Gallego, Rosalía; Pardo, Maria; Seoane, Luisa Maria; Pazos, Yolanda; Casanueva, Felipe F; Camiña, Jesús P

    2011-01-01

    Abstract The role of obestatin, a 23-amino-acid peptide encoded by the ghrelin gene, on the control of the metabolism of pre-adipocyte and adipocytes as well as on adipogenesis was determined. For in vitro assays, pre-adipocyte and adipocyte 3T3-L1 cells were used to assess the obestatin effect on cell metabolism and adipogenesis based on the regulation of the key enzymatic nodes, Akt and AMPK and their downstream targets. For in vivo assays, white adipose tissue (WAT) was obtained from male rats under continuous subcutaneous infusion of obestatin. Obestatin activated Akt and its downstream targets, GSK3α/β, mTOR and S6K1, in 3T3-L1 adipocyte cells. Simultaneously, obestatin inactivated AMPK in this cell model. In keeping with this, ACC phosphorylation was also decreased. This fact was confirmed in vivo in white adipose tissue (omental, subcutaneous and gonadal) obtained from male rats under continuous sc infusion of obestatin (24 and 72 hrs). The relevance of obestatin as regulator of adipocyte metabolism was supported by AS160 phosphorylation, GLUT4 translocation and augment of glucose uptake in 3T3-L1 adipocyte cells. In contrast, obestatin failed to modify translocation of fatty acid transporters, FATP1, FATP4 and FAT/CD36, to plasma membrane. Obestatin treatment in combination with IBMX and DEX showed to regulate the expression of C/EBPα, C/EBPβ, C/EBPδ and PPARγ promoting adipogenesis. Remarkable, preproghrelin expression, and thus obestatin expression, increased during adipogenesis being sustained throughout terminal differentiation. Neutralization of endogenous obestatin secreted by 3T3-L1 cells by anti-obestatin antibody decreased adipocyte differentiation. Furthermore, knockdown experiments by preproghrelin siRNA supported that obestatin contributes to adipogenesis. In summary, obestatin promotes adipogenesis in an autocrine/paracrine manner, being a regulator of adipocyte metabolism. These data point to a putative role in the pathogenesis of

  12. Metabolic reprogramming as a novel regulator of skeletal muscle development and regeneration.

    Science.gov (United States)

    Ryall, James G

    2013-09-01

    Adult skeletal muscle contains a resident population of stem cells, termed satellite cells, that exist in a quiescent state. In response to an activating signal (such as physical trauma), satellite cells enter the cell cycle and undergo multiple rounds of proliferation, followed by differentiation, fusion, and maturation. Over the last 10-15 years, our understanding of the transcriptional regulation of this stem cell population has greatly expanded, but there remains a dearth of knowledge with regard to the initiating signal leading to these changes in transcription. The recent renewed interest in the metabolic regulation of both cancer and stem cells, combined with previous findings indicating that satellite cells preferentially colocalize with blood vessels, suggests that satellite cell function may be regulated by changes in cellular metabolism. This review aims to describe what is currently known about satellite cell metabolism during changes in cell fate, as well as to describe some of the exciting findings in other cell types and how these might relate to satellite cells. © 2013 The Author Journal compilation © 2013 FEBS.

  13. Metabolic Regulation of Manganese Superoxide Dismutase Expression via Essential Amino Acid Deprivation*

    Science.gov (United States)

    Aiken, Kimberly J.; Bickford, Justin S.; Kilberg, Michael S.; Nick, Harry S.

    2008-01-01

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging. PMID:18187411

  14. Metabolic regulation of manganese superoxide dismutase expression via essential amino acid deprivation.

    Science.gov (United States)

    Aiken, Kimberly J; Bickford, Justin S; Kilberg, Michael S; Nick, Harry S

    2008-04-18

    Organisms respond to available nutrient levels by rapidly adjusting metabolic flux, in part through changes in gene expression. A consequence of adaptations in metabolic rate is the production of mitochondria-derived reactive oxygen species. Therefore, we hypothesized that nutrient sensing could regulate the synthesis of the primary defense of the cell against superoxide radicals, manganese superoxide dismutase. Our data establish a novel nutrient-sensing pathway for manganese superoxide dismutase expression mediated through essential amino acid depletion concurrent with an increase in cellular viability. Most relevantly, our results are divergent from current mechanisms governing amino acid-dependent gene regulation. This pathway requires the presence of glutamine, signaling via the tricarboxylic acid cycle/electron transport chain, an intact mitochondrial membrane potential, and the activity of both the MEK/ERK and mammalian target of rapamycin kinases. Our results provide evidence for convergence of metabolic cues with nutrient control of antioxidant gene regulation, revealing a potential signaling strategy that impacts free radical-mediated mutations with implications in cancer and aging.

  15. Genome-Wide RNAi Ionomics Screen Reveals New Genes and Regulation of Human Trace Element Metabolism

    Science.gov (United States)

    Malinouski, Mikalai; Hasan, Nesrin M.; Zhang, Yan; Seravalli, Javier; Lin, Jie; Avanesov, Andrei; Lutsenko, Svetlana; Gladyshev, Vadim N.

    2017-01-01

    Trace elements are essential for human metabolism and dysregulation of their homeostasis is associated with numerous disorders. Here we characterize mechanisms that regulate trace elements in human cells by designing and performing a genome-wide high-throughput siRNA/ionomics screen, and examining top hits in cellular and biochemical assays. The screen reveals high stability of the ionomes, especially the zinc ionome, and yields known regulators and novel candidates. We further uncover fundamental differences in the regulation of different trace elements. Specifically, selenium levels are controlled through the selenocysteine machinery and expression of abundant selenoproteins; copper balance is affected by lipid metabolism and requires machinery involved in protein trafficking and posttranslational modifications; and the iron levels are influenced by iron import and expression of the iron/heme-containing enzymes. Our approach can be applied to a variety of disease models and/or nutritional conditions, and the generated dataset opens new directions for studies of human trace element metabolism. PMID:24522796

  16. Tribbles-1: a novel regulator of hepatic lipid metabolism in humans.

    Science.gov (United States)

    Bauer, Robert C; Yenilmez, Batuhan O; Rader, Daniel J

    2015-10-01

    The protein tribbles-1, encoded by the gene TRIB1, is increasingly recognized as a major regulator of multiple cellular and physiological processes in humans. Recent human genetic studies, as well as molecular biological approaches, have implicated this intriguing protein in the aetiology of multiple human diseases, including myeloid leukaemia, Crohn's disease, non-alcoholic fatty liver disease (NAFLD), dyslipidaemia and coronary artery disease (CAD). Genome-wide association studies (GWAS) have repeatedly identified variants at the genomic TRIB1 locus as being significantly associated with multiple plasma lipid traits and cardiovascular disease (CVD) in humans. The involvement of TRIB1 in hepatic lipid metabolism has been validated through viral-mediated hepatic overexpression of the gene in mice; increasing levels of TRIB1 decreased plasma lipids in a dose-dependent manner. Additional studies have implicated TRIB1 in the regulation of hepatic lipogenesis and NAFLD. The exact mechanisms of TRIB1 regulation of both plasma lipids and hepatic lipogenesis remain undetermined, although multiple signalling pathways and transcription factors have been implicated in tribbles-1 function. Recent reports have been aimed at developing TRIB1-based lipid therapeutics. In summary, tribbles-1 is an important modulator of human energy metabolism and metabolic syndromes and worthy of future studies aimed at investigating its potential as a therapeutic target. © 2015 Authors; published by Portland Press Limited.

  17. Regulation of terpene metabolism. Final technical report, March 15, 1988--March 14, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1996-12-31

    This research focuses on the following topics: the biosynthesis and catabolism of monoterpenes; the organization of monoterpene metabolism; the developmental regulation of monoterpene metabolism; the flux control of precursor supply; and the integration of monoterpene and higher terpenoid metabolism.

  18. Metformin regulates global DNA methylation via mitochondrial one-carbon metabolism.

    Science.gov (United States)

    Cuyàs, E; Fernández-Arroyo, S; Verdura, S; García, R Á-F; Stursa, J; Werner, L; Blanco-González, E; Montes-Bayón, M; Joven, J; Viollet, B; Neuzil, J; Menendez, J A

    2018-02-15

    The anti-diabetic biguanide metformin may exert health-promoting effects via metabolic regulation of the epigenome. Here we show that metformin promotes global DNA methylation in non-cancerous, cancer-prone and metastatic cancer cells by decreasing S-adenosylhomocysteine (SAH), a strong feedback inhibitor of S-adenosylmethionine (SAM)-dependent DNA methyltransferases, while promoting the accumulation of SAM, the universal methyl donor for cellular methylation. Using metformin and a mitochondria/complex I (mCI)-targeted analog of metformin (norMitoMet) in experimental pairs of wild-type and AMP-activated protein kinase (AMPK)-, serine hydroxymethyltransferase 2 (SHMT2)- and mCI-null cells, we provide evidence that metformin increases the SAM:SAH ratio-related methylation capacity by targeting the coupling between serine mitochondrial one-carbon flux and CI activity. By increasing the contribution of one-carbon units to the SAM from folate stores while decreasing SAH in response to AMPK-sensed energetic crisis, metformin can operate as a metabolo-epigenetic regulator capable of reprogramming one of the key conduits linking cellular metabolism to the DNA methylation machinery.

  19. Integrated co-regulation of bacterial arsenic and phosphorus metabolisms.

    Science.gov (United States)

    Kang, Yoon-Suk; Heinemann, Joshua; Bothner, Brian; Rensing, Christopher; McDermott, Timothy R

    2012-12-01

    Arsenic ranks first on the US Environmental Protection Agency Superfund List of Hazardous Substances. Its mobility and toxicity depend upon chemical speciation, which is significantly driven by microbial redox transformations. Genome sequence-enabled surveys reveal that in many microorganisms genes essential to arsenite (AsIII) oxidation are located immediately adjacent to genes coding for functions associated with phosphorus (Pi) acquisition, implying some type of functional importance to the metabolism of As, Pi or both. We extensively document how expression of genes key to AsIII oxidation and the Pi stress response are intricately co-regulated in the soil bacterium Agrobacterium tumefaciens. These observations significantly expand our understanding of how environmental factors influence microbial AsIII metabolism and contribute to the current discussion of As and P metabolism in the microbial cell. © 2012 Society for Applied Microbiology and Blackwell Publishing Ltd.

  20. The role of gut microbiota in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Ekaterina N. Kravchuk

    2016-09-01

    Full Text Available Obesity and metabolic syndrome are among the major problems of modern society. The increase in obesity is associated with a corresponding increase in type 2 diabetes, cardiovascular disease and cancer. A huge amount of scientific research has been devoted to the development of methods to reduce obesity and its complications. In recent years, attention has shifted towards studying the intestinal microbiota not only as a possible component of the pathological process but also as a target of therapeutic intervention. Recent evidence, primarily from investigations in animal models, suggests that the intestinal microbiota affects nutrient acquisition and energy regulation. This review will discuss the role of the intestinal microbiota in metabolic processes as well as the latest developments on the improvement of disturbances specific to obesity and metabolic syndrome.

  1. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Hsiao-Chien Ting

    2018-01-01

    Full Text Available Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER stress, glucose metabolism, and synaptic function. The interleukin (IL-1β and tumor necrosis factor (TNF-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.

  2. Regulation of Lipid and Glucose Metabolism by Phosphatidylcholine Transfer Protein

    Science.gov (United States)

    Kang, Hye Won; Wei, Jie; Cohen, David E.

    2010-01-01

    Phosphatidylcholine transfer protein (PC-TP, a.k.a. StARD2) binds phosphatidylcholines and catalyzes their intermembrane transfer and exchange in vitro. The structure of PC-TP comprises a hydrophobic pocket and a well-defined head-group binding site, and its gene expression is regulated by peroxisome proliferator activated receptor α. Recent studies have revealed key regulatory roles for PC-TP in lipid and glucose metabolism. Notably, Pctp−/− mice are sensitized to insulin action and exhibit more efficient brown fat-mediated thermogenesis. PC-TP appears to limit access of fatty acids to mitochondria by stimulating the activity of thioesterase superfamily member 2, a newly characterized long-chain fatty acyl-CoA thioesterase. Because PC-TP discriminates among phosphatidylcholines within lipid bilayers, it may function as a sensor that links metabolic regulation to membrane composition. PMID:20338778

  3. Sox17 regulates liver lipid metabolism and adaptation to fasting.

    Directory of Open Access Journals (Sweden)

    Samuel Rommelaere

    Full Text Available Liver is a major regulator of lipid metabolism and adaptation to fasting, a process involving PPARalpha activation. We recently showed that the Vnn1 gene is a PPARalpha target gene in liver and that release of the Vanin-1 pantetheinase in serum is a biomarker of PPARalpha activation. Here we set up a screen to identify new regulators of adaptation to fasting using the serum Vanin-1 as a marker of PPARalpha activation. Mutagenized mice were screened for low serum Vanin-1 expression. Functional interactions with PPARalpha were investigated by combining transcriptomic, biochemical and metabolic approaches. We characterized a new mutant mouse in which hepatic and serum expression of Vanin-1 is depressed. This mouse carries a mutation in the HMG domain of the Sox17 transcription factor. Mutant mice display a metabolic phenotype featuring lipid abnormalities and inefficient adaptation to fasting. Upon fasting, a fraction of the PPARα-driven transcriptional program is no longer induced and associated with impaired fatty acid oxidation. The transcriptional phenotype is partially observed in heterozygous Sox17+/- mice. In mutant mice, the fasting phenotype but not all transcriptomic signature is rescued by the administration of the PPARalpha agonist fenofibrate. These results identify a novel role for Sox17 in adult liver as a modulator of the metabolic adaptation to fasting.

  4. HJURP regulates cellular senescence in human fibroblasts and endothelial cells via a p53-dependent pathway.

    Science.gov (United States)

    Heo, Jong-Ik; Cho, Jung Hee; Kim, Jae-Ryong

    2013-08-01

    Holliday junction recognition protein (HJURP), a centromere protein-A (CENP-A) histone chaperone, mediates centromere-specific assembly of CENP-A nucleosome, contributing to high-fidelity chromosome segregation during cell division. However, the role of HJURP in cellular senescence of human primary cells remains unclear. We found that the expression levels of HJURP decreased in human dermal fibroblasts and umbilical vein endothelial cells in replicative or premature senescence. Ectopic expression of HJURP in senescent cells partially overcame cell senescence. Conversely, downregulation of HJURP in young cells led to premature senescence. p53 knockdown, but not p16 knockdown, abolished senescence phenotypes caused by HJURP reduction. These data suggest that HJURP plays an important role in the regulation of cellular senescence through a p53-dependent pathway and might contribute to tissue or organismal aging and protection of cellular transformation.

  5. Cellular volume regulation and substrate stiffness modulate the detachment dynamics of adherent cells

    Science.gov (United States)

    Yang, Yuehua; Jiang, Hongyuan

    2018-03-01

    Quantitative characterizations of cell detachment are vital for understanding the fundamental mechanisms of cell adhesion. Experiments have found that cell detachment shows strong rate dependence, which is mostly attributed to the binding-unbinding kinetics of receptor-ligand bond. However, our recent study showed that the cellular volume regulation can significantly regulate the dynamics of adherent cell and cell detachment. How this cellular volume regulation contributes to the rate dependence of cell detachment remains elusive. Here, we systematically study the role of cellular volume regulation in the rate dependence of cell detachment by investigating the cell detachments of nonspecific adhesion and specific adhesion. We find that the cellular volume regulation and the bond kinetics dominate the rate dependence of cell detachment at different time scales. We further test the validity of the traditional Johnson-Kendall-Roberts (JKR) contact model and the detachment model developed by Wyart and Gennes et al (W-G model). When the cell volume is changeable, the JKR model is not appropriate for both the detachments of convex cells and concave cells. The W-G model is valid for the detachment of convex cells but is no longer applicable for the detachment of concave cells. Finally, we show that the rupture force of adherent cells is also highly sensitive to substrate stiffness, since an increase in substrate stiffness will lead to more associated bonds. These findings can provide insight into the critical role of cell volume in cell detachment and might have profound implications for other adhesion-related physiological processes.

  6. A Natural Light/Dark Cycle Regulation of Carbon-Nitrogen Metabolism and Gene Expression in Rice Shoots.

    Science.gov (United States)

    Li, Haixing; Liang, Zhijun; Ding, Guangda; Shi, Lei; Xu, Fangsen; Cai, Hongmei

    2016-01-01

    Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites, and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00, and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate, and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism, and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention, and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799) were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant growth and

  7. Basic mechanisms of iron metabolism regulation and their clinical significance

    Directory of Open Access Journals (Sweden)

    L. M. Meshсheryakova

    2014-01-01

    Full Text Available This article is а composition of literature and experimental data of iron metabolism. There were studied the level of DMT-1, ferroportin, hepcidin at different stages of anemia and hemochromatosis. It is clear that the level of DMT-1 regulates by the hepcidin. Increaseing of the hepcidin concentration and decreasing DMT-1 level in patients with hemochromatosis explained good results of treatment.

  8. Basic mechanisms of iron metabolism regulation and their clinical significance

    Directory of Open Access Journals (Sweden)

    L. M. Meshсheryakova

    2015-01-01

    Full Text Available This article is а composition of literature and experimental data of iron metabolism. There were studied the level of DMT-1, ferroportin, hepcidin at different stages of anemia and hemochromatosis. It is clear that the level of DMT-1 regulates by the hepcidin. Increaseing of the hepcidin concentration and decreasing DMT-1 level in patients with hemochromatosis explained good results of treatment.

  9. translin Is Required for Metabolic Regulation of Sleep.

    Science.gov (United States)

    Murakami, Kazuma; Yurgel, Maria E; Stahl, Bethany A; Masek, Pavel; Mehta, Aradhana; Heidker, Rebecca; Bollinger, Wesley; Gingras, Robert M; Kim, Young-Joon; Ja, William W; Suter, Beat; DiAngelo, Justin R; Keene, Alex C

    2016-04-04

    Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the identification of translin (trsn), a highly conserved RNA/DNA binding protein, as essential for starvation-induced sleep suppression. Strikingly, trsn does not appear to regulate energy stores, free glucose levels, or feeding behavior suggesting the sleep phenotype of trsn mutant flies is not a consequence of general metabolic dysfunction or blunted response to starvation. While broadly expressed in all neurons, trsn is transcriptionally upregulated in the heads of flies in response to starvation. Spatially restricted rescue or targeted knockdown localizes trsn function to neurons that produce the tachykinin family neuropeptide Leucokinin. Manipulation of neural activity in Leucokinin neurons revealed these neurons to be required for starvation-induced sleep suppression. Taken together, these findings establish trsn as an essential integrator of sleep and metabolic state, with implications for understanding the neural mechanism underlying sleep disruption in response to environmental perturbation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Development, regulation, metabolism and function of bone marrow adipose tissues.

    Science.gov (United States)

    Li, Ziru; Hardij, Julie; Bagchi, Devika P; Scheller, Erica L; MacDougald, Ormond A

    2018-05-01

    Most adipocytes exist in discrete depots throughout the body, notably in well-defined white and brown adipose tissues. However, adipocytes also reside within specialized niches, of which the most abundant is within bone marrow. Whereas bone marrow adipose tissue (BMAT) shares many properties in common with white adipose tissue, the distinct functions of BMAT are reflected by its development, regulation, protein secretion, and lipid composition. In addition to its potential role as a local energy reservoir, BMAT also secretes proteins, including adiponectin, RANK ligand, dipeptidyl peptidase-4, and stem cell factor, which contribute to local marrow niche functions and which may also influence global metabolism. The characteristics of BMAT are also distinct depending on whether marrow adipocytes are contained within yellow or red marrow, as these can be thought of as 'constitutive' and 'regulated', respectively. The rBMAT for instance can be expanded or depleted by myriad factors, including age, nutrition, endocrine status and pharmaceuticals. Herein we review the site specificity, age-related development, regulation and metabolic characteristics of BMAT under various metabolic conditions, including the functional interactions with bone and hematopoietic cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Neuroendocrine control by kisspeptins: role in metabolic regulation of fertility.

    Science.gov (United States)

    Navarro, Victor M; Tena-Sempere, Manuel

    2011-09-13

    The neurohormonal control of reproduction involves a hierarchical network of central and peripheral signals in the hypothalamic-pituitary-gonadal (HPG) axis. Development and function of this neuroendocrine system is the result of a lifelong delicate balance between endogenous regulators and environmental cues, including nutritional and metabolic factors. Kisspeptins are the peptide products of KISS1, which operate via the G-protein-coupled receptor GPR54 (also known as Kiss1R). These peptides have emerged as essential upstream regulators of neurons secreting gonadotropin-releasing hormone (GnRH), the major hypothalamic node for the stimulatory control of the HPG axis. They are potent elicitors of gonadotropin secretion in various species and physiological settings. Moreover, Kiss1 neurons in the hypothalamus participate in crucial features of reproductive maturation and function, such as brain-level sex differentiation, puberty onset and the neuroendocrine regulation of gonadotropin secretion and ovulation. Cotransmitters of Kiss1 neurons, such as neurokinin B, with roles in controlling the HPG axis have been identified by genetic, neuroanatomical and physiological studies. In addition, a putative role has been proposed for Kiss1 neurons in transmitting metabolic information to GnRH neurons, although the precise mechanisms are as yet unclear. In this Review, we present the major reproductive features of kisspeptins, especially their interplay with neurokinin B and potential roles in the metabolic control of puberty and fertility, and suggest new avenues for research.

  12. Irradiation of protoporphyric mice induces down-regulation of epidermal eicosanoid metabolism

    International Nuclear Information System (INIS)

    He, D.; Lim, H.W.

    1991-01-01

    This study investigated the effect of radiation on clinical and histologic changes, and on cutaneous eicosanoid metabolism, in Skh:HR-1 hairless albino mice rendered protoporphyric by the administration of collidine. At 0.1-18 h after exposure to 12 kJ/m2 of 396-406 nm irradiation, thicknesses of back skin and ears were measured, and histologic changes were evaluated by using hematoxylin and eosin (H-E) and Giemsa's stains. Activities of eicosanoid-metabolizing enzymes in epidermal and dermal homogenates were assessed by incubating the tissue homogenates with 3H-AA, followed by quantitation of the eicosanoids generated by radio-TLC. In irradiated protoporphyric mice, an increase of back-skin thickness was noted at 0.1 h, reaching a peak at 18 h, whereas maximal increase in ear thickness was observed at 12 h. Histologic changes included dermal edema, increased mast cell degranulation, and mononuclear cells in the dermis. In these irradiated protoporphyric animals, generations of 6 keto-PGF1a, PGF2a, PGE2, PGD2, and HETE by epidermal eicosanoid-metabolizing enzymes were markedly suppressed at all the timepoints studied. Dermal eicosanoid-metabolizing enzymes of irradiated protoporphyric mice generated increased amounts of PGE2 and HETE at 18 h, probably reflecting the presence of dermal cellular infiltrates. The suppression of the activities of epidermal eicosanoid-metabolizing enzymes was prevented by intraperitoneal injection of WR-2721, a sulfhydryl group generator, prior to irradiation, suggesting that the suppression was secondary to photo-oxidative damage of the enzymes during the in vivo phototoxic response. These results suggest that the effect of protoporphyrin and radiation on cutaneous eicosanoid metabolism in this animal model in vivo is that of a down regulation of the activities of epidermal eicosanoid-metabolizing enzymes

  13. Flexible Sheet-Type Sensor for Noninvasive Measurement of Cellular Oxygen Metabolism on a Culture Dish.

    Directory of Open Access Journals (Sweden)

    Mari Kojima

    Full Text Available A novel flexible sensor was developed for the noninvasive oxygen metabolism measurement of cultivated cells and tissues. This device is composed of a transparent double-layered polymer sheet of ethylene-vinyl alcohol (EVOH and poly(dimethylsiloxane (PDMS having an array of microhole structures of 90 μm diameter and 50 μm depth on its surface. All the microhole structures were equipped with a 1-μm-thick optical chemical sensing layer of platinum porphyrin-fluoropolymer on their bottom. The three-dimensional microstructures of the sensor were fabricated by a newly developed simple and low-cost production method named self-aligned hot embossing. The device was designed to be attached slightly above the cells cultivated on a dish to form a temporarily closed microspace over the target cells during measurement. Since the change in oxygen concentration is relatively fast in the microcompartmentalized culture medium, a rapid evaluation of the oxygen consumption rate is possible by measuring the phosphorescence lifetime of the platinum porphyrin-fluoropolymer. The combined use of the device and an automated optical measurement system enabled the high-throughput sensing of cellular oxygen consumption (100 points/min. We monitored the oxygen metabolism of the human breast cancer cell line MCF7 on a Petri dish and evaluated the oxygen consumption rate to be 0.72 ± 0.12 fmol/min/cell. Furthermore, to demonstrate the utility of the developed sensing system, we demonstrated the mapping of the oxygen consumption rate of rat brain slices and succeeded in visualizing a clear difference among the layer structures of the hippocampus, i.e., the cornu ammonis (CA1 and CA3 and dentate gyrus (DG.

  14. Metabolic regulation of carotenoid-enriched Golden rice line

    Directory of Open Access Journals (Sweden)

    Dipak Gayen

    2016-10-01

    Full Text Available Vitamin A deficiency (VAD is the leading cause of blindness among children and is associated with high risk of maternal mortality. In order to enhance the bioavailability of vitamin A, high carotenoid transgenic golden rice has been developed by manipulating enzymes, such as phytoene synthase (psy and phytoene desaturase (crtI. In this study, proteome and metabolite analyses were carried out to comprehend metabolic regulation and adaptation of transgenic golden rice after the manipulation of endosperm specific carotenoid pathways. The main alteration was observed in carbohydrate metabolism pathways of the transgenic seeds. The 2D based proteomic studies demonstrated that carbohydrate metabolism-related enzymes, such as pullulanase, UDP-glucose pyrophosphorylase and glucose-1-phosphate adenylyl transferase, were primarily up-regulated in transgenic rice seeds. In addition, the enzyme PPDK was also elevated in transgenic seeds thus enhancing pyruvate biosynthesis, which is the precursor in the carotenoids biosynthetic pathway. GC-MS based metabolite profiling demonstrated an increase in the levels of glyceric acid, fructo-furanose, and galactose, while decrease in galactonic acid and gentiobiose in the transgenic rice compared to WT. It is noteworthy to mention that the carotenoid content, especially β-carotene level in transgenic rice (4.3 µg/g was significantly enhanced. The present study highlights the metabolic adaptation process of a transgenic golden rice line (homozygous T4 progeny of SKBR-244 after enhancing carotenoid biosynthesis. The presented information would be helpful in the development of crops enriched in carotenoids by expressing metabolic flux of pyruvate biosynthesis.

  15. Contribution of cellular retinol-binding protein type 1 to retinol metabolism during mouse development.

    Science.gov (United States)

    Matt, Nicolas; Schmidt, Carsten K; Dupé, Valérie; Dennefeld, Christine; Nau, Heinz; Chambon, Pierre; Mark, Manuel; Ghyselinck, Norbert B

    2005-05-01

    Within cells, retinol (ROL) is bound to cytoplasmic proteins (cellular retinol-binding proteins [CRBPs]), whose proposed function is to protect it from unspecific enzymes through channeling to retinoid-metabolizing pathways. We show that, during development, ROL and retinyl ester levels are decreased in CRBP type 1 (CRBP1) -deficient embryos and fetuses by 50% and 80%, respectively. The steady state level of retinoic acid (RA) is also decreased but to a lesser extent. However, CRBP1-null fetuses do not exhibit the abnormalities characteristic of a vitamin A-deficiency syndrome. Neither CRBP1 deficiency alters the expression patterns of RA-responding genes during development, nor does CRBP1 availability modify the expression of an RA-dependent gene in primary embryonic fibroblasts treated with ROL. Therefore, CRBP1 is required in prenatal life to maintain normal amounts of ROL and to ensure its efficient storage but seems of secondary importance for RA synthesis, at least under conditions of maternal vitamin A sufficiency. Copyright 2005 Wiley-Liss, Inc.

  16. Cellular metabolic responses of the marine diatom Pseudo-nitzschia multiseries associated with cell wall formation.

    Science.gov (United States)

    Xu, Bin; Luo, Chun-Shan; Liang, Jun-Rong; Chen, Dan-Dan; Zhuo, Wen-Hao; Gao, Ya-Hui; Chen, Chang-Ping; Song, Si-Si

    2014-08-01

    In this study a comparative proteomics approach involving a mass spectrometric analysis of synchronized cells was employed to investigate the cellular-level metabolic mechanisms associated with siliceous cell wall formation in the pennate diatom Pseudo-nitzschia multiseries. Cultures of P. multiseries were synchronized using the silicate limitation method. Approximately 75% of cells were arrested at the G2+M phase of the cell cycle after 48 h of silicate starvation. The majority of cells progressed to new valve synthesis within 5h of silicon replenishment. We compared the proteome of P. multiseries at 0, 4, 5, and 6h of synchronization progress upon silicon replenishment using two-dimensional gel electrophoresis. Forty-eight differentially expressed protein spots were identified in abundance (greater than two-fold change; Pwall formation. The proteomic profile analysis suggests that P. multiseries most likely employs multiple synergistic biochemical mechanisms for cell wall formation. These results improve our understanding of the molecular mechanisms underlying silicon cell wall formation and enhance our understanding of the important role played by diatoms in silicon biogeochemical cycling. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Lysine acetylation targets protein complexes and co-regulates major cellular functions

    DEFF Research Database (Denmark)

    Choudhary, Chuna Ram; Kumar, Chanchal; Gnad, Florian

    2009-01-01

    Lysine acetylation is a reversible posttranslational modification of proteins and plays a key role in regulating gene expression. Technological limitations have so far prevented a global analysis of lysine acetylation's cellular roles. We used high-resolution mass spectrometry to identify 3600......, cell cycle, splicing, nuclear transport, and actin nucleation. Acetylation impaired phosphorylation-dependent interactions of 14-3-3 and regulated the yeast cyclin-dependent kinase Cdc28. Our data demonstrate that the regulatory scope of lysine acetylation is broad and comparable with that of other...

  18. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  19. Regulation of intestinal protein metabolism by amino acids.

    Science.gov (United States)

    Bertrand, Julien; Goichon, Alexis; Déchelotte, Pierre; Coëffier, Moïse

    2013-09-01

    Gut homeostasis plays a major role in health and may be regulated by quantitative and qualitative food intake. In the intestinal mucosa, an intense renewal of proteins occurs, at approximately 50% per day in humans. In some pathophysiological conditions, protein turnover is altered and may contribute to intestinal or systemic diseases. Amino acids are key effectors of gut protein turnover, both as constituents of proteins and as regulatory molecules limiting intestinal injury and maintaining intestinal functions. Many studies have focused on two amino acids: glutamine, known as the preferential substrate of rapidly dividing cells, and arginine, another conditionally essential amino acid. The effects of glutamine and arginine on protein synthesis appear to be model and condition dependent, as are the involved signaling pathways. The regulation of gut protein degradation by amino acids has been minimally documented until now. This review will examine recent data, helping to better understand how amino acids regulate intestinal protein metabolism, and will explore perspectives for future studies.

  20. Central regulation of metabolism by protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Ryan eTsou

    2013-01-01

    Full Text Available Protein tyrosine phosphatases (PTPs are important regulators of intracellular signaling pathways via the dephosphorylation of phosphotyrosyl residues on various receptor and non-receptor substrates. The phosphorylation state of central nervous system (CNS signaling components underlies the molecular mechanisms of a variety of physiological functions including the control of energy balance and glucose homeostasis. In this review, we summarize the current evidence implicating PTPs as central regulators of metabolism, specifically highlighting their interactions with the neuronal leptin and insulin signaling pathways. We discuss the role of a number of PTPs (PTP1B, SHP2, TCPTP, RPTPe, and PTEN, reviewing the findings from genetic mouse models and in vitro studies which highlight these phosphatases as key central regulators of energy homeostasis.

  1. Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis

    Science.gov (United States)

    Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.

    2018-01-01

    Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250

  2. Regulation of host metabolism and immunity by the gut microbiome

    DEFF Research Database (Denmark)

    Laursen, Janne Marie

    During recent years, central roles of the gut microbiome in metabolic and immunological diseases have been uncovered, and multiple studies have shown that bacterial-derived components shape host physiology and immune responses via direct cellular interactions. The intestinal immune system...... developed a computational framework for identifying bacteria that produce specific endotoxin variants with opposing immunological effects in metagenomic fecal samples. This framework was used to identify the endotoxin variant distribution amongst bacteria in the gut microbiome of Danes and Chinese...... with obesity and type 2 diabetes. We show for the first time that species producing pro-inflammatory endotoxin variants are vastly underrepresented in the gut microbiome compared to species producing non-inflammatory endotoxin and we identify country-specific gram-negative bacterial modules associated...

  3. Transcriptional regulation and steady-state modeling of metabolic networks

    DEFF Research Database (Denmark)

    Zelezniak, Aleksej

    Biological systems are characterized by a high degree of complexity wherein the individual components (e.g. proteins) are inter-linked in a way that leads to emergent behaviors that are difficult to decipher. Uncovering system complexity requires, at least, answers to the following three questions......: what are the components of the systems, how are the different components interconnected and how do these networks perform the functions that make the resulting system behavior? Modern analytical technologies allow us to unravel the constituents and interactions happening in a given system; however......, the third question is the ultimate challenge for systems biology. The work of this thesis systematically addresses this question in the context of metabolic networks, which are arguably the most well characterized cellular networks in terms of their constituting components and interactions among them...

  4. Evidence that the tri-cellular metabolism of N-acetylaspartate functions as the brain's "operating system": how NAA metabolism supports meaningful intercellular frequency-encoded communications.

    Science.gov (United States)

    Baslow, Morris H

    2010-11-01

    N-acetylaspartate (NAA), an acetylated derivative of L-aspartate (Asp), and N-acetylaspartylglutamate (NAAG), a derivative of NAA and L-glutamate (Glu), are synthesized by neurons in brain. However, neurons cannot catabolize either of these substances, and so their metabolism requires the participation of two other cell types. Neurons release both NAA and NAAG to extra-cellular fluid (ECF) upon stimulation, where astrocytes, the target cells for NAAG, hydrolyze it releasing NAA back into ECF, and oligodendrocytes, the target cells for NAA, hydrolyze it releasing Asp to ECF for recycling to neurons. This sequence is unique as it is the only known amino acid metabolic cycle in brain that requires three cell types for its completion. The results of this cycling are two-fold. First, neuronal metabolic water is transported to ECF for its removal from brain. Second, the rate of neuronal activity is coupled with focal hyperemia, providing stimulated neurons with the energy required for transmission of meaningful frequency-encoded messages. In this paper, it is proposed that the tri-cellular metabolism of NAA functions as the "operating system" of the brain, and is essential for normal cognitive and motor activities. Evidence in support of this hypothesis is provided by the outcomes of two human inborn errors in NAA metabolism.

  5. Insulin action in brain regulates systemic metabolism and brain function.

    Science.gov (United States)

    Kleinridders, André; Ferris, Heather A; Cai, Weikang; Kahn, C Ronald

    2014-07-01

    Insulin receptors, as well as IGF-1 receptors and their postreceptor signaling partners, are distributed throughout the brain. Insulin acts on these receptors to modulate peripheral metabolism, including regulation of appetite, reproductive function, body temperature, white fat mass, hepatic glucose output, and response to hypoglycemia. Insulin signaling also modulates neurotransmitter channel activity, brain cholesterol synthesis, and mitochondrial function. Disruption of insulin action in the brain leads to impairment of neuronal function and synaptogenesis. In addition, insulin signaling modulates phosphorylation of tau protein, an early component in the development of Alzheimer disease. Thus, alterations in insulin action in the brain can contribute to metabolic syndrome, and the development of mood disorders and neurodegenerative diseases. © 2014 by the American Diabetes Association.

  6. Study of collagen metabolism and regulation after β radiation injury

    International Nuclear Information System (INIS)

    Zhou Yinghui; Xu Lan; Wu Shiliang; Qiu Hao; Jiang Zhi; Tu Youbin; Zhang Xueguang

    2001-01-01

    The animal model of β radiation injury was established by the β radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-β 1 , IL-6 were also detected. The results showed that after exposure to β radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-β 1 , IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-β 1 , IL-6 may be essential in the regulation of the collagen metabolism

  7. Study of collagen metabolism and regulation after {beta} radiation injury

    Energy Technology Data Exchange (ETDEWEB)

    Yinghui, Zhou; Lan, Xu; Shiliang, Wu; Hao, Qiu; Zhi, Jiang; Youbin, Tu; Xueguang, Zhang [Suzhou Medical College (China)

    2001-04-01

    The animal model of {beta} radiation injury was established by the {beta} radiation produced by the linear accelerator; and irradiated NIH 3T3 cells were studied. In the experiment the contents of total collagen, collagen type I and type III were measured. The activity of MMPs-1 were tested. The contents of TGF-{beta}{sub 1}, IL-6 were also detected. The results showed that after exposure to {beta} radiation, little change was found in the content of total collagen, but the content of collagen I decreased and the content of collagen III, MMPs-1 activity increased; the expression of TGF-{beta}{sub 1}, IL-6 increased. The results suggest that changes in the metabolism of collagen play an important role in the irradiated injury of the skin; TGF-{beta}{sub 1}, IL-6 may be essential in the regulation of the collagen metabolism.

  8. Neuronal Calcium Signaling in Metabolic Regulation and Adaptation to Nutrient Stress.

    Science.gov (United States)

    Jayakumar, Siddharth; Hasan, Gaiti

    2018-01-01

    All organisms can respond physiologically and behaviorally to environmental fluxes in nutrient levels. Different nutrient sensing pathways exist for specific metabolites, and their inputs ultimately define appropriate nutrient uptake and metabolic homeostasis. Nutrient sensing mechanisms at the cellular level require pathways such as insulin and target of rapamycin (TOR) signaling that integrates information from different organ systems like the fat body and the gut. Such integration is essential for coordinating growth with development. Here we review the role of a newly identified set of integrative interneurons and the role of intracellular calcium signaling within these neurons, in regulating nutrient sensing under conditions of nutrient stress. A comparison of the identified Drosophila circuit and cellular mechanisms employed in this circuit, with vertebrate systems, suggests that the identified cell signaling mechanisms may be conserved for neural circuit function related to nutrient sensing by central neurons. The ideas proposed are potentially relevant for understanding the molecular basis of metabolic disorders, because these are frequently linked to nutritional stress.

  9. Duodenal Cytochrome b (DCYTB in Iron Metabolism: An Update on Function and Regulation

    Directory of Open Access Journals (Sweden)

    Darius J. R. Lane

    2015-03-01

    Full Text Available Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally; both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake; rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut; ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities; intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes; namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron on the opposite side of the membrane. One member of this family; duodenal cytochrome b (DCYTB; may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis; the emergent “IRP1-HIF2α axis”; DCYTB and ascorbate in relation to iron metabolism.

  10. Brassinosteroid regulates cell elongation by modulating gibberellin metabolism in rice.

    Science.gov (United States)

    Tong, Hongning; Xiao, Yunhua; Liu, Dapu; Gao, Shaopei; Liu, Linchuan; Yin, Yanhai; Jin, Yun; Qian, Qian; Chu, Chengcai

    2014-11-01

    Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana. © 2014 American Society of Plant Biologists. All rights reserved.

  11. The Lin28/let-7 axis regulates glucose metabolism

    Science.gov (United States)

    Zhu, Hao; Shyh-Chang, Ng; Segrè, Ayellet V.; Shinoda, Gen; Shah, Samar P.; Einhorn, William S.; Takeuchi, Ayumu; Engreitz, Jesse M.; Hagan, John P.; Kharas, Michael G; Urbach, Achia; Thornton, James E.; Triboulet, Robinson; Gregory, Richard I.; Altshuler, David; Daley, George Q.

    2012-01-01

    SUMMARY The let-7 tumor suppressor microRNAs are known for their regulation of oncogenes, while the RNA-binding proteins Lin28a/b promote malignancy by blocking let-7 biogenesis. In studies of the Lin28/let-7 pathway, we discovered unexpected roles in regulating metabolism. When overexpressed in mice, both Lin28a and LIN28B promoted an insulin-sensitized state that resisted high fat diet-induced diabetes, whereas muscle-specific loss of Lin28a and overexpression of let-7 resulted in insulin resistance and impaired glucose tolerance. These phenomena occurred in part through let-7-mediated repression of multiple components of the insulin-PI3K-mTOR pathway, including IGF1R, INSR, and IRS2. The mTOR inhibitor rapamycin abrogated the enhanced glucose uptake and insulin-sensitivity conferred by Lin28a in vitro and in vivo. In addition, we found that let-7 targets were enriched for genes that contain SNPs associated with type 2 diabetes and fasting glucose in human genome-wide association studies. These data establish the Lin28/let-7 pathway as a central regulator of mammalian glucose metabolism. PMID:21962509

  12. Interleukin 6 regulates metallothionein gene expression and zinc metabolism in hepatocyte monolayer cultures

    International Nuclear Information System (INIS)

    Schroeder, J.J.; Cousins, R.J.

    1990-01-01

    Attention has focused on the cytokine interleukin 6 (IL-6) as a major mediator of acute-phase protein synthesis in hepatocytes in response to infection and tissue injury. The authors have evaluated the effects of IL-6 and IL-1α as well as extracellular zinc and glucocorticoid hormone on metal-lothionein gene expression and cellular zinc accumulation in rat hepatocyte monolayer cultures. Further, they have evaluated the teleological basis for cytokine mediation by examining cyto-protection from CCl 4 -induced damage. Incubation of hepatocytes with IL-6 led to concentration-dependent and time-dependent increases in metallothionein-1 and -2 mRNA and metallothionein protein. The level of each was increased within 3 hr after the addition of IL-6 at 10 ng/ml. Maximal increases the metallothionein mRNA and metallothionein protein were achieved after 12 hr and 36 hr, respectively. Concomitant with the up-regulation of metallothionein gene expression, IL-6 also increased cellular zinc. Responses to IL-6 required the synthetic glucocorticoid hormone dexamethasone and were optimized by increased extracellular zinc. Thus, IL-6 is a major cytokine mediator of metallothionein gene expression and zinc metabolism in hepatocytes and provides cytoprotection from CCl 4 -induced hepatotoxicity via a mode consistent with dependence upon increased cellular metallothionein synthesis and zinc accumulation

  13. [Theory humoral pathology K Rokitansky, cellular phathology R Virchov and new phylogenetic theory disease development. Ethyology and pathogenesis of metabolic pandemias].

    Science.gov (United States)

    Titov, V N

    2013-01-01

    Virchow's cellular pathology indirectly points at structural units between cells and organs in vivo and at universal mechanisms underlying the condition of health or disease. In order to substantiate similarity of pathogeneses of atherosclerosis, diabetes mellitus, metabolic syndrome and obesity we suggest a phylogenetic theory which includes: 1) consideration of physiological and pathological processes in vivo from the viewpoint of biological functions and biological reactions. 2) Phylogenesis of metabolic regulation at the levels of: a) cells (autocrine), b) paracrine cell communities, i.e., structural and functional units of each organ (paracrine), and c) the entire organism. Biological functions are: trophology, homeostasis, endoecology ( of the intercellular medium), adaptation, locomotion, reproduction, and cognition. 3) A three-step successive phylogenesis of biological functions and pathological responses. Methodological approaches in phylogenesis are: a) succession of biological functions and reactions and b) biological subordination where phylogenetically late humoral mediators cannot abolish the effects of phylogenetically early mediators. Incompliance of humoral regulation at different steps of phylogenesis, autocrine, paracrine and the organism levels is the basis for similarity between pathogeneses of all metabolic pandemias, including essential hypertension and insulin resistance syndrome.

  14. Oleic acid blocks EGF-induced [Ca2+]i release without altering cellular metabolism in fibroblast EGFR T17.

    Science.gov (United States)

    Zugaza, J L; Casabiell, X A; Bokser, L; Casanueva, F F

    1995-02-06

    EGFR-T17 cells were pretreated with oleic acid and 5-10 minutes later stimulated with EGF, to study if early ionic signals are instrumental in inducing metabolic cellular response. Oleic acid blocks EGF-induced [Ca2+]i rise and Ca2+ influx without altering 2-deoxyglucose and 2-aminobutiryc acid uptake nor acute, nor chronically. Oleic acid it is shown, in the first minutes favors the entrance of both molecules to modify the physico-chemical membrane state. On the other hand, oleic acid is unable to block protein synthesis. The results suggest that EGF-induced Ins(1,4,5)P3/Ca2+ pathway does not seem to be decisive in the control of cellular metabolic activity.

  15. Hepcidin: A Critical Regulator of Iron Metabolism during Hypoxia

    Directory of Open Access Journals (Sweden)

    Korry J. Hintze

    2011-01-01

    Full Text Available Iron status affects cognitive and physical performance in humans. Recent evidence indicates that iron balance is a tightly regulated process affected by a series of factors other than diet, to include hypoxia. Hypoxia has profound effects on iron absorption and results in increased iron acquisition and erythropoiesis when humans move from sea level to altitude. The effects of hypoxia on iron balance have been attributed to hepcidin, a central regulator of iron homeostasis. This paper will focus on the molecular mechanisms by which hypoxia affects hepcidin expression, to include a review of the hypoxia inducible factor (HIF/hypoxia response element (HRE system, as well as recent evidence indicating that localized adipose hypoxia due to obesity may affect hepcidin signaling and organismal iron metabolism.

  16. Disruption of a cystine transporter downregulates expression of genes involved in sulfur regulation and cellular respiration

    Directory of Open Access Journals (Sweden)

    Jessica A. Simpkins

    2016-06-01

    Full Text Available Cystine and cysteine are important molecules for pathways such as redox signaling and regulation, and thus identifying cellular deficits upon deletion of the Saccharomyces cerevisiae cystine transporter Ers1p allows for a further understanding of cystine homeostasis. Previous complementation studies using the human ortholog suggest yeast Ers1p is a cystine transporter. Human CTNS encodes the protein Cystinosin, a cystine transporter that is embedded in the lysosomal membrane and facilitates the export of cystine from the lysosome. When CTNS is mutated, cystine transport is disrupted, leading to cystine accumulation, the diagnostic hallmark of the lysosomal storage disorder cystinosis. Here, we provide biochemical evidence for Ers1p-dependent cystine transport. However, the accumulation of intracellular cystine is not observed when the ERS1 gene is deleted from ers1-Δ yeast, supporting the existence of modifier genes that provide a mechanism in ers1-Δ yeast that prevents or corrects cystine accumulation. Upon comparison of the transcriptomes of isogenic ERS1+ and ers1-Δ strains of S. cerevisiae by DNA microarray followed by targeted qPCR, sixteen genes were identified as being differentially expressed between the two genotypes. Genes that encode proteins functioning in sulfur regulation, cellular respiration, and general transport were enriched in our screen, demonstrating pleiotropic effects of ers1-Δ. These results give insight into yeast cystine regulation and the multiple, seemingly distal, pathways that involve proper cystine recycling.

  17. The Importance of the Circadian Clock in Regulating Plant Metabolism

    Directory of Open Access Journals (Sweden)

    Jin A Kim

    2017-12-01

    Full Text Available Carbohydrates are the primary energy source for plant development. Plants synthesize sucrose in source organs and transport them to sink organs during plant growth. This metabolism is sensitive to environmental changes in light quantity, quality, and photoperiod. In the daytime, the synthesis of sucrose and starch accumulates, and starch is degraded at nighttime. The circadian clock genes provide plants with information on the daily environmental changes and directly control many developmental processes, which are related to the path of primary metabolites throughout the life cycle. The circadian clock mechanism and processes of metabolism controlled by the circadian rhythm were studied in the model plant Arabidopsis and in the crops potato and rice. However, the translation of molecular mechanisms obtained from studies of model plants to crop plants is still difficult. Crop plants have specific organs such as edible seed and tuber that increase the size or accumulate valuable metabolites by harvestable metabolic components. Human consumers are interested in the regulation and promotion of these agriculturally significant crops. Circadian clock manipulation may suggest various strategies for the increased productivity of food crops through using environmental signal or overcoming environmental stress.

  18. NeuCode Proteomics Reveals Bap1 Regulation of Metabolism

    Directory of Open Access Journals (Sweden)

    Joshua M. Baughman

    2016-07-01

    Full Text Available We introduce neutron-encoded (NeuCode amino acid labeling of mice as a strategy for multiplexed proteomic analysis in vivo. Using NeuCode, we characterize an inducible knockout mouse model of Bap1, a tumor suppressor and deubiquitinase whose in vivo roles outside of cancer are not well established. NeuCode proteomics revealed altered metabolic pathways following Bap1 deletion, including profound elevation of cholesterol biosynthetic machinery coincident with reduced expression of gluconeogenic and lipid homeostasis proteins in liver. Bap1 loss increased pancreatitis biomarkers and reduced expression of mitochondrial proteins. These alterations accompany a metabolic remodeling with hypoglycemia, hypercholesterolemia, hepatic lipid loss, and acinar cell degeneration. Liver-specific Bap1 null mice present with fully penetrant perinatal lethality, severe hypoglycemia, and hepatic lipid deficiency. This work reveals Bap1 as a metabolic regulator in liver and pancreas, and it establishes NeuCode as a reliable proteomic method for deciphering in vivo biology.

  19. Cellular zinc fluxes and the regulation of apoptosis/gene-directed cell death.

    Science.gov (United States)

    Truong-Tran, A Q; Ho, L H; Chai, F; Zalewski, P D

    2000-05-01

    The maintenance of discrete subcellular pools of zinc (Zn) is critical for the functional and structural integrity of cells. Among the important biological processes influenced by Zn is apoptosis, a process that is important in cellular homeostasis (an important cellular homeostatic process). It has also been identified as a major mechanism contributing to cell death in response to toxins and in disease, offering hope that novel therapies that target apoptotic pathways may be developed. Because Zn levels in the body can be increased in a relatively nontoxic manner, it may be possible to prevent or ameliorate degenerative disorders that are associated with high rates of apoptotic cell death. This review begins with brief introductions that address, first, the cellular biology of Zn, especially the critical labile Zn pools, and, second, the phenomenon of apoptosis. We then review the evidence relating Zn to apoptosis and address three major hypotheses: (1) that a specific pool or pools of intracellular labile Zn regulates apoptosis; (2) that systemic changes in Zn levels in the body, due to dietary factors, altered physiological states or disease, can influence cell susceptibility to apoptosis, and (3) that this altered susceptibility to apoptosis contributes to pathophysiological changes in the body. Other key issues are the identity of the molecular targets of Zn in the apoptotic cascade, the types of cells and tissues most susceptible to Zn-regulated apoptosis, the role of Zn as a coordinate regulator of mitosis and apoptosis and the apparent release of tightly bound intracellular pools of Zn during the later stages of apoptosis. This review concludes with a section highlighting areas of priority for future studies.

  20. Active cell-matrix coupling regulates cellular force landscapes of cohesive epithelial monolayers

    Science.gov (United States)

    Zhao, Tiankai; Zhang, Yao; Wei, Qiong; Shi, Xuechen; Zhao, Peng; Chen, Long-Qing; Zhang, Sulin

    2018-03-01

    Epithelial cells can assemble into cohesive monolayers with rich morphologies on substrates due to competition between elastic, edge, and interfacial effects. Here we present a molecularly based thermodynamic model, integrating monolayer and substrate elasticity, and force-mediated focal adhesion formation, to elucidate the active biochemical regulation over the cellular force landscapes in cohesive epithelial monolayers, corroborated by microscopy and immunofluorescence studies. The predicted extracellular traction and intercellular tension are both monolayer size and substrate stiffness dependent, suggestive of cross-talks between intercellular and extracellular activities. Our model sets a firm ground toward a versatile computational framework to uncover the molecular origins of morphogenesis and disease in multicellular epithelia.

  1. Metabolic regulation of trisporic acid on Blakeslea trispora revealed by a GC-MS-based metabolomic approach.

    Directory of Open Access Journals (Sweden)

    Jie Sun

    Full Text Available The zygomycete Blakeslea trispora is used commercially as natural source of â-carotene. Trisporic acid (TA is secreted from the mycelium of B. trispora during mating between heterothallic strains and is considered as a mediator of the regulation of mating processes and an enhancer of carotene biosynthesis. Gas chromatography-mass spectrometry and multivariate analysis were employed to investigate TA-associated intracellular biochemical changes in B. trispora. By principal component analysis, the differential metabolites discriminating the control groups from the TA-treated groups were found, which were also confirmed by the subsequent hierarchical cluster analysis. The results indicate that TA is a global regulator and its main effects at the metabolic level are reflected on the content changes in several fatty acids, carbohydrates, and amino acids. The carbon metabolism and fatty acids synthesis are sensitive to TA addition. Glycerol, glutamine, and ã-aminobutyrate might play important roles in the regulation of TA. Complemented by two-dimensional electrophoresis, the results indicate that the actions of TA at the metabolic level involve multiple metabolic processes, such as glycolysis and the bypass of the classical tricarboxylic acid cycle. These results reveal that the metabolomics strategy is a powerful tool to gain insight into the mechanism of a microorganism's cellular response to signal inducers at the metabolic level.

  2. Carotenoids in staple cereals: Metabolism, regulation, and genetic manipulation

    Directory of Open Access Journals (Sweden)

    shengnan zhai

    2016-08-01

    Full Text Available Carotenoids play a critical role in animal and human health. Animals and humans are unable to synthesize carotenoids de novo, and therefore rely upon diet as sources of these compounds. However, major staple cereals often contain only small amounts of carotenoids in their grain. Consequently, there is considerable interest in genetic manipulation of carotenoid content in cereal grain. In this review, we focus on carotenoid metabolism and regulation in non-green plant tissues, as well as genetic manipulation in staple cereals such as rice, maize, and wheat. Significant progress has been made in three aspects: (1 seven carotenogenes play vital roles in carotenoid regulation in non-green plant tissues, including DXS (1-deoxyxylulose-5-phosphate synthase influencing isoprenoid precursor supply, PSY (phytoene synthase, LCYB (β-cyclase and LCYE (ε-cyclase controlling biosynthesis, HYDB (1-hydroxy-2-methyl-2-(E-butenyl 4-diphosphate reductase and CCDs (carotenoid cleavage dioxygenases responsible for degradation, and OR (orange conditioning sequestration sink; (2 pro-vitamin A-biofortified crops, such as rice and maize, were developed by either metabolic engineering or marker-assisted breeding; (3 QTLs for carotenoid content on chromosomes 3B, 7A, and 7B were consistently identified, eight carotenogenes including 23 loci were detected, and ten gene-specific markers for carotenoid accumulation were developed and applied in wheat improvement. A comprehensive and deeper understanding of the regulatory mechanisms of carotenoid metabolism in crops will be benefitical in improving our precision in improving carotenoid contents. Genomic selection and gene editing are emerging as transformative technologies for vitamin A biofortification.

  3. Endocrine regulation of fetal skeletal muscle growth: impact on future metabolic health

    Science.gov (United States)

    Brown, Laura D.

    2014-01-01

    Establishing sufficient skeletal muscle mass is essential for lifelong metabolic health. The intrauterine environment is a major determinant of the muscle mass that is present for the life course of an individual, because muscle fiber number is set at the time of birth. Thus, a compromised intrauterine environment from maternal nutrient restriction or placental insufficiency that restricts development of muscle fiber number can have permanent effects on the amount of muscle an individual will live with. Reduced muscle mass due to fewer muscle fibers persists even after compensatory or “catch up” postnatal growth occurs. Furthermore, muscle hypertrophy can only partially compensate for this limitation in fiber number. Compelling associations link low birth weight and decreased muscle mass to future insulin resistance, which can drive the development of the metabolic syndrome and type 2 diabetes, and risk for cardiovascular events later in life. There are gaps in knowledge about the origins of reduced muscle growth at the cellular level and how these patterns are set during fetal development. By understanding the nutrient and endocrine regulation of fetal skeletal muscle growth and development, we can direct research efforts towards improving muscle growth early in life in order to prevent the development of chronic metabolic disease later in life. PMID:24532817

  4. Fumarate hydratase is a critical metabolic regulator of hematopoietic stem cell functions.

    Science.gov (United States)

    Guitart, Amelie V; Panagopoulou, Theano I; Villacreces, Arnaud; Vukovic, Milica; Sepulveda, Catarina; Allen, Lewis; Carter, Roderick N; van de Lagemaat, Louie N; Morgan, Marcos; Giles, Peter; Sas, Zuzanna; Gonzalez, Marta Vila; Lawson, Hannah; Paris, Jasmin; Edwards-Hicks, Joy; Schaak, Katrin; Subramani, Chithra; Gezer, Deniz; Armesilla-Diaz, Alejandro; Wills, Jimi; Easterbrook, Aaron; Coman, David; So, Chi Wai Eric; O'Carroll, Donal; Vernimmen, Douglas; Rodrigues, Neil P; Pollard, Patrick J; Morton, Nicholas M; Finch, Andrew; Kranc, Kamil R

    2017-03-06

    Strict regulation of stem cell metabolism is essential for tissue functions and tumor suppression. In this study, we investigated the role of fumarate hydratase (Fh1), a key component of the mitochondrial tricarboxylic acid (TCA) cycle and cytosolic fumarate metabolism, in normal and leukemic hematopoiesis. Hematopoiesis-specific Fh1 deletion (resulting in endogenous fumarate accumulation and a genetic TCA cycle block reflected by decreased maximal mitochondrial respiration) caused lethal fetal liver hematopoietic defects and hematopoietic stem cell (HSC) failure. Reexpression of extramitochondrial Fh1 (which normalized fumarate levels but not maximal mitochondrial respiration) rescued these phenotypes, indicating the causal role of cellular fumarate accumulation. However, HSCs lacking mitochondrial Fh1 (which had normal fumarate levels but defective maximal mitochondrial respiration) failed to self-renew and displayed lymphoid differentiation defects. In contrast, leukemia-initiating cells lacking mitochondrial Fh1 efficiently propagated Meis1 / Hoxa9 -driven leukemia. Thus, we identify novel roles for fumarate metabolism in HSC maintenance and hematopoietic differentiation and reveal a differential requirement for mitochondrial Fh1 in normal hematopoiesis and leukemia propagation. © 2017 Guitart et al.

  5. Practical approach for the study of metabolic regulation

    Directory of Open Access Journals (Sweden)

    D.V. Macedo

    2004-05-01

    Full Text Available First year students in Physical Education must understand metabolic regulation to comprehend thewhole integration of biochemical pathways in attempt to establish the relation with exercise. Thiswhole view is not easy to learn and the task becomes even harder with the lack of time at theend of course, when normally the students think about metabolic integration. Trying to get thestudents attention to this important issue, we developed practical works beginning in the middle ofthe course, in parallel with theory classes. Blood and urine were collected for metabolite analysis ineach practice. The students were divided in groups (10 students and they created the protocols in formthat they only have been guided and directed by the teacher and monitors. The practical activitiesand biochemical analysis were: six 30m sprints with dierent recovery times (blood lactate and meanvelocities, lactate removal from muscle to blood after high intensity exercise (blood lactate, anaerobicthreshold (blood lactate and heart rate, the eect of glycogen depletion after high and moderateintensity exercises (plasma glucose and urea concentrations and low carbohydrate diet vs. normaldiet (plasma glucose and urine ketone bodies. After data collection, discussion and interpretation, thestudents presented orally each work in the same order above. Each presentation had the focus on themetabolic pathways involved in each practice. Group 1: phosphocreatine utilization and resynthesis.Group 2: anaerobic glycolysis, lactate production and removal. Group 3: transition between anaerobicglycolysis and oxidative metabolism. In attempt to promote the integration between muscle and liver-Group 4: protein catabolism after high intensity exercise with low muscular glycogen concentration(transamination, Cori Cycle and gluconeogenesis. Group 5: liver ketogenesis in low carbohydratediet. This sequence was intended to promote the comprehension of integrated metabolism. As a nalactivity, the

  6. Analysis of clock-regulated genes in Neurospora reveals widespread posttranscriptional control of metabolic potential

    Science.gov (United States)

    Hurley, Jennifer M.; Dasgupta, Arko; Emerson, Jillian M.; Zhou, Xiaoying; Ringelberg, Carol S.; Knabe, Nicole; Lipzen, Anna M.; Lindquist, Erika A.; Daum, Christopher G.; Barry, Kerrie W.; Grigoriev, Igor V.; Smith, Kristina M.; Galagan, James E.; Bell-Pedersen, Deborah; Freitag, Michael; Cheng, Chao; Loros, Jennifer J.; Dunlap, Jay C.

    2014-01-01

    Neurospora crassa has been for decades a principal model for filamentous fungal genetics and physiology as well as for understanding the mechanism of circadian clocks. Eukaryotic fungal and animal clocks comprise transcription-translation–based feedback loops that control rhythmic transcription of a substantial fraction of these transcriptomes, yielding the changes in protein abundance that mediate circadian regulation of physiology and metabolism: Understanding circadian control of gene expression is key to understanding eukaryotic, including fungal, physiology. Indeed, the isolation of clock-controlled genes (ccgs) was pioneered in Neurospora where circadian output begins with binding of the core circadian transcription factor WCC to a subset of ccg promoters, including those of many transcription factors. High temporal resolution (2-h) sampling over 48 h using RNA sequencing (RNA-Seq) identified circadianly expressed genes in Neurospora, revealing that from ∼10% to as much 40% of the transcriptome can be expressed under circadian control. Functional classifications of these genes revealed strong enrichment in pathways involving metabolism, protein synthesis, and stress responses; in broad terms, daytime metabolic potential favors catabolism, energy production, and precursor assembly, whereas night activities favor biosynthesis of cellular components and growth. Discriminative regular expression motif elicitation (DREME) identified key promoter motifs highly correlated with the temporal regulation of ccgs. Correlations between ccg abundance from RNA-Seq, the degree of ccg-promoter activation as reported by ccg-promoter–luciferase fusions, and binding of WCC as measured by ChIP-Seq, are not strong. Therefore, although circadian activation is critical to ccg rhythmicity, posttranscriptional regulation plays a major role in determining rhythmicity at the mRNA level. PMID:25362047

  7. A 7-day high protein hypocaloric diet promotes cellular metabolic adaptations and attenuates lean mass loss in healthy males

    OpenAIRE

    Matthew Furber; Ana Anton-Solanas; Emma Koppe; Charlotte Ashby; Michael Roberts; Justin Roberts

    2017-01-01

    Mitochondrial quantity and density are associated with increased oxidative metabolism. It has been demonstrated that a hypocaloric high fat/low carbohydrate (HF/LC) diet can up-regulate transcriptional markers of mitochondrial biogenesis; this was yet to be explored in vivo subsequent to a high protein/low carbohydrate (HP/LC) diet. Thus the aims of the study were to explore such diets on transcriptional markers or mitochondrial biogenesis, body composition and resting metabolic rate (RMR). F...

  8. Control of creatine metabolism by HIF is an endogenous mechanism of barrier regulation in colitis.

    Science.gov (United States)

    Glover, Louise E; Bowers, Brittelle E; Saeedi, Bejan; Ehrentraut, Stefan F; Campbell, Eric L; Bayless, Amanda J; Dobrinskikh, Evgenia; Kendrick, Agnieszka A; Kelly, Caleb J; Burgess, Adrianne; Miller, Lauren; Kominsky, Douglas J; Jedlicka, Paul; Colgan, Sean P

    2013-12-03

    Mucosal surfaces of the lower gastrointestinal tract are subject to frequent, pronounced fluctuations in oxygen tension, particularly during inflammation. Adaptive responses to hypoxia are orchestrated largely by the hypoxia-inducible transcription factors (HIFs). As HIF-1α and HIF-2α are coexpressed in mucosal epithelia that constitute the barrier between the lumen and the underlying immune milieu, we sought to define the discrete contribution of HIF-1 and HIF-2 transactivation pathways to intestinal epithelial cell homeostasis. The present study identifies creatine kinases (CKs), key metabolic enzymes for rapid ATP generation via the phosphocreatine-creatine kinase (PCr/CK) system, as a unique gene family that is coordinately regulated by HIF. Cytosolic CKs are expressed in a HIF-2-dependent manner in vitro and localize to apical intestinal epithelial cell adherens junctions, where they are critical for junction assembly and epithelial integrity. Supplementation with dietary creatine markedly ameliorated both disease severity and inflammatory responses in colitis models. Further, enzymes of the PCr/CK metabolic shuttle demonstrate dysregulated mucosal expression in a subset of ulcerative colitis and Crohn disease patients. These findings establish a role for HIF-regulated CK in epithelial homeostasis and reveal a fundamental link between cellular bioenergetics and mucosal barrier.

  9. Anterior gradient protein-2 is a regulator of cellular adhesion in prostate cancer.

    Directory of Open Access Journals (Sweden)

    Diptiman Chanda

    Full Text Available Anterior Gradient Protein (AGR-2 is reported to be over-expressed in many epithelial cancers and promotes metastasis. A clear-cut mechanism for its observed function(s has not been previously identified. We found significant upregulation of AGR-2 expression in a bone metastatic prostate cancer cell line, PC3, following culturing in bone marrow-conditioned medium. Substantial AGR-2 expression was also confirmed in prostate cancer tissue specimens in patients with bone lesions. By developing stable clones of PC3 cells with varying levels of AGR-2 expression, we identified that abrogation of AGR-2 significantly reduced cellular attachment to fibronectin, collagen I, collagen IV, laminin I and fibrinogen. Loss of cellular adhesion was associated with sharp decrease in the expression of α4, α5, αV, β3 and β4 integrins. Failure to undergo apoptosis following detachment is a hallmark of epithelial cancer metastasis. The AGR-2-silenced PC3 cells showed higher resistance to Tumor necrosis factor-related apoptosis- inducing ligand (TRAIL induced apoptosis in vitro. This observation was also supported by significantly reduced Caspase-3 expression in AGR-2-silenced PC3 cells, which is a key effector of both extrinsic and intrinsic death signaling pathways. These data suggest that AGR-2 influence prostate cancer metastasis by regulation of cellular adhesion and apoptosis.

  10. Selective mRNA translation coordinates energetic and metabolic adjustments to cellular oxygen deprivation and reoxygenation in Arabidopsis thaliana.

    Science.gov (United States)

    Branco-Price, Cristina; Kaiser, Kayla A; Jang, Charles J H; Larive, Cynthia K; Bailey-Serres, Julia

    2008-12-01

    Cellular oxygen deprivation (hypoxia/anoxia) requires an acclimation response that enables survival during an energy crisis. To gain new insights into the processes that facilitate the endurance of transient oxygen deprivation, the dynamics of the mRNA translation state and metabolites were quantitatively monitored in Arabidopsis thaliana seedlings exposed to a short (2 h) or prolonged (9 h) period of oxygen and carbon dioxide deprivation and following 1 h of re-aeration. Hypoxia stress and reoxygenation promoted adjustments in the levels of polyribosomes (polysomes) that were highly coordinated with cellular ATP content. A quantitative comparison of steady-state and polysomal mRNA populations revealed that over half of the cellular mRNAs were restricted from polysome complexes during the stress, with little or no change in abundance. This selective repression of translation was rapidly reversed upon reoxygenation. Comparison of the adjustment in gene transcripts and metabolites demonstrated that profiling of polysomal mRNAs strongly augments the prediction of cellular processes that are altered during cellular oxygen deprivation. The selective translation of a subset of mRNAs promotes the conservation of ATP and facilitates the transition to anaerobic metabolism during low-oxygen stress.

  11. [THE INCONSISTENCIES OF REGULATION OF METABOLISM IN PHYLOGENESIS AT THREE LEVELS OF "RELATIVE BIOLOGICAL PERFECTION": ETIOLOGY OF METABOLIC PANDEMICS].

    Science.gov (United States)

    Titov, V N

    2015-11-01

    The regulation of metabolism in vivo can be comprehended by considering stages of becoming inphylogenesis of humoral, hormonal, vegetative regulators separately: at the level of cells; in paracrin-regulated cenosises of cells; organs and systems under open blood circulation and closed system of blood flow. The levels of regulations formed at different stages of phylogenesis. Their completion occurred at achievement of "relative biological perfection". Only this way need of cells in functional, structural interaction and forming of multicellular developed. The development of organs and systems of organs also completed at the level of "relative biological perfection". From the same level the third stage of becoming of regulation of metabolism at the level of organism started. When three conditions of "relative biological perfection" achieved consequently at level in vivo are considered in species Homo sapiens using system approach it is detected that "relative biological perfection" in vivo is accompanied by different inconsistencies of regulation of metabolism. They are etiologic factors of "metabolic pandemics ". The inconsistencies (etiological factors) are consider as exemplified by local (at the level of paracrin-regulated cenosises of cells) and system (at the level of organism) regulation of biological reaction metabolism-microcirculation that results in dysfunction of target organs and development of pathogenesis of essential metabolic arterial hypertension. The article describes phylogenetic difference between visceral fatty cells and adpocytes, regulation of metabolism by phylogenetically late insulin, reaction of albumin at increasing of content of unesterified fatty acids in blood plasma, difference of function of resident macrophage and monocytes-macrophages in pathogenesis of atherosclerosis, metabolic syndrome, insulin resistance, obesity, under diabetes mellitus and essential metabolic arterial hypertension.

  12. Kinetic and Thermodynamic Aspects of Cellular Thiol-Disulfide Redox Regulation

    DEFF Research Database (Denmark)

    Jensen, Kristine Steen; Hansen, Rosa Erritzøe; Winther, Jakob R

    2009-01-01

    . In the cytosol regulatory disulfide bonds are typically formed in spite of the prevailing reducing conditions and may thereby function as redox switches. Such disulfide bonds are protected from enzymatic reduction by kinetic barriers and are thus allowed to exist long enough to elicit the signal. Factors......Regulation of intracellular thiol-disulfide redox status is an essential part of cellular homeostasis. This involves the regulation of both oxidative and reductive pathways, production of oxidant scavengers and, importantly, the ability of cells to respond to changes in the redox environment...... that affect the rate of thiol-disulfide exchange and stability of disulfide bonds are discussed within the framework of the underlying chemical foundations. This includes the effect of thiol acidity (pKa), the local electrostatic environment, molecular strain and entropy. Even though a thiol-disulfide...

  13. TIMP3 interplays with apelin to regulate cardiovascular metabolism in hypercholesterolemic mice

    Directory of Open Access Journals (Sweden)

    Robert Stöhr

    2015-10-01

    Conclusion: TIMP3 regulates lipid metabolism as well as oxidative stress response via apelin. These findings therefore suggest that TIMP3 maintains metabolic flexibility in the heart, particularly during episodes of increased cardiac stress.

  14. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  15. Modeling of oxygen transport and cellular energetics explains observations on in vivo cardiac energy metabolism.

    Directory of Open Access Journals (Sweden)

    Daniel A Beard

    2006-09-01

    Full Text Available Observations on the relationship between cardiac work rate and the levels of energy metabolites adenosine triphosphate (ATP, adenosine diphosphate (ADP, and phosphocreatine (CrP have not been satisfactorily explained by theoretical models of cardiac energy metabolism. Specifically, the in vivo stability of ATP, ADP, and CrP levels in response to changes in work and respiratory rate has eluded explanation. Here a previously developed model of mitochondrial oxidative phosphorylation, which was developed based on data obtained from isolated cardiac mitochondria, is integrated with a spatially distributed model of oxygen transport in the myocardium to analyze data obtained from several laboratories over the past two decades. The model includes the components of the respiratory chain, the F0F1-ATPase, adenine nucleotide translocase, and the mitochondrial phosphate transporter at the mitochondrial level; adenylate kinase, creatine kinase, and ATP consumption in the cytoplasm; and oxygen transport between capillaries, interstitial fluid, and cardiomyocytes. The integrated model is able to reproduce experimental observations on ATP, ADP, CrP, and inorganic phosphate levels in canine hearts over a range of workload and during coronary hypoperfusion and predicts that cytoplasmic inorganic phosphate level is a key regulator of the rate of mitochondrial respiration at workloads for which the rate of cardiac oxygen consumption is less than or equal to approximately 12 mumol per minute per gram of tissue. At work rates corresponding to oxygen consumption higher than 12 mumol min(-1 g(-1, model predictions deviate from the experimental data, indicating that at high work rates, additional regulatory mechanisms that are not currently incorporated into the model may be important. Nevertheless, the integrated model explains metabolite levels observed at low to moderate workloads and the changes in metabolite levels and tissue oxygenation observed during graded

  16. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  17. Cellular prion protein expression is not regulated by the Alzheimer's amyloid precursor protein intracellular domain.

    Directory of Open Access Journals (Sweden)

    Victoria Lewis

    Full Text Available There is increasing evidence of molecular and cellular links between Alzheimer's disease (AD and prion diseases. The cellular prion protein, PrP(C, modulates the post-translational processing of the AD amyloid precursor protein (APP, through its inhibition of the β-secretase BACE1, and oligomers of amyloid-β bind to PrP(C which may mediate amyloid-β neurotoxicity. In addition, the APP intracellular domain (AICD, which acts as a transcriptional regulator, has been reported to control the expression of PrP(C. Through the use of transgenic mice, cell culture models and manipulation of APP expression and processing, this study aimed to clarify the role of AICD in regulating PrP(C. Over-expression of the three major isoforms of human APP (APP(695, APP(751 and APP(770 in cultured neuronal and non-neuronal cells had no effect on the level of endogenous PrP(C. Furthermore, analysis of brain tissue from transgenic mice over-expressing either wild type or familial AD associated mutant human APP revealed unaltered PrP(C levels. Knockdown of endogenous APP expression in cells by siRNA or inhibition of γ-secretase activity also had no effect on PrP(C levels. Overall, we did not detect any significant difference in the expression of PrP(C in any of the cell or animal-based paradigms considered, indicating that the control of cellular PrP(C levels by AICD is not as straightforward as previously suggested.

  18. HTLV Tax: a fascinating multifunctional co-regulator of viral and cellular pathways

    Directory of Open Access Journals (Sweden)

    Robert eCurrer

    2012-11-01

    Full Text Available Human T cell lymphotropic virus type 1 (HTLV-1 has been identified as the causative agent of adult T cell leukemia (ATL and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The virus infects between 15 and 20 million people worldwide of which approximately 2 to 5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications of Tax and sub-cellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis.

  19. miRNA regulation of LDL-cholesterol metabolism.

    Science.gov (United States)

    Goedeke, Leigh; Wagschal, Alexandre; Fernández-Hernando, Carlos; Näär, Anders M

    2016-12-01

    In the past decade, microRNAs (miRNAs) have emerged as key regulators of circulating levels of lipoproteins. Specifically, recent work has uncovered the role of miRNAs in controlling the levels of atherogenic low-density lipoprotein LDL (LDL)-cholesterol by post-transcriptionally regulating genes involved in very low-density lipoprotein (VLDL) secretion, cholesterol biosynthesis, and hepatic LDL receptor (LDLR) expression. Interestingly, several of these miRNAs are located in genomic loci associated with abnormal levels of circulating lipids in humans. These findings reinforce the interest of targeting this subset of non-coding RNAs as potential therapeutic avenues for regulating plasma cholesterol and triglyceride (TAG) levels. In this review, we will discuss how these new miRNAs represent potential pre-disposition factors for cardiovascular disease (CVD), and putative therapeutic targets in patients with cardiometabolic disorders. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Regulation of glycolysis and level of the Crassulacean acid metabolism.

    Science.gov (United States)

    Pierre, J N; Queiroz, O

    1979-01-01

    Glycolysis shows different patterns of operation and different control steps, depending on whether the level of Crassulacean acid metabolism (CAM) is low or high in the leaves of Kalanchoe blossfeldiana v.Poelln., when subjected to appropriate photoperiodic treatments: at a low level of CAM operation all the enzymes of glycolysis and phosphoenol pyruvate (PEP) carboxylase present a 12 h rhythm of capacity, resulting from the superposition of two 24h rhythms out of phase; phosphofructokinase appears to be the main regulation step; attainment of high CAM level involves (1) an increase in the peak of capacity occurring during the night of all the glycolytic enzymes, thus achieving an over-all 24h rhythm, in strict allometric coherence with the increase in PEP carboxylase capacity, (2) the establishment of different phase relationships between the rhythms of enzyme capacity, and (3) the control of three enzymic steps (phosphofructokinase, the group 3-P-glyceraldehyde dehydrogenase - 3-P-glycerate kinase, and PEP carboxylase). Results show that the hypothesis of allosteric regulation of phosphofructokinase (by PEP) and PEP carboxylase (by malate and glucose-6-P) cannot provide a complete explanation for the temporal organization of glycolysis and that changes in the phase relationships between the rhythms of enzyme capacity along the pathway and a strict correlation between the level of PEP carboxylase capacity and the levels of capacity of the glycolytic enzymes are important components of the regulation of glycolysis in relation to CAM.

  1. Optimality principles in the regulation of metabolic networks.

    Science.gov (United States)

    Berkhout, Jan; Bruggeman, Frank J; Teusink, Bas

    2012-08-29

    One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular "task" of the network-its function-should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  2. Optimality Principles in the Regulation of Metabolic Networks

    Directory of Open Access Journals (Sweden)

    Jan Berkhout

    2012-08-01

    Full Text Available One of the challenging tasks in systems biology is to understand how molecular networks give rise to emergent functionality and whether universal design principles apply to molecular networks. To achieve this, the biophysical, evolutionary and physiological constraints that act on those networks need to be identified in addition to the characterisation of the molecular components and interactions. Then, the cellular “task” of the network—its function—should be identified. A network contributes to organismal fitness through its function. The premise is that the same functions are often implemented in different organisms by the same type of network; hence, the concept of design principles. In biology, due to the strong forces of selective pressure and natural selection, network functions can often be understood as the outcome of fitness optimisation. The hypothesis of fitness optimisation to understand the design of a network has proven to be a powerful strategy. Here, we outline the use of several optimisation principles applied to biological networks, with an emphasis on metabolic regulatory networks. We discuss the different objective functions and constraints that are considered and the kind of understanding that they provide.

  3. Regulation of iron metabolism during Neisseria meningitidis infection in mice

    Energy Technology Data Exchange (ETDEWEB)

    Letendre, E.D.

    1984-01-01

    Bacterial invasion of vertebrates triggers a marked reduction in the levels of iron associated with the plasma transferrin (Tf) pool. This hypoferremic response has been regarded as a host attempt to withhold essential iron from the invading pathogen. The exact nature of the mechanisms involved remains obscure. The kinetics of iron processing by the RE system were studied by labeling the RE compartments with /sup 59/Fe-labeled denatured red blood cells. Uptake and redistribution of the label indicated the RE-processed iron was not returned to the plasma Tf pool during the hypoferremia. Fractionation of hepatic cellular compartments showed that this impaired release of iron resulted from a preferential incorporation of home-derived iron into the intracellular ferritin pool and this produces the hypoferremia. The role of ceruloplasmin (ferroxidase I,EC.1.16.3.1) (Cp) in iron metabolism during meningococcal infection was investigated. Plasma Cp ferroxidase activity was found to increase greatly in mice during the convalescence phase.

  4. Involvement of the iron regulatory protein from Eisenia andrei earthworms in the regulation of cellular iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Petra Procházková

    Full Text Available Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs of the 5'- or 3'-untranslated regions (UTR of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP. The earthworm IRE site in 5'-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant.

  5. Involvement of the Iron Regulatory Protein from Eisenia andrei Earthworms in the Regulation of Cellular Iron Homeostasis

    Science.gov (United States)

    Procházková, Petra; Škanta, František; Roubalová, Radka; Šilerová, Marcela; Dvořák, Jiří; Bilej, Martin

    2014-01-01

    Iron homeostasis in cells is regulated by iron regulatory proteins (IRPs) that exist in different organisms. IRPs are cytosolic proteins that bind to iron-responsive elements (IREs) of the 5′- or 3′-untranslated regions (UTR) of mRNAs that encode many proteins involved in iron metabolism. In this study, we have cloned and described a new regulatory protein belonging to the family of IRPs from the earthworm Eisenia andrei (EaIRP). The earthworm IRE site in 5′-UTR of ferritin mRNA most likely folds into a secondary structure that differs from the conventional IRE structures of ferritin due to the absence of a typically unpaired cytosine that participates in protein binding. Prepared recombinant EaIRP and proteins from mammalian liver extracts are able to bind both mammalian and Eisenia IRE structures of ferritin mRNA, although the affinity of the rEaIRP/Eisenia IRE structure is rather low. This result suggests the possible contribution of a conventional IRE structure. When IRP is supplemented with a Fe-S cluster, it can function as a cytosolic aconitase. Cellular cytosolic and mitochondrial fractions, as well as recombinant EaIRP, exhibit aconitase activity that can be abolished by the action of oxygen radicals. The highest expression of EaIRP was detected in parts of the digestive tract. We can assume that earthworms may possess an IRE/IRP regulatory network as a potential mechanism for maintaining cellular iron homeostasis, although the aconitase function of EaIRP is most likely more relevant. PMID:25279857

  6. Integrin Beta 3 Regulates Cellular Senescence by Activating the TGF-β Pathway

    Directory of Open Access Journals (Sweden)

    Valentina Rapisarda

    2017-03-01

    Full Text Available Cellular senescence is an important in vivo mechanism that prevents the propagation of damaged cells. However, the precise mechanisms regulating senescence are not well characterized. Here, we find that ITGB3 (integrin beta 3 or β3 is regulated by the Polycomb protein CBX7. β3 expression accelerates the onset of senescence in human primary fibroblasts by activating the transforming growth factor β (TGF-β pathway in a cell-autonomous and non-cell-autonomous manner. β3 levels are dynamically increased during oncogene-induced senescence (OIS through CBX7 Polycomb regulation, and downregulation of β3 levels overrides OIS and therapy-induced senescence (TIS, independently of its ligand-binding activity. Moreover, cilengitide, an αvβ3 antagonist, has the ability to block the senescence-associated secretory phenotype (SASP without affecting proliferation. Finally, we show an increase in β3 levels in a subset of tissues during aging. Altogether, our data show that integrin β3 subunit is a marker and regulator of senescence.

  7. Nrf2 regulates cellular behaviors and Notch signaling in oral squamous cell carcinoma cells.

    Science.gov (United States)

    Fan, Hong; Paiboonrungruan, Chorlada; Zhang, Xinyan; Prigge, Justin R; Schmidt, Edward E; Sun, Zheng; Chen, Xiaoxin

    2017-11-04

    Oxidative stress is known to play a pivotal role in the development of oral squamous cell carcinoma (OSCC). We have demonstrated that activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway has chemopreventive effects against oxidative stress-associated OSCC. However, Nrf2 have dual roles in cancer development; while it prevents carcinogenesis of normal cells, hyperactive Nrf2 also promotes the survival of cancer cells. This study is aimed to understand the function of Nrf2 in regulating cellular behaviors of OSCC cells, and the potential mechanisms through which Nrf2 facilitates OSCC. We established the Nrf2-overexpressing and Nrf2-knockdown OSCC cell lines, and examined the function of Nrf2 in regulating cell proliferation, migration, invasion, cell cycle and colony formation. Our data showed that Nrf2 overexpression promoted cancer phenotypes in OSCC cells, whereas Nrf2 silencing inhibited these phenotypes. In addition, Nrf2 positively regulated Notch signaling pathway in OSCC cells in vitro. Consistent with this observation, Nrf2 activation in Keap1 -/- mice resulted in not only hyperproliferation of squamous epithelial cells in mouse tongue as evidenced by increased expression of PCNA, but also activation of Notch signaling in these cells as evidenced by increased expression of NICD1 and Hes1. In conclusion, Nrf2 regulates cancer behaviors and Notch signaling in OSCC cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Metabolic regulation during sport events: factual interpretations and inadequate allegations

    Directory of Open Access Journals (Sweden)

    Jacques Remy Poortmans

    2013-09-01

    Full Text Available Different fuels are available to generate ATP for muscle activities during sport events. Glycogen from striated muscles and liver stores may be converted to lactic acid or almost completely oxidized to carbon dioxide (CO2, triacylglycerol within the muscle itself and fatty acids from adipose tissue could be converted to CO2 in acting muscles, some free amino acids can be released within the muscle itself and from intestinal stores to sustain the amount of ATP generation indispensable for muscle contraction. All single biochemical reactions, but one, need one or several enzymes to activate the conversion of a substrate into a product. The energy transformation in biochemical reactions is led by application of so-called free energy. Reversible and non-reversible reactions within a metabolic pathway are dependent on specific enzymes near or far from equilibrium. Allosteric enzymes are regulatory enzymes that provide the direction in the pathway. A regulatory enzyme is either activated or inhibited by small regulators (ligands. A reversible substrate cycle between A and B is catalyzed by two enzymes with different fluxes. The need of ATP production for muscle contraction is under the leadership of regulatory enzymes and available substrate stores. The improvement of adapted metabolic reactions under sport training depends on the appropriate increase of regulatory enzymes within the glycolytic and oxidative pathways. The amount of some specific enzymes is increased by training in order to improve the maximum activity of the metabolic pathway. Unfortunately, several publications do not precisely implicate the appropriate enzyme(s to explain or reject the adaptation induced by the training schedule. A few examples will illustrate the factual interpretation and the inadequate allegation.

  9. Hepcidin: an important iron metabolism regulator in chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Sandra Azevedo Antunes

    Full Text Available Abstract Anemia is a common complication and its impact on morbimortality in patients with chronic kidney disease (CKD is well known. The discovery of hepcidin and its functions has contributed to a better understanding of iron metabolism disorders in CKD anemia. Hepcidin is a peptide mainly produced by hepatocytes and, through a connection with ferroportin, it regulates iron absorption in the duodenum and its release of stock cells. High hepcidin concentrations described in patients with CKD, especially in more advanced stages are attributed to decreased renal excretion and increased production. The elevation of hepcidin has been associated with infection, inflammation, atherosclerosis, insulin resistance and oxidative stress. Some strategies were tested to reduce the effects of hepcidin in patients with CKD, however more studies are necessary to assess the impact of its modulation in the management of anemia in this population.

  10. Effects of in vitro Brevetoxin Exposure on Apoptosis and Cellular Metabolism in a Leukemic T Cell Line (Jurkat

    Directory of Open Access Journals (Sweden)

    John W. Sleasman

    2008-06-01

    Full Text Available Harmful algal blooms (HABs of the toxic dinoflagellate, Karenia brevis, produce red tide toxins, or brevetoxins. Significant health effects associated with red tide toxin exposure have been reported in sea life and in humans, with brevetoxins documented within immune cells from many species. The objective of this research was to investigate potential immunotoxic effects of brevetoxins using a leukemic T cell line (Jurkat as an in vitro model system. Viability, cell proliferation, and apoptosis assays were conducted using brevetoxin congeners PbTx-2, PbTx-3, and PbTx-6. The effects of in vitro brevetoxin exposure on cell viability and cellular metabolism or proliferation were determined using trypan blue and MTT (1-(4,5-dimethylthiazol-2-yl-3,5- diphenylformazan, respectively. Using MTT, cellular metabolic activity was decreased in Jurkat cells exposed to 5 - 10 μg/ml PbTx-2 or PbTx-6. After 3 h, no significant effects on cell viability were observed with any toxin congener in concentrations up to 10 μg/ml. Viability decreased dramatically after 24 h in cells treated with PbTx-2 or -6. Apoptosis, as measured by caspase-3 activity, was significantly increased in cells exposed to PbTx-2 or PbTx-6. In summary, brevetoxin congeners varied in effects on Jurkat cells, with PbTx-2 and PbTx-6 eliciting greater cellular effects compared to PbTx-3.

  11. Ghrelin in the regulation of body weight and metabolism.

    Science.gov (United States)

    Castañeda, T R; Tong, J; Datta, R; Culler, M; Tschöp, M H

    2010-01-01

    Ghrelin, a peptide hormone predominantly produced by the stomach, was isolated as the endogenous ligand for the growth hormone secretagogue receptor. Ghrelin is a potent stimulator of growth hormone (GH) secretion and is the only circulatory hormone known to potently enhance feeding and weight gain and to regulate energy homeostasis following central and systemic administration. Therapeutic intervention with ghrelin in catabolic situations may induce a combination of enhanced food intake, increased gastric emptying and nutrient storage, coupled with an increase in GH thereby linking nutrient partitioning with growth and repair processes. These qualities have fostered the idea that ghrelin-based compounds may have therapeutic utility in treating malnutrition and wasting induced by various sub-acute and chronic disorders. Conversely, compounds that inhibit ghrelin action may be useful for the prevention or treatment of metabolic syndrome components such as obesity, impaired lipid metabolism or insulin resistance. In recent years, the effects of ghrelin on glucose homeostasis, memory function and gastrointestinal motility have attracted considerable amount of attention and revealed novel therapeutic targets in treating a wide range of pathologic conditions. Furthermore, discovery of ghrelin O-acyltransferase has also opened new research opportunities that could lead to major understanding of ghrelin physiology. This review summarizes the current knowledge on ghrelin synthesis, secretion, mechanism of action and biological functions with an additional focus on potential for ghrelin-based pharmacotherapies. 2009 Elsevier Inc. All rights reserved.

  12. Endocrine regulation of carbohydrate metabolism in hypometabolic animals

    Science.gov (United States)

    Musacchia, X. J.

    1988-01-01

    Experimental hypothermia and natural hibernation are two forms of hypometabolism with recognized physiological changes, including depression of endocrine and metabolic functions. To better understand functional changes, helox (i.e., helium and oxygen (80:20) mixtures) and low ambient temperatures have been used to induce hypothermia in hamsters and rats. Both clinical and biological survival, i.e., survival without recovery and survival with recovery from hypothermia, respectively, are related to depth and length of hypothermia. In the rat, body temperatures of 15 degrees C for periods greater than 6-10 h greatly restrict biological survival. The role of glucocorticoids in enhancing thermogenic capacity of rats was assessed using triamcinolone [correction of triamcinalone] acetonide. In the hamster, treatment with cortisone acetate prolonged both clinical and biological survival. Hypothermic hamsters continue utilizing circulating glucose until they become hypoglycemic and die. Hypothermic rats do not utilize glucose and respond with a significant hypoinsulinema. The role of endocrines in the regulation of carbohydrate homeostasis and metabolism differs in hibernation and hypothermia. Glucocorticoids influence the hypothermic response in both species, specifically by prolonging induction of hypothermia in rats and by prolonging survival in hypothermic hamsters.

  13. Aerobic glycolysis during brain activation: adrenergic regulation and influence of norepinephrine on astrocytic metabolism.

    Science.gov (United States)

    Dienel, Gerald A; Cruz, Nancy F

    2016-07-01

    Aerobic glycolysis occurs during brain activation and is characterized by preferential up-regulation of glucose utilization compared with oxygen consumption even though oxygen level and delivery are adequate. Aerobic glycolysis is a widespread phenomenon that underlies energetics of diverse brain activities, such as alerting, sensory processing, cognition, memory, and pathophysiological conditions, but specific cellular functions fulfilled by aerobic glycolysis are poorly understood. Evaluation of evidence derived from different disciplines reveals that aerobic glycolysis is a complex, regulated phenomenon that is prevented by propranolol, a non-specific β-adrenoceptor antagonist. The metabolic pathways that contribute to excess utilization of glucose compared with oxygen include glycolysis, the pentose phosphate shunt pathway, the malate-aspartate shuttle, and astrocytic glycogen turnover. Increased lactate production by unidentified cells, and lactate dispersal from activated cells and lactate release from the brain, both facilitated by astrocytes, are major factors underlying aerobic glycolysis in subjects with low blood lactate levels. Astrocyte-neuron lactate shuttling with local oxidation is minor. Blockade of aerobic glycolysis by propranolol implicates adrenergic regulatory processes including adrenal release of epinephrine, signaling to brain via the vagus nerve, and increased norepinephrine release from the locus coeruleus. Norepinephrine has a powerful influence on astrocytic metabolism and glycogen turnover that can stimulate carbohydrate utilization more than oxygen consumption, whereas β-receptor blockade 're-balances' the stoichiometry of oxygen-glucose or -carbohydrate metabolism by suppressing glucose and glycogen utilization more than oxygen consumption. This conceptual framework may be helpful for design of future studies to elucidate functional roles of preferential non-oxidative glucose utilization and glycogen turnover during brain

  14. [Thiamine and its derivatives in the regulation of cell metabolism].

    Science.gov (United States)

    Tylicki, Adam; Siemieniuk, Magdalena

    2011-07-06

    For over 70 years thiamine (vitamin B1) has aroused the interest of biologists, biochemists and medical doctors because of its multilateral participation in key biochemical and physiological processes. The thiamine molecule is composed of pyrimidine and thiazole rings which are linked by a methylene bridge. It is synthesized by microorganisms, fungi and plants, whereas animals and humans have to obtain it from food. There are several known forms of vitamin B1 inside cells: free thiamine, three phosphate esters (mono-, di-, and triphosphate), and the recently found adenosine thiamine triphosphate. Thiamine has a dual, coenzymatic and non-coenzymatic role. First of all, it is a precursor of thiamin diphosphate, which is a coenzyme for over 20 characterized enzymes which are involved in cell bioenergetic processes leading to the synthesis of ATP. Moreover, these enzymes take part in the biosynthesis of pentose (required for the synthesis of nucleotides), amino acids and other organic compounds of cell metabolism. On the other hand, recent discoveries show the non-coenzymatic role of thiamine derivatives in the process of regulation of gene expression (riboswitches in microorganisms and plants), the stress response, and perhaps so far unknown signal transduction pathways associated with adverse environmental conditions, or transduction of nerve signals with participation of thiamine triphosphate and adenosine thiamine triphosphate. From the clinical point of view thiamine deficiency is related to beri-beri, Parkinson disease, Alzheimer disease, Wernicke-Korsakoff syndrome and other pathologies of the nervous system, and it is successfully applied in medical practice. On the other hand, identifying new synthetic analogues of thiamine which could be used as cytostatics, herbicides or agents preventing deficiency of vitamin B1 is currently the major goal of the research. In this paper we present the current state of knowledge of thiamine and its derivatives, indicating

  15. Toxic influence of organophosphate, carbamate, and organochlorine pesticides on cellular metabolism of lipids, proteins, and carbohydrates: a systematic review.

    Science.gov (United States)

    Karami-Mohajeri, Somayyeh; Abdollahi, Mohammad

    2011-09-01

    Pesticides, including organophosphate (OP), organochlorine (OC), and carbamate (CB) compounds, are widely used in agricultural and indoor purposes. OP and CB act as acetyl cholinesterase (AChE) inhibitors that affect lots of organs such as peripheral and central nervous systems, muscles, liver, pancreas, and brain, whereas OC are neurotoxic involved in alteration of ion channels. There are several reports about metabolic disorders, hyperglycemia, and also oxidative stress in acute and chronic exposures to pesticides that are linked with diabetes and other metabolic disorders. In this respect, there are several in vitro and in vivo but few clinical studies about mechanism underlying these effects. Bibliographic databases were searched for the years 1963-2010 and resulted in 1652 articles. After elimination of duplicates or irrelevant papers, 204 papers were included and reviewed. Results indicated that OP and CB impair the enzymatic pathways involved in metabolism of carbohydrates, fats and protein within cytoplasm, mitochondria, and proxisomes. It is believed that OP and CB show this effect through inhibition of AChE or affecting target organs directly. OC mostly affect lipid metabolism in the adipose tissues and change glucose pathway in other cells. As a shared mechanism, all OP, CB and OC induce cellular oxidative stress via affecting mitochondrial function and therefore disrupt neuronal and hormonal status of the body. Establishing proper epidemiological studies to explore exact relationships between exposure levels to these pesticides and rate of resulted metabolic disorders in human will be helpful.

  16. Thiamin diphosphate-dependent enzymes: from enzymology to metabolic regulation, drug design and disease models.

    Science.gov (United States)

    Bunik, Victoria I; Tylicki, Adam; Lukashev, Nikolay V

    2013-12-01

    Bringing a knowledge of enzymology into research in vivo and in situ is of great importance in understanding systems biology and metabolic regulation. The central metabolic significance of thiamin (vitamin B1 ) and its diphosphorylated derivative (thiamin diphosphate; ThDP), and the fundamental differences in the ThDP-dependent enzymes of metabolic networks in mammals versus plants, fungi and bacteria, or in health versus disease, suggest that these enzymes are promising targets for biotechnological and medical applications. Here, the in vivo action of known regulators of ThDP-dependent enzymes, such as synthetic structural analogs of the enzyme substrates and thiamin, is analyzed in light of the enzymological data accumulated during half a century of research. Mimicking the enzyme-specific catalytic intermediates, the phosphonate analogs of 2-oxo acids selectively inhibit particular ThDP-dependent enzymes. Because of their selectivity, use of these compounds in cellular and animal models of ThDP-dependent enzyme malfunctions improves the validity of the model and its predictive power when compared with the nonselective and enzymatically less characterized oxythiamin and pyrithiamin. In vitro studies of the interaction of thiamin analogs and their biological derivatives with potential in vivo targets are necessary to identify and attenuate the analog selectivity. For both the substrate and thiamin synthetic analogs, in vitro reactivities with potential targets are highly relevant in vivo. However, effective concentrations in vivo are often higher than in vitro studies would suggest. The significance of specific inihibition of the ThDP-dependent enzymes for the development of herbicides, antibiotics, anticancer and neuroprotective strategies is discussed. © 2013 FEBS.

  17. Metabolic Regulation of Histone Acetyltransferases by Endogenous Acyl-CoA Cofactors

    OpenAIRE

    Montgomery, David C.; Sorum, Alexander W.; Guasch, Laura; Nicklaus, Marc C.; Meier, Jordan L.

    2015-01-01

    The finding that chromatin modifications are sensitive to changes in cellular cofactor levels potentially links altered tumor cell metabolism and gene expression. However, the specific enzymes and metabolites that connect these two processes remain obscure. Characterizing these metabolic-epigenetic axes is critical to understanding how metabolism supports signaling in cancer, and developing therapeutic strategies to disrupt this process. Here, we describe a chemical approach to define the met...

  18. PDP-1 links the TGF-β and IIS pathways to regulate longevity, development, and metabolism.

    Directory of Open Access Journals (Sweden)

    Sri Devi Narasimhan

    2011-04-01

    Full Text Available The insulin/IGF-1 signaling (IIS pathway is a conserved regulator of longevity, development, and metabolism. In Caenorhabditis elegans IIS involves activation of DAF-2 (insulin/IGF-1 receptor tyrosine kinase, AGE-1 (PI 3-kinase, and additional downstream serine/threonine kinases that ultimately phosphorylate and negatively regulate the single FOXO transcription factor homolog DAF-16. Phosphatases help to maintain cellular signaling homeostasis by counterbalancing kinase activity. However, few phosphatases have been identified that negatively regulate the IIS pathway. Here we identify and characterize pdp-1 as a novel negative modulator of the IIS pathway. We show that PDP-1 regulates multiple outputs of IIS such as longevity, fat storage, and dauer diapause. In addition, PDP-1 promotes DAF-16 nuclear localization and transcriptional activity. Interestingly, genetic epistasis analyses place PDP-1 in the DAF-7/TGF-β signaling pathway, at the level of the R-SMAD proteins DAF-14 and DAF-8. Further investigation into how a component of TGF-β signaling affects multiple outputs of IIS/DAF-16, revealed extensive crosstalk between these two well-conserved signaling pathways. We find that PDP-1 modulates the expression of several insulin genes that are likely to feed into the IIS pathway to regulate DAF-16 activity. Importantly, dysregulation of IIS and TGF-β signaling has been implicated in diseases such as Type 2 Diabetes, obesity, and cancer. Our results may provide a new perspective in understanding of the regulation of these pathways under normal conditions and in the context of disease.

  19. TPL-2 Regulates Macrophage Lipid Metabolism and M2 Differentiation to Control TH2-Mediated Immunopathology

    Science.gov (United States)

    Entwistle, Lewis J.; Khoury, Hania; Papoutsopoulou, Stamatia; Mahmood, Radma; Mansour, Nuha R.; Ching-Cheng Huang, Stanley; Pearce, Edward J.; Pedro S. de Carvalho, Luiz; Ley, Steven C.

    2016-01-01

    Persistent TH2 cytokine responses following chronic helminth infections can often lead to the development of tissue pathology and fibrotic scarring. Despite a good understanding of the cellular mechanisms involved in fibrogenesis, there are very few therapeutic options available, highlighting a significant medical need and gap in our understanding of the molecular mechanisms of TH2-mediated immunopathology. In this study, we found that the Map3 kinase, TPL-2 (Map3k8; Cot) regulated TH2-mediated intestinal, hepatic and pulmonary immunopathology following Schistosoma mansoni infection or S. mansoni egg injection. Elevated inflammation, TH2 cell responses and exacerbated fibrosis in Map3k8 –/–mice was observed in mice with myeloid cell-specific (LysM) deletion of Map3k8, but not CD4 cell-specific deletion of Map3k8, indicating that TPL-2 regulated myeloid cell function to limit TH2-mediated immunopathology. Transcriptional and metabolic assays of Map3k8 –/–M2 macrophages identified that TPL-2 was required for lipolysis, M2 macrophage activation and the expression of a variety of genes involved in immuno-regulatory and pro-fibrotic pathways. Taken together this study identified that TPL-2 regulated TH2-mediated inflammation by supporting lipolysis and M2 macrophage activation, preventing TH2 cell expansion and downstream immunopathology and fibrosis. PMID:27487182

  20. Early vertebrate origin and diversification of small transmembrane regulators of cellular ion transport.

    Science.gov (United States)

    Pirkmajer, Sergej; Kirchner, Henriette; Lundell, Leonidas S; Zelenin, Pavel V; Zierath, Juleen R; Makarova, Kira S; Wolf, Yuri I; Chibalin, Alexander V

    2017-07-15

    Small transmembrane proteins such as FXYDs, which interact with Na + ,K + -ATPase, and the micropeptides that interact with sarco/endoplasmic reticulum Ca 2+ -ATPase play fundamental roles in regulation of ion transport in vertebrates. Uncertain evolutionary origins and phylogenetic relationships among these regulators of ion transport have led to inconsistencies in their classification across vertebrate species, thus hampering comparative studies of their functions. We discovered the first FXYD homologue in sea lamprey, a basal jawless vertebrate, which suggests small transmembrane regulators of ion transport emerged early in the vertebrate lineage. We also identified 13 gene subfamilies of FXYDs and propose a revised, phylogeny-based FXYD classification that is consistent across vertebrate species. These findings provide an improved framework for investigating physiological and pathophysiological functions of small transmembrane regulators of ion transport. Small transmembrane proteins are important for regulation of cellular ion transport. The most prominent among these are members of the FXYD family (FXYD1-12), which regulate Na + ,K + -ATPase, and phospholamban, sarcolipin, myoregulin and DWORF, which regulate the sarco/endoplasmic reticulum Ca 2+ -ATPase (SERCA). FXYDs and regulators of SERCA are present in fishes, as well as terrestrial vertebrates; however, their evolutionary origins and phylogenetic relationships are obscure, thus hampering comparative physiological studies. Here we discovered that sea lamprey (Petromyzon marinus), a representative of extant jawless vertebrates (Cyclostomata), expresses an FXYD homologue, which strongly suggests that FXYDs predate the emergence of fishes and other jawed vertebrates (Gnathostomata). Using a combination of sequence-based phylogenetic analysis and conservation of local chromosome context, we determined that FXYDs markedly diversified in the lineages leading to cartilaginous fishes (Chondrichthyes) and bony

  1. Comparative proteomic analysis of Xanthomonas citri ssp. citri periplasmic proteins reveals changes in cellular envelope metabolism during in vitro pathogenicity induction.

    Science.gov (United States)

    Artier, Juliana; da Silva Zandonadi, Flávia; de Souza Carvalho, Flávia Maria; Pauletti, Bianca Alves; Leme, Adriana Franco Paes; Carnielli, Carolina Moretto; Selistre-de-Araujo, Heloisa Sobreiro; Bertolini, Maria Célia; Ferro, Jesus Aparecido; Belasque Júnior, José; de Oliveira, Julio Cezar Franco; Novo-Mansur, Maria Teresa Marques

    2018-01-01

    Citrus canker is a plant disease caused by Gram-negative bacteria from the genus Xanthomonas. The most virulent species is Xanthomonas citri ssp. citri (XAC), which attacks a wide range of citrus hosts. Differential proteomic analysis of the periplasm-enriched fraction was performed for XAC cells grown in pathogenicity-inducing (XAM-M) and pathogenicity-non-inducing (nutrient broth) media using two-dimensional electrophoresis combined with liquid chromatography-tandem mass spectrometry. Amongst the 40 proteins identified, transglycosylase was detected in a highly abundant spot in XAC cells grown under inducing condition. Additional up-regulated proteins related to cellular envelope metabolism included glucose-1-phosphate thymidylyltransferase, dTDP-4-dehydrorhamnose-3,5-epimerase and peptidyl-prolyl cis-trans-isomerase. Phosphoglucomutase and superoxide dismutase proteins, known to be involved in pathogenicity in other Xanthomonas species or organisms, were also detected. Western blot and quantitative real-time polymerase chain reaction analyses for transglycosylase and superoxide dismutase confirmed that these proteins were up-regulated under inducing condition, consistent with the proteomic results. Multiple spots for the 60-kDa chaperonin and glyceraldehyde-3-phosphate dehydrogenase were identified, suggesting the presence of post-translational modifications. We propose that substantial alterations in cellular envelope metabolism occur during the XAC infectious process, which are related to several aspects, from defence against reactive oxygen species to exopolysaccharide synthesis. Our results provide new candidates for virulence-related proteins, whose abundance correlates with the induction of pathogenicity and virulence genes, such as hrpD6, hrpG, hrpB7, hpa1 and hrpX. The results present new potential targets against XAC to be investigated in further functional studies. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  2. Stearoyl-CoA desaturase – the lipid metabolism regulator

    Directory of Open Access Journals (Sweden)

    Mirosław Kucharski

    2014-03-01

    Full Text Available Stearoyl-CoA desaturase is an enzyme from the class of oxidoreductase, which catalyzes the formation of a fatty acid double bond between C9 and C10. It plays a key role in composition of the fatty acid profile in adipose tissue and animal products such as meat and milk. Additionally, it is an important regulator of metabolic processes in the body, and it determines the maintenance of energy homeostasis. This enzyme is encoded by an SCD gene, which, depending on the species, may exist as different isoforms. mRNA expression of stearoyl-CoA desaturase is dependent on many factors, including diet, hormones, and the activity of other genes. In previous studies, several mutations were characterized within the sequence of Δ9-desaturase, which may affect the activity of the protein in the tissues, as well as the value of breeding animals. Effects of particular mutations of the gene encoding the enzyme appears to be particularly important for diseases associated with obesity, diabetes, hypertension, heart diseases or cancer in humans. Also, it seems that using sheep as a potential animal model could be helpful in uncovering and understanding the mechanisms regulated by stearoyl-CoA desaturase.

  3. BONE METABOLISM AND ITS REGULATION IN PATIENTS WITH ANKYLOSING SPONDYLITIS

    Directory of Open Access Journals (Sweden)

    O. V. Bugrova

    2016-01-01

    Full Text Available Osteoporosis in ankylosing spondylitis (AS may exacerbate pain and functional disorders and increases the risk of fractures. The mechanisms  of its development in AS have not been adequately studied.Objective: to study bone mineral density (BMD  and its regulation in patients with AS.Subjects and methods. 70 patients (mean age, 43.2±9.2 years with a documented diagnosis of AS (mean disease duration, 17.1±7.8 years and a control group of 30 healthy individuals were examined. All the patients underwent estimation of BMD and the serum concentrations of osteocalcin,  CrossLaps, and key regulators of osteoclastogenesis, such as osteoprotegerin (OPG  and a receptor activator of nuclear factor kappa-B ligand (RANKL by an enzyme immunoassay. Results and discussion. In patients with AS, bone metabolism was characterized  by a decrease in bone formation and by some increase in bone tissue degradation especially in high AS activity. These patients showed the elevated levels of the major blocker of osteoclastogenesis OPG and the OPG/RANKL ratio, which can cause the process of ossification characteristic  of AS.

  4. The g0/g1 switch gene 2 is an important regulator of hepatic triglyceride metabolism.

    Science.gov (United States)

    Wang, Yinfang; Zhang, Yahui; Qian, Hang; Lu, Juan; Zhang, Zhifeng; Min, Xinwen; Lang, Mingjian; Yang, Handong; Wang, Nanping; Zhang, Peng

    2013-01-01

    Nonalcoholic fatty liver disease is associated with obesity and insulin resistance. Factors that regulate the disposal of hepatic triglycerides contribute to the development of hepatic steatosis. G0/G1 switch gene 2 (G0S2) is a target of peroxisome proliferator-activated receptors and plays an important role in regulating lipolysis in adipocytes. Therefore, we investigated whether G0S2 plays a role in hepatic lipid metabolism. Adenovirus-mediated expression of G0S2 (Ad-G0S2) potently induced fatty liver in mice. The liver mass of Ad-G0S2-infected mice was markedly increased with excess triglyceride content compared to the control mice. G0S2 did not change cellular cholesterol levels in hepatocytes. G0S2 was found to be co-localized with adipose triglyceride lipase at the surface of lipid droplets. Hepatic G0S2 overexpression resulted in an increase in plasma Low-density lipoprotein (LDL)/Very-Low-density (VLDL) lipoprotein cholesterol level. Plasma High-density lipoprotein (HDL) cholesterol and ketone body levels were slightly decreased in Ad-G0S2 injected mice. G0S2 also increased the accumulation of neutral lipids in cultured HepG2 and L02 cells. However, G0S2 overexpression in the liver significantly improved glucose tolerance in mice. Livers expressing G0S2 exhibited increased 6-(N-(7-nitrobenz-2-oxa-1-3-diazol-4-yl) amino)-6-deoxyglucose uptake compared with livers transfected with control adenovirus. Taken together, our results provide evidence supporting an important role for G0S2 as a regulator of triglyceride content in the liver and suggest that G0S2 may be a molecular target for the treatment of insulin resistance and other obesity-related metabolic disorders.

  5. BICD2, dynactin, and LIS1 cooperate in regulating dynein recruitment to cellular structures

    Science.gov (United States)

    Splinter, Daniël; Razafsky, David S.; Schlager, Max A.; Serra-Marques, Andrea; Grigoriev, Ilya; Demmers, Jeroen; Keijzer, Nanda; Jiang, Kai; Poser, Ina; Hyman, Anthony A.; Hoogenraad, Casper C.; King, Stephen J.; Akhmanova, Anna

    2012-01-01

    Cytoplasmic dynein is the major microtubule minus-end–directed cellular motor. Most dynein activities require dynactin, but the mechanisms regulating cargo-dependent dynein–dynactin interaction are poorly understood. In this study, we focus on dynein–dynactin recruitment to cargo by the conserved motor adaptor Bicaudal D2 (BICD2). We show that dynein and dynactin depend on each other for BICD2-mediated targeting to cargo and that BICD2 N-terminus (BICD2-N) strongly promotes stable interaction between dynein and dynactin both in vitro and in vivo. Direct visualization of dynein in live cells indicates that by itself the triple BICD2-N–dynein–dynactin complex is unable to interact with either cargo or microtubules. However, tethering of BICD2-N to different membranes promotes their microtubule minus-end–directed motility. We further show that LIS1 is required for dynein-mediated transport induced by membrane tethering of BICD2-N and that LIS1 contributes to dynein accumulation at microtubule plus ends and BICD2-positive cellular structures. Our results demonstrate that dynein recruitment to cargo requires concerted action of multiple dynein cofactors. PMID:22956769

  6. CRF2 signaling is a novel regulator of cellular adhesion and migration in colorectal cancer cells.

    Science.gov (United States)

    Ducarouge, Benjamin; Pelissier-Rota, Marjolaine; Lainé, Michèle; Cristina, Nadine; Vachez, Yvan; Scoazec, Jean-Yves; Bonaz, Bruno; Jacquier-Sarlin, Muriel

    2013-01-01

    Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.

  7. A natural light/dark cycle regulation of carbon-nitrogen metabolism and gene expression in rice shoots

    Directory of Open Access Journals (Sweden)

    Haixing Li

    2016-08-01

    Full Text Available Light and temperature are two particularly important environmental cues for plant survival. Carbon and nitrogen are two essential macronutrients required for plant growth and development, and cellular carbon and nitrogen metabolism must be tightly coordinated. In order to understand how the natural light/dark cycle regulates carbon and nitrogen metabolism in rice plants, we analyzed the photosynthesis, key carbon-nitrogen metabolites and enzyme activities, and differentially expressed genes and miRNAs involved in the carbon and nitrogen metabolic pathway in rice shoots at the following times: 2:00, 6:00, 10:00, 14:00, 18:00 and 22:00. Our results indicated that more CO2 was fixed into carbohydrates by a high net photosynthetic rate, respiratory rate and stomatal conductance in the daytime. Although high levels of the nitrate reductase activity, free ammonium and carbohydrates were exhibited in the daytime, the protein synthesis was not significantly facilitated by the light and temperature. In mRNA sequencing, the carbon and nitrogen metabolism-related differentially expressed genes were obtained, which could be divided into eight groups: photosynthesis, TCA cycle, sugar transport, sugar metabolism, nitrogen transport, nitrogen reduction, amino acid metabolism and nitrogen regulation. Additionally, a total of 78,306 alternative splicing events have been identified, which primarily belong to alternative 5' donor sites, alternative 3' acceptor sites, intron retention and exon skipping. In sRNA sequencing, four carbon and nitrogen metabolism-related miRNAs (osa-miR1440b, osa-miR2876-5p, osa-miR1877 and osa-miR5799 were determined to be regulated by natural light/dark cycle. The expression level analysis showed that the four carbon and nitrogen metabolism-related miRNAs negatively regulated their target genes. These results may provide a good strategy to study how natural light/dark cycle regulates carbon and nitrogen metabolism to ensure plant

  8. Kaempferol ameliorates symptoms of metabolic syndrome by regulating activities of liver X receptor-β.

    Science.gov (United States)

    Hoang, Minh-Hien; Jia, Yaoyao; Mok, Boram; Jun, Hee-jin; Hwang, Kwang-Yeon; Lee, Sung-Joon

    2015-08-01

    Kaempferol is a dietary flavonol previously shown to regulate cellular lipid and glucose metabolism. However, its molecular mechanisms of action and target proteins have remained elusive, probably due to the involvement of multiple proteins. This study investigated the molecular targets of kaempferol. Ligand binding of kaempferol to liver X receptors (LXRs) was quantified by time-resolved fluorescence resonance energy transfer and surface plasmon resonance analyses. Kaempferol directly binds to and induces the transactivation of LXRs, with stronger specificity for the β-subtype (EC50 = 0.33 μM). The oral administration of kaempferol in apolipoprotein-E-deficient mice (150 mg/day/kg body weight) significantly reduced plasma glucose and increased high-density lipoprotein cholesterol levels and insulin sensitivity compared with the vehicle-fed control. Kaempferol also reduced plasma triglyceride concentrations and did not cause liver steatosis, a common side effect of potent LXR activation. In immunoblotting analysis, kaempferol reduced the nuclear accumulation of sterol regulatory element-binding protein-1 (SREBP-1). Our results show that the suppression of SREBP-1 activity and the selectivity for LXR-β over LXR-α by kaempferol contribute to the reductions of plasma and hepatic triglyceride concentrations in mice fed kaempferol. They also suggest that kaempferol activates LXR-β and suppresses SREBP-1 to enhance symptoms in metabolic syndrome. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Ionizing Radiation Induces Cellular Senescence of Articular Chondrocytes via Negative Regulation of SIRT1 by p38 Kinase

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Eun Hee; Hwang, Sang Gu [Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2009-05-15

    Senescent cells exhibit irreversible growth arrest, large flat morphology, and up-regulated senescence-associated {beta}-galactosidase activity at pH 6.0. Several conditions, including oncogenic stress, oxidative stress, and DNA damage are associated with cellular senescence. Massive acute DNA double-strand breaks occurring as a result of mechanical and chemical stress can be repaired, but some DNA damage persists, eventually triggering premature senescence. Since ionizing radiation directly induces DBS, it is possible that cellular senescence is activated under these conditions. The biological events in chondrocytes following irradiation are poorly understood, and limited information is available on the molecular signal transduction mechanisms of cellular senescence at present. In this study, we identify SIRT1 as a target molecule of p38 kinase and demonstrate that the interactions between p38 kinase and SIRT1 protein play an important role in the regulation of cellular senescence in response to IR.

  10. HTLV Tax: A Fascinating Multifunctional Co-Regulator of Viral and Cellular Pathways

    Science.gov (United States)

    Currer, Robert; Van Duyne, Rachel; Jaworski, Elizabeth; Guendel, Irene; Sampey, Gavin; Das, Ravi; Narayanan, Aarthi; Kashanchi, Fatah

    2012-01-01

    Human T-cell lymphotropic virus type 1 (HTLV-1) has been identified as the causative agent of adult T-cell leukemia (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). The virus infects between 15 and 20 million people worldwide of which approximately 2–5% develop ATL. The past 35 years of research have yielded significant insight into the pathogenesis of HTLV-1, including the molecular characterization of Tax, the viral transactivator, and oncoprotein. In spite of these efforts, the mechanisms of oncogenesis of this pleiotropic protein remain to be fully elucidated. In this review, we illustrate the multiple oncogenic roles of Tax by summarizing a recent body of literature that refines our understanding of cellular transformation. A focused range of topics are discussed in this review including Tax-mediated regulation of the viral promoter and other cellular pathways, particularly the connection of the NF-κB pathway to both post-translational modifications (PTMs) of Tax and subcellular localization. Specifically, recent research on polyubiquitination of Tax as it relates to the activation of the IkappaB kinase (IKK) complex is highlighted. Regulation of the cell cycle and DNA damage responses due to Tax are also discussed, including Tax interaction with minichromosome maintenance proteins and the role of Tax in chromatin remodeling. The recent identification of HTLV-3 has amplified the importance of the characterization of emerging viral pathogens. The challenge of the molecular determination of pathogenicity and malignant disease of this virus lies in the comparison of the viral transactivators of HTLV-1, -2, and -3 in terms of transformation and immortalization. Consequently, differences between the three proteins are currently being studied to determine what factors are required for the differences in tumorogenesis. PMID:23226145

  11. miR-23b-3p induces the cellular metabolic memory of high glucose in diabetic retinopathy through a SIRT1-dependent signalling pathway.

    Science.gov (United States)

    Zhao, Shuzhi; Li, Tao; Li, Jun; Lu, Qianyi; Han, Changjing; Wang, Na; Qiu, Qinghua; Cao, Hui; Xu, Xun; Chen, Haibing; Zheng, Zhi

    2016-03-01

    The mechanisms underlying the cellular metabolic memory induced by high glucose remain unclear. Here, we sought to determine the effects of microRNAs (miRNAs) on metabolic memory in diabetic retinopathy. The miRNA microarray was used to examine human retinal endothelial cells (HRECs) following exposure to normal glucose (N) or high glucose (H) for 1 week or transient H for 2 days followed by N for another 5 days (H→N). Levels of sirtuin 1 (SIRT1) and acetylated-nuclear factor κB (Ac-NF-κB) were examined following transfection with miR-23b-3p inhibitor or with SIRT1 small interfering (si)RNA in the H→N group, and the apoptotic HRECs were determined by flow cytometry. Retinal tissues from diabetic rats were similarly studied following intravitreal injection of miR-23b-3p inhibitor. Chromatin immunoprecipitation (ChIP) analysis was performed to detect binding of NF-κB p65 to the potential binding site of the miR-23b-27b-24-1 gene promoter in HRECs. High glucose increased miR-23b-3p expression, even after the return to normal glucose. Luciferase assays identified SIRT1 as a target mRNA of miR-23b-3p. Reduced miR-23b-3p expression inhibited Ac-NF-κB expression by rescuing SIRT1 expression and also relieved the effect of metabolic memory induced by high glucose in HRECs. The results were confirmed in the retina using a diabetic rat model of metabolic memory. High glucose facilitated the recruitment of NF-κB p65 and promoted transcription of the miR-23b-27b-24-1 gene, which can be suppressed by decreasing miR-23b-3p expression. These studies identify a novel mechanism whereby miR-23b-3p regulates high-glucose-induced cellular metabolic memory in diabetic retinopathy through a SIRT1-dependent signalling pathway.

  12. Interactions between host metabolism, immune regulation, and the gut microbiota in diet-associated obesity and metabolic dysfunction

    DEFF Research Database (Denmark)

    Andersen, Daniel

    The increase in the prevalence of obesity and obesity-associated complications such as the metabolic syndrome is becoming a global challenge. Dietary habits and nutrient consumption modulates host homeostasis, which manifests in various diet-induced complications marked by changes in host...... metabolism and immune regulation, which are intricately linked. In addition, diet effectively shapes the gut microbiota composition and activity, which in turn interacts with the host to modulate host metabolism and immune regulation. In the three studies included in this PhD thesis, we have explored...... the impact of specific dietary components on host metabolic function, immune regulation and gut microbiota composition and activity. In the first study, we have characterized the effect of a combined high-fat and gliadin-rich diet, since dietary gliadin has been reported to be associated with intestinal...

  13. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Fukushima, Nobuyuki [Division of Molecular Neurobiology, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan); Tsujiuchi, Toshifumi, E-mail: ttujiuch@life.kindai.ac.jp [Division of Cancer Biology and Bioinformatics, Department of Life Science, Faculty of Science and Engineering, Kinki University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502 (Japan)

    2014-04-04

    Highlights: • LPA{sub 5} inhibits the cell growth and motile activities of 3T3 cells. • LPA{sub 5} suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA{sub 5} on the cell motile activities inhibited by LPA{sub 1} in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA{sub 5} in 3T3 cells. • LPA signaling via LPA{sub 5} acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA{sub 1}–LPA{sub 6}) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA{sub 1} inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA{sub 5} in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA{sub 1} and LPA{sub 5} on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA{sub 5} may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA{sub 1}.

  14. Lysophosphatidic acid receptor-5 negatively regulates cellular responses in mouse fibroblast 3T3 cells

    International Nuclear Information System (INIS)

    Dong, Yan; Hirane, Miku; Araki, Mutsumi; Fukushima, Nobuyuki; Tsujiuchi, Toshifumi

    2014-01-01

    Highlights: • LPA 5 inhibits the cell growth and motile activities of 3T3 cells. • LPA 5 suppresses the cell motile activities stimulated by hydrogen peroxide in 3T3 cells. • Enhancement of LPA 5 on the cell motile activities inhibited by LPA 1 in 3T3 cells. • The expression and activation of Mmp-9 were inhibited by LPA 5 in 3T3 cells. • LPA signaling via LPA 5 acts as a negative regulator of cellular responses in 3T3 cells. - Abstract: Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors (LPA 1 –LPA 6 ) mediates a variety of biological functions, including cell migration. Recently, we have reported that LPA 1 inhibited the cell motile activities of mouse fibroblast 3T3 cells. In the present study, to evaluate a role of LPA 5 in cellular responses, Lpar5 knockdown (3T3-L5) cells were generated from 3T3 cells. In cell proliferation assays, LPA markedly stimulated the cell proliferation activities of 3T3-L5 cells, compared with control cells. In cell motility assays with Cell Culture Inserts, the cell motile activities of 3T3-L5 cells were significantly higher than those of control cells. The activity levels of matrix metalloproteinases (MMPs) were measured by gelatin zymography. 3T3-L5 cells stimulated the activation of Mmp-2, correlating with the expression levels of Mmp-2 gene. Moreover, to assess the co-effects of LPA 1 and LPA 5 on cell motile activities, Lpar5 knockdown (3T3a1-L5) cells were also established from Lpar1 over-expressing (3T3a1) cells. 3T3a1-L5 cells increased the cell motile activities of 3T3a1 cells, while the cell motile activities of 3T3a1 cells were significantly lower than those of control cells. These results suggest that LPA 5 may act as a negative regulator of cellular responses in mouse fibroblast 3T3 cells, similar to the case for LPA 1

  15. Regulation of Cellular Redox Signaling by Matricellular Proteins in Vascular Biology, Immunology, and Cancer.

    Science.gov (United States)

    Roberts, David D; Kaur, Sukhbir; Isenberg, Jeffrey S

    2017-10-20

    In contrast to structural elements of the extracellular matrix, matricellular proteins appear transiently during development and injury responses, but their sustained expression can contribute to chronic disease. Through interactions with other matrix components and specific cell surface receptors, matricellular proteins regulate multiple signaling pathways, including those mediated by reactive oxygen and nitrogen species and H 2 S. Dysregulation of matricellular proteins contributes to the pathogenesis of vascular diseases and cancer. Defining the molecular mechanisms and receptors involved is revealing new therapeutic opportunities. Recent Advances: Thrombospondin-1 (TSP1) regulates NO, H 2 S, and superoxide production and signaling in several cell types. The TSP1 receptor CD47 plays a central role in inhibition of NO signaling, but other TSP1 receptors also modulate redox signaling. The matricellular protein CCN1 engages some of the same receptors to regulate redox signaling, and ADAMTS1 regulates NO signaling in Marfan syndrome. In addition to mediating matricellular protein signaling, redox signaling is emerging as an important pathway that controls the expression of several matricellular proteins. Redox signaling remains unexplored for many matricellular proteins. Their interactions with multiple cellular receptors remains an obstacle to defining signaling mechanisms, but improved transgenic models could overcome this barrier. Therapeutics targeting the TSP1 receptor CD47 may have beneficial effects for treating cardiovascular disease and cancer and have recently entered clinical trials. Biomarkers are needed to assess their effects on redox signaling in patients and to evaluate how these contribute to their therapeutic efficacy and potential side effects. Antioxid. Redox Signal. 27, 874-911.

  16. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    NARCIS (Netherlands)

    Bruin, W.C.C. de; Oerlemans, F.T.J.J.; Wieringa, B.

    2004-01-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand

  17. Mitochondrial dysfunction induced by frataxin deficiency is associated with cellular senescence and abnormal calcium metabolism

    Directory of Open Access Journals (Sweden)

    Arantxa eBolinches-Amorós

    2014-05-01

    Full Text Available Friedreich ataxia is considered a neurodegenerative disorder involving both the peripheral and central nervous systems. Dorsal root ganglia (DRG are the major target tissue structures. This neuropathy is caused by mutations in the FXN gene that encodes frataxin. Here, we investigated the mitochondrial and cell consequences of frataxin depletion in a cellular model based on frataxin silencing in SH-SY5Y human neuroblastoma cells, a cell line that has been used widely as in vitro models for studies on neurological diseases. We showed that the reduction of frataxin induced mitochondrial dysfunction due to a bioenergetic deficit and abnormal Ca2+ homeostasis in the mitochondria that were associated with oxidative and endoplasmic reticulum stresses. The depletion of frataxin did not cause cell death but increased autophagy, which may have a cytoprotective effect against cellular insults such as oxidative stress. Frataxin silencing provoked slow cell growth associated with cellular senescence, as demonstrated by increased SA-βgal activity and cell cycle arrest at the G1 phase. We postulate that cellular senescence might be related to a hypoplastic defect in the DRG during neurodevelopment, as suggested by necropsy studies.

  18. Controlled sumoylation of the mevalonate pathway enzyme HMGS-1 regulates metabolism during aging

    NARCIS (Netherlands)

    Sapir, Amir; Tsur, Assaf; Koorman, Thijs; Ching, Kaitlin; Mishra, Prashant; Bardenheier, Annabelle; Podolsky, Lisa; Bening-Abu-Shach, Ulrike; Boxem, Mike; Chou, Tsui-Fen; Broday, Limor; Sternberg, Paul W

    2014-01-01

    Many metabolic pathways are critically regulated during development and aging but little is known about the molecular mechanisms underlying this regulation. One key metabolic cascade in eukaryotes is the mevalonate pathway. It catalyzes the synthesis of sterol and nonsterol isoprenoids, such as

  19. Bactericidal Antibiotics Induce Toxic Metabolic Perturbations that Lead to Cellular Damage

    Directory of Open Access Journals (Sweden)

    Peter Belenky

    2015-11-01

    Full Text Available Understanding how antibiotics impact bacterial metabolism may provide insight into their mechanisms of action and could lead to enhanced therapeutic methodologies. Here, we profiled the metabolome of Escherichia coli after treatment with three different classes of bactericidal antibiotics (β-lactams, aminoglycosides, quinolones. These treatments induced a similar set of metabolic changes after 30 min that then diverged into more distinct profiles at later time points. The most striking changes corresponded to elevated concentrations of central carbon metabolites, active breakdown of the nucleotide pool, reduced lipid levels, and evidence of an elevated redox state. We examined potential end-target consequences of these metabolic perturbations and found that antibiotic-treated cells exhibited cytotoxic changes indicative of oxidative stress, including higher levels of protein carbonylation, malondialdehyde adducts, nucleotide oxidation, and double-strand DNA breaks. This work shows that bactericidal antibiotics induce a complex set of metabolic changes that are correlated with the buildup of toxic metabolic by-products.

  20. The relative importance of kinetic mechanisms and variable enzyme abundances for the regulation of hepatic glucose metabolism--insights from mathematical modeling.

    Science.gov (United States)

    Bulik, Sascha; Holzhütter, Hermann-Georg; Berndt, Nikolaus

    2016-03-02

    Adaptation of the cellular metabolism to varying external conditions is brought about by regulated changes in the activity of enzymes and transporters. Hormone-dependent reversible enzyme phosphorylation and concentration changes of reactants and allosteric effectors are the major types of rapid kinetic enzyme regulation, whereas on longer time scales changes in protein abundance may also become operative. Here, we used a comprehensive mathematical model of the hepatic glucose metabolism of rat hepatocytes to decipher the relative importance of different regulatory modes and their mutual interdependencies in the hepatic control of plasma glucose homeostasis. Model simulations reveal significant differences in the capability of liver metabolism to counteract variations of plasma glucose in different physiological settings (starvation, ad libitum nutrient supply, diabetes). Changes in enzyme abundances adjust the metabolic output to the anticipated physiological demand but may turn into a regulatory disadvantage if sudden unexpected changes of the external conditions occur. Allosteric and hormonal control of enzyme activities allow the liver to assume a broad range of metabolic states and may even fully reverse flux changes resulting from changes of enzyme abundances alone. Metabolic control analysis reveals that control of the hepatic glucose metabolism is mainly exerted by enzymes alone, which are differently controlled by alterations in enzyme abundance, reversible phosphorylation, and allosteric effects. In hepatic glucose metabolism, regulation of enzyme activities by changes of reactants, allosteric effects, and reversible phosphorylation is equally important as changes in protein abundance of key regulatory enzymes.

  1. p73 regulates basal and starvation-induced liver metabolism in vivo

    OpenAIRE

    He, Zhaoyue; Agostini, Massimiliano; Liu, He; Melino, Gerry; Simon, Hans-Uwe

    2015-01-01

    As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate th...

  2. Metabolic regulation and behavior: how hunger produces arousal - an insect study.

    Science.gov (United States)

    Wicher, Dieter

    2007-12-01

    The metabolic state affects the level of general activity of an organism. Satiety is related to relaxation while hunger is coupled to elevated activity which supports the chance to balance the energy deficiency. The unrestricted food availability in modern industrial nations along with no required locomotor activity are risk factors to develop disorders such as obesity. One of the strategies to find new targets for future treatment of metabolic disorders in men is to gain detailed knowledge of molecular and cellular mechanisms involved in the regulation of metabolic homeostasis in less complex, i.e. invertebrate systems. This review reports recent molecular studies in insects about how hunger signals may be linked to global activation. Adipokinetic peptide hormones (AKHs) are the insect counterpart to the mammalian glucagon. They are released upon lack of energy and mobilize internal fuel reserves. In addition, AKHs stimulate the locomotor activity which involves their activity within the central nervous system. In the cockroach Periplaneta americana various neurons express the AKH receptor. Some of these, the dorsal unpaired median (DUM) neurons belonging to a general arousal system, release the biogenic amine octopamine, the insect counterpart to mammalian adrenergic hormones. The two Periplaneta AKHs activate Gs proteins, and AKH I also potently activates Gq proteins. AKH I and - less effectively - AKH II accelerate spiking of DUM neurons via an increase of a pacemaking Ca2+ current. Systemically injected AKH I stimulates locomotion in contrast to AKH II. This behavioral difference corresponds to the different effectiveness of the AKHs on the level of G-proteins.

  3. BAD-Dependent Regulation of Fuel Metabolism and KATP Channel Activity Confers Resistance to Epileptic Seizures

    OpenAIRE

    Giménez-Cassina, Alfredo; Martínez-François, Juan Ramón; Fisher, Jill K.; Szlyk, Benjamin; Polak, Klaudia; Wiwczar, Jessica; Tanner, Geoffrey R.; Lutas, Andrew; Yellen, Gary; Danial, Nika N.

    2012-01-01

    Neuronal excitation can be substantially modulated by alterations in metabolism, as evident from the anticonvulsant effect of diets that reduce glucose utilization and promote ketone body metabolism. We provide genetic evidence that BAD, a protein with dual functions in apoptosis and glucose metabolism, imparts reciprocal effects on metabolism of glucose and ketone bodies in brain cells. These effects involve phospho-regulation of BAD and are independent of its apoptotic function. BAD modific...

  4. Thyroid hormone’s role in regulating brain glucose metabolism and potentially modulating hippocampal cognitive processes

    Science.gov (United States)

    Jahagirdar, V; McNay, EC

    2012-01-01

    Cognitive performance is dependent on adequate glucose supply to the brain. Insulin, which regulates systemic glucose metabolism, has been recently shown both to regulate hippocampal metabolism and to be a mandatory component of hippocampally-mediated cognitive performance. Thyroid hormones (TH) regulate systemic glucose metabolism and may also be involved in regulation of brain glucose metabolism. Here we review potential mechanisms for such regulation. Importantly, TH imbalance is often encountered in combination with metabolic disorders, such as diabetes, and may cause additional metabolic dysregulation and hence worsening of disease states. TH’s potential as a regulator of brain glucose metabolism is heightened by interactions with insulin signaling, but there have been relatively few studies on this topic or on the actions of TH in a mature brain. This review discusses evidence for mechanistic links between TH, insulin, cognitive function, and brain glucose metabolism, and suggests that TH is a good candidate to be a modulator of memory processes, likely at least in part by modulation of central insulin signaling and glucose metabolism. PMID:22437199

  5. Dependence of anaphylactic histamine release from rat mast cells on cellular energy metabolism

    DEFF Research Database (Denmark)

    Johansen, Torben

    1981-01-01

    The relation between anaphylactic histamine release and the adenosine triphosphate (ATP) content of the mast cells was studied. The cells were incubated with glycolytic (2-deoxyglucose) and respiratory inhibitors (antimycin A and oligomycin) in order to decrease the ATP content of the cells prior...... to initiation of the release process by the antigen-antibody reaction. The secretory capacity of mast cells was less related to the cellular level of ATP at the time of activation of the release process by the antigen-antibody reaction than to the rate of cellular energy supply. Furthermore, mast cells were...... pretreated with 2-deoxyglucose. The release of histamine from these cells was reduced when respiratory inhibitors were added to the cell suspension 5 to 20 sec after exposure of the cells to antigen. This may indicate that the secretory process requires energy, and it seems necessary that energy should...

  6. Signaling Pathways Regulating Redox Balance in Cancer Metabolism.

    Science.gov (United States)

    De Santis, Maria Chiara; Porporato, Paolo Ettore; Martini, Miriam; Morandi, Andrea

    2018-01-01

    The interplay between rewiring tumor metabolism and oncogenic driver mutations is only beginning to be appreciated. Metabolic deregulation has been described for decades as a bystander effect of genomic aberrations. However, for the biology of malignant cells, metabolic reprogramming is essential to tackle a harsh environment, including nutrient deprivation, reactive oxygen species production, and oxygen withdrawal. Besides the well-investigated glycolytic metabolism, it is emerging that several other metabolic fluxes are relevant for tumorigenesis in supporting redox balance, most notably pentose phosphate pathway, folate, and mitochondrial metabolism. The relationship between metabolic rewiring and mutant genes is still unclear and, therefore, we will discuss how metabolic needs and oncogene mutations influence each other to satisfy cancer cells' demands. Mutations in oncogenes, i.e., PI3K/AKT/mTOR, RAS pathway, and MYC, and tumor suppressors, i.e., p53 and liver kinase B1, result in metabolic flexibility and may influence response to therapy. Since metabolic rewiring is shaped by oncogenic driver mutations, understanding how specific alterations in signaling pathways affect different metabolic fluxes will be instrumental for the development of novel targeted therapies. In the era of personalized medicine, the combination of driver mutations, metabolite levels, and tissue of origins will pave the way to innovative therapeutic interventions.

  7. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium

    Science.gov (United States)

    Walker, Nancy M.; Liu, Jinghua; Stein, Sydney R.; Stefanski, Casey D.; Strubberg, Ashlee M.

    2015-01-01

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl− and HCO3− efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2′,7′-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3−)-loading proteins and upregulation of the basolateral membrane HCO3−-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl−/HCO3− exchange with maximized gradients, it also had increased intracellular Cl− concentration relative to wild-type. Pharmacological reduction of intracellular Cl− concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl− and HCO3− efflux, which impairs pHi regulation by Ae2. Retention of Cl− and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. PMID:26542396

  8. Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium.

    Science.gov (United States)

    Walker, Nancy M; Liu, Jinghua; Stein, Sydney R; Stefanski, Casey D; Strubberg, Ashlee M; Clarke, Lane L

    2016-01-15

    Cystic fibrosis (CF) is caused by mutations in the CF transmembrane conductance regulator (CFTR), an anion channel providing a major pathway for Cl(-) and HCO3 (-) efflux across the apical membrane of the epithelium. In the intestine, CF manifests as obstructive syndromes, dysbiosis, inflammation, and an increased risk for gastrointestinal cancer. Cftr knockout (KO) mice recapitulate CF intestinal disease, including intestinal hyperproliferation. Previous studies using Cftr KO intestinal organoids (enteroids) indicate that crypt epithelium maintains an alkaline intracellular pH (pHi). We hypothesized that Cftr has a cell-autonomous role in downregulating pHi that is incompletely compensated by acid-base regulation in its absence. Here, 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein microfluorimetry of enteroids showed that Cftr KO crypt epithelium sustains an alkaline pHi and resistance to cell acidification relative to wild-type. Quantitative real-time PCR revealed that Cftr KO enteroids exhibit downregulated transcription of base (HCO3 (-))-loading proteins and upregulation of the basolateral membrane HCO3 (-)-unloader anion exchanger 2 (Ae2). Although Cftr KO crypt epithelium had increased Ae2 expression and Ae2-mediated Cl(-)/HCO3 (-) exchange with maximized gradients, it also had increased intracellular Cl(-) concentration relative to wild-type. Pharmacological reduction of intracellular Cl(-) concentration in Cftr KO crypt epithelium normalized pHi, which was largely Ae2-dependent. We conclude that Cftr KO crypt epithelium maintains an alkaline pHi as a consequence of losing both Cl(-) and HCO3 (-) efflux, which impairs pHi regulation by Ae2. Retention of Cl(-) and an alkaline pHi in crypt epithelium may alter several cellular processes in the proliferative compartment of Cftr KO intestine. Copyright © 2016 the American Physiological Society.

  9. Polyethylenimine architecture-dependent metabolic imprints and perturbation of cellular redox homeostasis

    DEFF Research Database (Denmark)

    Hall, Arnaldur; Parhamifar, Ladan; Lange, Marina Krarup

    2015-01-01

    oxygen species (ROS). The differences in metabolic and redox imprints were further reflected in the transfection performance of the polycations, but co-treatment with the GSH precursor N-acetyl-cysteine (NAC) counteracted redox dysregulation and increased the number of viable transfected cells...

  10. The Molecular and Cellular Effect of Homocysteine Metabolism Imbalance on Human Health

    Directory of Open Access Journals (Sweden)

    Henrieta Škovierová

    2016-10-01

    Full Text Available Homocysteine (Hcy is a sulfur-containing non-proteinogenic amino acid derived in methionine metabolism. The increased level of Hcy in plasma, hyperhomocysteinemia, is considered to be an independent risk factor for cardio and cerebrovascular diseases. However, it is still not clear if Hcy is a marker or a causative agent of diseases. More and more research data suggest that Hcy is an important indicator for overall health status. This review represents the current understanding of molecular mechanism of Hcy metabolism and its link to hyperhomocysteinemia-related pathologies in humans. The aberrant Hcy metabolism could lead to the redox imbalance and oxidative stress resulting in elevated protein, nucleic acid and carbohydrate oxidation and lipoperoxidation, products known to be involved in cytotoxicity. Additionally, we examine the role of Hcy in thiolation of proteins, which results in their molecular and functional modifications. We also highlight the relationship between the imbalance in Hcy metabolism and pathogenesis of diseases, such as cardiovascular diseases, neurological and psychiatric disorders, chronic kidney disease, bone tissue damages, gastrointestinal disorders, cancer, and congenital defects.

  11. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    Energy Technology Data Exchange (ETDEWEB)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G., E-mail: bipin@amrita.edu

    2016-08-15

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  12. Nitric Oxide and ERK mediates regulation of cellular processes by Ecdysterone

    International Nuclear Information System (INIS)

    Omanakuttan, Athira; Bose, Chinchu; Pandurangan, Nanjan; Kumar, Geetha B.; Banerji, Asoke; Nair, Bipin G.

    2016-01-01

    The complex process of wound healing is a major problem associated with diabetes, venous or arterial disease, old age and infection. A wide range of pharmacological effects including anabolic, anti-diabetic and hepato-protective activities have been attributed to Ecdysterone. In earlier studies, Ecdysterone has been shown to modulate eNOS and iNOS expression in diabetic animals and activate osteogenic differentiation through the Extracellular-signal-Regulated Kinase (ERK) pathway in periodontal ligament stem cells. However, in the wound healing process, Ecdysterone has only been shown to enhance granulation tissue formation in rabbits. There have been no studies to date, which elucidate the molecular mechanism underlying the complex cellular process involved in wound healing. The present study, demonstrates a novel interaction between the phytosteroid Ecdysterone and Nitric Oxide Synthase (NOS), in an Epidermal Growth Factor Receptor (EGFR)-dependent manner, thereby promoting cell proliferation, cell spreading and cell migration. These observations were further supported by the 4-amino-5-methylamino- 2′ ,7′ -difluorofluorescein diacetate (DAF FM) fluorescence assay which indicated that Ecdysterone activates NOS resulting in increased Nitric Oxide (NO) production. Additionally, studies with inhibitors of both the EGFR and ERK, demonstrated that Ecdysterone activates NOS through modulation of EGFR and ERK. These results clearly demonstrate, for the first time, that Ecdysterone enhances Nitric Oxide production and modulates complex cellular processes by activating ERK1/2 through the EGF pathway. - Highlights: • Ecdysterone significantly enhances cell migration in a dose dependent manner. • Ecdysterone augments cell spreading during the initial phase of cell migration through actin cytoskeletal rearrangement. • Ecdysterone enhances cell proliferation in a nitric oxide dependent manner. • Ecdysterone enhances nitric oxide production via activation of EGFR

  13. PI3K/AKT and ERK regulate retinoic acid-induced neuroblastoma cellular differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, Jingbo [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Paul, Pritha; Lee, Sora [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Qiao, Lan; Josifi, Erlena; Tiao, Joshua R. [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Chung, Dai H., E-mail: dai.chung@vanderbilt.edu [Department of Pediatric Surgery, Vanderbilt University Medical Center, Nashville, TN 37232 (United States); Department of Cancer Biology, Vanderbilt University Medical Center, Nashville, TN 37232 (United States)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer Retinoic acid (RA) induces neuroblastoma cells differentiation, which is accompanied by G0/G1 cell cycle arrest. Black-Right-Pointing-Pointer RA resulted in neuroblastoma cell survival and inhibition of DNA fragmentation; this is regulated by PI3K pathway. Black-Right-Pointing-Pointer RA activates PI3K and ERK1/2 pathway; PI3K pathway mediates RA-induced neuroblastoma cell differentiation. Black-Right-Pointing-Pointer Upregulation of p21 is necessary for RA-induced neuroblastoma cell differentiation. -- Abstract: Neuroblastoma, the most common extra-cranial solid tumor in infants and children, is characterized by a high rate of spontaneous remissions in infancy. Retinoic acid (RA) has been known to induce neuroblastoma differentiation; however, the molecular mechanisms and signaling pathways that are responsible for RA-mediated neuroblastoma cell differentiation remain unclear. Here, we sought to determine the cell signaling processes involved in RA-induced cellular differentiation. Upon RA administration, human neuroblastoma cell lines, SK-N-SH and BE(2)-C, demonstrated neurite extensions, which is an indicator of neuronal cell differentiation. Moreover, cell cycle arrest occurred in G1/G0 phase. The protein levels of cyclin-dependent kinase inhibitors, p21 and p27{sup Kip}, which inhibit cell proliferation by blocking cell cycle progression at G1/S phase, increased after RA treatment. Interestingly, RA promoted cell survival during the differentiation process, hence suggesting a potential mechanism for neuroblastoma resistance to RA therapy. Importantly, we found that the PI3K/AKT pathway is required for RA-induced neuroblastoma cell differentiation. Our results elucidated the molecular mechanism of RA-induced neuroblastoma cellular differentiation, which may be important for developing novel therapeutic strategy against poorly differentiated neuroblastoma.

  14. Peroxisomal β-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease

    Science.gov (United States)

    Moreno-Fernandez, Maria E.; Giles, Daniel A.; Stankiewicz, Traci E.; Sheridan, Rachel; Karns, Rebekah; Cappelletti, Monica; Lampe, Kristin; Mukherjee, Rajib; Sina, Christian; Sallese, Anthony; Bridges, James P.; Hogan, Simon P.; Aronow, Bruce J.; Hoebe, Kasper

    2018-01-01

    Nonalcoholic fatty liver disease (NAFLD), a metabolic predisposition for development of hepatocellular carcinoma (HCC), represents a disease spectrum ranging from steatosis to steatohepatitis to cirrhosis. Acox1, a rate-limiting enzyme in peroxisomal fatty acid β-oxidation, regulates metabolism, spontaneous hepatic steatosis, and hepatocellular damage over time. However, it is unknown whether Acox1 modulates inflammation relevant to NAFLD pathogenesis or if Acox1-associated metabolic and inflammatory derangements uncover and accelerate potential for NAFLD progression. Here, we show that mice with a point mutation in Acox1 (Acox1Lampe1) exhibited altered cellular metabolism, modified T cell polarization, and exacerbated immune cell inflammatory potential. Further, in context of a brief obesogenic diet stress, NAFLD progression associated with Acox1 mutation resulted in significantly accelerated and exacerbated hepatocellular damage via induction of profound histological changes in hepatocytes, hepatic inflammation, and robust upregulation of gene expression associated with HCC development. Collectively, these data demonstrate that β-oxidation links metabolism and immune responsiveness and that a better understanding of peroxisomal β-oxidation may allow for discovery of mechanisms central for NAFLD progression. PMID:29563328

  15. Effects of Graphene Oxide and Oxidized Carbon Nanotubes on the Cellular Division, Microstructure, Uptake, Oxidative Stress, and Metabolic Profiles.

    Science.gov (United States)

    Hu, Xiangang; Ouyang, Shaohu; Mu, Li; An, Jing; Zhou, Qixing

    2015-09-15

    Nanomaterial oxides are common formations of nanomaterials in the natural environment. Herein, the nanotoxicology of typical graphene oxide (GO) and carboxyl single-walled carbon nanotubes (C-SWCNT) was compared. The results showed that cell division of Chlorella vulgaris was promoted at 24 h and then inhibited at 96 h after nanomaterial exposure. At 96 h, GO and C-SWCNT inhibited the rates of cell division by 0.08-15% and 0.8-28.3%, respectively. Both GO and C-SWCNT covered the cell surface, but the uptake percentage of C-SWCNT was 2-fold higher than that of GO. C-SWCNT induced stronger plasmolysis and mitochondrial membrane potential loss and decreased the cell viability to a greater extent than GO. Moreover, C-SWCNT-exposed cells exhibited more starch grains and lysosome formation and higher reactive oxygen species (ROS) levels than GO-exposed cells. Metabolomics analysis revealed significant differences in the metabolic profiles among the control, C-SWCNT and GO groups. The metabolisms of alkanes, lysine, octadecadienoic acid and valine was associated with ROS and could be considered as new biomarkers of ROS. The nanotoxicological mechanisms involved the inhibition of fatty acid, amino acid and small molecule acid metabolisms. These findings provide new insights into the effects of GO and C-SWCNT on cellular responses.

  16. translin is required for metabolic regulation of sleep

    OpenAIRE

    Murakami, Kazuma; Yurgel, Maria E.; Stahl, Bethany A.; Masek, Pavel; Mehta, Aradhana; Heidker, Rebecca; Bollinger, Wesley; Gingras, Robert M.; Kim, Young-Joon; Ja, William W.; Suter, Beat; DiAngelo, Justin R.; Keene, Alex C.

    2016-01-01

    Dysregulation of sleep or feeding has enormous health consequences. In humans, acute sleep loss is associated with increased appetite and insulin insensitivity, while chronically sleep-deprived individuals are more likely to develop obesity, metabolic syndrome, type II diabetes, and cardiovascular disease. Conversely, metabolic state potently modulates sleep and circadian behavior; yet, the molecular basis for sleep-metabolism interactions remains poorly understood. Here, we describe the iden...

  17. Eukaryotic Cell Cycle as a Test Case for Modeling Cellular Regulation in a Collaborative Problem-Solving Environment

    Science.gov (United States)

    2007-03-01

    computer models of cell cycle regulation in a variety of organisms, including yeast cells, amphibian embryos, bacterial cells and human cells. These...and meiosis ), but they do not nullify the central role played by irreversible, alternating START and FINISH transitions in the cell cycle. 32...AFRL-IF-RS-TR-2007-69 Final Technical Report March 2007 EUKARYOTIC CELL CYCLE AS A TEST CASE FOR MODELING CELLULAR REGULATION IN A

  18. Histaminergic regulation of seasonal metabolic rhythms in Siberian hamsters.

    Science.gov (United States)

    I'anson, Helen; Jethwa, Preeti H; Warner, Amy; Ebling, Francis J P

    2011-06-01

    We investigated whether histaminergic tone contributes to the seasonal catabolic state in Siberian hamsters by determining the effect of ablation of histaminergic neurons on food intake, metabolic rate and body weight. A ribosomal toxin (saporin) conjugated to orexin-B was infused into the ventral tuberomammillary region of the hypothalamus, since most histaminergic neurons express orexin receptors. This caused not only 75-80% loss of histaminergic neurons in the posterior hypothalamus, but also some loss of other orexin-receptor expressing cells e.g. MCH neurons. In the long-day anabolic state, lesions produced a transient post-surgical decrease in body weight, but the hamsters recovered and maintained constant body weight, whereas weight gradually increased in sham-lesioned hamsters. VO(2) in the dark phase was significantly higher in the lesioned hamsters compared to shams, and locomotor activity also tended to be higher. In a second study in short days, sham-treated hamsters showed the expected seasonal decrease in body weight, but weight remained constant in the lesioned hamsters, as in the long-day study. Lesioned hamsters consumed more during the early dark phase and less during the light phase due to an increase in the frequency of meals during the dark and decreased meal size during the light, and their cumulative food intake in their home cages was greater than in the control hamsters. In summary, ablation of orexin-responsive cells in the posterior hypothalamus blocks the short-day induced decline in body weight by preventing seasonal hypophagia, evidence consistent with the hypothesis that central histaminergic mechanisms contribute to long-term regulation of body weight. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. The CPT1C 5'UTR contains a repressing upstream open reading frame that is regulated by cellular energy availability and AMPK.

    Directory of Open Access Journals (Sweden)

    Ines Lohse

    Full Text Available BACKGROUND: Translational control is utilized as a means of regulating gene expression in many species. In most cases, posttranscriptional regulatory mechanisms play an important role in stress response pathways and can lead to dysfunctional physiology if blocked by mutations. Carnitine Palmitoyltransferase 1 C (CPT1C, the brain-specific member of the CPT 1 family, has previously been shown to be involved in regulating metabolism in situations of energy surplus. PRINCIPAL FINDINGS: Sequence analysis of the CPT1C mRNA revealed that it contains an upstream open reading frame (uORF in the 5' UTR of its mRNA. Using CPT1C 5' UTR/luciferase constructs, we investigated the role of the uORF in translational regulation. The results presented here show that translation from the CPT1C main open reading frame (mORF is repressed by the presence of the uORF, that this repression is relieved in response to specific stress stimuli, namely glucose deprivation and palmitate-BSA treatment, and that AMPK inhibition can relieve this uORF-dependent repression. SIGNIFICANCE: The fact that the mORF regulation is relieved in response to a specific set of stress stimuli rather than general stress response, hints at an involvement of CPT1C in cellular energy-sensing pathways and provides further evidence for a role of CPT1C in hypothalamic regulation of energy homeostasis.

  20. Viral and cellular SOS-regulated motor proteins: dsDNA translocation mechanisms with divergent functions.

    Science.gov (United States)

    Wolfe, Annie; Phipps, Kara; Weitao, Tao

    2014-01-01

    DNA damage attacks on bacterial cells have been known to activate the SOS response, a transcriptional response affecting chromosome replication, DNA recombination and repair, cell division and prophage induction. All these functions require double-stranded (ds) DNA translocation by ASCE hexameric motors. This review seeks to delineate the structural and functional characteristics of the SOS response and the SOS-regulated DNA translocases FtsK and RuvB with the phi29 bacteriophage packaging motor gp16 ATPase as a prototype to study bacterial motors. While gp16 ATPase, cellular FtsK and RuvB are similarly comprised of hexameric rings encircling dsDNA and functioning as ATP-driven DNA translocases, they utilize different mechanisms to accomplish separate functions, suggesting a convergent evolution of these motors. The gp16 ATPase and FtsK use a novel revolution mechanism, generating a power stroke between subunits through an entropy-DNA affinity switch and pushing dsDNA inward without rotation of DNA and the motor, whereas RuvB seems to employ a rotation mechanism that remains to be further characterized. While FtsK and RuvB perform essential tasks during the SOS response, their roles may be far more significant as SOS response is involved in antibiotic-inducible bacterial vesiculation and biofilm formation as well as the perspective of the bacteria-cancer evolutionary interaction.

  1. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  2. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  3. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    (HI), 40 mU/m(2) x min], 3-(3)H-glucose, indirect calorimetry, and iv glucose tolerance test. Free fatty acid concentrations were similar during basal steady state but 3.7- to 13-fold higher during clamps. P-glucagon increased and the insulin/glucagon ratio decreased at both LI and HI during...... not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes....

  4. Insulin secretion and cellular glucose metabolism after prolonged low-grade intralipid infusion in young men

    DEFF Research Database (Denmark)

    Jensen, Christine B; Storgaard, Heidi; Holst, Jens Juul

    2003-01-01

    not in the nonoxidative) glucose metabolism in young healthy men. Moreover, insulin hypersecretion perfectly countered the free-fatty acid-induced insulin resistance. Future studies are needed to determine the role of a prolonged moderate lipid load in subjects at increased risk of developing diabetes.......We examined the simultaneous effects of a 24-h low-grade Intralipid infusion on peripheral glucose disposal, intracellular glucose partitioning and insulin secretion rates in twenty young men, by 2-step hyperinsulinemic euglycemic clamp [low insulin clamp (LI), 10 mU/m(2) x min; high insulin clamp...

  5. Cellular disturbance in the rats retina after irradiation and metabolic errors during the postnatal period

    International Nuclear Information System (INIS)

    Lierse, W.; Franke, H.D.

    1982-01-01

    During the first five days of the postnatal period the retina has been vulnerable following administration of DNA blocking drugs and irradiation with conventional X-rays and fast neutrons. During this period the disturbance of lamination accompanied with pycnosis of neurons and neuroblasts has been the important morphologic reaction. During the same phase metabolic errors, like experimental phenylketonuria, have produced a swelling of photoreceptor cells and pigmentepithelium cells. The other neurons of the retina were pycnotic. Structural alterations like rosettes persisted during the rest of life. The relative minor error during the first phase of rats life may result in a persistent disease. (orig.)

  6. Programming Post-Translational Control over the Metabolic Labeling of Cellular Proteins with a Noncanonical Amino Acid.

    Science.gov (United States)

    Thomas, Emily E; Pandey, Naresh; Knudsen, Sarah; Ball, Zachary T; Silberg, Jonathan J

    2017-08-18

    Transcriptional control can be used to program cells to label proteins with noncanonical amino acids by regulating the expression of orthogonal aminoacyl tRNA synthetases (aaRSs). However, we cannot yet program cells to control labeling in response to aaRS and ligand binding. To identify aaRSs whose activities can be regulated by interactions with ligands, we used a combinatorial approach to discover fragmented variants of Escherichia coli methionyl tRNA synthetase (MetRS) that require fusion to associating proteins for maximal activity. We found that these split proteins could be leveraged to create ligand-dependent MetRS using two approaches. When a pair of MetRS fragments was fused to FKBP12 and the FKBP-rapamycin binding domain (FRB) of mTOR and mutations were introduced that direct substrate specificity toward azidonorleucine (Anl), Anl metabolic labeling was significantly enhanced in growth medium containing rapamycin, which stabilizes the FKBP12-FRB complex. In addition, fusion of MetRS fragments to the termini of the ligand-binding domain of the estrogen receptor yielded proteins whose Anl metabolic labeling was significantly enhanced when 4-hydroxytamoxifen (4-HT) was added to the growth medium. These findings suggest that split MetRS can be fused to a range of ligand-binding proteins to create aaRSs whose metabolic labeling activities depend upon post-translational interactions with ligands.

  7. Alterations in cellular energy metabolism associated with the antiproliferative effects of the ATM inhibitor KU-55933 and with metformin.

    Directory of Open Access Journals (Sweden)

    Mahvash Zakikhani

    Full Text Available KU-55933 is a specific inhibitor of the kinase activity of the protein encoded by Ataxia telangiectasia mutated (ATM, an important tumor suppressor gene with key roles in DNA repair. Unexpectedly for an inhibitor of a tumor suppressor gene, KU-55933 reduces proliferation. In view of prior preliminary evidence suggesting defective mitochondrial function in cells of patients with Ataxia Telangiectasia (AT, we examined energy metabolism of cells treated with KU-55933. The compound increased AMPK activation, glucose uptake and lactate production while reducing mitochondrial membrane potential and coupled respiration. The stimulation of glycolysis by KU-55933 did not fully compensate for the reduction in mitochondrial functions, leading to decreased cellular ATP levels and energy stress. These actions are similar to those previously described for the biguanide metformin, a partial inhibitor of respiratory complex I. Both compounds decreased mitochondrial coupled respiration and reduced cellular concentrations of fumarate, malate, citrate, and alpha-ketogluterate. Succinate levels were increased by KU-55933 levels and decreased by metformin, indicating that the effects of ATM inhibition and metformin are not identical. These observations suggest a role for ATM in mitochondrial function and show that both KU-55933 and metformin perturb the TCA cycle as well as oxidative phosphorylation.

  8. Transcriptional Regulation of T-Cell Lipid Metabolism: Implications for Plasma Membrane Lipid Rafts and T-Cell Function

    Directory of Open Access Journals (Sweden)

    George A. Robinson

    2017-11-01

    Full Text Available It is well established that cholesterol and glycosphingolipids are enriched in the plasma membrane (PM and form signaling platforms called lipid rafts, essential for T-cell activation and function. Moreover, changes in PM lipid composition affect the biophysical properties of lipid rafts and have a role in defining functional T-cell phenotypes. Here, we review the role of transcriptional regulators of lipid metabolism including liver X receptors α/β, peroxisome proliferator-activated receptor γ, estrogen receptors α/β (ERα/β, and sterol regulatory element-binding proteins in T-cells. These receptors lie at the interface between lipid metabolism and immune cell function and are endogenously activated by lipids and/or hormones. Importantly, they regulate cellular cholesterol, fatty acid, glycosphingolipid, and phospholipid levels but are also known to modulate a broad spectrum of immune responses. The current evidence supporting a role for lipid metabolism pathways in controlling immune cell activation by influencing PM lipid raft composition in health and disease, and the potential for targeting lipid biosynthesis pathways to control unwanted T-cell activation in autoimmunity is reviewed.

  9. Restriction on an energy-dense diet improves markers of metabolic health and cellular aging in mice through decreasing hepatic mTOR activity.

    Science.gov (United States)

    Schloesser, Anke; Campbell, Graeme; Glüer, Claus-Christian; Rimbach, Gerald; Huebbe, Patricia

    2015-02-01

    Dietary restriction (DR) on a normal low-fat diet improves metabolic health and may prolong life span. However, it is still uncertain whether restriction of an energy-dense, high-fat diet would also be beneficial and mitigate age-related processes. In the present study, we determined biomarkers of metabolic health, energy metabolism, and cellular aging in obesity-prone mice subjected to 30% DR on a high-fat diet for 6 months. Dietary-restricted mice had significantly lower body weights, less adipose tissue, lower energy expenditure, and altered substrate oxidation compared to their ad libitum-fed counterparts. Hepatic major urinary proteins (Mup) expression, which is linked to glucose and energy metabolism, and biomarkers of metabolic health, including insulin, glucose, cholesterol, and leptin/adiponectin ratio, were likewise reduced in high-fat, dietary-restricted mice. Hallmarks of cellular senescence such as Lamp2a and Hsc70 that mediate chaperone-mediated autophagy were induced and mechanistic target of rapamycin (mTOR) signaling mitigated upon high-fat DR. In contrast to DR applied in low-fat diets, anti-oxidant gene expression, proteasome activity, as well as 5'-adenosine monophosphate-activated protein kinase (AMPK) activation were not changed, suggesting that high-fat DR may attenuate some processes associated with cellular aging without the induction of cellular stress response or energy deprivation.

  10. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology

    Directory of Open Access Journals (Sweden)

    Yusuke Murata

    2011-01-01

    Full Text Available The FGF family comprises twenty-two structurally related proteins with functions in development and metabolism. The Fgf21 gene was generated early in vertebrate evolution. FGF21 acts as an endocrine regulator in lipid metabolism. Hepatic Fgf21 expression is markedly induced in mice by fasting or a ketogenic diet. Experiments with Fgf21 transgenic mice and cultured cells indicate that FGF21 exerts pharmacological effects on glucose and lipid metabolism in hepatocytes and adipocytes via cell surface FGF receptors. However, experiments with Fgf21 knockout mice indicate that FGF21 inhibits lipolysis in adipocytes during fasting and attenuates torpor induced by a ketogenic diet but maybe not a physiological regulator for these hepatic functions. These findings suggest the pharmacological effects to be distinct from the physiological roles. Serum FGF21 levels are increased in patients with metabolic diseases having insulin resistance, indicating that FGF21 is a metabolic regulator and a biomarker for these diseases.

  11. Hepcidin: an important iron metabolism regulator in chronic kidney disease.

    Science.gov (United States)

    Antunes, Sandra Azevedo; Canziani, Maria Eugênia Fernandes

    2016-01-01

    Anemia is a common complication and its impact on morbimortality in patients with chronic kidney disease (CKD) is well known. The discovery of hepcidin and its functions has contributed to a better understanding of iron metabolism disorders in CKD anemia. Hepcidin is a peptide mainly produced by hepatocytes and, through a connection with ferroportin, it regulates iron absorption in the duodenum and its release of stock cells. High hepcidin concentrations described in patients with CKD, especially in more advanced stages are attributed to decreased renal excretion and increased production. The elevation of hepcidin has been associated with infection, inflammation, atherosclerosis, insulin resistance and oxidative stress. Some strategies were tested to reduce the effects of hepcidin in patients with CKD, however more studies are necessary to assess the impact of its modulation in the management of anemia in this population. Resumo Anemia é uma complicação frequente e seu impacto na morbimortalidade é bem conhecido em pacientes com doença renal crônica (DRC). A descoberta da hepcidina e de suas funções contribuíram para melhor compreensão dos distúrbios do metabolismo de ferro na anemia da DRC. Hepcidina é um peptídeo produzido principalmente pelos hepatócitos, e através de sua ligação com a ferroportina, regula a absorção de ferro no duodeno e sua liberação das células de estoque. Altas concentrações de hepcidina descritas em pacientes com DRC, principalmente em estádios mais avançados, são atribuídas à diminuição da excreção renal e ao aumento de sua produção. Elevação de hepcidina tem sido associada à ocorrência de infecção, inflamação, aterosclerose, resistência à insulina e estresse oxidativo. Algumas estratégias foram testadas para diminuir os efeitos da hepcidina em pacientes com DRC, entretanto, serão necessários mais estudos para avaliar o impacto de sua modulação no manejo da anemia nessa população.

  12. Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism.

    Science.gov (United States)

    Roh, Eun; Song, Do Kyeong; Kim, Min-Seon

    2016-03-11

    Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.

  13. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  14. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance.

    Science.gov (United States)

    López, Miguel; Varela, Luis; Vázquez, María J; Rodríguez-Cuenca, Sergio; González, Carmen R; Velagapudi, Vidya R; Morgan, Donald A; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; Martínez de Morentin, Pablo Blanco; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Oresic, Matej; Chatterjee, Krishna; Saha, Asish K; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio

    2010-09-01

    Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here we demonstrate that either whole-body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly, inhibition of thyroid hormone receptors in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation, as genetic inhibition of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is a major regulator of whole-body energy homeostasis.

  15. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance

    Science.gov (United States)

    López, Miguel; Varela, Luis; Vázquez, María J.; Rodríguez-Cuenca, Sergio; González, Carmen R.; Velagapudi, Vidya R.; Morgan, Donald A.; Schoenmakers, Erik; Agassandian, Khristofor; Lage, Ricardo; de Morentin, Pablo Blanco Martínez; Tovar, Sulay; Nogueiras, Rubén; Carling, David; Lelliott, Christopher; Gallego, Rosalía; Orešič, Matej; Chatterjee, Krishna; Saha, Asish K.; Rahmouni, Kamal; Diéguez, Carlos; Vidal-Puig, Antonio

    2010-01-01

    Thyroid hormones have widespread cellular effects; however it is unclear whether their effects on the central nervous system (CNS) contribute to global energy balance. Here, we demonstrate that either whole body hyperthyroidism or central administration of triiodothyronine (T3) decreases the activity of hypothalamic AMP-activated protein kinase (AMPK), increases sympathetic nervous system (SNS) activity and upregulates thermogenic markers in brown adipose tissue (BAT). Inhibition of the lipogenic pathway in the ventromedial nucleus of the hypothalamus (VMH) prevents CNS-mediated activation of BAT by thyroid hormone and reverses the weight loss associated with hyperthyroidism. Similarly inhibition of thyroid hormone receptors (TRs) in the VMH reverses the weight loss associated with hyperthyroidism. This regulatory mechanism depends on AMPK inactivation as genetic ablation of this enzyme in the VMH of euthyroid rats induces feeding-independent weight loss and increases expression of thermogenic markers in BAT. These effects are reversed by pharmacological blockade of the SNS. Thus, thyroid-hormone-induced modulation of AMPK activity and lipid metabolism in the hypothalamus is an important regulator of energy homeostasis. PMID:20802499

  16. mTOR regulates metabolic adaptation of APCs in the lung and controls the outcome of allergic inflammation.

    Science.gov (United States)

    Sinclair, Charles; Bommakanti, Gayathri; Gardinassi, Luiz; Loebbermann, Jens; Johnson, Matthew Joseph; Hakimpour, Paul; Hagan, Thomas; Benitez, Lydia; Todor, Andrei; Machiah, Deepa; Oriss, Timothy; Ray, Anuradha; Bosinger, Steven; Ravindran, Rajesh; Li, Shuzhao; Pulendran, Bali

    2017-09-08

    Antigen-presenting cells (APCs) occupy diverse anatomical tissues, but their tissue-restricted homeostasis remains poorly understood. Here, working with mouse models of inflammation, we found that mechanistic target of rapamycin (mTOR)-dependent metabolic adaptation was required at discrete locations. mTOR was dispensable for dendritic cell (DC) homeostasis in secondary lymphoid tissues but necessary to regulate cellular metabolism and accumulation of CD103 + DCs and alveolar macrophages in lung. Moreover, while numbers of mTOR-deficient lung CD11b + DCs were not changed, they were metabolically reprogrammed to skew allergic inflammation from eosinophilic T helper cell 2 (T H 2) to neutrophilic T H 17 polarity. The mechanism for this change was independent of translational control but dependent on inflammatory DCs, which produced interleukin-23 and increased fatty acid oxidation. mTOR therefore mediates metabolic adaptation of APCs in distinct tissues, influencing the immunological character of allergic inflammation. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  17. Utilization of carbon 13-labelled stable isotopes for studying drug toxicity on cellular metabolism

    International Nuclear Information System (INIS)

    Herve, M.; Wietzerbin, J.; Tran-Dinh, S.

    1994-01-01

    A new approach for studying the effects of two drugs, amphotericine B (AMB), an anti-fungal antibiotic, and 2-deoxy-D-glucose (DG), on the glucose metabolism in brewer yeast cells (Saccharomyces cerevisiae), is presented; AMB interacts with the membrane sterols, inducing formation of pores through which ions and small molecules can pass. DG may enter in the cytosol, where it is phosphoryled by hexokinase into deoxy-D-glucose 6-phosphate (DG6P) which disappears very slowly. DG slows down the glycolysis process and induces the formation of new substances. This paper shows the advantages of utilizing carbon 13-labelled substrates combined to the NMR-13C and NMR-1H techniques. 6 figs., 5 refs

  18. Studying of a wave activity condition and cellular metabolism of tissues in patients with perioral dermatitis

    Directory of Open Access Journals (Sweden)

    Grashkin V.A.

    2012-06-01

    Full Text Available

    Perioral dermatitis is a facial skin disease with insuffciently studied ethiology and pathogenetic mechanisms, being one of actual problems of dermatology. It is a chronic relapsing facial skin disease mainly in women of young and middle age (in men and children meets less often. The disease has an independent clinical picture which is different from rosacea, demodecosis, seborrheic dermatitis, etc. The standard diagnostic criterion is a visual estimation of expression of an infammation on the basis of signs of exudative reaction which has a subjective character. Possibilities of a radiometric method for an objective estimation of a facial skin functional condition and indicators of an intracellular metabolism in patients with a perioral dermatitis were frst studied.

  19. Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.

    Directory of Open Access Journals (Sweden)

    Agata Leszczynska

    Full Text Available In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR, the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity with introduced wild-type or mutant form of human HMGR (hHMGR gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids.

  20. Methylglyoxal synthase regulates cell elongation via alterations of cellular methylglyoxal and spermidine content in Bacillus subtilis.

    Science.gov (United States)

    Shin, Sang-Min; Song, Sung-Hyun; Lee, Jin-Woo; Kwak, Min-Kyu; Kang, Sa-Ouk

    2017-10-01

    Methylglyoxal regulates cell division and differentiation through its interaction with polyamines. Loss of their biosynthesizing enzyme causes physiological impairment and cell elongation in eukaryotes. However, the reciprocal effects of methylglyoxal and polyamine production and its regulatory metabolic switches on morphological changes in prokaryotes have not been addressed. Here, Bacillus subtilis methylglyoxal synthase (mgsA) and polyamine biosynthesizing genes encoding arginine decarboxylase (SpeA), agmatinase (SpeB), and spermidine synthase (SpeE), were disrupted or overexpressed. Treatment of 0.2mM methylglyoxal and 1mM spermidine led to the elongation and shortening of B. subtilis wild-type cells to 12.38±3.21μm (P<0.05) and 3.24±0.73μm (P<0.01), respectively, compared to untreated cells (5.72±0.68μm). mgsA-deficient (mgsA - ) and -overexpressing (mgsA OE ) mutants also demonstrated cell shortening and elongation, similar to speB- and speE-deficient (speB - and speE - ) and -overexpressing (speB OE and speE OE ) mutants. Importantly, both mgsA-depleted speB OE and speE OE mutants (speB OE /mgsA - and speE OE /mgsA - ) were drastically shortened to 24.5% and 23.8% of parental speB OE and speE OE mutants, respectively. These phenotypes were associated with reciprocal alterations of mgsA and polyamine transcripts governed by the contents of methylglyoxal and spermidine, which are involved in enzymatic or genetic metabolite-control mechanisms. Additionally, biophysically detected methylglyoxal-spermidine Schiff bases did not affect morphogenesis. Taken together, the findings indicate that methylglyoxal triggers cell elongation. Furthermore, cells with methylglyoxal accumulation commonly exhibit an elongated rod-shaped morphology through upregulation of mgsA, polyamine genes, and the global regulator spx, as well as repression of the cell division and shape regulator, FtsZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. GAIP interacting protein C-terminus regulates autophagy and exosome biogenesis of pancreatic cancer through metabolic pathways.

    Directory of Open Access Journals (Sweden)

    Santanu Bhattacharya

    Full Text Available GAIP interacting protein C terminus (GIPC is known to play an important role in a variety of physiological and disease states. In the present study, we have identified a novel role for GIPC as a master regulator of autophagy and the exocytotic pathways in cancer. We show that depletion of GIPC-induced autophagy in pancreatic cancer cells, as evident from the upregulation of the autophagy marker LC3II. We further report that GIPC regulates cellular trafficking pathways by modulating the secretion, biogenesis, and molecular composition of exosomes. We also identified the involvement of GIPC on metabolic stress pathways regulating autophagy and microvesicular shedding, and observed that GIPC status determines the loading of cellular cargo in the exosome. Furthermore, we have shown the overexpression of the drug resistance gene ABCG2 in exosomes from GIPC-depleted pancreatic cancer cells. We also demonstrated that depletion of GIPC from cancer cells sensitized them to gemcitabine treatment, an avenue that can be explored as a potential therapeutic strategy to overcome drug resistance in cancer.

  2. SEPTIN2 and STATHMIN Regulate CD99-Mediated Cellular Differentiation in Hodgkin's Lymphoma.

    Directory of Open Access Journals (Sweden)

    Wenjing Jian

    Full Text Available Hodgkin's lymphoma (HL is a lymphoid neoplasm characterized by Hodgkin's and Reed-Sternberg (H/RS cells, which is regulated by CD99. We previously reported that CD99 downregulation led to the transformation of murine B lymphoma cells (A20 into cells with an H/RS phenotype, while CD99 upregulation induced differentiation of classical Hodgkin's lymphoma (cHL cells (L428 into terminal B-cells. However, the molecular mechanism remains unclear. In this study, using fluorescence two-dimensional differential in-gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS, we have analyzed the alteration of protein expression following CD99 upregulation in L428 cells as well as downregulation of mouse CD99 antigen-like 2 (mCD99L2 in A20 cells. Bioinformatics analysis showed that SEPTIN2 and STATHMIN, which are cytoskeleton proteins, were significantly differentially expressed, and chosen for further validation and functional analysis. Differential expression of SEPTIN2 was found in both models and was inversely correlated with CD99 expression. STATHMIN was identified in the A20 cell line model and its expression was positively correlated with that of CD99. Importantly, silencing of SEPTIN2 with siRNA substantially altered the cellular cytoskeleton in L428 cells. The downregulation of STATHMIN by siRNA promoted the differentiation of H/RS cells toward terminal B-cells. These results suggest that SEPTIN2-mediated cytoskeletal rearrangement and STATHMIN-mediated differentiation may contribute to changes in cell morphology and differentiation of H/RS cells with CD99 upregulation in HL.

  3. Review: Efficacy of alginate supplementation in relation to appetite regulation and metabolic risk factors

    DEFF Research Database (Denmark)

    Jensen, Morten Georg; Pedersen, C; Kristensen, Mette Bredal

    2013-01-01

    This review provides a critical update on human and animal studies investigating the effect of alginate supplementation on appetite regulation, glycaemic and insulinemic responses, and lipid metabolism with discussion of the evidence on potential mechanisms, efficacy and tolerability. Dependent...

  4. Comprehensive analysis of PPARα-dependent regulation of hepatic lipid metabolism by expression profiling - 5

    NARCIS (Netherlands)

    Rakhshandehroo, Maryam; Sanderson-Kjellberg, L.M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Groot, de Philip; Muller, Michael; Kersten, Sander

    2007-01-01

    PPARα is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARα in hepatic lipid metabolism, many PPARα-dependent pathways and genes have yet to be discovered. In order to obtain an

  5. Comprehensive analysis of PPARa-dependent regulation of hepatic lipid metabolism by expression profiling

    NARCIS (Netherlands)

    Rakhshandehroo, Maryam; Sanderson-Kjellberg, L.M.; Matilainen, Merja; Stienstra, Rinke; Carlberg, Carsten; Groot, de Philip; Muller, Michael; Kersten, Sander

    2007-01-01

    PPARalpha is a ligand-activated transcription factor involved in the regulation of nutrient metabolism and inflammation. Although much is already known about the function of PPARalpha in hepatic lipid metabolism, many PPARalpha-dependent pathways and genes have yet to be discovered. In order to

  6. Natural compounds regulate energy metabolism by the modulating the activity of lipid-sensing nuclear receptors.

    Science.gov (United States)

    Goto, Tsuyoshi; Kim, Young-Il; Takahashi, Nobuyuki; Kawada, Teruo

    2013-01-01

    Obesity causes excess fat accumulation in various tissues, most notoriously in the adipose tissue, along with other insulin-responsive organs such as skeletal muscle and the liver, which predisposes an individual to the development of metabolic abnormalities. The molecular mechanisms underlying obesity-induced metabolic abnormalities have not been completely elucidated; however, in recent years, the search for therapies to prevent the development of obesity and obesity-associated metabolic disorders has increased. It is known that several nuclear receptors, when activated by specific ligands, regulate carbohydrate and lipid metabolism at the transcriptional level. The expression of lipid metabolism-related enzymes is directly regulated by the activity of various nuclear receptors via their interaction with specific response elements in promoters of those genes. Many natural compounds act as ligands of nuclear receptors and regulate carbohydrate and lipid metabolism by regulating the activities of these nuclear receptors. In this review, we describe our current knowledge of obesity, the role of lipid-sensing nuclear receptors in energy metabolism, and several examples of food factors that act as agonists or antagonists of nuclear receptors, which may be useful for the management of obesity and the accompanying energy metabolism abnormalities. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [Regulation of terpene metabolism]. Annual progress report, March 15, 1988--March 14, 1989

    Energy Technology Data Exchange (ETDEWEB)

    Croteau, R.

    1989-12-31

    Progress in understanding of the metabolism of monoterpenes by peppermint and spearmint is recorded including the actions of two key enzymes, geranyl pyrophosphate:limonene cyclase and a UDP-glucose dependent glucosyl transferase; concerning the ultrastructure of oil gland senescence; enzyme subcellular localization; regulation of metabolism; and tissue culture systems.

  8. Current knowledge of microRNA-mediated regulation of drug metabolism in humans.

    Science.gov (United States)

    Nakano, Masataka; Nakajima, Miki

    2018-05-01

    Understanding the factors causing inter- and intra-individual differences in drug metabolism potencies is required for the practice of personalized or precision medicine, as well as for the promotion of efficient drug development. The expression of drug-metabolizing enzymes is controlled by transcriptional regulation by nuclear receptors and transcriptional factors, epigenetic regulation, such as DNA methylation and histone acetylation, and post-translational modification. In addition to such regulation mechanisms, recent studies revealed that microRNAs (miRNAs), endogenous ~22-nucleotide non-coding RNAs that regulate gene expression through the translational repression and degradation of mRNAs, significantly contribute to post-transcriptional regulation of drug-metabolizing enzymes. Areas covered: This review summarizes the current knowledge regarding miRNAs-dependent regulation of drug-metabolizing enzymes and transcriptional factors and its physiological and clinical significance. We also describe recent advances in miRNA-dependent regulation research, showing that the presence of pseudogenes, single-nucleotide polymorphisms, and RNA editing affects miRNA targeting. Expert opinion: It is unwavering fact that miRNAs are critical factors causing inter- and intra-individual differences in the expression of drug-metabolizing enzymes. Consideration of miRNA-dependent regulation would be a helpful tool for optimizing personalized and precision medicine.

  9. Leucine metabolism in regulation of insulin secretion from pancreatic beta cells

    OpenAIRE

    Yang, Jichun; Chi, Yujing; Burkhardt, Brant R.; Guan, Youfei; Wolf, Bryan A

    2010-01-01

    Leucine, a the branched-chain amino acids that must be supplied in daily diet, plays an important role in controlling protein synthesis and regulating cell metabolism in various cell types. In pancreatic β cells, leucine acutely stimulates insulin secretion by serving as both metabolic fuel and allosteric activator of glutamate dehydrogenase to enhance glutaminolysis. Leucine has also been shown to regulate gene transcription and protein synthesis in pancreatic islet β cells via both mTOR-dep...

  10. Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-14-1-0152 TITLE: Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism PRINCIPAL...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-14-1-0152 Scaffold Attachment Factor B1: A Novel Chromatin Regulator of Prostate Cancer Metabolism... chromatin immunoprecipitation-next generation DNA sequencing (ChIP-seq) and integrative network modeling to identify the SAFB1 cistrome and the extent of

  11. Acyl coenzyme A thioesterase 7 regulates neuronal fatty acid metabolism to prevent neurotoxicity.

    Science.gov (United States)

    Ellis, Jessica M; Wong, G William; Wolfgang, Michael J

    2013-05-01

    Numerous neurological diseases are associated with dysregulated lipid metabolism; however, the basic metabolic control of fatty acid metabolism in neurons remains enigmatic. Here we have shown that neurons have abundant expression and activity of the long-chain cytoplasmic acyl coenzyme A (acyl-CoA) thioesterase 7 (ACOT7) to regulate lipid retention and metabolism. Unbiased and targeted metabolomic analysis of fasted mice with a conditional knockout of ACOT7 in the nervous system, Acot7(N-/-), revealed increased fatty acid flux into multiple long-chain acyl-CoA-dependent pathways. The alterations in brain fatty acid metabolism were concomitant with a loss of lean mass, hypermetabolism, hepatic steatosis, dyslipidemia, and behavioral hyperexcitability in Acot7(N-/-) mice. These failures in adaptive energy metabolism are common in neurodegenerative diseases. In agreement, Acot7(N-/-) mice exhibit neurological dysfunction and neurodegeneration. These data show that ACOT7 counterregulates fatty acid metabolism in neurons and protects against neurotoxicity.

  12. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms.

    Science.gov (United States)

    Panahi, Yunes; Ahmadi, Yasin; Teymouri, Manouchehr; Johnston, Thomas P; Sahebkar, Amirhossein

    2018-01-01

    Curcumin is an herbal polyphenol extensively investigated for antioxidant, anti-inflammatory, and hypolipidaemic properties. In the present review, the efficacy of curcumin for improving a plasma lipid profile has been evaluated and compared with statins, a well-known class of medicines for treating hypercholesterolemia and hyperlipidaemia. Curcumin is presumably most effective in reducing triglyceride (TG), while statins are most efficient in lowering low-density lipoproteins-cholesterol (LDL-C). Additionally, various molecular and metabolic mediators of cholesterol and plasma lipid homeostasis are discussed in relation to how they are modulated by curcumin or statins. Overall, curcumin influences the same mediators of plasma lipid alteration as statins do. Almost all the pathways through which cholesterol trafficking takes place are affected by these agents. These include gastrointestinal absorption of dietary cholesterol, hepatocellular removal of plasma cholesterol, the mediators of reverse cholesterol transport, and removal of cholesterol from peripheral tissues. Moreover, the reactive oxygen species (ROS) scavenging potential of curcumin limits the risk of lipid peroxidation that triggers inflammatory responses causing cardiovascular diseases (CVD) and atherosclerosis. Taken together, curcumin could be used as a safe and well-tolerated adjunct to statins to control hyperlipidaemia more effectively than statins alone. © 2017 Wiley Periodicals, Inc.

  13. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  14. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  15. Natural Compounds as Regulators of the Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Claudia Cerella

    2013-01-01

    Full Text Available Even though altered metabolism is an “old” physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  16. Proteolytic regulation of metabolic enzymes by E3 ubiquitin ligase complexes: lessons from yeast.

    Science.gov (United States)

    Nakatsukasa, Kunio; Okumura, Fumihiko; Kamura, Takumi

    2015-01-01

    Eukaryotic organisms use diverse mechanisms to control metabolic rates in response to changes in the internal and/or external environment. Fine metabolic control is a highly responsive, energy-saving process that is mediated by allosteric inhibition/activation and/or reversible modification of preexisting metabolic enzymes. In contrast, coarse metabolic control is a relatively long-term and expensive process that involves modulating the level of metabolic enzymes. Coarse metabolic control can be achieved through the degradation of metabolic enzymes by the ubiquitin-proteasome system (UPS), in which substrates are specifically ubiquitinated by an E3 ubiquitin ligase and targeted for proteasomal degradation. Here, we review select multi-protein E3 ligase complexes that directly regulate metabolic enzymes in Saccharomyces cerevisiae. The first part of the review focuses on the endoplasmic reticulum (ER) membrane-associated Hrd1 and Doa10 E3 ligase complexes. In addition to their primary roles in the ER-associated degradation pathway that eliminates misfolded proteins, recent quantitative proteomic analyses identified native substrates of Hrd1 and Doa10 in the sterol synthesis pathway. The second part focuses on the SCF (Skp1-Cul1-F-box protein) complex, an abundant prototypical multi-protein E3 ligase complex. While the best-known roles of the SCF complex are in the regulation of the cell cycle and transcription, accumulating evidence indicates that the SCF complex also modulates carbon metabolism pathways. The increasing number of metabolic enzymes whose stability is directly regulated by the UPS underscores the importance of the proteolytic regulation of metabolic processes for the acclimation of cells to environmental changes.

  17. Microbial Regulation of Glucose Metabolism and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Silke Crommen

    2017-12-01

    Full Text Available Type 2 diabetes is a combined disease, resulting from a hyperglycemia and peripheral and hepatic insulin resistance. Recent data suggest that the gut microbiota is involved in diabetes development, altering metabolic processes including glucose and fatty acid metabolism. Thus, type 2 diabetes patients show a microbial dysbiosis, with reduced butyrate-producing bacteria and elevated potential pathogens compared to metabolically healthy individuals. Furthermore, probiotics are a known tool to modulate the microbiota, having a therapeutic potential. Current literature will be discussed to elucidate the complex interaction of gut microbiota, intestinal permeability and inflammation leading to peripheral and hepatic insulin resistance. Therefore, this review aims to generate a deeper understanding of the underlying mechanism of potential microbial strains, which can be used as probiotics.

  18. Pheromone-sensing neurons regulate peripheral lipid metabolism in Caenorhabditis elegans.

    Science.gov (United States)

    Hussey, Rosalind; Stieglitz, Jon; Mesgarzadeh, Jaleh; Locke, Tiffany T; Zhang, Ying K; Schroeder, Frank C; Srinivasan, Supriya

    2017-05-01

    It is now established that the central nervous system plays an important role in regulating whole body metabolism and energy balance. However, the extent to which sensory systems relay environmental information to modulate metabolic events in peripheral tissues has remained poorly understood. In addition, it has been challenging to map the molecular mechanisms underlying discrete sensory modalities with respect to their role in lipid metabolism. In previous work our lab has identified instructive roles for serotonin signaling as a surrogate for food availability, as well as oxygen sensing, in the control of whole body metabolism. In this study, we now identify a role for a pair of pheromone-sensing neurons in regulating fat metabolism in C. elegans, which has emerged as a tractable and highly informative model to study the neurobiology of metabolism. A genetic screen revealed that GPA-3, a member of the Gα family of G proteins, regulates body fat content in the intestine, the major metabolic organ for C. elegans. Genetic and reconstitution studies revealed that the potent body fat phenotype of gpa-3 null mutants is controlled from a pair of neurons called ADL(L/R). We show that cAMP functions as the second messenger in the ADL neurons, and regulates body fat stores via the neurotransmitter acetylcholine, from downstream neurons. We find that the pheromone ascr#3, which is detected by the ADL neurons, regulates body fat stores in a GPA-3-dependent manner. We define here a third sensory modality, pheromone sensing, as a major regulator of body fat metabolism. The pheromone ascr#3 is an indicator of population density, thus we hypothesize that pheromone sensing provides a salient 'denominator' to evaluate the amount of food available within a population and to accordingly adjust metabolic rate and body fat levels.

  19. Functional proteomic analysis of corticosteroid pharmacodynamics in rat liver: Relationship to hepatic stress, signaling, energy regulation, and drug metabolism.

    Science.gov (United States)

    Ayyar, Vivaswath S; Almon, Richard R; DuBois, Debra C; Sukumaran, Siddharth; Qu, Jun; Jusko, William J

    2017-05-08

    Corticosteroids (CS) are anti-inflammatory agents that cause extensive pharmacogenomic and proteomic changes in multiple tissues. An understanding of the proteome-wide effects of CS in liver and its relationships to altered hepatic and systemic physiology remains incomplete. Here, we report the application of a functional pharmacoproteomic approach to gain integrated insight into the complex nature of CS responses in liver in vivo. An in-depth functional analysis was performed using rich pharmacodynamic (temporal-based) proteomic data measured over 66h in rat liver following a single dose of methylprednisolone (MPL). Data mining identified 451 differentially regulated proteins. These proteins were analyzed on the basis of temporal regulation, cellular localization, and literature-mined functional information. Of the 451 proteins, 378 were clustered into six functional groups based on major clinically-relevant effects of CS in liver. MPL-responsive proteins were highly localized in the mitochondria (20%) and cytosol (24%). Interestingly, several proteins were related to hepatic stress and signaling processes, which appear to be involved in secondary signaling cascades and in protecting the liver from CS-induced oxidative damage. Consistent with known adverse metabolic effects of CS, several rate-controlling enzymes involved in amino acid metabolism, gluconeogenesis, and fatty-acid metabolism were altered by MPL. In addition, proteins involved in the metabolism of endogenous compounds, xenobiotics, and therapeutic drugs including cytochrome P450 and Phase-II enzymes were differentially regulated. Proteins related to the inflammatory acute-phase response were up-regulated in response to MPL. Functionally-similar proteins showed large diversity in their temporal profiles, indicating complex mechanisms of regulation by CS. Clinical use of corticosteroid (CS) therapy is frequent and chronic. However, current knowledge on the proteome-level effects of CS in liver and

  20. Molecular, cellular, and tissue impact of depleted uranium on xenobiotic-metabolizing enzymes.

    Science.gov (United States)

    Gueguen, Yann; Rouas, Caroline; Monin, Audrey; Manens, Line; Stefani, Johanna; Delissen, Olivia; Grison, Stéphane; Dublineau, Isabelle

    2014-02-01

    Enzymes that metabolize xenobiotics (XME) are well recognized in experimental models as representative indicators of organ detoxification functions and of exposure to toxicants. As several in vivo studies have shown, uranium can alter XME in the rat liver or kidneys after either acute or chronic exposure. To determine how length or level of exposure affects these changes in XME, we continued our investigation of chronic rat exposure to depleted uranium (DU, uranyl nitrate). The first study examined the effect of duration (1-18 months) of chronic exposure to DU, the second evaluated dose dependence, from a level close to that found in the environment near mining sites (0.2 mg/L) to a supra-environmental dose (120 mg/L, 10 times the highest level naturally found in the environment), and the third was an in vitro assessment of whether DU exposure directly affects XME and, in particular, CYP3A. The experimental in vivo models used here demonstrated that CYP3A is the enzyme modified to the greatest extent: high gene expression changed after 6 and 9 months. The most substantial effects were observed in the liver of rats after 9 months of exposure to 120 mg/L of DU: CYP3A gene and protein expression and enzyme activity all decreased by more than 40 %. Nonetheless, no direct effect of DU by itself was observed after in vitro exposure of rat microsomal preparations, HepG2 cells, or human primary hepatocytes. Overall, these results probably indicate the occurrence of regulatory or adaptive mechanisms that could explain the indirect effect observed in vivo after chronic exposure.

  1. NAD+ : A key metabolic regulator with great therapeutic potential.

    Science.gov (United States)

    Sultani, G; Samsudeen, A F; Osborne, B; Turner, N

    2017-10-01

    Nicotinamide adenine dinucleotide (NAD + ) is a ubiquitous metabolite that serves an essential role in the catabolism of nutrients. Recently, there has been a surge of interest in NAD + biology, with the recognition that NAD + influences many biological processes beyond metabolism, including transcription, signalling and cell survival. There are a multitude of pathways involved in the synthesis and breakdown of NAD + , and alterations in NAD + homeostasis have emerged as a common feature of a range of disease states. Here, we provide an overview of NAD + metabolism and summarise progress on the development of NAD + -related therapeutics. © 2017 British Society for Neuroendocrinology.

  2. Identification of cisplatin-regulated metabolic pathways in pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Louise von Stechow

    Full Text Available The chemotherapeutic compound, cisplatin causes various kinds of DNA lesions but also triggers other pertubations, such as ER and oxidative stress. We and others have shown that treatment of pluripotent stem cells with cisplatin causes a plethora of transcriptional and post-translational alterations that, to a major extent, point to DNA damage response (DDR signaling. The orchestrated DDR signaling network is important to arrest the cell cycle and repair the lesions or, in case of damage beyond repair, eliminate affected cells. Failure to properly balance the various aspects of the DDR in stem cells contributes to ageing and cancer. Here, we performed metabolic profiling by mass spectrometry of embryonic stem (ES cells treated for different time periods with cisplatin. We then integrated metabolomics with transcriptomics analyses and connected cisplatin-regulated metabolites with regulated metabolic enzymes to identify enriched metabolic pathways. These included nucleotide metabolism, urea cycle and arginine and proline metabolism. Silencing of identified proline metabolic and catabolic enzymes indicated that altered proline metabolism serves as an adaptive, rather than a toxic response. A group of enriched metabolic pathways clustered around the metabolite S-adenosylmethionine, which is a hub for methylation and transsulfuration reactions and polyamine metabolism. Enzymes and metabolites with pro- or anti-oxidant functions were also enriched but enhanced levels of reactive oxygen species were not measured in cisplatin-treated ES cells. Lastly, a number of the differentially regulated metabolic enzymes were identified as target genes of the transcription factor p53, pointing to p53-mediated alterations in metabolism in response to genotoxic stress. Altogether, our findings reveal interconnecting metabolic pathways that are responsive to cisplatin and may serve as signaling modules in the DDR in pluripotent stem cells.

  3. The induction and regulation of radiogenic transformation in vitro: Cellular and molecular mechanisms

    International Nuclear Information System (INIS)

    Borek, C.

    1987-01-01

    Rodent and human cells in culture, transformed in vitro by ionizing radiation, ultraviolet light, or chemicals into malignant cells afford us the opportunity to probe into early and late events in the neoplastic process at a cellular and molecular level. Transformation can be regarded as an abnormal expression of cellular genes. The initiating agents disrupt the integrity of the genetic apparatus altering DNA in ways that result in the activation of cellular transforming genes (oncogenes) during some stage of the neoplastic process. Events associated with initiation and promotion may overlap to some degree, but in order for them to occur, cellular permissive conditions must prevail. Permissive factors include thyroid and steroid hormones, specific states of differentiation, certain stages in the cell cycle, specific genetic impairment, and inadequate antioxidants. Genetically susceptible cells require physiological states conducive to transformation. These may differ with age, tissue, and species and in part may be responsible for the observed lower sensitivity of human cells to transformation

  4. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca2+]i

    Science.gov (United States)

    Hertz, Leif; Lovatt, Ditte; Goldman, Steven A.; Nedergaard, Maiken

    2010-01-01

    increases glycogen formation and oxidative metabolism, the latter by a mechanism depending on intramitochondrial Ca2+, whereas α1-adrenoceptor stimulation enhances glutamate uptake, and β-adrenoceptor activation causes glycogenolysis and increased Na+,K+-ATPase activity. The Ca2+- and cAMP-mediated association between energy-consuming and energy-yielding processes is emphasized. PMID:20380860

  5. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  6. Metabolic regulation in the facultative methylotroph arthrobacter P1

    NARCIS (Netherlands)

    1985-01-01

    Many microorganisms are able to utilize C1 compounds, i.e. compounds which do not contain carbon-carbon bonds, as carbon- and energy sources for growth. In order to synthesize cell constituents from these C1 compounds special metabolic pathways are employed by such organisms. Although a great deal

  7. Regulation of Metabolic Signaling in Human Skeletal Muscle

    DEFF Research Database (Denmark)

    Albers, Peter Hjorth

    sensitivity in type I muscle fibers possibly reflects a superior effect of insulin on metabolic signaling compared to type II muscle fibers. This was investigated in the present thesis by examining muscle biopsies from lean and obese healthy subjects as well as patients with type 2 diabetes. From these muscle...

  8. Label-free in vivo in situ diagnostic imaging by cellular metabolism quantification with a flexible multiphoton endomicroscope (Conference Presentation)

    Science.gov (United States)

    Leclerc, Pierre; Hage, Charles-Henri; Fabert, Marc; Brevier, Julien; O'Connor, Rodney P.; Bardet-Coste, Sylvia M.; Habert, Rémi; Braud, Flavie; Kudlinski, Alexandre; Louradour, Frederic

    2017-02-01

    Multiphoton microscopy is a cutting edge imaging modality leading to increasing advances in biology and also in the clinical field. To use it at its full potential and at the very heart of clinical practice, there have been several developments of fiber-based multiphoton microendoscopes. The application for those probes is now limited by few major restrictions, such as the difficulty to collect autofluorescence signals from tissues and cells theses being inherently weak (e.g. the ones from intracellular NADH or FAD metabolites). This limitation reduces the usefulness of microendoscopy in general, effectively restraining it to morphological imaging modality requiring staining of the tissues. Our aim is to go beyond this limitation, showing for the first time label-free cellular metabolism monitoring, in vivo in situ in real time. The experimental setup is an upgrade of a recently published one (Ducourthial et.al, Scientific Reports, 2016) where femtosecond pulse fiber delivery is further optimized thank's to a new transmissive-GRISM-based pulse stretcher permitting high energy throughput and wide bandwidth. This device allows fast sequential operation with two different excitation wavelengths for efficient two-photon excited NADH and FAD autofluorescence endoscopic detection (i.e. 860 nm for FAD and 760 nm for NADH), enabling cellular optical redox ratio quantification at 8 frames/s. The obtained results on cell models in vitro and also on animal models in vivo (e.g. neurons of a living mouse) prove that we accurately assess the level of NADH and FAD at subcellular resolution through a 3-meters-long fiber with our miniaturized probe (O.D. =2.2 mm).

  9. Krüppel-like factor 15: Regulator of BCAA metabolism and circadian protein rhythmicity.

    Science.gov (United States)

    Fan, Liyan; Hsieh, Paishiun N; Sweet, David R; Jain, Mukesh K

    2018-04-01

    Regulation of nutrient intake, utilization, and storage exhibits a circadian rhythmicity that allows organisms to anticipate and adequately respond to changes in the environment across day/night cycles. The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are important modulators of metabolism and metabolic health - for example, their catabolism yields carbon substrates for gluconeogenesis during periods of fasting. Krüppel-like factor 15 (KLF15) has recently emerged as a critical transcriptional regulator of BCAA metabolism, and the absence of this transcription factor contributes to severe pathologies such as Duchenne muscular dystrophy and heart failure. This review highlights KLF15's role as a central regulator of BCAA metabolism during periods of fasting, throughout day/night cycles, and in experimental models of muscle disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  11. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  12. Role of AMPK in skeletal muscle metabolic regulation and adaptation in relation to exercise

    DEFF Research Database (Denmark)

    Jørgensen, Sebastian Beck; Richter, Erik; Wojtaszewski, Jørgen

    2006-01-01

    The 5'-AMP-activated protein kinase (AMPK) is a potent regulator of skeletal muscle metabolism and gene expression. AMPK is activated both in response to in vivo exercise and ex vivo contraction. AMPK is therefore believed to be an important signalling molecule in regulating muscle metabolism...... during exercise as well as in adaptation of skeletal muscle to exercise training. The first part of this review is focused on different mechanisms regulating AMPK activity during muscle work such as alterations in nucleotide concentrations, availability of energy substrates and upstream AMPK kinases. We...... in relation to adaptation of skeletal muscle to exercise training....

  13. BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell.

    Directory of Open Access Journals (Sweden)

    Jude T Deeney

    Full Text Available Displacement of Bromodomain and Extra-Terminal (BET proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt, making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50-400 nM increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.

  14. BET Bromodomain Proteins Brd2, Brd3 and Brd4 Selectively Regulate Metabolic Pathways in the Pancreatic β-Cell.

    Science.gov (United States)

    Deeney, Jude T; Belkina, Anna C; Shirihai, Orian S; Corkey, Barbara E; Denis, Gerald V

    2016-01-01

    Displacement of Bromodomain and Extra-Terminal (BET) proteins from chromatin has promise for cancer and inflammatory disease treatments, but roles of BET proteins in metabolic disease remain unexplored. Small molecule BET inhibitors, such as JQ1, block BET protein binding to acetylated lysines, but lack selectivity within the BET family (Brd2, Brd3, Brd4, Brdt), making it difficult to disentangle contributions of each family member to transcriptional and cellular outcomes. Here, we demonstrate multiple improvements in pancreatic β-cells upon BET inhibition with JQ1 or BET-specific siRNAs. JQ1 (50-400 nM) increases insulin secretion from INS-1 cells in a concentration dependent manner. JQ1 increases insulin content in INS-1 cells, accounting for increased secretion, in both rat and human islets. Higher concentrations of JQ1 decrease intracellular triglyceride stores in INS-1 cells, a result of increased fatty acid oxidation. Specific inhibition of both Brd2 and Brd4 enhances insulin transcription, leading to increased insulin content. Inhibition of Brd2 alone increases fatty acid oxidation. Overlapping yet discrete roles for individual BET proteins in metabolic regulation suggest new isoform-selective BET inhibitors may be useful to treat insulin resistant/diabetic patients. Results imply that cancer and diseases of chronic inflammation or disordered metabolism are related through shared chromatin regulatory mechanisms.

  15. Cellular Assays for Ferredoxins: A Strategy for Understanding Electron Flow through Protein Carriers That Link Metabolic Pathways.

    Science.gov (United States)

    Atkinson, Joshua T; Campbell, Ian; Bennett, George N; Silberg, Jonathan J

    2016-12-27

    The ferredoxin (Fd) protein family is a structurally diverse group of iron-sulfur proteins that function as electron carriers, linking biochemical pathways important for energy transduction, nutrient assimilation, and primary metabolism. While considerable biochemical information about individual Fd protein electron carriers and their reactions has been acquired, we cannot yet anticipate the proportion of electrons shuttled between different Fd-partner proteins within cells using biochemical parameters that govern electron flow, such as holo-Fd concentration, midpoint potential (driving force), molecular interactions (affinity and kinetics), conformational changes (allostery), and off-pathway electron leakage (chemical oxidation). Herein, we describe functional and structural gaps in our Fd knowledge within the context of a sequence similarity network and phylogenetic tree, and we propose a strategy for improving our understanding of Fd sequence-function relationships. We suggest comparing the functions of divergent Fds within cells whose growth, or other measurable output, requires electron transfer between defined electron donor and acceptor proteins. By comparing Fd-mediated electron transfer with biochemical parameters that govern electron flow, we posit that models that anticipate energy flow across Fd interactomes can be built. This approach is expected to transform our ability to anticipate Fd control over electron flow in cellular settings, an obstacle to the construction of synthetic electron transfer pathways and rational optimization of existing energy-conserving pathways.

  16. Interactions between vertebrate hemoglobins and red cell proteins: Possible roles in regulating cellular metabolism and rheology

    DEFF Research Database (Denmark)

    Weber, Roy E.

    2007-01-01

    , chicken and human cdB3 peptides on O2 binding properties of fish, bird and mammalian Hbs are consistent with such a role in endothermic, but not in ectothermic, vertebrates3. Measurements of the interaction between Hbs and anionic domains of Band 3, other membrane proteins and intracellular proteins (band...

  17. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds

    Directory of Open Access Journals (Sweden)

    Zhenguo Ma

    2017-12-01

    Full Text Available During germination of barley (Hordeum vulgare L. seeds, important morphological and physiological changes take place, including development of organs and tissues and activation of metabolic pathways. Germination and dormancy of seeds are regulated by abscisic acid, gibberellins, reactive oxygen species (ROS, reactive nitrogen species (RNS and several other factors. Activities of ascorbate–glutathione cycle enzymes, responsible for scavenging ROS, strongly increase. Catalase and superoxide dismutase activities, also scavenging ROS, decrease at the onset of seed germination and then increase. With the increase in aerobic metabolism after radicle protrusion, the activities of the fermentation enzymes lactate and alcohol dehydrogenase decline rapidly. The RNS-scavenging activity of S-nitrosoglutathione reductase decreases in the course of seed germination, in concert with elevation of nitric oxide production and protein nitrosylation. This activity supports the role of RNS in regulating seed germination. Transcription of various genes at different phases of seed germination exhibits phase-specific changes. During imbibition, genes involved in cell wall metabolism are highly expressed; in the middle phase of seed germination before radicle protrusion, genes involved in amino acid synthesis, protein synthesis, and transport and nucleic acid synthesis are upregulated significantly, and after radicle protrusion, genes involved in photosynthetic metabolism are induced. In summary, signal transduction and metabolic regulation of seed germination involve diverse reactions and complex regulation at different levels of metabolic organization. Keywords: Seed germination, Reactive oxygen species, Reactive nitrogen species, Signal transduction, Gene expression

  18. Evolution and regulation of cellular periodic processes: a role for paralogues

    DEFF Research Database (Denmark)

    Trachana, Kalliopi; Jensen, Lars Juhl; Bork, Peer

    2010-01-01

    performed the first systematic comparison in three organisms (Homo sapiens, Arabidopsis thaliana and Saccharomyces cerevisiae) by using public microarray data. We observed that although diurnal-regulated and ultradian-regulated genes are not generally cell-cycle-regulated, they tend to have cell...

  19. Differential and Cooperative Cell Adhesion Regulates Cellular Pattern in Sensory Epithelia.

    Science.gov (United States)

    Togashi, Hideru

    2016-01-01

    Animal tissues are composed of multiple cell types arranged in complex and elaborate patterns. In sensory epithelia, including the auditory epithelium and olfactory epithelium, different types of cells are arranged in unique mosaic patterns. These mosaic patterns are evolutionarily conserved, and are thought to be important for hearing and olfaction. Recent progress has provided accumulating evidence that the cellular pattern formation in epithelia involves cell rearrangements, movements, and shape changes. These morphogenetic processes are largely mediated by intercellular adhesion systems. Differential adhesion and cortical tension have been proposed to promote cell rearrangements. Many different types of cells in tissues express various types of cell adhesion molecules. Although cooperative mechanisms between multiple adhesive systems are likely to contribute to the production of complex cell patterns, our current understanding of the cooperative roles between multiple adhesion systems is insufficient to entirely explain the complex mechanisms underlying cellular patterning. Recent studies have revealed that nectins, in cooperation with cadherins, are crucial for the mosaic cellular patterning in sensory organs. The nectin and cadherin systems are interacted with one another, and these interactions provide cells with differential adhesive affinities for complex cellular pattern formations in sensory epithelia, which cannot be achieved by a single mechanism.

  20. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...

  1. p53-Dependent Nestin Regulation Links Tumor Suppression to Cellular Plasticity in Liver Cancer

    DEFF Research Database (Denmark)

    Tschaharganeh, Darjus F; Xue, Wen; Calvisi, Diego F

    2014-01-01

    The p53 tumor suppressor coordinates a series of antiproliferative responses that restrict the expansion of malignant cells, and as a consequence, p53 is lost or mutated in the majority of human cancers. Here, we show that p53 restricts expression of the stem and progenitor-cell-associated protei...... by p53 restricts cellular plasticity and tumorigenesis in liver cancer....

  2. DLK1 Regulates Whole-Body Glucose Metabolism

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Ditzel, Nicholas; Laborda, Jorge

    2015-01-01

    due to impaired insulin signaling in OB and lowered Glu-OCN serum levels. Furthermore, Dlk1(-/-) mice treated with Glu-OC experienced significantly lower blood glucose levels than Glu-OCN-treated wild-type mice. The data suggest that Glu-OCN-controlled production of DLK1 by pancreatic β-cells acts...... metabolism. We show that Glu-OCN specifically stimulates Dlk1 expression by the pancreas. Conversely, Dlk1-deficient (Dlk1(-/-) ) mice exhibited increased circulating Glu-OCN levels and increased insulin sensitivity, whereas mice overexpressing Dlk1 in OB displayed reduced insulin secretion and sensitivity...

  3. Regulation of exercise-induced lipid metabolism in skeletal muscle

    DEFF Research Database (Denmark)

    Jordy, Andreas Børsting; Kiens, Bente

    2014-01-01

    Exercise increases the utilization of lipids in muscle. The sources of lipids are long-chain fatty acids taken up from the plasma and fatty acids released from stores of intramuscular triacylglycerol by the action of intramuscular lipases. In the present review, we focus on the role of fatty acid...... binding proteins, particularly fatty acid translocase/cluster of differentiation 36 (FAT/CD36), in the exercise- and contraction-induced increase in uptake of long-chain fatty acids in muscle. The FAT/CD36 translocates from intracellular depots to the surface membrane upon initiation of exercise/muscle...... triglyceride lipase in regulation of muscle lipolysis. Although the molecular regulation of the lipases in muscle is not understood, it is speculated that intramuscular lipolysis may be regulated in part by the availability of the plasma concentration of long-chain fatty acids....

  4. Metabolic regulation of hematopoietic and leukemic stem/progenitor cells under homeostatic and stress conditions.

    Science.gov (United States)

    Karigane, Daiki; Takubo, Keiyo

    2017-07-01

    Hematopoietic stem cells (HSCs) exhibit multilineage differentiation and self-renewal activities that maintain the entire hematopoietic system during an organism's lifetime. These abilities are sustained by intrinsic transcriptional programs and extrinsic cues from the microenvironment or niche. Recent studies using metabolomics technologies reveal that metabolic regulation plays an essential role in HSC maintenance. Metabolic pathways provide energy and building blocks for other factors functioning at steady state and in stress. Here we review recent advances in our understanding of metabolic regulation in HSCs relevant to cell cycle quiescence, symmetric/asymmetric division, and proliferation following stress and lineage commitment, and discuss the therapeutic potential of targeting metabolic factors or pathways to treat hematological malignancies.

  5. A chemical biology approach to interrogate quorum-sensing regulated behaviors at the molecular and cellular level.

    Science.gov (United States)

    Lowery, Colin A; Matamouros, Susana; Niessen, Sherry; Zhu, Jie; Scolnick, Jonathan; Lively, Jenny M; Cravatt, Benjamin F; Miller, Samuel I; Kaufmann, Gunnar F; Janda, Kim D

    2013-07-25

    Small molecule probes have been used extensively to explore biologic systems and elucidate cellular signaling pathways. In this study, we use an inhibitor of bacterial communication to monitor changes in the proteome of Salmonella enterica serovar Typhimurium with the aim of discovering unrecognized processes regulated by AI-2-based quorum-sensing (QS), a mechanism of bacterial intercellular communication that allows for the coordination of gene expression in a cell density-dependent manner. In S. typhimurium, this system regulates the uptake and catabolism of intercellular signals and has been implicated in pathogenesis, including the invasion of host epithelial cells. We demonstrate that our QS antagonist is capable of selectively inhibiting the expression of known QS-regulated proteins in S. typhimurium, thus attesting that QS inhibitors may be used to confirm proposed and elucidate previously unidentified QS pathways without relying on genetic manipulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. A 7-day high protein hypocaloric diet promotes cellular metabolic adaptations and attenuates lean mass loss in healthy males

    Directory of Open Access Journals (Sweden)

    Matthew Furber

    2017-08-01

    Full Text Available Mitochondrial quantity and density are associated with increased oxidative metabolism. It has been demonstrated that a hypocaloric high fat/low carbohydrate (HF/LC diet can up-regulate transcriptional markers of mitochondrial biogenesis; this was yet to be explored in vivo subsequent to a high protein/low carbohydrate (HP/LC diet. Thus the aims of the study were to explore such diets on transcriptional markers or mitochondrial biogenesis, body composition and resting metabolic rate (RMR. Forty-five healthy male participants were randomly assigned one of four intervention diets: eucaloric high protein low carbohydrate (PRO-EM, hypocaloric high protein low carbohydrate (PRO-ER, eucaloric high carbohydrate (CHO-EM or hypocaloric high carbohydrate (CHO-ER. The macronutrient ratio of the high protein diet and high carbohydrate diets was 40:30:30% and 10:60:30% (PRO:CHO:FAT respectively. Energy intake for the hypocaloric diets were calculated to match resting metabolic rate. Participants visited the laboratory on 3 occasions each separated by 7 days. On each visit body composition, resting metabolic rate and a muscle biopsy from the vastus lateralis was collected. Prior to visit 1 and 2 habitual diet was consumed which was used as a control, between visit 2 and 3 the intervention diet was consumed continuously for 7-days. No group × time effect was observed, however in the PRO-ER group a significant increase in AMPK, PGC-1α, SIRT1 and SIRT3 mRNA expression was observed post diet intervention groups (p < 0.05. No change was observed in any of the transcriptional markers in the other 3 groups. Despite ∼30% reduction in calorie intake no difference in lean mass (LM loss was observed between the PRO-ER and CHO-EM groups. The results from this study suggest that a 7-day a high protein low carbohydrate hypocaloric diet increased AMPK, SIRT1 and PGC-1 α mRNA expression at rest, and also suggest that increased dietary protein may attenuate LM mass

  7. The complexity of nitrogen metabolism and nitrogen-regulated gene expression in plant pathogenic fungi

    NARCIS (Netherlands)

    Bolton, M.D.; Thomma, B.P.H.J.

    2008-01-01

    Plant pathogens secrete effector molecules that contribute to the establishment of disease in their plant hosts. The identification of cellular cues that regulate effector gene expression is an important aspect of understanding the infection process. Nutritional status in the cell has been

  8. Evidence for a Role of Proline and Hypothalamic Astrocytes in the Regulation of Glucose Metabolism in Rats

    OpenAIRE

    Arrieta-Cruz, Isabel; Su, Ya; Knight, Colette M.; Lam, Tony K.T.; Gutiérrez-Juárez, Roger

    2013-01-01

    The metabolism of lactate to pyruvate in the mediobasal hypothalamus (MBH) regulates hepatic glucose production. Because astrocytes and neurons are functionally linked by metabolic coupling through lactate transfer via the astrocyte-neuron lactate shuttle (ANLS), we reasoned that astrocytes might be involved in the hypothalamic regulation of glucose metabolism. To examine this possibility, we used the gluconeogenic amino acid proline, which is metabolized to pyruvate in astrocytes. Our result...

  9. Nur77 coordinately regulates expression of genes linked to glucose metabolism in skeletal muscle

    OpenAIRE

    Chao, Lily C.; Zhang, Zidong; Pei, Liming; Saito, Tsugumichi; Tontonoz, Peter; Pilch, Paul F.

    2007-01-01

    Innervation is important for normal metabolism in skeletal muscle, including insulin-sensitive glucose uptake. However, the transcription factors that transduce signals from the neuromuscular junction to the nucleus and affect changes in metabolic gene expression are not well defined. We demonstrate here that the orphan nuclear receptor Nur77 is a regulator of gene expression linked to glucose utilization in muscle. In vivo, Nur77 is preferentially expressed in glycolytic compared to oxidativ...

  10. Increased fat oxidation and regulation of metabolic genes with ultraendurance exercise

    DEFF Research Database (Denmark)

    Helge, Jørn Wulff; Rehrer, N J; Pilegaard, H

    2007-01-01

    AIM: Regular endurance exercise stimulates muscle metabolic capacity, but effects of very prolonged endurance exercise are largely unknown. This study examined muscle substrate availability and utilization during prolonged endurance exercise, and associated metabolic genes. METHODS: Data were...... exercise markedly increases plasma fatty acid availability and fat utilization during exercise. Exercise-induced regulation of genes encoding proteins involved in fatty acid recruitment and oxidation may contribute to these changes....

  11. Sodium Glucose Cotransporter 2 (SGLT2 Plays as a Physiological Glucose Sensor and Regulates Cellular Contractility in Rat Mesangial Cells.

    Directory of Open Access Journals (Sweden)

    Masanori Wakisaka

    Full Text Available Mesangial cells play an important role in regulating glomerular filtration by altering their cellular tone. We report the presence of a sodium glucose cotransporter (SGLT in rat mesangial cells. This study in rat mesangial cells aimed to evaluate the expression and role of SGLT2.The SGLT2 expression in rat mesangial cells was assessed by Western blotting and reverse transcription-polymerase chain reaction (RT-PCR. Changes in the mesangial cell surface area at different glucose concentrations and the effects of extracellular Na+ and Ca2+ and of SGLT and Na+/Ca2+ exchanger (NCX inhibitors on cellular size were determined. The cellular sizes and the contractile response were examined during a 6-day incubation with high glucose with or without phlorizin, an SGLT inhibitor.Western blotting revealed an SGLT2 band, and RT-PCR analysis of SGLT2 revealed the predicted 422-bp band in both rat mesangial and renal proximal tubular epithelial cells. The cell surface area changed according to the extracellular glucose concentration. The glucose-induced contraction was abolished by the absence of either extracellular Na+ or Ca2+ and by SGLT and NCX inhibitors. Under the high glucose condition, the cell size decreased for 2 days and increased afterwards; these cells did not contract in response to angiotensin II, and the SGLT inhibitor restored the abolished contraction.These data suggest that SGLT2 is expressed in rat mesangial cells, acts as a normal physiological glucose sensor and regulates cellular contractility in rat mesangial cells.

  12. Differential regulation of metabolic parameters by energy deficit and hunger.

    Science.gov (United States)

    Kitka, Tamás; Tuza, Sebestyén; Varga, Balázs; Horváth, Csilla; Kovács, Péter

    2015-10-01

    Hypocaloric diet decreases both energy expenditure (EE) and respiratory exchange rate (RER), affecting the efficacy of dieting inversely. Energy deficit and hunger may be modulated separately both in human and animal studies by drug treatment or food restriction. Thus it is important to separate the effects of energy deficit and hunger on EE and RER. Three parallel and analogous experiments were performed using three pharmacologically distinct anorectic drugs: rimonabant, sibutramine and tramadol. Metabolic parameters of vehicle- and drug-treated and pair-fed diet-induced obese mice from the three experiments underwent common statistical analysis to identify effects independent of the mechanisms of action. Diet-induced obesity (DIO) test of tramadol was also performed to examine its anti-obesity efficacy. RER was decreased similarly by drug treatments and paired feeding throughout the experiment irrespective of the cause of reduced food intake. Contrarily, during the passive phase, EE was decreased more by paired feeding than by both vehicle and drug treatment irrespective of the drug used. In the active phase, EE was influenced by the pharmacological mechanisms of action. Tramadol decreased body weight in the DIO test. Our results suggest that RER is mainly affected by the actual state of energy balance; conversely, EE is rather influenced by hunger. Therefore, pharmacological medications that decrease hunger may enhance the efficacy of a hypocaloric diet by maintaining metabolic rate. Furthermore, our results yield the proposal that effects of anorectic drugs on EE and RER should be determined compared to vehicle and pair-fed groups, respectively, in animal models. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Jasmonate-responsive transcription factors regulating plant secondary metabolism.

    Science.gov (United States)

    Zhou, Meiliang; Memelink, Johan

    2016-01-01

    Plants produce a large variety of secondary metabolites including alkaloids, glucosinolates, terpenoids and phenylpropanoids. These compounds play key roles in plant-environment interactions and many of them have pharmacological activity in humans. Jasmonates (JAs) are plant hormones which induce biosynthesis of many secondary metabolites. JAs-responsive transcription factors (TFs) that regulate the JAs-induced accumulation of secondary metabolites belong to different families including AP2/ERF, bHLH, MYB and WRKY. Here, we give an overview of the types and functions of TFs that have been identified in JAs-induced secondary metabolite biosynthesis, and highlight their similarities and differences in regulating various biosynthetic pathways. We review major recent developments regarding JAs-responsive TFs mediating secondary metabolite biosynthesis, and provide suggestions for further studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Cystic Fibrosis, Cystic Fibrosis Transmembrane Conductance Regulator and Drugs: Insights from Cellular Trafficking.

    Science.gov (United States)

    Bridges, Robert J; Bradbury, Neil A

    2018-01-01

    The eukaryotic cell is organized into membrane-delineated compartments that are characterized by specific cadres of proteins sustaining biochemically distinct cellular processes. The appropriate subcellular localization of proteins is key to proper organelle function and provides a physiological context for cellular processes. Disruption of normal trafficking pathways for proteins is seen in several genetic diseases, where a protein's absence for a specific subcellular compartment leads to organelle disruption, and in the context of an individual, a disruption of normal physiology. Importantly, several drug therapies can also alter protein trafficking, causing unwanted side effects. Thus, a deeper understanding of trafficking pathways needs to be appreciated as novel therapeutic modalities are proposed. Despite the promising efficacy of novel therapeutic agents, the intracellular bioavailability of these compounds has proved to be a potential barrier, leading to failures in treatments for various diseases and disorders. While endocytosis of drug moieties provides an efficient means of getting material into cells, the subsequent release and endosomal escape of materials into the cytosol where they need to act has been a barrier. An understanding of cellular protein/lipid trafficking pathways has opened up strategies for increasing drug bioavailability. Approaches to enhance endosomal exit have greatly increased the cytosolic bioavailability of drugs and will provide a means of investigating previous drugs that may have been shelved due to their low cytosolic concentration.

  15. EPIGENETIC REGULATION IN BOVINE CELLS: NUTRIENT-INDUCED MODULATION OF GENE EXPRESSION AND CELLULAR FUNCTIONS

    Science.gov (United States)

    Research on epigenetics and nutrigenetics, the genome-nutrient interface is in its infancy with respect to livestock species. Ruminant species have evolved to metabolize short-chain fatty acids (VFA) to fulfill up to 70% of their energy requirements. Our studies revealed that VFA, especially butyr...

  16. The omniscient placenta: Metabolic and epigenetic regulation of fetal programming.

    Science.gov (United States)

    Nugent, Bridget M; Bale, Tracy L

    2015-10-01

    Fetal development could be considered a sensitive period wherein exogenous insults and changes to the maternal milieu can have long-term impacts on developmental programming. The placenta provides the fetus with protection and necessary nutrients for growth, and responds to maternal cues and changes in nutrient signaling through multiple epigenetic mechanisms. The X-linked enzyme O-linked-N-acetylglucosamine transferase (OGT) acts as a nutrient sensor that modifies numerous proteins to alter various cellular signals, including major epigenetic processes. This review describes epigenetic alterations in the placenta in response to insults during pregnancy, the potential links of OGT as a nutrient sensor to placental epigenetics, and the implications of placental epigenetics in long-term neurodevelopmental programming. We describe the role of placental OGT in the sex-specific programming of hypothalamic-pituitary-adrenal (HPA) axis programming deficits by early prenatal stress as an example of how placental signaling can have long-term effects on neurodevelopment. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Rev-erbα and the circadian transcriptional regulation of metabolism

    DEFF Research Database (Denmark)

    Gerhart-Hines, Z.; Lazar, M. A.

    2015-01-01

    The circadian clock orchestrates the coordinated rhythmicity of numerous metabolic pathways to anticipate daily and seasonal changes in energy demand. This vital physiol. function is controlled by a set of individual clock components that are present in each cell of the body, and regulate each ot...... between circadian rhythm and tissue-specific biol. networks and its relevance to organismal physiology.......The circadian clock orchestrates the coordinated rhythmicity of numerous metabolic pathways to anticipate daily and seasonal changes in energy demand. This vital physiol. function is controlled by a set of individual clock components that are present in each cell of the body, and regulate each...

  18. Expression of human papilloma virus type 16 E5 protein in amelanotic melanoma cells regulates endo-cellular pH and restores tyrosinase activity

    Directory of Open Access Journals (Sweden)

    Coccia Raffaella

    2009-01-01

    Full Text Available Abstract Background Melanin synthesis, the elective trait of melanocytes, is regulated by tyrosinase activity. In tyrosinase-positive amelanotic melanomas this rate limiting enzyme is inactive because of acidic endo-melanosomal pH. The E5 oncogene of the Human Papillomavirus Type 16 is a small transmembrane protein with a weak transforming activity and a role during the early steps of viral infections. E5 has been shown to interact with 16 kDa subunit C of the trans-membrane Vacuolar ATPase proton pump ultimately resulting in its functional suppressions. However, the cellular effects of such an interaction are still under debate. With this work we intended to explore whether the HPV16 E5 oncoprotein does indeed interact with the vacuolar ATPase proton pump once expressed in intact human cells and whether this interaction has functional consequences on cell metabolism and phenotype. Methods The expression of the HPV16-E5 oncoproteins was induced in two Tyrosinase-positive amelanotic melanomas (the cell lines FRM and M14 by a retroviral expression construct. Modulation of the intracellular pH was measured with Acridine orange and fluorescence microscopy. Expression of tyrosinase and its activity was followed by RT-PCR, Western Blot and enzyme assay. The anchorage-independence growth and the metabolic activity of E5 expressing cells were also monitored. Results We provide evidence that in the E5 expressing cells interaction between E5 and V-ATPase determines an increase of endo-cellular pH. The cellular alkalinisation in turn leads to the post-translational activation of tyrosinase, melanin synthesis and phenotype modulation. These effects are associated with an increased activation of tyrosine analogue anti-blastic drugs. Conclusion Once expressed within intact human cells the HPV16-E5 oncoprotein does actually interact with the vacuolar V-ATPase proton pump and this interaction induces a number of functional effects. In amelanotic melanomas these

  19. Med1 subunit of the mediator complex in nuclear receptor-regulated energy metabolism, liver regeneration, and hepatocarcinogenesis.

    Science.gov (United States)

    Jia, Yuzhi; Viswakarma, Navin; Reddy, Janardan K

    2014-01-01

    Several nuclear receptors regulate diverse metabolic functions that impact on critical biological processes, such as development, differentiation, cellular regeneration, and neoplastic conversion. In the liver, some members of the nuclear receptor family, such as peroxisome proliferator-activated receptors (PPARs), constitutive androstane receptor (CAR), farnesoid X receptor (FXR), liver X receptor (LXR), pregnane X receptor (PXR), glucocorticoid receptor (GR), and others, regulate energy homeostasis, the formation and excretion of bile acids, and detoxification of xenobiotics. Excess energy burning resulting from increases in fatty acid oxidation systems in liver generates reactive oxygen species, and the resulting oxidative damage influences liver regeneration and liver tumor development. These nuclear receptors are important sensors of exogenous activators as well as receptor-specific endogenous ligands. In this regard, gene knockout mouse models revealed that some lipid-metabolizing enzymes generate PPARα-activating ligands, while others such as ACOX1 (fatty acyl-CoA oxidase1) inactivate these endogenous PPARα activators. In the absence of ACOX1, the unmetabolized ACOX1 substrates cause sustained activation of PPARα, and the resulting increase in energy burning leads to hepatocarcinogenesis. Ligand-activated nuclear receptors recruit the multisubunit Mediator complex for RNA polymerase II-dependent gene transcription. Evidence indicates that the Med1 subunit of the Mediator is essential for PPARα, PPARγ, CAR, and GR signaling in liver. Med1 null hepatocytes fail to respond to PPARα activators in that these cells do not show induction of peroxisome proliferation and increases in fatty acid oxidation enzymes. Med1-deficient hepatocytes show no increase in cell proliferation and do not give rise to liver tumors. Identification of nuclear receptor-specific coactivators and Mediator subunits should further our understanding of the complexities of metabolic

  20. Danqi Pill regulates lipid metabolism disorder induced by myocardial ischemia through FATP-CPTI pathway.

    Science.gov (United States)

    Wang, Yong; Li, Chun; Wang, Qiyan; Shi, Tianjiao; Wang, Jing; Chen, Hui; Wu, Yan; Han, Jing; Guo, Shuzhen; Wang, Yuanyuan; Wang, Wei

    2015-02-21

    Danqi Pill (DQP), which contains Chinese herbs Salvia miltiorrhiza Bunge and Panax notoginseng, is widely used in the treatment of myocardial ischemia (MI) in China. Its regulatory effects on MI-associated lipid metabolism disorders haven't been comprehensively studied so far. We aimed to systematically investigate the regulatory mechanism of DQP on myocardial ischemia-induced lipid metabolism disorders. Myocardial ischemia rat model was induced by left anterior descending coronary artery ligation. The rat models were divided into three groups: model group with administration of normal saline, study group with administration of DanQi aqueous solution (1.5 mg/kg) and positive-control group with administration of pravastatin aqueous solution (1.2 mg/kg). In addition, another sham-operated group was set as negative control. At 28 days after treatment, cardiac function and degree of lipid metabolism disorders in rats of different groups were measured. Plasma lipid disorders were induced by myocardial ischemia, with manifestation of up-regulation of triglyceride (TG), low density lipoprotein (LDL), Apolipoprotein B (Apo-B) and 3-hydroxy-3-methyl glutaryl coenzyme A reductase (HMGCR). DQP could down-regulate the levels of TG, LDL, Apo-B and HMGCR. The Lipid transport pathway, fatty acids transport protein (FATP) and Carnitine palmitoyltransferase I (CPTI) were down-regulated in model group. DQP could improve plasma lipid metabolism by up-regulating this lipid transport pathway. The transcription factors peroxisome proliferator-activated receptor α (PPARα) and retinoid X receptors (RXRs), which regulate lipid metabolism, were also up-regulated by DQP. Furthermore, DQP was able to improve heart function and up-regulate ejection fraction (EF) by increasing the cardiac diastolic volume. Our study reveals that DQP would be an ideal alternative drug for the treatment of dyslipidemia which is induced by myocardial ischemia.

  1. Retinol Dehydrogenases Regulate Vitamin A Metabolism for Visual Function

    Directory of Open Access Journals (Sweden)

    Bhubanananda Sahu

    2016-11-01

    Full Text Available The visual system produces visual chromophore, 11-cis-retinal from dietary vitamin A, all-trans-retinol making this vitamin essential for retinal health and function. These metabolic events are mediated by a sequential biochemical process called the visual cycle. Retinol dehydrogenases (RDHs are responsible for two reactions in the visual cycle performed in retinal pigmented epithelial (RPE cells, photoreceptor cells and Müller cells in the retina. RDHs in the RPE function as 11-cis-RDHs, which oxidize 11-cis-retinol to 11-cis-retinal in vivo. RDHs in rod photoreceptor cells in the retina work as all-trans-RDHs, which reduce all-trans-retinal to all-trans-retinol. Dysfunction of RDHs can cause inherited retinal diseases in humans. To facilitate further understanding of human diseases, mouse models of RDHs-related diseases have been carefully examined and have revealed the physiological contribution of specific RDHs to visual cycle function and overall retinal health. Herein we describe the function of RDHs in the RPE and the retina, particularly in rod photoreceptor cells, their regulatory properties for retinoid homeostasis and future therapeutic strategy for treatment of retinal diseases.

  2. Nanocellulose size regulates microalgal flocculation and lipid metabolism

    Science.gov (United States)

    Yu, Sun Il; Min, Seul Ki; Shin, Hwa Sung

    2016-01-01

    Harvesting of microalgae is a cost-consuming step for biodiesel production. Cellulose has recently been studied as a biocompatible and inexpensive flocculant for harvesting microalgae via surface modifications such as cation-modifications. In this study, we demonstrated that cellulose nanofibrils (CNF) played a role as a microalgal flocculant via its network geometry without cation modification. Sulfur acid-treated tunicate CNF flocculated microalgae, but cellulose nanocrystals (CNC) did not. In addition, desulfurization did not significantly influence the flocculation efficiency of CNF. This mechanism is likely related to encapsulation of microalgae by nanofibrous structure formation, which is derived from nanofibrils entanglement and intra-hydrogen bonding. Moreover, flocculated microalgae were subject to mechanical stress resulting in changes in metabolism induced by calcium ion influx, leading to upregulated lipid synthesis. CNF do not require surface modifications such as cation modified CNC and flocculation is derived from network geometry related to nanocellulose size; accordingly, CNF is one of the least expensive cellulose-based flocculants ever identified. If this flocculant is applied to the biodiesel process, it could decrease the cost of harvest, which is one of the most expensive steps, while increasing lipid production. PMID:27796311

  3. The Phosphatidylinositol 3,5-Bisphosphate (PI(3,5)P2)-dependent Tup1 Conversion (PIPTC) Regulates Metabolic Reprogramming from Glycolysis to Gluconeogenesis*

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D.

    2013-01-01

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans. PMID:23733183

  4. The phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2)-dependent Tup1 conversion (PIPTC) regulates metabolic reprogramming from glycolysis to gluconeogenesis.

    Science.gov (United States)

    Han, Bong-Kwan; Emr, Scott D

    2013-07-12

    Glucose/carbon metabolism is a fundamental cellular process in living cells. In response to varying environments, eukaryotic cells reprogram their glucose/carbon metabolism between aerobic or anaerobic glycolysis, oxidative phosphorylation, and/or gluconeogenesis. The distinct type of glucose/carbon metabolism that a cell carries out has significant effects on the cell's proliferation and differentiation. However, it is poorly understood how the reprogramming of glucose/carbon metabolism is regulated. Here, we report a novel endosomal PI(3,5)P2 lipid-dependent regulatory mechanism that is required for metabolic reprogramming from glycolysis to gluconeogenesis in Saccharomyces cerevisiae. Certain gluconeogenesis genes, such as FBP1 (encoding fructose-1,6-bisphosphatase 1) and ICL1 (encoding isocitrate lyase 1) are under control of the Mig1 repressor and Cyc8-Tup1 corepressor complex. We previously identified the PI(3,5)P2-dependent Tup1 conversion (PIPTC), a mechanism to convert Cyc8-Tup1 corepressor to Cti6-Cyc8-Tup1 coactivator. We demonstrate that the PIPTC plays a critical role for transcriptional activation of FBP1 and ICL1. Furthermore, without the PIPTC, the Cat8 and Sip4 transcriptional activators cannot be efficiently recruited to the promoters of FBP1 and ICL1, suggesting a key role for the PIPTC in remodulating the chromatin architecture at the promoters. Our findings expand our understanding of the regulatory mechanisms for metabolic reprogramming in eukaryotes to include key regulation steps outside the nucleus. Given that Tup1 and the metabolic enzymes that control PI(3,5)P2 are highly conserved among eukaryotes, our findings may provide important insights toward understanding glucose/carbon metabolic reprogramming in other eukaryotes, including humans.

  5. Negative Regulation of STAT3 Protein-mediated Cellular Respiration by SIRT1 Protein

    DEFF Research Database (Denmark)

    Bernier, Michel; Paul, Rajib K; Martin-Montalvo, Alejandro

    2011-01-01

    those of wild-type controls. Comparison of profiles of phospho-antibody array data indicated that the deletion of SirT1 was accompanied by constitutive activation of the pro-inflammatory NF-¿B pathway, which is key for STAT3 induction and increased cellular respiration in Sirt1-KO cells. Thus, SIRT1...... cells exhibited higher mitochondrial respiration as compared with wild-type MEFs. Two independent approaches, including ectopic expression of SIRT1 and siRNA-mediated knockdown of STAT3, led to reduction in intracellular ATP levels and increased lactate production in Sirt1-KO cells that were approaching...

  6. Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3

    NARCIS (Netherlands)

    Doddaballapur, Anuradha; Michalik, Katharina M.; Manavski, Yosif; Lucas, Tina; Houtkooper, Riekelt H.; You, Xintian; Chen, Wei; Zeiher, Andreas M.; Potente, Michael; Dimmeler, Stefanie; Boon, Reinier A.

    2015-01-01

    Cellular metabolism was recently shown to regulate endothelial cell phenotype profoundly. Whether the atheroprotective biomechanical stimulus elicited by laminar shear stress modulates endothelial cell metabolism is not known. Here, we show that laminar flow exposure reduced glucose uptake and

  7. Kynurenine acid - metabolism and regulation of kynurenine pathway

    Directory of Open Access Journals (Sweden)

    Piotr Kozłowski

    2017-07-01

    Full Text Available Kynurenic acid (KYNA was first isolated from the dog's urine in 1853 by german chemist Justus von Liebig. KYNA probably plays an important role in the pathogenesis of many neurodegenerative and psychiatric diseases. Its elevated concentration were found in the brain (post mortem or in the cerebrospinal fluid patients  with schizophrenia, bipolar disorder, Alzheimer's disease, meningitis, autoimmune diseases, inflammatory processes and memory and learning disorders. The reduced KYNA concentration is characteristic for multiple sclerosis, Parkinson's disease, Huntington's disease and epilepsy. KYNA is an organic compound naturally occurring in nature. This amino acid belongs to the group of exogenous amino acids and can be synthesized by plants and bacteria alone. The largest amount of tryptophan about 95%is  metabolised by the kynurenine pathway. Only 1% of tryptophan supplied in the diet serves to produce serotonin in the brain. The process of regulation of KYNA synthesis in both the CNS and the periphery is complicated.

  8. A biphasic endothelial stress-survival mechanism regulates the cellular response to vascular endothelial growth factor A

    International Nuclear Information System (INIS)

    Latham, Antony M.; Odell, Adam F.; Mughal, Nadeem A.; Issitt, Theo; Ulyatt, Clare; Walker, John H.; Homer-Vanniasinkam, Shervanthi; Ponnambalam, Sreenivasan

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is an essential cytokine that regulates endothelial function and angiogenesis. VEGF-A binding to endothelial receptor tyrosine kinases such as VEGFR1 and VEGFR2 triggers cellular responses including survival, proliferation and new blood vessel sprouting. Increased levels of a soluble VEGFR1 splice variant (sFlt-1) correlate with endothelial dysfunction in pathologies such as pre-eclampsia; however the cellular mechanism(s) underlying the regulation and function of sFlt-1 are unclear. Here, we demonstrate the existence of a biphasic stress response in endothelial cells, using serum deprivation as a model of endothelial dysfunction. The early phase is characterized by a high VEGFR2:sFlt-1 ratio, which is reversed in the late phase. A functional consequence is a short-term increase in VEGF-A-stimulated intracellular signaling. In the late phase, sFlt-1 is secreted and deposited at the extracellular matrix. We hypothesized that under stress, increased endothelial sFlt-1 levels reduce VEGF-A bioavailability: VEGF-A treatment induces sFlt-1 expression at the cell surface and VEGF-A silencing inhibits sFlt-1 anchorage to the extracellular matrix. Treatment with recombinant sFlt-1 inhibits VEGF-A-stimulated in vitro angiogenesis and sFlt-1 silencing enhances this process. In this response, increased VEGFR2 levels are regulated by the phosphatidylinositol-3-kinase and PKB/Akt signaling pathways and increased sFlt-1 levels by the ERK1/2 signaling pathway. We conclude that during serum withdrawal, cellular sensing of environmental stress modulates sFlt-1 and VEGFR2 levels, regulating VEGF-A bioavailability and ensuring cell survival takes precedence over cell proliferation and migration. These findings may underpin an important mechanism contributing to endothelial dysfunction in pathological states. -- Highlights: ► Endothelial cells mount a stress response under conditions of low serum. ► Endothelial VEGFR levels are

  9. Systems assessment of transcriptional regulation on central carbon metabolism by Cra and CRP.

    Science.gov (United States)

    Kim, Donghyuk; Seo, Sang Woo; Gao, Ye; Nam, Hojung; Guzman, Gabriela I; Cho, Byung-Kwan; Palsson, Bernhard O

    2018-04-06

    Two major transcriptional regulators of carbon metabolism in bacteria are Cra and CRP. CRP is considered to be the main mediator of catabolite repression. Unlike for CRP, in vivo DNA binding information of Cra is scarce. Here we generate and integrate ChIP-exo and RNA-seq data to identify 39 binding sites for Cra and 97 regulon genes that are regulated by Cra in Escherichia coli. An integrated metabolic-regulatory network was formed by including experimentally-derived regulatory information and a genome-scale metabolic network reconstruction. Applying analysis methods of systems biology to this integrated network showed that Cra enables optimal bacterial growth on poor carbon sources by redirecting and repressing glycolysis flux, by activating the glyoxylate shunt pathway, and by activating the respiratory pathway. In these regulatory mechanisms, the overriding regulatory activity of Cra over CRP is fundamental. Thus, elucidation of interacting transcriptional regulation of core carbon metabolism in bacteria by two key transcription factors was possible by combining genome-wide experimental measurement and simulation with a genome-scale metabolic model.

  10. Myogenin regulates exercise capacity and skeletal muscle metabolism in the adult mouse.

    Directory of Open Access Journals (Sweden)

    Jesse M Flynn

    2010-10-01

    Full Text Available Although skeletal muscle metabolism is a well-studied physiological process, little is known about how it is regulated at the transcriptional level. The myogenic transcription factor myogenin is required for skeletal muscle development during embryonic and fetal life, but myogenin's role in adult skeletal muscle is unclear. We sought to determine myogenin's function in adult muscle metabolism. A Myog conditional allele and Cre-ER transgene were used to delete Myog in adult mice. Mice were analyzed for exercise capacity by involuntary treadmill running. To assess oxidative and glycolytic metabolism, we performed indirect calorimetry, monitored blood glucose and lactate levels, and performed histochemical analyses on muscle fibers. Surprisingly, we found that Myog-deleted mice performed significantly better than controls in high- and low-intensity treadmill running. This enhanced exercise capacity was due to more efficient oxidative metabolism during low- and high-intensity exercise and more efficient glycolytic metabolism during high-intensity exercise. Furthermore, Myog-deleted mice had an enhanced response to long-term voluntary exercise training on running wheels. We identified several candidate genes whose expression was altered in exercise-stressed muscle of mice lacking myogenin. The results suggest that myogenin plays a critical role as a high-level transcriptional regulator to control the energy balance between aerobic and anaerobic metabolism in adult skeletal muscle.

  11. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver.

    Science.gov (United States)

    Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia

    2017-09-01

    Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.

  12. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  13. SaeRS Is Responsive to Cellular Respiratory Status and Regulates Fermentative Biofilm Formation in Staphylococcus aureus.

    Science.gov (United States)

    Mashruwala, Ameya A; Gries, Casey M; Scherr, Tyler D; Kielian, Tammy; Boyd, Jeffrey M

    2017-08-01

    Biofilms are multicellular communities of microorganisms living as a quorum rather than as individual cells. The bacterial human pathogen Staphylococcus aureus uses oxygen as a terminal electron acceptor during respiration. Infected human tissues are hypoxic or anoxic. We recently reported that impaired respiration elicits a p rogrammed c ell l ysis (PCL) phenomenon in S. aureus leading to the release of cellular polymers that are utilized to form biofilms. PCL is dependent upon the AtlA murein hydrolase and is regulated, in part, by the SrrAB two-component regulatory system (TCRS). In the current study, we report that the SaeRS TCRS also governs fermentative biofilm formation by positively influencing AtlA activity. The SaeRS-modulated factor fibronectin-binding protein A (FnBPA) also contributed to the fermentative biofilm formation phenotype. SaeRS-dependent biofilm formation occurred in response to changes in cellular respiratory status. Genetic evidence presented suggests that a high cellular titer of phosphorylated SaeR is required for biofilm formation. Epistasis analyses found that SaeRS and SrrAB influence biofilm formation independently of one another. Analyses using a mouse model of orthopedic implant-associated biofilm formation found that both SaeRS and SrrAB govern host colonization. Of these two TCRSs, SrrAB was the dominant system driving biofilm formation in vivo We propose a model wherein impaired cellular respiration stimulates SaeRS via an as yet undefined signal molecule(s), resulting in increasing expression of AtlA and FnBPA and biofilm formation. Copyright © 2017 American Society for Microbiology.

  14. Lysophosphatidic acid signaling via LPA_1 and LPA_3 regulates cellular functions during tumor progression in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA_1 and LPA_3 in cellular functions during tumor progression in pancreatic cancer cells. LPA_1 and LPA_3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA_1 and LPA_3 knockdown. In gelatin zymography, LPA_1 and LPA_3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA_1 and LPA_3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA_1 and LPA_3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA_1 and LPA_3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA_1 and LPA_3. • LPA_1 and LPA_3 enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA_1 and LPA_3 knockdown. • LPA_1 and LPA_3 are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.

  15. Non-Coding RNAs in Castration-Resistant Prostate Cancer: Regulation of Androgen Receptor Signaling and Cancer Metabolism.

    Science.gov (United States)

    Shih, Jing-Wen; Wang, Ling-Yu; Hung, Chiu-Lien; Kung, Hsing-Jien; Hsieh, Chia-Ling

    2015-12-04

    Hormone-refractory prostate cancer frequently relapses from therapy and inevitably progresses to a bone-metastatic status with no cure. Understanding of the molecular mechanisms conferring resistance to androgen deprivation therapy has the potential to lead to the discovery of novel therapeutic targets for type of prostate cancer with poor prognosis. Progression to castration-resistant prostate cancer (CRPC) is characterized by aberrant androgen receptor (AR) expression and persistent AR signaling activity. Alterations in metabolic activity regulated by oncogenic pathways, such as c-Myc, were found to promote prostate cancer growth during the development of CRPC. Non-coding RNAs represent a diverse family of regulatory transcripts that drive tumorigenesis of prostate cancer and various other cancers by their hyperactivity or diminished function. A number of studies have examined differentially expressed non-coding RNAs in each stage of prostate cancer. Herein, we highlight the emerging impacts of microRNAs and long non-coding RNAs linked to reactivation of the AR signaling axis and reprogramming of the cellular metabolism in prostate cancer. The translational implications of non-coding RNA research for developing new biomarkers and therapeutic strategies for CRPC are also discussed.

  16. The Rho GTPase Cdc42 regulates hair cell planar polarity and cellular patterning in the developing cochlea

    Directory of Open Access Journals (Sweden)

    Anna Kirjavainen

    2015-03-01

    Full Text Available Hair cells of the organ of Corti (OC of the cochlea exhibit distinct planar polarity, both at the tissue and cellular level. Planar polarity at tissue level is manifested as uniform orientation of the hair cell stereociliary bundles. Hair cell intrinsic polarity is defined as structural hair bundle asymmetry; positioning of the kinocilium/basal body complex at the vertex of the V-shaped bundle. Consistent with strong apical polarity, the hair cell apex displays prominent actin and microtubule cytoskeletons. The Rho GTPase Cdc42 regulates cytoskeletal dynamics and polarization of various cell types, and, thus, serves as a candidate regulator of hair cell polarity. We have here induced Cdc42 inactivation in the late-embryonic OC. We show the role of Cdc42 in the establishment of planar polarity of hair cells and in cellular patterning. Abnormal planar polarity was displayed as disturbances in hair bundle orientation and morphology and in kinocilium/basal body positioning. These defects were accompanied by a disorganized cell-surface microtubule network. Atypical protein kinase C (aPKC, a putative Cdc42 effector, colocalized with Cdc42 at the hair cell apex, and aPKC expression was altered upon Cdc42 depletion. Our data suggest that Cdc42 together with aPKC is part of the machinery establishing hair cell planar polarity and that Cdc42 acts on polarity through the cell-surface microtubule network. The data also suggest that defects in apical polarization are influenced by disturbed cellular patterning in the OC. In addition, our data demonstrates that Cdc42 is required for stereociliogenesis in the immature cochlea.

  17. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  18. [Dry immersion effects on the mechanisms of metabolic-reflex regulation of hemodynamics during muscular work].

    Science.gov (United States)

    Bravyĭ, Ia R; Bersenev, E Iu; Missina, S S; Borovik, A S; Sharova, A P; Vinogradova, O L

    2008-01-01

    Effects of 4-d dry immersion on metabolic-reflex regulation of hemodynamics were evaluated during local static work (30% of maximum voluntary effort) of the talocrural extensors. One group of immersed test-subjects received low-frequency electrostimulation of leg muscles to offset the immersion effect on EMG of working muscles. Metabolic-reflex regulation was evaluated through comparison of cardiovascular responses to physical tests with and w/o post-exercise vascular occlusion. Immersion vaguely increased heart rate and reduced systolic arterial pressure in resting subjects; however, it did not have a distinct effect on arterial pressure and HR during muscular work or metabolic-reflex potentiation of hemodynamic shifts.

  19. Metabolic Regulation of CaMKII Protein and Caspases in Xenopus laevis Egg Extracts*

    Science.gov (United States)

    McCoy, Francis; Darbandi, Rashid; Chen, Si-Ing; Eckard, Laura; Dodd, Keela; Jones, Kelly; Baucum, Anthony J.; Gibbons, Jennifer A.; Lin, Sue-Hwa; Colbran, Roger J.; Nutt, Leta K.

    2013-01-01

    The metabolism of the Xenopus laevis egg provides a cell survival signal. We found previously that increased carbon flux from glucose-6-phosphate (G6P) through the pentose phosphate pathway in egg extracts maintains NADPH levels and calcium/calmodulin regulated protein kinase II (CaMKII) activity to phosphorylate caspase 2 and suppress cell death pathways. Here we show that the addition of G6P to oocyte extracts inhibits the dephosphorylation/inactivation of CaMKII bound to caspase 2 by protein phosphatase 1. Thus, G6P sustains the phosphorylation of caspase 2 by CaMKII at Ser-135, preventing the induction of caspase 2-mediated apoptotic pathways. These findings expand our understanding of oocyte biology and clarify mechanisms underlying the metabolic regulation of CaMKII and apoptosis. Furthermore, these findings suggest novel approaches to disrupt the suppressive effects of the abnormal metabolism on cell death pathways. PMID:23400775

  20. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    International Nuclear Information System (INIS)

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In; Park, Sang-Joon; Lee, Sang Gyu; Lee, Inkyu; Kim, Myoung Ok; Yoon, Duhak; Ryoo, Zae Young

    2014-01-01

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes

  1. PPAR-alpha dependent regulation of vanin-1 mediates hepatic lipid metabolism

    NARCIS (Netherlands)

    Diepen, van J.A.; Jansen, P.A.; Ballak, D.B.; Hijmans, A.; Hooiveld, G.J.E.J.; Rommelaere, S.; Kersten, A.H.; Stienstra, R.

    2014-01-01

    Background & Aims Peroxisome proliferator-activated receptor alpha (PPARa) is a key regulator of hepatic fat oxidation that serves as an energy source during starvation. Vanin-1 has been described as a putative PPARa target gene in liver, but its function in hepatic lipid metabolism is unknown.

  2. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Woo Young; Bae, Ki Beom; Kim, Sung Hyun; Yu, Dong Hun; Kim, Hei Jung; Ji, Young Rae; Park, Seo Jin; Park, Si Jun; Kang, Min-Cheol; Jeong, Ja In [School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of); Park, Sang-Joon [College of Veterinary Medicine, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of); Lee, Sang Gyu [School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of); Lee, Inkyu [School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Jung-gu, Daegu 700-842 (Korea, Republic of); Kim, Myoung Ok [School of Animal BT Sciences, Sangju Campus, Kyungpook National University, 386 Gajang-dong, Sangju, Gyeongsangbuk-do 742-211 (Korea, Republic of); Yoon, Duhak, E-mail: dhyoon@knu.ac.kr [School of Animal BT Sciences, Sangju Campus, Kyungpook National University, 386 Gajang-dong, Sangju, Gyeongsangbuk-do 742-211 (Korea, Republic of); Ryoo, Zae Young, E-mail: jaewoong64@hanmail.net [School of Life Science and Biotechnology, Kyungpook National University, 1370 Sankyuk-dong, Buk-ku, Daegu 702-701 (Korea, Republic of)

    2014-02-14

    Highlights: • The expression of Jazf1 in the liver suppressed lipid accumulation. • Jazf1 significantly increases transcription of fatty acid synthase. • Jazf1 plays a critical role in the regulation of energy and lipid homeostasis. • Jazf1 associates the development of metabolic disorder. • Jazf1 may provide a new therapeutic target in the management of metabolic disorder. - Abstract: Jazf1 is a 27 kDa nuclear protein containing three putative zinc finger motifs that is associated with diabetes mellitus and prostate cancer; however, little is known about the role that this gene plays in regulation of metabolism. Recent evidence indicates that Jazf1 transcription factors bind to the nuclear orphan receptor TR4. This receptor regulates PEPCK, the key enzyme involved in gluconeogenesis. To elucidate Jazf1’s role in metabolism, we fed a 60% fat diet for up to 15 weeks. In Jazf1 overexpression mice, weight gain was found to be significantly decreased. The expression of Jazf1 in the liver also suppressed lipid accumulation and decreased droplet size. These results suggest that Jazf1 plays a critical role in the regulation of lipid homeostasis. Finally, Jazf1 may provide a new therapeutic target in the management of obesity and diabetes.

  3. Regulation of lipid metabolism by energy availability: a role for the central nervous system.

    Science.gov (United States)

    Nogueiras, R; López, M; Diéguez, C

    2010-03-01

    The central nervous system (CNS) is crucial in the regulation of energy homeostasis. Many neuroanatomical studies have shown that the white adipose tissue (WAT) is innervated by the sympathetic nervous system, which plays a critical role in adipocyte lipid metabolism. Therefore, there are currently numerous reports indicating that signals from the CNS control the amount of fat by modulating the storage or oxidation of fatty acids. Importantly, some CNS pathways regulate adipocyte metabolism independently of food intake, suggesting that some signals possess alternative mechanisms to regulate energy homeostasis. In this review, we mainly focus on how neuronal circuits within the hypothalamus, such as leptin- ghrelin-and resistin-responsive neurons, as well as melanocortins, neuropeptide Y, and the cannabinoid system exert their actions on lipid metabolism in peripheral tissues such as WAT, liver or muscle. Dissecting the complicated interactions between peripheral signals and neuronal circuits regulating lipid metabolism might open new avenues for the development of new therapies preventing and treating obesity and its associated cardiometabolic sequelae.

  4. Methanol Metabolism in Yeasts : Regulation of the Synthesis of Catabolic Enzymes

    NARCIS (Netherlands)

    Egli, Th.; Dijken, J.P. van; Veenhuis, M.; Harder, W.; Fiechter, A.

    1980-01-01

    The regulation of the synthesis of four dissimilatory enzymes involved in methanol metabolism, namely alcohol oxidase, formaldehyde dehydrogenase, formate dehydrogenase and catalase was investigated in the yeasts Hansenula polymorpha and Kloeckera sp. 2201. Enzyme profiles in cell-free extracts of

  5. Rutin as a Mediator of Lipid Metabolism and Cellular Signaling Pathways Interactions in Fibroblasts Altered by UVA and UVB Radiation

    Directory of Open Access Journals (Sweden)

    Agnieszka Gęgotek

    2017-01-01

    Full Text Available Background. Rutin is a natural nutraceutical that is a promising compound for the prevention of UV-induced metabolic changes in skin cells. The aim of this study was to examine the effects of rutin on redox and endocannabinoid systems, as well as proinflammatory and proapoptotic processes, in UV-irradiated fibroblasts. Methods. Fibroblasts exposed to UVA and UVB radiation were treated with rutin. The activities and levels of oxidants/antioxidants and endocannabinoid system components, as well as lipid, DNA, and protein oxidation products, and the proinflammatory and pro/antiapoptotic proteins expression were measured. Results. Rutin reduced UV-induced proinflammatory response and ROS generation and enhanced the activity/levels of antioxidants (SOD, GSH-Px, vitamin E, GSH, and Trx. Rutin also normalized UV-induced Nrf2 expression. Its biological activity prevented changes in the levels of the lipid mediators: MDA, 4-HNE, and endocannabinoids, as well as the endocannabinoid receptors CB1/2, VR1, and GPR55 expression. Furthermore, rutin prevented the protein modifications (tyrosine derivatives formation in particular and decreased the levels of the proapoptotic markers—caspase-3 and cytochrome c. Conclusion. Rutin prevents UV-induced inflammation and redox imbalance at protein and transcriptional level which favors lipid, protein, and DNA protection. In consequence rutin regulates endocannabinoid system and apoptotic balance.

  6. Body weight regulation and obesity: dietary strategies to improve the metabolic profile.

    Science.gov (United States)

    Munsters, M J M; Saris, W H M

    2014-01-01

    This review discusses dietary strategies that may improve the metabolic profile and body weight regulation in obesity. Recent evidence demonstrated that long-term health effects seem to be more beneficial for low-glycemic index (GI) diets compared to high-protein diets. Still, these results need to be confirmed by other prospective cohort studies and long-term clinical trials, and the discrepancy between these study designs needs to be explored in more detail. Furthermore, the current literature is mixed with regard to the efficacy of increased meal frequency (or snacking) regimens in causing metabolic alterations, particularly in relation to body weight control. In conclusion, a growing body of evidence suggests that dietary strategies with the aim to reduce postprandial insulin response and increase fat oxidation, and that tend to restore metabolic flexibility, have a place in the prevention and treatment of obesity and associated metabolic disorders.

  7. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  8. PGC-1α regulates alanine metabolism in muscle cells.

    Science.gov (United States)

    Hatazawa, Yukino; Qian, Kun; Gong, Da-Wei; Kamei, Yasutomi

    2018-01-01

    The skeletal muscle is the largest organ in the human body, depositing energy as protein/amino acids, which are degraded in catabolic conditions such as fasting. Alanine is synthesized and secreted from the skeletal muscle that is used as substrates of gluconeogenesis in the liver. During fasting, the expression of PGC-1α, a transcriptional coactivator of nuclear receptors, is increased in the liver and regulates gluconeogenesis. In the present study, we observed increased mRNA expression of PGC-1α and alanine aminotransferase 2 (ALT2) in the skeletal muscle during fasting. In C2C12 myoblast cells overexpressing PGC-1α, ALT2 expression was increased concomitant with an increased alanine level in the cells and medium. In addition, PGC-1α, along with nuclear receptor ERR, dose-dependently enhanced the ALT2 promoter activity in reporter assay using C2C12 cells. In the absence of glucose in the culture medium, mRNA levels of PGC-1α and ALT2 increased. Endogenous PGC-1α knockdown in C2C12 cells reduced ALT2 gene expression level, induced by the no-glucose medium. Taken together, in the skeletal muscle, PGC-1α activates ALT2 gene expression, and alanine production may play roles in adaptation to fasting.

  9. Systems biology of adipose tissue metabolism: regulation of growth, signaling and inflammation.

    Science.gov (United States)

    Manteiga, Sara; Choi, Kyungoh; Jayaraman, Arul; Lee, Kyongbum

    2013-01-01

    Adipose tissue (AT) depots actively regulate whole body energy homeostasis by orchestrating complex communications with other physiological systems as well as within the tissue. Adipocytes readily respond to hormonal and nutritional inputs to store excess nutrients as intracellular lipids or mobilize the stored fat for utilization. Co-ordinated regulation of metabolic pathways balancing uptake, esterification, and hydrolysis of lipids is accomplished through positive and negative feedback interactions of regulatory hubs comprising several pleiotropic protein kinases and nuclear receptors. Metabolic regulation in adipocytes encompasses biogenesis and remodeling of uniquely large lipid droplets (LDs). The regulatory hubs also function as energy and nutrient sensors, and integrate metabolic regulation with intercellular signaling. Over-nutrition causes hypertrophic expansion of adipocytes, which, through incompletely understood mechanisms, initiates a cascade of metabolic and signaling events leading to tissue remodeling and immune cell recruitment. Macrophage activation and polarization toward a pro-inflammatory phenotype drives a self-reinforcing cycle of pro-inflammatory signals in the AT, establishing an inflammatory state. Sustained inflammation accelerates lipolysis and elevates free fatty acids in circulation, which robustly correlates with development of obesity-related diseases. The adipose regulatory network coupling metabolism, growth, and signaling of multiple cell types is exceedingly complex. While components of the regulatory network have been individually studied in exquisite detail, systems approaches have rarely been utilized to comprehensively assess the relative engagements of the components. Thus, need and opportunity exist to develop quantitative models of metabolic and signaling networks to achieve a more complete understanding of AT biology in both health and disease. Copyright © 2013 Wiley Periodicals, Inc.

  10. Proteomic investigation of Vibrio alginolyticus challenged Caenorhabditis elegans revealed regulation of cellular homeostasis proteins and their role in supporting innate immune system.

    Science.gov (United States)

    Durai, Sellegounder; Singh, Nirpendra; Kundu, Suman; Balamurugan, Krishnaswamy

    2014-08-01

    Caenorhabditis elegans has been the preferred model system for many investigators to study pathogenesis. In the present investigation, regulation of C. elegans proteome was explored against V. alginolyticus infection using quantitative proteomics approach. Proteins were separated using 2D-DIGE and the differentially regulated proteins were identified using PMF and MALDI TOF/TOF analysis. The results thus obtained were validated using Western blotting for candidate proteins. The corresponding transcriptional regulation was quantified subsequently using real-time PCR. Interaction network for candidate proteins was predicted using search tool for the retrieval of interacting genes/proteins (STRING) and functional validation was performed using respective mutant strains. Out of the 25 proteins identified, 21 proteins appeared to be upregulated while four were downregulated. Upregulated proteins included those involved in stress-response (PDI-2, HSP-6), immune-response (protein kinase -18, GST-8) and energy-production (ATP-2) while proteins involved in structural maintenance (IFB-2) and lipid metabolism (SODH-1) were downregulated. The roles of these players in the host system during Vibrio infection was analyzed in vivo using wild type and mutant C. elegans. Survival assays using mutants lacking pdi-2, ire-1, and xbp-1 displayed enhanced susceptibility to V. alginolyticus. Cellular stress generated by V. alginolyticus was determined using ROS assay. This is the first report of proteome changes in C. elegans against V. alginolyticus challenge and highlights the significance of unfolded protein response (UPR) pathway during bacterial infection. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. UV laser-ablated surface textures as potential regulator of cellular response.

    Science.gov (United States)

    Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim

    2010-06-01

    Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

  12. Hydrogen sulfide metabolism regulates endothelial solute barrier function

    Directory of Open Access Journals (Sweden)

    Shuai Yuan

    2016-10-01

    Full Text Available Hydrogen sulfide (H2S is an important gaseous signaling molecule in the cardiovascular system. In addition to free H2S, H2S can be oxidized to polysulfide which can be biologically active. Since the impact of H2S on endothelial solute barrier function is not known, we sought to determine whether H2S and its various metabolites affect endothelial permeability. In vitro permeability was evaluated using albumin flux and transendothelial electrical resistance. Different H2S donors were used to examine the effects of exogenous H2S. To evaluate the role of endogenous H2S, mouse aortic endothelial cells (MAECs were isolated from wild type mice and mice lacking cystathionine γ-lyase (CSE, a predominant source of H2S in endothelial cells. In vivo permeability was evaluated using the Miles assay. We observed that polysulfide donors induced rapid albumin flux across endothelium. Comparatively, free sulfide donors increased permeability only with higher concentrations and at later time points. Increased solute permeability was associated with disruption of endothelial junction proteins claudin 5 and VE-cadherin, along with enhanced actin stress fiber formation. Importantly, sulfide donors that increase permeability elicited a preferential increase in polysulfide levels within endothelium. Similarly, CSE deficient MAECs showed enhanced solute barrier function along with reduced endogenous bound sulfane sulfur. CSE siRNA knockdown also enhanced endothelial junction structures with increased claudin 5 protein expression. In vivo, CSE genetic deficiency significantly blunted VEGF induced hyperpermeability revealing an important role of the enzyme for barrier function. In summary, endothelial solute permeability is critically regulated via exogenous and endogenous sulfide bioavailability with a prominent role of polysulfides.

  13. Rac1 Regulates the Activity of mTORC1 and mTORC2 and Controls Cellular Size

    Science.gov (United States)

    Saci, Abdelhafid; Cantley, Lewis C.; Carpenter, Christopher L.

    2013-01-01

    SUMMARY Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that exists in two separate complexes, mTORC1 and mTORC2, that function to control cell size and growth in response to growth factors, nutrients, and cellular energy levels. Low molecular weight GTP-binding proteins of the Rheb and Rag families are key regulators of the mTORC1 complex, but regulation of mTORC2 is poorly understood. Here, we report that Rac1, a member of the Rho family of GTPases, is a critical regulator of both mTORC1 and mTORC2 in response to growth-factor stimulation. Deletion of Rac1 in primary cells using an inducible-Cre/Lox approach inhibits basal and growth-factor activation of both mTORC1 and mTORC2. Rac1 appears to bind directly to mTOR and to mediate mTORC1 and mTORC2 localization at specific membranes. Binding of Rac1 to mTOR does not depend on the GTP-bound state of Rac1, but on the integrity of its C-terminal domain. This function of Rac1 provides a means to regulate mTORC1 and mTORC2 simultaneously. PMID:21474067

  14. Carbohydrate Metabolism in Archaea: Current Insights into Unusual Enzymes and Pathways and Their Regulation

    Science.gov (United States)

    Esser, Dominik; Rauch, Bernadette

    2014-01-01

    SUMMARY The metabolism of Archaea, the third domain of life, resembles in its complexity those of Bacteria and lower Eukarya. However, this metabolic complexity in Archaea is accompanied by the absence of many “classical” pathways, particularly in central carbohydrate metabolism. Instead, Archaea are characterized by the presence of unique, modified variants of classical pathways such as the Embden-Meyerhof-Parnas (EMP) pathway and the Entner-Doudoroff (ED) pathway. The pentose phosphate pathway is only partly present (if at all), and pentose degradation also significantly differs from that known for bacterial model organisms. These modifications are accompanied by the invention of “new,” unusual enzymes which cause fundamental consequences for the underlying regulatory principles, and classical allosteric regulation sites well established in Bacteria and Eukarya are lost. The aim of this review is to present the current understanding of central carbohydrate metabolic pathways and their regulation in Archaea. In order to give an overview of their complexity, pathway modifications are discussed with respect to unusual archaeal biocatalysts, their structural and mechanistic characteristics, and their regulatory properties in comparison to their classic counterparts from Bacteria and Eukarya. Furthermore, an overview focusing on hexose metabolic, i.e., glycolytic as well as gluconeogenic, pathways identified in archaeal model organisms is given. Their energy gain is discussed, and new insights into different levels of regulation that have been observed so far, including the transcript and protein levels (e.g., gene regulation, known transcription regulators, and posttranslational modification via reversible protein phosphorylation), are presented. PMID:24600042

  15. Differential regulation of striatal motor behavior and related cellular responses by dopamine D2L and D2S isoforms.

    Science.gov (United States)

    Radl, Daniela; Chiacchiaretta, Martina; Lewis, Robert G; Brami-Cherrier, Karen; Arcuri, Ludovico; Borrelli, Emiliana

    2018-01-02

    The dopamine D2 receptor (D2R) is a major component of the dopamine system. D2R-mediated signaling in dopamine neurons is involved in the presynaptic regulation of dopamine levels. Postsynaptically, i.e., in striatal neurons, D2R signaling controls complex functions such as motor activity through regulation of cell firing and heterologous neurotransmitter release. The presence of two isoforms, D2L and D2S, which are generated by a mechanism of alternative splicing of the Drd2 gene, raises the question of whether both isoforms may equally control presynaptic and postsynaptic events. Here, we addressed this question by comparing behavioral and cellular responses of mice with the selective ablation of either D2L or D2S isoform. We establish that the presence of either D2L or D2S can support postsynaptic functions related to the control of motor activity in basal conditions. On the contrary, absence of D2S but not D2L prevents the inhibition of tyrosine hydroxylase phosphorylation and, thereby, of dopamine synthesis, supporting a major presynaptic role for D2S. Interestingly, boosting dopamine signaling in the striatum by acute cocaine administration reveals that absence of D2L, but not of D2S, strongly impairs the motor and cellular response to the drug, in a manner similar to the ablation of both isoforms. These results suggest that when the dopamine system is challenged, D2L signaling is required for the control of striatal circuits regulating motor activity. Thus, our findings show that D2L and D2S share similar functions in basal conditions but not in response to stimulation of the dopamine system.

  16. Expression of Arabidopsis FCS-Like Zinc finger genes is differentially regulated by sugars, cellular energy level, and abiotic stress

    Directory of Open Access Journals (Sweden)

    Muhammed eJamsheer K

    2015-09-01

    Full Text Available Cellular energy status is an important regulator of plant growth, development, and stress mitigation. Environmental stresses ultimately lead to energy deficit in the cell which activates the SNF1-RELATED KINASE 1 (SnRK1 signaling cascade which eventually triggering a massive reprogramming of transcription to enable the plant to survive under low-energy conditions. The role of Arabidopsis thaliana FCS-Like Zinc finger (FLZ gene family in energy and stress signaling is recently come to highlight after their interaction with kinase subunits of SnRK1 were identified. In a detailed expression analysis in different sugars, energy starvation, and replenishment series, we identified that the expression of most of the FLZ genes is differentially modulated by cellular energy level. It was found that FLZ gene family contains genes which are both positively and negatively regulated by energy deficit as well as energy-rich conditions. Genetic and pharmacological studies identified the role of HEXOKINASE 1- dependent and energy signaling pathways in the sugar-induced expression of FLZ genes. Further, these genes were also found to be highly responsive to different stresses as well as abscisic acid. In over-expression of kinase subunit of SnRK1, FLZ genes were found to be differentially regulated in accordance with their response towards energy fluctuation suggesting that these genes may work downstream to the established SnRK1 signaling under low-energy stress. Taken together, the present study provides a conceptual framework for further studies related to SnRK1-FLZ interaction in relation to sugar and energy signaling and stress response.

  17. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Science.gov (United States)

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. [Research advance in nitrogen metabolism of plant and its environmental regulation].

    Science.gov (United States)

    Xu, Zhenzhu; Zhou, Guangsheng

    2004-03-01

    Nitrogen metabolism is not only one of the basic processes of plant physiology, but also one of the important parts of global chemical cycle. Plant nitrogen assimilation directly takes part in the synthesis and conversion of amino acid through the reduction of nitrate. During this stage, some key enzymes, e.g., nitrate reductase (NR), glutamine synthetase (GS), glutamate dehydrogenase (GDH), glutamine synthase (GOGAT), aspargine synthetase (AS), and asparate aminotransferase (AspAT) participate these processes. The protein is assimilated in plant cell through amino acid, and becomes a part of plant organism through modifying, classifying, transporting and storing processes, etc. The nitrogen metabolism is associated with carbonic metabolism through key enzyme regulations and the conversion of products, which consists of basic life process. Among these amino acids in plant cell, glutamic acid (Glu), glutamine (Gln), aspartic acid (Asp) and asparagines (Asn), etc., play a key role, which regulates their conversion each other and their contents in the plant cell through regulating formation and activity of those key enzymes. Environmental factors also affect the conversion and recycle of the key amino acids through regulating gene expression of the key enzymes and their activities. Nitrate and light intensity positively regulate the gene transcription of NR, but ammonium ions and Glu, Gln do the negative way. Water deficit is a very serious constraint on N2 fixation rate and soybean (Glycine max Merr.) grain yield, in which, ureide accumulation and degradation under water deficit appear to be the key issues of feedback mechanism on nitrogen fixation. Water stress decreases NR activity, but increases proteinase activity, and thus, they regulate plant nitrogen metabolism, although there are some different effects among species and cultivars. Water stress also decreases plant tissue protein content, ratio of protein and amino acid, and reduces the absorption of amino

  19. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response

    International Nuclear Information System (INIS)

    Soto, Armando; DelRaso, Nicholas J.; Schlager, John J.; Chan, Victor T.

    2008-01-01

    , metabolism and transport, inflammatory response, proteasome-mediated degradation of oxidatively damaged cytosolic proteins, Ras protein signal transduction, TGF-beta signaling pathway and mRNA transcription, processing, splicing and transport. On the other hand, major metabolic pathways, which include carbohydrate metabolism, TCA cycle, oxidative phosphorylation, ATP synthesis coupled electron transport, amino acid metabolism and transport, lipid metabolism, nucleotide metabolism, and vitamin metabolism, and oxidative stress response including induction of antioxidant genes and glutathione metabolism are down-regulated. As tubular epithelia have strong energy demand for normal functions, down-regulation of energy metabolism after D-serine treatment may be related to the mechanism of its nephrotoxicity. In addition, hydrogen peroxide, a reactive oxygen species, is produced as a byproduct of the metabolism of D-serine by D-amino acid oxidase in the peroxisomes of the tubular epithelia. Down-regulation of pathways for antioxidant genes induction and glutathione metabolism will likely exacerbate the cytotoxicity of this reactive oxygen species. The observation that the genes involved in apoptosis, DNA repair, proteasome pathway for the degradation of oxidatively damaged cytosolic proteins were up-regulated lends some supports to this premise. Up-regulation of pathways of cell proliferation cycle, DNA replication and gene expression process, including mRNA transcription, processing, splicing, transport, translation initiation, and protein transport along with protein complex assembly, suggests ongoing tissue repair and regeneration. Consistent with the fibrogenic function of the TGF-beta signaling pathway in various experimental renal diseases, genes encoding major extracellular matrix components such as collagens, laminins, fibronectin 1 and tenascins are also strongly up-regulated. Taken together, the results of this study provide important insights into the molecular mechanism

  20. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  1. An AICD-based functional screen to identify APP metabolism regulators

    Directory of Open Access Journals (Sweden)

    Lee Jeremy C

    2007-08-01

    Full Text Available Abstract Background A central event in Alzheimer's disease (AD is the regulated intramembraneous proteolysis of the β-amyloid precursor protein (APP, to generate the β-amyloid (Aβ peptide and the APP intracellular domain (AICD. Aβ is the major component of amyloid plaques and AICD displays transcriptional activation properties. We have taken advantage of AICD transactivation properties to develop a genetic screen to identify regulators of APP metabolism. This screen relies on an APP-Gal4 fusion protein, which upon normal proteolysis, produces AICD-Gal4. Production of AICD-Gal4 induces Gal4-UAS driven luciferase expression. Therefore, when regulators of APP metabolism are modulated, luciferase expression is altered. Results To validate this experimental approach we modulated α-, β-, and γ-secretase levels and activities. Changes in AICD-Gal4 levels as measured by Western blot analysis were strongly and significantly correlated to the observed changes in AICD-Gal4 mediated luciferase activity. To determine if a known regulator of APP trafficking/maturation and Presenilin1 endoproteolysis could be detected using the AICD-Gal4 mediated luciferase assay, we knocked-down Ubiquilin 1 and observed decreased luciferase activity. We confirmed that Ubiquilin 1 modulated AICD-Gal4 levels by Western blot analysis and also observed that Ubiquilin 1 modulated total APP levels, the ratio of mature to immature APP, as well as PS1 endoproteolysis. Conclusion Taken together, we have shown that this screen can identify known APP metabolism regulators that control proteolysis, intracellular trafficking, maturation and levels of APP and its proteolytic products. We demonstrate for the first time that Ubiquilin 1 regulates APP metabolism in the human neuroblastoma cell line, SH-SY5Y.

  2. Study of AMPK-Regulated Metabolic Fluxes in Neurons Using the Seahorse XFe Analyzer.

    Science.gov (United States)

    Marinangeli, Claudia; Kluza, Jérome; Marchetti, Philippe; Buée, Luc; Vingtdeux, Valérie

    2018-01-01

    AMP-activated protein kinase (AMPK) is the intracellular master energy sensor and metabolic regulator. AMPK is involved in cell energy homeostasis through the regulation of glycolytic flux and mitochondrial biogenesis. Interestingly, metabolic dysfunctions and AMPK deregulations are observed in many neurodegenerative diseases, including Alzheimer's. While these deregulations could play a key role in the development of these diseases, the study of metabolic fluxes has remained quite challenging and time-consuming. In this chapter, we describe the Seahorse XFe respirometry assay as a fundamental experimental tool to investigate the role of AMPK in controlling and modulating cell metabolic fluxes in living and intact differentiated primary neurons. The Seahorse XFe respirometry assay allows the real-time monitoring of glycolytic flux and mitochondrial respiration from different kind of cells, tissues, and isolated mitochondria. Here, we specify a protocol optimized for primary neuronal cells using several energy substrates such as glucose, pyruvate, lactate, glutamine, and ketone bodies. Nevertheless, this protocol can easily be adapted to monitor metabolic fluxes from other types of cells, tissues, or isolated mitochondria by taking into account the notes proposed for each key step of this assay.

  3. TRAP1 Regulation of Cancer Metabolism: Dual Role as Oncogene or Tumor Suppressor

    Directory of Open Access Journals (Sweden)

    Danilo Swann Matassa

    2018-04-01

    Full Text Available Metabolic reprogramming is an important issue in tumor biology. An unexpected inter- and intra-tumor metabolic heterogeneity has been strictly correlated to tumor outcome. Tumor Necrosis Factor Receptor-Associated Protein 1 (TRAP1 is a molecular chaperone involved in the regulation of energetic metabolism in cancer cells. This protein is highly expressed in several cancers, such as glioblastoma, colon, breast, prostate and lung cancers and is often associated with drug resistance. However, TRAP1 is also downregulated in specific tumors, such as ovarian, bladder and renal cancers, where its lower expression is correlated with the worst prognoses and chemoresistance. TRAP1 is the only mitochondrial member of the Heat Shock Protein 90 (HSP90 family that directly interacts with respiratory complexes, contributing to their stability and activity but it is still unclear if such interactions lead to reduced or increased respiratory capacity. The role of TRAP1 is to enhance or suppress oxidative phosphorylation; the effects of such regulation on tumor development and progression are controversial. These observations encourage the study of the mechanisms responsible for the dualist role of TRAP1 as an oncogene or oncosuppressor in specific tumor types. In this review, TRAP1 puzzling functions were recapitulated with a special focus on the correlation between metabolic reprogramming and tumor outcome. We wanted to investigate whether metabolism-targeting drugs can efficiently interfere with tumor progression and whether they might be combined with chemotherapeutics or molecular-targeted agents to counteract drug resistance and reduce therapeutic failure.

  4. An epidermal microRNA regulates neuronal migration through control of the cellular glycosylation state

    DEFF Research Database (Denmark)

    Pedersen, Mikael Egebjerg; Snieckute, Goda; Kagias, Konstantinos

    2013-01-01

    An appropriate balance in glycosylation of proteoglycans is crucial for their ability to regulate animal development. Here, we report that the Caenorhabditis elegans microRNA mir-79, an ortholog of mammalian miR-9, controls sugar-chain homeostasis by targeting two proteins in the proteoglycan bio...... that impinges on a LON-2/glypican pathway and disrupts neuronal migration. Our results identify a regulatory axis controlled by a conserved microRNA that maintains proteoglycan homeostasis in cells....

  5. Cell Cycle Regulates Nuclear Stability of AID and Determines the Cellular Response to AID.

    Directory of Open Access Journals (Sweden)

    Quy Le

    2015-09-01

    Full Text Available AID (Activation Induced Deaminase deaminates cytosines in DNA to initiate immunoglobulin gene diversification and to reprogram CpG methylation in early development. AID is potentially highly mutagenic, and it causes genomic instability evident as translocations in B cell malignancies. Here we show that AID is cell cycle regulated. By high content screening microscopy, we demonstrate that AID undergoes nuclear degradation more slowly in G1 phase than in S or G2-M phase, and that mutations that affect regulatory phosphorylation or catalytic activity can alter AID stability and abundance. We directly test the role of cell cycle regulation by fusing AID to tags that destabilize nuclear protein outside of G1 or S-G2/M phases. We show that enforced nuclear localization of AID in G1 phase accelerates somatic hypermutation and class switch recombination, and is well-tolerated; while nuclear AID compromises viability in S-G2/M phase cells. We identify AID derivatives that accelerate somatic hypermutation with minimal impact on viability, which will be useful tools for engineering genes and proteins by iterative mutagenesis and selection. Our results further suggest that use of cell cycle tags to regulate nuclear stability may be generally applicable to studying DNA repair and to engineering the genome.

  6. Cellular localization of steroid hormone-regulated proteins during sexual development in achlya

    International Nuclear Information System (INIS)

    Brunt, S.A.; Silver, J.C.

    1986-01-01

    In the fungus Achlya ambisexualis sexual development in the male strain E87 is controlled by the steroid hormone antheridiol. To investigate the effects of antheridiol on the synthesis and/or accumulation of specific cellular proteins we have analyzed [ 35 S]methionine-labeled proteins from control and hormone-treated cells using both one-dimensional (1D) and two-dimensional (2D) PAGE. The addition of the hormone antheridiol to vegetatively growing cells of Achlya E87 was found to result in changes in the synthesis and/or accumulation of at least 16 specific proteins, which could be localized to the cytoplasmic, nuclear or cell was/cell membrane fractions. The most prominent changes observed in the hormone-treated cells included the appearance in the cytoplasmic fraction of labeled proteins at 28.4 and 24.3kD which were not detectable in control cells, and a significant enrichment in the labeling of a 24.3kD protein in the cell wall/cell membrane fraction. Quantitative changes in the [ 35 S]methionine labeling of several other proteins were noted in all three cell fractions

  7. Regulation of adeno-associated virus DNA replication by the cellular TAF-I/set complex.

    Science.gov (United States)

    Pegoraro, Gianluca; Marcello, Alessandro; Myers, Michael P; Giacca, Mauro

    2006-07-01

    The Rep proteins of the adeno-associated virus (AAV) are required for viral replication in the presence of adenovirus helper functions and as yet poorly characterized cellular factors. In an attempt to identify such factors, we purified Flag-Rep68-interacting proteins from human cell lysates. Several polypeptides were identified by mass spectrometry, among which was ANP32B, a member of the acidic nuclear protein 32 family which takes part in the formation of the template-activating factor I/Set oncoprotein (TAF-I/Set) complex. The N terminus of Rep was found to specifically bind the acidic domain of ANP32B; through this interaction, Rep was also able to recruit other members of the TAF-I/Set complex, including the ANP32A protein and the histone chaperone TAF-I/Set. Further experiments revealed that silencing of ANP32A and ANP32B inhibited AAV replication, while overexpression of all of the components of the TAF-I/Set complex increased de novo AAV DNA synthesis in permissive cells. Besides being the first indication that the TAF-I/Set complex participates in wild-type AAV replication, these findings have important implications for the generation of recombinant AAV vectors since overexpression of the TAF-I/Set components was found to markedly increase viral vector production.

  8. New perspectives on the regulation of iron absorption via cellular zinc concentrations in humans.

    Science.gov (United States)

    Knez, Marija; Graham, Robin D; Welch, Ross M; Stangoulis, James C R

    2017-07-03

    Iron deficiency is the most prevalent nutritional deficiency, affecting more than 30% of the total world's population. It is a major public health problem in many countries around the world. Over the years various methods have been used with an effort to try and control iron-deficiency anemia. However, there has only been a marginal reduction in the global prevalence of anemia. Why is this so? Iron and zinc are essential trace elements for humans. These metals influence the transport and absorption of one another across the enterocytes and hepatocytes, due to similar ionic properties. This paper describes the structure and roles of major iron and zinc transport proteins, clarifies iron-zinc interactions at these sites, and provides a model for the mechanism of these interactions both at the local and systemic level. This review provides evidence that much of the massive extent of iron deficiency anemia in the world may be due to an underlying deficiency of zinc. It explains the reasons for predominance of cellular zinc status in determination of iron/zinc interactions and for the first time thoroughly explains mechanisms by which zinc brings about these changes.

  9. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53.

    Science.gov (United States)

    Riscal, Romain; Schrepfer, Emilie; Arena, Giuseppe; Cissé, Madi Y; Bellvert, Floriant; Heuillet, Maud; Rambow, Florian; Bonneil, Eric; Sabourdy, Frédérique; Vincent, Charles; Ait-Arsa, Imade; Levade, Thierry; Thibaut, Pierre; Marine, Jean-Christophe; Portais, Jean-Charles; Sarry, Jean-Emmanuel; Le Cam, Laurent; Linares, Laetitia K

    2016-06-16

    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Free fatty acid receptors and their role in regulation of energy metabolism.

    Science.gov (United States)

    Hara, Takafumi; Kimura, Ikuo; Inoue, Daisuke; Ichimura, Atsuhiko; Hirasawa, Akira

    2013-01-01

    The free fatty acid receptor (FFAR) is a G protein-coupled receptor (GPCR) activated by free fatty acids (FFAs), which play important roles not only as essential nutritional components but also as signaling molecules in numerous physiological processes. In the last decade, FFARs have been identified by the GPCR deorphanization strategy derived from the human genome database. To date, several FFARs have been identified and characterized as critical components in various physiological processes. FFARs are categorized according to the chain length of FFA ligands that activate each FFAR; FFA2 and FFA3 are activated by short chain FFAs, GPR84 is activated by medium-chain FFAs, whereas FFA1 and GPR120 are activated by medium- or long-chain FFAs. FFARs appear to act as physiological sensors for food-derived FFAs and digestion products in the gastrointestinal tract. Moreover, they are considered to be involved in the regulation of energy metabolism mediated by the secretion of insulin and incretin hormones and by the regulation of the sympathetic nerve systems, taste preferences, and inflammatory responses related to insulin resistance. Therefore, because FFARs can be considered to play important roles in physiological processes and various pathophysiological processes, FFARs have been targeted in therapeutic strategies for the treatment of metabolic disorders including type 2 diabetes and metabolic syndrome. In this review, we present a summary of recent progress regarding the understanding of their physiological roles in the regulation of energy metabolism and their potential as therapeutic targets.

  11. Life-stage-associated remodelling of lipid metabolism regulation in Atlantic salmon.

    Science.gov (United States)

    Gillard, Gareth; Harvey, Thomas N; Gjuvsland, Arne; Jin, Yang; Thomassen, Magny; Lien, Sigbjørn; Leaver, Michael; Torgersen, Jacob S; Hvidsten, Torgeir R; Vik, Jon Olav; Sandve, Simen R

    2018-03-01

    Atlantic salmon migrates from rivers to sea to feed, grow and develop gonads before returning to spawn in freshwater. The transition to marine habitats is associated with dramatic changes in the environment, including water salinity, exposure to pathogens and shift in dietary lipid availability. Many changes in physiology and metabolism occur across this life-stage transition, but little is known about the molecular nature of these changes. Here, we use a long-term feeding experiment to study transcriptional regulation of lipid metabolism in Atlantic salmon gut and liver in both fresh- and saltwater. We find that lipid metabolism becomes significantly less plastic to differences in dietary lipid composition when salmon transitions to saltwater and experiences increased dietary lipid availability. Expression of genes in liver relating to lipogenesis and lipid transport decreases overall and becomes less responsive to diet, while genes for lipid uptake in gut become more highly expressed. Finally, analyses of evolutionary consequences of the salmonid-specific whole-genome duplication on lipid metabolism reveal several pathways with significantly different (p < .05) duplicate retention or duplicate regulatory conservation. We also find a limited number of cases where the whole-genome duplication has resulted in an increased gene dosage. In conclusion, we find variable and pathway-specific effects of the salmonid genome duplication on lipid metabolism genes. A clear life-stage-associated shift in lipid metabolism regulation is evident, and we hypothesize this to be, at least partly, driven by nondietary factors such as the preparatory remodelling of gene regulation and physiology prior to sea migration. © 2018 John Wiley & Sons Ltd.

  12. Thermodynamic analysis of regulation in metabolic networks using constraint-based modeling

    Directory of Open Access Journals (Sweden)

    Mahadevan Radhakrishnan

    2010-05-01

    Full Text Available Abstract Background Geobacter sulfurreducens is a member of the Geobacter species, which are capable of oxidation of organic waste coupled to the reduction of heavy metals and electrode with applications in bioremediation and bioenergy generation. While the metabolism of this organism has been studied through the development of a stoichiometry based genome-scale metabolic model, the associated regulatory network has not yet been well studied. In this manuscript, we report on the implementation of a thermodynamics based metabolic flux model for Geobacter sulfurreducens. We use this updated model to identify reactions that are subject to regulatory control in the metabolic network of G. sulfurreducens using thermodynamic variability analysis. Findings As a first step, we have validated the regulatory sites and bottleneck reactions predicted by the thermodynamic flux analysis in E. coli by evaluating the expression ranges of the corresponding genes. We then identified ten reactions in the metabolic network of G. sulfurreducens that are predicted to be candidates for regulation. We then compared the free energy ranges for these reactions with the corresponding gene expression fold changes under conditions of different environmental and genetic perturbations and show that the model predictions of regulation are consistent with data. In addition, we also identify reactions that operate close to equilibrium and show that the experimentally determined exchange coefficient (a measure of reversibility is significant for these reactions. Conclusions Application of the thermodynamic constraints resulted in identification of potential bottleneck reactions not only from the central metabolism but also from the nucleotide and amino acid subsystems, thereby showing the highly coupled nature of the thermodynamic constraints. In addition, thermodynamic variability analysis serves as a valuable tool in estimating the ranges of ΔrG' of every reaction in the model

  13. Inflammation and ER Stress Regulate Branched-Chain Amino Acid Uptake and Metabolism in Adipocytes

    Science.gov (United States)

    Burrill, Joel S.; Long, Eric K.; Reilly, Brian; Deng, Yingfeng; Armitage, Ian M.; Scherer, Philipp E.

    2015-01-01

    Inflammation plays a critical role in the pathology of obesity-linked insulin resistance and is mechanistically linked to the effects of macrophage-derived cytokines on adipocyte energy metabolism, particularly that of the mitochondrial branched-chain amino acid (BCAA) and tricarboxylic acid (TCA) pathways. To address the role of inflammation on energy metabolism in adipocytes, we used high fat-fed C57BL/6J mice and lean controls and measured the down-regulation of genes linked to BCAA and TCA cycle metabolism selectively in visceral but not in subcutaneous adipose tissue, brown fat, liver, or muscle. Using 3T3-L1 cells, TNFα, and other proinflammatory cytokine treatments reduced the expression of the genes linked to BCAA transport and oxidation. Consistent with this, [14C]-leucine uptake and conversion to triglycerides was markedly attenuated in TNFα-treated adipocytes, whereas the conversion to protein was relatively unaffected. Because inflammatory cytokines lead to the induction of endoplasmic reticulum stress, we evaluated the effects of tunicamycin or thapsigargin treatment of 3T3-L1 cells and measured a similar down-regulation in the BCAA/TCA cycle pathway. Moreover, transgenic mice overexpressing X-box binding protein 1 in adipocytes similarly down-regulated genes of BCAA and TCA metabolism in vivo. These results indicate that inflammation and endoplasmic reticulum stress attenuate lipogenesis in visceral adipose depots by down-regulating the BCAA/TCA metabolism pathway and are consistent with a model whereby the accumulation of serum BCAA in the obese insulin-resistant state is linked to adipose inflammation. PMID:25635940

  14. The disturbances of lipid metabolism regulation after the prenatal low-level irradiation

    International Nuclear Information System (INIS)

    Rogov, Yu.I.; Danil'chik, V.S.; Spivak, L.V.; Rubchenya, I.N.

    2000-01-01

    The objective of this study was to assess the influence of low-level irradiation on lipid metabolism in rats after prenatal exposure. Pregnant rats were irradiated during the period of gestation with the whole final dose 0,5 Gy/rat. The blood lipid fractions were investigated in newborn rats and in 6-month age rats. In irradiated offspring the lipo synthesis processes exceeded lipolysis in comparison with that of the control. The negative consequences of embryo low-level irradiation in the lipid metabolism regulation are discussed in this report. (authors)

  15. Effect of antibiotics on gut microbiota, glucose metabolism and bodyweight regulation

    DEFF Research Database (Denmark)

    Mikkelsen, Kristian Hallundbaek; Allin, Kristine Højgaard; Knop, Filip Krag

    2016-01-01

    Gut bacteria are involved in a number of host metabolic processes and have been implicated in the development of obesity and type 2 diabetes in humans. Use of antibiotics changes the composition of the gut microbiota and there is accumulating evidence from observational studies for an association...... between exposure to antibiotics and development of obesity and type 2 diabetes. Here we review human studies examining effects of antibiotics on bodyweight regulation and glucose metabolism and discuss whether the observed findings may relate to alterations in the composition and function of the gut...

  16. Syk Tyrosine Kinase Acts as a Pancreatic Adenocarcinoma Tumor Suppressor by Regulating Cellular Growth and Invasion

    OpenAIRE

    Layton, Tracy; Stalens, Cristel; Gunderson, Felizza; Goodison, Steve; Silletti, Steve

    2009-01-01

    We have identified the nonreceptor tyrosine kinase syk as a marker of differentiation/tumor suppressor in pancreatic ductal adenocarcinoma (PDAC). Syk expression is lost in poorly differentiated PDAC cells in vitro and in situ, and stable reexpression of syk in endogenously syk-negative Panc1 (Panc1/syk) cells retarded their growth in vitro and in vivo and reduced anchorage-independent growth in vitro. Panc1/syk cells exhibited a more differentiated morphology and down-regulated cyclin D1, ak...

  17. Extracellular Matrix components regulate cellular polarity and tissue structure in the developing and mature Retina

    Directory of Open Access Journals (Sweden)

    Shweta Varshney

    2015-01-01

    Full Text Available While genetic networks and other intrinsic mechanisms regulate much of retinal development, interactions with the extracellular environment shape these networks and modify their output. The present review has focused on the role of one family of extracellular matrix molecules and their signaling pathways in retinal development. In addition to their effects on the developing retina, laminins play a role in maintaining Müller cell polarity and compartmentalization, thereby contributing to retinal homeostasis. This article which is intended for the clinical audience, reviews the fundamentals of retinal development, extracellular matrix organization and the role of laminins in retinal development. The role of laminin in cortical development is also briefly discussed.

  18. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1, a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs, its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS. Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45% after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis.

  19. Inhibition of the alpha-ketoglutarate dehydrogenase complex alters mitochondrial function and cellular calcium regulation.

    Science.gov (United States)

    Huang, Hsueh-Meei; Zhang, Hui; Xu, Hui; Gibson, Gary E

    2003-01-20

    Mitochondrial dysfunction occurs in many neurodegenerative diseases. The alpha-ketoglutarate dehydrogenase complex (KGDHC) catalyzes a key and arguably rate-limiting step of the tricarboxylic acid cycle (TCA). A reduction in the activity of the KGDHC occurs in brains and cells of patients with many of these disorders and may underlie the abnormal mitochondrial function. Abnormalities in calcium homeostasis also occur in fibroblasts from Alzheimer's disease (AD) patients and in cells bearing mutations that lead to AD. Thus, the present studies test whether the reduction of KGDHC activity can lead to the alterations in mitochondrial function and calcium homeostasis. alpha-Keto-beta-methyl-n-valeric acid (KMV) inhibits KGDHC activity in living N2a cells in a dose- and time-dependent manner. Surprisingly, concentration of KMV that inhibit in situ KGDHC by 80% does not alter the mitochondrial membrane potential (MMP). However, similar concentrations of KMV induce the release of cytochrome c from mitochondria into the cytosol, reduce basal [Ca(2+)](i) by 23% (Pcalcium release from the endoplasmic reticulum (ER) by 46% (P<0.005). This result suggests that diminished KGDHC activities do not lead to the Ca(2+) abnormalities in fibroblasts from AD patients or cells bearing PS-1 mutations. The increased release of cytochrome c with diminished KGDHC activities will be expected to activate other pathways including cell death cascades. Reductions in this key mitochondrial enzyme will likely make the cells more vulnerable to metabolic insults that promote cell death.

  20. Sub-cellular mRNA localization modulates the regulation of gene expression by small RNAs in bacteria

    Science.gov (United States)

    Teimouri, Hamid; Korkmazhan, Elgin; Stavans, Joel; Levine, Erel

    2017-10-01

    Small non-coding RNAs can exert significant regulatory activity on gene expression in bacteria. In recent years, substantial progress has been made in understanding bacterial gene expression by sRNAs. However, recent findings that demonstrate that families of mRNAs show non-trivial sub-cellular distributions raise the question of how localization may affect the regulatory activity of sRNAs. Here we address this question within a simple mathematical model. We show that the non-uniform spatial distributions of mRNA can alter the threshold-linear response that characterizes sRNAs that act stoichiometrically, and modulate the hierarchy among targets co-regulated by the same sRNA. We also identify conditions where the sub-cellular organization of cofactors in the sRNA pathway can induce spatial heterogeneity on sRNA targets. Our results suggest that under certain conditions, interpretation and modeling of natural and synthetic gene regulatory circuits need to take into account the spatial organization of the transcripts of participating genes.

  1. Influence of Nutrient Availability and Quorum Sensing on the Formation of Metabolically Inactive Microcolonies Within Structurally Heterogeneous Bacterial Biofilms: An Individual-Based 3D Cellular Automata Model.

    Science.gov (United States)

    Machineni, Lakshmi; Rajapantul, Anil; Nandamuri, Vandana; Pawar, Parag D

    2017-03-01

    The resistance of bacterial biofilms to antibiotic treatment has been attributed to the emergence of structurally heterogeneous microenvironments containing metabolically inactive cell populations. In this study, we use a three-dimensional individual-based cellular automata model to investigate the influence of nutrient availability and quorum sensing on microbial heterogeneity in growing biofilms. Mature biofilms exhibited at least three structurally distinct strata: a high-volume, homogeneous region sandwiched between two compact sections of high heterogeneity. Cell death occurred preferentially in layers in close proximity to the substratum, resulting in increased heterogeneity in this section of the biofilm; the thickness and heterogeneity of this lowermost layer increased with time, ultimately leading to sloughing. The model predicted the formation of metabolically dormant cellular microniches embedded within faster-growing cell clusters. Biofilms utilizing quorum sensing were more heterogeneous compared to their non-quorum sensing counterparts, and resisted sloughing, featuring a cell-devoid layer of EPS atop the substratum upon which the remainder of the biofilm developed. Overall, our study provides a computational framework to analyze metabolic diversity and heterogeneity of biofilm-associated microorganisms and may pave the way toward gaining further insights into the biophysical mechanisms of antibiotic resistance.

  2. Impact of training state on fasting-induced regulation of adipose tissue metabolism in humans

    DEFF Research Database (Denmark)

    Bertholdt, Lærke; Gudiksen, Anders; Stankiewicz, Tomasz

    2018-01-01

    Recruitment of fatty acids from adipose tissue is essential during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore, the aim of the present study was to investig......Recruitment of fatty acids from adipose tissue is essential during fasting. However, the molecular mechanisms behind fasting-induced metabolic regulation in human adipose tissue and the potential impact of training state in this are unknown. Therefore, the aim of the present study...... was to investigate 1) fasting-induced regulation of lipolysis and glyceroneogenesis in human adipose tissue as well as 2) the impact of training state on basal oxidative capacity and fasting-induced metabolic regulation in human adipose tissue. Untrained (VO2max 55ml......RNA content were higher in trained subjects than untrained subjects. In addition, trained subjects had higher adipose tissue hormone sensitive lipase Ser660 phosphorylation and adipose triglyceride lipase protein content as well as higher plasma free fatty acids concentration than untrained subjects during...

  3. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    Directory of Open Access Journals (Sweden)

    Chiara Mizzotti

    2014-12-01

    Full Text Available The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR, which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

  4. Forkhead, a new cross regulator of metabolism and innate immunity downstream of TOR in Drosophila.

    Science.gov (United States)

    Varma, Disha; Bülow, Margret H; Pesch, Yanina-Yasmin; Loch, Gerrit; Hoch, Michael

    2014-10-01

    Antimicrobial peptides (AMPs) are conserved cationic peptides which act both as defense molecules of the host immune system and as regulators of the commensal microbiome. Expression of AMPs is induced in response to infection by the Toll and Imd pathway. Under non-infected conditions, the transcription factor dFOXO directly regulates a set of AMP expression at low levels when nutrients are limited. Here we have analyzed whether target of rapamycin (TOR), another major regulator of growth and metabolism, also modulates AMP responses in Drosophila. We found that downregulation of TOR by feeding the drug rapamycin or by overexpressing the negative TOR regulators TSC1/TSC2, resulted in a specific induction of the AMPs Diptericin (Dpt) and Metchnikowin (Mtk). In contrast, overexpression of Rheb, which positively regulates TOR led to a repression of the two AMPs. Genetic and pharmacological experiments indicate that Dpt and Mtk activation is controlled by the transcription factor Forkhead (FKH), the founding member of the FoxO family. Shuttling of FKH from the cytoplasm to the nucleus is induced in the fat body and in the posterior midgut in response to TOR downregulation. The FKH-dependent induction of Dpt and Mtk can be triggered in dFOXO null mutants and in immune-compromised Toll and IMD pathway mutants indicating that FKH acts in parallel to these regulators. Together, we have discovered that FKH is the second conserved member of the FoxO family cross-regulating metabolism and innate immunity. dFOXO and FKH, which are activated upon downregulation of insulin or TOR activities, respectively, act in parallel to induce different sets of AMPs, thereby modulating the immune status of metabolic tissues such as the fat body or the gut in response to the oscillating energy status of the organism. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    Science.gov (United States)

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  6. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  7. E2F1 regulates cellular growth by mTORC1 signaling.

    Directory of Open Access Journals (Sweden)

    Sebastian Real

    2011-01-01

    Full Text Available During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F3 is unable to activate mTORC1, suggesting that growth activity could be restricted to individual E2F members. The effect of E2F1 on the activation of mTORC1 does not depend on Akt. Furthermore, over-expression of TSC2 does not interfere with the effect of E2F1, indicating that the E2F1-induced signal pathway can compensate for the inhibitory effect of TSC2 on Rheb. Immunolocalization studies demonstrate that E2F1 induces the translocation of mTORC1 to the late endosome vesicles, in a mechanism dependent of leucine. E2F1 and leucine, or insulin, together affect the activation of S6K stronger than alone suggesting that they are complementary in activating the signal pathway. From these studies, E2F1 emerges as a key protein that integrates cell division and growth, both of which are essential for cell proliferation.

  8. El nucléolo como un regulador del envejecimiento celular The nucleolus as a regulator of cellular senescence

    Directory of Open Access Journals (Sweden)

    María Rosete

    2007-04-01

    Full Text Available El nucléolo, considerado únicamente como el sitio de síntesis de los ribosomas, actualmente representa una estructura nuclear dinámica que participa en la regulación de importantes procesos celulares. Numerosas evidencias han demostrado que el envejecimiento celular es una de las diversas funciones que son controladas por el nucléolo. Las mutaciones en las proteínas de localización nucleolar promueven el envejecimiento prematuro en levaduras y humanos. La carencia de represión en la transcripción de genes que codifican para el ARNr que se encuentran dañados, y las mutaciones en las helicasas del ADN encargadas de minimizar la formación de círculos extra-cromosómicos del ADN que codifica para el ARNr, provocan modificaciones en la estructura del nucléolo e inducen envejecimiento prematuro en levaduras. De igual manera, en los humanos la carencia de las helicasas del ADN localizadas en el nucléolo y que participan en el mantenimiento de la integridad genómica, favorecen el desarrollo de aquellas enfermedades asociadas con el envejecimiento acelerado. Además, la presencia de algunos componentes de la telomerasa en el nucléolo, indica que parte de la biosíntesis de esta enzima se realiza en esta estructura nuclear, sugiriendo una conexión entre el nucléolo y la síntesis de los telómeros en la regulación del envejecimiento celular. Por otra parte, el nucléolo secuestra proteínas para regular su actividad biológica durante el inicio o término de la vida replicativa celular.The nucleolus has been considered originally only as the site for the ribosome synthesis, but now it is well known that it represents a dynamic nuclear structure involved in important cellular processes. Several evidences have demonstrated that the nucleolus regulates the cellular senescence. Specific mutations on the DNAs codifying for nucleolar proteins induced premature senescence from yeast to human. The failure to repress the genes transcription

  9. Comparative Study on the Cellular and Systemic Nutrient Sensing and Intermediary Metabolism after Partial Replacement of Fishmeal by Meat and Bone Meal in the Diet of Turbot (Scophthalmus maximus L.).

    Science.gov (United States)

    Song, Fei; Xu, Dandan; Mai, Kangsen; Zhou, Huihui; Xu, Wei; He, Gen

    2016-01-01

    This study was designed to examine the cellular and systemic nutrient sensing mechanisms as well as the intermediary metabolism responses in turbot (Scophthalmus maximus L.) fed with fishmeal diet (FM diet), 45% of FM replaced by meat and bone meal diet (MBM diet) or MBM diet supplemented with essential amino acids to match the amino acid profile of FM diet (MBM+AA diet). During the one month feeding trial, feed intake was not affected by the different diets. However, MBM diet caused significant reduction of specific growth rate and nutrient retentions. Compared with the FM diet, MBM diet down-regulated target of rapamycin (TOR) and insulin-like growth factor (IGFs) signaling pathways, whereas up-regulated the amino acid response (AAR) signaling pathway. Moreover, MBM diet significantly decreased glucose and lipid anabolism, while increased muscle protein degradation and lipid catabolism in liver. MBM+AA diet had no effects on improvement of MBM diet deficiencies. Compared with fasted, re-feeding markedly activated the TOR signaling pathway, IGF signaling pathway and glucose, lipid metabolism, while significantly depressed the protein degradation signaling pathway. These results thus provided a comprehensive display of molecular responses and a better explanation of deficiencies generated after fishmeal replacement by other protein sources.

  10. Classical NF-κB Metabolically Reprograms Sarcoma Cells Through Regulation of Hexokinase 2

    Directory of Open Access Journals (Sweden)

    Priya Londhe

    2018-04-01

    Full Text Available BackgroundMetabolic reprogramming has emerged as a cancer hallmark, and one of the well-known cancer-associated metabolic alterations is the increase in the rate of glycolysis. Recent reports have shown that both the classical and alternative signaling pathways of nuclear factor κB (NF-κB play important roles in controlling the metabolic profiles of normal cells and cancer cells. However, how these signaling pathways affect the metabolism of sarcomas, specifically rhabdomyosarcoma (RMS and osteosarcoma (OS, has not been characterized.MethodsClassical NF-κB activity was inhibited through overexpression of the IκBα super repressor of NF-κB in RMS and OS cells. Global gene expression analysis was performed using Affymetrix GeneChip Human Transcriptome Array 2.0, and data were interpreted using gene set enrichment analysis. Seahorse Bioscience XFe24 was used to analyze oxygen consumption rate as a measure of aerobic respiration.ResultsInhibition of classical NF-κB activity in sarcoma cell lines restored alternative signaling as well as an increased oxidative respiratory metabolic phenotype in vitro. In addition, microarray analysis indicated that inhibition of NF-κB in sarcoma cells reduced glycolysis. We showed that a glycolytic gene, hexokinase (HK 2, is a direct NF-κB transcriptional target. Knockdown of HK2 shifted the metabolic profile in sarcoma cells away from aerobic glycolysis, and re-expression of HK2 rescued the metabolic shift induced by inhibition of NF-κB activity in OS cells.ConclusionThese findings suggest that classical signaling of NF-κB plays a crucial role in the metabolic profile of pediatric sarcomas potentially through the regulation of HK2.

  11. Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease

    Science.gov (United States)

    2017-09-01

    AWARD NUMBER: W81XWH-15-1-0419 TITLE: Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal Dominant Polycystic Kidney Disease...COVERED 1 Sep 2016 - 31 Aug 2017 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Cellular Energy Pathways as Novel Targets for the Therapy of Autosomal...inappropriate cell growth, fluid secretion, and dysregulation of cellular energy metabolism. The enzyme AMPK regulates a number of cellular pathways, including

  12. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra, E-mail: sukhmahendrasingh@yahoo.com

    2013-11-15

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.

  13. Antitumor and chemosensitizing action of dichloroacetate implicates modulation of tumor microenvironment: A role of reorganized glucose metabolism, cell survival regulation and macrophage differentiation

    International Nuclear Information System (INIS)

    Kumar, Ajay; Kant, Shiva; Singh, Sukh Mahendra

    2013-01-01

    Targeting of tumor metabolism is emerging as a novel therapeutic strategy against cancer. Dichloroacetate (DCA), an inhibitor of pyruvate dehydrogenase kinase (PDK), has been shown to exert a potent tumoricidal action against a variety of tumor cells. The main mode of its antineoplastic action implicates a shift of glycolysis to oxidative metabolism of glucose, leading to generation of cytotoxic reactive oxygen intermediates. However, the effect of DCA on tumor microenvironment, which in turn regulates tumor cell survival; remains speculative to a large extent. It is also unclear if DCA can exert any modulatory effect on the process of hematopoiesis, which is in a compromised state in tumor-bearing hosts undergoing chemotherapy. In view of these lacunas, the present study was undertaken to investigate the so far unexplored aspects with respect to the molecular mechanisms of DCA-dependent tumor growth retardation and chemosensitization. BALB/c mice were transplanted with Dalton's lymphoma (DL) cells, a T cell lymphoma of spontaneous origin, followed by administration of DCA with or without cisplatin. DCA-dependent tumor regression and chemosensitization to cisplatin was found to be associated with altered repertoire of key cell survival regulatory molecules, modulated glucose metabolism, accompanying reconstituted tumor microenvironment with respect to pH homeostasis, cytokine balance and alternatively activated TAM. Moreover, DCA administration also led to an alteration in the MDR phenotype of tumor cells and myelopoietic differentiation of macrophages. The findings of this study shed a new light with respect to some of the novel mechanisms underlying the antitumor action of DCA and thus may have immense clinical applications. - Highlights: • DCA modulates tumor progression and chemoresistance. • DCA alters molecules regulating cell survival, glucose metabolism and MDR. • DCA reconstitutes biophysical and cellular composition of tumor microenvironment.