WorldWideScience

Sample records for regulates seed development

  1. Regulation of fertilization and early seed development.

    Science.gov (United States)

    Dresselhaus, Thomas; Doughty, James

    2014-04-01

    Plant reproduction meetings often deal either with pre-fertilization processes such as flowering and pollen biology or post-fertilization processes such as embryogenesis and seed development. The Biochemical Society Focused Meeting entitled 'Regulation of Fertilization and Early Seed Development' was organized to close this gap and to discuss mechanistic similarities and future research directions in the reproductive processes shortly before, during and after fertilization. As an outcome of the workshop, invited speakers and a few selected oral communication presenters contributed focused reviews and technical articles for this issue of Biochemical Society Transactions. We provide here a short overview of the contents and highlights of the various articles.

  2. Seed regulations and local seed systems

    NARCIS (Netherlands)

    Louwaars, N.

    2000-01-01

    Seed regulations have been introduced in most countries based on the development of formal seed production. Concerns about seed quality and about the varietal identity of the seeds have commonly led to seed laws. However, formal regulations are often inappropriate for informal seed systems, which

  3. Hormonal Regulation of Dormancy in Developing Sorghum Seeds.

    Science.gov (United States)

    Steinbach, H. S.; Benech-Arnold, R. L.; Sanchez, R. A.

    1997-01-01

    The role of abscisic acid (ABA) and gibberellic acid (GA) in determining the dormancy level of developing sorghum (Sorghum bicolor [L.] Moench.) seeds from varieties presenting contrasting preharvest sprouting behavior (Redland B2, susceptible; IS 9530, resistant) was investigated. Panicles from both varieties were sprayed soon after pollination with fluridone or paclobutrazol to inhibit ABA and GA synthesis, respectively. Fluridone application to the panicles increased germinability of Redland B2 immature caryopses, whereas early treatment with paclobutrazol completely inhibited germination of this variety during most of the developmental period. Incubating caryopses in the presence of 100 [mu]M GA4+7 overcame the inhibitory effect of paclobutrazol, but also stimulated germination of seeds from other treatments. IS 9530 caryopses presented germination indices close to zero until physiological maturity (44 d after pollination) in control and paclobutrazol-treated particles. However, fluridone-treated caryopses were released from dormancy earlier than control and paclobutrazol-treated caryopses. Incubation in the presence of GA4+7 stimulated germination of caryopses from all treatments. Our results support the proposition that a low dormancy level (which is related to a high preharvest sprouting susceptibility) is determined not only by a low embryonic sensitivity to ABA, but also by a high GA content or sensitivity.

  4. Regulation of carotenoid and ABA accumulation during the development and germination of Nicotiana plumbaginifolia seeds.

    Science.gov (United States)

    Frey, Anne; Boutin, Jean-Pierre; Sotta, Bruno; Mercier, Raphaël; Marion-Poll, Annie

    2006-08-01

    Abscisic acid (ABA) is derived from epoxycarotenoid cleavage and regulates seed development and maturation. A detailed carotenoid analysis was undertaken to study the contribution of epoxycarotenoid synthesis to the regulation of ABA accumulation in Nicotiana plumbaginifolia developing seeds. Maximal accumulation of xanthophylls occurred at mid-development in wild type seeds, when total ABA levels also peaked. In contrast, in ABA-deficient mutants xanthophyll synthesis was delayed, in agreement with the retardation in seed maturation. Seed dormancy was restored in mutants impaired in the conversion of zeaxanthin into violaxanthin by zeaxanthin epoxidase (ZEP), by the introduction of the Arabidopsis AtZEP gene under the control of promoters inducing expression during later stages of seed development compared to wild type NpZEP, and in dry and imbibed seeds. Alterations in the timing and level of ZEP expression did not highly affect the temporal regulation of ABA accumulation in transgenic seeds, despite notable perturbations in xanthophyll accumulation. Therefore, major regulatory control of ABA accumulation might occur downstream of epoxycarotenoid synthesis.

  5. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development.

    Directory of Open Access Journals (Sweden)

    Nuno D Pires

    2016-01-01

    Full Text Available Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship theory proposes that imprinting can evolve due to a conflict between maternal and paternal alleles over resource allocation during seed development. One assumption of this theory is that paternal alleles can regulate seed growth; however, paternal effects on seed size are often very low or non-existent. We demonstrate that there is a pool of cryptic genetic variation in the paternal control of Arabidopsis thaliana seed development. Such cryptic variation can be exposed in seeds that maternally inherit a medea mutation, suggesting that MEA acts as a maternal buffer of paternal effects. Genetic mapping using recombinant inbred lines, and a novel method for the mapping of parent-of-origin effects using whole-genome sequencing of segregant bulks, indicate that there are at least six loci with small, paternal effects on seed development. Together, our analyses reveal the existence of a pool of hidden genetic variation on the paternal control of seed development that is likely shaped by parental conflict.

  6. The organic seed regulations framework in Europe - current status and recommendations for future development

    NARCIS (Netherlands)

    Döring, T.F.; Bocci, R.; Hitchings, R.; Howlett, S.; Lammerts Van Bueren, E.; Pautasso, M.; Raaijmakers, M.; Rey, F.; Stubsgaard, A.; Weinhappel, M.; Wilbois, K.P.; Winkler, L.R.; Wolfe, M.S.

    2012-01-01

    Organic agriculture regulations, in particular European regulation EC 889/2008, prescribe the use of organically produced seed. For many cultivated plants, however, organic seed is often not available. This is mainly because investment in organic plant breeding and seed production has been low in

  7. The calmodulin-like protein, CML39, is involved in regulating seed development, germination, and fruit development in Arabidopsis.

    Science.gov (United States)

    Midhat, Ubaid; Ting, Michael K Y; Teresinski, Howard J; Snedden, Wayne A

    2018-03-01

    We show that the calcium sensor, CML39, is important in various developmental processes from seeds to mature plants. This study bridges previous work on CML39 as a stress-induced gene and highlights the importance of calcium signalling in plant development. In addition to the evolutionarily-conserved Ca 2+ sensor, calmodulin (CaM), plants possess a large family of CaM-related proteins (CMLs). Using a cml39 loss-of-function mutant, we investigated the roles of CML39 in Arabidopsis and discovered a range of phenotypes across developmental stages and in different tissues. In mature plants, loss of CML39 results in shorter siliques, reduced seed number per silique, and reduced number of ovules per pistil. We also observed changes in seed development, germination, and seed coat properties in cml39 mutants in comparison to wild-type plants. Using radicle emergence as a measure of germination, cml39 mutants showed more rapid germination than wild-type plants. In marked contrast to wild-type seeds, the germination of developing, immature cml39 seeds was not sensitive to cold-stratification. In addition, germination of cml39 seeds was less sensitive than wild-type to inhibition by ABA or by treatments that impaired gibberellic acid biosynthesis. Tetrazolium red staining indicated that the seed-coat permeability of cml39 seeds is greater than that of wild-type seeds. RNA sequencing analysis of cml39 seedlings suggests that changes in chromatin modification may underlie some of the phenotypes associated with cml39 mutants, consistent with previous reports that orthologs of CML39 participate in gene silencing. Aberrant ectopic expression of transcripts for seed storage proteins in 7-day old cml39 seedlings was observed, suggesting mis-regulation of early developmental programs. Collectively, our data support a model where CML39 serves as an important Ca 2+ sensor during ovule and seed development, as well as during germination and seedling establishment.

  8. SEEDSTICK is a master regulator of development and metabolism in the Arabidopsis seed coat.

    Directory of Open Access Journals (Sweden)

    Chiara Mizzotti

    2014-12-01

    Full Text Available The role of secondary metabolites in the determination of cell identity has been an area of particular interest over recent years, and studies strongly indicate a connection between cell fate and the regulation of enzymes involved in secondary metabolism. In Arabidopsis thaliana, the maternally derived seed coat plays pivotal roles in both the protection of the developing embryo and the first steps of germination. In this regard, a characteristic feature of seed coat development is the accumulation of proanthocyanidins (PAs - a class of phenylpropanoid metabolites in the innermost layer of the seed coat. Our genome-wide transcriptomic analysis suggests that the ovule identity factor SEEDSTICK (STK is involved in the regulation of several metabolic processes, providing a strong basis for a connection between cell fate determination, development and metabolism. Using phenotypic, genetic, biochemical and transcriptomic approaches, we have focused specifically on the role of STK in PA biosynthesis. Our results indicate that STK exerts its effect by direct regulation of the gene encoding BANYULS/ANTHOCYANIDIN REDUCTASE (BAN/ANR, which converts anthocyanidins into their corresponding 2,3-cis-flavan-3-ols. Our study also demonstrates that the levels of H3K9ac chromatin modification directly correlate with the active state of BAN in an STK-dependent way. This is consistent with the idea that MADS-domain proteins control the expression of their target genes through the modification of chromatin states. STK might thus recruit or regulate histone modifying factors to control their activity. In addition, we show that STK is able to regulate other BAN regulators. Our study demonstrates for the first time how a floral homeotic gene controls tissue identity through the regulation of a wide range of processes including the accumulation of secondary metabolites.

  9. Abscisic acid regulates pinoresinol-lariciresinol reductase gene expression and secoisolariciresinol accumulation in developing flax (Linum usitatissimum L.) seeds.

    Science.gov (United States)

    Renouard, Sullivan; Corbin, Cyrielle; Lopez, Tatiana; Montguillon, Josiane; Gutierrez, Laurent; Lamblin, Frédéric; Lainé, Eric; Hano, Christophe

    2012-01-01

    Secoisolariciresinol diglucoside (SDG), the main phytoestrogenic lignan of Linum usitatissimum, is accumulated in the seed coat of flax during its development and pinoresinol-lariciresinol reductase (PLR) is a key enzyme in flax for its synthesis. The promoter of LuPLR1, a flax gene encoding a pinoresinol lariciresinol reductase, contains putative regulatory boxes related to transcription activation by abscisic acid (ABA). Gel mobility shift experiments evidenced an interaction of nuclear proteins extracted from immature flax seed coat with a putative cis-acting element involved in ABA response. As ABA regulates a number of physiological events during seed development and maturation we have investigated its involvement in the regulation of this lignan synthesis by different means. ABA and SDG accumulation time courses in the seed as well as LuPLR1 expression were first determined in natural conditions. These results showed that ABA timing and localization of accumulation in the flax seed coat could be correlated with the LuPLR1 gene expression and SDG biosynthesis. Experimental modulations of ABA levels were performed by exogenous application of ABA or fluridone, an inhibitor of ABA synthesis. When submitted to exogenous ABA, immature seeds synthesized 3-times more SDG, whereas synthesis of SDG was reduced in immature seeds treated with fluridone. Similarly, the expression of LuPLR1 gene in the seed coat was up-regulated by exogenous ABA and down-regulated when fluridone was applied. These results demonstrate that SDG biosynthesis in the flax seed coat is positively controlled by ABA through the transcriptional regulation of LuPLR1 gene.

  10. Co-ordinate regulation of sterol biosynthesis enzyme activity during accumulation of sterols in developing rape and tobacco seed.

    Science.gov (United States)

    Harker, Mark; Hellyer, Amanda; Clayton, John C; Duvoix, Annelyse; Lanot, Alexandra; Safford, Richard

    2003-02-01

    The activities of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, sterol methyl transferase 1 and sterol acyltransferase, key enzymes involved in phytosterol biosynthesis were shown to be co-ordinately regulated during oilseed rape ( Brassica napus L.) and tobacco ( Nicotiana tabacum L.) seed development. In both plants, enzyme activities were low during the initial stages of seed development, increasing towards mid-maturation where they remained stable for a time, before declining rapidly as the oilseeds reached maturity. During seed development, the level of total sterols increased 12-fold in tobacco and 9-fold in rape, primarily due to an increase in steryl ester production. In both seed tissues, stages of maximum enzyme activity coincided with periods of high rates of sterol production, indicating developmental regulation of the enzymes to be responsible for the increases in the sterol content observed during seed development. Consistent with previous studies the data presented suggest that sterol biosynthesis is regulated by two key steps, although there may be others. The first is the regulation of carbon flux into the isoprenoid pathway to cycloartenol. The second is the flux from cycloartenol to Delta(5)-end-product sterols. The implications of the results in terms of enhancing seed sterol levels by genetic modification are also discussed.

  11. Arabidopsis CPR5 independently regulates seed germination and postgermination arrest of development through LOX pathway and ABA signaling.

    Directory of Open Access Journals (Sweden)

    Guilan Gao

    Full Text Available The phytohormone abscisic acid (ABA and the lipoxygenases (LOXs pathway play important roles in seed germination and seedling growth and development. Here, we reported on the functional characterization of Arabidopsis CPR5 in the ABA signaling and LOX pathways. The cpr5 mutant was hypersensitive to ABA in the seed germination, cotyledon greening and root growth, whereas transgenic plants overexpressing CPR5 were insensitive. Genetic analysis demonstrated that CPR5 gene may be located downstream of the ABI1 in the ABA signaling pathway. However, the cpr5 mutant showed an ABA independent drought-resistant phenotype. It was also found that the cpr5 mutant was hypersensitive to NDGA and NDGA treatment aggravated the ABA-induced delay in the seed germination and cotyledon greening. Taken together, these results suggest that the CPR5 plays a regulatory role in the regulation of seed germination and early seedling growth through ABA and LOX pathways independently.

  12. Comparison of in Situ and in Vitro Regulation of Soybean Seed Growth and Development

    Science.gov (United States)

    Dyer, Daniel J.; Cotterman, C. Daniel; Cotterman, Josephine C.

    1987-01-01

    The growth characteristics of soybean (Glycine max [L.] Merr.) embryos in culture and seeds in situ were found to be similar, but developmental differences were observed. Embryos placed in culture when very small (grow indefinitely, reaching dry weights far in excess of seeds matured in situ. Apparently, maternal factors were important in early and late development during the determination of maximum growth rate and the cessation of growth. Embryo growth rate was not affected by substituting glucose plus fructose for sucrose in the medium, nor by hormone treatments, including abscisic acid. Glutamine was found to give substantially better growth than glutamate, however. Contrary to prior reports, the response of soybean embryo growth rate to irradiance was found to be primarily an artifact of the effect of irradiance on media temperature. Across seven genotypes the correlation coefficient between seed growth rate in situ and embryo growth rate in vitro was 0.94, indicating essentially all of the variability of in situ seed growth rate between cultivars could be attributed to inherent growth rate differences associated with the embryos. The response to temperature was very similar for both embryos in culture and seeds in situ at temperatures below 30°C. Beyond that temperature, embryo growth rate continued to increase, while seed growth rate did not. The implication is that in situ seed growth rate is determined by the inherent growth potential of the embryo at low to moderate temperatures; however, at higher temperatures, the maternal plant is unable to support the rapid growth rates that the embryo is capable of attaining under conditions of unlimited assimilate supply. PMID:16665434

  13. Sugar - hormone crosstalk in seed development: Two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniature1 (mn1) seed mutant in maize

    Science.gov (United States)

    The miniature1 (mn1) seed phenotype is a loss-of-function mutation at the Mn1 locus that encodes a cell wall invertase; its deficiency leads to pleiotropic changes including altered sugar levels and decreased levels of IAA throughout seed development. To understand the molecular details of such suga...

  14. CEP genes regulate root and shoot development in response to environmental cues and are specific to seed plants.

    Science.gov (United States)

    Delay, Christina; Imin, Nijat; Djordjevic, Michael A

    2013-12-01

    The manifestation of repetitive developmental programmes during plant growth can be adjusted in response to various environmental cues. During root development, this means being able to precisely control root growth and lateral root development. Small signalling peptides have been found to play roles in many aspects of root development. One member of the CEP (C-TERMINALLY ENCODED PEPTIDE) gene family has been shown to arrest root growth. Here we report that CEP genes are widespread among seed plants but are not present in land plants that lack true branching roots or root vasculature. We have identified 10 additional CEP genes in Arabidopsis. Expression analysis revealed that CEP genes are regulated by environmental cues such as nitrogen limitation, increased salt levels, increased osmotic strength, and increased CO2 levels in both roots and shoots. Analysis of synthetic CEP variants showed that both peptide sequence and modifications of key amino acids affect CEP biological activity. Analysis of several CEP over-expression lines revealed distinct roles for CEP genes in root and shoot development. A cep3 knockout mutant showed increased root and shoot growth under a range of abiotic stress, nutrient, and light conditions. We demonstrate that CEPs are negative regulators of root development, slowing primary root growth and reducing lateral root formation. We propose that CEPs are negative regulators that mediate environmental influences on plant development.

  15. BIIDXI, the At4g32460 DUF642 gene, is involved in pectin methyl esterase regulation during Arabidopsis thaliana seed germination and plant development.

    Science.gov (United States)

    Zúñiga-Sánchez, Esther; Soriano, Diana; Martínez-Barajas, Eleazar; Orozco-Segovia, Alma; Gamboa-deBuen, Alicia

    2014-12-02

    DUF642 proteins constitute a highly conserved family of proteins that are associated with the cell wall and are specific to spermatophytes. Transcriptome studies have suggested that members of this family are involved in seed development and germination processes. Previous in vitro studies have revealed that At4g32460- and At5g11420-encoded proteins interact with the catalytic domain of pectin methyl esterase 3 (AtPME3, which is encoded by At3g14310). PMEs play an important role in plant development, including seed germination. The aim of this study was to evaluate the function of the DUF642 gene At4g32460 during seed germination and plant development and to determine its relation to PME activity regulation. Our results indicated that the DUF642 proteins encoded by At4g32460 and At5g11420 could be positive regulators of PME activity during several developmental processes. Transgenic lines overexpressing these proteins showed increased PME activity during seed germination, and improved seed germination performance. In plants expressing At4g32460 antisense RNA, PME activity was decreased in the leaves, and the siliques were very short and contained no seeds. This phenotype was also present in the SALK_142260 and SALK_054867 lines for At4g32460. Our results suggested that the DUF642 family contributes to the complexity of the methylesterification process by participating in the fine regulation of pectin status during plant development.

  16. Protein disulfide isomerase-like protein 1-1 controls endosperm development through regulation of the amount and composition of seed proteins in rice.

    Directory of Open Access Journals (Sweden)

    Yeon Jeong Kim

    Full Text Available Protein disulfide isomerase (PDI is a chaperone protein involved in oxidative protein folding by acting as a catalyst and assisting folding in the endoplasmic reticulum (ER. A genome database search showed that rice contains 19 PDI-like genes. However, their functions are not clearly identified. This paper shows possible functions of rice PDI-like protein 1-1 (PDIL1-1 during seed development. Seeds of the T-DNA insertion PDIL1-1 mutant, PDIL1-1Δ, identified by genomic DNA PCR and western blot analysis, display a chalky phenotype and a thick aleurone layer. Protein content per seed was significantly lower and free sugar content higher in PDIL1-1Δ mutant seeds than in the wild type. Proteomic analysis of PDIL1-1Δ mutant seeds showed that PDIL1-1 is post-translationally regulated, and its loss causes accumulation of many types of seed proteins including glucose/starch metabolism- and ROS (reactive oxygen species scavenging-related proteins. In addition, PDIL1-1 strongly interacts with the cysteine protease OsCP1. Our data indicate that the opaque phenotype of PDIL1-1Δ mutant seeds results from production of irregular starch granules and protein body through loss of regulatory activity for various proteins involved in the synthesis of seed components.

  17. Hormonal regulation of seed development and germination in tomato : studies on abscisic acid- and gibberellin-deficient mutants

    NARCIS (Netherlands)

    Groot, S.P.C.

    1987-01-01

    The role of endogenous gibberellins (GAs) and abscisic acid (ABA) in seed development and germination of tomato, was studied with the use of GA- and/or ABA-deficient mutants.

    GAs are indispensable for the development of fertile flowers. Fertility of GA-deficient flowers is restored

  18. Quantitative Genetics Identifies Cryptic Genetic Variation Involved in the Paternal Regulation of Seed Development

    NARCIS (Netherlands)

    Pires, Nuno D.; Bemer, Marian; Müller, Lena M.; Baroux, Célia; Spillane, Charles; Grossniklaus, Ueli

    2016-01-01

    Embryonic development requires a correct balancing of maternal and paternal genetic information. This balance is mediated by genomic imprinting, an epigenetic mechanism that leads to parent-of-origin-dependent gene expression. The parental conflict (or kinship) theory proposes that imprinting can

  19. Seed development and carbohydrates

    NARCIS (Netherlands)

    Wittich, P.E.

    1998-01-01

    Seeds assure the plant the onset of a next generation and a way of dispersal. They consist of endosperm and an embryo (originating from gametophytic tissue), enveloped by a seed coat (sporophytic tissue). Plants generate different types of seeds. For instance, the endosperm may either be

  20. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice.

    Science.gov (United States)

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S; Cao, Zhuanqin; Beighley, Donn H; Yang, Jianchang; Gu, Xing-You

    2015-11-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. © 2015 American Society of Plant Biologists. All Rights Reserved.

  1. Map-Based Cloning of Seed Dormancy1-2 Identified a Gibberellin Synthesis Gene Regulating the Development of Endosperm-Imposed Dormancy in Rice1

    Science.gov (United States)

    Ye, Heng; Feng, Jiuhuan; Zhang, Lihua; Zhang, Jinfeng; Mispan, Muhamad S.; Cao, Zhuanqin; Beighley, Donn H.; Yang, Jianchang; Gu, Xing-You

    2015-01-01

    Natural variation in seed dormancy is controlled by multiple genes mapped as quantitative trait loci in major crop or model plants. This research aimed to clone and characterize the Seed Dormancy1-2 (qSD1-2) locus associated with endosperm-imposed dormancy and plant height in rice (Oryza sativa). qSD1-2 was delimited to a 20-kb region, which contains OsGA20ox2 and had an additive effect on germination. Naturally occurring or induced loss-of-function mutations of the gibberellin (GA) synthesis gene enhanced seed dormancy and also reduced plant height. Expression of this gene in seeds (including endospermic cells) during early development increased GA accumulation to promote tissue morphogenesis and maturation programs. The mutant allele prevalent in semidwarf cultivars reduced the seed GA content by up to 2-fold at the early stage, which decelerated tissue morphogenesis including endosperm cell differentiation, delayed abscisic acid accumulation by a shift in the temporal distribution pattern, and postponed dehydration, physiological maturity, and germinability development. As the endosperm of developing seeds dominates the moisture equilibrium and desiccation status of the embryo in cereal crops, qSD1-2 is proposed to control primary dormancy by a GA-regulated dehydration mechanism. Allelic distribution of OsGA20ox2, the rice Green Revolution gene, was associated with the indica and japonica subspeciation. However, this research provided no evidence that the primitive indica- and common japonica-specific alleles at the presumably domestication-related locus functionally differentiate in plant height and seed dormancy. Thus, the evolutionary mechanism of this agriculturally important gene remains open for discussion. PMID:26373662

  2. MYB52 Negatively Regulates Pectin Demethylesterification in Seed Coat Mucilage.

    Science.gov (United States)

    Shi, Dachuan; Ren, Angyan; Tang, Xianfeng; Qi, Guang; Xu, Zongchang; Chai, Guohua; Hu, Ruibo; Zhou, Gongke; Kong, Yingzhen

    2018-04-01

    Pectin, which is a major component of the plant primary cell walls, is synthesized and methyl-esterified in the Golgi apparatus and then demethylesterified by pectin methylesterases (PMEs) located in the cell wall. The degree of methylesterification affects the functional properties of pectin, and thereby influences plant growth, development and defense. However, little is known about the mechanisms that regulate pectin demethylesterification. Here, we show that in Arabidopsis ( Arabidopsis thaliana ) seed coat mucilage, the absence of the MYB52 transcription factor is correlated with an increase in PME activity and a decrease in the degree of pectin methylesterification. Decreased methylesterification in the myb52 mutant is also correlated with an increase in the calcium content of the seed mucilage. Chromatin immunoprecipitation analysis and molecular genetic studies suggest that MYB52 transcriptionally activates PECTIN METHYLESTERASE INHIBITOR6 ( PMEI6 ), PMEI14 , and SUBTILISIN-LIKE SER PROTEASE1.7 ( SBT1.7 ) by binding to their promoters. PMEI6 and SBT1.7 have previously been shown to be involved in seed coat mucilage demethylesterification. Our characterization of two PMEI14 mutants suggests that PMEI14 has a role in seed coat mucilage demethylesterification, although its activity may be confined to the seed coat in contrast to PMEI6, which functions in the whole seed. Our demonstration that MYB52 negatively regulates pectin demethylesterification in seed coat mucilage, and the identification of components of the molecular network involved, provides new insight into the regulatory mechanism controlling pectin demethylesterification and increases our understanding of the transcriptional regulation network involved in seed coat mucilage formation. © 2018 American Society of Plant Biologists. All Rights Reserved.

  3. Seed regulation: choices on the road to reform

    NARCIS (Netherlands)

    Tripp, R.; Louwaars, N.P.

    1997-01-01

    Major changes in national seed systems, including the rapid development of commercial seed enterprises, the growth of non-governmental organization (NGO) seed projects, and the concomitant decline of public sector seed provision, call for a re-examination of seed regulatory frameworks in developing

  4. Brassica rapa L. seed development in hypergravity

    NARCIS (Netherlands)

    Musgrave, M.E.; Kuang, A.; Allen, J.; Blasiak, J.; van Loon, J.J.W.A.

    2009-01-01

    Previous experiments had shown that microgravity adversely affected seed development in Brassica rapa L. We tested the hypothesis that gravity controls seed development via modulation of gases around the developing seeds, by studying how hypergravity affects the silique microenvironment and seed

  5. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L. P. Beauv.].

    Directory of Open Access Journals (Sweden)

    Jishan Xiang

    Full Text Available Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1, which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II. A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  6. Loose Panicle1 encoding a novel WRKY transcription factor, regulates panicle development, stem elongation, and seed size in foxtail millet [Setaria italica (L.) P. Beauv.].

    Science.gov (United States)

    Xiang, Jishan; Tang, Sha; Zhi, Hui; Jia, Guanqing; Wang, Huajun; Diao, Xianmin

    2017-01-01

    Panicle development is an important agronomic trait that aids in determining crop productivity. Foxtail millet and its wild ancestor green foxtail have recently been used as model systems to dissect gene functions. Here, we characterized a recessive mutant of foxtail millet, loose-panicle 1 (lp1), which showed pleiotropic phenotypes, such as a lax primary branching pattern, aberrant branch morphology, semi-dwarfism, and enlarged seed size. The loose panicle phenotype was attributed to increased panicle lengths and decreased primary branch numbers. Map-based cloning, combined with high-throughput sequencing, revealed that LP1, which encodes a novel WRKY transcription factor, is responsible for the mutant phenotype. A phylogenetic analysis revealed that LP1 belongs to the Group I WRKY subfamily, which possesses two WRKY domains (WRKY I and II). A single G-to-A transition in the fifth intron of LP1 resulted in three disorganized splicing events in mutant plants. For each of these aberrant splice variants, the normal C2H2 motif in the WRKY II domain was completely disrupted, resulting in a loss-of-function mutation. LP1 mRNA was expressed in all of the tissues examined, with higher expression levels observed in inflorescences, roots, and seeds at the grain-filling stage. A subcellular localization analysis showed that LP1 predominantly accumulated in the nucleus, which confirmed its role as a transcriptional regulator. This study provides novel insights into the roles of WRKY proteins in regulating reproductive organ development in plants and may help to develop molecular markers associated with crop yields.

  7. Development of maternal seed tissue in barley is mediated by regulated cell expansion and cell disintegration and coordinated with endosperm growth.

    Science.gov (United States)

    Radchuk, Volodymyr; Weier, Diana; Radchuk, Ruslana; Weschke, Winfriede; Weber, Hans

    2011-01-01

    After fertilization, filial grain organs are surrounded by the maternal nucellus embedded within the integuments and pericarp. Rapid early endosperm growth must be coordinated with maternal tissue development. Parameters of maternal tissue growth and development were analysed during early endosperm formation. In the pericarp, cell proliferation is accomplished around the time of fertilization, followed by cell elongation predominantly in longitudinal directions. The rapid cell expansion coincides with endosperm cellularization. Distribution of TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling)-positive nuclei reveals distinct patterns starting in the nucellus at anthesis and followed later by the inner cell rows of the pericarp, then spreading to the whole pericarp. The pattern suggests timely and spatially regulated programmed cell death (PCD) processes in maternal seed tissues. When the endosperm is coenocytic, PCD events are only observed within the nucellus. Thereby, remobilization of nucellar storage compounds by PCD could nourish the early developing endosperm when functional interconnections are absent between maternal and filial seed organs. Specific proteases promote PCD events. Characterization of the barley vacuolar processing enzyme (VPE) gene family identified seven gene members specifically expressed in the developing grain. HvVPE2a (known as nucellain) together with closely similar HvVPE2b and HvVPE2d might be involved in nucellar PCD. HvVPE4 is strongly cell specific for pericarp parenchyma. Correlative evidence suggests that HvVPE4 plays a role in PCD events in the pericarp. Possible functions of PCD in the maternal tissues imply a potential nutritive role or the relief of a physical restraint for endosperm growth. PCD could also activate post-phloem transport functions.

  8. (Heckel) seeds

    African Journals Online (AJOL)

    UTILISATEUR

    Garcinia kola seeds to six different hormonal pre-germination treatments. This consisted of ... Thus, seed dormancy in this case is not a coat- imposed .... development of the cultivation of the species. The cause .... Hormonal regulation of seed ...

  9. Isolation of nuclear proteins from flax (Linum usitatissimum L. seed coats for gene expression regulation studies

    Directory of Open Access Journals (Sweden)

    Renouard Sullivan

    2012-01-01

    Full Text Available Abstract Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies.

  10. Extensive translational regulation during seed germination revealed by polysomal profiling

    NARCIS (Netherlands)

    Bai, Bing; Peviani, Alessia; Horst, van der Sjors; Gamm, Magdalena; Snel, Berend; Bentsink, Leónie; Hanson, Johannes

    2017-01-01

    This work investigates the extent of translational regulation during seed germination. The polysome occupancy of each gene is determined by genome-wide profiling of total mRNA and polysome-associated mRNA. This reveals extensive translational regulation during Arabidopsis thaliana seed

  11. Dormancy cycling in seeds: mechanisms and regulation

    NARCIS (Netherlands)

    Claessens, S.M.C.

    2012-01-01

    The life cycle of most plants starts, and ends, at the seed stage. In most species mature seeds are shed and dispersed on the ground. At this stage of its life cycle the seed may be dormant and will, by definition, not germinate under favourable conditions (Bewley, 1997).

    Seasonal

  12. Proteome profiling of flax (Linum usitatissimum) seed: characterization of functional metabolic pathways operating during seed development.

    Science.gov (United States)

    Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Kadoo, Narendra Y; Giri, Ashok P; Gupta, Vidya S

    2012-12-07

    Flax (Linum usitatissimum L.) seeds are an important source of food and feed due to the presence of various health promoting compounds, making it a nutritionally and economically important plant. An in-depth analysis of the proteome of developing flax seed is expected to provide significant information with respect to the regulation and accumulation of such storage compounds. Therefore, a proteomic analysis of seven seed developmental stages (4, 8, 12, 16, 22, 30, and 48 days after anthesis) in a flax variety, NL-97 was carried out using a combination of 1D-SDS-PAGE and LC-MSE methods. A total 1716 proteins were identified and their functional annotation revealed that a majority of them were involved in primary metabolism, protein destination, storage and energy. Three carbon assimilatory pathways appeared to operate in flax seeds. Reverse transcription quantitative PCR of selected 19 genes was carried out to understand their roles during seed development. Besides storage proteins, methionine synthase, RuBisCO and S-adenosylmethionine synthetase were highly expressed transcripts, highlighting their importance in flax seed development. Further, the identified proteins were mapped onto developmental seed specific expressed sequence tag (EST) libraries of flax to obtain transcriptional evidence and 81% of them had detectable expression at the mRNA level. This study provides new insights into the complex seed developmental processes operating in flax.

  13. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    OpenAIRE

    Kai Shu; Ying Qi; Feng Chen; Yongjie Meng; Xiaofeng Luo; Haiwei Shuai; Wenguan Zhou; Jun Ding; Junbo Du; Jiang Liu; Feng Yang; Qiang Wang; Weiguo Liu; Taiwen Yong; Xiaochun Wang

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease i...

  14. Regulation of seasonal patterns in seed dormancy

    NARCIS (Netherlands)

    Derkx, M.P.M.

    1993-01-01

    Buried seeds of many wild species pass annually through a pattern of induction and release of dormancy. These reversible changes in dormancy may be repeated for numbers of years when seeds are deprived from light and other germination-stimulating factors, and are a highly useful adaptation

  15. Cell signaling mechanisms and metabolic regulation of germination and dormancy in barley seeds

    Directory of Open Access Journals (Sweden)

    Zhenguo Ma

    2017-12-01

    Full Text Available During germination of barley (Hordeum vulgare L. seeds, important morphological and physiological changes take place, including development of organs and tissues and activation of metabolic pathways. Germination and dormancy of seeds are regulated by abscisic acid, gibberellins, reactive oxygen species (ROS, reactive nitrogen species (RNS and several other factors. Activities of ascorbate–glutathione cycle enzymes, responsible for scavenging ROS, strongly increase. Catalase and superoxide dismutase activities, also scavenging ROS, decrease at the onset of seed germination and then increase. With the increase in aerobic metabolism after radicle protrusion, the activities of the fermentation enzymes lactate and alcohol dehydrogenase decline rapidly. The RNS-scavenging activity of S-nitrosoglutathione reductase decreases in the course of seed germination, in concert with elevation of nitric oxide production and protein nitrosylation. This activity supports the role of RNS in regulating seed germination. Transcription of various genes at different phases of seed germination exhibits phase-specific changes. During imbibition, genes involved in cell wall metabolism are highly expressed; in the middle phase of seed germination before radicle protrusion, genes involved in amino acid synthesis, protein synthesis, and transport and nucleic acid synthesis are upregulated significantly, and after radicle protrusion, genes involved in photosynthetic metabolism are induced. In summary, signal transduction and metabolic regulation of seed germination involve diverse reactions and complex regulation at different levels of metabolic organization. Keywords: Seed germination, Reactive oxygen species, Reactive nitrogen species, Signal transduction, Gene expression

  16. Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress

    Directory of Open Access Journals (Sweden)

    Weiqiang eLi

    2016-01-01

    Full Text Available Seed heteromorphism observed in many halophytes is an adaptive phenomenon toward high salinity. However, the relationship between heteromorphic seed germination and germination-related hormones under salt stress remains elusive. To gain an insight into this relationship, the roles of gibberellins (GAs and abscisic acid (ABA in regulating germination of Suaeda salsa dimorphic brown and black seeds under salinity were elucidated by studying the kinetics of the two hormones during germination of the two seed types with or without salinity treatment. Morphological analysis suggested that brown and black are in different development stage. The content of ABA was higher in dry brown than in black seeds, which gradually decreased after imbibition in water and salt solutions. Salt stress induced ABA accumulation in both germinating seed types, with higher induction effect on black than brown seeds. Black seeds showed lower germination percentage than brown seeds under both water and salt stress, which might be attributed to their higher ABA sensitivity rather than the difference in ABA content between black and brown seeds. Bioactive GA4 and its biosynthetic precursors showed higher levels in brown than in black seeds, whereas deactivated GAs showed higher content in black than brown seeds in dry or in germinating water or salt solutions. High salinity inhibited seed germination through decreasing the levels of GA4 in both seeds, and the inhibited effect of salt stress on GA4 level of black seeds was more profound than that of brown seeds. Taken together higher GA4 content, and lower ABA sensitivity contributed to the higher germination percentage of brown seeds than black seeds in water and salinity; increased ABA content and sensitivity, and decreased GA4 content by salinity were more profound in black than brown seeds, which contributed to lower germination of black seeds than brown seeds in salinity. The differential regulation of ABA and GA

  17. Ethylene, a key factor in the regulation of seed dormancy

    Directory of Open Access Journals (Sweden)

    Françoise eCORBINEAU

    2014-10-01

    Full Text Available Ethylene is an important component of the gaseous environment, and regulates numerous plant developmental processes including seed germination and seedling establishment. Dormancy, the inability to germinate in apparently favorable conditions, has been demonstrated to be regulated by the hormonal balance between abscisic acid (ABA and gibberellins (GAs. Ethylene plays a key role in dormancy release in numerous species, the effective concentrations allowing the germination of dormant seeds ranging between 0.1 and 200 μL L-1. Studies using inhibitors of ethylene biosynthesis or of ethylene action and analysis of mutant lines altered in genes involved in the ethylene signaling pathway (etr1, ein2, ain1, etr1, and erf1 demonstrate the involvement of ethylene in the regulation of germination and dormancy. Ethylene counteracts ABA effects through a regulation of ABA metabolism and signaling pathways. Moreover, ethylene insensitive mutants in Arabidopsis are more sensitive to ABA and the seeds are more dormant. Numerous data also show an interaction between ABA, GAs and ethylene metabolism and signaling pathways. It has been increasingly demonstrated that reactive oxygen species (ROS may play a significant role in the regulation of seed germination interacting with hormonal signaling pathways. In the present review the responsiveness of seeds to ethylene will be described, and the key role of ethylene in the regulation of seed dormancy via a cross-talk between hormones and other signals will be discussed.

  18. 76 FR 31790 - Federal Seed Act Regulations

    Science.gov (United States)

    2011-06-02

    ... improvements in the noxious-weed seed tolerances using modern statistical applications. The AOSA has already... the introductory text. 0 B. Removing the word ``act'' and adding in its place the word ``Act'', and by...'' in paragraph (c)(2) introductory text. Sec. 201.41 [Amended] 0 6. In Sec. 201.41, paragraph (a), the...

  19. The Circadian Clock-controlled Transcriptome of Developing Soybean Seeds

    Directory of Open Access Journals (Sweden)

    Karen A. Hudson

    2010-07-01

    Full Text Available A number of metabolic and physiological processes in plants are controlled by the circadian clock, which enables a plant to anticipate daily changes in the environment. Relatively little is known about circadian rhythms in developing seeds, which may be important for determining the extent and timing of nutrient storage in grain. Microarray expression profiling was used to identify genes expressed in developing soybean ( seeds that are controlled by the circadian clock. Genes with predicted functions in protein synthesis, fatty acid metabolism, and photosynthesis totaling 1.8% of the mRNAs detected in seed were found to be expressed in a circadian rhythm. Known circadian and light-controlled promoter elements were identified as over-represented in the promoters of clock-controlled seed genes, with the over-represented elements varying according to the phase of circadian expression. A subset of circadian-regulated genes were found to be expressed in different phases in developing seeds with respect to leaves from the same plants, many of which have roles in photosynthesis and carbon metabolism. These results help to characterize the genes and processes in seeds that may be regulated by the circadian clock, and provide some insight into organ-specific phasing of clock controlled gene expression.

  20. Global transcriptome analysis of developing chickpea (Cicer arietinum L.) seeds.

    Science.gov (United States)

    Pradhan, Seema; Bandhiwal, Nitesh; Shah, Niraj; Kant, Chandra; Gaur, Rashmi; Bhatia, Sabhyata

    2014-01-01

    Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L.) seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilized to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analyzed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs), about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  1. Global transcriptome analysis of developing chickpea (Cicer arietinum L. seeds

    Directory of Open Access Journals (Sweden)

    Seema ePradhan

    2014-12-01

    Full Text Available Understanding developmental processes, especially in non-model crop plants, is extremely important in order to unravel unique mechanisms regulating development. Chickpea (C. arietinum L. seeds are especially valued for their high carbohydrate and protein content. Therefore, in order to elucidate the mechanisms underlying seed development in chickpea, deep sequencing of transcriptomes from four developmental stages was undertaken. In this study, next generation sequencing platform was utilised to sequence the transcriptome of four distinct stages of seed development in chickpea. About 1.3 million reads were generated which were assembled into 51,099 unigenes by merging the de novo and reference assemblies. Functional annotation of the unigenes was carried out using the Uniprot, COG and KEGG databases. RPKM based digital expression analysis revealed specific gene activities at different stages of development which was validated using Real time PCR analysis. More than 90% of the unigenes were found to be expressed in at least one of the four seed tissues. DEGseq was used to determine differentially expressing genes which revealed that only 6.75% of the unigenes were differentially expressed at various stages. Homology based comparison revealed 17.5% of the unigenes to be putatively seed specific. Transcription factors were predicted based on HMM profiles built using TF sequences from five legume plants and analysed for their differential expression during progression of seed development. Expression analysis of genes involved in biosynthesis of important secondary metabolites suggested that chickpea seeds can serve as a good source of antioxidants. Since transcriptomes are a valuable source of molecular markers like simple sequence repeats (SSRs, about 12,000 SSRs were mined in chickpea seed transcriptome and few of them were validated. In conclusion, this study will serve as a valuable resource for improved chickpea breeding.

  2. Arabidopsis MADS-Box Transcription Factor AGL21 Acts as Environmental Surveillance of Seed Germination by Regulating ABI5 Expression.

    Science.gov (United States)

    Yu, Lin-Hui; Wu, Jie; Zhang, Zi-Sheng; Miao, Zi-Qing; Zhao, Ping-Xia; Wang, Zhen; Xiang, Cheng-Bin

    2017-06-05

    Seed germination is a crucial checkpoint for plant survival under unfavorable environmental conditions. Abscisic acid (ABA) signaling plays a vital role in integrating environmental information to regulate seed germination. It has been well known that MCM1/AGAMOUS/DEFICIENS/SRF (MADS)-box transcription factors are key regulators of seed and flower development in Arabidopsis. However, little is known about their functions in seed germination. Here we report that MADS-box transcription factor AGL21 is a negative regulator of seed germination and post-germination growth by controlling the expression of ABA-INSENSITIVE 5 (ABI5) in Arabidopsis. The AGL21-overexpressing plants were hypersensitive to ABA, salt, and osmotic stresses during seed germination and early post-germination growth, whereas agl21 mutants were less sensitive. We found that AGL21 positively regulated ABI5 expression in seeds. Consistently, genetic analyses showed that AGL21 is epistatic to ABI5 in controlling seed germination. Chromatin immunoprecipitation assays further demonstrated that AGL21 could directly bind to the ABI5 promoter in plant cells. Moreover, we found that AGL21 responded to multiple environmental stresses and plant hormones during seed germination. Taken together, our results suggest that AGL21 acts as a surveillance integrator that incorporates environmental cues and endogenous hormonal signals into ABA signaling to regulate seed germination and early post-germination growth. Copyright © 2017 The Author. Published by Elsevier Inc. All rights reserved.

  3. Gene expression analysis of flax seed development

    Science.gov (United States)

    2011-01-01

    Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages) seed coats (globular and torpedo stages) and endosperm (pooled globular to torpedo stages) and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST) (GenBank accessions LIBEST_026995 to LIBEST_027011) were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152) had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid clones that comprise

  4. Gene expression analysis of flax seed development

    Directory of Open Access Journals (Sweden)

    Sharpe Andrew

    2011-04-01

    Full Text Available Abstract Background Flax, Linum usitatissimum L., is an important crop whose seed oil and stem fiber have multiple industrial applications. Flax seeds are also well-known for their nutritional attributes, viz., omega-3 fatty acids in the oil and lignans and mucilage from the seed coat. In spite of the importance of this crop, there are few molecular resources that can be utilized toward improving seed traits. Here, we describe flax embryo and seed development and generation of comprehensive genomic resources for the flax seed. Results We describe a large-scale generation and analysis of expressed sequences in various tissues. Collectively, the 13 libraries we have used provide a broad representation of genes active in developing embryos (globular, heart, torpedo, cotyledon and mature stages seed coats (globular and torpedo stages and endosperm (pooled globular to torpedo stages and genes expressed in flowers, etiolated seedlings, leaves, and stem tissue. A total of 261,272 expressed sequence tags (EST (GenBank accessions LIBEST_026995 to LIBEST_027011 were generated. These EST libraries included transcription factor genes that are typically expressed at low levels, indicating that the depth is adequate for in silico expression analysis. Assembly of the ESTs resulted in 30,640 unigenes and 82% of these could be identified on the basis of homology to known and hypothetical genes from other plants. When compared with fully sequenced plant genomes, the flax unigenes resembled poplar and castor bean more than grape, sorghum, rice or Arabidopsis. Nearly one-fifth of these (5,152 had no homologs in sequences reported for any organism, suggesting that this category represents genes that are likely unique to flax. Digital analyses revealed gene expression dynamics for the biosynthesis of a number of important seed constituents during seed development. Conclusions We have developed a foundational database of expressed sequences and collection of plasmid

  5. Vegetative growth response of cotton plants due to growth regulator supply via seeds

    Directory of Open Access Journals (Sweden)

    João Vitor Ferrari

    2015-08-01

    Full Text Available The global cotton industry is distinguished by its numerous industrial uses of the plume as well as by high production costs. Excessive vegetative growth can interfere negatively with productivity, and thus, applying growth regulators is essential for the development of the cotton culture. The objective of this study was to evaluate the development and yield of the cotton cultivar FMT 701 with the application of mepiquat chloride to seeds and leaves. The experimental design used a randomized block design with four replications, arranged in bands.The treatments consisted of mepiquat chloride rates (MC (0, 4, 6, 8 and 10 g a.i. kg-1 of seeds applied directly to the cotton seeds and MC management by foliar spray using a 250 mL ha-1 rates that was administered under the following conditions: divided into four applications (35, 45, 55 and 65 days after emergence; as a single application at 70 days; and without the application of the product. The mepiquat chloride applied to cotton seeds controls the initial plant height and stem diameter, while foliar application reduces the height of the plants. After application to seed, foliar spraying MC promotes increase mass of 20 bolls, however no direct influence amount bolls per plant and yield of cotton seed. Higher cotton seed yield was obtained with a rate of 3.4 g a.i. MC kg-1 seeds.

  6. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Science.gov (United States)

    Reddy, Palakolanu Sudhakar; Kavi Kishor, Polavarapu B; Seiler, Christiane; Kuhlmann, Markus; Eschen-Lippold, Lennart; Lee, Justin; Reddy, Malireddy K; Sreenivasulu, Nese

    2014-01-01

    The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is evolutionarily highly

  7. Unraveling regulation of the small heat shock proteins by the heat shock factor HvHsfB2c in barley: its implications in drought stress response and seed development.

    Directory of Open Access Journals (Sweden)

    Palakolanu Sudhakar Reddy

    Full Text Available The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey identified 20 non-redundant small heat shock proteins (sHsp and 22 heat shock factor (Hsf genes in barley. While all three major classes (A, B, C of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid responsive cis-elements (ABRE, implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI. The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E. coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-17.5-CI protein suggests that the α-crystallin domain is

  8. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2017-08-01

    Full Text Available Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA while positively mediating abscisic acid (ABA biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN, an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA1, GA3, and GA4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA1/ABA, GA3/ABA, and GA4/ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  9. Salt Stress Represses Soybean Seed Germination by Negatively Regulating GA Biosynthesis While Positively Mediating ABA Biosynthesis.

    Science.gov (United States)

    Shu, Kai; Qi, Ying; Chen, Feng; Meng, Yongjie; Luo, Xiaofeng; Shuai, Haiwei; Zhou, Wenguan; Ding, Jun; Du, Junbo; Liu, Jiang; Yang, Feng; Wang, Qiang; Liu, Weiguo; Yong, Taiwen; Wang, Xiaochun; Feng, Yuqi; Yang, Wenyu

    2017-01-01

    Soybean is an important and staple oilseed crop worldwide. Salinity stress has adverse effects on soybean development periods, especially on seed germination and post-germinative growth. Improving seed germination and emergence will have positive effects under salt stress conditions on agricultural production. Here we report that NaCl delays soybean seed germination by negatively regulating gibberellin (GA) while positively mediating abscisic acid (ABA) biogenesis, which leads to a decrease in the GA/ABA ratio. This study suggests that fluridone (FLUN), an ABA biogenesis inhibitor, might be a potential plant growth regulator that can promote soybean seed germination under saline stress. Different soybean cultivars, which possessed distinct genetic backgrounds, showed a similar repressed phenotype during seed germination under exogenous NaCl application. Biochemical analysis revealed that NaCl treatment led to high MDA (malondialdehyde) level during germination and the post-germinative growth stages. Furthermore, catalase, superoxide dismutase, and peroxidase activities also changed after NaCl treatment. Subsequent quantitative Real-Time Polymerase Chain Reaction analysis showed that the transcription levels of ABA and GA biogenesis and signaling genes were altered after NaCl treatment. In line with this, phytohormone measurement also revealed that NaCl considerably down-regulated active GA 1 , GA 3 , and GA 4 levels, whereas the ABA content was up-regulated; and therefore ratios, such as GA 1 /ABA, GA 3 /ABA, and GA 4 /ABA, are decreased. Consistent with the hormonal quantification, FLUN partially rescued the delayed-germination phenotype caused by NaCl-treatment. Altogether, these results demonstrate that NaCl stress inhibits soybean seed germination by decreasing the GA/ABA ratio, and that FLUN might be a potential plant growth regulator that could promote soybean seed germination under salinity stress.

  10. PHO1 Exports Phosphate from the Chalazal Seed Coat to the Embryo in Developing Arabidopsis Seeds.

    Science.gov (United States)

    Vogiatzaki, Evangelia; Baroux, Célia; Jung, Ji-Yul; Poirier, Yves

    2017-10-09

    Seed production requires the transfer of nutrients from the maternal seed coat to the filial endosperm and embryo. Because seed coat and filial tissues are symplasmically isolated, nutrients arriving in the seed coat via the phloem must be exported to the apoplast before reaching the embryo. Proteins implicated in the transfer of inorganic phosphate (Pi) from the seed coat to the embryo are unknown despite seed P content being an important agronomic trait. Here we show that the Arabidopsis Pi exporters PHO1 and PHOH1 are expressed in the chalazal seed coat (CZSC) of developing seeds. PHO1 is additionally expressed in developing ovules. Phosphorus (P) content and Pi flux between the seed coat and embryo were analyzed in seeds from grafts between WT roots and scions from either pho1, phoh1, or the pho1 phoh1 double mutant. Whereas P content and distribution between the seed coat and embryo in fully mature dry seeds of these mutants are similar to the WT, at the mature green stage of seed development the seed coat of the pho1 and pho1 phoh1 mutants, but not of the phoh1 mutant, retains approximately 2-fold more P than its WT control. Expression of PHO1 under a CZSC-specific promoter complemented the seed P distribution phenotype of the pho1 phoh1 double mutant. CZSC-specific down-expression of PHO1 also recapitulated the seed P distribution phenotype of pho1. Together, these experiments show that PHO1 expression in the CZSC is important for the transfer of P from the seed coat to the embryo in developing seeds. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Abscisic acid and assimilate partitioning during seed development

    NARCIS (Netherlands)

    Bruijn, de S.M.

    1993-01-01

    This thesis describes the influence of abscisic acid (ABA) on the transport of assimilates to seeds and the deposition of reserves in seeds. It is well-known from literature that ABA accumulates in seeds during development, and that ABA concentrations in seeds correlate rather well with

  12. Local Seed Business in the Context of Integrated Seed Sector Development

    NARCIS (Netherlands)

    Thijssen, M.H.; Borman, G.D.; Verhoosel, K.S.; Mastenbroek, A.; Heemskerk, Willem

    2015-01-01

    Quality seed is a key input for agriculture, with a direct impact on agricultural production and productivity. Integrated seed sector development (ISSD) is an inclusive approach that recognizes and builds upon a diversity of seed systems in the sector. We use the ISSD approach to guide us in the

  13. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison.

    Science.gov (United States)

    Terrasson, Emmanuel; Buitink, Julia; Righetti, Karima; Ly Vu, Benoit; Pelletier, Sandra; Zinsmeister, Julia; Lalanne, David; Leprince, Olivier

    2013-01-01

    Desiccation tolerance (DT) is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step toward the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterized the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa). The resulting list contained 740 and 2829 transcripts whose levels, respectively, increased and decreased with DT. Fourty-eight transcription factors (TF) were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15% of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35 and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity is discussed.

  14. A functional analysis of cell cycle events in developing and germinating tomato seeds

    NARCIS (Netherlands)

    Castro, de R.D.

    1998-01-01

    Seeds are complex biological structures and the primary dispersal units of higher plants. They consist of nutrient reserve storage tissue(s), an embryo and encapsulating structures designated for protection and that may also regulate germination. Seeds have developed mechanisms of

  15. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos.

    Science.gov (United States)

    Smolikova, Galina; Dolgikh, Elena; Vikhnina, Maria; Frolov, Andrej; Medvedev, Sergei

    2017-09-16

    The embryos of some angiosperms (usually referred to as chloroembryos) contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN ( SGR ) genes are the principle ones. On the biochemical level, abscisic acid (ABA) is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  16. Genetic and Hormonal Regulation of Chlorophyll Degradation during Maturation of Seeds with Green Embryos

    Directory of Open Access Journals (Sweden)

    Galina Smolikova

    2017-09-01

    Full Text Available The embryos of some angiosperms (usually referred to as chloroembryos contain chlorophylls during the whole period of embryogenesis. Developing embryos have photochemically active chloroplasts and are able to produce assimilates, further converted in reserve biopolymers, whereas at the late steps of embryogenesis, seeds undergo dehydration, degradation of chlorophylls, transformation of chloroplast in storage plastids, and enter the dormancy period. However, in some seeds, the process of chlorophyll degradation remains incomplete. These residual chlorophylls compromise the quality of seed material in terms of viability, nutritional value, and shelf life, and represent a serious challenge for breeders and farmers. The mechanisms of chlorophyll degradation during seed maturation are still not completely understood, and only during the recent decades the main pathways and corresponding enzymes could be characterized. Among the identified players, the enzymes of pheophorbide a oxygenase pathway and the proteins encoded by STAY GREEN (SGR genes are the principle ones. On the biochemical level, abscisic acid (ABA is the main regulator of seed chlorophyll degradation, mediating activity of corresponding catabolic enzymes on the transcriptional level. In general, a deep insight in the mechanisms of chlorophyll degradation is required to develop the approaches for production of chlorophyll-free high quality seeds.

  17. Programme on Integrated Seed Sector Development in Ethiopia

    NARCIS (Netherlands)

    Walsh, Stephen; Thijssen, M.H.

    2016-01-01

    The programme on Integrated Seed Sector Development in Ethiopia aims to strengthen the development of a vibrant, market-oriented and pluralistic seed sector in the country, where quality seed of superior varieties is available and affordable for a larger number of farmers, thereby contributing to

  18. Fertilization-independent seed development in Arabidopsis thaliana

    OpenAIRE

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers ...

  19. ABA signaling in stress-response and seed development.

    Science.gov (United States)

    Nakashima, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2013-07-01

    KEY MESSAGE : We review the recent progress on ABA signaling, especially ABA signaling for ABA-dependent gene expression, including the AREB/ABF regulon, SnRK2 protein kinase, 2C-type protein phosphatases and ABA receptors. Drought negatively impacts plant growth and the productivity of crops. Drought causes osmotic stress to organisms, and the osmotic stress causes dehydration in plant cells. Abscisic acid (ABA) is produced under osmotic stress conditions, and it plays an important role in the stress response and tolerance of plants. ABA regulates many genes under osmotic stress conditions. It also regulates gene expression during seed development and germination. The ABA-responsive element (ABRE) is the major cis-element for ABA-responsive gene expression. ABRE-binding protein (AREB)/ABRE-binding factor (ABF) transcription factors (TFs) regulate ABRE-dependent gene expression. Other TFs are also involved in ABA-responsive gene expression. SNF1-related protein kinases 2 are the key regulators of ABA signaling including the AREB/ABF regulon. Recently, ABA receptors and group A 2C-type protein phosphatases were shown to govern the ABA signaling pathway. Moreover, recent studies have suggested that there are interactions between the major ABA signaling pathway and other signaling factors in stress-response and seed development. The control of the expression of ABA signaling factors may improve tolerance to environmental stresses.

  20. The development of regulations

    International Nuclear Information System (INIS)

    Slokan Dusic, D.; Levstek, M.F.; Stritar, A.

    2003-01-01

    In October 2002, The Act on Protection Against Ionising Radiation and Nuclear Safety which regulates all aspects of protection against ionising radiation and nuclear safety entered into force in Slovenia. The Slovenian government and its responsible ministries shall issue several governmental and ministerial regulations to support the above - mentioned act. The Slovenian Nuclear Safety Administration (SNSA) which acts within the Ministry of the Environment, Spatial Planing and Energy takes an active part in drafting the regulations which are defined in the act. Due to a very comprehensive and pretentious task, that is to be completed in a relatively short period of time, taking into consideration the involvement of stakeholders and all competent ministries, the SNSA within the Quality Management System developed a special procedure that insures the systematic approach to the preparation of regulations. The article will briefly represent the process that: defines the preparation, development, harmonisation, review, approval and issue of regulations and uniforms the format of developed regulations. (author)

  1. Fertilization-independent seed development in Arabidopsis thaliana

    Science.gov (United States)

    Chaudhury, Abdul M.; Ming, Luo; Miller, Celia; Craig, Stuart; Dennis, Elizabeth S.; Peacock, W. James

    1997-01-01

    We report mutants in Arabidopsis thaliana (fertilization-independent seed: fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, ≈50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization. PMID:9108133

  2. Fertilization-independent seed development in Arabidopsis thaliana.

    Science.gov (United States)

    Chaudhury, A M; Ming, L; Miller, C; Craig, S; Dennis, E S; Peacock, W J

    1997-04-15

    We report mutants in Arabidopsis thaliana (fertilization-independent seed:fis) in which certain processes of seed development are uncoupled from the double fertilization event that occurs after pollination. These mutants were isolated as ethyl methanesulfonate-induced pseudo-revertants of the pistillata phenotype. Although the pistillata (pi) mutant has short siliques devoid of seed, the fis mutants in the pi background have long siliques containing developing seeds, even though the flowers remain free of pollen. The three fis mutations map to loci on three different chromosomes. In fis1 and fis2 seeds, the autonomous endosperm nuclei are diploid and the endosperm develops to the point of cellularization; the partially developed seeds then atrophy. In these two mutants, proembryos are formed in a low proportion of seeds and do not develop beyond the globular stage. When FIS/fis plants are pollinated by pollen from FIS/FIS plants, approximately 50% of the resulting seeds contain fully developed embryos; these seeds germinate and form viable seedlings (FIS/FIS). The other 50% of seeds shrivel and do not germinate; they contain embryos arrested at the torpedo stage (FIS/fis). In normal sexual reproduction, the products of the FIS genes are likely to play important regulatory roles in the development of seed after fertilization.

  3. Gene regulation in seeds : insights into translational dynamics

    NARCIS (Netherlands)

    Bai, B.

    2016-01-01

    Seeds are unique structures in the plant life cycle. The variation in the timing of seed maturation, dispersion, and the establishment of seed dormancy and longevity, increases the chances of plant survival and enlarge the distance that plants could disperse in the natural habitat. Seeds contain

  4. HONSU, a protein phosphatase 2C, regulates seed dormancy by inhibiting ABA signaling in Arabidopsis.

    Science.gov (United States)

    Kim, Woohyun; Lee, Yeon; Park, Jeongmoo; Lee, Nayoung; Choi, Giltsu

    2013-04-01

    Seed dormancy, a seed status that prohibits germination even in the presence of inductive germination signals, is a poorly understood process. To identify molecular components that regulate seed dormancy, we screened T-DNA insertion lines and identified a mutant designated honsu (hon). HON loss-of-function mutants display deep seed dormancy, whereas HON-overexpressing lines display shallow seed dormancy. HON encodes a seed-specific group A phosphatase 2C (PP2C) and is one of the major negative regulators of seed dormancy among group A PP2Cs. Like other PP2C family members, HON interacts with PYR1/RCAR11 in the presence of ABA. Our analysis indicates that HON inhibits ABA signaling and activates gibberellic acid signaling, and both of these conditions must be satisfied to promote the release of seed dormancy. However, HON mRNA levels are increased in mutants displaying deep seed dormancy or under conditions that deepen seed dormancy, and decreased in mutants displaying shallow seed dormancy or under conditions that promote the release of seed dormancy. Taken together, our results indicate that the expression of HON mRNA is homeostatically regulated by seed dormancy.

  5. Impact of heat stress during seed development on soybean seed metabolome

    Science.gov (United States)

    Seed development is a temperature-sensitive process that is much more vulnerable than vegetative tissues to abiotic stresses. Climate change is expected to increase the incidence and severity of summer heatwaves, and the impact of heat stress on seed development is expected to become more widespread...

  6. Seed coat development in Velloziaceae: primary homology assessment and insights on seed coat evolution.

    Science.gov (United States)

    Sousa-Baena, Mariane S; de Menezes, Nanuza L

    2014-09-01

    Seed coat characteristics have historically been used to infer taxonomic relationships and are a potential source of characters for phylogenetic reconstruction. In particular, seed coat morphoanatomy has never been studied in detail in Velloziaceae. One character based on seed surface microsculpture has been used in phylogenies, but was excluded from recent studies owing to problems in primary homology. This work aimed to clarify the origin and general composition of seed coat cell layers in Velloziaceae and to propose hypotheses of primary homology among seed characters.• Seed coat development of 24 Velloziaceae species, comprising nine genera, and one species of Pandanaceae (outgroup) was studied using standard anatomical methods. Developmental data were interpreted in the light of a recently published phylogeny.• Eight types of seed coat were identified. Whereas the most common type has four distinct cell layers (two-layered tegmen and testa), we encountered much more variation in seed coat composition than previously reported, the analysis of which revealed some potential synapomorphies. For instance, an exotesta with spiral thickenings may be a synapomorphy of Barbacenia.• Our results showed that the character states previously used in phylogenies are not based on homologous layers and that the same state was misattributed to species exhibiting quite different seed coats. This study is a first step toward a better understanding of seed coat structure evolution in Velloziaceae. © 2014 Botanical Society of America, Inc.

  7. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals

    Directory of Open Access Journals (Sweden)

    Yong-Hua eLiu

    2013-08-01

    Full Text Available A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps and non-enzymic antioxidants (e.g. glutathione, ascorbic acid, which collectively maintain the integrity of membranes and prevent programmed cell death (PCD through protecting proteins and scavenging reactive oxygen species (ROS. In parallel, sugars (sucrose, glucose and fructose, also exert signalling roles through cross-talk with hormone and ROS signalling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signalling systems, including trehalose-6 phosphate (T6P, sucrose non-fermenting related kinase-1 (SnRK and the target of rapamycin (TOR kinase complex also play important roles in regulating plant development through modulating nutrient and energy signalling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signalling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.

  8. Effect of GA3 treatment on seed development and seed-related gene expression in grape.

    Directory of Open Access Journals (Sweden)

    Chenxia Cheng

    Full Text Available The phytohormone gibberellic acid (GA3 is widely used in the table grape industry to induce seedlessness in seeded varieties. However, there is a paucity of information concerning the mechanisms by which GAs induce seedlessness in grapes.In an effort to systematically analyze the cause of this GA3-induced seed abortion, we conducted an in depth characterization of two seeded grape cultivars ('Kyoho' and 'Red Globe', along with a seedless cultivar ('Thompson Seedless', following treatment with GA3. In a similar fashion to the seedless control, which exhibited GA3-induced abortion of the seeds 9 days after full bloom (DAF, both 'Kyoho' and 'Red Globe' seeded varieties exhibited complete abortion of the seeds 15 DAF when treated with GA3. Morphological analyses indicated that while fertilization appeared to occur normally following GA3 treatment, as well as in the untreated seedless control cultivar, seed growth eventually ceased. In addition, we found that GA3 application had an effect on redox homeostasis, which could potentially cause cell damage and subsequent seed abortion. Furthermore, we carried out an analysis of antioxidant enzyme activities, as well as transcript levels from various genes believed to be involved in seed development, and found several differences between GA3-treated and untreated controls.Therefore, it seems that the mechanisms driving GA3-induced seedlessness are similar in both seeded and seedless cultivars, and that the observed abortion of seeds may result at least in part from a GA3-induced increase in cell damage caused by reactive oxygen species, a decrease in antioxidant enzymatic activities, and an alteration of the expression of genes related to seed development.

  9. A Quantitative Acetylomic Analysis of Early Seed Development in Rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Hou, Yuxuan; Qiu, Jiehua; Li, Zhiyong; Zhao, Juan; Tong, Xiaohong; Zhang, Jian

    2017-06-27

    PKA (protein lysine acetylation) is a critical post-translational modification that regulates various developmental processes, including seed development. However, the acetylation events and dynamics on a proteomic scale in this process remain largely unknown, especially in rice early seed development. We report the first quantitative acetylproteomic study focused on rice early seed development by employing a mass spectral-based (MS-based), label-free approach. A total of 1817 acetylsites on 1688 acetylpeptides from 972 acetylproteins were identified in pistils and seeds at three and seven days after pollination, including 268 acetyproteins differentially acetylated among the three stages. Motif-X analysis revealed that six significantly enriched motifs, such as (DxkK), (kH) and (kY) around the acetylsites of the identified rice seed acetylproteins. Differentially acetylated proteins among the three stages, including adenosine diphosphate (ADP) -glucose pyrophosphorylases (AGPs), PDIL1-1 (protein disulfide isomerase like 1-1), hexokinases, pyruvate dehydrogenase complex (PDC) and numerous other regulators that are extensively involved in the starch and sucrose metabolism, glycolysis/gluconeogenesis, tricarboxylic acid (TCA) cycle and photosynthesis pathways during early seed development. This study greatly expanded the rice acetylome dataset, and shed novel insight into the regulatory roles of PKA in rice early seed development.

  10. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    Science.gov (United States)

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  11. An emerging picture of the seed desiccome: confirmed regulators and newcomers identified using transcriptome comparison

    Directory of Open Access Journals (Sweden)

    Emmanuel eTerrasson

    2013-12-01

    Full Text Available Desiccation tolerance (DT is the capacity to withstand total loss of cellular water. It is acquired during seed filling and lost just after germination. However, in many species, a germinated seed can regain DT under adverse conditions such as osmotic stress. The genes, proteins and metabolites that are required to establish this DT is referred to as the desiccome. It includes both a range of protective mechanisms and underlying regulatory pathways that remain poorly understood. As a first step towards the identification of the seed desiccome of Medicago truncatula, using updated microarrays we characterised the overlapping transcriptomes associated with acquisition of DT in developing seeds and the re-establishment of DT in germinated seeds using a polyethylene glycol treatment (-1.7 MPa. The resulting list contained 740 and 2829 transcripts whose levels respectively increased and decreased with DT. Fourty-eight transcription factors were identified including MtABI3, MtABI5 and many genes regulating flowering transition and cell identity. A promoter enrichment analysis revealed a strong over-representation of ABRE elements together with light-responsive cis-acting elements. In Mtabi5 Tnt1 insertion mutants, DT could no longer be re-established by an osmotic stress. Transcriptome analysis on Mtabi5 radicles during osmotic stress revealed that 13 and 15 % of the up-regulated and down-regulated genes, respectively, are mis-regulated in the mutants and might be putative downstream targets of MtABI5 implicated in the re-establishment of DT. Likewise, transcriptome comparisons of the desiccation sensitive Mtabi3 mutants and hairy roots ectopically expressing MtABI3 revealed that 35% and 23% of the up-regulated and down-regulated genes are acting downstream of MtABI3. Our data suggest that ABI3 and ABI5 have complementary roles in DT. Whether DT evolved by co-opting existing pathways regulating flowering and cellular phase transition and cell identity

  12. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    International Nuclear Information System (INIS)

    Krishnan, P.; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-01-01

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T 2 ). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T 2 ) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds

  13. Changes in seed water status as characterized by NMR in developing soybean seed grown under moisture stress conditions

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, P., E-mail: pkrishnan@iari.res.in; Singh, Ravender; Verma, A.P.S.; Joshi, D.K.; Singh, Sheoraj

    2014-02-21

    Highlights: • In developing soybean seeds, moisture stress resulted in more proportion of water to bound state. • These changes are further corroborated by concomitant changes in seed metabolites. • Thus there exists a moisture stress and development stage dependence of seed tissue water status. - Abstract: Changes in water status of developing seeds of Soybean (Glycine max L. Merrill.) grown under different moisture stress conditions were characterized by proton nuclear magnetic resonance (NMR)- spin–spin relaxation time (T{sub 2}). A comparison of the seed development characteristics, composition and physical properties indicated that, characteristics like seed weight, seed number/ear, rate of seed filling increased with development stages but decreased with moisture stress conditions. The NMR- spin–spin relaxation (T{sub 2}) component like bound water increased with seed maturation (40–50%) but decreased with moisture stress conditions (30–40%). The changes in seed water status to increasing levels of moisture stress and seed maturity indicates that moisture stress resulted in more proportion of water to bound state and intermediate state and less proportion of water in free-state. These changes are further corroborated by significant changes in protein and starch contents in seeds under high moisture stress treatments. Thus seed water status during its development is not only affected by development processes but also by moisture stress conditions. This study strongly indicated a clear moisture stress and development stage dependence of seed tissue water status in developing soybean seeds.

  14. High-temperature LDV seed particle development

    Science.gov (United States)

    Frish, Michael B.; Pierce, Vicky G.

    1989-05-01

    The feasibility of developing a method for making monodisperse, unagglomerated spherical particles greater than 50 nm in diameter was demonstrated. Carbonaceous particles were made by pyrolyzing ethylene with a pulsed CO2 laser, thereby creating a non-equilibrium mixture of carbon, hydrogen, hydrocarbon vapors, and unpyrolyzed ethylene. Via a complex series of reactions, the carbon and hydrocarbon vapors quickly condensed into the spherical particles. By cooling and dispersing them in a supersonic expansion immediately after their creation, the hot newly-formed spheres were prevented from colliding and coalescing, thus preventing the problem of agglomeration which as plagued other investigators studying laser-simulated particle formation. The cold particles could be left suspended in the residual gases indefinitely without agglomerating. Their uniform sizes and unagglomerated nature were visualized by collecting the particles on filters that were subsequently examined using electron microscopy. It was found the mean particle size can be coarsely controlled by varying the initial ethylene pressure, and can be finely controlled by varying the fluence (energy/unit area) with which the laser irradiates the gas. The motivating application for this research was to manufacture particles that could be used as laser Doppler velocimetry (LDV) seeds in high-temperature high-speed flows. Though the particles made in this program will not evaporate until heated to about 3000 K, and thus could serve as LDV seeds in some applications, they are not ideal when the hot atmosphere is also oxidizing. In that situation, ceramic materials would be preferable. Research performed elsewhere has demonstrated that selected ceramic materials can be manufactured by laser pyrolysis of appropriate supply gases. It is anticipated that, when the same gases are used in conjunction with the rapid cooling technique, unagglomerated spherical ceramic particles can be made with little difficulty. Such

  15. Quantitative phosphoproteomic analysis of early seed development in rice (Oryza sativa L.).

    Science.gov (United States)

    Qiu, Jiehua; Hou, Yuxuan; Tong, Xiaohong; Wang, Yifeng; Lin, Haiyan; Liu, Qing; Zhang, Wen; Li, Zhiyong; Nallamilli, Babi R; Zhang, Jian

    2016-02-01

    Rice (Oryza sativa L.) seed serves as a major food source for over half of the global population. Though it has been long recognized that phosphorylation plays an essential role in rice seed development, the phosphorylation events and dynamics in this process remain largely unknown so far. Here, we report the first large scale identification of rice seed phosphoproteins and phosphosites by using a quantitative phosphoproteomic approach. Thorough proteomic studies in pistils and seeds at 3, 7 days after pollination resulted in the successful identification of 3885, 4313 and 4135 phosphopeptides respectively. A total of 2487 proteins were differentially phosphorylated among the three stages, including Kip related protein 1, Rice basic leucine zipper factor 1, Rice prolamin box binding factor and numerous other master regulators of rice seed development. Moreover, differentially phosphorylated proteins may be extensively involved in the biosynthesis and signaling pathways of phytohormones such as auxin, gibberellin, abscisic acid and brassinosteroid. Our results strongly indicated that protein phosphorylation is a key mechanism regulating cell proliferation and enlargement, phytohormone biosynthesis and signaling, grain filling and grain quality during rice seed development. Overall, the current study enhanced our understanding of the rice phosphoproteome and shed novel insight into the regulatory mechanism of rice seed development.

  16. Comparative transcriptomic analyses of vegetable and grain pea (Pisum sativum L. seed development

    Directory of Open Access Journals (Sweden)

    Na eLiu

    2015-11-01

    Full Text Available Understanding the molecular mechanisms regulating pea seed developmental process is extremely important for pea breeding. In this study, we used high-throughput RNA-Seq and bioinformatics analyses to examine the changes in gene expression during seed development in vegetable pea and grain pea, and compare the gene expression profiles of these two pea types. RNA-Seq generated 18.7 G of raw data, which were then de novo assembled into 77,273 unigenes with a mean length of 930 bp. Our results illustrate that transcriptional control during pea seed development is a highly coordinated process. There were 459 and 801 genes differentially expressed at early and late seed maturation stages between vegetable pea and grain pea, respectively. Soluble sugar and starch metabolism related genes were significantly activated during the development of pea seeds coinciding with the onset of accumulation of sugar and starch in the seeds. A comparative analysis of genes involved in sugar and starch biosynthesis in vegetable pea (high seed soluble sugar and low starch and grain pea (high seed starch and low soluble sugar revealed that differential expression of related genes at late development stages results in a negative correlation between soluble sugar and starch biosynthetic flux in vegetable and grain pea seeds. RNA-Seq data was validated by using real-time quantitative RT-PCR analysis for 30 randomly selected genes. To our knowledge, this work represents the first report of seed development transcriptomics in pea. The obtained results provide a foundation to support future efforts to unravel the underlying mechanisms that control the developmental biology of pea seeds, and serve as a valuable resource for improving pea breeding.

  17. Arabidopsis Histone Demethylases LDL1 and LDL2 Control Primary Seed Dormancy by Regulating DELAY OF GERMINATION 1 and ABA Signaling-Related Genes

    Directory of Open Access Journals (Sweden)

    Ming lei Zhao

    2015-03-01

    Full Text Available Seed dormancy controls germination and plays a critical role in regulating the beginning of the life cycle of plants. Seed dormancy is established and maintained during seed maturation and is gradually broken during dry storage (after-ripening. The plant hormone abscisic acid (ABA and DELAY OF GERMINATION1 (DOG1 protein are essential regulators of seed dormancy. Recent studies revealed that chromatin modifications are also involved in the transcription regulation of seed dormancy. Here, we showed that two Arabidopsis histone demethylases, LYSINESPECIFIC DEMETHYLASE LIKE 1 and 2 (LDL1 and LDL2 act redundantly in repressing of seed dormancy. LDL1 and LDL2 are highly expressed in the early silique developing stage. The ldl1 ldl2 double mutant displays increased seed dormancy, whereas overexpression of LDL1 or LDL2 in Arabidopsis causes reduced dormancy. Furthermore, we showed that LDL1 and LDL2 repress the expression of seed dormancy-related genes, including DOG1, ABA2 and ABI3 during seed dormancy establishment. Furthermore, genetic analysis revealed that the repression of seed dormancy by LDL1 and LDL2 requires DOG1, ABA2 and ABI3. Taken together, our findings revealed that LDL1 and LDL2 play an essential role in seed dormancy.

  18. Lack of Globulin Synthesis during Seed Development Alters Accumulation of Seed Storage Proteins in Rice

    Directory of Open Access Journals (Sweden)

    Hye-Jung Lee

    2015-06-01

    Full Text Available The major seed storage proteins (SSPs in rice seeds have been classified into three types, glutelins, prolamins, and globulin, and the proportion of each SSP varies. It has been shown in rice mutants that when either glutelins or prolamins are defective, the expression of another type of SSP is promoted to counterbalance the deficit. However, we observed reduced abundances of glutelins and prolamins in dry seeds of a globulin-deficient rice mutant (Glb-RNAi, which was generated with RNA interference (RNAi-induced suppression of globulin expression. The expression of the prolamin and glutelin subfamily genes was reduced in the immature seeds of Glb-RNAi lines compared with those in wild type. A proteomic analysis of Glb-RNAi seeds showed that the reductions in glutelin and prolamin were conserved at the protein level. The decreased pattern in glutelin was also significant in the presence of a reductant, suggesting that the polymerization of the glutelin proteins via intramolecular disulfide bonds could be interrupted in Glb-RNAi seeds. We also observed aberrant and loosely packed structures in the storage organelles of Glb-RNAi seeds, which may be attributable to the reductions in SSPs. In this study, we evaluated the role of rice globulin in seed development, showing that a deficiency in globulin could comprehensively reduce the expression of other SSPs.

  19. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-10-20

    Oct 20, 2008 ... (M) and Knudson 'C' (KC) were evaluated for seed germination and early ... running tap water and Teepol. ... blade. The powdery seeds were inoculated on the surface of agar ... an interval of one week to trace different stages of development of .... round in shape and radially symmetrical that turned to.

  20. Aspects of the barley seed proteome during development and germination

    DEFF Research Database (Denmark)

    Finnie, Christine; Maeda, K.; Østergaard, O.

    2004-01-01

    Analysis of the water-soluble barley seed proteome has led to the identification of proteins by MS in the major spots on two-dimensional gels covering the pi ranges 4-7 and 6-11. This provides the basis for in-depth studies of proteome changes during seed development and germination, tissue...

  1. Potential of plant growth regulator and chlormequat chloride on alfalfa seed components

    International Nuclear Information System (INIS)

    Chen, J. S.; Lin, H.; Han, W.

    2016-01-01

    The use of plant growth regulators (PGRs) has opened new prospects for increased seed production in grasses and legumes, but little information is available on the effects of PGRs combination with chlormequat chloride (CCC) on alfalfa (Medicago sativa L.) seed yield components. This study was conducted to evaluate the effects of applying chlormequat chloride in combination with three PGRs (Naphthylacetic acid (NAA), gibberellic acid 3 (GA), and brassinolide (BR)) on seed yield, aboveground biomass, plant height, lodging, yield components. CCC was applied annually at the stooling stage while three PGRs were applied twice each year at the stages of flower bud formation and peak flowering. Results provides evidence that: (i) each PGR consistently increased seed yields, and the numbers of seeds per stem compared to untreated plants; (ii) CCC treatment reduced plant height and lodging, but also significantly decreased seed yield and did not affect aboveground biomass. (iii) effectiveness of CCC application depends on climatic conditions, especially in North-east China. (iiii) the optimum combination of CCC with a PGR to increase alfalfa seed production was failed to identify. (iiiii) no interactions between PGRs and CCC on seed yield were observed and neither the PGRs nor the CCC. But alfalfa seed yield could be improved by combining a PGR such as NAA. Our Results suggest that these PGRs could be used in alfalfa breeding to increase seed yield while maintaining high seed quality. (author)

  2. Identification and functional analyses of genes regulating seed dormancy, longevity and germination

    NARCIS (Netherlands)

    Yazdanpanah, Farzaneh

    2018-01-01

    Fundamental knowledge about the processes affecting seed performance, including the regulation of germination, dormancy and longevity can provide insight to improve these traits, which is of economic importance for agricultural use and storage of seed crops. Accordingly, the objective of this

  3. The meta-governance of organic seed regulation in the USA, European Union and Mexico

    NARCIS (Netherlands)

    Renaud, Erica; Lammerts van Bueren, Edith; Jiggins, Janice

    2016-01-01

    Seed governance in agriculture is a challenging global issue. This paper analyses the evolution of organic seed regulation in the USA, the European Union and Mexico as model cases of how these challenges are being addressed, based on a study conducted between 2007 and 2014. It highlights how

  4. Development of nutritious snacks by incorporation of amaranth seeds, watermelon seeds and their flour

    Directory of Open Access Journals (Sweden)

    Paul Virginia

    2014-11-01

    Full Text Available The present study was carried out with the objectives to find out the sensory acceptability, the nutrient content and cost of prepared products. The products prepared were “Biscuits”, “Mathri” and “Laddoo” by incorporation of amaranth seeds, watermelon seeds and their flour in different proportions (10:10, 20:10, and 30:10 served as treatments T1, T2 and T3 respectively T0, without incorporation of amaranth seeds, watermelon seeds and their flour served as control. The products were organoleptically evaluated by using Nine point Hedonic scale. The data obtained during study were analyzed statistically using analysis of variance and C.D techniques. The prepared products were analyzed for nutrient content using the standard method of AOAC (2005.It was concluded that in case of “Biscuits” and “Mathri” with incorporation level 20 percent amaranth seeds flour and 10 percent watermelon seeds flour scored highest while in case of “Laddoo” with incorporation level 20 percent amaranth seeds and 10 percent watermelon seeds scored highest, with regard to colour and appearance, body and texture, taste and flavour and over all acceptability, However all the treatments were found to be acceptable. It is therefore concluded that amaranth seeds and watermelon seeds can be suitably incorporated in various developed products. “Laddoo” had maximum carbohydrate (64.49g/100g, protein (13.59g/100g calcium (100.1mg/100g and iron (3.33mg/100g content. The content of Protein (14.46g/100g, carbohydrate (59.90 Calcium (59.90mg/100g, were increased as compared to control in “Biscuits”. “Mathri” was rich in Protein, Fat, carbohydrate and calcium content (11.10g/100g, 38.56g/100g, 38.83g/100g, and 53.95mg/100g. Cost of products on the basis raw ingredients per 100g ranged between Rs 6.33-12.45 for “Biscuits”, Rs 16.06-30.07, Rs 12.27-18.19 for “Mathri” and Rs.6.42-12.26 for “Laddoo”. On the basis of findings it is concluded

  5. Carbon partitioning among leaves, fruits, and seeds during development of Phaseolus vulgaris L

    International Nuclear Information System (INIS)

    Geiger, D.R.; Shieh, Wenjang; Saluke, R.M.

    1989-01-01

    Development of vegetative and floral buds was found to be a key factor in establishing the way carbon is distributed among growing leaves and fruits in Phaseolus vulgaris L. plants. Leaves emerged principally during a period 14 to 32 days after planting while flowers were produced during a 10- to 12-day period near the end of leaf emergence. Timing of anthesis established the sigmoidal time course for dry weight accumulated by the composite of all fruits on the plant. During the first 12 days following anthesis, fruit growth mainly consisted of elongation and dry weight accumulation by the pod wall. Thereafter, seed dry weight increased for about 1 week, decreased markedly for several days, and then increased again over the next 2 weeks. Accumulation of imported carbon in individual seeds, measured by steady-state labeling, confirmed the time course for dry weight accumulation observed during seed development. Seed respiration rate initially increased rapidly along with dry weight and then remained nearly steady until seed maturation. A number of developmental events described in the literature coincided with the different phases of diauxic growth. The results demonstrated the feasibility of relating current rates of carbon import in individual seeds measured with tracer 14 C to the rates of conversion of imported sucrose and use of the products for specific developmental processes. The resulting data are useful for evaluating the roles of conversion and utilization of imported sucrose in regulating import by developing seeds

  6. Effects of salinity, temperature, light and dormancy regulating chemicals on seed germination of salsola drummondii ulbr

    International Nuclear Information System (INIS)

    Rasheed, A.; Hameed, A.; Khan, M.A.; Gul, B.

    2015-01-01

    Salsola drummondii Ulbr. is a perennial halophyte found in salt deserts of southern Balochistan, Pakistan. Experiments were conducted to study the effects of salinity (0, 200, 400, 600, 800 and 1000 mM NaCl), thermoperiod (10/20, 15/25, 20/30 and 25/35 degree C), light (12-h photoperiod and dark) and dormancy regulating chemicals (DRCs) on germination, recovery and viability of the seeds of S. drummondii. Seeds of S. drummondii germinated quickly in distilled water at different temperature regimes and increases in salinity decreased seed germination. Interestingly, few seeds could even germinate in 1000 mM NaCl treatment, which is about twice as high as seawater salinity. Seeds were partially photoblastic and showed relatively higher germination under 12-h photoperiod than in dark. Seeds showed poor recovery of germination from salinity and particularly when germinated in dark. Germination inhibition at high salinity (800 mM NaCl) under 12-h photoperiod was partially alleviated by the exogenous application of different DRCs, particularly fusicoccin. Moreover, all the DRCs, except GA4+7, ameliorated germination of salt stressed seeds under complete darkness and GA4 and fusicoccin were most effective. Our study shows that seeds of S. drummondii are highly tolerant to salinity and variation in temperature but partially photoblastic nature indicate that seeds will not germinate if buried under the soil. Seed germination under saline conditions can be improved by the use of DRCs particularly by application of fusicoccin. (author)

  7. Silicon affects seed development and leaf macrohair formation in Brachypodium distachyon

    DEFF Research Database (Denmark)

    Głazowska, Sylwia Emilia; Murozuka, Emiko; Persson, Daniel Olof

    2018-01-01

    Silicon (Si) has many beneficial effects in plants, especially for the survival from biotic and abiotic stresses. However, Si may negatively affect the quality of lignocellulosic biomass for bioenergy purposes. Despite many studies, the regulation of Si distribution and deposition in plants remains...... was similar to that in the wild-type. The Bdlsi1-1 plants supplied with Si had significantly lower seed weights, compared to the wild-type. In low-Si media, the seed weight of wild-type plants was similar to that of Bdlsi1-1 mutants supplied with Si, while the Bdlsi1-1 seed weight decreased further. We...... conclude that Si deficiency results in widespread alterations in leaf surface morphology and seed formation in Brachypodium, showing the importance of Si for successful development in grasses....

  8. Germination and development of pecan cultivar seedlings by seed stratification

    Directory of Open Access Journals (Sweden)

    Igor Poletto

    2015-12-01

    Full Text Available Abstract: The objective of this work was to evaluate the effect of seed stratification on germination rate, germination speed, and initial development of seedlings of six pecan (Carya illinoinensis cultivars under subtropical climatic conditions in southern Brazil. For stratification, the seeds were placed in boxes with moist sand, in a cold chamber at 4°C, for 90 days. In the fourteenth week after sowing, the emergence speed index, total emergence, plant height, stem diameter, and number of leaves were evaluated. Seed stratification significantly improves the germination potential and morphological traits of the evaluated cultivars.

  9. Isotope labeling-based quantitative proteomics of developing seeds of castor oil seed (Ricinus communis L.)

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Schwämmle, Veit

    2013-01-01

    In this study, we used a mass spectrometry-based quantification approach employing isotopic (ICPL) and isobaric (iTRAQ) labeling to investigate the pattern of protein deposition during castor oil seed (Ricinus communis L.) development, including that of proteins involved in fatty acid metabolism...... give important insights into certain aspects of the biology of castor oil seed development such as carbon flow, anabolism, and catabolism of fatty acid and the pattern of deposition of SSPs, toxins, and allergens such as ricin and 2S albumins. We also found, for the first time, some genes of SSP......, seed-storage proteins (SSPs), toxins, and allergens. Additionally, we have used off-line hydrophilic interaction chromatography (HILIC) as a step of peptide fractionation preceding the reverse-phase nanoLC coupled to a LTQ Orbitrap. We were able to identify a total of 1875 proteins, and from these 1748...

  10. A proteomic analysis of seed development in Brassica campestri L.

    Directory of Open Access Journals (Sweden)

    Wenlan Li

    Full Text Available To gain insights into the protein dynamics during seed development, a proteomic study on the developing Brassica campestri L. seeds with embryos in different embryogenesis stages was carried out. The seed proteins at 10, 16, 20, 25 and 35 DAP (days after pollination, respectively, were separated using two-dimensional gel electrophoresis and identities of 209 spots with altered abundance were determined by matrix-assisted laser desorption ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/TOF MS. These proteins were classified into 16 groups according to their functions. The most abundant proteins were related to primary metabolism, indicating the heavy demand of materials for rapid embryo growth. Besides, the high amount of proteins involved in protein processing and destination indicated importance of protein renewal during seed development. The remaining were those participated in oxidation/detoxification, energy, defense, transcription, protein synthesis, transporter, cell structure, signal transduction, secondary metabolism, transposition, DNA repair, storage and so on. Protein abundance profiles of each functional class were generated and hierarchical cluster analysis established 8 groups of dynamic patterns. Our results revealed novel characters of protein dynamics in seed development in Brassica campestri L. and provided valuable information about the complex process of seed development in plants.

  11. Control of seed development in Arabidopsis thaliana by atmospheric oxygen

    Science.gov (United States)

    Kuang, A.; Crispi, M.; Musgrave, M. E.

    1998-01-01

    Seed development is known to be inhibited completely when plants are grown in oxygen concentrations below 5.1 kPa, but apart from reports of decreased seed weight little is known about embryogenesis at subambient oxygen concentrations above this critical level. Arabidopsis thaliana (L.) Heynh. plants were grown full term under continuous light in premixed atmospheres with oxygen partial pressures of 2.5, 5.1, 10.1, 16.2 and 21.3 kPa O2, 0.035 kPa CO2 and the balance nitrogen. Seeds were harvested for germination tests and microscopy when siliques had yellowed. Seed germination was depressed in O2 treatments below 16.2 kPa, and seeds from plants grown in 2.5 kPa O2 did not germinate at all. Fewer than 25% of the seeds from plants grown in 5.1 kPa oxygen germinated and most of the seedlings appeared abnormal. Light and scanning electron microscopic observation of non-germinated seeds showed that these embryos had stopped growing at different developmental stages depending upon the prevailing oxygen level. Embryos stopped growing at the heart-shaped to linear cotyledon stage in 5.1 kPa O2, at around the curled cotyledon stage in 10.1 kPa O2, and at the premature stage in 16.2 kPa O2. Globular and heart-shaped embryos were observed in sectioned seeds from plants grown in 2.5 kPa O2. Tissue degeneration caused by cell autolysis and changes in cell structure were observed in cotyledons and radicles. Transmission electron microscopy of mature seeds showed that storage substances, such as protein bodies, were reduced in subambient oxygen treatments. The results demonstrate control of embryo development by oxygen in Arabidopsis.

  12. Auxin production in the endosperm drives seed coat development in Arabidopsis

    Science.gov (United States)

    Figueiredo, Duarte D; Batista, Rita A; Roszak, Pawel J; Hennig, Lars; Köhler, Claudia

    2016-01-01

    In flowering plants, seed development is initiated by the fusion of the maternal egg and central cells with two paternal sperm cells, leading to the formation of embryo and endosperm, respectively. The fertilization products are surrounded by the maternally derived seed coat, whose development prior to fertilization is blocked by epigenetic regulators belonging to the Polycomb Group (PcG) protein family. Here we show that fertilization of the central cell results in the production of auxin and most likely its export to the maternal tissues, which drives seed coat development by removing PcG function. We furthermore show that mutants for the MADS-box transcription factor AGL62 have an impaired transport of auxin from the endosperm to the integuments, which results in seed abortion. We propose that AGL62 regulates auxin transport from the endosperm to the integuments, leading to the removal of the PcG block on seed coat development. DOI: http://dx.doi.org/10.7554/eLife.20542.001 PMID:27848912

  13. Impact of accelerated plant growth on seed variety development

    Science.gov (United States)

    Christophersen, Eric

    1998-01-01

    The commercial lives of agricultural seed products have steadily declined in recent years. The introduction of genetically engineered crop seeds in 1966 has accentuated that trend. Widespread grower demand for genetically engineered seed requires competitive response by industry followers in order to avert market share losses to the industry leaders. Limitations on plant transformation technology, regulatory requirements and patent impediments require companies to rapidly convert transformed lines into elite commercial products. Massive multigenerational backcrossing efforts are required to distribute genetically engineered traits into a broad product mix. Significant incidents of expression failures, or ``gene silencing,'' have occurred unexpectedly, requiring product substitution strategies. First-to-market strategies, competitive response, broad germplasm conversion and rescue of product failures all share the element of urgency. Technologies which reliably accelerate product development rates can expect favorable reception by commercial seed developers. A growth chamber which dramatically accelerates the rate of plant growth is described.

  14. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L. seeds.

    Directory of Open Access Journals (Sweden)

    Huawu Jiang

    Full Text Available BACKGROUND: Physic nut (Jatropha curcas L. is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. METHODOLOGY/PRINCIPAL FINDINGS: We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP. The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. CONCLUSIONS/SIGNIFICANCE: The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  15. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth.

    Science.gov (United States)

    Tian, Shujuan; Wu, Jingjing; Liu, Yuan; Huang, Xiaorong; Li, Fen; Wang, Zhaodan; Sun, Meng-Xiang

    2017-11-28

    We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  16. Activation of Arabidopsis seed hair development by cotton fiber-related genes.

    Directory of Open Access Journals (Sweden)

    Xueying Guan

    Full Text Available Each cotton fiber is a single-celled seed trichome or hair, and over 20,000 fibers may develop semi-synchronously on each seed. The molecular basis for seed hair development is unknown but is likely to share many similarities with leaf trichome development in Arabidopsis. Leaf trichome initiation in Arabidopsis thaliana is activated by GLABROUS1 (GL1 that is negatively regulated by TRIPTYCHON (TRY. Using laser capture microdissection and microarray analysis, we found that many putative MYB transcription factor and structural protein genes were differentially expressed in fiber and non-fiber tissues. Gossypium hirsutum MYB2 (GhMYB2, a putative GL1 homolog, and its downstream gene, GhRDL1, were highly expressed during fiber cell initiation. GhRDL1, a fiber-related gene with unknown function, was predominately localized around cell walls in stems, sepals, seed coats, and pollen grains. GFP:GhRDL1 and GhMYB2:YFP were co-localized in the nuclei of ectopic trichomes in siliques. Overexpressing GhRDL1 or GhMYB2 in A. thaliana Columbia-0 (Col-0 activated fiber-like hair production in 4-6% of seeds and had on obvious effects on trichome development in leaves or siliques. Co-overexpressing GhRDL1 and GhMYB2 in A. thaliana Col-0 plants increased hair formation in ∼8% of seeds. Overexpressing both GhRDL1 and GhMYB2 in A. thaliana Col-0 try mutant plants produced seed hair in ∼10% of seeds as well as dense trichomes inside and outside siliques, suggesting synergistic effects of GhRDL1 and GhMYB2 with try on development of trichomes inside and outside of siliques and seed hair in A. thaliana. These data suggest that a different combination of factors is required for the full development of trichomes (hairs in leaves, siliques, and seeds. A. thaliana can be developed as a model a system for discovering additional genes that control seed hair development in general and cotton fiber in particular.

  17. Environmental regulation of dormancy loss in seeds of Lomatium dissectum

    Science.gov (United States)

    Melissa Dawn Scholten

    2011-01-01

    Lomatium dissectum (Nutt.) Mathias & Constance is a perennial plant found across much of western North America. For disturbed lands within this range, there is interest in using L. dissectum in restoration. A problem in the propagation of L. dissectum is that at the time of dispersal the seeds are dormant. Thus, prior to usage in restoration projects the type of...

  18. Development and efficacy assessments of tea seed oil makeup remover.

    Science.gov (United States)

    Parnsamut, N; Kanlayavattanakul, M; Lourith, N

    2017-05-01

    The efficacy of tea seed oil to clean foundation and eyeliner was evaluated. The safe and efficient tea seed oil makeup remover was developed. In vitro cleansing efficacy of makeup remover was UV-spectrophotometric validated. The stability evaluation by means of accelerated stability test was conducted. In vitro and in vivo cleansing efficacy of the removers was conducted in a comparison with benchmark majorly containing olive oil. Tea seed oil cleaned 90.64±4.56% of foundation and 87.62±8.35% of eyeliner. The stable with most appropriate textures base was incorporated with tea seed oil. Three tea seed oil removers (50, 55 and 60%) were stabled. The 60% tea seed oil remover significantly removed foundation better than others (94.48±3.37%; Pmakeup removers had been developed. The consumers' choices towards the makeup remover containing the bio-oils are widen. In vitro cleansing efficacy during the course of makeup remover development using UV-spectrophotometric method feasible for pharmaceutic industries is encouraged. Copyright © 2016 Académie Nationale de Pharmacie. Published by Elsevier Masson SAS. All rights reserved.

  19. Expression of 9-cis-EPOXYCAROTENOID DIOXYGENASE4 Is Essential for Thermoinhibition of Lettuce Seed Germination but Not for Seed Development or Stress Tolerance[C][W

    Science.gov (United States)

    Huo, Heqiang; Dahal, Peetambar; Kunusoth, Keshavulu; McCallum, Claire M.; Bradford, Kent J.

    2013-01-01

    Thermoinhibition, or failure of seeds to germinate at warm temperatures, is common in lettuce (Lactuca sativa) cultivars. Using a recombinant inbred line population developed from a lettuce cultivar (Salinas) and thermotolerant Lactuca serriola accession UC96US23 (UC), we previously mapped a quantitative trait locus associated with thermoinhibition of germination to a genomic region containing a gene encoding a key regulated enzyme in abscisic acid (ABA) biosynthesis, 9-cis-EPOXYCAROTENOID DIOXYGENASE4 (NCED4). NCED4 from either Salinas or UC complements seeds of the Arabidopsis thaliana nced6-1 nced9-1 double mutant by restoring germination thermosensitivity, indicating that both NCED4 genes encode functional proteins. Transgenic expression of Salinas NCED4 in UC seeds resulted in thermoinhibition, whereas silencing of NCED4 in Salinas seeds led to loss of thermoinhibition. Mutations in NCED4 also alleviated thermoinhibition. NCED4 expression was elevated during late seed development but was not required for seed maturation. Heat but not water stress elevated NCED4 expression in leaves, while NCED2 and NCED3 exhibited the opposite responses. Silencing of NCED4 altered the expression of genes involved in ABA, gibberellin, and ethylene biosynthesis and signaling pathways. Together, these data demonstrate that NCED4 expression is required for thermoinhibition of lettuce seeds and that it may play additional roles in plant responses to elevated temperature. PMID:23503626

  20. Analysis of cDNA libraries from developing seeds of guar (Cyamopsis tetragonoloba (L. Taub

    Directory of Open Access Journals (Sweden)

    Dixon Richard A

    2007-11-01

    Full Text Available Abstract Background Guar, Cyamopsis tetragonoloba (L. Taub, is a member of the Leguminosae (Fabaceae family and is economically the most important of the four species in the genus. The endosperm of guar seed is a rich source of mucilage or gum, which forms a viscous gel in cold water, and is used as an emulsifier, thickener and stabilizer in a wide range of foods and industrial applications. Guar gum is a galactomannan, consisting of a linear (1→4-β-linked D-mannan backbone with single-unit, (1→6-linked, α-D-galactopyranosyl side chains. To better understand regulation of guar seed development and galactomannan metabolism we created cDNA libraries and a resulting EST dataset from different developmental stages of guar seeds. Results A database of 16,476 guar seed ESTs was constructed, with 8,163 and 8,313 ESTs derived from cDNA libraries I and II, respectively. Library I was constructed from seeds at an early developmental stage (15–25 days after flowering, DAF, and library II from seeds at 30–40 DAF. Quite different sets of genes were represented in these two libraries. Approximately 27% of the clones were not similar to known sequences, suggesting that these ESTs represent novel genes or may represent non-coding RNA. The high flux of energy into carbohydrate and storage protein synthesis in guar seeds was reflected by a high representation of genes annotated as involved in signal transduction, carbohydrate metabolism, chaperone and proteolytic processes, and translation and ribosome structure. Guar unigenes involved in galactomannan metabolism were identified. Among the seed storage proteins, the most abundant contig represented a conglutin accounting for 3.7% of the total ESTs from both libraries. Conclusion The present EST collection and its annotation provide a resource for understanding guar seed biology and galactomannan metabolism.

  1. Effects of growth regulator herbicide on downy brome (Bromus tectorum) seed production

    Science.gov (United States)

    Previous research showed growth regulator herbicides, such as picloram and aminopyralid, have a sterilizing effect on Japanese brome (Bromus japonicus Thunb.) that can reduce this invasive annual grass’s seed production nearly 100%. This suggests growth regulators might be used to control invasive ...

  2. Nitric Oxide Regulates Seedling Growth and Mitochondrial Responses in Aged Oat Seeds

    Directory of Open Access Journals (Sweden)

    Chunli Mao

    2018-04-01

    Full Text Available Mitochondria are the source of reactive oxygen species (ROS in plant cells and play a central role in the mitochondrial electron transport chain (ETC and tricarboxylic acid cycle (TCA cycles; however, ROS production and regulation for seed germination, seedling growth, as well as mitochondrial responses to abiotic stress, are not clear. This study was conducted to obtain basic information on seed germination, embryo mitochondrial antioxidant responses, and protein profile changes in artificial aging in oat seeds (Avena sativa L. exposed to exogenous nitric oxide (NO treatment. The results showed that the accumulation of H2O2 in mitochondria increased significantly in aged seeds. Artificial aging can lead to a loss of seed vigor, which was shown by a decline in seed germination and the extension of mean germination time (MGT. Seedling growth was also inhibited. Some enzymes, including catalase (CAT, glutathione reductase (GR, dehydroascorbate reductase (DHAR, and monodehydroascorbate reductase (MDHAR, maintained a lower level in the ascorbate-glutathione (AsA-GSH scavenging system. Proteomic analysis revealed that the expression of some proteins related to the TCA cycle were down-regulated and several enzymes related to mitochondrial ETC were up-regulated. With the application of 0.05 mM NO in aged oat seeds, a protective effect was observed, demonstrated by an improvement in seed vigor and increased H2O2 scavenging ability in mitochondria. There were also higher activities of CAT, GR, MDHAR, and DHAR in the AsA-GSH scavenging system, enhanced TCA cycle-related enzymes (malate dehydrogenase, succinate-CoA ligase, fumarate hydratase, and activated alternative pathways, as the cytochrome pathway was inhibited. Therefore, our results indicated that seedling growth and seed germinability could retain a certain level in aged oat seeds, predominantly depending on the lower NO regulation of the TCA cycle and AsA-GSH. Thus, it could be concluded that the

  3. Seeding Event: Creating and Developing Spaces of Entrepreneurial Freedom

    Directory of Open Access Journals (Sweden)

    Gaëtan Mourmant

    2012-12-01

    Full Text Available This paper addresses the question of initiating, fostering and growing a vibrant economy by developing Spaces of Entrepreneurial Freedom (SoEF. Establishing and developing the SoEF is explained by a seeding event which is the core category of this grounded theory. In short, a seeding event leads to the patching of a potential, structural “hole”, which may prove valuable to an entrepreneurial network. Seeding events are started by an initiator who will recognize a network opportunity and exploit it. After event designing, the initiators implement the event through bold experimentation and using an adaptive structure. If the event is considered successful, the next stages are refining, growing, templating and finally replicating; these stages may occur one after the other or simultaneously. Through the development of SoEF, we suggest that entrepreneurs, governments, universities, large companies, and other players in the business world can improve the development of entrepreneurship at their respective levels.

  4. Effect of abscisic acid on amino acid uptake and efflux in developing soybean seeds

    International Nuclear Information System (INIS)

    Guldan, S.J.; Brun, W.A.

    1987-01-01

    The role of abscisic acid (ABA) in regulating growth of developing soybean [Glycine max (L.) Merr.] seeds is not fully understood. The objectives of this study were to characterize the effect of ABA on the in vitro uptake of asparagine and glutamine by isolated immature cotyledons in three soybean plant introduction (PI) lines with genotypic differences in seed growth rate and final seed weight. Cotyledons were incubated in uptake buffer solutions plus 14 C-asparagine or 14 C-glutamine and treatment concentrations of ABA. The ABA levels in the uptake solutions were 0, 10 -7 , 10 -6 , and 10 -5 M. The uptake rate of glutamine was approximately three times that of asparagine. Among PI lines, the heavy seeded line had a greater rate of asparagine uptake while the light seeded line had a greater rate of glutamine uptake. For asparagine, 10 -6 M ABA depressed uptake compared to the control. For glutamine, ABA enhanced uptake compared to the control at both 10 -6 and 10 -5 M. In an additional experiment, the authors observed no effect of ABA and K on the release of labeled asparagine from excised soybean seed coats. These data indicate that amino acid uptake rates are genotypically dependent and may be influenced by ABA concentration

  5. Genome-wide scans for delineation of candidate genes regulating seed-protein content in chickpea

    Directory of Open Access Journals (Sweden)

    Hari Deo eUpadhyaya

    2016-03-01

    Full Text Available Identification of potential genes/alleles governing complex seed-protein content (SPC trait is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study, high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium decay] was utilized. This led to identification of seven most effective genomic loci (genes associated [10 to 20% with 41% combined PVE (phenotypic variation explained] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line mapping population (ICC 12299 x ICC 4958 by selective genotyping. The seed-specific expression, including differential up-regulation (> 4-fold of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with high level of contrasting seed-protein content (21-22% was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait

  6. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Kai Shu

    2013-06-01

    Full Text Available Seed dormancy is an important economic trait for agricultural production. Abscisic acid (ABA and Gibberellins (GA are the primary factors that regulate the transition from dormancy to germination, and they regulate this process antagonistically. The detailed regulatory mechanism involving crosstalk between ABA and GA, which underlies seed dormancy, requires further elucidation. Here, we report that ABI4 positively regulates primary seed dormancy, while negatively regulating cotyledon greening, by mediating the biogenesis of ABA and GA. Seeds of the Arabidopsis abi4 mutant that were subjected to short-term storage (one or two weeks germinated significantly more quickly than Wild-Type (WT, and abi4 cotyledons greened markedly more quickly than WT, while the rates of germination and greening were comparable when the seeds were subjected to longer-term storage (six months. The ABA content of dry abi4 seeds was remarkably lower than that of WT, but the amounts were comparable after stratification. Consistently, the GA level of abi4 seeds was increased compared to WT. Further analysis showed that abi4 was resistant to treatment with paclobutrazol (PAC, a GA biosynthesis inhibitor, during germination, while OE-ABI4 was sensitive to PAC, and exogenous GA rescued the delayed germination phenotype of OE-ABI4. Analysis by qRT-PCR showed that the expression of genes involved in ABA and GA metabolism in dry and germinating seeds corresponded to hormonal measurements. Moreover, chromatin immunoprecipitation qPCR (ChIP-qPCR and transient expression analysis showed that ABI4 repressed CYP707A1 and CYP707A2 expression by directly binding to those promoters, and the ABI4 binding elements are essential for this repression. Accordingly, further genetic analysis showed that abi4 recovered the delayed germination phenotype of cyp707a1 and cyp707a2 and further, rescued the non-germinating phenotype of ga1-t. Taken together, this study suggests that ABI4 is a key

  7. Seed-vectored endophytic bacteria modulate development of rice seedlings.

    Science.gov (United States)

    Verma, S K; Kingsley, K; Irizarry, I; Bergen, M; Kharwar, R N; White, J F

    2017-06-01

    The aim of the present study was to evaluate the effects of the removal of indigenous bacteria from rice seeds on seedling growth and development. Here we report the presence of three indigenous endophytic bacteria in rice seeds that play important roles in modulating seedling development (shoot and root lengths, and formation of root hairs and secondary roots) and defence against pathogens. Seed-associated bacteria were removed using surface sterilization with NaOCl (bleach) followed by antibiotic treatment. When bacteria were absent, growth of seedlings in terms of root hair development and overall seedling size was less than that of seedlings that contained bacteria. Reactive oxygen staining of seedlings showed that endophytic bacteria became intracellular in root parenchyma cells and root hairs. Roots containing endophytic bacteria were seen to stain densely for reactive oxygen, while roots free of bacteria stained lightly for reactive oxygen. Bacteria were isolated and identified as Enterobacter asburiae (VWB1), Pantoea dispersa (VWB2) and Pseudomonas putida (VWB3) by 16S rDNA sequencing. Bacteria were found to produce indole acetic acid (auxins), inhibited the pathogen Fusarium oxysporum and solubilized phosphate. Reinoculation of bacteria onto seedlings derived from surface-disinfected rice and Bermuda grass seeds significantly restored seedling growth and development. Rice seeds harbour indigenous bacterial endophytes that greatly influence seedling growth and development, including root and shoot lengths, root hair formation and disease susceptibility of rice seedlings. This study shows that seeds of rice naturally harbour bacterial endophytes that play key roles in modulation of seedling development. © 2017 The Society for Applied Microbiology.

  8. Fruit, seed and embryo development of different cassava (Manihot ...

    African Journals Online (AJOL)

    Fruit, seed and embryo developments of different cassava (Manihot esculenta Crantz) genotypes, as well as embryo rescue, were investigated. The fruits of three genotypes after uncontrolled open pollination presented the same progressive development with similar sizes at different stages. There are large differences in ...

  9. Molecular regulation and genetic improvement of seed oil content in Brassica napus L.

    Directory of Open Access Journals (Sweden)

    Wei HUA,Jing LIU,Hanzhong WANG

    2016-09-01

    Full Text Available As an important oil crop and a potential bioenergy crop, Brassica napus L. is becoming a model plant for basic research on seed lipid biosynthesis as well as seed oil content, which has always been the key breeding objective. In this review, we present current progress in understanding of the regulation of oil content in B. napus, including genetics, biosynthesis pathway, transcriptional regulation, maternal effects and QTL analysis. Furthermore, the history of breeding for high oil content in B. napus is summarized and the progress in breeding ultra-high oil content lines is described. Finally, prospects for breeding high oil content B. napus cultivars are outlined.

  10. seeds

    African Journals Online (AJOL)

    Owner

    peptidohydrolase (8.0%) from mung bean seedlings. (Baumgartner and Chrispeels, 1977), EP-HG (4.5%) from horse gram seedlings ( Rajeswari, 1997), acidic protease (15%) from germinating winged-bean seeds. (Usha and Singh, 1996) and EP-1 (1.6%) from barley seedlings and GA3-induced cysteine protease (3.38%).

  11. Laccase-13 Regulates Seed Setting Rate by Affecting Hydrogen Peroxide Dynamics and Mitochondrial Integrity in Rice

    Directory of Open Access Journals (Sweden)

    Yang Yu

    2017-07-01

    Full Text Available Seed setting rate is one of the most important components of rice grain yield. To date, only several genes regulating setting rate have been identified in plant. In this study, we showed that laccase-13 (OsLAC13, a member of laccase family genes which are known for their roles in modulating phenylpropanoid pathway and secondary lignification in cell wall, exerts a regulatory function in rice seed setting rate. OsLAC13 expressed in anthers and promotes hydrogen peroxide production both in vitro and in the filaments and anther connectives. Knock-out of OsLAC13 showed significantly increased seed setting rate, while overexpression of this gene exhibited induced mitochondrial damage and suppressed sugar transportation in anthers, which in turn affected seed setting rate. OsLAC13 also induced H2O2 production and mitochondrial damage in the root tip cells which caused the lethal phenotype. We also showed that high abundant of OsmiR397, the suppressor of OsLAC13 mRNA, increased the seed setting rate of rice plants, and restrains H2O2 accumulation in roots during oxidative stress. Our results suggested a novel regulatory role of OsLAC13 gene in regulating seed setting rate by affecting H2O2 dynamics and mitochondrial integrity in rice.

  12. Hormonal control of seed development in gibberellin- and ABA-deficient tomato (Lycopersicon esculentum Mill. cv. Moneymaker) mutants

    NARCIS (Netherlands)

    Castro, de R.D.; Hilhorst, H.W.M.

    2006-01-01

    Developing seeds of tomato gibberellin (GA)-deficient gib1 and abscisic acid (ABA)-deficient sitw mutants enabled us to analyze the role of GA in the regulation of embryo histo-differentiation, and the role of ABA in the regulation of maturation and quiescence. Our data show that DNA synthesis and

  13. Strategies for Effective Eating Development-SEEDS: Design of an obesity prevention program to promote healthy food preferences and eating self-regulation in children from low-income families

    Science.gov (United States)

    To develop a scientifically based childhood obesity prevention program supporting child eating self-regulation and taste preferences. This article describes the research methods for the Strategies for Effective Eating Development program. A logic model is provided that depicts a visual presentation ...

  14. Development and Performance Evaluation of Fluted Pumpkin Seed Dehulling Machine

    Directory of Open Access Journals (Sweden)

    M. M. Odewole

    2017-08-01

    Full Text Available A machine for dehulling fluted pumpkin seed (Telfairia occidentalis was developed. The main objective of developing the machine was to provide a better substitute to traditional methods of dehulling the seed which contains edible oil of high medicinal and nutritional values. Traditional methods are full of drudgery, slow, injury prone and would lead to low and poor outputs in terms of quantity and quality of dehulled products. The machine is made of five major parts: the feed hopper (for holding the seeds to be dehulled before getting into the dehulling chamber, dehulling chamber (the part of the machine that impacts forces on seeds thereby causing fractures and opening of seeds coats for the delivery of the oily kernels, discharge unit (exit for oily kernels and seed coats after dehulling, the frame (for structural support and stability of all parts of the machine and electric motor (power source of the machine.The development process involved design of major components (shaft diameter (20 mm, machine velocity (7.59 m/s, power requirement (3hp single phase electric motor and structural support of mild steel angle iron, selection of construction materials and fabrication. ANSYS R14.5 machine design computer software was used to design the shaft and structural support; while other components were designed with conventional design method of using design equations. The machine works on the principle of centrifugal and impact forces. Performance evaluation was carried out after fabrication and 87.26%, 2.83g/s, 8.9% and 3.84%were obtained for dehulling efficiency, throughput capacity, percentage partially dehulled and percentage undehulled respectively.

  15. Development and sensory evaluation of yogurt with chia seeds

    Directory of Open Access Journals (Sweden)

    Melina Vilela dos Santos

    2017-11-01

    Full Text Available The objective of this study was to develop and evaluate the sensory acceptance of yogurt formulations with chia seeds. After preparation of the formulations (A - Control, B - yogurt added of 2% of chia seeds, C - yoghurt added of 3% of chia seeds, microbiological and physicochemical analyzes were performed. Hedonic scales were used to verify the acceptance and the intention to purchase the elaborated formulations, as well as the Acceptability Index. The data of the acceptance and purchase intention tests were evaluated through Analysis of Variance (ANOVA, and later, Tukey’s Test was applied at a 5% probability. Yogurt formulations were within the standards required by Brazilian Legislation for microbiological and physicochemical analyzes. There was no significant difference (p > 0,05 between the 3 yoghurt formulations for the attributes of flavor, texture and overall impression. However, regarding the appearance attribute, the formulation with 3% chia (C seeds was less appreciated (p 0,05 regarding the average of the purchase intention notes for the 3 yogurt formulations. It was concluded that the yogurt formulations with chia seeds were adequate for the microbiological and physicochemical parameters during the storage period, besides obtaining a good sensorial acceptance, presenting itself as a healthier milk alternative for the consumers.

  16. Heat shock and plant leachates regulate seed germination of the endangered carnivorous plant Drosophyllum lusitanicum

    Directory of Open Access Journals (Sweden)

    S. Gómez-González

    2018-01-01

    Full Text Available In fire-prone ecosystems, many plant species have specialized mechanisms of seed dormancy that ensure a successful recruitment after fire. A well-documented mechanism is the germination stimulated by fire-related cues, such as heat shock and smoke. However, less is known about the role of inhibitory germination signals (e.g. allelopathy in regulating post-fire recruitment. Plant leachates derived from the unburned vegetation can enforce dormancy by means of allelopathic compounds, acting as a signal of unfavourable (highly competitive niche for germination in pyrophyte species. Here, we assessed the separate effects of heat shock and plant leachates on seed germination of Drosophyllum lusitanicum, an endangered carnivorous plant endemic to Mediterranean fire-prone heathlands. We performed a germination experiment in which seeds were subjected to three treatments: (1 5 min at 100 °C, (2 watering with plant leachate, and (3 control. Germination rate and seed viability was determined after 63 days. Heat shock stimulated seed germination in D. lusitanicum while plant leachates had inhibitory germination effects without reducing seed viability. Thus, both positive and negative signals could be involved in its successful post-fire recruitment. Fire would break seed dormancy and stimulate seed germination of D. lusitanicum through high temperatures, but also by eliminating allelochemical compounds from the soil. These results help to understand the population dynamics patterns found for D. lusitanicum in natural populations, and highlight the role of fire in the ecology and conservation of this endangered species. Seed dormancy imposed by plant-derived leachates as an adaptive mechanism should be considered more in fire ecology theory.

  17. Asymbiotic seed germination and in vitro seedling development of ...

    African Journals Online (AJOL)

    Within two weeks of culture, spherules emerged out due to cracking of the seed coat. The spherules developed into protocorms with a leaf primordium at apical portion after 3 to 4 weeks and gradually produced complete seedlings. Strong and stout root system was induced in in vitro seedlings on transferring in half strength ...

  18. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation.

    Science.gov (United States)

    Liu, Zhenhua; Boachon, Benoît; Lugan, Raphaël; Tavares, Raquel; Erhardt, Mathieu; Mutterer, Jérôme; Demais, Valérie; Pateyron, Stéphanie; Brunaud, Véronique; Ohnishi, Toshiyuki; Pencik, Ales; Achard, Patrick; Gong, Fan; Hedden, Peter; Werck-Reichhart, Danièle; Renault, Hugues

    2015-12-07

    Global inspection of plant genomes identifies genes maintained in low copies across taxa and under strong purifying selection, which are likely to have essential functions. Based on this rationale, we investigated the function of the low-duplicated CYP715 cytochrome P450 gene family that appeared early in seed plants and evolved under strong negative selection. Arabidopsis CYP715A1 showed a restricted tissue-specific expression in the tapetum of flower buds and in the anther filaments upon anthesis. cyp715a1 insertion lines showed a strong defect in petal development, and transient alteration of pollen intine deposition. Comparative expression analysis revealed the downregulated expression of genes involved in pollen development, cell wall biogenesis, hormone homeostasis, and floral sesquiterpene biosynthesis, especially TPS21 and several key genes regulating floral development such as MYB21, MYB24, and MYC2. Accordingly, floral sesquiterpene emission was suppressed in the cyp715a1 mutants. Flower hormone profiling, in addition, indicated a modification of gibberellin homeostasis and a strong disturbance of the turnover of jasmonic acid derivatives. Petal growth was partially restored by the active gibberellin GA3 or the functional analog of jasmonoyl-isoleucine, coronatine. CYP715 appears to function as a key regulator of flower maturation, synchronizing petal expansion and volatile emission. It is thus expected to be an important determinant of flower-insect interaction. Copyright © 2015 The Author. Published by Elsevier Inc. All rights reserved.

  19. Molecular characterization of a GA-inducible gene, Cvsus1, in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Jun, Sung-Hoon; Kang, Hong-Gyu; Lee, Jinwon; An, Gynheung

    2002-10-31

    To understand the molecular mechanisms that control seed development, we isolated a seed-preferential gene from ESTs of developing watermelon seeds. The gene Cvsus1 encodes a protein that is 86% identical to the Vicia faba sucrose synthase expressed in developing seeds. RNA blot analysis showed that Cvsus1 was preferentially expressed in watermelon seeds. We also investigated gene expression levels both in pollinated seeds and in parthenocarpic seeds, which lack zygotic tissues. Whereas the transcript level of Cvsus1 was rapidly increased during normal seed development, the expression was not significantly increased in the parthenocarpic seeds. However, treating the parthenocarpic fruits with GA3 strongly induced Cvsus1 expression, up to the level accumulated in pollinated seeds. These results suggest that Cvsus1 is induced in maternal tissues via signals from the zygotic tissues, and that GA may be one of those signals.

  20. Acid phosphatases in seeds and developing of squash (Cucurbita ficifolia

    Directory of Open Access Journals (Sweden)

    Irena Lorenc-Kubis

    2014-01-01

    Full Text Available Changes in protein content and acid phosphatase activity were followed during germination (imbition through seedlings development in extracts from cotyledons of squash (Cucurbita ficifolia. It has been shown that the activity of acid phosphatase was initially low and than increased to a maximum after 6 days of imbition. Acid phosphates were isolated from cotyledons of seeds and from 6-, 10- and 22-days old seedlings by extraction the proteins with 0.1 M acetate buffer pH 5.1, precipitation with ethanol and by affinity chromatography on con A-Sepharose. Two glycoprotein enzymes AcPase Ba and AcPase Bb which differ in their affinity to immobilized con A were obtained. Both acid phosphatates retained the enzyme activity after binding to free con A. Rocket affinity electrophoresis of AcPase Ba and AcPase Bb, isolated from cotyledons of seeds and seedlings, revealed differences in their ability to bind to con A during seeds germination and seedling develop-ment indicating changes in their sugar component. Con A was found to activate both enzymes. The enzymes cross-reacted with monospecific antibodies raised against grass seed acid phosphatate Ba indicating an antigenic relationship between squash and grass acid phosphatases.

  1. The Arabidopsis CROWDED NUCLEI genes regulate seed germination by modulating degradation of ABI5 protein.

    Science.gov (United States)

    Zhao, Wenming; Guan, Chunmei; Feng, Jian; Liang, Yan; Zhan, Ni; Zuo, Jianru; Ren, Bo

    2016-07-01

    In Arabidopsis, the phytohormone abscisic acid (ABA) plays a vital role in inhibiting seed germination and in post-germination seedling establishment. In the ABA signaling pathway, ABI5, a basic Leu zipper transcription factor, has important functions in the regulation of seed germination. ABI5 protein localizes in nuclear bodies, along with AFP, COP1, and SIZ1, and was degraded through the 26S proteasome pathway. However, the mechanisms of ABI5 nuclear body formation and ABI5 protein degradation remain obscure. In this study, we found that the Arabidopsis CROWDED NUCLEI (CRWN) proteins, predicted nuclear matrix proteins essential for maintenance of nuclear morphology, also participate in ABA-controlled seed germination by regulating the degradation of ABI5 protein. During seed germination, the crwn mutants are hypersensitive to ABA and have higher levels of ABI5 protein compared to wild type. Genetic analysis suggested that CRWNs act upstream of ABI5. The observation that CRWN3 colocalizes with ABI5 in nuclear bodies indicates that CRWNs might participate in ABI5 protein degradation in nuclear bodies. Moreover, we revealed that the extreme C-terminal of CRWN3 protein is necessary for its function in the response to ABA in germination. Our results suggested important roles of CRWNs in ABI5 nuclear body organization and ABI5 protein degradation during seed germination. © 2015 Institute of Botany, Chinese Academy of Sciences.

  2. Abscisic acid regulates seed germination of Vellozia species in response to temperature.

    Science.gov (United States)

    Vieira, B C; Bicalho, E M; Munné-Bosch, S; Garcia, Q S

    2017-03-01

    The relationship between the phytohormones, gibberellin (GA) and abscisic acid (ABA) and light and temperature on seed germination is still not well understood. We aimed to investigate the role of the ABA and GA on seed germination of Vellozia caruncularis, V. intermedia and V. alutacea in response to light/dark conditions on different temperature. Seeds were incubated in GA (GA 3 or GA 4 ) or ABA and their respective biosynthesis inhibitors (paclobutrazol - PAC, and fluridone - FLU) solutions at two contrasting temperatures (25 and 40 °C). Furthermore, endogenous concentrations of active GAs and those of ABA were measured in seeds of V. intermedia and V. alutacea during imbibition/germination. Exogenous ABA inhibited the germination of Vellozia species under all conditions tested. GA, FLU and FLU + GA 3 stimulated germination in the dark at 25 °C (GA 4 being more effective than GA 3 ). PAC reduced seed germination in V. caruncularis and V. alutacea, but did not affect germination of V. intermedia at 40 °C either under light or dark conditions. During imbibition in the dark, levels of active GAs decreased in the seeds of V. intermedia, but were not altered in those of V. alutacea. Incubation at 40 °C decreased ABA levels during imbibition in both V. caruncularis and V. alutacea. We conclude that the seeds of Vellozia species studied here require light or high temperature to germinate and ABA has a major role in the regulation of Vellozia seed germination in response to light and temperature. © 2016 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Mitogen-Activated Protein Kinase Kinase 3 Regulates Seed Dormancy in Barley.

    Science.gov (United States)

    Nakamura, Shingo; Pourkheirandish, Mohammad; Morishige, Hiromi; Kubo, Yuta; Nakamura, Masako; Ichimura, Kazuya; Seo, Shigemi; Kanamori, Hiroyuki; Wu, Jianzhong; Ando, Tsuyu; Hensel, Goetz; Sameri, Mohammad; Stein, Nils; Sato, Kazuhiro; Matsumoto, Takashi; Yano, Masahiro; Komatsuda, Takao

    2016-03-21

    Seed dormancy has fundamental importance in plant survival and crop production; however, the mechanisms regulating dormancy remain unclear [1-3]. Seed dormancy levels generally decrease during domestication to ensure that crops successfully germinate in the field. However, reduction of seed dormancy can cause devastating losses in cereals like wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) due to pre-harvest sprouting, the germination of mature seed (grain) on the mother plant when rain occurs before harvest. Understanding the mechanisms of dormancy can facilitate breeding of crop varieties with the appropriate levels of seed dormancy [4-8]. Barley is a model crop [9, 10] and has two major seed dormancy quantitative trait loci (QTLs), SD1 and SD2, on chromosome 5H [11-19]. We detected a QTL designated Qsd2-AK at SD2 as the single major determinant explaining the difference in seed dormancy between the dormant cultivar "Azumamugi" (Az) and the non-dormant cultivar "Kanto Nakate Gold" (KNG). Using map-based cloning, we identified the causal gene for Qsd2-AK as Mitogen-activated Protein Kinase Kinase 3 (MKK3). The dormant Az allele of MKK3 is recessive; the N260T substitution in this allele decreases MKK3 kinase activity and appears to be causal for Qsd2-AK. The N260T substitution occurred in the immediate ancestor allele of the dormant allele, and the established dormant allele became prevalent in barley cultivars grown in East Asia, where the rainy season and harvest season often overlap. Our findings show fine-tuning of seed dormancy during domestication and provide key information for improving pre-harvest sprouting tolerance in barley and wheat. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Seeds of confusion : the impact of policies on seed systems

    OpenAIRE

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important development issue. This study deals with the impact different types of regulation have on how farmers access seed. I have analysed current regulatory frameworks in terms of their impact on differe...

  5. Competition between meiotic and apomictic pathways during ovule and seed development results in clonality.

    Science.gov (United States)

    Hojsgaard, Diego H; Martínez, Eric J; Quarin, Camilo L

    2013-01-01

    Meiotic and apomictic reproductive pathways develop simultaneously in facultative aposporous species, and compete to form a seed as a final goal. This developmental competition was evaluated in tetraploid genotypes of Paspalum malacophyllum in order to understand the low level of sexuality in facultative apomictic populations. Cyto-embryology on ovules, flow cytometry on seeds and progeny tests by DNA fingerprinting were used to measure the relative incidence of each meiotic or apomictic pathway along four different stages of the plant's life cycle, namely the beginning and end of gametogenesis, seed formation and adult offspring. A high variation in the frequencies of sexual and apomictic pathways occurred at the first two stages. A trend of radical decline in realized sexuality was then observed. Sexual and apomictic seeds were produced, but the efficiency of the sexual pathway dropped drastically, and exclusively clonal offspring remained. Both reproductive pathways are unstable at the beginning of development, and only the apomictic one remains functional. Key factors reducing sexuality are the faster growth and parthenogenetic development in the aposporous pathway, and an (epi)genetically negative background related to the extensive gene de-regulation pattern responsible for apomixis. The effects of inbreeding depression during post-fertilization development may further decrease the frequency of effective sexuality. No claim to original US government works. New Phytologist © 2012 New Phytologist Trust.

  6. iTRAQ and RNA-Seq Analyses Provide New Insights into Regulation Mechanism of Symbiotic Germination of Dendrobium officinale Seeds (Orchidaceae).

    Science.gov (United States)

    Chen, Juan; Liu, Si Si; Kohler, Annegret; Yan, Bo; Luo, Hong Mei; Chen, Xiao Mei; Guo, Shun Xing

    2017-06-02

    Mycorrhizal fungi colonize orchid seeds and induce germination. This so-called symbiotic germination is a critical developmental process in the lifecycle of all orchid species. However, the molecular changes that occur during orchid seed symbiotic germination remain largely unknown. To better understand the molecular mechanism of orchid seed germination, we performed a comparative transcriptomic and proteomic analysis of the Chinese traditional medicinal orchid Dendrobium officinale to explore the change in protein expression at the different developmental stages during asymbiotic and symbiotic germination and identify the key proteins that regulate the symbiotic germination of orchid seeds. Among 2256 identified plant proteins, 308 were differentially expressed across three developmental stages during asymbiotic and symbiotic germination, and 229 were differentially expressed during symbiotic germination compared to asymbiotic development. Of these, 32 proteins were coup-regulated at both the proteomic and transcriptomic levels during symbiotic germination compared to asymbiotic germination. Our results suggest that symbiotic germination of D. officinale seeds shares a common signaling pathway with asymbiotic germination during the early germination stage. However, compared to asymbiotic germination, fungal colonization of orchid seeds appears to induce higher and earlier expression of some key proteins involved in lipid and carbohydrate metabolism and thus improves the efficiency of utilization of stored substances present in the embryo. This study provides new insight into the molecular basis of orchid seed germination.

  7. Recent developments, new trends in seed crushing and oil refining

    Directory of Open Access Journals (Sweden)

    Kővári Katalin

    2004-11-01

    Full Text Available Oil processing was considered as slowly changing “traditional” industry but the recent decades’ developments and trends resulted in a lot of changes initiated by market, industry, environment protection and consumer needs. Driving force of the developments were centralization of the industry, more and more concerns on environmental impact, increased importance of food-feed safety, and last but not least research and development activity together with improved analytical capabilities. The presentation gives an overview on the results achieved on the field of the following areas: the criteria of applicability of physical refining of seed oils, solutions for proper degumming, the effect of seed pretreatment and crushing conditions on the crude oil quality, the importance and role of bleaching and active carbon treatment, the proper practice of deacidification/deodorization.

  8. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability

    Directory of Open Access Journals (Sweden)

    Daniel eOsuna

    2015-11-01

    Full Text Available Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO and phytohormones (ABA, auxins and GAs in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.

  9. Regulation of wheat seed dormancy by after-ripening is mediated by specific transcriptional switches that induce changes in seed hormone metabolism and signaling.

    Directory of Open Access Journals (Sweden)

    Aihua Liu

    Full Text Available Treatments that promote dormancy release are often correlated with changes in seed hormone content and/or sensitivity. To understand the molecular mechanisms underlying the role of after-ripening (seed dry storage in triggering hormone related changes and dormancy decay in wheat (Triticum aestivum, temporal expression patterns of genes related to abscisic acid (ABA, gibberellin (GA, jasmonate and indole acetic acid (IAA metabolism and signaling, and levels of the respective hormones were examined in dormant and after-ripened seeds in both dry and imbibed states. After-ripening mediated developmental switch from dormancy to germination appears to be associated with declines in seed sensitivity to ABA and IAA, which are mediated by transcriptional repressions of PROTEIN PHOSPHATASE 2C, SNF1-RELATED PROTEIN KINASE2, ABA INSENSITIVE5 and LIPID PHOSPHATE PHOSPHTASE2, and AUXIN RESPONSE FACTOR and RELATED TO UBIQUITIN1 genes. Transcriptomic analysis of wheat seed responsiveness to ABA suggests that ABA inhibits the germination of wheat seeds partly by repressing the transcription of genes related to chromatin assembly and cell wall modification, and activating that of GA catabolic genes. After-ripening induced seed dormancy decay in wheat is also associated with the modulation of seed IAA and jasmonate contents. Transcriptional control of members of the ALLENE OXIDE SYNTHASE, 3-KETOACYL COENZYME A THIOLASE, LIPOXYGENASE and 12-OXOPHYTODIENOATE REDUCTASE gene families appears to regulate seed jasmonate levels. Changes in the expression of GA biosynthesis genes, GA 20-OXIDASE and GA 3-OXIDASE, in response to after-ripening implicate this hormone in enhancing dormancy release and germination. These findings have important implications in the dissection of molecular mechanisms underlying regulation of seed dormancy in cereals.

  10. Plant growth regulators and ascorbic acid effects on physiological quality of wheat seedlings obtained from deteriorated seeds

    International Nuclear Information System (INIS)

    Moori, S.; Eisv, H.R.

    2017-01-01

    This study attempted to examine the effect of seed priming using plant growth regulators and vitamin C on the physiological traits of non-aged and aged seeds of wheat and their obtained seedlings. Accelerated aging (AA) method (40 degree C, RH=100% for 72h) was used for aging seeds. The seeds were pre-treated by gibberellin (GA), salicylic acid (SA), brassinosteroid (BR), and ascorbic acid (AS). Some seed traits such as germination and electric conductivity (EC) and seedling traits such as malondialdehyde (MDA) content, activity of some antioxidant enzymes, soluble protein content (SP), soluble sugar (SS), and proline were measured seven days after germination. The results showed that accelerated aging of seeds reduces the germination percentage and speed, increases soluble sugar, and reduces soluble protein, activity of catalase (CAT), peroxidase (POD) and superoxide dismutase (SOD) in the seedling. Pre-treatment of the aged seed by GA had the maximum positive impact on seed germination and seedling growth. Priming improved germination indices, quality of seedling, and seedling resistance against the oxidative stress caused by AA. It also improved cell membrane integrity and thus reduced seeds’ EC. Priming increased the activity of CAT, POD and SOD enzymes in both aged and non-aged seeds. When the deteriorated seeds were primed, proline and SS contents of the seedling increased significantly, but SP and MDA decreased. In general, pre-treatment of the non-aged and aged seeds by gibberellin improved the physiological quality of the seed and seedling. (author)

  11. OVERCOMING SEED DORMANCY IN Annona macroprophyllata AND Annona purpureaUSING PLANT GROWTH REGULATORS

    Directory of Open Access Journals (Sweden)

    GISELA FERREIRA

    Full Text Available ABSTRACT Some Annonaceae seeds are known to exhibit dormancy mechanisms ranging from possible seed coat impermeability to physiological dormancy. Thus, the aim of this study was to evaluate the effects of gibberellin (GA GA3 and GA4+7 + benzyladenine (GA4+7 + BA application in seeds of Annona macroprophyllata Donn. Sm (papausa and Annona purpurea Moc. & Sessé ex Dunal (chincuya. The experiment was performed by the application of GA3 and GA4+7 + BA on seeds in concentrations of 0, 200, 400, 500, 600, 800 and 1000 mg L-1. The regulators broke the dormancy of both species. However, application of the GA4+7 + BA mixture had more significant results, with greater increases in germination in A. macroprophyllata than in A. purpurea. Treatments that promoted the highest germinations were GA4+7 + BA at a concentration of 200 mg L-1 for A. macroprophyllata (77% and 200 mg L-1 of GA4+7 + BA and 500 mg L-1 of GA3 for A. purpurea (30% and 29%, respectively. Rate index, mean time and frequency of germination were distinct for both species and both treatments. Although both GA3 and GA4+7 + BA promote germination, the GA4+7 + BA mixture was more effective than GA3 to overcoming seed dormancy of both species, A. purpurea has a harder dormancy than A. macroprophyllata

  12. Characteristics of Color Development in Seeds of Brown- and Yellow-Seeded Heading Chinese Cabbage and Molecular Analysis of Brsc, the Candidate Gene Controlling Seed Coat Color.

    Science.gov (United States)

    Ren, Yanjing; He, Qiong; Ma, Xiaomin; Zhang, Lugang

    2017-01-01

    The proanthocyanidin (PA) is the main flavonoids which affect the seed coat color in Brassica species. In this paper, characteristics of color development and accumulation of flavonoids were analyzed in the seeds of brown-seeded (B147) and yellow-seeded (B80) heading Chinese cabbage ( Brassica rapa L. ssp. Pekinensis ). It is found that the content of phenolic compounds in B147 were significantly more than that of B80 by using dimethylaminocinnamaldehyde (DMACA) staining and toluidine blue O (TBO) staining. In previous studies, the locus associated with seed coat color has been mapped. The results of whole genome re-sequencing showed that there are large fragment deletions variation in the mapping region between the brown-seeded parent '92S105' and the yellow-seeded parent '91-125.' Based on the B. rapa genome annotation information, the TRANSPARENT TESTA GLABRA 1 ( TTG1 ), is likely to be the candidate gene controlling seed coat color. A 94-base deletion was found in the 96th base downstream of the initiation codon in the TTG1 of yellow seed, thus, the termination codon TGA was occurred in the 297th base which makes the full length of TTG1 of yellow seed is 300 bp. Based on the differential sequences of TTG1 of brown and yellow seed, a functional marker, Brsc-yettg1, was developed to detect the variation of TTG1 . Quantitative real-time PCR analysis of BrTTG1 in different tissues showed that expression levels of BrTTG1 was not tissue-specific. During the whole seed development period, the expression of BrTTG1 in B147 was higher than that of B80. The expression levels of four structural genes, BrDFR, BrANS, BrANR1 , and BrANR2 in B147 were also higher than those in B80. The co-segregation molecular markers obtained in this report and TTG1 related information provide a basis for further understanding of the molecular mechanism of seed coat color in heading Chinese cabbage.

  13. Expression Studies of Gibberellin Oxidases in Developing Pumpkin Seeds1

    Science.gov (United States)

    Frisse, Andrea; Pimenta, Maria João; Lange, Theo

    2003-01-01

    Two cDNA clones, 3-ox and 2-ox, have been isolated from developing pumpkin (Cucurbita maxima) embryos that show significant amino acid homology to gibberellin (GA) 3-oxidases and 2-oxidases, respectively. Recombinant fusion protein of clone 3-ox converted GA12-aldehyde, GA12, GA15, GA24, GA25, and GA9 to GA14-aldehyde, GA14, GA37, GA36, GA13, and GA4, respectively. Recombinant 2-ox protein oxidized GA9, GA4, and GA1 to GA51, GA34, and GA8, respectively. Previously cloned GA 7-oxidase revealed additional 3β-hydroxylation activity of GA12. Transcripts of this gene were identified in endosperm and embryo of the developing seed by quantitative reverse transcriptase-polymerase chain reaction and localized in protoderm, root apical meristem, and quiescent center by in situ hybridization. mRNA of the previously cloned GA 20-oxidase from pumpkin seeds was localized in endosperm and in tissues of protoderm, ground meristem, and cotyledons of the embryo. However, transcripts of the recently cloned GA 20-oxidase from pumpkin seedlings were found all over the embryo, and in tissues of the inner seed coat at the micropylar end. Previously cloned GA 2β,3β-hydroxylase mRNA molecules were specifically identified in endosperm tissue. Finally, mRNA molecules of the 3-ox and 2-ox genes were found in the embryo only. 3-ox transcripts were localized in tissues of cotyledons, protoderm, and inner cell layers of the root apical meristem, and 2-ox transcripts were found in all tissues of the embryo except the root tips. These results indicate tissue-specific GA-biosynthetic pathways operating within the developing seed. PMID:12644672

  14. Role of endogenous growth regulators in vernalization of seeds of radish (Raphanus sativus L.

    Directory of Open Access Journals (Sweden)

    Marian Michniewicz

    2014-01-01

    Full Text Available In embryos and cotyledons of seeds of the radish cv. `Tetra Iłówiecka' (which needs 20 days of vernalization and cv. 'Saxa' (which flowers without vernalization germinating at a vernalizing temperature of 5°C, the levels of auxins, gibberellins, cytokinins and the aibscisic acid-like inhibitor were determined, The analyses were performed after 5, 10, 15, 20, 25 and 30 days of chilling. The levels of growth regulators were also determined in embryos and cotyledons of seeds germinated at 260C when in the same growth stage as the material taken from chilled seeds. Cold treatment significantly affected the level of all endogenous growth regulators in embryos and cotyledons of both varieties. However, changes in the levels of these substances were not directly connected with the vernalization process. It was found that the vernalization of seeds of 'the radish cv. `Tetra Iłówiecka' increased the level of GAs in leaves, this did not, however, coincide with flower initiation. It is concluded that the role of GAs in flowering of the studied plants is connected rather with photoinduction than with vernalization.

  15. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).

    Science.gov (United States)

    Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian

    2017-11-01

    DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. Systems Engineering Education Development(SEED)Case Study

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.

    2003-01-01

    The Systems Engineering Development Program (SEED) was initiated to help Goddard resolve a Systems Engineering skill shortage. The chronology of events and the experiences of the pilot program are outlined to describe the development of the present program. The program goals are included in order to give a focus on what the developers saw as the program drivers. Lessons learned from a pilot program were incorporated into the present program. This program is constantly learning from its past efforts and looks for continuous improvement. We list several future ideas for improvement and change.

  17. Metabolic profiling of a mapping population exposes new insights in the regulation of seed metabolism and seed, fruit, and plant relations.

    Directory of Open Access Journals (Sweden)

    David Toubiana

    Full Text Available To investigate the regulation of seed metabolism and to estimate the degree of metabolic natural variability, metabolite profiling and network analysis were applied to a collection of 76 different homozygous tomato introgression lines (ILs grown in the field in two consecutive harvest seasons. Factorial ANOVA confirmed the presence of 30 metabolite quantitative trait loci (mQTL. Amino acid contents displayed a high degree of variability across the population, with similar patterns across the two seasons, while sugars exhibited significant seasonal fluctuations. Upon integration of data for tomato pericarp metabolite profiling, factorial ANOVA identified the main factor for metabolic polymorphism to be the genotypic background rather than the environment or the tissue. Analysis of the coefficient of variance indicated greater phenotypic plasticity in the ILs than in the M82 tomato cultivar. Broad-sense estimate of heritability suggested that the mode of inheritance of metabolite traits in the seed differed from that in the fruit. Correlation-based metabolic network analysis comparing metabolite data for the seed with that for the pericarp showed that the seed network displayed tighter interdependence of metabolic processes than the fruit. Amino acids in the seed metabolic network were shown to play a central hub-like role in the topology of the network, maintaining high interactions with other metabolite categories, i.e., sugars and organic acids. Network analysis identified six exceptionally highly co-regulated amino acids, Gly, Ser, Thr, Ile, Val, and Pro. The strong interdependence of this group was confirmed by the mQTL mapping. Taken together these results (i reflect the extensive redundancy of the regulation underlying seed metabolism, (ii demonstrate the tight co-ordination of seed metabolism with respect to fruit metabolism, and (iii emphasize the centrality of the amino acid module in the seed metabolic network. Finally, the study

  18. 12-Oxo-Phytodienoic Acid Accumulation during Seed Development Represses Seed Germination in Arabidopsis[C][W][OA

    Science.gov (United States)

    Dave, Anuja; Hernández, M. Luisa; He, Zhesi; Andriotis, Vasilios M.E.; Vaistij, Fabián E.; Larson, Tony R.; Graham, Ian A.

    2011-01-01

    Arabidopsis thaliana COMATOSE (CTS) encodes an ABC transporter involved in peroxisomal import of substrates for β-oxidation. Various cts alleles and mutants disrupted in steps of peroxisomal β-oxidation have previously been reported to exhibit a severe block on seed germination. Oxylipin analysis on cts, acyl CoA oxidase1 acyl CoA oxidase2 (acx1 acx2), and keto acyl thiolase2 dry seeds revealed that they contain elevated levels of 12-oxo-phytodienoic acid (OPDA), jasmonic acid (JA), and JA-Ile. Oxylipin and transcriptomic analysis showed that accumulation of these oxylipins occurs during late seed maturation in cts. Analysis of double mutants generated by crossing cts with mutants in the JA biosynthesis pathway indicate that OPDA, rather than JA or JA-Ile, contributes to the block on germination in cts seeds. We found that OPDA was more effective at inhibiting wild-type germination than was JA and that this effect was independent of CORONATINE INSENSITIVE1 but was synergistic with abscisic acid (ABA). Consistent with this, OPDA treatment increased ABA INSENSITIVE5 protein abundance in a manner that parallels the inhibitory effect of OPDA and OPDA+ABA on seed germination. These results demonstrate that OPDA acts along with ABA to regulate seed germination in Arabidopsis. PMID:21335376

  19. Genetic analysis of seed development in Arabidopsis thaliana = [Genetische analyse van de zaadontwikkeling in Arabidopsis thaliana

    NARCIS (Netherlands)

    Leon - Kloosterziel, K.

    1997-01-01


    This thesis deals with the genetic aspects of seed development in Arabidopsisthaliana. Mutants affected in several aspects of seed development and, more specifically, in seed maturation have been isolated by various selection

  20. Do rice suspension-cultured cells treated with abscisic acid mimic developing seeds?

    Science.gov (United States)

    Matsuno, Koya; Fujimura, Tatsuhito

    2015-08-01

    Starch synthesis is activated in the endosperm during seed development and also in rice suspension cells cultured with abscisic acid. In the anticipation that the mechanisms of starch synthesis are similar between the endosperm and the suspension cells cultured with abscisic acid, expression of genes involved in starch synthesis was evaluated in the suspension cells after abscisic acid treatment. However, it was found that the regulatory mechanism of starch synthesis in the suspension cells cultured with abscisic acid was different from that in developing seeds. Expression analyses of genes involved in oil bodies, which accumulate in the embryo and aleurone layer, and seed storage proteins, which accumulate mainly in the endosperm, showed that the former were activated in the suspension cells cultured with abscisic acid, but the latter were not. Master regulators for embryogenesis, OsVP1 (homologue of AtABI3) and OsLFL1 (homologue of AtFUS3 or AtLFL2), were expressed in the suspension cells at levels comparable to those in the embryo. From these results, it is suggested that interactions between regulators and abscisic acid control the synthesis of phytic acid and oil bodies in the cultured cells and embryo. We suggest that the system of suspension cells cultured with abscisic acid helps to reveal the mechanisms of phytic acid and oil body synthesis in embryo.

  1. Early perception of stink bug damage in developing seeds of field-grown soybean induces chemical defences and reduces bug attack.

    Science.gov (United States)

    Giacometti, Romina; Barneto, Jesica; Barriga, Lucia G; Sardoy, Pedro M; Balestrasse, Karina; Andrade, Andrea M; Pagano, Eduardo A; Alemano, Sergio G; Zavala, Jorge A

    2016-08-01

    Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  2. Bruchid egg induced transcript dynamics in developing seeds of black gram (Vigna mungo.

    Directory of Open Access Journals (Sweden)

    Indrani K Baruah

    Full Text Available Black gram (Vigna mungo seeds are a rich source of digestible proteins, however, during storage these seeds are severely damaged by bruchids (Callosobruchus spp., reducing seed quality and yield losses. Most of the cultivated genotypes of black gram are susceptible to bruchids, however, few tolerant genotypes have also been identified but the mechanism of tolerance is poorly understood. We employed Suppression Subtractive Hybridization (SSH to identify specifically, but rarely expressed bruchid egg induced genes in black gram. In this study, Suppression Subtractive Hybridization (SSH library was constructed to study the genes involved in defense response in black gram against bruchid infestation. An EST library of 277 clones was obtained for further analyses. Based on CAP3 assembly, 134 unigenes were computationally annotated using Blast2GOPRO software. In all, 20 defense related genes were subject to quantitative PCR analysis (qPCR out of which 12 genes showed up-regulation in developing seeds of the pods oviposited by bruchids. Few major defense genes like defensin, pathogenesis related protein (PR, lipoxygenase (LOX showed high expression levels in the oviposited population when compared with the non-oviposited plants. This is the first report on defense related gene transcript dynamics during the bruchid-black gram interaction using SSH library. This library would be useful to clone defense related gene(s such as defensin as represented in our library for crop improvement.

  3. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  4. Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia.

    Science.gov (United States)

    Frey, Anne; Godin, Béatrice; Bonnet, Magda; Sotta, Bruno; Marion-Poll, Annie

    2004-04-01

    The role of maternally derived abscisic acid (ABA) during seed development has been studied using ABA-deficient mutants of Nicotiana plumbaginifolia Viviani. ABA deficiency induced seed abortion, resulting in reduced seed yield, and delayed growth of the remaining embryos. Mutant grafting onto wild-type stocks and reciprocal crosses indicated that maternal ABA, synthesized in maternal vegetative tissues and translocated to the seed, promoted early seed development and growth. Moreover ABA deficiency delayed both seed coat pigmentation and capsule dehiscence. Mutant grafting did not restore these phenotypes, indicating that ABA synthesized in the seed coat and capsule envelope may have a positive effect on capsule and testa maturation. Together these results shed light on the positive role of maternal ABA during N. plumbaginifolia seed development.

  5. Development of nutritious snacks by incorporation of amaranth seeds, watermelon seeds and their flour

    OpenAIRE

    Paul Virginia; Ruchi .; Paul Ajit

    2014-01-01

    The present study was carried out with the objectives to find out the sensory acceptability, the nutrient content and cost of prepared products. The products prepared were “Biscuits”, “Mathri” and “Laddoo” by incorporation of amaranth seeds, watermelon seeds and their flour in different proportions (10:10, 20:10, and 30:10) served as treatments T1, T2 and T3 respectively T0, without incorporation of amaranth seeds, watermelon seeds and their flour served as control. The products were organole...

  6. 不同类型大豆品种籽粒蛋白质含量的积累规律研究%Accumulation Regulation of Protein Content during Seed Developing of Different Soybeans

    Institute of Scientific and Technical Information of China (English)

    赵明珠; 刘迎雪; 李文华; 尹春佳; 张春宵; 刘丽; 邢华铭

    2009-01-01

    选用在黑龙江省种植面积较大的12个大豆品种为材料,从鼓粒期开始,每隔7 d取一次样,研究不同类型大豆品种籽粒蛋白质含量的积累动态规律.结果表明:不同类型大豆品种籽粒蛋白质的积累动态规律不同.高蛋白品种呈双峰曲线变化,高油品种和中间型品种呈单峰曲线变化,但峰值出现的时间不同.在籽粒形成的中后期,不同类型大豆品种平均籽粒蛋白质含量的变化趋于平稳,高蛋白品种蛋白质含量最高,高油品种最低,中间型品种介于两者之间.不同类型大豆品种在各取样时期的平均籽粒蛋白质含量的差异达到显著或极显著水平,且蛋白质的合成以籽粒形成的中后期为主.%Soybean is a very important grain and oil crop,and the protein content is one of main indicators of soybean quality , so study the dynamic accumulation of protein content in soybean seeds is important for quality improvement. This experiment chose twelve popular soybean varieties in Heilongjiang province, including four high- protein, four high- oil and four general varieties, as material, and the dynamic accumulation of protein content among different soybean seeds was investigated. The results showed that the accumulation dynamics of seed protein varied with varieties, the high- protein variety showed a double-peak curve trend,and the peak value appeared 14 days and 28 days after seed filling;the high-oil variety and general variety showed a single- peak curve, and the peak appeared 28 days after seed filling for high- oil variety. The average protein content of different soybean varieties changed obviously in former period of seeds formation, and remain stable in later period. During the later seed formation, high- protein variety had the highest protein content, while high- oil variety had the lowest protein content. The final protein content of different soybean was mainly determined by middle or later period of the seeds formation

  7. A Network of Local and Redundant Gene Regulation Governs Arabidopsis Seed Maturation

    Science.gov (United States)

    To, Alexandra; Valon, Christiane; Savino, Gil; Guilleminot, Jocelyne; Devic, Martine; Giraudat, Jérôme; Parcy, François

    2006-01-01

    In Arabidopsis thaliana, four major regulators (ABSCISIC ACID INSENSITIVE3 [ABI3], FUSCA3 [FUS3], LEAFY COTYLEDON1 [LEC1], and LEC2) control most aspects of seed maturation, such as accumulation of storage compounds, cotyledon identity, acquisition of desiccation tolerance, and dormancy. The molecular basis for complex genetic interactions among these regulators is poorly understood. By analyzing ABI3 and FUS3 expression in various single, double, and triple maturation mutants, we have identified multiple regulatory links among all four genes. We found that one of the major roles of LEC2 was to upregulate FUS3 and ABI3. The lec2 mutation is responsible for a dramatic decrease in ABI3 and FUS3 expression, and most lec2 phenotypes can be rescued by ABI3 or FUS3 constitutive expression. In addition, ABI3 and FUS3 positively regulate themselves and each other, thereby forming feedback loops essential for their sustained and uniform expression in the embryo. Finally, LEC1 also positively regulates ABI3 and FUS3 in the cotyledons. Most of the genetic controls discovered were found to be local and redundant, explaining why they had previously been overlooked. This works establishes a genetic framework for seed maturation, organizing the key regulators of this process into a hierarchical network. In addition, it offers a molecular explanation for the puzzling variable features of lec2 mutant embryos. PMID:16731585

  8. Salt Stress and Ethylene Antagonistically Regulate Nucleocytoplasmic Partitioning of COP1 to Control Seed Germination.

    Science.gov (United States)

    Yu, Yanwen; Wang, Juan; Shi, Hui; Gu, Juntao; Dong, Jingao; Deng, Xing Wang; Huang, Rongfeng

    2016-04-01

    Seed germination, a critical stage initiating the life cycle of a plant, is severely affected by salt stress. However, the underlying mechanism of salt inhibition of seed germination (SSG) is unclear. Here, we report that the Arabidopsis (Arabidopsis thaliana) CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) counteracts SSG Genetic assays provide evidence that SSG in loss of function of the COP1 mutant was stronger than this in the wild type. A GUS-COP1 fusion was constitutively localized to the nucleus in radicle cells. Salt treatment caused COP1 to be retained in the cytosol, but the addition of ethylene precursor 1-aminocyclopropane-1-carboxylate had the reverse effect on the translocation of COP1 to the nucleus, revealing that ethylene and salt exert opposite regulatory effects on the localization of COP1 in germinating seeds. However, loss of function of the ETHYLENE INSENSITIVE3 (EIN3) mutant impaired the ethylene-mediated rescue of the salt restriction of COP1 to the nucleus. Further research showed that the interaction between COP1 and LONG HYPOCOTYL5 (HY5) had a role in SSG Correspondingly, SSG in loss of function of HY5 was suppressed. Biochemical detection showed that salt promoted the stabilization of HY5, whereas ethylene restricted its accumulation. Furthermore, salt treatment stimulated and ethylene suppressed transcription of ABA INSENSITIVE5 (ABI5), which was directly transcriptionally regulated by HY5. Together, our results reveal that salt stress and ethylene antagonistically regulate nucleocytoplasmic partitioning of COP1, thereby controlling Arabidopsis seed germination via the COP1-mediated down-regulation of HY5 and ABI5. These findings enhance our understanding of the stress response and have great potential for application in agricultural production. © 2016 American Society of Plant Biologists. All Rights Reserved.

  9. Identification of differentially expressed genes between developing seeds of different soybean cultivars

    Directory of Open Access Journals (Sweden)

    Rongshuang Lin

    2015-12-01

    Full Text Available Soybean is a major source of protein and oil and a primary feedstock for biodiesel production. Research on soybean seed composition and yield has revealed that protein, oil and yield are controlled quantitatively and quantitative trait loci (QTL have been identified for each of these traits. However, very limited information is available regarding the genetic mechanisms controlling seed composition and yield. To help address this deficiency, we used Affymetrix Soybean GeneChips® to identify genes that are differentially expressed between developing seeds of the Minsoy and Archer soybean cultivars, which differ in seed weight, yield, protein content and oil content. A total of 700 probe sets were found to be expressed at significantly different (defined as having an adjusted p-value below or equal to 0.05 and an at least 2-fold difference levels between the two cultivars at one or more of the three developmental stages and in at least one of the two years assayed. Comparison of data from soybeans collected in two different years revealed that 97 probe sets were expressed at significantly different levels in both years. Functional annotations were assigned to 78% of these 97 probe sets based on the SoyBase Affymetrix™ GeneChip® Soybean Genome Array Annotation. Genes involved in receptor binding/activity and protein binding are overrepresented among the group of 97 probe sets that were differentially expressed in both years assayed. Probe sets involved in growth/development, signal transduction, transcription, defense/stress response and protein and lipid metabolism were also identified among the 97 probe sets and their possible implications in the regulation of agronomic traits are discussed. As the Minsoy and Archer soybean cultivars differ with respect to seed size, yield, protein content and lipid content, some of the differentially expressed probe sets identified in this study may thus play important roles in controlling these traits

  10. The Design and Development of Test Platform for Wheat Precision Seeding Based on Image Processing Techniques

    OpenAIRE

    Li , Qing; Lin , Haibo; Xiu , Yu-Feng; Wang , Ruixue; Yi , Chuijie

    2009-01-01

    International audience; The test platform of wheat precision seeding based on image processing techniques is designed to develop the wheat precision seed metering device with high efficiency and precision. Using image processing techniques, this platform gathers images of seeds (wheat) on the conveyer belt which are falling from seed metering device. Then these data are processed and analyzed to calculate the qualified rate, reseeding rate and leakage sowing rate, etc. This paper introduces t...

  11. Effects of moist cold stratification on germination, plant growth regulators, metabolites and embryo ultrastructure in seeds of Acer morrisonense (Sapindaceae).

    Science.gov (United States)

    Chen, Shun-Ying; Chou, Shih-Han; Tsai, Ching-Chu; Hsu, Wen-Yu; Baskin, Carol C; Baskin, Jerry M; Chien, Ching-Te; Kuo-Huang, Ling-Long

    2015-09-01

    Breaking of seed dormancy by moist cold stratification involves complex interactions in cells. To assess the effect of moist cold stratification on dormancy break in seeds of Acer morrisonense, we monitored percentages and rates of germination and changes in plant growth regulators, sugars, amino acids and embryo ultrastructure after various periods of cold stratification. Fresh seeds incubated at 25/15 °C for 24 weeks germinated to 61%, while those cold stratified at 5 °C for 12 weeks germinated to 87% in 1 week. Neither exogenous GA3 nor GA4 pretreatment significantly increased final seed germination percentage. Total ABA content of seeds cold stratified for 12 weeks was reduced about 3.3-fold, to a concentration similar to that in germinated seeds (radicle emergence). Endogenous GA3 and GA7 were detected in 8-week and 12-week cold stratified seeds but not in fresh seeds. Numerous protein and lipid bodies were present in the plumule, first true leaves and cotyledons of fresh seeds. Protein and lipid bodies decreased greatly during cold stratification, and concentrations of total soluble sugars and amino acids increased. The major non-polar sugars in fresh seeds were sucrose and fructose, but sucrose increased and fructose decreased significantly during cold stratification. The major free amino acids were proline and tryptophan in fresh seeds, and proline increased and tryptophan decreased during cold stratification. Thus, as dormancy break occurs during cold stratification seeds of A. morrisonense undergo changes in plant growth regulators, proteins, lipids, sugars, amino acids and cell ultrastructure. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  12. Effects of plant growth regulators on seed germination and callus induction of hylocereus costaricensis

    International Nuclear Information System (INIS)

    Sheng, W.K.

    2016-01-01

    Dragon fruit (Hylocereus costaricensis) belongs to the family Cactaceae and are climbing vines which have received worldwide attention in recent years. However, there are still lack of information on the protocols for the establishment of In vitro culture system. In the present study, seed germination percentage were determined by culturing seeds on semi-solid Murashige and Skoog medium (MS) supplemented with 1 ppm 6-Benzylaminopurine (BAP) together with either 0, 0.5 or 0.8 ppm of Indole-3-butyric acid (IBA). Germination percentage was the highest by using plant growth regulators (PGRs) combination of 1 ppm BAP and 0 ppm IBA (93.33%). Subsequently, the cotyledons from seedlings of the germinated seeds were used for subsequent callus induction. Small pieces of cotyledons were excised and cultured on MS medium fortified with 0.45, 0.9, 1.8, 2.7, 3.6, and 4.5 ppm of 2,4-Dichlorophenoxyacetic acid (2,4-D) together with either 0, 0.9 or 1.8 ppm of BAP. Callus induction percentage was highest using the plant growth regulators (PGRs) combination of 3.6 ppm 2,4-D and 1.8 ppm BAP (75%). Hence, 3.6 ppm of 2,4-D and 1.8 ppm BAP was the best combination for callus induction of Hylocereus costaricensis. (author)

  13. OsRACK1 Is Involved in Abscisic Acid- and H2O2-Mediated Signaling to Regulate Seed Germination in Rice (Oryza sativa, L.)

    Science.gov (United States)

    Zhang, Dongping; Chen, Li; Li, Dahong; Lv, Bing; Chen, Yun; Chen, Jingui; XuejiaoYan; Liang, Jiansheng

    2014-01-01

    The receptor for activated C kinase 1 (RACK1) is one member of the most important WD repeat–containing family of proteins found in all eukaryotes and is involved in multiple signaling pathways. However, compared with the progress in the area of mammalian RACK1, our understanding of the functions and molecular mechanisms of RACK1 in the regulation of plant growth and development is still in its infancy. In the present study, we investigated the roles of rice RACK1A gene (OsRACK1A) in controlling seed germination and its molecular mechanisms by generating a series of transgenic rice lines, of which OsRACK1A was either over-expressed or under-expressed. Our results showed that OsRACK1A positively regulated seed germination and negatively regulated the responses of seed germination to both exogenous ABA and H2O2. Inhibition of ABA biosynthesis had no enhancing effect on germination, whereas inhibition of ABA catabolism significantly suppressed germination. ABA inhibition on seed germination was almost fully recovered by exogenous H2O2 treatment. Quantitative analyses showed that endogenous ABA levels were significantly higher and H2O2 levels significantly lower in OsRACK1A-down regulated transgenic lines as compared with those in wildtype or OsRACK1A-up regulated lines. Quantitative real-time PCR analyses showed that the transcript levels of OsRbohs and amylase genes, RAmy1A and RAmy3D, were significantly lower in OsRACK1A-down regulated transgenic lines. It is concluded that OsRACK1A positively regulates seed germination by controlling endogenous levels of ABA and H2O2 and their interaction. PMID:24865690

  14. Changes in DNA methylation levels during seed development in ...

    Indian Academy of Sciences (India)

    User

    flowering and seeds were collected every week starting from 6thday after fertilization (DAP) till ... (Mitutoyo, Japan).Seeds for DNA isolation were lyophilized at -55 0C for 24 hours in a ... phase(stages 4, 5, 6 and7),seed length increased to 21.14 mm.During the .... Government of India, for providing fellowship for this work.

  15. A methanolic extract of Trigonella foenum-graecum (fenugreek seeds regulates markers of macrophage polarization.

    Directory of Open Access Journals (Sweden)

    Nurudeen Hassan

    2015-12-01

    Full Text Available Background: Macrophages are key cellular mediators in diabetes-related inflammation. Molecular cues such as cytokines found in the tissue microenvironment regulates the polarization of macrophages into an M1 (pro-inflammatory or M2 (immunoregulatory phenotype. Recent evidence suggests that M1 macrophages in diabetic patients may contribute to the complications associated with the disease such as atherosclerosis. Trigonella foenum- graecum (Tfg: fenugreek seeds have been used in traditional medicine in Asia, Africa and the Middle-East for their alleged anti-diabetic properties. Objective: To identify the molecular mechanism(s through which Tfg seeds exert their effects, we investigated the role of a crude methanolic extract of Tfg (FME seeds on macrophage polarization in vitro. Method: THP-1 macrophages (Mϕ were treated with gBSA in the presence/absence of FME and the release and expression of M1 and M2 markers/cytokines were analysed. The role of FME on NF-κB activity was also explored using transfected HEK-293T cells. Results: This study found that the FME significantly (P<0.05 decreased gBSA-induced secretion of M1 cytokines (TNF-α, IL-1β, IL-6 and IL-8 in THP-1 Mϕ cells. In the presence of gBSA, FME also significantly increased the gene expression of the M2 marker Dectin-1, but had no effect on IL-10, IL-1Ra. FME also significantly decreased TNF-α induced NF-kB reporter activity. Conclusion: These results suggest that FME can regulate the expression of M1 and M2 markers in THP-1 Mϕ cells. This may be potentially through the modulation of NF-kB activity. Further work should be carried out to identify precise mechanism(s involved in the effects of FME and Tfg seeds.

  16. Development of irradiation support devices for production of brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G., E-mail: tiagooliveira298@gmail.com, E-mail: mattos.fr@gmail.com, E-mail: elisaros@ipen.br, E-mail: czeituni@ipen.br, E-mail: carladdsouza@yahoo.com.br, E-mail: jamoura@ipen.br, E-mail: ernandopeleias@gmail.com, E-mail: s, E-mail: dib.karan@usp.br, E-mail: afeher@ipen.br, E-mail: marcosagbenega@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  17. Development of irradiation support devices for production of brachytherapy seeds

    International Nuclear Information System (INIS)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos A.; Souza, Carla D.; Moura, Joao A.; Peleias Junior, Fernando S.; Karan Junior, Dib; Feher, Anselmo; Oliveira, Tiago B.; Benega, Marcos A.G.

    2013-01-01

    Ophthalmic tumors treatment with brachytherapy sources has been widely used as a primary or secondary therapy for non-malignant or malignant tumors, for example, choroid melanoma, and retinoblastoma. Ruthenium-106, Iodine-125, Palladium -103, Gold-198 and Iridium-192, are some radionuclides that can be applied for treatment of ocular tumors. These sources are in small sizes (a few millimeters) and different shapes (rods, wires, disks). To ensure high accuracy during treatment, they are positioned in eye applicators, specially designed to fit on the surface of tumor. The Nuclear and Energy Research Institute (IPEN/CNEN) in a partnership with Paulista Medicine School (UNIFESP) created a project that aims to develop a prototype of Iridium-192 seeds for treatment of eye cancer. This seed consists in a core of Ir -Pt alloy (20%-80%) with a length of 3 mm, to be activated in IPEN's IEA-R1 Reactor, and a titanium capsule sealing the core. It was imperative to develop a sustainer device for irradiation. This piece is used to avoid overlapping of one cores and, therefore, avoiding the 'shadow effect' that does not allow full activation of each core due to the high density. (author)

  18. Gene expression patterns regulating the seed metabolism in relation to deterioration/ageing of primed mung bean (Vigna radiata L.) seeds.

    Science.gov (United States)

    Sharma, Satyendra Nath; Maheshwari, Ankita; Sharma, Chitra; Shukla, Nidhi

    2018-03-01

    We are proposing mechanisms to account for the loss of viability (seed deterioration/ageing) and enhancement in seed quality (post-storage priming treatment). In order to understand the regulatory mechanism of these traits, we conducted controlled deterioration (CD) test for up to 8 d using primed mung bean seeds and examined how CD effects the expression of many genes, regulating the seed metabolism in relation to CD and priming. Germination declined progressively with increased duration of CD, and the priming treatment completely/partially reversed the inhibition depending on the duration of CD. The loss of germination capacity by CD was accompanied by a reduction in total RNA content and RNA integrity, indicating that RNA quantity and quality impacts seed longevity. Expression analysis revealed that biosynthesis genes of GA, ethylene, ABA and ROS-scavenging enzymes were differentially affected in response to duration of CD and priming, suggesting coordinately regulated mechanisms for controlling the germination capacity of seeds by modifying the permeability characteristics of biological membranes and activities of different enzymes. ABA genes were highly expressed when germination was delayed and inhibited by CD. Whereas, GA and ethylene genes were more highly expressed when germination was enhanced and permitted by priming under similar conditions. GSTI, a well characterized enzyme family involved in stress tolerance, was expressed in primed seeds over the period of CD, suggesting an additional protection against deterioration. The results are discussed in light of understanding the mechanisms underlying longevity/priming which are important issues economically and ecologically. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Biosynthesis of raffinose family oligosaccharides and galactosyl pinitols in developing and maturing seeds of winter vetch (Vicia vlllosa Roth.

    Directory of Open Access Journals (Sweden)

    Lesław B. Lahuta

    2011-01-01

    Full Text Available Changes in the accumulation of two types of α-D-galactosides: raffinose family oligosaccharides and galactosyl pinitols were compared with changes in the activities of galactosyltransferases during winter vetch (Vicia villosa Roth. seed development and maturation. Occurrence of galactinol and raffinose in young seeds and changes in activities of galactinol synthase and raffinose synthase during seed development indicated that formation of raffinose oligosaccharides (RFOs preceded synthesis of galactopinitols. Although transfer of galactose residues into raffinose oligosaccharides increased as seeds were maturing, at late stages of seed maturation the accumulation of galactopinitols was preferred to that of RFOs. In the present study, activities of enzymes transferring galactose moieties from galactinol to D-pinitol forming galactopinitol A, and further transfer of galactose moieties from galactinol to mono- and di-galactopinitol A were detected throughout seed development and maturation. This is a new observation, indicating biological potential of winter vetch seeds to synthesize mono-, di- and tri-galactosides of D-pinitol in a pathway similar to RFOs. The pattern of changes in activities of stachyose synthase and enzymes synthesizing galactopinitols (named galactopinitol A synthase and ciceritol synthase suggests that formation of stachyose, mono- and di-galactopinitol A (ciceritol is catalyzed by one enzyme. High correlation between activities of verbascose synthase and enzyme catalyzing synthesis of tri-galactopinitol A from galactinol and ciceritol (named tri-galactopinitol A synthase also suggests that biosynthesis of both types of tri-galactosides was catalyzed by one enzyme, but distinct from stachyose synthase. Changes in concentrations of galactosyl acceptors (sucrose and D-pinitol can be a factor which regulates splitting of galactose moieties between both types of galactosides in winter vetch seeds.

  20. Redox regulation of plant development.

    Science.gov (United States)

    Considine, Michael J; Foyer, Christine H

    2014-09-20

    We provide a conceptual framework for the interactions between the cellular redox signaling hub and the phytohormone signaling network that controls plant growth and development to maximize plant productivity under stress-free situations, while limiting growth and altering development on exposure to stress. Enhanced cellular oxidation plays a key role in the regulation of plant growth and stress responses. Oxidative signals or cycles of oxidation and reduction are crucial for the alleviation of dormancy and quiescence, activating the cell cycle and triggering genetic and epigenetic control that underpin growth and differentiation responses to changing environmental conditions. The redox signaling hub interfaces directly with the phytohormone network in the synergistic control of growth and its modulation in response to environmental stress, but a few components have been identified. Accumulating evidence points to a complex interplay of phytohormone and redox controls that operate at multiple levels. For simplicity, we focus here on redox-dependent processes that control root growth and development and bud burst. The multiple roles of reactive oxygen species in the control of plant growth and development have been identified, but increasing emphasis should now be placed on the functions of redox-regulated proteins, along with the central roles of reductants such as NAD(P)H, thioredoxins, glutathione, glutaredoxins, peroxiredoxins, ascorbate, and reduced ferredoxin in the regulation of the genetic and epigenetic factors that modulate the growth and vigor of crop plants, particularly within an agricultural context.

  1. Proteomic analysis of the seed development in Jatropha curcas: from carbon flux to the lipid accumulation.

    Science.gov (United States)

    Liu, Hui; Wang, Cuiping; Komatsu, Setsuko; He, Mingxia; Liu, Gongshe; Shen, Shihua

    2013-10-08

    To characterize the metabolic signatures of lipid accumulation in Jatropha curcas seeds, comparative proteomic technique was employed to profile protein changes during the seed development. Temporal changes in comparative proteome were examined using gels-based proteomic technique at six developmental stages for lipid accumulation. And 104 differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry. These protein species were classified into 10 functional categories, and the results demonstrated that protein species related to energy and metabolism were notably accumulated and involved in the carbon flux to lipid accumulation that occurs primarily from early to late stage in seed development. Glycolysis and oxidative pentose phosphate pathways were the major pathways of producing carbon flux, and the glucose-6-phosphate and triose-phosphate are the major carbon source for fatty acid synthesis. Lipid analysis revealed that fatty acid accumulation initiated 25days after flowering at the late stage of seed development of J. curcas. Furthermore, C16:0 was initially synthesized as the precursor for the elongation to C18:1 and C18:2 in the developing seeds of J. curcas. Together, the metabolic signatures on protein changes in seed development provide profound knowledge and perspective insights into understanding lipid network in J. curcas. Due to the abundant oil content in seeds, Jatropha curcas seeds are being considered as the ideal materials for biodiesel. Although several studies had carried out the transcriptomic project to study the genes expression profiles in seed development of J. curcas, these ESTs hadn't been confirmed by qRT-PCR. Yet, the seed development of J. curcas had been described for a pool of developing seeds instead of being characterized systematically. Moreover, cellular metabolic events are also controlled by protein-protein interactions, posttranslational protein modifications, and enzymatic activities which

  2. Programmed cell death during development of cowpea (Vigna unguiculata (L.) Walp.) seed coat.

    Science.gov (United States)

    Lima, Nathália Bastos; Trindade, Fernanda Gomes; da Cunha, Maura; Oliveira, Antônia Elenir Amâncio; Topping, Jennifer; Lindsey, Keith; Fernandes, Kátia Valevski Sales

    2015-04-01

    The seed coat develops primarily from maternal tissues and comprises multiple cell layers at maturity, providing a metabolically dynamic interface between the developing embryo and the environment during embryogenesis, dormancy and germination of seeds. Seed coat development involves dramatic cellular changes, and the aim of this research was to investigate the role of programmed cell death (PCD) events during the development of seed coats of cowpea [Vigna unguiculata (L.) Walp.]. We demonstrate that cells of the developing cowpea seed coats undergo a programme of autolytic cell death, detected as cellular morphological changes in nuclei, mitochondria, chloroplasts and vacuoles, DNA fragmentation and oligonucleosome accumulation in the cytoplasm, and loss of membrane viability. We show for the first time that classes 6 and 8 caspase-like enzymes are active during seed coat development, and that these activities may be compartmentalized by translocation between vacuoles and cytoplasm during PCD events. © 2014 John Wiley & Sons Ltd.

  3. The Proteome of Seed Development in the Model Legume Lotus japonicus

    DEFF Research Database (Denmark)

    Dam, Svend; Laursen, Brian S.; Ornfelt, Jane H.

    2009-01-01

    three developmental phases of legume seeds and the presence of embryo, endosperm, and seed coat in desiccated seeds. Furthermore, protein, oil, starch, phytic acid, and ash contents were determined, and this indicates that the composition of mature Lotus seed is more similar to soybean than to pea......We have characterized the development of seeds in the model legume Lotus japonicus. Like soybean (Glycine max) and pea (Pisum sativum), Lotus develops straight seed pods and each pod contains approximately 20 seeds that reach maturity within 40 days. Histological sections show the characteristic...... proteins corresponding to gene accession numbers were identified for the two phases, respectively. All of the proteome data, including the experimental data and mass spectrometry spectra peaks, were collected in a database that is available to the scientific community via a Web interface (http...

  4. Development of waste management regulations

    International Nuclear Information System (INIS)

    Elnour, E.G.

    2012-04-01

    Radioactive wastes are generated during nuclear fuel cycle operation, production and application of radioisotope in medicine, industry, research, and agriculture, and as a by product of natural resource exploitation, which includes mining and processing of ores. To ensure the protection of human health and the environment from the hazard of these wastes, a planned integrated radioactive waste management practice should be applied. The purpose of this study is to develop regulations for radioactive waste management for low and intermediate radioactive level waste (LILW), and other purpose of regulations is to establish requirements with which all organizations must comply in Sudan from LILW in particular disused/spent sources, not including radioactive waste for milling and mining practices. The national regulations regarding the radioactive waste management, should prescribe the allocation of responsibilities and roles of the Country, the regulatory body, user/owner, waste management organization, including regulations on transport packaging of waste and applied a quality assurance programme, to ensure that radioactive waste management is done safely and securely. (author)

  5. Physiological potential of Oryza sativa seeds treated with growth regulators at low temperatures

    Directory of Open Access Journals (Sweden)

    Mara Grohs

    Full Text Available ABSTRACT The rapid and uniform establishment of rice crops is important for improving production. However, this condition is influenced by several factors, including the soil temperature when planting, which may delay seed germination and compromise the final stand. The aim of this study was to evaluate the behaviour of substances which have the effect of growth regulator when applied to the seeds of different rice cultivars under low-temperature conditions. The experiment was carried out in a completely randomised design with four replications in a bi-factorial scheme, where factor A was represented by the different products (gibberellic acid - AG3, tiamethoxam - TMX, Haf Plus® - HAF, and a control with water - TEST, and factor B by the irrigated rice cultivars (IRGA 424, IRGA 425, Puitá INTA CL, and Avaxi CL. In addition, the experiment was repeated at temperatures of 17 °C and 25 °C in order to simulate low-temperature conditions. The results showed that AG3 is effective in increasing seed vigour in the rice cultivars at both temperatures, with the AG3, TMX and HAF responsible for increasing germination percentage only at the temperature of 17 °C. The effect of the products is more pronounced at low temperatures, and is dependent on the cultivar; in cultivars which are sensitive to cold there is no effect from the products used.

  6. Effect of seed coat on the seed germination and seedling development of Calophyllum brasiliense Cambess. (Clusiaceae

    Directory of Open Access Journals (Sweden)

    Valquíria Aparecida Mendes de Jesus

    2014-10-01

    Full Text Available This work aimed to study the effect of the Calophyllum brasiliense seed coat on the seed germination process. To this end, three experiments were conducted in laboratory, greenhouse and screenhouse. From a total of six treatments, five are related to the seed coat (mechanical scarification; mechanical scarification followed by 2 hours in water, chemical scarification, hot water immersion and complete seed coat removal and one control. Laboratory and greenhouse experiments were conducted in a completely randomized design (CRD. Screenhouse experiment was conducted in a completely randomized block design (RBD. We evaluated the total percentage, the speed index and the average time of germination or emergence. Data were subjected to analysis of variance and means compared by LSD test, at 5%. Under the conditions of this work, it was possible to infer that, in laboratory, mechanical scarification followed by 2 hours in water increases the proportion and germination speed index (GSI, in the greenhouse, the complete seed coat removal increases the percentage and emergence speed index (ESI, and in the screenhouse, mechanical scarification followed by 2 hours in water and chemical scarification presented the best results. The average germination time was not significantly different in the three experiments evaluated.

  7. The investment in scent: time-resolved metabolic processes in developing volatile-producing Nigella sativa L. seeds.

    Directory of Open Access Journals (Sweden)

    Wentao Xue

    Full Text Available The interplay of processes in central and specialized metabolisms during seed development of Nigella sativa L. was studied by using a high-throughput metabolomics technology and network-based analysis. Two major metabolic shifts were identified during seed development: the first was characterized by the accumulation of storage lipids (estimated as total fatty acids and N-compounds, and the second by the biosynthesis of volatile organic compounds (VOCs and a 30% average decrease in total fatty acids. Network-based analysis identified coordinated metabolic processes during development and demonstrated the presence of five network communities. Enrichment analysis indicated that different compound classes, such as sugars, amino acids, and fatty acids, are largely separated and over-represented in certain communities. One community displayed several terpenoids and the central metabolites, shikimate derived amino acids, raffinose, xylitol and glycerol-3-phosphate. The latter are related to precursors of the mevalonate-independent pathway for VOC production in the plastid; also plastidial fatty acid 18∶3n-3 abundant in "green" seeds grouped with several major terpenes. The findings highlight the interplay between the components of central metabolism and the VOCs. The developmental regulation of Nigella seed metabolism during seed maturation suggests a substantial re-allocation of carbon from the breakdown of fatty acids and from N-compounds, probably towards the biosynthesis of VOCs.

  8. Comparative Analysis of Tocopherol Biosynthesis Genes and Its Transcriptional Regulation in Soybean Seeds.

    Science.gov (United States)

    T, Vinutha; Bansal, Navita; Kumari, Khushboo; Prashat G, Rama; Sreevathsa, Rohini; Krishnan, Veda; Kumari, Sweta; Dahuja, Anil; Lal, S K; Sachdev, Archana; Praveen, Shelly

    2017-12-20

    Tocopherols composed of four isoforms (α, β, γ, and δ) and its biosynthesis comprises of three pathways: methylerythritol 4-phosphate (MEP), shikimate (SK) and tocopherol-core pathways regulated by 25 enzymes. To understand pathway regulatory mechanism at transcriptional level, gene expression profile of tocopherol-biosynthesis genes in two soybean genotypes was carried out, the results showed significantly differential expression of 5 genes: 1-deoxy-d-xylulose-5-P-reductoisomerase (DXR), geranyl geranyl reductase (GGDR) from MEP, arogenate dehydrogenase (TyrA), tyrosine aminotransferase (TAT) from SK and γ-tocopherol methyl transferase 3 (γ-TMT3) from tocopherol-core pathways. Expression data were further analyzed for total tocopherol (T-toc) and α-tocopherol (α-toc) content by coregulation network and gene clustering approaches, the results showed least and strong association of γ-TMT3/tocopherol cyclase (TC) and DXR/DXS, respectively, with gene clusters of tocopherol biosynthesis suggested the specific role of γ-TMT3/TC in determining tocopherol accumulation and intricacy of DXR/DXS genes in coordinating precursor pathways toward tocopherol biosynthesis in soybean seeds. Thus, the present study provides insight into the major role of these genes regulating the tocopherol synthesis in soybean seeds.

  9. Seed degeneration in potato: the need for an integrated seed health strategy to mitigate the problem in developing countries

    NARCIS (Netherlands)

    Thomas-Sharma, S.; Abdurahman, A.A.; Ali, S.; Andrade-Piedra, J.L.; Bao, S.; Charkowski, A.O.; Crook, D.; Kadian, M.; Kromann, P.; Struik, P.C.; Torrance, L.; Garrett, K.A.; Forbes, G.A.

    2016-01-01

    Seed potato degeneration, the reduction in yield or quality caused by an accumulation of pathogens and pests in planting material due to successive cycles of vegetative propagation, has been a long-standing production challenge for potato growers around the world. In developed countries this problem

  10. Regulation Development for Drinking Water Contaminants

    Science.gov (United States)

    To explain what process and information underlies regulations including how the Safe Drinking Water Act applies to regulation development i.e. how does the drinking water law translate into regulations.

  11. The COP9 Signalosome regulates seed germination by facilitating protein degradation of RGL2 and ABI5.

    Directory of Open Access Journals (Sweden)

    Dan Jin

    2018-02-01

    Full Text Available The control of seed germination and seed dormancy are critical for the successful propagation of plant species, and are important agricultural traits. Seed germination is tightly controlled by the balance of gibberellin (GA and abscisic acid (ABA, and is influenced by environmental factors. The COP9 Signalosome (CSN is a conserved multi-subunit protein complex that is best known as a regulator of the Cullin-RING family of ubiquitin E3 ligases (CRLs. Multiple viable mutants of the CSN showed poor germination, except for csn5b-1. Detailed analyses showed that csn1-10 has a stronger seed dormancy, while csn5a-1 mutants exhibit retarded seed germination in addition to hyperdormancy. Both csn5a-1 and csn1-10 plants show defects in the timely removal of the germination inhibitors: RGL2, a repressor of GA signaling, and ABI5, an effector of ABA responses. We provide genetic evidence to demonstrate that the germination phenotype of csn1-10 is caused by over-accumulation of RGL2, a substrate of the SCF (CRL1 ubiquitin E3 ligase, while the csn5a-1 phenotype is caused by over-accumulation of RGL2 as well as ABI5. The genetic data are consistent with the hypothesis that CSN5A regulates ABI5 by a mechanism that may not involve CSN1. Transcriptome analyses suggest that CSN1 has a more prominent role than CSN5A during seed maturation, but CSN5A plays a more important role than CSN1 during seed germination, further supporting the functional distinction of these two CSN genes. Our study delineates the molecular targets of the CSN complex in seed germination, and reveals that CSN5 has additional functions in regulating ABI5, thus the ABA signaling pathway.

  12. DEVELOPMENT OF MELON F1 SEEDS BASED ON LINES WITH GENIC MALE STERILITY

    Directory of Open Access Journals (Sweden)

    A. S. Sokolov

    2014-01-01

    Full Text Available The perspective technology of development of melon of F1hybrids seeds by use maternal lines with an original form of genic mail sterility and marker trait (lobed leaves was studied. Elements of technology allow developing hybrid seeds of melon with hybridity of 90-95%.

  13. Differential proteomics reveals the hallmarks of seed development in common bean (Phaseolus vulgaris L.)

    NARCIS (Netherlands)

    Parreira, J R; Bouraada, J; Fitzpatrick, M A; Silvestre, S; Bernardes da Silva, A; Marques da Silva, J; Almeida, A M; Fevereiro, P; Altelaar, A F M; Araújo, S S

    2016-01-01

    Common bean (Phaseolus vulgaris L.) is one of the most consumed staple foods worldwide. Little is known about the molecular mechanisms controlling seed development. This study aims to comprehensively describe proteome dynamics during seed development of common bean. A high-throughput gel-free

  14. Soybean (Glycine max) WRINKLED1 transcription factor, GmWRI1a, positively regulates seed oil accumulation.

    Science.gov (United States)

    Chen, Liang; Zheng, Yuhong; Dong, Zhimin; Meng, Fanfan; Sun, Xingmiao; Fan, Xuhong; Zhang, Yunfeng; Wang, Mingliang; Wang, Shuming

    2018-04-01

    Soybean is the world's most important leguminous crop producing high-quality protein and oil. Elevating oil accumulation in soybean seed is always many researchers' goal. WRINKLED1 (WRI1) encodes a transcription factor of the APETALA2/ethylene responsive element-binding protein (AP2/EREBP) family that plays important roles during plant seed oil accumulation. In this study, we isolated and characterized three distinct orthologues of WRI1 in soybean (Glycine max) that display different organ-specific expression patterns, among which GmWRI1a was highly expressed in maturing soybean seed. Electrophoretic mobility shift assays and yeast one-hybrid experiments demonstrated that the GmWRI1a protein was capable of binding to AW-box, a conserved sequence in the proximal upstream regions of many genes involved in various steps of oil biosynthesis. Transgenic soybean seeds overexpressing GmWRI1a under the control of the seed-specific napin promoter showed the increased total oil and fatty acid content and the changed fatty acid composition. Furthermore, basing on the activated expressions in transgenic soybean seeds and existence of AW-box element in the promoter regions, direct downstream genes of GmWRI1a were identified, and their products were responsible for fatty acid production, elongation, desaturation and export from plastid. We conclude that GmWRI1a transcription factor can positively regulate oil accumulation in soybean seed by a complex gene expression network related to fatty acid biosynthesis.

  15. Identification of miRNAs and their target genes in developing soybean seeds by deep sequencing

    Directory of Open Access Journals (Sweden)

    Chen Shou-Yi

    2011-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression by mediating gene silencing at transcriptional and post-transcriptional levels in higher plants. miRNAs and related target genes have been widely studied in model plants such as Arabidopsis and rice; however, the number of identified miRNAs in soybean (Glycine max is limited, and global identification of the related miRNA targets has not been reported in previous research. Results In our study, a small RNA library and a degradome library were constructed from developing soybean seeds for deep sequencing. We identified 26 new miRNAs in soybean by bioinformatic analysis and further confirmed their expression by stem-loop RT-PCR. The miRNA star sequences of 38 known miRNAs and 8 new miRNAs were also discovered, providing additional evidence for the existence of miRNAs. Through degradome sequencing, 145 and 25 genes were identified as targets of annotated miRNAs and new miRNAs, respectively. GO analysis indicated that many of the identified miRNA targets may function in soybean seed development. Additionally, a soybean homolog of Arabidopsis SUPPRESSOR OF GENE SLIENCING 3 (AtSGS3 was detected as a target of the newly identified miRNA Soy_25, suggesting the presence of feedback control of miRNA biogenesis. Conclusions We have identified large numbers of miRNAs and their related target genes through deep sequencing of a small RNA library and a degradome library. Our study provides more information about the regulatory network of miRNAs in soybean and advances our understanding of miRNA functions during seed development.

  16. Fruit, seed and embryo development of different cassava (Manihot ...

    African Journals Online (AJOL)

    SAM

    2014-03-24

    Mar 24, 2014 ... Key words: Manihot esculenta Crantz, day after pollination (DAP), fruit set, seed size, .... (day/night) photoperiod with light supplied by white fluorescent tubes .... Science Foundation of China (31301378) and the projects.

  17. Seeds and Synergies: Innovating Rural Development in China ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-20

    Dec 20, 2010 ... Norman Uphoff, Cornell University Policy makers and plant breeders should read ... This has invigorated maize production, created new livelihoods, and ... between the seed systems of farmers and the Chinese Government.

  18. Effect of Pretreatments on Seed Viability During Fruit Development ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    and petri dishes on moist filter paper, gave 80% germination in variety gabonensis, 20 weeks after fruiting. .... Effect of pretreatments on seed germination of fruits of Irvingia gabonensis plucked from forest ...... A review of the tariff structure and.

  19. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds.

    Science.gov (United States)

    Rihan, Hail Z; Al-Issawi, Mohammed; Fuller, Michael P

    2017-07-01

    The development stages of conventional cauliflower seeds were studied and the accumulation of dehydrin proteins through the maturation stages was investigated with the aim of identifying methods to improve the viability of artificial seeds of cauliflower. While carbohydrate, ash and lipids increased throughout the development of cauliflower traditional seeds, proteins increased with the development of seed and reached the maximum level after 75 days of pollination, however, the level of protein started to decrease after that. A significant increase in the accumulation of small size dehydrin proteins (12, 17, 26 KDa) was observed during the development of cauliflower seeds. Several experiments were conducted in order to increase the accumulation of important dehydrin proteins in cauliflower microshoots (artificial seeds). Mannitol and ABA (Absisic acid) increased the accumulation of dehydrins in cauliflower microshoots while cold acclimation did not have a significant impact on the accumulation of these proteins. Molybdenum treatments had a negative impact on dehydrin accumulation. Dehydrins have an important role in the drought tolerance of seeds and, therefore, the current research helps to improve the accumulation of these proteins in cauliflower artificial seeds. This in turns improves the quality of these artificial seeds. The current results suggest that dehydrins do not play an important role in cold tolerance of cauliflower artificial seeds. This study could have an important role in improving the understanding of the molecular mechanism of abiotic stress tolerance in plants. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Development of seed separation techniques in magneto hydro dynamic power plant

    Energy Technology Data Exchange (ETDEWEB)

    Nagalakshmi, R; Balasubramanian, V [Bharat Heavy Electricals Ltd., Tiruchirapalli (India); Pandey, S K [Regional Engineering College, Tiruchirapalli (India)

    1994-06-01

    Approximately 90% of potassium is recovered in the various magnetohydrodynamics (MHD) downstream components as spent-seed. In this work, countercurrent extraction process to recover water-soluble potassium from spent-seed is developed. Synthetic spent-seed solids were prepared at simulated MHD conditions. Different dissolution experiments at various process conditions to recover water-soluble/insoluble potassium from spent-seed are reported in this paper. Lime digestion and acid digestion options are suggested to recover water-insoluble potassium from spent-seed. 90% of potassium interacted with water-insoluble portion of the spent-seed. It was observed that 80% water-insoluble potassium could be recovered from acid leaching. (author). 4 refs., 4 tabs.

  1. Systematic Analysis and Innovation for Development Policies of Beijing Seed Industry at Transformation Stage

    Institute of Scientific and Technical Information of China (English)

    Qing LIU; Fengjun LU; Guozhi ZHANG; Lijiao XIE

    2015-01-01

    At transformation stage,seed Industry is not only a fundamental and strategic industry during the construction of World City,but also part of urban and modern agriculture in Beijing. Based on the analysis of the theory of industrial economics and system theory,the article constructs the seed industry policy analysis model,systematically analyzes the support points of national level and the city of Beijing seed industry policy,and studies policy input,mechanism,output and effects by way of systematic analysis,as well as proposes polices and suggestions on promotion of development for Beijing seed industry and on construction of new seed industry from talent incentive,platform construction,seed trading and enterprise cultivation.

  2. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  3. Effect of Plant Growth Regulator on Red Onion Cultivation from True Seed Shallot (TSS

    Directory of Open Access Journals (Sweden)

    Tri Sudaryono

    2018-01-01

    Full Text Available Red onion is one of the strategic horticultural commodities, considering this commodity is very high consumption as a daily spice and fluctuating price. Therefore is not surprising that these commodities are contributing to inflation. Efforts to meet increasing consumption needs, it is necessary to find the right strategy to increase domestic red onion production. One of the strategies considered to increase domestic red onion production is the use of botanical seed (TSS as a source of seed on shallot cultivation. There are 2 main weaknesses of red onion cultivation with TSS as a source of seeds. The two weaknesses are TSS low growing power, which is naturally only in the 50-60 % range and the number of tubers produced is less than 3 cloves per plant. In order to solve the problem, research has been done to know the effect of plant growth regulator on the growth and red onion production from TSS and also get the description of red onion farming from TSS and tuber as seed source. The research was conducted from June to November 2017 at BPP Pare, Kediri Regency, East Java. The results showed that the use of young coconut water on TSS obtained red onion plants are able to produce the number of tubers per plant more than 3 cloves. In detail as much as 22.22 % produces the number of tubers range 4-5 per plant; 56.56 % yields 5-6 bulb range; and as much as 22.22 % produces tubers > 6. As well, wet weight of tubers when harvested weighing more than 99 g per plant. If converted per hectare, TSS red onion plants treated with young coconut water can produce a range of 30 -35 tons of wet bulb. This production is doubled compared to the production of shallots grown from tubers. Based on the analysis of the farm, red onion from TSS treated with young coconut water gives a profit of Rp 224,860,000 per hectare with B/C ratio of 3.397. This profit is more than 1.75 times compared to the profit of red onion tuber farming which is only Rp 93.787.000, - with B

  4. THE EFFECTS OF Jatropha curcas L SEED EXTRACT IN REGULATION EXPRESSION TUMOR MARKER OF TGF- β1 GENE

    Directory of Open Access Journals (Sweden)

    Endah Wulandari

    2017-04-01

    Full Text Available The role of TGF-β1 is known as the main immunosuppresor associated with tumor, but on the other opinion, it is associated with proliferation and tumor invasion. The increase and decrease of the secretion of TGF-β is to regulate the proliferation, differentiation, and death of various cell types. Now we all know the extract of Jatropha curcas L seed serves as antitumor. Allegedly, it can regulate the expression of TGF-β1 in control of cell number. The purpose of this study is to determine the effects of Jatropha seeds to the regulation of gene expression of TGF-β1 as a tumor marker. The method is performed by giving a dose groups the extract of jatropha seed (0, 5, 25, 50, 250 mg/BB in mice. Then measurement of mRNA expression (RT-PCR, the protein of TGF-β1 levels (ELISA, and qualitative observations of liver histology were done. The expression of TGF-β1 mRNA is significantly 4.39 to 7.34 times higher than (ANOVA, p 0.05 than the control. Histological observation of liver showed the extract of jatropha seed induces damage nucleus of hepatocytes cell and sinusoidal. The effects extract of jatropha seed increased the level of TGF-β1 mRNA but not followed by increasing protein of TGF-β1 levels, and it was stimulated necrosis and apoptosis of hepatocytes cell.

  5. Posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin in germinating rice seeds.

    Science.gov (United States)

    Nanjo, Yohei; Asatsuma, Satoru; Itoh, Kimiko; Hori, Hidetaka; Mitsui, Toshiaki; Fujisawa, Yukiko

    2004-06-01

    Hormonal regulation of expression of alpha-amylase II-4 that lacks the gibberellin-response cis-element (GARE) in the promoter region of the gene was studied in germinating rice (Oryza sativa L.) seeds. Temporal and spatial expression of alpha-amylase II-4 in the aleurone layer were essentially identical to those of alpha-amylase I-1 whose gene contains GARE, although these were distinguishable in the embryo tissues at the early stage of germination. The gibberellin-responsible expression of alpha-amylase II-4 was also similar to that of alpha-amylase I-1. However, the level of alpha-amylase II-4 mRNA was not increased by gibberellin, indicating that the transcriptional enhancement of alpha-amylase II-4 expression did not occur in the aleurone. Gibberellin stimulated the accumulation of 45Ca2+ into the intracellular secretory membrane system. In addition, several inhibitors for Ca2+ signaling, such as EGTA, neomycin, ruthenium red (RuR), and W-7 prevented the gibberellin-induced expression of alpha-amylase II-4 effectively. While the gibberellin-induced expression of alpha-amylase II-4 occurred normally in the aleurone layer of a rice dwarf mutant d1 which is defective in the alpha subunit of the heterotrimeric G protein. Based on these results, it was concluded that the posttranscriptional regulation of alpha-amylase II-4 expression by gibberellin operates in the aleurone layer of germinating rice seed, which is mediated by Ca2+ but not the G protein.

  6. Interactive Role of Fungicides and Plant Growth Regulator (Trinexapac on Seed Yield and Oil Quality of Winter Rapeseed

    Directory of Open Access Journals (Sweden)

    Muhammad Ijaz

    2015-09-01

    Full Text Available This study was designed to evaluate the role of growth regulator trinexapac and fungicides on growth, yield, and quality of winter rapeseed (Brassica napus L.. The experiment was conducted simultaneously at different locations in Germany using two cultivars of rapeseed. Five different fungicides belonging to the triazole and strobilurin groups, as well as a growth regulator trinexapac, were tested in this study. A total of seven combinations of these fungicides and growth regulator trinexapac were applied at two growth stages of rapeseed. These two stages include green floral bud stage (BBCH 53 and the course of pod development stage (BBCH 65. The results showed that plant height and leaf area index were affected significantly by the application of fungicides. Treatments exhibited induced photosynthetic ability and delayed senescence, which improved the morphological characters and yield components of rape plants at both locations. Triazole, in combination with strobilurin, led to the highest seed yield over other treatments at both experimental locations. Significant effects of fungicides on unsaturated fatty acids of rapeseed oil were observed. Fungicides did not cause any apparent variation in the values of free fatty acids and peroxide of rapeseed oil. Results of our study demonstrate that judicious use of fungicides in rapeseed may help to achieve sustainable farming to obtain higher yield and better quality of rapeseed.

  7. Mineral accumulation in vegetative and reproductive tissues during seed development in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Christina B. Garcia

    2015-08-01

    Full Text Available Enhancing nutrient density in legume seeds is one of several strategies being explored to improve the nutritional quality of the food supply. In order to develop crop varieties with increased seed mineral concentration, a more detailed understanding of mineral translocation within the plant is required. By studying mineral accumulation in different organs within genetically diverse members of the same species, it may be possible to identify variable traits that modulate seed mineral concentration. We utilized two ecotypes (A17 and DZA315.16 of the model legume, Medicago truncatula, to study dry mass and mineral accumulation in the leaves, pod walls, and seeds during reproductive development. The pod wall dry mass was significantly different between the two ecotypes beginning at 12 days after pollination, whereas there was no significant difference in the average dry mass of individual seeds between the two ecotypes at any time point. There were also no significant differences in leaf dry mass between ecotypes; however, we observed expansion of A17 leaves during the first 21 days of pod development, while DZA315.16 leaves did not display a significant increase in leaf area. Mineral profiling of the leaves, pod walls, and seeds highlighted differences in accumulation patterns among minerals within each tissue as well as genotypic differences with respect to individual minerals. Because there were differences in the average seed number per pod, the total seed mineral content per pod was generally higher in A17 than DZA315.16. In addition, mineral partitioning to the seeds tended to be higher in A17 pods. These data revealed that mineral retention within leaves and/or pod walls might attenuate mineral accumulation within the seeds. As a result, strategies to increase seed mineral content should include approaches that will enhance export from these tissues.

  8. The effects of free amino acids profiles on seeds germination/dormancy and seedlings development of two genetically different cultivars of Yemeni Pomegranates

    Directory of Open Access Journals (Sweden)

    Alhadi Fatima A.

    2012-04-01

    seeds germination in plant, therefore Khazemi germination capacity was assumed to be regulated more or less by these AAs. In addition, changes in amino acid composition in the germinated Khazemi cultivar during various stages of seeds germination including imbibition, germination, and sprouts stages have been noticed to change in response with germination demands. This suggests that amino acids reserves in dry seeds are major determinant for germination capacity and germination behavior in the following steps of germination. The noticed particular AAs increase/decrease along the time course of Khazemi pomegranate germination till establishment of heterotrophic seedlings were used as cornerstones for elucidation and deduction of putative function and relevant biochemical pathways controlling initiation of seeds germination and seedlings developments. Based on publicly available databases of model plants and literatures surveys, we established correlations between prevailing AAs factors as biochemical parameters actively involved in seeds dormancy-breaking and germination process.

  9. Physiological Mechanisms Only Tell Half Story: Multiple Biological Processes are involved in Regulating Freezing Tolerance of Imbibed Lactuca sativa Seeds.

    Science.gov (United States)

    Jaganathan, Ganesh K; Han, Yingying; Li, Weijie; Song, Danping; Song, Xiaoyan; Shen, Mengqi; Zhou, Qiang; Zhang, Chenxue; Liu, Baolin

    2017-03-13

    The physiological mechanisms by which imbibed seeds survive freezing temperatures in their natural environment have been categorized as freezing avoidance by supercooling and freezing tolerance by extracellular freeze-desiccation, but the biochemical and molecular mechanisms conferring seed freezing tolerance is unexplored. In this study, using imbibed Lactuca sativa seeds we show that fast cooled seeds (60 °C h -1 ) suffered significantly higher membrane damage at temperature between -20 °C and -10 °C than slow cooled (3 °Ch -1 ) seeds (P  0.05). However, both SOD activity and accumulation of free proline were induced significantly after slow cooling to -20 °C compared with fast cooling. RNA-seq demonstrated that multiple pathways were differentially regulated between slow and fast cooling. Real-time verification of some differentially expressed genes (DEGs) revealed that fast cooling caused mRNA level changes of plant hormone and ubiquitionation pathways at higher sub-zero temperature, whilst slow cooling caused mRNA level change of those pathways at lower sub-zero ttemperatures. Thus, we conclude that imbibed seed tolerate low temperature not only by physiological mechanisms but also by biochemical and molecular changes.

  10. Pollination with gamma-irradiated pollen and seed development in kiwifruit (Actinidia deliciosa var. deliciosa)

    International Nuclear Information System (INIS)

    Musial, K.

    1997-01-01

    Full text. The effects of pollen irradiation at 70 and 90 kr on seed set were studied in Actinidia deliciosa var. deliciosa. Pollination with irradiated pollen affected seed development and contents. Rising irradiation doses increased the percentages of empty seeds and decreased the percentages of seeds containing embryos with endosperm. Moreover, pollination with heavily irradiated pollen led to the formation of seeds containing the endosperm only. Embryo and endosperm size was also strongly influenced by irradiated pollen. The length of endosperms was reduced at all levels of pollen irradiation compared to the non-irradiated controls; the embryo development was conspicuously retarded. Cells in endosperm resulting from the treatments differed in the presence and number of starch grains. (author)

  11. Quality Assurance Procedure Development in Iodine-125 Seeds Production

    International Nuclear Information System (INIS)

    Moura, J.A.; Moura, E.S.; Sprenger, F.E.

    2009-01-01

    Brachytherapy using Iodine-125 seeds has been used in prostate cancer treatment. In the quality control routine during seed production, leak tests are made to detect any leakage of radioactive material from inside the titanium shield. Leak tests are made according to the International Standard Organization- Radiation protection - sealed radioactive sources - ISO 9978 standard, and require liquid transfer between recipients. If any leakage happens, there will be contamination of the liquid and tubing. This study aims to establish decontamination routines for tubing, allowing its repeated use, in the automated assay process

  12. HIGHLY METHYL ESTERIFIED SEEDS is a pectin methyl esterase involved in embryo development.

    Science.gov (United States)

    Levesque-Tremblay, Gabriel; Müller, Kerstin; Mansfield, Shawn D; Haughn, George W

    2015-03-01

    Homogalacturonan pectin domains are synthesized in a highly methyl-esterified form that later can be differentially demethyl esterified by pectin methyl esterase (PME) to strengthen or loosen plant cell walls that contain pectin, including seed coat mucilage, a specialized secondary cell wall of seed coat epidermal cells. As a means to identify the active PMEs in seed coat mucilage, we identified seven PMEs expressed during seed coat development. One of these, HIGHLY METHYL ESTERIFIED SEEDS (HMS), is abundant during mucilage secretion, peaking at 7 d postanthesis in both the seed coat and the embryo. We have determined that this gene is required for normal levels of PME activity and homogalacturonan methyl esterification in the seed. The hms-1 mutant displays altered embryo morphology and mucilage extrusion, both of which are a consequence of defects in embryo development. A significant decrease in the size of cells in the embryo suggests that the changes in embryo morphology are a consequence of lack of cell expansion. Progeny from a cross between hms-1 and the previously characterized PME inhibitor5 overexpression line suggest that HMS acts independently from other cell wall-modifying enzymes in the embryo. We propose that HMS is required for cell wall loosening in the embryo to facilitate cell expansion during the accumulation of storage reserves and that its role in the seed coat is masked by redundancy. © 2015 American Society of Plant Biologists. All Rights Reserved.

  13. Allelochemical regulation of reproduction and seed germination of two BrazilianBaccharis species by phytotoxic trichothecenes.

    Science.gov (United States)

    Kuti, J O; Jarvis, B B; Mokhtari-Rejali, N; Bean, G A

    1990-12-01

    The potent phytotoxic trichothecene roridins and baccharinoids occur naturally in the Brazilian plants,Baccharis coridifolia andB. megapotamica. Biosynthesis of roridins inB. coridifolia appears to be linked to pollination, and the phytotoxins then accumulate in the seed. The roles of the phytotoxins in pollination, seed maturation, and germination of theBaccharis species were investigated. The high production of roridins occurred only in seeds resulting from intraspecific pollination, and the concentration of the toxins in the seeds generally increased with seed maturity. Removal of seed coats from trichothecene-producing BrazilianBaccharis species (B. coridifolia andB. megapotamica) and non-trichothecene-producing AmericanBaccharis species (B. halimifolia andB. glutinosa) resulted in improved seed germination ofB. halimifolia andB. glutinosa but complete inhibition of seed germination ofB. coridifolia andB. megapotamica. Addition of seed coat extracts of the BrazilianBaccharis species of dilute solutions (10(-6)μg/ml) of roridins or baccharinoids to the decoated seeds ofB. coridifolia andB. megapotamica resulted in germination, while seeds ofB. halimifolia andB. glutinosa were killed by the phytotoxins. Roridins interacted with gibberellic acid, a germination promoter, but not with abscisic acid, a germination inhibitor. The results from this study suggest that macrocyclic trichothecenes have a regulatory role(s) on reproduction and germination of BrazilianBaccharis species in their natural habitat.

  14. Effect of Pretreatments on Seed Viability During Fruit Development ...

    African Journals Online (AJOL)

    Fiifi Baidoo

    picked from standing trees and/or forest floors, attain maximum viability and ... increase in germination potential (60%) of seeds treated with polyethylene .... Key: 60* = There was no germination 60 days after sowing; MC = Moisture content; Germ. ...... Paper presented at the pre-germplasm collection meeting on Irvingia.

  15. Planting time and mulching effect on onion development and seed ...

    African Journals Online (AJOL)

    A field experiment was conducted to evaluate effects of planting time and mulches on bulb growth and seed production of onion (Allium cepa L.) cv. Taherpuri. Planting time and mulches had significant influence on almost all parameters studied. Onion planted on 21 November had better agronomic traits contributing ...

  16. The role of the testa during development and in establishment of dormancy of the legume seed

    Science.gov (United States)

    Smýkal, Petr; Vernoud, Vanessa; Blair, Matthew W.; Soukup, Aleš; Thompson, Richard D.

    2014-01-01

    Timing of seed germination is one of the key steps in plant life cycles. It determines the beginning of plant growth in natural or agricultural ecosystems. In the wild, many seeds exhibit dormancy and will only germinate after exposure to certain environmental conditions. In contrast, crop seeds germinate as soon as they are imbibed usually at planting time. These domestication-triggered changes represent adaptations to cultivation and human harvesting. Germination is one of the common sets of traits recorded in different crops and termed the “domestication syndrome.” Moreover, legume seed imbibition has a crucial role in cooking properties. Different seed dormancy classes exist among plant species. Physical dormancy (often called hardseededness), as found in legumes, involves the development of a water-impermeable seed coat, caused by the presence of phenolics- and suberin-impregnated layers of palisade cells. The dormancy release mechanism primarily involves seed responses to temperature changes in the habitat, resulting in testa permeability to water. The underlying genetic controls in legumes have not been identified yet. However, positive correlation was shown between phenolics content (e.g., pigmentation), the requirement for oxidation and the activity of catechol oxidase in relation to pea seed dormancy, while epicatechin levels showed a significant positive correlation with soybean hardseededness. myeloblastosis family of transcription factors, WD40 proteins and enzymes of the anthocyanin biosynthesis pathway were involved in seed testa color in soybean, pea and Medicago, but were not tested directly in relation to seed dormancy. These phenolic compounds play important roles in defense against pathogens, as well as affecting the nutritional quality of products, and because of their health benefits, they are of industrial and medicinal interest. In this review, we discuss the role of the testa in mediating legume seed germination, with a focus on

  17. A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat

    Science.gov (United States)

    Abirached-Darmency, Mona

    2013-01-01

    The seed coat is involved in the determination of seed quality traits such as seed size, seed composition, seed permeability, and hormonal regulation. Understanding seed coat structure is therefore a prerequisite to deciphering the genetic mechanisms that govern seed coat functions. By combining histological and transcriptomic data analyses, cellular and molecular events occurring during Medicago truncatula seed coat development were dissected in order to relate structure to function and pinpoint target genes potentially involved in seed coat traits controlling final seed quality traits. The analyses revealed the complexity of the seed coat transcriptome, which contains >30 000 genes. In parallel, a set of genes showing a preferential expression in seed coat that may be involved in more specific functions was identified. The study describes how seed coat anatomy and morphological changes affect final seed quality such as seed size, seed composition, seed permeability, and hormonal regulation. Putative regulator genes of different processes have been identified as potential candidates for further functional genomic studies to improve agronomical seed traits. The study also raises new questions concerning the implication of seed coat endopolyploidy in cell expansion and the participation of the seed coat in de novo abscisic acid biosynthesis at early seed filling. PMID:23125357

  18. Effect of two plant growth regulators and illumination conditions in the germination of conserved seeds of Clitoria ternatea

    Directory of Open Access Journals (Sweden)

    Maribel Quintana

    2013-04-01

    Full Text Available The seeds viability lost in the seed legume bank of Research Institute of Pastures and Forages (IIPF led to the aim of the work it was to determine the effect of two plant growth regulators (gibberellic acid; GA3 and naphthalene acetic acid; ANA and illumination conditions on the germination of Clitoria ternatea SC-136 conserved seeds. One experiment was performed with two-factor completely randomized design with four replications Five different levels of growth regulators (factor A and two illumination conditions (factor B were evaluated. The variables measured were: total germination percentage (PTG and angular transformation, days to 50% PTG (G50 and the days between 10 and 90% PTG (G10-90. In addition, morphological variables were evaluated. It was found that the addition of plant growth regulators (GA3 and NAA was effective in increasing germination of Clitoria ternatea SC-136 conserved seeds, but not the illumination conditions tested. Combination GA3 (1 mg l-1 and NAA (0.1 mg l-1 to stimulate germination was recommended. Key words: GA3, germplasm, legume, NAA, photoperiod.

  19. Germination and Seedling Development of Seeds from Different Parkia biglobosa (Jacq G. Don Trees

    Directory of Open Access Journals (Sweden)

    Christiana O. ADEYEMI

    2013-02-01

    Full Text Available The effect of daylight, continuous illumination and acid scarification on the seed germination and seedling vegetative growth (epicotyl and hypocotyl lengths, and number of secondary roots of different Parkia biglobosawere investigated in the Plant Physiology Laboratory University of Ilorin, Ilorin Kwara State Nigeria. Seeds from two out of the twenty six Parkia tree samples (trees B and T germinated within 24 hours of planting in the daylight germination study while seeds from another tree (Q did not germinate until the third week after planting (3WAP. Some seeds have higher germination percentage both in the daylight (preliminary germination study and in the continuous light (illuminated study. The treatment with concentrated Sulphric acid (conc. H2SO4was effective in breaking the seed dormancy as seeds from eight (8 trees produced one hundred percent (100% germination. At p= 0.05 the length of epicotyl and hypocoty1 lengths were significantly different as seedling vegetative growth were long in the seedlings from the daylight experiment than the continuous light experiment. The vegetative growths of the seedlings from the scarified seed were longer at 15min of scarification in all except in trees F and Z. It was observed that the time of scarification affect the both seed germination and seedling development.

  20. Transcriptomic Analysis of Long Non-Coding RNAs and Coding Genes Uncovers a Complex Regulatory Network That Is Involved in Maize Seed Development

    Directory of Open Access Journals (Sweden)

    Ming Zhu

    2017-10-01

    Full Text Available Long non-coding RNAs (lncRNAs have been reported to be involved in the development of maize plant. However, few focused on seed development of maize. Here, we identified 753 lncRNA candidates in maize genome from six seed samples. Similar to the mRNAs, lncRNAs showed tissue developmental stage specific and differential expression, indicating their putative role in seed development. Increasing evidence shows that crosstalk among RNAs mediated by shared microRNAs (miRNAs represents a novel layer of gene regulation, which plays important roles in plant development. Functional roles and regulatory mechanisms of lncRNAs as competing endogenous RNAs (ceRNA in plants, particularly in maize seed development, are unclear. We combined analyses of consistently altered 17 lncRNAs, 840 mRNAs and known miRNA to genome-wide investigate potential lncRNA-mediated ceRNA based on “ceRNA hypothesis”. The results uncovered seven novel lncRNAs as potential functional ceRNAs. Functional analyses based on their competitive coding-gene partners by Gene Ontology (GO and KEGG biological pathway demonstrated that combined effects of multiple ceRNAs can have major impacts on general developmental and metabolic processes in maize seed. These findings provided a useful platform for uncovering novel mechanisms of maize seed development and may provide opportunities for the functional characterization of individual lncRNA in future studies.

  1. The role of the persistent fruit wall in seed water regulation in Raphanus raphanistrum (Brassicaceae).

    Science.gov (United States)

    Cousens, Roger D; Young, Kenneth R; Tadayyon, Ali

    2010-01-01

    Dry fruits remain around the seeds at dispersal in a number of species, especially the Brassicaceae. Explanations for this vary, but usually involve mechanisms of innate dormancy. We speculate that, instead, a persistent fruit may give additional protection through control of dehydration, to species growing in arid or Mediterranean environments where water is sporadic. X-rays and weight measurements were used to determine the extent to which Raphanus raphanistrum seeds within mature fruits imbibe water, and germination tests determined the roles of the fruit and seed coat in seed dormancy. Rates of water uptake and desiccation, and seedling emergence were compared with and without the fruit. Finally, germinability of seeds extracted from fruits was determined after various periods of moist conditions followed by a range of dry conditions. Most seeds rapidly take up water within the fruit, but they do not fully imbibe when compared with naked seeds. The seed coat is more important than the dry fruit wall in maintaining seed dormancy. The presence of a dry fruit slows emergence from the soil by up to 6-8 weeks. The fruit slows the rate of desiccation of the seed to a limited extent. The presence of the fruit for a few days during imbibition somehow primes more seeds to germinate than if the fruit is absent; longer moist periods within the pod appear to induce dormancy. The fruit certainly modifies the seed environment as external conditions change between wet and dry, but not to a great extent. The major role seems to be: (a) the physical restriction of imbibition and germination; and (b) the release and then re-imposition of dormancy within the seed. The ecological significance of the results requires more research under field conditions.

  2. 31P NMR study of phosphate metabolites in intact developing seeds of wheat, soybean and mustard

    International Nuclear Information System (INIS)

    Gambhir, P.N.; Pande, P.C.; Ratcliffe, R.G.

    1994-01-01

    The study of 31 P NMR spectra of intact developing seeds of wheat, soybean and mustard and its possible use for assessing the relative degree of hypoxia under in vivo conditions are reported. 7 refs., 2 figs

  3. An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds

    OpenAIRE

    Rihan, HZ; Al-Issawi, M; Fuller, MP

    2017-01-01

    publisher: Elsevier articletitle: An analysis of the development of cauliflower seed as a model to improve the molecular mechanism of abiotic stress tolerance in cauliflower artificial seeds journaltitle: Plant Physiology and Biochemistry articlelink: http://dx.doi.org/10.1016/j.plaphy.2017.05.011 content_type: article copyright: © 2017 Elsevier Masson SAS. All rights reserved.

  4. Biogenesis of protein bodies during legumin accumulation in developing olive (Olea europaea L.) seed.

    Science.gov (United States)

    Jimenez-Lopez, Jose C; Zienkiewicz, Agnieszka; Zienkiewicz, Krzysztof; Alché, Juan D; Rodríguez-García, Maria I

    2016-03-01

    Much of our current knowledge about seed development and differentiation regarding reserves synthesis and accumulation come from monocot (cereals) plants. Studies in dicotyledonous seeds differentiation are limited to a few species and in oleaginous species are even scarcer despite their agronomic and economic importance. We examined the changes accompanying the differentiation of olive endosperm and cotyledon with a focus on protein bodies (PBs) biogenesis during legumin protein synthesis and accumulation, with the aim of getting insights and a better understanding of the PBs' formation process. Cotyledon and endosperm undergo differentiation during seed development, where an asynchronous time-course of protein synthesis, accumulation, and differential PB formation patterns was found in both tissues. At the end of seed maturation, a broad population of PBs, particularly in cotyledon cells, was distinguishable in terms of number per cell and morphometric and cytochemical features. Olive seed development is a tissue-dependent process characterized by differential rates of legumin accumulation and PB formation in the main tissues integrating seed. One of the main features of the impressive differentiation process is the specific formation of a broad group of PBs, particularly in cotyledon cells, which might depend on selective accumulation and packaging of proteins and specific polypeptides into PBs. The nature and availability of the major components detected in the PBs of olive seed are key parameters in order to consider the potential use of this material as a suitable source of carbon and nitrogen for animal or even human use.

  5. Evolution of the Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center

    Science.gov (United States)

    Bagg, Thomas C., III; Brumfield, Mark D.; Jamison, Donald E.; Granata, Raymond L.; Casey, Carolyn A.; Heller, Stuart

    2003-01-01

    The Systems Engineering Education Development (SEED) Program at NASA Goddard Space Flight Center develops systems engineers from existing discipline engineers. The program has evolved significantly since the report to INCOSE in 2003. This paper describes the SEED Program as it is now, outlines the changes over the last year, discusses current status and results, and shows the value of human systems and leadership skills for practicing systems engineers.

  6. Seed-borne endophytic Bacillus amyloliquefaciens RWL-1 produces gibberellins and regulates endogenous phytohormones of Oryza sativa.

    Science.gov (United States)

    Shahzad, Raheem; Waqas, Muhammad; Khan, Abdul Latif; Asaf, Sajjad; Khan, Muhammad Aaqil; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung

    2016-09-01

    Some microorganisms are adapted to an endophytic mode, living symbiotically with plants through vertical transmission in seeds. The role of plant growth-promoting endophytes has been well studied, but those of seed-associated endophytic bacteria are less understood. The current study aimed to isolate and identify bacterial endophytes associated with rice (Oryza sativa L. 'Jin so mi') seeds, their potential to produce gibberellins (GAs), and role in improving host-plant physiology. The isolated bacterial endophyte RWL-1 was identified as Bacillus amyloliquefaciens by using 16S rRNA sequencing and phylogenetic analysis. The pure culture of B. amyloliquefaciens RWL-1, supplied with deuterated internal standards, was subjected to gas chromatography and mass spectrometric selected ion monitoring (GC-MS/SIM) for quantification of GAs. Results showed the presence of GAs in various quantities (ng/mL) viz., GA20 (17.88 ± 4.04), GA36 (5.75 ± 2.36), GA24 (5.64 ± 2.46), GA4 (1.02 ± 0.16), GA53 (0.772 ± 0.20), GA9 (0.12 ± 0.09), GA19 (0.093 ± 0.13), GA5 (0.08 ± 0.04), GA12 (0.014 ± 0.34), and GA8 (0.013 ± 0.01). Since endogenous seed GAs are essential for prolonged seed growth and subsequent plant development, we used exogenous GA3 as a positive control and water as a negative control for comparative analysis of the application of B. amyloliquefaciens RWL-1 to rice plants. The growth parameters of rice plants treated with endophytic bacterial cell application was significantly increased compared to the plants treated with exogenous GA3 and water. This was also revealed by the significant up-regulation of endogenous GA1 (17.54 ± 2.40 ng), GA4 (310 ± 5.41 ng), GA7 (192.60 ± 3.32 ng), and GA9 (19.04 ± 2.49 ng) as compared to results of the positive and negative control treatments. Rice plants inoculated with B. amyloliquefaciens RWL-1 exhibited significantly higher endogenous salicylic acid (1615.06 ± 10.81 μg), whereas

  7. THE EFFECTS OF SEED SOAKING WITH PLANT GROWTH REGULATORS ON SEEDLING VIGOR OF WHEAT UNDER SALINITY STRESS

    Directory of Open Access Journals (Sweden)

    Afzal Irfan

    2005-08-01

    Full Text Available Effects of seed soaking with plant growth regulators (IAA, GA3, kinetin or prostart on wheat (Triticum aestivum cv. Auqab-2000 emergence and seedling growth under normal (4 dS/cm and saline (15 dS/cm conditions were studied to determine their usefulness in increasing relative salt-tolerance. During emergence test, emergence percentage and mean emergence time (MET were significantly affected by most of priming treatments, however, root and shoot length, fresh and dry weight of seedlings were significantly increased by 25 ppm kinetin followed by 1% prostart for 2 h treatments under both normal and saline conditions. All pre-sowing seed treatments decreased the electrolyte leakage of steep water as compared to that of non-primed seeds even after 12 h of soaking. Seed soaking with 25 ppm kinetin induced maximum decrease in electrolyte leakage while an increase in electrolyte leakage was observed by 25, 50 or 100 ppm IAA treatments. It is concluded that priming has reduced the severity of the effect of salinity but the amelioration was better due to 25 ppm kinetin and 1% prostart (2 h treatments as these showed best results on seedling growth, fresh and dry weights under non-saline and saline conditions whereas seed soaking with IAA and GA3 were not effective in inducing salt tolerance under present experimental material and conditions.

  8. Proteome analysis of pod and seed development in the model legume Lotus japonicus

    DEFF Research Database (Denmark)

    Nautrup-Pedersen, G.; Dam, S.; Laursen, B. S.

    2010-01-01

    Legume pods serve important functions during seed development and are themselves sources of food and feed. Compared to seeds, the metabolism and development of pods are not well-defined. The present characterization of pods from the model legume Lotus japonicus, together with the detailed analyses...... of the pod and seed proteomes in five developmental stages, paves the way for comparative pathway analysis and provides new metabolic information. Proteins were analyzed by two-dimensional gel electrophoresis and tandem-mass spectrometry. These analyses lead to the identification of 604 pod proteins and 965...... and photosynthesis. Proteins detected only in pods included three enzymes participating in the urea cycle and four in nitrogen and amino group metabolism, highlighting the importance of nitrogen metabolism during pod development. Additionally, five legume seed proteins previously unassigned in the glutamate...

  9. Regulation of macrophage development and function in peripheral tissues

    Science.gov (United States)

    Lavin, Yonit; Mortha, Arthur; Rahman, Adeeb; Merad, Miriam

    2015-01-01

    Macrophages are immune cells of haematopoietic origin that provide crucial innate immune defence and have tissue-specific functions in the regulation and maintenance of organ homeostasis. Recent studies of macrophage ontogeny, as well as transcriptional and epigenetic identity, have started to reveal the decisive role of the tissue stroma in the regulation of macrophage function. These findings suggest that most macrophages seed the tissues during embryonic development and functionally specialize in response to cytokines and metabolites that are released by the stroma and drive the expression of unique transcription factors. In this Review, we discuss how recent insights into macrophage ontogeny and macrophage–stroma interactions contribute to our understanding of the crosstalk that shapes macrophage function and the maintenance of organ integrity. PMID:26603899

  10. Development of non-destructive sorting technique for viability of watermelon seed by using hyperspectral image processing

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Hyun Jin; Seo, Young Wook; Lohumi, Santosh; Park, Eun Soo; Cho, Byoung Kwan [Biosystems Machinery Engineering, Chungnam National University, Daejeon (Korea, Republic of); Kim, Dae Yong [Logistics institude, CJ Korea Express, Seoul (Korea, Republic of)

    2016-02-15

    Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000 –2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water (25°C) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability.

  11. Development of non-destructive sorting technique for viability of watermelon seed by using hyperspectral image processing

    International Nuclear Information System (INIS)

    Bae, Hyun Jin; Seo, Young Wook; Lohumi, Santosh; Park, Eun Soo; Cho, Byoung Kwan; Kim, Dae Yong

    2016-01-01

    Seed viability is one of the most important parameters that is directly related with seed germination performance and seedling emergence. In this study, a hyperspectral imaging (HSI) system having a range of 1000 –2500 nm was used to classify viable watermelon seeds from nonviable seeds. In order to obtain nonviable watermelon seeds, a total of 96 seeds were artificially aged by immersing the seeds in hot water (25°C) for 15 days. Further, hyperspectral images for 192 seeds (96 normal and 96 aged) were acquired using the developed HSI system. A germination test was performed for all the 192 seeds in order to confirm their viability. Spectral data from the hyperspectral images of the seeds were extracted by selecting pixels from the region of interest. Each seed spectrum was averaged and preprocessed to develop a classification model of partial least square discriminant analysis (PLS-DA). The developed PLS-DA model showed a classification accuracy of 94.7% for the calibration set, and 84.2% for the validation set. The results demonstrate that the proposed technique can classify viable and nonviable watermelon seeds with a reasonable accuracy, and can be further converted into an online sorting system for rapid and nondestructive classification of watermelon seeds with regard to viability

  12. Accumulation of long-lived mRNAs associated with germination in embryos during seed development of rice

    Science.gov (United States)

    Sano, Naoto; Ono, Hanako; Murata, Kazumasa; Yamada, Tetsuya; Hirasawa, Tadashi; Kanekatsu, Motoki

    2015-01-01

    Mature dry seeds contain translatable mRNAs called long-lived mRNAs. Early studies have shown that protein synthesis during the initial phase of seed germination occurs from long-lived mRNAs, without de novo transcription. However, the gene expression systems that generate long-lived mRNAs in seeds are not well understood. To examine the accumulation of long-lived mRNAs in developing rice embryos, germination tests using the transcriptional inhibitor actinomycin D (Act D) were performed with the Japonica rice cultivar Nipponbare. Although over 70% of embryos at 10 days after flowering (DAF) germinated in the absence of the inhibitor, germination was remarkably impaired in embryos treated with Act D. In contrast, more than 70% of embryos at 20, 25, 30 and 40 DAF germinated in the presence of Act D. The same results were obtained when another cultivar, Koshihikari, was used, indicating that the long-lived mRNAs required for germination predominantly accumulate in embryos between 10 and 20 DAF during seed development. RNA-Seq identified 529 long-lived mRNA candidates, encoding proteins such as ABA, calcium ion and phospholipid signalling-related proteins, and HSP DNA J, increased from 10 to 20 DAF and were highly abundant in 40 DAF embryos of Nipponbare and Koshihikari. We also revealed that these long-lived mRNA candidates are clearly up-regulated in 10 DAF germinating embryos after imbibition, suggesting that the accumulation of these mRNAs in embryos is indispensable for the induction of germination. The findings presented here may facilitate in overcoming irregular seed germination or producing more vigorous seedlings. PMID:25941326

  13. Stochastic and deterministic processes regulate spatio-temporal variation in seed bank diversity

    Science.gov (United States)

    Alejandro A. Royo; Todd E. Ristau

    2013-01-01

    Seed banks often serve as reservoirs of taxonomic and genetic diversity that buffer plant populations and influence post-disturbance vegetation trajectories; yet evaluating their importance requires understanding how their composition varies within and across spatial and temporal scales (α- and β-diversity). Shifts in seed bank diversity are strongly...

  14. DNA damage checkpoint kinase ATM regulates germination and maintains genome stability in seeds.

    Science.gov (United States)

    Waterworth, Wanda M; Footitt, Steven; Bray, Clifford M; Finch-Savage, William E; West, Christopher E

    2016-08-23

    Genome integrity is crucial for cellular survival and the faithful transmission of genetic information. The eukaryotic cellular response to DNA damage is orchestrated by the DNA damage checkpoint kinases ATAXIA TELANGIECTASIA MUTATED (ATM) and ATM AND RAD3-RELATED (ATR). Here we identify important physiological roles for these sensor kinases in control of seed germination. We demonstrate that double-strand breaks (DSBs) are rate-limiting for germination. We identify that desiccation tolerant seeds exhibit a striking transcriptional DSB damage response during germination, indicative of high levels of genotoxic stress, which is induced following maturation drying and quiescence. Mutant atr and atm seeds are highly resistant to aging, establishing ATM and ATR as determinants of seed viability. In response to aging, ATM delays germination, whereas atm mutant seeds germinate with extensive chromosomal abnormalities. This identifies ATM as a major factor that controls germination in aged seeds, integrating progression through germination with surveillance of genome integrity. Mechanistically, ATM functions through control of DNA replication in imbibing seeds. ATM signaling is mediated by transcriptional control of the cell cycle inhibitor SIAMESE-RELATED 5, an essential factor required for the aging-induced delay to germination. In the soil seed bank, seeds exhibit increased transcript levels of ATM and ATR, with changes in dormancy and germination potential modulated by environmental signals, including temperature and soil moisture. Collectively, our findings reveal physiological functions for these sensor kinases in linking genome integrity to germination, thereby influencing seed quality, crucial for plant survival in the natural environment and sustainable crop production.

  15. Characterization of barley Prp1 gene and its expression during seed development and under abiotic stress.

    Science.gov (United States)

    Jiang, Qian-Tao; Liu, Tao; Ma, Jian; Wei, Yu-Ming; Lu, Zhen-Xiang; Lan, Xiu-Jin; Dai, Shou-Fen; Zheng, You-Liang

    2011-10-01

    The pre-mRNA processing (Prp1) gene encodes a spliceosomal protein. It was firstly identified in fission yeast and plays a regular role during spliceosome activation and cell cycle. Plant Prp1 genes have only been identified from rice, Sorghum and Arabidopsis thaliana. In this study, we reported the identification and isolation of a novel Prp1 gene from barley, and further explored its expressional pattern by using real-time quantitative RTPCR, promoter prediction and analysis of microarray data. The putative barley Prp1 protein has a similar primary structure features to those of other known Prp1 protein in this family. The results of amino acid comparison indicated that Prp1 protein of barley and other plant species has a highly conserved 30 termnal region while their 50 sequences greatly varied. The results of expressional analysis revealed that the expression level of barley Prp1 gene is always stable in different vegetative tissues, except it is up-regulated at the mid- and late stages of seed development or under the condition of cold stress. This kind of expressional pattern for barley Prp1 is also supported by our results of comparison of microarray data from barley, rice and Arabidopsis. For the molecular mechanism of its expressional pattern, we conclude that the expression of Prp1 gene may be up-regulated by the increase of pre-mRNAs and not be constitutive or ubiquitous.

  16. HRS1 Acts as a Negative Regulator of Abscisic Acid Signaling to Promote Timely Germination of Arabidopsis Seeds

    Science.gov (United States)

    Wang, Ran; Liu, Hong; Yang, Huixia; Rodriguez, Pedro L.; Qin, Huanju; Liu, Xin; Wang, Daowen

    2012-01-01

    In this work, we conducted functional analysis of Arabidopsis HRS1 gene in order to provide new insights into the mechanisms governing seed germination. Compared with wild type (WT) control, HRS1 knockout mutant (hrs1-1) exhibited significant germination delays on either normal medium or those supplemented with abscisic acid (ABA) or sodium chloride (NaCl), with the magnitude of the delay being substantially larger on the latter media. The hypersensitivity of hrs1-1 germination to ABA and NaCl required ABI3, ABI4 and ABI5, and was aggravated in the double mutant hrs1-1abi1-2 and triple mutant hrs1-1hab1-1abi1-2, indicating that HRS1 acts as a negative regulator of ABA signaling during seed germination. Consistent with this notion, HRS1 expression was found in the embryo axis, and was regulated both temporally and spatially, during seed germination. Further analysis showed that the delay of hrs1-1 germination under normal conditions was associated with reduction in the elongation of the cells located in the lower hypocotyl (LH) and transition zone (TZ) of embryo axis. Interestingly, the germination rate of hrs1-1 was more severely reduced by the inhibitor of cell elongation, and more significantly decreased by the suppressors of plasmalemma H+-ATPase activity, than that of WT control. The plasmalemma H+-ATPase activity in the germinating seeds of hrs1-1 was substantially lower than that exhibited by WT control, and fusicoccin, an activator of this pump, corrected the transient germination delay of hrs1-1. Together, our data suggest that HRS1 may be needed for suppressing ABA signaling in germinating embryo axis, which promotes the timely germination of Arabidopsis seeds probably by facilitating the proper function of plasmalemma H+-ATPase and the efficient elongation of LH and TZ cells. PMID:22545134

  17. Gene expression in the lignin biosynthesis pathway during soybean seed development.

    Science.gov (United States)

    Baldoni, A; Von Pinho, E V R; Fernandes, J S; Abreu, V M; Carvalho, M L M

    2013-02-28

    The study of gene expression in plants is fundamental, and understanding the molecular mechanisms involved in important biological processes, such as biochemical pathways or signaling that are used or manipulated in improvement programs, are key for the production of high-quality soybean seeds. Reports related to gene expression of lignin in seeds are scarce in the literature. We studied the expression of the phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase, 4-hydroxycinnamate 3-hydroxylase, and cinnamyl alcohol dehydrogenase genes involved in lignin biosynthesis during the development of soybean (Glycine max L. Merrill) seeds. As the endogenous control, the eukaryotic elongation factor 1-beta gene was used in two biological replicates performed in triplicate. Relative quantitative expression of these genes during the R4, R5, R6, and R7 development stages was analyzed. Real-time polymerase chain reaction was used for the gene expression study. The analyses were carried out in an ABI PRISM 7500 thermocycler using the comparative Ct method and SYBR Green to detect amplification. The seed samples at the R4 stage were chosen as calibrators. Increased expression of the cinnamate-4-hydroxylase and PAL genes occurred in soybean seeds at the R5 and R6 development stages. The cinnamyl alcohol dehydrogenase gene was expressed during the final development phases of soybean seeds. In low-lignin soybean cultivars, the higher expression of the PAL gene occurs at development stages R6 and R7. Activation of the genes involved in the lignin biosynthesis pathway occurs at the beginning of soybean seed development.

  18. The Arabidopsis GASA10 gene encodes a cell wall protein strongly expressed in developing anthers and seeds.

    Science.gov (United States)

    Trapalis, Menelaos; Li, Song Feng; Parish, Roger W

    2017-07-01

    The Arabidopsis GASA10 gene encodes a GAST1-like (Gibberellic Acid-Stimulated) protein. Reporter gene analysis identified consistent expression in anthers and seeds. In anthers expression was developmentally regulated, first appearing at stage 7 of anther development and reaching a maximum at stage 11. Strongest expression was in the tapetum and developing microspores. GASA10 expression also occurred throughout the seed and in root vasculature. GASA10 was shown to be transported to the cell wall. Using GASA1 and GASA6 as positive controls, gibberellic acid was found not to induce GASA10 expression in Arabidopsis suspension cells. Overexpression of GASA10 (35S promoter-driven) resulted in a reduction in silique elongation. GASA10 shares structural similarities to the antimicrobial peptide snakin1, however, purified GASA10 failed to influence the growth of a variety of bacterial and fungal species tested. We propose cell wall associated GASA proteins are involved in regulating the hydroxyl radical levels at specific sites in the cell wall to facilitate wall growth (regulating cell wall elongation). Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Molecular physiology of seeds

    International Nuclear Information System (INIS)

    Hajduch, M.

    2014-05-01

    Plant development is well described. However, full understanding of the regulation of processes associated with plant development is still missing. Present Dr.Sc. thesis advances our understanding of the regulation of plant development by quantitative proteomics analyses of seed development of soybean, canola, castor, flax, and model plant arabidopsis in control and environmentally challenged environments. The analysis of greenhouse-grown soybean, canola, castor, and arabidospis provided complex characterization of metabolic processes during seed development, for instance, of carbon assimilation into fatty acids. Furthermore, the analyses of soybean and flax grown in Chernobyl area provided in-depth characterization of seed development in radio-contaminated environment. Soybean and flax were altered by radio-contaminated environment in different way. However, these alterations resulted into modifications in seed oil content. Further analyses showed that soybean and flax possess alterations of carbon metabolism in cytoplasm and plastids along with increased activity of photosynthetic apparatus. Our present experiments are focused on further characterization of molecular bases that might be responsible for alterations of seed oil content in Chernobyl grown plants. (author)

  20. Seedling development and evaluation of genetic stability of cryopreserved Dendrobium hybrid mature seeds.

    Science.gov (United States)

    Galdiano, Renato Fernandes; de Macedo Lemos, Eliana Gertrudes; de Faria, Ricardo Tadeu; Vendrame, Wagner Aparecido

    2014-03-01

    Vitrification, a simple, fast, and recommended cryopreservation method for orchid germplasm conservation, was evaluated for Dendrobium hybrid "Dong Yai" mature seeds. The genetic stability of regenerated seedlings was also evaluated using flow cytometry. Mature seeds from this hybrid were submitted to plant vitrification solution (PVS2) for 0, 0.5, 1, 2, 3, 4, 5, or 6 h at 0 °C. Subsequently, they were plunged into liquid nitrogen (LN) at -196 °C for 1 h and recovered in half-strength Murashige and Skoog culture medium (1/2 MS), and seed germination was evaluated after 30 days. Seeds directly submitted to LN did not germinate after cryopreservation. Seeds treated with PVS2 between 1 and 3 h presented the best germination (between 51 and 58%), although longer exposure to PVS2 returned moderated germination (39%). Germinated seeds were further subcultured in P-723 culture medium and developed whole seedlings in vitro after 180 days, with no abnormal characteristics, diseases, or nutritional deficiencies. Seedlings were successfully acclimatized under greenhouse conditions with over 80% survival. Flow cytometry analysis revealed no chromosomal changes on vitrified seedlings, as well as seedlings germinated from the control treatment (direct exposure to LN). These findings indicate that vitrification is a feasible and safe germplasm cryopreservation method for commercial Dendrobium orchid hybrid conservation.

  1. Development of hardwood seed zones for Tennessee using a geographic information system

    Science.gov (United States)

    Post, L.S.; Schlarbaum, S.E.; Van Manen, F.; Cecich, R.A.; Saxton, A.M.; Schneider, J.F.

    2003-01-01

    For species that have no or limited information on genetic variation and adaptability to nonnative sites, there is a need for seed collection guidelines based on biological, climatological, and/or geographical criteria. Twenty-eight hardwood species are currently grown for reforestation purposes at the East Tennessee State Nursery. The majority of these species have had no genetic testing to define guidelines for seed collection location and can be distributed to sites that have a very different environment than that of seed origin(s). Poor survival and/or growth may result if seedlings are not adapted to environmental conditions at the planting location. To address this problem, 30 yr of Tennessee county precipitation and minimum temperature data were analyzed and grouped using a centroid hierarchical cluster analysis. The weather data and elevational data were entered into a Geographic Information System (GIS) and separately layered over Bailey's Ecoregions to develop a seed zone system for Tennessee. The seed zones can be used as a practical guideline for collecting seeds to ensure that the resulting seedlings will be adapted to planting environments.

  2. Identification of microRNAs actively involved in fatty acid biosynthesis in developing Brassica napus seeds using high-throughput sequencing

    Directory of Open Access Journals (Sweden)

    Jia Wang

    2016-10-01

    Full Text Available Seed development has a critical role during the spermatophyte life cycle. In Brassica napus, a major oil crop, fatty acids are synthesized and stored in specific tissues during embryogenesis, and understanding the molecular mechanism underlying fatty acid biosynthesis during seed development is an important research goal. In this study, we constructed three small RNA libraries from early seeds at 14, 21 and 28 days after flowering (DAF and used high-throughput sequencing to examine microRNA (miRNA expression. A total of 85 known miRNAs from 30 families and 1,160 novel miRNAs were identified, of which 24, including 5 known and 19 novel miRNAs, were found to be involved in fatty acid biosynthesis. bna-miR156b, bna-miR156c, bna-miR156g, novel_mir_1706, novel_mir_1407, novel_mir_173, and novel_mir_104 were significantly down-regulated at 21 DAF and 28 DAF, whereas bna-miR159, novel_mir_1081, novel_mir_19 and novel_mir_555 were significantly up-regulated. In addition, we found that some miRNAs regulate functional genes that are directly involved in fatty acid biosynthesis and that other miRNAs regulate the process of fatty acid biosynthesis by acting on a large number of transcription factors. The miRNAs and their corresponding predicted targets were partially validated by quantitative RT-PCR. Our data suggest that diverse and complex miRNAs are involved in the seed development process and that miRNAs play important roles in fatty acid biosynthesis during seed development.

  3. Effects of chronic exposure of seeds and seeds and seedlings of Arabidopsis Thaliana by low doses of γ-radiation on plant growth and development

    International Nuclear Information System (INIS)

    Litvinov, S.V.

    2013-01-01

    Article presents the results of research on the effect of chronic γ-irradiation in small doses on A. Thaliana seedlings and seeds growth and development. Exposure rate for the seeds was 0,45 mGy/h (total absorbed dose 30 cSv) and 0,18 mGy/h for seedlings (total absorbed dose 3 cSv). Statistically significant differences in the germination capacity, in the time of primary leaf rosette formation, in the hypocotyl length were revealed between irradiated and control seedlings. Plants from irradiated seeds differed by the higher growth rate of stem, they flowered and fruited earlier, but they also characterized on average shorter vegetative cycle in comparison with control plants. In our experiments it is shown significant impact of chronic low doses of γ-irradiation of seeds and seedlings on the ontogeny in A. Thaliana and on the parameters that reflect the growth and development of the irradiated plants

  4. Comparative Phosphoproteomic Analysis of the Developing Seeds in Two Indica Rice ( Oryza sativa L.) Cultivars with Different Starch Quality.

    Science.gov (United States)

    Pang, Yuehan; Zhou, Xin; Chen, Yaling; Bao, Jinsong

    2018-03-21

    Protein phosphorylation plays important roles in regulation of various molecular events such as plant growth and seed development. However, its involvement in starch biosynthesis is less understood. Here, a comparative phosphoproteomic analysis of two indica rice cultivars during grain development was performed. A total of 2079 and 2434 phosphopeptides from 1273 and 1442 phosphoproteins were identified, covering 2441 and 2808 phosphosites in indica rice 9311 and Guangluai4 (GLA4), respectively. Comparative analysis identified 303 differentially phosphorylated peptides, and 120 and 258 specifically phosphorylated peptides in 9311 and GLA4, respectively. Phosphopeptides in starch biosynthesis related enzymes such as AGPase, SSIIa, SSIIIa, BEI, BEIIb, PUL, and Pho1were identified. GLA4 and 9311 had different amylose content, pasting viscosities, and gelatinization temperature, suggesting subtle difference in starch biosynthesis and regulation between GLA4 and 9311. Our study will give added impetus to further understanding the regulatory mechanism of starch biosynthesis at the phosphorylation level.

  5. Genetic Variation for Thermotolerance in Lettuce Seed Germination Is Associated with Temperature-Sensitive Regulation of ETHYLENE RESPONSE FACTOR1 (ERF1)1[OPEN

    Science.gov (United States)

    O’Brien, Laurel K.; Truco, Maria Jose; Huo, Heqiang; Sideman, Rebecca; Hayes, Ryan; Michelmore, Richard W.

    2016-01-01

    Seeds of most lettuce (Lactuca sativa) cultivars are susceptible to thermoinhibition, or failure to germinate at temperatures above approximately 28°C, creating problems for crop establishment in the field. Identifying genes controlling thermoinhibition would enable the development of cultivars lacking this trait and, therefore, being less sensitive to high temperatures during planting. Seeds of a primitive accession (PI251246) of lettuce exhibited high-temperature germination capacity up to 33°C. Screening a recombinant inbred line population developed from PI215246 and cv Salinas identified a major quantitative trait locus (Htg9.1) from PI251246 associated with the high-temperature germination phenotype. Further genetic analyses discovered a tight linkage of the Htg9.1 phenotype with a specific DNA marker (NM4182) located on a single genomic sequence scaffold. Expression analyses of the 44 genes encoded in this genomic region revealed that only a homolog of Arabidopsis (Arabidopsis thaliana) ETHYLENE RESPONSE FACTOR1 (termed LsERF1) was differentially expressed between PI251246 and cv Salinas seeds imbibed at high temperature (30°C). LsERF1 belongs to a large family of transcription factors associated with the ethylene-signaling pathway. Physiological assays of ethylene synthesis, response, and action in parental and near-isogenic Htg9.1 genotypes strongly implicate LsERF1 as the gene responsible for the Htg9.1 phenotype, consistent with the established role for ethylene in germination thermotolerance of Compositae seeds. Expression analyses of genes associated with the abscisic acid and gibberellin biosynthetic pathways and results of biosynthetic inhibitor and hormone response experiments also support the hypothesis that differential regulation of LsERF1 expression in PI251246 seeds elevates their upper temperature limit for germination through interactions among pathways regulated by these hormones. Our results support a model in which LsERF1 acts through

  6. Study and development of an Iridium-192 seed for use in ophthalmic cancer

    International Nuclear Information System (INIS)

    Mattos, Fabio Rodrigues de

    2013-01-01

    Even ocular tumors are not among the cases with a higher incidence, they affect the population, especially children. The Institute of Energy and Nuclear Research (IPEN-CNEN/SP) in partnership with Escola Paulista de Medicina (UNIFESP), created a project to develop and implement a alternative treatment for ophthalmic cancer that use brachytherapy iridium-192 seeds. The project arose by reason of the Escola Paulista treat many cancer cases within the Unified Health System (SUS) and the research experience of sealed radioactive sources group at IPEN. The methodology was developed from the available infrastructure and the experience of researchers. The prototype seed presents with a core (192-iridium alloy of iridium-platinum) of 3.0 mm long sealed by a capsule of titanium of 0.8 mm outside diameter, 0.05 mm wall thickness and 4,5mm long. This work aims to study and develop a seed of iridium-192 from a platinum-iridium alloy. No study on the fabrication of these seeds was found in available literature. It was created a methodology that involved: characterization of the material used in the core, creation of device for neutron activation irradiation and and seed sealing tests. As a result, proved the feasibility of the method. As a suggestion for future work, studies regarding metrology and dosimetry of these sources and improvement of the methodology should be carried out, for future implementation in national scope. (author)

  7. Dynamic Subcellular Localization of Iron during Embryo Development in Brassicaceae Seeds

    Directory of Open Access Journals (Sweden)

    Miguel A. Ibeas

    2017-12-01

    Full Text Available Iron is an essential micronutrient for plants. Little is know about how iron is loaded in embryo during seed development. In this article we used Perls/DAB staining in order to reveal iron localization at the cellular and subcellular levels in different Brassicaceae seed species. In dry seeds of Brassica napus, Nasturtium officinale, Lepidium sativum, Camelina sativa, and Brassica oleracea iron localizes in vacuoles of cells surrounding provasculature in cotyledons and hypocotyl. Using B. napus and N. officinale as model plants we determined where iron localizes during seed development. Our results indicate that iron is not detectable by Perls/DAB staining in heart stage embryo cells. Interestingly, at torpedo development stage iron localizes in nuclei of different cells type, including integument, free cell endosperm and almost all embryo cells. Later, iron is detected in cytoplasmic structures in different embryo cell types. Our results indicate that iron accumulates in nuclei in specific stages of embryo maturation before to be localized in vacuoles of cells surrounding provasculature in mature seeds.

  8. Developments in the Regulation of Broadcasting Advertising

    OpenAIRE

    Morris, Yvonne; Randle, Paul

    2005-01-01

    This Intervention provides a review of developments in the regulation of broadcast advertising within the UK. The piece focuses on the implications of media convergence on broadcast advertising, and provides a brief history and analysis of the regulation of broadcast advertising within the UK. The piece also reviews Advertising Codes and provides an overview of regulatory bodies such as OFCOM and the ASA, and their respective roles.

  9. Competition, Regulation and Development Research Forum ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Many developing countries have adopted market-oriented reforms as a part of the globalization and liberalization process. However, due to market distortions, the need to ensure proper access to essential services requires effective regulation. Accordingly, developing countries are legislating or revising their ...

  10. Signaling hierarchy regulating human endothelial cell development

    Science.gov (United States)

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these stud...

  11. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    Science.gov (United States)

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  12. The decision to germinate is regulated by divergent molecular networks in spores and seeds

    DEFF Research Database (Denmark)

    Vesty, Eleanor F.; Saidi, Younousse; Moody, Laura A.

    2016-01-01

    , the role of abscisic acid and diterpenes (gibberellins) in germination assumed much greater importance as land plant evolution progressed. We conclude that the endogenous hormone signalling networks mediating germination in response to the environment may have evolved independently in spores and seeds...

  13. 78 FR 53370 - Common Crop Insurance Regulations; Forage Seed Crop Provisions

    Science.gov (United States)

    2013-08-29

    ... appeal provisions published at 7 CFR part 11 and 7 CFR part 400, subpart J, for the informal review...) through (6). 10. Settlement of Claim. (a) We will determine your loss on a unit basis. In the event you... total production was of poor quality; 10,000 pounds of seed failed to achieve the contract minimum...

  14. Abscisic acid (ABA) sensitivity regulates desiccation tolerance in germinated Arabidopsis seeds

    NARCIS (Netherlands)

    Maia de Oliveira, J.; Dekkers, S.J.W.; Dolle, M.; Ligterink, W.; Hilhorst, H.W.M.

    2014-01-01

    During germination, orthodox seeds lose their desiccation tolerance (DT) and become sensitive to extreme drying. Yet, DT can be rescued, in a well-defined developmental window, by the application of a mild osmotic stress before dehydration. A role for abscisic acid (ABA) has been implicated in this

  15. Exploring triacylglycerol biosynthetic pathway in developing seeds of Chia (Salvia hispanica L.: a transcriptomic approach.

    Directory of Open Access Journals (Sweden)

    Sreedhar R V

    Full Text Available Chia (Salvia hispanica L., a member of the mint family (Lamiaceae, is a rediscovered crop with great importance in health and nutrition and is also the highest known terrestrial plant source of heart-healthy omega-3 fatty acid, alpha linolenic acid (ALA. At present, there is no public genomic information or database available for this crop, hindering research on its genetic improvement through genomics-assisted breeding programs. The first comprehensive analysis of the global transcriptome profile of developing Salvia hispanica L. seeds, with special reference to lipid biosynthesis is presented in this study. RNA from five different stages of seed development was extracted and sequenced separately using the Illumina GAIIx platform. De novo assembly of processed reads in the pooled transcriptome using Trinity yielded 76,014 transcripts. The total transcript length was 66,944,462 bases (66.9 Mb, with an average length of approximately 880 bases. In the molecular functions category of Gene Ontology (GO terms, ATP binding and nucleotide binding were found to be the most abundant and in the biological processes category, the metabolic process and the regulation of transcription-DNA-dependent and oxidation-reduction process were abundant. From the EuKaryotic Orthologous Groups of proteins (KOG classification, the major category was "Metabolism" (31.97%, of which the most prominent class was 'carbohydrate metabolism and transport' (5.81% of total KOG classifications followed by 'secondary metabolite biosynthesis transport and catabolism' (5.34% and 'lipid metabolism' (4.57%. A majority of the candidate genes involved in lipid biosynthesis and oil accumulation were identified. Furthermore, 5596 simple sequence repeats (SSRs were identified. The transcriptome data was further validated through confirmative PCR and qRT-PCR for select lipid genes. Our study provides insight into the complex transcriptome and will contribute to further genome-wide research

  16. Peanut gene expression profiling in developing seeds at different reproduction stages during Aspergillus parasiticus infection

    Directory of Open Access Journals (Sweden)

    Liang Xuanqiang

    2008-02-01

    Full Text Available Abstract Background Peanut (Arachis hypogaea L. is an important crop economically and nutritionally, and is one of the most susceptible host crops to colonization of Aspergillus parasiticus and subsequent aflatoxin contamination. Knowledge from molecular genetic studies could help to devise strategies in alleviating this problem; however, few peanut DNA sequences are available in the public database. In order to understand the molecular basis of host resistance to aflatoxin contamination, a large-scale project was conducted to generate expressed sequence tags (ESTs from developing seeds to identify resistance-related genes involved in defense response against Aspergillus infection and subsequent aflatoxin contamination. Results We constructed six different cDNA libraries derived from developing peanut seeds at three reproduction stages (R5, R6 and R7 from a resistant and a susceptible cultivated peanut genotypes, 'Tifrunner' (susceptible to Aspergillus infection with higher aflatoxin contamination and resistant to TSWV and 'GT-C20' (resistant to Aspergillus with reduced aflatoxin contamination and susceptible to TSWV. The developing peanut seed tissues were challenged by A. parasiticus and drought stress in the field. A total of 24,192 randomly selected cDNA clones from six libraries were sequenced. After removing vector sequences and quality trimming, 21,777 high-quality EST sequences were generated. Sequence clustering and assembling resulted in 8,689 unique EST sequences with 1,741 tentative consensus EST sequences (TCs and 6,948 singleton ESTs. Functional classification was performed according to MIPS functional catalogue criteria. The unique EST sequences were divided into twenty-two categories. A similarity search against the non-redundant protein database available from NCBI indicated that 84.78% of total ESTs showed significant similarity to known proteins, of which 165 genes had been previously reported in peanuts. There were

  17. Development of an Iridium-192 seed for use in ophthalmic brachytherapy

    International Nuclear Information System (INIS)

    Mattos, Fabio R.; Rostelato, Maria Elisa C.M.; Zeituni, Carlos; Moura, Joao A.; Costa, Osvaldo L.; Feher, Anselmo; Moura, Eduardo S.; Souza, Carla D.; Peleias Junior, Fernando S.

    2011-01-01

    The Institute for Energy and Nuclear Research (IPEN), in partnership with the School or Medicine (UNIFESP), created a project that aims to develop and implement an ophthalmic therapeutic treatment for cancer with Iridium-192 seeds. The School of Medicine treats many cancer cases in the SUS (Brazilian Public Health System), and brachytherapy group of IPEN has extensive experience in prototype sources. The seed to be manufactured will perform as follows: a core of Iridium-192 is packaged inside small cylindrical seeds consist of a titanium capsule of 0.8 mm outer diameter, 0.05 mm wall thickness and 4 5 mm in length. The core is an alloy of platinum-iridium (20/80) of 3.0 mm in length and 0.3 mm in diameter. Material analysis, neutron activation and activity measurements were carried out. (author)

  18. Factors that regulate embryonic gustatory development

    Directory of Open Access Journals (Sweden)

    Krimm Robin F

    2007-09-01

    Full Text Available Abstract Numerous molecular factors orchestrate the development of the peripheral taste system. The unique anatomy/function of the taste system makes this system ideal for understanding the mechanisms by which these factors function; yet the taste system is underutilized for this role. This review focuses on some of the many factors that are known to regulate gustatory development, and discusses a few topics where more work is needed. Some attention is given to factors that regulate epibranchial placode formation, since gustatory neurons are thought to be primarily derived from this region. Epibranchial placodes appear to arise from a pan-placodal region and a number of regulatory factors control the differentiation of individual placodes. Gustatory neuron differentiation is regulated by a series of transcription factors and perhaps bone morphongenic proteins (BMP. As neurons differentiate, they also proliferate such that their numbers exceed those in the adult, and this is followed by developmental death. Some of these cell-cycling events are regulated by neurotrophins. After gustatory neurons become post-mitotic, axon outgrowth occurs. Axons are guided by multiple chemoattractive and chemorepulsive factors, including semaphorins, to the tongue epithelium. Brain derived neurotrophic factor (BDNF, functions as a targeting factor in the final stages of axon guidance and is required for gustatory axons to find and innervate taste epithelium. Numerous factors are involved in the development of gustatory papillae including Sox-2, Sonic hedge hog and Wnt-β-catenin signaling. It is likely that just as many factors regulate taste bud differentiation; however, these factors have not yet been identified. Studies examining the molecular factors that regulate terminal field formation in the nucleus of the solitary tract are also lacking. However, it is possible that some of the factors that regulate geniculate ganglion development, outgrowth, guidance and

  19. Vitamin E homologs and ¿-oryzanol levels in rice (Oryza sativa L.) during seed development

    Science.gov (United States)

    Vitamin E homologs (tocopherols and tocotrienols) and gamma-oryzanol have gained significant attention due to their proposed health benefits and ability to increase vegetable oil stability. Changes in the levels of these phytochemicals were examined during seed development. Rapid accumulation of toc...

  20. Comparing carbohydrate status during norway spruce seed development and somatic embryo formation

    NARCIS (Netherlands)

    Gösslová, M.; Svobodová, H.; Lipavská, H.; Albrechtová, J.; Vreugdenhil, D.

    2001-01-01

    The carbohydrate status of developing seeds of Picea abies was examined in order to provide a frame of reference for the evaluation of changes in carbohydrate content in maturing somatic embryos of the same species. Samples were taken at weekly intervals from 12 May 1998 (estimated time of

  1. Autism Spectrum Disorder Symptoms among Children Enrolled in the Study to Explore Early Development (SEED)

    Science.gov (United States)

    Wiggins, Lisa D.; Levy, Susan E.; Daniels, Julie; Schieve, Laura; Croen, Lisa A.; DiGuiseppi, Carolyn; Blaskey, Lisa; Giarelli, Ellen; Lee, Li-Ching; Pinto-Martin, Jennifer; Reynolds, Ann; Rice, Catherine; Rosenberg, Cordelia Robinson; Thompson, Patrick; Yeargin-Allsopp, Marshalyn; Young, Lisa; Schendel, Diana

    2015-01-01

    This study examined the phenotypic profiles of children aged 30-68 months in the Study to Explore Early Development (SEED). Children classified as autism spectrum disorder (ASD), developmental delay (DD) with ASD symptoms, DD without ASD symptoms, and population comparison (POP) differed significantly from each other on cognitive, adaptive,…

  2. Epigenetic chromatin modifiers in barley: IV. The study of barley Polycomb group (PcG genes during seed development and in response to external ABA

    Directory of Open Access Journals (Sweden)

    Stanca Michele A

    2010-04-01

    Full Text Available Abstract Background Epigenetic phenomena have been associated with the regulation of active and silent chromatin states achieved by modifications of chromatin structure through DNA methylation, and histone post-translational modifications. The latter is accomplished, in part, through the action of PcG (Polycomb group protein complexes which methylate nucleosomal histone tails at specific sites, ultimately leading to chromatin compaction and gene silencing. Different PcG complex variants operating during different developmental stages have been described in plants. In particular, the so-called FIE/MEA/FIS2 complex governs the expression of genes important in embryo and endosperm development in Arabidopsis. In our effort to understand the epigenetic mechanisms regulating seed development in barley (Hordeum vulgare, an agronomically important monocot plant cultivated for its endosperm, we set out to characterize the genes encoding barley PcG proteins. Results Four barley PcG gene homologues, named HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were identified and structurally and phylogenetically characterized. The corresponding genes HvFIE, HvE(Z, HvSu(z12a, and HvSu(z12b were mapped onto barley chromosomes 7H, 4H, 2H and 5H, respectively. Expression analysis of the PcG genes revealed significant differences in gene expression among tissues and seed developmental stages and between barley cultivars with varying seed size. Furthermore, HvFIE and HvE(Z gene expression was responsive to the abiotic stress-related hormone abscisic acid (ABA known to be involved in seed maturation, dormancy and germination. Conclusion This study reports the first characterization of the PcG homologues, HvFIE, HvE(Z, HvSu(z12a and HvSu(z12b in barley. All genes co-localized with known chromosomal regions responsible for malting quality related traits, suggesting that they might be used for developing molecular markers to be applied in marker assisted selection. The Pc

  3. Disruptions in valine degradation affect seed development and germination in Arabidopsis.

    Science.gov (United States)

    Gipson, Andrew B; Morton, Kyla J; Rhee, Rachel J; Simo, Szabolcs; Clayton, Jack A; Perrett, Morgan E; Binkley, Christiana G; Jensen, Erika L; Oakes, Dana L; Rouhier, Matthew F; Rouhier, Kerry A

    2017-06-01

    We have functionally characterized the role of two putative mitochondrial enzymes in valine degradation using insertional mutants. Prior to this study, the relationship between branched-chain amino acid degradation (named for leucine, valine and isoleucine) and seed development was limited to leucine catabolism. Using a reverse genetics approach, we show that disruptions in the mitochondrial valine degradation pathway affect seed development and germination in Arabidopsis thaliana. A null mutant of 3-hydroxyisobutyryl-CoA hydrolase (CHY4, At4g31810) resulted in an embryo lethal phenotype, while a null mutant of methylmalonate semialdehyde dehydrogenase (MMSD, At2g14170) resulted in seeds with wrinkled coats, decreased storage reserves, elevated valine and leucine, and reduced germination rates. These data highlight the unique contributions CHY4 and MMSD make to the overall growth and viability of plants. It also increases our knowledge of the role branched-chain amino acid catabolism plays in seed development and amino acid homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  4. Development of Critical Thinking with Metacognitive Regulation

    Science.gov (United States)

    Gotoh, Yasushi

    2016-01-01

    In this research the author defines critical thinking as the set of skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of Metacognitive regulation on one's own problem-solving processes. In order to develop their critical thinking, it is important for students to be able to use this…

  5. Signaling pathways regulating murine pancreatic development

    DEFF Research Database (Denmark)

    Serup, Palle

    2012-01-01

    The recent decades have seen a huge expansion in our knowledge about pancreatic development. Numerous lineage-restricted transcription factor genes have been identified and much has been learned about their function. Similarly, numerous signaling pathways important for pancreas development have...... been identified and the specific roles have been investigated by genetic and cell biological methods. The present review presents an overview of the principal signaling pathways involved in regulating murine pancreatic growth, morphogenesis, and cell differentiation....

  6. Apoptosis regulates notochord development in Xenopus

    OpenAIRE

    Malikova, Marina; Van Stry, Melanie; Symes, Karen

    2007-01-01

    The notochord is the defining characteristic of the chordate embryo, and plays critical roles as a signaling center and as the primitive skeleton. In this study we show that early notochord development in Xenopus embryos is regulated by apoptosis. We find apoptotic cells in the notochord beginning at the neural groove stage and increasing in number as the embryo develops. These dying cells are distributed in an anterior to posterior pattern that is correlated with notochord extension through ...

  7. Transcriptome analysis of pecan seeds at different developing stages and identification of key genes involved in lipid metabolism.

    Science.gov (United States)

    Xu, Zheng; Ni, Jun; Shah, Faheem Afzal; Wang, Qiaojian; Wang, Zhaocheng; Wu, Lifang; Fu, Songling

    2018-01-01

    Pecan is an economically important nut crop tree due to its unique texture and flavor properties. The pecan seed is rich of unsaturated fatty acid and protein. However, little is known about the molecular mechanisms of the biosynthesis of fatty acids in the developing seeds. In this study, transcriptome sequencing of the developing seeds was performed using Illumina sequencing technology. Pecan seed embryos at different developmental stages were collected and sequenced. The transcriptomes of pecan seeds at two key developing stages (PA, the initial stage and PS, the fast oil accumulation stage) were also compared. A total of 82,155 unigenes, with an average length of 1,198 bp from seven independent libraries were generated. After functional annotations, we detected approximately 55,854 CDS, among which, 2,807 were Transcription Factor (TF) coding unigenes. Further, there were 13,325 unigenes that showed a 2-fold or greater expression difference between the two groups of libraries (two developmental stages). After transcriptome analysis, we identified abundant unigenes that could be involved in fatty acid biosynthesis, degradation and some other aspects of seed development in pecan. This study presents a comprehensive dataset of transcriptomic changes during the seed development of pecan. It provides insights in understanding the molecular mechanisms responsible for fatty acid biosynthesis in the seed development. The identification of functional genes will also be useful for the molecular breeding work of pecan.

  8. Pathways for the developing Myanmar’s seed sector: A scoping study

    NARCIS (Netherlands)

    Broek, van den J.A.; Subedi, A.; Jongeleen, F.; Naing Lin Oo,

    2015-01-01

    The study presents an integrated assessment of Myanmar’s seed sector. The study includes information and analyses on regulatory environment for seed production and sales, a characterization of Myanmar’s seed sector with its various seed systems, a landscape of current seed sector interventions; an

  9. EFFECTS OF SOME PLANT GROWTH REGULATORS ON JASMONIC ACID INDUCED INHIBITION OF SEED GERMINATION AND SEEDLING GROWTH OF BARLEY

    Directory of Open Access Journals (Sweden)

    Kürşat ÇAVUŞOĞLU

    2009-02-01

    Full Text Available Abstract: The effects of gibberellic acid, kinetin, benzyladenine, ethylene, 24-epibrassinolide and polyamines (spermine, spermidine, putrescine, cadaverine on jasmonic acid inhibition of seed germination and seedling growth of barley were studied. All of the plant growth regulators studied were determined to have a succesful performance in reversing of the inhibitory effects of jasmonic acid on the seed germination and seedling growth. Moreover, the above mentioned growth regulators overcame the inhibitory effect of JA on the percentages of germination and coleoptile emergence in the same ratio, while GA3 was the most successful hormone on the fresh weight and radicle and coleoptile elongation in comparison with the other growth regulators. Key words: Barley, jasmonic acid, plant growth regulator, seed germination, seedling growth ARPANIN TOHUM ÇİMLENMESİ VE FİDE BÜYÜMESİNİN JASMONİK ASİT TEŞVİKLİ İNHİBİSYONU ÜZERİNE BAZI BİTKİ BÜYÜME DÜZENLEYİCİLERİNİN ETKİLERİ Özet: Arpanın tohum çimlenmesi ve fide büyümesinin jasmonik asit inhibisyonu üzerine gibberellik asit, kinetin, benziladenin, etilen, 24-epibrassinolit ve poliaminlerin (spermin, spermidin, putressin, kadaverin etkileri araştırılmıştır. Çalışılan bitki büyüme düzenleyicilerinin tümünün tohum çimlenmesi ve fide büyümesi üzerinde jasmonik asitin engelleyici etkisini tersine çevirmede başarılı bir performansa sahip oldukları belirlenmiştir. Dahası, yukarıda sözü edilen büyüme düzenleyicileri çimlenme ve koleoptil çıkış yüzdeleri üzerinde aynı oranda etkili olurken, taze ağırlık ve radikula ve koleoptil uzaması üzerinde diğer büyüme düzenleyicileri ile karşılaştırıldığında en başarılı hormon GA3 olmuştur. Anahtar kelimeler: Arpa, jasmonik asit, bitki büyüme düzenleyicisi, tohum çimlenmesi, fide büyümesi

  10. Approach to performance based regulation development

    International Nuclear Information System (INIS)

    Spogen, L.R.; Cleland, L.L.

    1977-06-01

    An approach to the development of performance based regulations (PBR's) is described. Initially, a framework is constructed that consists of a function hierarchy and associated measures. The function at the top of the hierarchy is described in terms of societal objectives. Decomposition of this function into subordinate functions and their subsequent decompositions yield the function hierarchy. ''Bottom'' functions describe the roles of system components. When measures are identified for the performance of each function and means of aggregating performances to higher levels are established, the framework may be employed for developing PBR's. Consideration of system flexibility and performance uncertainty guide in determining the hierarchical level at which regulations are formulated. Ease of testing compliance is also a factor. To show the viability of the approach, the framework developed by Lawrence Livermore Laboratory for the Nuclear Regulatory Commission for evaluation of material control systems at fixed facilities is presented

  11. Factors Influencing in Vitro Seed Germination, Morphogenetic Potential and Correlation of Secondary Metabolism with Tissue Development in Prunella Vulgaris L

    International Nuclear Information System (INIS)

    Fazal, H.; Shinwari, Z. K.; Abbasi, B. H.; Ahmad, N.

    2016-01-01

    Plant growth regulators (PGRs), polyamines (PAs) and temperature regimes are the key factors that influence morphogenesis and plant architectural development; however, the understanding that how these factors control plant growth and development is still poor and needs further research in Prunella vulgaris. In this study, we monitored the effect of these factors on seed germination, morphogenetic potential and secondary metabolism. Different temperature regimes showed that 25 degree C is the most suitable temperature for seed germination (88.87±1.76 percent) on Murashige and Skoog (MS) basal medium. The synergistic combinations of kinetin (Kn), 6-benzyladenine (BA) and putrescine (PUT; 2.0 mg l/sup -1/) promoted seed germination (90.22±4.51 percent) after 24 days of inoculation. A combination of Kn and PUT (1.0 mg l/sup -1/) encouraged mean shoot length (11.0±1.95 mm) with the optimum amount of chlorophyll content (23.73±1.8 micro g cm/sup -2/). However, maximum mean root length (13±0.65 mm) was observed on medium containing Kn and spermidine (SPD, 2.0 mg l-1). Maximum calli (71.56±2.63 percent) were obtained from root explants on 0.5 MS-medium containing indole butyric acid (IBA) and Alpha-naphthalene acetic acid (NAA; 0.5 mg l/sup -1/). Higher number of shoots (78.5±3.75 percent) was obtained with Kn and PUT (1.0 mg l/sup -1/). IBA concentration of 1.0 mg l/sup -1/ was found effective for root formation (74.71±3.3 percent). Moreover, PGRs and PAs have a significant effect on accumulation of total phenolics, flavonoids and DPPH activity. This protocol is helpful for consistent plantlets and prunellin production in P. vulgaris L. (author)

  12. Heat recovery and seed recovery development project: preliminary design report (PDR)

    Energy Technology Data Exchange (ETDEWEB)

    Arkett, A. H.; Alexander, K. C.; Bolek, A. D.; Blackman, B. K.; Kurrle, P. E.; Tram, S. V.; Warren, A. M.; Ziobrowski, A. J.

    1981-06-01

    The preliminary design and performance characteristics are described of the 20 MWt heat recovery and seed recovery (HRSR) system to be fabricated, installed, and evaluated to provide a technological basis for the design of commercial size HRSR systems for coal-fired open-cycle MHD power plants. The system description and heat and material balances, equipment description and functional requirements, controls, interfacing systems, and operation and maintenance are detailed. Appendices include: (1) recommended environmental requirements for compliance with federal and state of Tennessee regulations, (2) channel and diffuser simulator, (3) equipment arrangement drawings, and (4) channel and diffuser simulator barrel drawings. (WHK)

  13. The putative E3 ubiquitin ligase ECERIFERUM9 regulates abscisic acid biosynthesis and response during seed germination and postgermination growth in arabidopsis

    KAUST Repository

    Zhao, Huayan

    2014-05-08

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  14. The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis.

    Science.gov (United States)

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A; Lü, Shiyou; Xiong, Liming

    2014-07-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. © 2014 American Society of Plant Biologists. All Rights Reserved.

  15. The Putative E3 Ubiquitin Ligase ECERIFERUM9 Regulates Abscisic Acid Biosynthesis and Response during Seed Germination and Postgermination Growth in Arabidopsis1[W][OPEN

    Science.gov (United States)

    Zhao, Huayan; Zhang, Huoming; Cui, Peng; Ding, Feng; Wang, Guangchao; Li, Rongjun; Jenks, Matthew A.; Lü, Shiyou; Xiong, Liming

    2014-01-01

    The ECERIFERUM9 (CER9) gene encodes a putative E3 ubiquitin ligase that functions in cuticle biosynthesis and the maintenance of plant water status. Here, we found that CER9 is also involved in abscisic acid (ABA) signaling in seeds and young seedlings of Arabidopsis (Arabidopsis thaliana). The germinated embryos of the mutants exhibited enhanced sensitivity to ABA during the transition from reversible dormancy to determinate seedling growth. Expression of the CER9 gene is closely related to ABA levels and displays a similar pattern to that of ABSCISIC ACID-INSENSITIVE5 (ABI5), which encodes a positive regulator of ABA responses in seeds. cer9 mutant seeds exhibited delayed germination that is independent of seed coat permeability. Quantitative proteomic analyses showed that cer9 seeds had a protein profile similar to that of the wild type treated with ABA. Transcriptomics analyses revealed that genes involved in ABA biosynthesis or signaling pathways were differentially regulated in cer9 seeds. Consistent with this, high levels of ABA were detected in dry seeds of cer9. Blocking ABA biosynthesis by fluridone treatment or by combining an ABA-deficient mutation with cer9 attenuated the phenotypes of cer9. Whereas introduction of the abi1-1, abi3-1, or abi4-103 mutation could completely eliminate the ABA hypersensitivity of cer9, introduction of abi5 resulted only in partial suppression. These results indicate that CER9 is a novel negative regulator of ABA biosynthesis and the ABA signaling pathway during seed germination. PMID:24812105

  16. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean plants contain two urease isozymes which are separable by hydroxyapatite chromatography. These two urease species (HAP1 and HAP2) differ in: (1) native gel electrophoretic mobility, (2) pH optima, and (3) recognition by a monoclonal antibody specific for the embryo-specific urease. By these parameters HAP1 is similar to the abundant embryo-specific urease isozyme while HAP2 resembles the ubiquitous urease, found in all soybean tissues previously examined (embryo, seed coat, cultured cells). Roots of mutant soybean plants lacking the seed urease contain no HAP1 urease activity, whereas roots of mutants lacking the ubiquitous urease contain no HAP2 urease activity. However, adventitious roots generated from cuttings of any urease genotype lack HAP1 urease activity. Furthermore, [ 35 S] methionine labelling shows no de novo synthesis of the HAP1 urease in the root, and total root HAP1 urease activity decreases sharply following germination. We conclude: (1) HAP1 is a remnant of the seed urease accumulated in the embryonic root axis during seed development, and (2) HAP2 is ubiquitous urease synthesized de novo in the root

  17. Seed treatments enhance photosynthesis in maize seedlings by reducing infection with Fusarium spp. and consequent disease development in maize

    Science.gov (United States)

    The effects of a seed treatment on early season growth, seedling disease development, incidence Fusarium spp. infection, and photosynthetic performance of maize were evaluated at two locations in Iowa in 2007. Maize seed was either treated with Cruiser 2Extreme 250 ® (fludioxonil + azoxystrobin + me...

  18. BROCCOLI Spears Yield Affected By GAMMA Rays Irradiated Seeds And Foliar Application Of Some Growth Regulators

    International Nuclear Information System (INIS)

    ABDALLAH, A.A.; ABO EL-KHEIR, O.H.

    2010-01-01

    Two field experiments were carried out during 2004/2005 and 2005/2006 winter growing seasons at the experimental farm of Nuclear Research Centre, Atomic Energy Authority, Inshas, Egypt.The experiments were conducted to study the effect of pre-sowing broccoli seeds (cv. F1 175) irradiated with different doses of gamma rays (2, 3 and 4 Gy). The plants were sprayed with GA3 at rate of 50 ml/liter/fed and 20 ml/liter/fed for NAA. Main spear fresh and dry weight per plant, total spears fresh and dry weight per plant, total spears yield, ascorbic acid, TSS, carbohydrates, total chlorophyll, NPK and total protein content of spears were evaluated. The results showed that broccoli seeds irradiated with gamma rays up to 4 Gy pre-sowing increased the abovementioned parameters with different magnitudes comparing with the non-irradiated control plants except spears N, P and protein contents showed decrease in their values comparing with un-treated plants.It could be concluded that the foliar application of GA3 and NAA on broccoli spears increased all the abovementioned parameters, except spears N, P and protein contents showed decrease in their values.

  19. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    International Nuclear Information System (INIS)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R.

    2011-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  20. Development of an encapsulation method using plasma arc welding to produce iodine-125 seeds for brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Feher, Anselmo; Calvo, Wilson A.P.; Rostelato, Maria E.C.M.; Zeituni, Carlos A.; Somessari, Samir L.; Costa, Osvaldo L.; Moura, Joao A.; Moura, Eduardo S.; Souza, Carla D.; Rela, Paulo R., E-mail: afeher@ipen.b, E-mail: wapcalvo@ipen.b, E-mail: elisaros@ipen.b, E-mail: somessar@ipen.b, E-mail: olcosta@ipen.b, E-mail: esmoura@ipen.b, E-mail: cdsouza@ipen.b, E-mail: prela@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer is public health problem in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing Iodine-125 radioisotope are implanted into the prostate gland. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed Iodine-125. The Plasma Arc Welding (PAW) is one of the viable techniques for sealing process. The equipment used in this technique is less costly than in other processes, such as, Laser Beam Welding (LBW). The main purpose of this work was the development of an encapsulation method using PAW. The development of this work has presented the following phases: cutting and cleaning titanium tube, determination of the welding parameters, development of a titanium tube holding device for PAW, sealed sources validation according to ISO 2919 - Sealed Radioactive Sources - General Requirements and Classification, and metallographic assays. The developed procedure to seal Iodine-125 seeds using PAW has shown high efficiency, satisfying all the established requirements of ISO 2919. The results obtained in this work will give the possibility to establish a routine production process according to the orientations presented in resolution RDC 17 - Good Manufacturing Practices to Medical Products defined by the ANVISA - National Agency of Sanitary Surveillance. (author)

  1. Mediator: A key regulator of plant development.

    Science.gov (United States)

    Buendía-Monreal, Manuel; Gillmor, C Stewart

    2016-11-01

    Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination.

    Science.gov (United States)

    Chen, Bingxian; Ma, Jun; Xu, Zhenjiang; Wang, Xiaofeng

    2016-10-01

    The purpose of this study was to investigate the role of cellulase in endosperm cap weakening and radicle elongation during lettuce (Lactuca sativa L.) seed germination. The application of abscisic acid (ABA) or ethephon inhibits or promotes germination, respectively, by affecting endosperm cap weakening and radicle elongation. Cellulase activities, and related protein and transcript abundances of two lettuce cellulase genes, LsCEL1 and LsCEL2, increase in the endosperm cap and radicle prior to radicle protrusion following imbibition in water. ABA or ethephon reduce or elevate, respectively, cellulase activity, and related protein and transcript abundances in the endosperm cap. Taken together, these observations suggest that cellulase plays a role in endosperm cap weakening and radicle elongation during lettuce seed germination, and that the regulation of cellulase in the endosperm cap by ABA and ethephon play a role in endosperm cap weakening. However, the influence of ABA and ethephon on radicle elongation may not be through their effects on cellulase. © 2016 Institute of Botany, Chinese Academy of Sciences.

  3. The seed coat of Phaseolus vulgaris interferes with the development of the cowpea weevil [Callosobruchus maculatus (F. (Coleoptera: Bruchidae

    Directory of Open Access Journals (Sweden)

    Silva Luciana B.

    2004-01-01

    Full Text Available We have confirmed here that the seeds of the common bean (Phaseolus vulgaris, L. do not support development of the bruchid Callosobruchus maculatus (F., a pest of cowpea [Vigna unguiculata (L. Walp] seeds. Analysis of the testa (seed coat of the bean suggested that neither thickness nor the levels of compounds such as tannic acid, tannins, or HCN are important for the resistance. On the other hand, we have found that phaseolin (vicilin-like 7S storage globulin, detected in the testa by Western blotting and N-terminal amino acid sequencing, is detrimental to the development of C. maculatus. As for the case of other previously studied legume seeds (Canavalia ensiformis and Phaseolus lunatus we suggest that the presence of vicilin-like proteins in the testa of P. vulgaris may have had a significant role in the evolutionary adaptation of bruchids to the seeds of leguminous plants.

  4. Up-regulating the abscisic acid inactivation gene ZmABA8ox1b contributes to seed germination heterosis by promoting cell expansion.

    Science.gov (United States)

    Li, Yangyang; Wang, Cheng; Liu, Xinye; Song, Jian; Li, Hongjian; Sui, Zhipeng; Zhang, Ming; Fang, Shuang; Chu, Jinfang; Xin, Mingming; Xie, Chaojie; Zhang, Yirong; Sun, Qixin; Ni, Zhongfu

    2016-04-01

    Heterosis has been widely used in agriculture, but the underlying molecular principles are still largely unknown. During seed germination, we observed that maize (Zea mays) hybrid B73/Mo17 was less sensitive than its parental inbred lines to exogenous abscisic acid (ABA), and endogenous ABA content in hybrid embryos decreased more rapidly than in the parental inbred lines. ZmABA8ox1b, an ABA inactivation gene, was consistently more highly up-regulated in hybrid B73/Mo17 than in its parental inbred lines at early stages of seed germination. Moreover, ectopic expression of ZmABA8ox1b obviously promoted seed germination in Arabidopsis Remarkably, microscopic observation revealed that cell expansion played a major role in the ABA-mediated maize seed germination heterosis, which could be attributed to the altered expression of cell wall-related genes. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  5. Limb development: a paradigm of gene regulation.

    Science.gov (United States)

    Petit, Florence; Sears, Karen E; Ahituv, Nadav

    2017-04-01

    The limb is a commonly used model system for developmental biology. Given the need for precise control of complex signalling pathways to achieve proper patterning, the limb is also becoming a model system for gene regulation studies. Recent developments in genomic technologies have enabled the genome-wide identification of regulatory elements that control limb development, yielding insights into the determination of limb morphology and forelimb versus hindlimb identity. The modulation of regulatory interactions - for example, through the modification of regulatory sequences or chromatin architecture - can lead to morphological evolution, acquired regeneration capacity or limb malformations in diverse species, including humans.

  6. Transcriptome analyses of the Dof-like gene family in grapevine reveal its involvement in berry, flower and seed development.

    Science.gov (United States)

    da Silva, Danielle Costenaro; da Silveira Falavigna, Vítor; Fasoli, Marianna; Buffon, Vanessa; Porto, Diogo Denardi; Pappas, Georgios Joannis; Pezzotti, Mario; Pasquali, Giancarlo; Revers, Luís Fernando

    2016-01-01

    The Dof (DNA-binding with one finger) protein family spans a group of plant transcription factors involved in the regulation of several functions, such as plant responses to stress, hormones and light, phytochrome signaling and seed germination. Here we describe the Dof-like gene family in grapevine (Vitis vinifera L.), which consists of 25 genes coding for Dof. An extensive in silico characterization of the VviDofL gene family was performed. Additionally, the expression of the entire gene family was assessed in 54 grapevine tissues and organs using an integrated approach with microarray (cv Corvina) and real-time PCR (cv Pinot Noir) analyses. The phylogenetic analysis comparing grapevine sequences with those of Arabidopsis, tomato, poplar and already described Dof genes in other species allowed us to identify several duplicated genes. The diversification of grapevine DofL genes during evolution likely resulted in a broader range of biological roles. Furthermore, distinct expression patterns were identified between samples analyzed, corroborating such hypothesis. Our expression results indicate that several VviDofL genes perform their functional roles mainly during flower, berry and seed development, highlighting their importance for grapevine growth and production. The identification of similar expression profiles between both approaches strongly suggests that these genes have important regulatory roles that are evolutionally conserved between grapevine cvs Corvina and Pinot Noir.

  7. Evaluation of germination, vegetative development and genotoxicity of lettuce from irradiated seeds

    International Nuclear Information System (INIS)

    Franco, Caio H.; Arthur, Valter

    2013-01-01

    Agriculture has benefited from the use of radiation techniques, which provides plant varieties with distinguish characteristics, such as higher productivity, precocity and greater resistance to disease, pests and harsh weather conditions. Therefore, this study aimed on the analysis of greenhouse morphological development of Lactuca sativa originated from irradiated seeds; as well as test their genotoxic effect. The seeds were irradiated at doses of 25, 50, 75, 150 and 300 Gy. In order to determine the germination index, the number of seedlings emerged from each well was counted. Biometric and weight measurements were taken during the development and post-harvest stages. Genotoxicity tests were performed based on the biological assay Allium cepa. The results demonstrated that the best vegetative development was observed for individuals originated from seeds irradiated with doses of 25 and 50 Gy when compared with the control, while this dose did not differ significantly from 75 Gy The calculated germination index remained constant at all dosages. Inhibition of vegetative growth was observed on 150 and 300 Gy dosed individuals. It was also observed that the increasing rate of irradiation is inversely proportional to the mitotic index. A relationship can be established between increased levels of irradiation with increasing percentage of aberrant cells. (author)

  8. Evaluation of germination, vegetative development and genotoxicity of lettuce from irradiated seeds

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Caio H.; Arthur, Valter, E-mail: caiohaddadfranco@lnbio.cnpem.com.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Piracicaba, SP (Brazil). Lab. de Radiobiologia e Ambiente; Silva, Regildo M.G. da, E-mail: regildo@assis.unesp.br [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Assis, SP (Brazil). Fac. de Ciencias de Letras. Lab. de Fitoterapicos e Farmacologia; Franco, Jose G.; Franco, Suely S. H., E-mail: gilmita@uol.com.br, E-mail: zegilmar60@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Agriculture has benefited from the use of radiation techniques, which provides plant varieties with distinguish characteristics, such as higher productivity, precocity and greater resistance to disease, pests and harsh weather conditions. Therefore, this study aimed on the analysis of greenhouse morphological development of Lactuca sativa originated from irradiated seeds; as well as test their genotoxic effect. The seeds were irradiated at doses of 25, 50, 75, 150 and 300 Gy. In order to determine the germination index, the number of seedlings emerged from each well was counted. Biometric and weight measurements were taken during the development and post-harvest stages. Genotoxicity tests were performed based on the biological assay Allium cepa. The results demonstrated that the best vegetative development was observed for individuals originated from seeds irradiated with doses of 25 and 50 Gy when compared with the control, while this dose did not differ significantly from 75 Gy The calculated germination index remained constant at all dosages. Inhibition of vegetative growth was observed on 150 and 300 Gy dosed individuals. It was also observed that the increasing rate of irradiation is inversely proportional to the mitotic index. A relationship can be established between increased levels of irradiation with increasing percentage of aberrant cells. (author)

  9. Development and characterisation of iridium-192 seeds for brachytherapy treatment of ocular tumors

    International Nuclear Information System (INIS)

    Peleias Jr, F.S.; Zeituni, C.A.; Souza, C.D.; Rostelato, M.E.CM.; Mattos, F.R.; Banega, M.A.G.; Rodrigues, B.T.; Tiezzi, R.; Oliveira, T.B.; Feher, A.; Moura, J.A.; Costa, O.L.

    2014-01-01

    Even ocular tumors are not amongst the cases with a high incidence, they affect the population, particularly children. The Institute of Energy and Nuclear Research (IPEN-CNEN/SP) in partnership with Escola Paulista de Medicina (UNIFESP), created a project to develop an alternative treatment for ophthalmic cancer that uses iridium-192 seeds in brachytherapy. This work aims to study and develop a seed of iridium-192 from a platinum-iridium alloy The prototype seed has a 3.0 mm long core sealed by a titanium capsule of 0.8 mm of outer diameter, 0.05 mm of wall thickness and 4.5 mm long. We developed a methodology that covered: characterisation of the material used in the core, creation of a device for neutron activation of the cores and leakage tests. The results show that this methodology is feasible. As a suggestion for future work, studies regarding metrology and dosimetry of these sources should be carried out. (authors)

  10. Fatty Acid and Transcript Profiling in Developing Seeds of Three Brassica napus Cultivars

    Directory of Open Access Journals (Sweden)

    Petkova Mariana

    2015-12-01

    Full Text Available Fatty acid levels and gene expression profiles for selected genes associated with the synthesis of fatty acids (FA, triacylglycerol, and oil body proteins were examined in three oilseed rape (Brassica napus cultivars that have utility for cultivar development in our spring canola breeding program. The seed oil content of Bronowski, Q2, and Westar was 39.0, 40.1, and 40.6%, respectively at 40 days after flowering (DAF. During the 20 to 40 day period of seed development, cultivars had varying levels of palmitic, stearic, oleic, linoleic, α-linolenic, eicosenoic, and erucic acid. In general, the percentage of each FA was similar among the cultivars during seed development. However, the level of oleic acid was lower and the levels of eicosenoic acid and erucic acid were higher in Bronowski than in Q2 and Westar seeds; linoleic acid also tended to be lower in Bronowski. Gene expression among the cultivars was similar from 10 to 40 DAF. The few exceptions were that expression of KAS1 and SAD were higher in Westar and Q2 than in Bronowski at 25 DAF, SAD was highest in Q2, intermediate in Westar, and lowest in Bronowski at 35 DAF, FAD2 was higher in Q2 than in Bronowski at 35 DAF, FAD3 was higher in Q2 than in Bronowski at 15 DAF and Q2 and Westar at 25 and 30 DAF, and FAE1 was higher in Westar and Q2 than in Bronowski at 30 DAF. Correlation analysis for gene expression against DAF for each genotype supported a common trend in gene expression among the three cultivars with gene expression tending to decrease over time; except for LPAAT, which tended to increase. The correlation between the level of FAs and expression of genes by genotype indicated no general trend; rather correlations seem to depend on the genotype.

  11. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    Science.gov (United States)

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  12. Pten Regulates Epithelial Cytodifferentiation during Prostate Development

    DEFF Research Database (Denmark)

    Lokody, Isabel B; Francis, Jeffrey C; Gardiner, Jennifer R

    2015-01-01

    that are shared with Pten mutant prostate cancer models, including a decrease in androgen receptor regulated genes. In depth analysis of the phenotype of these mice during development revealed that loss of Pten leads to the precocious differentiation of epithelial cells towards a luminal cell fate. This study......Gene expression and functional studies have indicated that the molecular programmes involved in prostate development are also active in prostate cancer. PTEN has been implicated in human prostate cancer and is frequently mutated in this disease. Here, using the Nkx3.1:Cre mouse strain and a genetic...... deletion approach, we investigate the role of Pten specifically in the developing mouse prostate epithelia. In contrast to its role in other developing organs, this gene is dispensable for the initial developmental processes such as budding and branching. However, as cytodifferentiation progresses...

  13. 7 CFR 201.15 - Weed seeds.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Weed seeds. 201.15 Section 201.15 Agriculture... REGULATIONS Labeling Agricultural Seeds § 201.15 Weed seeds. The percentage of weed seeds shall include seeds of plants considered weeds in the State into which the seed is offered for transportation or...

  14. Development of transgenic Brassica juncea lines for reduced seed sinapine content by perturbing phenylpropanoid pathway genes.

    Directory of Open Access Journals (Sweden)

    Sachin Kajla

    Full Text Available Sinapine is a major anti-nutritive compound that accumulates in the seeds of Brassica species. When ingested, sinapine imparts gritty flavuor in meat and milk of animals and fishy odor to eggs of brown egg layers, thereby compromising the potential use of the valuable protein rich seed meal. Sinapine content in Brassica juncea germplasm ranges from 6.7 to 15.1 mg/g of dry seed weight (DSW which is significantly higher than the prescribed permissible level of 3.0 mg/g of DSW. Due to limited natural genetic variability, conventional plant breeding approach for reducing the sinapine content has largely been unsuccessful. Hence, transgenic approach for gene silencing was adopted by targeting two genes-SGT and SCT, encoding enzymes UDP- glucose: sinapate glucosyltransferase and sinapoylglucose: choline sinapoyltransferase, respectively, involved in the final two steps of sinapine biosynthetic pathway. These two genes were isolated from B. juncea and eight silencing constructs were developed using three different RNA silencing approaches viz. antisense RNA, RNAi and artificial microRNA. Transgenics in B. juncea were developed following Agrobacterium-mediated transformation. From a total of 1232 independent T0 transgenic events obtained using eight silencing constructs, 25 homozygous lines showing single gene inheritance were identified in the T2 generation. Reduction of seed sinapine content in these lines ranged from 15.8% to 67.2%; the line with maximum reduction had sinapine content of 3.79 mg/g of DSW. The study also revealed that RNAi method was more efficient than the other two methods used in this study.

  15. Development of marker-free transgenic Jatropha plants with increased levels of seed oleic acid

    Directory of Open Access Journals (Sweden)

    Qu Jing

    2012-02-01

    Full Text Available Abstract Background Jatropha curcas is recognized as a new energy crop due to the presence of the high amount of oil in its seeds that can be converted into biodiesel. The quality and performance of the biodiesel depends on the chemical composition of the fatty acids present in the oil. The fatty acids profile of the oil has a direct impact on ignition quality, heat of combustion and oxidative stability. An ideal biodiesel composition should have more monounsaturated fatty acids and less polyunsaturated acids. Jatropha seed oil contains 30% to 50% polyunsaturated fatty acids (mainly linoleic acid which negatively impacts the oxidative stability and causes high rate of nitrogen oxides emission. Results The enzyme 1-acyl-2-oleoyl-sn-glycero-3-phosphocholine delta 12-desaturase (FAD2 is the key enzyme responsible for the production of linoleic acid in plants. We identified three putative delta 12 fatty acid desaturase genes in Jatropha (JcFAD2s through genome-wide analysis and downregulated the expression of one of these genes, JcFAD2-1, in a seed-specific manner by RNA interference technology. The resulting JcFAD2-1 RNA interference transgenic plants showed a dramatic increase of oleic acid (> 78% and a corresponding reduction in polyunsaturated fatty acids (Jatropha had around 37% oleic acid and 41% polyunsaturated fatty acids. This indicates that FAD2-1 is the major enzyme responsible for converting oleic acid to linoleic acid in Jatropha. Due to the changes in the fatty acids profile, the oil of the JcFAD2-1 RNA interference seed was estimated to yield a cetane number as high as 60.2, which is similar to the required cetane number for conventional premium diesel fuels (60 in Europe. The presence of high seed oleic acid did not have a negative impact on other Jatropha agronomic traits based on our preliminary data of the original plants under greenhouse conditions. Further, we developed a marker-free system to generate the transgenic Jatropha

  16. Development of European regulations on radiopharmaceuticals

    International Nuclear Information System (INIS)

    Kristensen, K.

    1990-01-01

    Separate regulatory systems are being developed on the use of radiopharmaceuticals including radiation protection of patients and personnel and on the quality including safety and efficacy of radiopharmaceuticals. Radiation protection legislation has been introduced in most western European Economic Community (EEC). Within the drug field radiopharmaceuticals have been excepted up till now. However, new EEC directive on radiopharmaceuticals will soon come into force. The work done on the preparation of regulations and guidelines will be discussed. This discussion will focus on the problems faced when radiation protection aspects shall be balanced to traditional requirements of pharmaceutical aspects

  17. Functions of the CCCH type zinc finger protein OsGZF1 in regulation of the seed storage protein GluB-1 from rice

    NARCIS (Netherlands)

    Chen, Y.; Sun, A.; Wang, M.; Zhu, Z.; Ouwerkerk, P.B.F.

    2014-01-01

    Glutelins are the most abundant storage proteins in rice grain and can make up to 80 % of total protein content. The promoter region of GluB-1, one of the glutelin genes in rice, has been intensively used as a model to understand regulation of seed-storage protein accumulation. In this study, we

  18. Exogenous glutamine increases lipid accumulation in developing seeds of castor bean (Ricinus communis L. cultured in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2015-01-01

    Full Text Available This report describes biomass production and compositional changes of developing castor seeds in response to change in the nitrogen resource (glutamine of the medium. During the early developmental period (24-36 days after pollination, oil was found to initially accumulate in the developing seeds. Carbohydrates and oil were inversely related after glutamine provision (35 mM, in the culture medium. [U-14C] sucrose labeling was used to investigate the effect of metabolic fluxes among different storage materials. Addition of glutamine led to a 7% increase of labeling in lipids and an inverse decrease of labeling in carbohydrates. It was postulated that changes in the glutamine concentration in the medium are likely to influence the partitioning of resources between the various storage products, especially carbohydrates and oil. These observations will contribute to a better understanding of assimilate partitioning in developing castor seeds and the development of molecular strategies to improve castor bean seed quality and plant breeding studies.

  19. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Rodriguez, R.J.; Freeman, D. Carl; McArthur, E.D.; Kim, Y.-O.; Redman, R.S.

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at five times the rate observed in nonsymbiotic plants. Endophytes also influenced sexual reproduction of mature big sagebrush (Artemisia tridentata) plants. Two spatially distinct big sagebrush subspecies and their hybrids were symbiotic with unique fungal endophytes, despite being separated by only 380 m distance and 60 m elevation. A double reciprocal transplant experiment of parental and hybrid plants, and soils across the hybrid zone showed that fungal endophytes interact with the soils and different plant genotypes to confer enhanced plant reproduction in soil native to the endophyte and reduced reproduction in soil alien to the endophyte. Moreover, the most prevalent endophyte of the hybrid zone reduced the fitness of both parental subspecies. Because these endophytes are passed to the next generation of plants on seed coats, this interaction provides a selective advantage, habitat specificity, and the means of restricting gene flow, thereby making the hybrid zone stable, narrow and potentially leading to speciation. ?? 2009 Landes Bioscience.

  20. Pancreatic mesenchyme regulates epithelial organogenesis throughout development.

    Directory of Open Access Journals (Sweden)

    Limor Landsman

    2011-09-01

    Full Text Available The developing pancreatic epithelium gives rise to all endocrine and exocrine cells of the mature organ. During organogenesis, the epithelial cells receive essential signals from the overlying mesenchyme. Previous studies, focusing on ex vivo tissue explants or complete knockout mice, have identified an important role for the mesenchyme in regulating the expansion of progenitor cells in the early pancreas epithelium. However, due to the lack of genetic tools directing expression specifically to the mesenchyme, the potential roles of this supporting tissue in vivo, especially in guiding later stages of pancreas organogenesis, have not been elucidated. We employed transgenic tools and fetal surgical techniques to ablate mesenchyme via Cre-mediated mesenchymal expression of Diphtheria Toxin (DT at the onset of pancreas formation, and at later developmental stages via in utero injection of DT into transgenic mice expressing the Diphtheria Toxin receptor (DTR in this tissue. Our results demonstrate that mesenchymal cells regulate pancreatic growth and branching at both early and late developmental stages by supporting proliferation of precursors and differentiated cells, respectively. Interestingly, while cell differentiation was not affected, the expansion of both the endocrine and exocrine compartments was equally impaired. To further elucidate signals required for mesenchymal cell function, we eliminated β-catenin signaling and determined that it is a critical pathway in regulating mesenchyme survival and growth. Our study presents the first in vivo evidence that the embryonic mesenchyme provides critical signals to the epithelium throughout pancreas organogenesis. The findings are novel and relevant as they indicate a critical role for the mesenchyme during late expansion of endocrine and exocrine compartments. In addition, our results provide a molecular mechanism for mesenchymal expansion and survival by identifying β-catenin signaling as an

  1. Dynamic Metabolic Profiles and Tissue-Specific Source Effects on the Metabolome of Developing Seeds of Brassica napus.

    Directory of Open Access Journals (Sweden)

    Helin Tan

    Full Text Available Canola (Brassica napus is one of several important oil-producing crops, and the physiological processes, enzymes, and genes involved in oil synthesis in canola seeds have been well characterized. However, relatively little is known about the dynamic metabolic changes that occur during oil accumulation in seeds, as well as the mechanistic origins of metabolic changes. To explore the metabolic changes that occur during oil accumulation, we isolated metabolites from both seed and silique wall and identified and characterized them by using gas chromatography coupled with mass spectrometry (GC-MS. The results showed that a total of 443 metabolites were identified from four developmental stages. Dozens of these metabolites were differentially expressed during seed ripening, including 20 known to be involved in seed development. To investigate the contribution of tissue-specific carbon sources to the biosynthesis of these metabolites, we examined the metabolic changes of silique walls and seeds under three treatments: leaf-detachment (Ld, phloem-peeling (Pe, and selective silique darkening (Sd. Our study demonstrated that the oil content was independent of leaf photosynthesis and phloem transport during oil accumulation, but required the metabolic influx from the silique wall. Notably, Sd treatment resulted in seed senescence, which eventually led to a severe reduction of the oil content. Sd treatment also caused a significant accumulation of fatty acids (FA, organic acids and amino acids. Furthermore, an unexpected accumulation of sugar derivatives and organic acid was observed in the Pe- and Sd-treated seeds. Consistent with this, the expression of a subset of genes involved in FA metabolism, sugar and oil storage was significantly altered in Pe and Sd treated seeds. Taken together, our studies suggest the metabolite profiles of canola seeds dynamically varied during the course of oil accumulation, which may provide a new insight into the mechanisms

  2. Endogenous Natural Complement Inhibitor Regulates Cardiac Development

    DEFF Research Database (Denmark)

    Mortensen, Simon A; Skov, Louise L; Kjaer-Sorensen, Kasper

    2017-01-01

    mechanisms during fetal development and adult homeostasis. In this article, we describe the function of an endogenous complement inhibitor, mannan-binding lectin (MBL)-associated protein (MAp)44, in regulating the composition of a serine protease-pattern recognition receptor complex, MBL-associated serine...... of MAp44 caused impaired cardiogenesis, lowered heart rate, and decreased cardiac output. These defects were associated with aberrant neural crest cell behavior. We found that MAp44 competed with MASP-3 for pattern recognition molecule interaction, and knockdown of endogenous MAp44 expression could...... be rescued by overexpression of wild-type MAp44. Our observations provide evidence that immune molecules are centrally involved in the orchestration of cardiac tissue development....

  3. Indigenous endophytic seed bacteria promote seedling development and defend against fungal disease in browntop millet (Urochloa ramosa L.).

    Science.gov (United States)

    Verma, S K; White, J F

    2018-03-01

    This study was conducted to investigate indigenous seed endophyte effects on browntop millet seedling development. We report that seed-inhabiting bacterial endophytes are responsible for promoting seedling development, including stimulation of root hair formation, increasing root and shoot length growth and increasing photosynthetic pigment content of seedlings. Bacterial endophytes also improved resistance of seedlings to disease. A total of four endophytic bacteria were isolated from surface-sterilized seeds and identified by 16S rDNA sequencing as Curtobacterium sp. (M1), Microbacterium sp. (M2), Methylobacterium sp. (M3) and Bacillus amyloliquefaciens (M4). Removal of bacteria with streptomycin treatment from the seeds compromised seedling growth and development. When endophytes were reinoculated onto seeds, seedlings recovered normal development. Strains M3 and M4 were found to be most potent in promoting growth of seedlings. Bacteria were found to produce auxin, solubilize phosphate and inhibit fungal pathogens. Significant protection of seedlings from Fusarium infection was found using strain M4 in microcosm assays. The antifungal lipopeptide genes for surfactin and iturin were detected in M4; culture extracts of M4 showed a positive drop collapse result for surfactins. This study demonstrates that browntop millet seeds vector indigenous endophytes that are responsible for modulation of seedling development and protection of seedlings from fungal disease. This study is significant and original in that it is the first report of seed-inhabiting endophytes of browntop millet that influence seedling development and function in defence against soilborne pathogens. This study suggests that conservation and management of seed-vectored endophytes may be important in development of more sustainable agricultural practices. © 2017 The Society for Applied Microbiology.

  4. The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Jianjun Guo

    Full Text Available BACKGROUND: The plant hormone abscisic acid (ABA regulates diverse processes of plant growth and development. It has recently been proposed that GCR2 functions as a G-protein-coupled receptor (GPCR for ABA. However, the structural relationships and functionality of GCR2 have been challenged by several independent studies. A central question in this controversy is whether gcr2 mutants are insensitive to ABA, because gcr2 mutants were shown to display reduced sensitivity to ABA under one experimental condition (e.g. 22 degrees C, continuous white light with 150 micromol m(-2 s(-1 but were shown to display wild-type sensitivity under another slightly different condition (e.g. 23 degrees C, 14/10 hr photoperiod with 120 micromol m(-2 s(-1. It has been hypothesized that gcr2 appears only weakly insensitive to ABA because two other GCR2-like genes in Arabidopsis, GCL1 and GCL2, compensate for the loss of function of GCR2. PRINCIPAL FINDINGS: In order to test this hypothesis, we isolated a putative loss-of-function allele of GCL2, and then generated all possible combinations of mutations in each member of the GCR2 gene family. We found that all double mutants, including gcr2 gcl1, gcr2 gcl2, gcl1 gcl2, as well as the gcr2 gcl1 gcl2 triple mutant displayed wild-type sensitivity to ABA in seed germination and early seedling development assays, demonstrating that the GCR2 gene family is not required for ABA responses in these processes. CONCLUSION: These results provide compelling genetic evidence that GCR2 is unlikely to act as a receptor for ABA in the context of either seed germination or early seedling development.

  5. Development of procedure using plasma welding process to produce 125I seeds

    International Nuclear Information System (INIS)

    Feher, Anselmo

    2006-01-01

    The prostate cancer, which is the second cause of death by cancer in men, overcome only by lung cancer, is a problem of public health in Brazil. Brachytherapy is among the possible available treatments for prostate cancer, in which small seeds containing 125 I radioisotope are implanted in the prostate. The seed consists of a titanium sealed capsule with 0.8 mm external diameter and 4.5 mm length, containing a central silver wire with adsorbed 125 I. The plasma arc welding is one of the viable techniques for the sealing process. The equipment used in this technique is less costly than in other processes. The main objective of this work was the development and the validation of the welding procedure using plasma welding process and the elaboration of a sealing routine according to Good Manufacturing Practices. The development of this work has presented the following phases: cut and cleaning of the titanium material, determination of the welding parameters, development of a device for holding the titanium tube during the welding process, validation of sealed sources according to ISO 2919 Sealed Radioactive Sources - General Requirements and Classification, leakage test according to ISO 9978 Sealed Radioactive Sources - Leakage Test Methods and metallographic assays. The developed procedure, to seal 125 I seeds using plasma welding process, has shown to be efficient, satisfying all the established requirements of ISO 2919. The results obtained in this work have given the possibility to establish a routine production process according to the orientations presented in resolution RDC number 59 - Good Manufacturing Practices do Medical Products of the ANVISA - Brazilian Nacional Agency of Sanitary Surveillance. (author)

  6. Ectopic expression of MPF2-like protein WSA206 leads to arrest in silique and seed development in heterologous host

    International Nuclear Information System (INIS)

    Khan, M.R.

    2016-01-01

    MPF2-like genes belonging to STMADS11 clade of MADS-box transcription factors are mostly involved in calyx inflation, floral reversion and fertility. However their role in fertility remained enigmatic. In this study we transformed WSA206 gene paralog - originated through genome duplication in a Solanaceous plant Withaniasomnifera - ectopically in a heterologous host Arabidopsis thaliana. Interesting phenotypes in floral organs and fruits were observed. Overexpression of WSA206 leads to arrest in silique development. The siliques were compressed and size was drastically reduced from 34mm to 3mm. Along with siliques, the seed development was also suppressed as revealed by shriveling of seeds and reduction in seed number. In extreme cases the siliques were devoid of any seeds. In cases where seeds developed, these were impaired in viability. Besides, the transgenic Arabidopsis also exhibited exorbitant growth of calyx to an extent that it resembled inflated calyx in Solanaceae. The calyx remained persistent and encapsulated the under-developed siliques containing non-viable seeds inside. Thus, fertility and sepal development are tightly coupled traits that are controlled by WSA206 paralog in heterologous system. (author)

  7. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E., E-mail: amsantos@cdtn.b [Center for Development of Nuclear Technology (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2011-07-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  8. Development of computational models for the simulation of isodose curves on dosimetry films generated by iodine-125 brachytherapy seeds

    International Nuclear Information System (INIS)

    Santos, Adriano M.; Meira-Belo, Luiz C.; Reis, Sergio C.; Grynberg, Suely E.

    2011-01-01

    The interstitial brachytherapy is one modality of radiotherapy in which radioactive sources are placed directly in the region to be treated or close to it. The seeds that are used in the treatment of prostate cancer are generally cylindrical radioactive sources, consisting of a ceramic or metal matrix, which acts as the carrier of the radionuclide and as the X-ray marker, encapsulated in a sealed titanium tube. This study aimed to develop a computational model to reproduce the film-seed geometry, in order to obtain the spatial regions of the isodose curves produced by the seed when it is put over the film surface. The seed modeled in this work was the OncoSeed 6711, a sealed source of iodine-125, which its isodose curves were obtained experimentally in previous work with the use of dosimetric films. For the films modeling, compositions and densities of the two types of dosimetric films were used: Agfa Personal Monitoring photographic film 2/10, manufactured by Agfa-Geavaert; and the model EBT radiochromic film, by International Specialty Products. The film-seed models were coupled to the Monte Carlo code MCNP5. The results obtained by simulations showed to be in good agreement with experimental results performed in a previous work. This indicates that the computational model can be used in future studies for other seeds models. (author)

  9. Does the informal seed system threaten cowpea seed health?

    NARCIS (Netherlands)

    Biemond, P.C.; Oguntade, O.; Lava Kumar, P.; Stomph, T.J.; Termorshuizen, A.J.; Struik, P.C.

    2013-01-01

    Most smallholder farmers in developing countries depend on an informal Seed System (SS) for their seed. The informal SS is often criticized because farmer-produced seed samples are not tested for seed health, thus accepting the risk of planting infected seeds. Here we aimed at assessing the quality

  10. Physiological quality and gene expression related to heat-resistant proteins at different stages of development of maize seeds.

    Science.gov (United States)

    Andrade, T; Von Pinho, E V R; Von Pinho, R G; Oliveira, G E; Andrade, V; Fernandes, J S

    2013-09-13

    We quantified and characterized the expression of heat-resistant proteins during seed development of maize lines with distinct levels of tolerance to high drying temperature. A corn field was planted for multiplication of seeds of different lines, two tolerant and two non-tolerant to high drying temperatures. Harvest of the seeds was carried out at various stages of development and they were then subjected to tests of moisture content, germination, first count of germination, accelerated aging, and cold test. The seeds were stored in a freezer for later analysis of expression of heat-resistant proteins by means of real-time PCR, electrophoresis, and spectrophotometry. We observed that heat-resistant proteins are expressed in a differential manner in seeds from different lines and at different stages of development. The expression of heat-resistant proteins was earlier in lines tolerant to high drying temperatures. Greater germination and vigor values was found for seeds collected at the last stage of development.

  11. Seed thioredoxin h

    DEFF Research Database (Denmark)

    Hägglund, Per; Finnie, Christine; Yano, Hiroyuki

    2016-01-01

    , for example chloroplastic f- and m-type thioredoxins involved in regulation of the Calvin-Benson cycle. The cytosolic h-type thioredoxins act as key regulators of seed germination and are recycled by NADPH-dependent thioredoxin reductase. The present review on thioredoxin h systems in plant seeds focuses...

  12. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    OpenAIRE

    S. T. Antipov; S. V. Shakhov; A. N. Martekha; A. A. Berestovoy

    2015-01-01

    The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of saf...

  13. SIGNALS AND REGULATORS THAT GOVERN STREPTOMYCES DEVELOPMENT

    Science.gov (United States)

    McCormick, Joseph R.; Flärdh, Klas

    2012-01-01

    Streptomyces coelicolor is the genetically best characterized species of a populous genus belonging to the Gram-positive Actinobacteria. Streptomycetes are filamentous soil organisms, well known for the production of a plethora of biologically active secondary metabolic compounds. The Streptomyces developmental life cycle is uniquely complex, and involves coordinated multicellular development with both physiological and morphological differentiation of several cell types, culminating in production of secondary metabolites and dispersal of mature spores. This review presents a current appreciation of the signaling mechanisms used to orchestrate the decision to undergo morphological differentiation, and the regulators and regulatory networks that direct the intriguing development of multigenomic hyphae, first to form specialized aerial hyphae, and then to convert them into chains of dormant spores. This current view of S. coelicolor development is destined for rapid evolution as data from “-omics” studies shed light on gene regulatory networks, new genetic screens identify hitherto unknown players, and the resolution of our insights into the underlying cell biological processes steadily improve. PMID:22092088

  14. Signaling hierarchy regulating human endothelial cell development.

    Science.gov (United States)

    Kelly, Melissa A; Hirschi, Karen K

    2009-05-01

    Our present knowledge of the regulation of mammalian endothelial cell differentiation has been largely derived from studies of mouse embryonic development. However, unique mechanisms and hierarchy of signals that govern human endothelial cell development are unknown and, thus, explored in these studies. Using human embryonic stem cells as a model system, we were able to reproducibly and robustly generate differentiated endothelial cells via coculture on OP9 marrow stromal cells. We found that, in contrast to studies in the mouse, bFGF and VEGF had no specific effects on the initiation of human vasculogenesis. However, exogenous Ihh promoted endothelial cell differentiation, as evidenced by increased production of cells with cobblestone morphology that coexpress multiple endothelial-specific genes and proteins, form lumens, and exhibit DiI-AcLDL uptake. Inhibition of BMP signaling using Noggin or BMP4, specifically, using neutralizing antibodies suppressed endothelial cell formation; whereas, addition of rhBMP4 to cells treated with the hedgehog inhibitor cyclopamine rescued endothelial cell development. Our studies revealed that Ihh promoted human endothelial cell differentiation from pluripotent hES cells via BMP signaling, providing novel insights applicable to modulating human endothelial cell formation and vascular regeneration for human clinical therapies.

  15. Development of a cell-seeded modified small intestinal submucosa for urethroplasty

    Directory of Open Access Journals (Sweden)

    Long Zhang

    2016-03-01

    Conclusions: A modified 3D porous SIS scaffold seeded with UC and treated with PAA produces better urethroplasty results than cell-seeded untreated SIS scaffolds, or unseeded PAA treated SIS scaffolds.

  16. combining high seed number and weight to improve seed yield

    African Journals Online (AJOL)

    ACSS

    ABSTRACT. Increasing seed size and seed weight is an important trait for trade, yield component and adaptation of chickpea ... determining yield or quality, and the development of rapid and ..... C.G. 1981. Control of seed growth in soybeans.

  17. Soybean roots retain the seed urease isozyme synthesized during embryo development

    International Nuclear Information System (INIS)

    Torisky, R.S.; Polacco, J.C.

    1990-01-01

    Roots of young soybean (Glycine max [L.] Merr.) plants (up to 25 days old) contain two distinct urease isozymes, which are separable by hydroxyapatite chromatography. These two urease species (URE1 and URE2) differ in: (a) electrophoretic mobility in native gels, (b) pH dependence, and (c) recognition by a monoclonal antibody specific for the seed (embryo-specific) urease. By these parameters root URE1 urease is similar to the abundant embryo-specific urease isozyme, while root URE2 resembles the ubiquitous urease which has previously been found in all soybean tissues examined (leaf, embryo, seed coat, and cultured cells). The embryo-specific and ubiquitous urease isozymes are products of the Eu1 and Eu4 structural genes, respectively. Roots of the eu1-sun/eu1-sun genotype, which lacks the embryo-specific urease (i.e. seed urease-null), contain no URE1 urease activity. Roots of eu4/eu4, which lacks ubiquitous urease, lack the URE2 (leaflike) urease activity. From these genetic and biochemical criteria, then, we conclude that URE1 and URE2 are the embryo-specific and ubiquitous ureases, respectively. Adventitious roots generated from cuttings of any urease genotype lack URE1 activity. In seedling roots the seedlike (URE1) activity declines during development. Roots of 3-week-old plants contain 5% of the total URE1 activity of the radicle of 4-day-old seedlings, which, in turn, has approximately the same urease activity level as the dormant embryonic axis. The embryo-specific urease incorporates label from [ 35 S]methionine during embryo development but not during germination, indicating that there is no de novo synthesis of the embryo-specific (URE1) urease in the germinating root

  18. Asymbiotic in vitro seed propagation of Dendrobium.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Tsavkelova, Elena A; Ng, Tzi Bun; Parthibhan, S; Dobránszki, Judit; Cardoso, Jean Carlos; Rao, M V; Zeng, Songjun

    2015-10-01

    The ability to germinate orchids from seeds in vitro presents a useful and viable method for the propagation of valuable germplasm, maintaining the genetic heterogeneity inherent in seeds. Given the ornamental and medicinal importance of many species within the genus Dendrobium, this review explores in vitro techniques for their asymbiotic seed germination. The influence of abiotic factors (such as temperature and light), methods of sterilization, composition of basal media, and supplementation with organic additives and plant growth regulators are discussed in context to achieve successful seed germination, protocorm formation, and further seedling growth and development. This review provides both a basis for the selection of optimal conditions, and a platform for the discovery of better ones, that would allow the development of new protocols and the exploration of new hypotheses for germination and conservation of Dendrobium seeds and seedlings.

  19. Comparative profiling of miRNA expression in developing seeds of high linoleic and high oleic safflower (Carthamus tinctorius L. plants

    Directory of Open Access Journals (Sweden)

    Shijiang eCao

    2013-12-01

    Full Text Available Vegetable oils high in oleic acid are considered to be advantageous because of their better nutritional value and potential industrial applications. The oleic acid content in the classic safflower oil is normally 10-15% while a natural mutant (ol accumulates elevated oleic acid up to 70% in seed oil. As a part of our investigation into the molecular features of the high oleic (HO trait in safflower we have profiled the microRNA (miRNA populations in developing safflower seeds expressing the ol allele in comparison to the wild type high linoleic (HL safflower using deep sequencing technology. The small RNA populations of the mid-maturity developing embryos of homozygous ol HO and wild type HL safflower had a very similar size distribution pattern, however, only ~16.5% of the unique small RNAs were overlapping in these two genotypes. From these two small RNA populations we have found 55 known miRNAs and identified two candidate novel miRNA families to be likely unique to the developing safflower seeds. Target genes with conserved as well as novel functions were predicted for the conserved miRNAs. We have also identified 13 miRNAs differentially expressed between the HO and HL safflower genotypes. The results may lay a foundation for unravelling the miRNA-mediated molecular processes that regulate oleic acid accumulation in the HO safflower mutant and developmental processes in safflower embryos in general.

  20. Medicago truncatula contains a second gene encoding a plastid located glutamine synthetase exclusively expressed in developing seeds

    Directory of Open Access Journals (Sweden)

    Seabra Ana R

    2010-08-01

    Full Text Available Abstract Background Nitrogen is a crucial nutrient that is both essential and rate limiting for plant growth and seed production. Glutamine synthetase (GS, occupies a central position in nitrogen assimilation and recycling, justifying the extensive number of studies that have been dedicated to this enzyme from several plant sources. All plants species studied to date have been reported as containing a single, nuclear gene encoding a plastid located GS isoenzyme per haploid genome. This study reports the existence of a second nuclear gene encoding a plastid located GS in Medicago truncatula. Results This study characterizes a new, second gene encoding a plastid located glutamine synthetase (GS2 in M. truncatula. The gene encodes a functional GS isoenzyme with unique kinetic properties, which is exclusively expressed in developing seeds. Based on molecular data and the assumption of a molecular clock, it is estimated that the gene arose from a duplication event that occurred about 10 My ago, after legume speciation and that duplicated sequences are also present in closely related species of the Vicioide subclade. Expression analysis by RT-PCR and western blot indicate that the gene is exclusively expressed in developing seeds and its expression is related to seed filling, suggesting a specific function of the enzyme associated to legume seed metabolism. Interestingly, the gene was found to be subjected to alternative splicing over the first intron, leading to the formation of two transcripts with similar open reading frames but varying 5' UTR lengths, due to retention of the first intron. To our knowledge, this is the first report of alternative splicing on a plant GS gene. Conclusions This study shows that Medicago truncatula contains an additional GS gene encoding a plastid located isoenzyme, which is functional and exclusively expressed during seed development. Legumes produce protein-rich seeds requiring high amounts of nitrogen, we postulate

  1. Over-expression of CYP78A98, a cytochrome P450 gene from Jatropha curcas L., increases seed size of transgenic tobacco

    Directory of Open Access Journals (Sweden)

    Yinshuai Tian

    2016-01-01

    Conclusions: The results indicated that CYP78A98 played a role in Jatropha seed size control. This may help us to better understand the genetic regulation of Jatropha seed development, and accelerate the breeding progress of Jatropha.

  2. The Development of Self-Regulation across Early Childhood

    Science.gov (United States)

    Montroy, Janelle J.; Bowles, Ryan P.; Skibbe, Lori E.; McClelland, Megan M.; Morrison, Frederick J.

    2016-01-01

    The development of early childhood self-regulation is often considered an early life marker for later life successes. Yet little longitudinal research has evaluated whether there are different trajectories of self-regulation development across children. This study investigates the development of behavioral self-regulation between the ages of 3 and…

  3. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    Directory of Open Access Journals (Sweden)

    Yuanyuan Hu

    2018-01-01

    Full Text Available Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm, the PSII quantum yield (ΦPSII, and the photosynthetic quenching coefficient (qP. The ribulose 1, 5—bisphosphate carboxylase (Rubisco activity, the total chlorophyll content (Chl(a+b and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars.

  4. Novel Insights into the Influence of Seed Sarcotesta Photosynthesis on Accumulation of Seed Dry Matter and Oil Content in Torreya grandis cv. “Merrillii”

    Science.gov (United States)

    Hu, Yuanyuan; Zhang, Yongling; Yu, Weiwu; Hänninen, Heikki; Song, Lili; Du, Xuhua; Zhang, Rui; Wu, Jiasheng

    2018-01-01

    Seed oil content is an important trait of nut seeds, and it is affected by the import of carbon from photosynthetic sources. Although green leaves are the main photosynthetic organs, seed sarcotesta photosynthesis also supplies assimilates to seed development. Understanding the relationship between seed photosynthesis and seed development has theoretical and practical significance in the cultivation of Torreya grandis cv. “Merrillii.” To assess the role of seed sarcotesta photosynthesis on the seed development, anatomical and physiological traits of sarcotesta were measured during two growing seasons in the field. Compared with the attached current-year leaves, the sarcotesta had higher gross photosynthetic rate at the first stage of seed development. At the late second stage of seed development, sarcotesta showed down-regulation of PSII activity, as indicated by significant decrease in the following chlorophyll fluorescence parameters: the maximum PSII efficiency (Fv/Fm), the PSII quantum yield (ΦPSII), and the photosynthetic quenching coefficient (qP). The ribulose 1, 5—bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content (Chl(a+b)) and nitrogen content in the sarcotesta were also significantly decreased during that period. Treatment with DCMU [3-(3,4-dichlorophenyl)-1,1-dimethylurea] preventing seed photosynthesis decreased the seed dry weight and the oil content by 25.4 and 25.5%, respectively. We conclude that seed photosynthesis plays an important role in the dry matter accumulation at the first growth stage. Our results also suggest that down-regulation of seed photosynthesis is a plant response to re-balance the source-sink ratio at the second growth stage. These results suggest that seed photosynthesis is important for biomass accumulation and oil synthesis of the Torreya seeds. The results will facilitate achieving higher yields and oil contents in nut trees by selection for higher seed photosynthesis cultivars. PMID:29375592

  5. Development of the Seeding System Used for Laser Velocimeter Surveys of the NASA Low-Speed Centrifugal Compressor Flow Field

    Science.gov (United States)

    Wasserbauer, C. A.; Hathaway, M. D.

    1994-01-01

    Consideration is given to an atomizer-based system for distributing high-volume rates of polystyrene latex (PSL) seed material developed to support laser velocimeter investigations of the NASA Low-Speed Compressor flow field. Complete evaporation of the liquid carrier before the flow entering the compressor was of primary concern for the seeder system design. It is argued that the seed nozzle should incorporate a needle valve that can mechanically dislodge accumulated PSL seed material when the nozzle is turned off. Water is less expensive as the liquid carrier and should be used whenever adequate residence times are available to ensure complete evaporation. PSL agglomerates over time and needs to be mixed or blended before use. Arrangement of the spray nozzles needs to be adjustable to provide maximum seeding at the laser probe volume.

  6. Development and morphology of the fruit and seed of the hemiparasite genus Jodina (Cervantesiaceae

    Directory of Open Access Journals (Sweden)

    María Luján Luna

    2017-05-01

    Full Text Available The monotypic genus Jodina is endemic to central and southeastern South America, common in forests and scrubland environments. The fruit type in Jodina is controversial since it has been described at different stages of development. The main objective of this work was to analyze the morphology of the fruit of J. rhombifolia during its maturation to attain a consensus about its type. Also characteristics of seed development and anatomy were analyzed in detail. Material was processed according to conventional techniques for LM and SEM studies. The fruit of J. rhombifolia is a pseudodrupe since the ovary is half-inferior; the fleshy layer of the pericarp is constituted by an increase of the nectary disk whereas the stony layer is represented by the mesocarp. Participation of the nectary disk as part of the fruit wall has not been mentioned previously. The seed is “naked” —the integument disintegrates during development— and the resulting structure is a pyrene. The interpretations made by other authors on the fruit of Jodina are also discussed.

  7. Study of Effects of Time, Quantity and Application Method of Benzylaminopurine and Gibberellic Acid Growth Regulators on Breaking Seed Dormancy of Kelussia odoratissima M.

    Directory of Open Access Journals (Sweden)

    S. Zafarian

    2013-06-01

    Full Text Available Karafs Kouhi (Kelussia odoratissima M. is one of the important medicinal plants of umbelliferae family and native of Zagros Mountains range, which is endangered due to illegal harvests. In order to accelerate breaking the seed dormancy of this plant, a factorial experiment based on completely randomized design with four replications, was carried in Faculty of Agriculture, Shahrekord University. The seeds of Karafs Kouhi from Saraghaseyed ecotype were treated under three time periods (25, 50, 75 and 100 days after planting, combination of enzylaminopurine (BAP (concentrations of 0, 0.75 and 1.5 mg/L and gibberellic acid (GA3 (concentrations of 0, 250 and 500 mg/L and application methods of these growth regulators (soaking seeds in the growth regulators and use of growth regulators directly on the medium. In this experiment, germination percentage, rootlet length and hypocotyl length were studied. The results indicated that 100 days after planting significantly (P≥0.01 showed the highest rates in the three studied traits. In this treatment, the germination percentage was 86.94%, rootlet length was 9.43 cm and hypocotyl length was 11.64 cm. Moreover, the interaction of the factors was not significant for all the traits. The best combination to increase germination percent, rootlet length and germination rate, was 0.75 mg/L BAP, 500 mg/L GA3 and direct use of growth regulators. To increase hypocotyl length, only 500 mg/L GA3 is recommended.

  8. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok; Hyun, Wooyoung; Nguyen, Hoai Nguyen; Jeong, Chanyoung; Xiong, Liming; Hong, Sukwhan; Lee, Hojoung

    2014-01-01

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  9. AtMyb7, a subgroup 4 R2R3 Myb, negatively regulates ABA-induced inhibition of seed germination by blocking the expression of the bZIP transcription factor ABI5

    KAUST Repository

    Kim, Junhyeok

    2014-08-27

    Various Myb proteins have been shown to play crucial roles in plants, including primary and secondary metabolism, determination of cell fate and identity, regulation of development and involvement in responses to biotic and abiotic stresses. The 126 R2R3 Myb proteins (with two Myb repeats) have been found in Arabidopsis; however, the functions of most of these proteins remain to be fully elucidated. In the present study, we characterized the function of AtMyb7 using molecular biological and genetic analyses. We used qRT-PCR to determine the levels of stress-response gene transcripts in wild-type and atmyb7 plants. We showed that ArabidopsisAtMyb7 plays a critical role in seed germination. Under abscisic acid (ABA) and high-salt stress conditions, atmyb7 plants showed a lower germination rate than did wild-type plants. Furthermore, AtMyb7 promoter:GUS seeds exhibited different expression patterns in response to variations in the seed imbibition period. AtMyb7 negatively controls the expression of the gene encoding bZIP transcription factor, ABI5, which is a key transcription factor in ABA signalling and serves as a crucial regulator of germination inhibition in Arabidopsis. © 2014 John Wiley & Sons Ltd.

  10. 7 CFR 201.50 - Weed seed.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Purity Analysis in the Administration of the Act § 201.50 Weed seed. Seeds (including bulblets or... sieve are considered weed seeds. For wild onion and wild garlic (Allium spp.) bulblets classed as inert...

  11. Changes in the composition of pumpkin seeds (Cucurbita moschata during development and maturation

    Directory of Open Access Journals (Sweden)

    Petkova, Zh. Y.

    2015-03-01

    Full Text Available Changes in the chemical and lipid composition of Cucurbita moschata seeds and seed oils at different stages of development were investigated. The oil content of the seeds at 30, 60 and 90 days after flowering was 10.7, 41.1, and 47.1%, respectively. The amount of proteins was 26.0, 35.9, and 38.2%. The contents of carbohydrates soluble in ethanol were 9.5, 1.8 and 1.3%. The starch and fiber percentage contents were 16.3, 6.8, 2.3 and 4.0, 6.9 and 10.0, respectively and the ash contents were 7.2, 4.7, and 4.5%. The total sterol percentages were found to be 2.0, 0.8 and 0.6 in the oils and 0.2, 0.3 and 0.3 in the seeds. The tocopherol contents were 2010, 512 and 527 mg·kg−1 in the oil, and 215, 210 and 250 mg·kg−1 in the seeds. The total phospholipid percentages were 8.7, 0.8 and 0.4 in the oils and 0.9, 0.3 and 0.2 in the seeds. Fatty acid composition was determined by gas chromatography and the major fatty acids in the oils at all stages of ripening were linoleic (40.8–50.2% followed by palmitic (21.5–25.9% and oleic (20.5–21.0%.Se determinaron los cambios en la composición química y en los lípidos de semillas de Cucurbita moschata así como en los aceites extraídos en diferentes etapas del desarrollo de las semillas. El contenido de aceite a los 30, 60 y 90 días después de la floración fue de 10,7, 41,1 y 47,1%, respectivamente. La cantidad de proteínas fue del 26,0, 35,9 y 38,2% y el contenido de hidratos de carbono solubles en etanol fue de 9,5, 1,8 y 1,3%. Los contenidos de almidón y fibras fueron 16,3, 6,8, 2,3% y 4,0, 6,9 y 10,0%, respectivamente y el contenido de cenizas fue de 7.2%, 4.7% y 4.5%. Se encontró un contenido total de esteroles del 2,0, 0,8 y 0,6% en los aceites y de 0,2, 0,3 y 0,3% en las semillas. El contenido de tocoferoles fue 2010, 512 y 527 mg·kg−1 en el aceite, y 215, 210 y 250 mg·kg−1 en las semillas. Los contenidos de fosfolípidos totales fueron de 8,7, 0,8 y 0,4% en los aceites y 0,9, 0

  12. PEP activity and expression of photosynthesis genes required for embryo and seed development in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Dmitry eKremnev

    2014-08-01

    Full Text Available Chloroplast biogenesis and function is essential for proper plant embryo and seed development but the molecular mechanisms underlying the role of plastids during embryogenesis are poorly understood. Expression of plastid encoded genes is dependent on two different transcription machineries; a plastid-encoded bacterial-type RNA polymerase (PEP and a nuclear-encoded phage-type RNA polymerase (NEP, which recognize distinct types of promoters. However, the division of labor between PEP and NEP during plastid development and in mature chloroplasts is unclear. We show here that PRIN2 and CSP41b, two proteins identified in plastid nucleoid preparations, are essential for proper plant embryo development. Using Co-IP assays and native PAGE we have shown a direct physical interaction between PRIN2 and CSP41b. Moreover, PRIN2 and CSP41b form a distinct protein complex in vitro that binds DNA. The prin2.2 and csp41b-2 single mutants displayed pale phenotypes, abnormal chloroplasts with reduced transcript levels of photosynthesis genes and defects in embryo development. The respective csp41b-2prin2.2 homo/heterozygote double mutants produced abnormal white colored ovules and shrunken seeds. Thus, the csp41b-2prin2.2 double mutant is embryo lethal. In silico analysis of available array data showed that a large number of genes traditionally classified as PEP dependent genes are transcribed during early embryo development from the pre-globular stage to the mature-green-stage. Taken together, our results suggest that PEP activity and consequently the switch from NEP to PEP activity, is essential during embryo development and that the PRIN2-CSP41b DNA binding protein complex possibly is important for full PEP activity during this process.

  13. Seeds and Synergies

    International Development Research Centre (IDRC) Digital Library (Canada)

    'Seeds and Synergies presents inspiring evidence of change in practice and policy ... Seeds of inspiration: breathing new life into the formal agricultural research .... and Urban Development and Poverty Alleviation and Agricultural Commodity ...

  14. Industrial Innovation and Environmental Regulation: Developing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    What role should governments play in protecting the environment and controlling the environmental impacts of industry? Do regulations benefit the environment, and how do they affect industrial innovation? Since the modern era of environmental management began in the early 1970s, regulations have been used with ...

  15. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    Science.gov (United States)

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  16. A Conserved Cytochrome P450 Evolved in Seed Plants Regulates Flower Maturation

    Czech Academy of Sciences Publication Activity Database

    Liu, Z.; Boachon, B.; Lugan, R.; Tavares, R.; Erhardt, M.; Mutterer, J.; Demais, V.; Pateyron, S.; Brunaud, V.; Ohnishi, T.; Pěnčík, Aleš; Achard, P.; Gong, F.; Hedden, P.; Werck-Reichhart, D.; Renault, H.

    2015-01-01

    Roč. 8, č. 12 (2015), s. 1751-1765 ISSN 1674-2052 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : flower development * phylogenomics * negative selection Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 7.142, year: 2015

  17. Native Seed Supply and the Restoration Species Pool.

    Science.gov (United States)

    Ladouceur, Emma; Jiménez-Alfaro, Borja; Marin, Maria; De Vitis, Marcello; Abbandonato, Holly; Iannetta, Pietro P M; Bonomi, Costantino; Pritchard, Hugh W

    2018-01-01

    Globally, annual expenditure on ecological restoration of degraded areas for habitat improvement and biodiversity conservation is approximately $18bn. Seed farming of native plant species is crucial to meet restoration goals, but may be stymied by the disconnection of academic research in seed science and the lack of effective policies that regulate native seed production/supply. To illustrate this problem, we identified 1,122 plant species important for European grasslands of conservation concern and found that only 32% have both fundamental seed germination data available and can be purchased as seed. The " restoration species pool," or set of species available in practice, acts as a significant biodiversity selection filter for species use in restoration projects. For improvement, we propose: (1) substantial expansion of research and development on native seed quality, viability, and production; (2) open-source knowledge transfer between sectors; and (3) creation of supportive policy intended to stimulate demand for biodiverse seed.

  18. Regulation of Picea abies seed dormancy by red and far-red light at various moisture contents

    Energy Technology Data Exchange (ETDEWEB)

    Leinonen, K.; Chantal, M. de [Helsinki Univ. (Finland). Dept. of Forest Ecology

    1998-04-01

    The effects of red (R), far-red (FR) and R+FR light on Norway spruce seed dormancy were studied at five different moisture contents (MC) between 5 and 20%. The degree of dormancy was studied by germinating seeds over a wide range of temperatures in the dark. The non-irradiated control seeds were shallowly dormant, only a proportion of them germinated and within a limited temperature range. Red light progressively stimulated germination between 5 and 17% MC, but this effect was reversed if a FR treatment followed, although all germination could not be inhibited by one FR pulse. Far-red light had a slightly stimulating effect at 19% MC. To generate seeds able to germinate over a wide range of temperatures in darkness, an artificial light pretreatment should be given to seeds at MC above 17% in order to receive maximum response 24 refs, 2 figs, 1 tab

  19. Identification of new members of Fertilisation Independent Seed Polycomb Group pathway involved in the control of seed development in Arabidopsis thaliana.

    Science.gov (United States)

    Guitton, Anne-Elisabeth; Page, Damian R; Chambrier, Pierre; Lionnet, Claire; Faure, Jean-Emmanuel; Grossniklaus, Ueli; Berger, Frédéric

    2004-06-01

    In higher plants, double fertilisation initiates seed development. One sperm cell fuses with the egg cell and gives rise to the embryo, the second sperm cell fuses with the central cell and gives rise to the endosperm. The endosperm develops as a syncytium with the gradual organisation of domains along an anteroposterior axis defined by the position of the embryo at the anterior pole and by the attachment to the placenta at the posterior pole. We report that ontogenesis of the posterior pole in Arabidopsis thaliana involves oriented migration of nuclei in the syncytium. We show that this migration is impaired in mutants of the three founding members of the FERTILIZATION INDEPENDENT SEED (FIS) class, MEDEA (MEA), FIS2 and FERTILIZATION INDEPENDENT ENDOSPERM (FIE). A screen based on a green fluorescent protein (GFP) reporter line allowed us to identify two new loci in the FIS pathway, medicis and borgia. We have cloned the MEDICIS gene and show that it encodes the Arabidopsis homologue of the yeast WD40 domain protein MULTICOPY SUPRESSOR OF IRA (MSI1). The mutations at the new fis loci cause the same cellular defects in endosperm development as other fis mutations, including parthenogenetic development, absence of cellularisation, ectopic development of posterior structures and overexpression of the GFP marker.

  20. Development and validation of a real-time quantitative PCR assay to detect Xanthomonas axonopodis pv. allii from onion seed.

    Science.gov (United States)

    Robène, Isabelle; Perret, Marion; Jouen, Emmanuel; Escalon, Aline; Maillot, Marie-Véronique; Chabirand, Aude; Moreau, Aurélie; Laurent, Annie; Chiroleu, Frédéric; Pruvost, Olivier

    2015-07-01

    Bacterial blight of onion is an emerging disease threatening world onion production. The causal agent Xanthomonas axonopodis pv. allii is seed transmitted and a reliable and sensitive tool is needed to monitor seed exchanges. A triplex quantitative real-time PCR assay was developed targeting two X. axonopodis pv. allii-specific markers and an internal control chosen in 5.8S rRNA gene from Alliaceae. Amplification of at least one marker indicates the presence of the bacterium in seed extracts. This real-time PCR assay detected all the 79 X. axonopodis pv. allii strains tested and excluded 85.2% of the 135 non-target strains and particularly all 39 saprophytic and pathogenic bacteria associated with onion. Cross-reactions were mainly obtained for strains assigned to nine phylogenetically related X. axonopodis pathovars. The cycle cut-off was estimated statistically at 36.3 considering a risk of false positive of 1%. The limit of detection obtained in at least 95% of the time (LOD 95%) was 5×10(3) CFU/g (colony forming unit/g). The sensitivity threshold was found to be 1 infected seed in 32,790 seeds. This real-time PCR assay should be useful for preventing the long-distance spread of X. axonopodis pv. allii via contaminated seed lots and determining the epidemiology of the bacterium. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. An ortholog of LEAFY in Jatropha curcas regulates flowering time and floral organ development.

    Science.gov (United States)

    Tang, Mingyong; Tao, Yan-Bin; Fu, Qiantang; Song, Yaling; Niu, Longjian; Xu, Zeng-Fu

    2016-11-21

    Jatropha curcas seeds are an excellent biofuel feedstock, but seed yields of Jatropha are limited by its poor flowering and fruiting ability. Thus, identifying genes controlling flowering is critical for genetic improvement of seed yield. We isolated the JcLFY, a Jatropha ortholog of Arabidopsis thaliana LEAFY (LFY), and identified JcLFY function by overexpressing it in Arabidopsis and Jatropha. JcLFY is expressed in Jatropha inflorescence buds, flower buds, and carpels, with highest expression in the early developmental stage of flower buds. JcLFY overexpression induced early flowering, solitary flowers, and terminal flowers in Arabidopsis, and also rescued the delayed flowering phenotype of lfy-15, a LFY loss-of-function Arabidopsis mutant. Microarray and qPCR analysis revealed several flower identity and flower organ development genes were upregulated in JcLFY-overexpressing Arabidopsis. JcLFY overexpression in Jatropha also induced early flowering. Significant changes in inflorescence structure, floral organs, and fruit shape occurred in JcLFY co-suppressed plants in which expression of several flower identity and floral organ development genes were changed. This suggests JcLFY is involved in regulating flower identity, floral organ patterns, and fruit shape, although JcLFY function in Jatropha floral meristem determination is not as strong as that of Arabidopsis.

  2. Breeding response of transcript profiling in developing seeds of Brassica napus

    Directory of Open Access Journals (Sweden)

    Li Xiaodan

    2009-05-01

    Full Text Available Abstract Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1 were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low

  3. Cloning and molecular analyses of a gibberellin 20-oxidase gene expressed specifically in developing seeds of watermelon.

    Science.gov (United States)

    Kang, H G; Jun, S H; Kim, J; Kawaide, H; Kamiya, Y; An, G

    1999-10-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA(12) at C-20 to the C(19) compound GA(9), a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the beta-glucuronidase (GUS) gene. In a transient expression system, beta-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds.

  4. Cloning and Molecular Analyses of a Gibberellin 20-Oxidase Gene Expressed Specifically in Developing Seeds of Watermelon1

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Junyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    1999-01-01

    To understand the biosynthesis and functional role of gibberellins (GAs) in developing seeds, we isolated Cv20ox, a cDNA clone from watermelon (Citrullus lanatus) that shows significant amino acid homology with GA 20-oxidases. The complementary DNA clone was expressed in Escherichia coli as a fusion protein, which oxidized GA12 at C-20 to the C19 compound GA9, a precursor of bioactive GAs. RNA-blot analysis showed that the Cv20ox gene was expressed specifically in developing seeds. The gene was strongly expressed in the integument tissues, and it was also expressed weakly in inner seed tissues. In parthenocarpic fruits induced by 1-(2-chloro-4-pyridyl)-3-phenylurea treatment, the expression pattern of Cv20ox did not change, indicating that the GA 20-oxidase gene is expressed primarily in the maternal cells of developing seeds. The promoter of Cv20ox was isolated and fused to the β-glucuronidase (GUS) gene. In a transient expression system, β-glucuronidase staining was detectable only in the integument tissues of developing watermelon seeds. PMID:10517828

  5. Studies on cannabis. III. Young plants from the seed irradiated with /sup 60/Co gamma rays for inhibiting their development after seeding

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, H; Kuriyama, E; Tomizawa, A [Tokyo Coll. of Pharmacy (Japan)

    1976-01-01

    The seedlings from Cannabis sativa L. seeds irradiated with different doses of ..gamma..-rays were examined, in order to determine the dose sufficient to kill the young plants naturally, before their hallucinnogenic component increases. The seeds of ''Minamioshihara No. 1'', which were harvested in 1972 in Tochigi Prefecture, were irradiated with eight different doses of /sup 60/Co ..gamma..-rays in January 17, 1973, and the seedlings were examined several times during the subsequent 9 months, from March to November 1973, and their morphological and histological effects were examined, and the results are summarized as follows: Samples irradiated with 1500 and 1000 krads developed radicles about 3 mm in length. Samples irradiated with 500, 200, and 50 krads grew into young plants with the first set of leaves, without lateral roots. Samples irradiated with 30 krads grew to about 10 cm high with a few lateral roots, and the epicotyls about 1 cm in length. These young plants from the irradiated seeds stayed in the same condition and then died. Samples irradiated with 15 and 5 krads grew in the same way as the controls until the stage of flowering. Samples irradiated with 500, 200, 50, and 30 krads showerd the cell membranes of endodermis and pericycle to be partially lignified and suberized. The degree of change was related to the dose of ..gamma..-rays. Samples irradiated with 30 krads showed withered cells near the end of the lateral nerves on the first and second set of leaves. The economical dose of /sup 60/Co ..gamma..-rays for inhibiting young plants from developing into adult ones was a minimum of 30 krads which made the young plants die. Irradiation with 50 krads of ..gamma..-rays will be required to kill the young plants completely before they develop the hallucinogenic component.

  6. Future Regulations – A Catalyst for Technology Development

    Science.gov (United States)

    Summary of current mobile source regulations and EPA mobile source regulatory authority with an emphasis on how EPA regulations are a driver for the development and introduction of automotive technology.

  7. The distribution of fruit and seed toxicity during development for eleven neotropical trees and vines in Central Panama.

    Science.gov (United States)

    Beckman, Noelle G

    2013-01-01

    Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions.

  8. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development.

    Science.gov (United States)

    Iwai, Toru; Takahashi, Michiko; Oda, Koshiro; Terada, Yasuko; Yoshida, Kaoru T

    2012-12-01

    Phytic acid (inositol hexakisphosphate [InsP(6)]) is the storage compound of phosphorus in seeds. As phytic acid binds strongly to metallic cations, it also acts as a storage compound of metals. To understand the mechanisms underlying metal accumulation and localization in relation to phytic acid storage, we applied synchrotron-based x-ray microfluorescence imaging analysis to characterize the simultaneous subcellular distribution of some mineral elements (phosphorus, calcium, potassium, iron, zinc, and copper) in immature and mature rice (Oryza sativa) seeds. This fine-imaging method can reveal whether these elements colocalize. We also determined their accumulation patterns and the changes in phosphate and InsP(6) contents during seed development. While the InsP(6) content in the outer parts of seeds rapidly increased during seed development, the phosphate contents of both the outer and inner parts of seeds remained low. Phosphorus, calcium, potassium, and iron were most abundant in the aleurone layer, and they colocalized throughout seed development. Zinc was broadly distributed from the aleurone layer to the inner endosperm. Copper localized outside the aleurone layer and did not colocalize with phosphorus. From these results, we suggest that phosphorus translocated from source organs was immediately converted to InsP(6) and accumulated in aleurone layer cells and that calcium, potassium, and iron accumulated as phytic acid salt (phytate) in the aleurone layer, whereas zinc bound loosely to InsP(6) and accumulated not only in phytate but also in another storage form. Copper accumulated in the endosperm and may exhibit a storage form other than phytate.

  9. The distribution of fruit and seed toxicity during development for eleven neotropical trees and vines in Central Panama.

    Directory of Open Access Journals (Sweden)

    Noelle G Beckman

    Full Text Available Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions.

  10. Embryo development and corresponding factors affecting in vitro germination of Cymbidium faberi × C. sinense hybrid seeds

    Directory of Open Access Journals (Sweden)

    Li Fengtong

    2016-01-01

    Full Text Available A better understanding of embryo development would provide insights into seed quality and subsequent germination events in the interspecific hybridization of Cymbidium faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’. At the mature stage, 26.1% of the ovules were abnormal. Most of the hybrid embryos could develop normally. Abortions mainly occurred at the zygote (9.5% and 2-4-celled embryo (15.1% stages. No germination was observed at 90 and 105 days after pollination (DAP, when the embryo was at the early globular stage, with abundant organelles but no storage materials. During 110-130 DAP, the globular embryo was formed and the starch grains began to accumulate in plastids. The hybrid seeds collected at 120 DAP showed initiation of germination. Germination significantly increased at 135 DAP and was maximal at 150 DAP, during which period the hybrid embryos developed into the late globular stage. The storage materials, i.e. lipid and protein bodies, began to accumulate and the filamentary structures derived from suspensor cells still persisted. After the seeds matured (160 DAP, the germination percentage declined sharply. Safranin staining revealed that the outer seed coat was totally cuticularized and the inner seed coat appeared as a cuticle layer enclosing the embryo proper tightly, which may be the main factor inhibiting the subsequent germination of hybrid seeds. In conclusion, 150 DAP should be the opportune time for the in vitro germination of C. faberi ‘Jiepeimei’ × C. sinense ‘Qijianheimo’ hybrid seeds.

  11. Industrial Innovation and Environmental Regulation: Developing ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2007-03-01

    Mar 1, 2007 ... Book cover Industrial Innovation and Environmental Regulation: ... in steering the behaviour of economic agents in industrial production. ... IDRC congratulates first cohort of Women in Climate Change Science Fellows.

  12. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    Science.gov (United States)

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P spreads resembled commercial peanut butter, both in appearance, texture and spreadability; were a source of ω-3 fatty acids and with no visual oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  13. Development of temperature regulation in newborn reindeer

    Directory of Open Access Journals (Sweden)

    R. Hissa

    1981-05-01

    Full Text Available Development of temperature regulation was investigated by determining the ability of newborn reindeer calves (Rangifer tarandus tarandus to maintain a normal body temperature when exposed to an incrementially decreasing ambient temperature. Newborn calves (1 day old can maintain their body temperature even at -15 °C. They can increase their metabolic rate five- to sixfold. Heat production is primarily stimulated by the sympathetic nervous system. The response to exogenous administration of noradrenaline and propranolol was investigated.Poronvasan låmmonsååtelyn syntymånjålkeinen kehittyminen.Abstract in Finnish / Yhteenveto: Vastasyntyneiden poronvasojen kylmansietoa ja lammonsaatelya tutkittiin toukokuussa 1981 Inarin Kaamasessa Paliskuntain yhdistyksen koetarhassa. Tutkittavat vasat olivat 1-10 vuorokauden ikaisia. Vasa asetettiin jååhdytettåvaån mittauskammioon. Sen aineenvaihdunta, lampotilat niin ihon eri kohdista kuin perasuolesta, lihasvarina ja sydanfrekvenssi rekisteroitiin jatkuvasti. Tulosten mukaan nayttåa siltå kuin 1 vuorokauden ikaiselle vasalle -15 °C olisi ehdoton alaraja låmpotilan sååtelyssa. Se kykeni kohottamaan hapenkulutusta talloin 5-kertaisesti. Lihasvarinan merkitys on vahainen verrattuna kemialliseen låmmontuottoon kylmassa. Tama voitiin osoittaa injisoimalla vasaan sympaattisen hermoston valittajaainetta noradrenaliinia.Temperaturreguleringens utvikling hos nyfødte reinkalver.Abstract in Norwegian / Sammendrag: Temperaturreguleringens utvikling er studert ved å bestemme nyfødte reinkalvers evne til å opprettholde normal kroppstemperatur under påvirkning av gradvis synkende omgivelsestemperatur. Nyfødte kalver (1 døgn gamle kan opprettholde sin kroppstemperatur selv ved -15 °C. De kan øke sin omsetningshastighet fem til seks ganger. I starten er varmeproduksjonen stimulert av det sympatiske nervesystem. Virkningen av tilført noradrenalin og propranolol ble studert og skjelving synes å spille

  14. Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa

    International Nuclear Information System (INIS)

    Onoji, Samuel E.; Iyuke, Sunny E.; Igbafe, Anselm I.; Nkazi, Diakanua B.

    2016-01-01

    Highlights: • Sub-Saharan Africa countries have about 251 million rubber trees with the capacity to produce over 16 kilo ton of biodiesel. • Rubber seed oil has wider industrial applications and its biodiesel properties compete favorably with other non-edible oils. • Rubber seed oil is a sustainable and affordable source of biodiesel for sub-Saharan Africa development. • Plantain peels that are in abundance in sub-Saharan Africa is a source of base catalyst for the transesterification of rubber seed oil. • This is no regulatory framework and bioenergy policy in sub-Saharan Africa on the use of waste rubber seeds. - Abstract: The global energy demand is currently met by the use of non-renewable fossil fuels. The challenges of non-availability of these fuels in the future, instability in prices of crude oil and its negative environmental impacts, stimulated researchers in the global community in search of renewable energies for replacement of fossil fuels in future. Biodiesel has been identified as a good complement and plausible replacement of fossil diesel because of the overwhelming characteristic properties similar to fossil diesel in addition to its good lubricity, biodegradability, non-toxicity and eco-friendliness when used in diesel engines. The production of biodiesel from edible vegetable oils competes with food consumption and consequently high cost of food and biodiesel. Studies have shown that rubber seed contains 35–45 wt.% oil which portrays a better competitor to other non-edible oil bearing plants in biodiesel production. Biodiesel produced from non-edible rubber seed oil (RSO) is an attractive option for the sustainable development of sub-Saharan Africa (SSA) countries that depend heavily on fossil diesel. The application of abundant plantain (Musa paradisiacal) peels considered as waste in SSA countries as heterogeneous base catalyst in RSO biodiesel production will further reduce the cost of biodiesel. Rubber trees (Hevea brasiliensis

  15. Design, Development and Evaluation of a Pneumatic Seeder for Automatic Planting of Seeds in Cellular Trays

    Directory of Open Access Journals (Sweden)

    E Movahedi

    2014-04-01

    Full Text Available For planting fine seeds in cellular trays, an automatic pneumatic seeder was designed, constructed and evaluated. CATIA software was used to design and analysis the system parts of the seeder. Different parts of the seeder, including vibrating seed hopper, vacuum boom, seed picking nozzles, seed tube, pneumatic system and electronic control unit for automation of the seeder, were designed and constructed. The area of nozzle orifice was used to calculate the required pressure of nozzle tip. The seeder was evaluated using two sizes of trays. Experiments were performed with five replications and the error of planting the seeds in the 105 and 390-cellular trays were 1.9 and 0.46 percent, respectively. The time of planting for 105 and 390 cellular trays reduced from 20 min (for manual seeding to 35 s and from 90 min to 160 s, respectively.

  16. A Conceptual Framework for Lean Regulated Software Development

    DEFF Research Database (Denmark)

    Cawley, Oisin; Richardson, Ita; Wang, Xiaofeng

    2015-01-01

    for software development within a regulated environment? This poster presents the results of our empirical research into lean and regulated software development. Built from a combination of data sources, we have developed a conceptual framework comprising five primary components. In addition the relationships...... they have with both the central focus of the framework (the situated software development practices) and with each other are indicated....

  17. Development of an automation system for Iodine-125 brachytherapy seed encapsulated by Nd:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, S.L.; Feher, A.; Sprenger, F.E.; Rostelato, M.E.C.M.; Costa, F.E. da; Calvo, W.A.P.

    2011-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at Institute for Nuclear and Energy Research, Sao Paulo, Brazil (IPEN-CNEN/SP) imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a programmable logic controller (PLC), a stepper motor, an Nd:YAG laser welding machine and a supervisory. The statistical repeatability of correctly encapsulated sealed sources with this automation system is greater than 95%. (authors)

  18. Development of an automation system for iodine-125 brachytherapy seed production by ND:YAG laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir L.; Feher, Anselmo; Sprenger, Francisco E.; Rostellato, Maria Elisa C.M.; Costa, Fabio E.; Calvo, Wilson A.P.

    2009-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by Nd:YAG laser welding, which has been used successfully in low dose rate brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8 mm in diameter and 4.5 mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources became a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a larger number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with good manufacturing practices. The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing a Programmable Logic Controller, a stepper motor, an Nd:YAG laser welding machine and a supervisory. (author)

  19. Development of an automation system for iodine-125 brachytherapy seed production by (Nd:YAG) laser welding

    International Nuclear Information System (INIS)

    Somessari, Samir Luiz

    2010-01-01

    The aim of this work is to develop an automation system for iodine-125 radioactive seed production by (Nd:YAG) laser welding, which has been used successfully in Low Dose Rate (LDR) brachytherapy treatment. This small seed consists of a welded titanium capsule, with 0.8mm in diameter and 4.5mm in length, containing iodine-125 adsorbed onto a silver rod. The iodine-125 seeds are implanted into the human prostate to irradiate the tumor for cancer treatment. Nowadays, the Radiation Technology Center, at IPEN-CNEN/SP imports and distributes 36,000 iodine-125 seeds per year, for the clinics and hospitals in the country. However, the Brazilian market potential is now over 8,000 iodine-125 seeds per month. The local production of these iodine-125 radioactive sources becomes a priority for the Institute, in order to reduce the price and the problems of prostate cancer management. It will permit to spread their use to a largest number of patients in Brazil. On the other hand, the industrial automation plays an important role for iodine-125 seeds in order to increase the productivity, with high quality and assurance, avoiding human factors, implementing and operating with Good Manufacturing Practices (GMP). The technology consists of appliance electronic and electro-mechanical parts and components to control machines and processes. The automation system technology for iodine-125 seed production developed in this work was mainly assembled employing Programmable Logic Controller (PLC), stepper motors, drivers, (Nd:YAG) laser welding machine, photoelectric sensors and supervisory. (author)

  20. Zinc distribution and localization in primed maize seeds and its translocation during early seedling development

    DEFF Research Database (Denmark)

    Imran, Muhammad; Garbe-Schönberg, Dieter; Neumann, Günter

    2017-01-01

    Zinc (Zn) priming is a technique used to increase seed Zn reserves for improving seed quality, crop growth, and enhancing stress tolerance in crop plants. The present study demonstrated the effect of water and Zn priming on the distribution and accumulation of endogenous and primed Zn in maize...... seeds (Zea mays L.). Zn concentration in unprimed, water and Zn primed seeds and germinated seedlings were analyzed by ICP-MS (Inductivity Coupled Plasma Mass Spectroscopy). DTZ (Diphenyle Thio-Carbazone) staining method and LA-ICP-MS (Laser Ablation Inductivity Coupled Plasma Mass Spectroscopy...

  1. Influence of laser radiation on the growth and development of seeds of agricultural plants

    Science.gov (United States)

    Grishkanich, Alexander; Zhevlakov, Alexander; Polyakov, Vadim; Kascheev, Sergey; Sidorov, Igor; Ruzankina, Julia; Yakovlev, Alexey; Mak, Andrey

    2016-04-01

    The experimental results presented in this study focused on the study of biological processes caused by exposure to the coating layers of the laser green light seed (λ = 532 nm) range for the larch, violet (λ = 405 nm) and red (λ = 640 nm) for spruce. Spend a series of experiments to study the dependence of crop seed quality (spruce and larch from the pine family) from exposure to laser radiation under different conditions. In all the analyzed groups studied seed germination and growth of seedlings exposed to laser exposure, compared with the control group. The results showed that the higher percentage of germination than seeds of the control group.

  2. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus Over-Expressing MicroRNA394.

    Directory of Open Access Journals (Sweden)

    Jian Bo Song

    Full Text Available Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus miR394 with its target gene Brassica napus leaf curling responsiveness (BnLCR to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including leafy cotyledon1 (BnLEC1, BnLEC2, and FUSCA3 (FUS3. Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.

  3. Developments in the regulation of research reactors

    International Nuclear Information System (INIS)

    Loy, J.

    2003-01-01

    The International Atomic Energy Agency (IAEA) has data on over 670 research reactors in the world. Fewer than half of them are operational and a significant number are in a shutdown but not decommissioned state. The International Nuclear Safety Advisory Group (INSAG) has expressed concerns about the safety of many research reactors and this has resulted in a process to draw up an international Code of Conduct on the Safety of Research Reactors. The IAEA is also reviewing its safety standards applying to research reactors. On the home front, regulation of the construction of the Replacement Research Reactor continues. During the construction phase, regulation has centred around the consideration of Requests for Approval (RFA) for the manufacture and installation of systems, structures and components important for safety. Quality control of construction of systems, structures and components is the central issue. The process for regulation of commissioning is under consideration

  4. The influence of light spectra, UV-A, and growth regulators on the in vitro seed germination of Senecio cineraria DC.

    Directory of Open Access Journals (Sweden)

    Cristiane Pimentel Victório

    2010-10-01

    Full Text Available This study was carried out to investigate the effects of light spectra, additional UV-A, and different growth regulators on the in vitro germination of Senecio cineraria DC. Seeds were surface-sterilized and inoculated in MS medium to evaluate the following light spectra: white, white plus UV-A, blue, green, red or darkness. The maximum germinability was obtained using MS0 medium under white light (30% and MS + 0.3 mg L-1 GA3 in the absence of light (30.5%. S. cineraria seeds were indifferent to light. Blue and green lights inhibited germination. Different concentrations of gibberellic acid (GA3 (0.1; 0.4; 0.6; 0.8; 1.0 and 2.0 mg L-1 and indole-3-acetic acid IAA (0.1; 0.3 and 1.0 mg L-1 were evaluated under white light and darkness. No concentration of GA3 enhanced seed germination percentage under white light. However, when the seeds were maintained in darkness, GA3 improved germination responses in all tested concentrations, except at 1.0 mg L-1. Under white light, these concentrations also increased the germination time and reduced germination rate. Germination rate, under light or darkness, was lower using IAA compared with GA3.

  5. Development of a Threshold Model to Predict Germination of Populus tomentosa Seeds after Harvest and Storage under Ambient Condition

    Science.gov (United States)

    Wang, Wei-Qing; Cheng, Hong-Yan; Song, Song-Quan

    2013-01-01

    Effects of temperature, storage time and their combination on germination of aspen (Populus tomentosa) seeds were investigated. Aspen seeds were germinated at 5 to 30°C at 5°C intervals after storage for a period of time under 28°C and 75% relative humidity. The effect of temperature on aspen seed germination could not be effectively described by the thermal time (TT) model, which underestimated the germination rate at 5°C and poorly predicted the time courses of germination at 10, 20, 25 and 30°C. A modified TT model (MTT) which assumed a two-phased linear relationship between germination rate and temperature was more accurate in predicting the germination rate and percentage and had a higher likelihood of being correct than the TT model. The maximum lifetime threshold (MLT) model accurately described the effect of storage time on seed germination across all the germination temperatures. An aging thermal time (ATT) model combining both the TT and MLT models was developed to describe the effect of both temperature and storage time on seed germination. When the ATT model was applied to germination data across all the temperatures and storage times, it produced a relatively poor fit. Adjusting the ATT model to separately fit germination data at low and high temperatures in the suboptimal range increased the models accuracy for predicting seed germination. Both the MLT and ATT models indicate that germination of aspen seeds have distinct physiological responses to temperature within a suboptimal range. PMID:23658654

  6. Development a method for producing vegetable oil from safflower seeds by pressing in the field of ultrasound

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2015-01-01

    Full Text Available The article shows the prospects of production in agriculture safflower seeds for food and extract biologically active components. The physicochemical composition of safflower, which is rich in unsaturated fatty acids. Safflower oil has a soothing and moisturizing effect, provides a barrier function of the skin, therefore, fatty oil is promising in terms of scientific evidence use in medical practice. In the article the task of developing a set of processes to extract oil from the seeds of safflower and effective use. The ways of processing safflower seed to obtain oil. It is the most productive and promising method for processing seeds of safflower scheme press extruder. Described compression step in the processing of safflower seeds scheme press extruder. Crucial processing technology safflower seeds have two fundamental rheological characteristics of viscosity and elasticity, which depend on the structure of the raw material, the molecular weight distribution, and processing conditions such as temperature, pressure and flow rate. The dependence of the density of its safflower cake moisture concluded that with humidity increase the particle density increases, due to the swelling of colloids grain. Furthermore, the dependence of shear stress and the effective viscosity versus shear rate, it is concluded that with increasing shear rate influence of temperature on the viscosity gradient weakens. The article shows the study of the prospects of the extrusion process in the presence of the ultrasound field and the creation of equipment that takes into account these properties. The use of ultrasound significantly reduces energy consumption and necessary to prevent the molding ion safflower seeds, improves product quality.

  7. Temperature regulates positively photoblastic seed germination in four ficus (moraceae) tree species from contrasting habitats in a seasonal tropical rainforest.

    Science.gov (United States)

    Chen, Hui; Cao, Min; Baskin, Jerry M; Baskin, Carol C

    2013-08-01

    Differences in seed germination responses of trees in tropical forests to temperature and light quality may contribute to their coexistence. We investigated the effects of temperature and red:far-red light (R:FR ratio) on seed germination of two gap-demanding species (Ficus hispida and F. racemosa) and two shade-tolerant species (F. altissima and F. auriculata) in a tropical seasonal rainforest in southwest China. A R:FR ratio gradient was created by filtering fluorescent light through polyester filters. Four temperature treatments were used to test the effect of temperature on seed germination of the four Ficus tree species across the R:FR gradient. Seeds of the four Ficus species were positively photoblastic. Seed germination of F. hispida and F. racemosa was not affected across the R:FR ratio gradient (0.25-1.19) at 25/35°C, but it was inhibited under low R:FR at 22/23°C. By contrast, germination percentages of F. altissima and F. auriculata were not inhibited along the entire light gradient in all temperature treatments. Differences in germination responses of Ficus species might contribute to differences in their habitat preferences. The inhibitory effect of understory temperatures in the forest might be a new mechanism that prevents positively photoblastic seeds of the gap-demanding species such as F. hispida and F. racemosa from germinating in the understory and in small canopy gaps.

  8. Development of NPP safety regulation in Russia

    International Nuclear Information System (INIS)

    Vishnevsky, Y.G.; Gutsalov, A.T.; Bukrinsky, A.M.; Gordon, B.G.

    1999-01-01

    The presentation describes the organisation scheme of Russian safety regulatory bodies, their tasks and responsibilities. Legislative and regulatory basis of NPP safety regulations rely on the federal laws: Law on the Use of Nuclear Energy and Law on Radiation Safety of the Population. Role of international cooperation and Improvement of regulatory activities in Russia are emphasised

  9. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas.

    Science.gov (United States)

    Shah, Mohibullah; Soares, Emanoella L; Lima, Magda L B; Pinheiro, Camila B; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fabio C S; Campos, Francisco A P

    2016-06-30

    The inner integument of Jatropha curcas seeds is a non-photosynthetic tissue that acts primarily as a conduit for the delivery of nutrients to the embryo and endosperm. In this study we performed a histological and transmission electron microscopy analysis of the inner integument in stages prior to fertilization to 25days after pollination, to establish the structural changes associated with the plastid to gerontoplast transition. This study showed that plastids are subjected to progressive changes, which include the dismantling of the internal membrane system, matrix degradation and the formation of stromule-derived vesicles. A proteome analysis of gerontoplasts isolated from the inner integument at 25days after pollination, resulted in the identification of 1923 proteins, which were involved in a myriad of metabolic functions, such as synthesis of amino acids and fatty acids. Among the identified proteins, were also a number of hydrolases (peptidases, lipases and carbohydrases), which presumably are involved in the ordered dismantling of this organelle to provide additional sources of nutrients for the growing embryo and endosperm. The dataset we provide here may provide a foundation for the study of the proteome changes associated with the plastid to gerontoplast transition in non-photosynthetic tissues. We describe ultrastructural features of gerontoplasts isolated from the inner integument of developing seeds of Jatropha curcas, together with a deep proteome analysis of these gerontoplasts. This article explores a new aspect of the biology of plastids, namely the ultrastructural and proteome changes associated with the transition plastid to gerontoplast in a non-photosynthetic tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Seed-bank structure and plant-recruitment conditions regulate the dynamics of a grassland-shrubland Chihuahuan ecotone.

    Science.gov (United States)

    Moreno-de Las Heras, Mariano; Turnbull, Laura; Wainwright, John

    2016-09-01

    Large areas of desert grasslands in the southwestern United States have shifted to sparse shrublands dominated by drought-tolerant woody species over the last 150 yr, accompanied by accelerated soil erosion. An important step toward the understanding of patterns in species dominance and vegetation change at desert grassland-shrubland transitions is the study of environmental limitations imposed by the shrub-encroachment phenomenon on plant establishment. Here, we analyze the structure of soil seed banks, environmental limitations for seed germination (i.e., soil-water availability and temperature), and simulated seedling emergence and early establishment of dominant species (black grama, Bouteloua eriopoda, and creosotebush, Larrea tridentata) across a Chihuahuan grassland-shrubland ecotone (Sevilleta National Wildlife Refuge, New Mexico, USA). Average viable seed density in soils across the ecotone is generally low (200-400 seeds/m 2 ), although is largely concentrated in densely vegetated areas (with peaks up to 800-1,200 seeds/m 2 in vegetated patches). Species composition in the seed bank is strongly affected by shrub encroachment, with seed densities of grass species sharply decreasing in shrub-dominated sites. Environmental conditions for seed germination and seedling emergence are synchronized with the summer monsoon. Soil-moisture conditions for seedling establishment of B. eriopoda take place with a recurrence interval ranging between 5 and 8 yr for grassland and shrubland sites, respectively, and are favored by strong monsoonal precipitation. Limited L. tridentata seed dispersal and a narrow range of rainfall conditions for early seedling establishment (50-100 mm for five to six consecutive weeks) constrain shrub-recruitment pulses to localized and episodic decadal events (9-25 yr recurrence intervals) generally associated with late-summer rainfall. Re-establishment of B. eriopoda in areas now dominated by L. tridentata is strongly limited by the

  11. The DAG1 transcription factor negatively regulates the seed-to-seedling transition in Arabidopsis acting on ABA and GA levels

    Czech Academy of Sciences Publication Activity Database

    Boccaccini, A.; Lorrai, R.; Ruta, V.; Frey, A.; Mercey-Boutet, S.; Marion-Poll, F.; Tarkowská, Danuše; Strnad, Miroslav; Costantino, P.; Vittorioso, P.

    2016-01-01

    Roč. 16, SEP 9 (2016), s. 198 ISSN 1471-2229 R&D Projects: GA MŠk LK21306; GA MŠk(CZ) LO1204; GA ČR GA14-34792S Institutional support: RVO:61389030 Keywords : DAG1 * Seed development * Chromatin remodelling Subject RIV: EF - Botanics Impact factor: 3.964, year: 2016

  12. Seed vigour and crop establishment: extending performance beyond adaptation.

    Science.gov (United States)

    Finch-Savage, W E; Bassel, G W

    2016-02-01

    Seeds are central to crop production, human nutrition, and food security. A key component of the performance of crop seeds is the complex trait of seed vigour. Crop yield and resource use efficiency depend on successful plant establishment in the field, and it is the vigour of seeds that defines their ability to germinate and establish seedlings rapidly, uniformly, and robustly across diverse environmental conditions. Improving vigour to enhance the critical and yield-defining stage of crop establishment remains a primary objective of the agricultural industry and the seed/breeding companies that support it. Our knowledge of the regulation of seed germination has developed greatly in recent times, yet understanding of the basis of variation in vigour and therefore seed performance during the establishment of crops remains limited. Here we consider seed vigour at an ecophysiological, molecular, and biomechanical level. We discuss how some seed characteristics that serve as adaptive responses to the natural environment are not suitable for agriculture. Past domestication has provided incremental improvements, but further actively directed change is required to produce seeds with the characteristics required both now and in the future. We discuss ways in which basic plant science could be applied to enhance seed performance in crop production. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  13. A laboratory simulation of Arabidopsis seed dormancy cycling provides new insight into its regulation by clock genes and the dormancy-related genes DOG1, MFT, CIPK23 and PHYA.

    Science.gov (United States)

    Footitt, Steven; Ölçer-Footitt, Hülya; Hambidge, Angela J; Finch-Savage, William E

    2017-08-01

    Environmental signals drive seed dormancy cycling in the soil to synchronize germination with the optimal time of year, a process essential for species' fitness and survival. Previous correlation of transcription profiles in exhumed seeds with annual environmental signals revealed the coordination of dormancy-regulating mechanisms with the soil environment. Here, we developed a rapid and robust laboratory dormancy cycling simulation. The utility of this simulation was tested in two ways: firstly, using mutants in known dormancy-related genes [DELAY OF GERMINATION 1 (DOG1), MOTHER OF FLOWERING TIME (MFT), CBL-INTERACTING PROTEIN KINASE 23 (CIPK23) and PHYTOCHROME A (PHYA)] and secondly, using further mutants, we test the hypothesis that components of the circadian clock are involved in coordination of the annual seed dormancy cycle. The rate of dormancy induction and relief differed in all lines tested. In the mutants, dog1-2 and mft2, dormancy induction was reduced but not absent. DOG1 is not absolutely required for dormancy. In cipk23 and phyA dormancy, induction was accelerated. Involvement of the clock in dormancy cycling was clear when mutants in the morning and evening loops of the clock were compared. Dormancy induction was faster when the morning loop was compromised and delayed when the evening loop was compromised. © 2017 The Authors Plant, Cell & Environment Published by John Wiley & Sons Ltd.

  14. Improvement of antioxidant activities and yield of spring maize through seed priming and foliar application of plant growth regulators under heat stress conditions

    Directory of Open Access Journals (Sweden)

    Ijaz Ahmad

    2017-03-01

    Full Text Available Heat stress during reproductive and grain filling phases adversely affects the growth of cereals through reduction in grain’s number and size. However, exogenous application of antioxidants, plant growth regulators and osmoprotectants may be helpful to minimize these heat induced yield losses in cereals. This two year study was conducted to evaluate the role of exogenous application of ascorbic acid (AsA, salicylic acid (SA and hydrogen peroxide (H2O2 applied through seed priming or foliar spray on biochemical, physiological, morphological and yield related traits, grain yield and quality of late spring sown hybrid maize. The experiment was conducted in the spring season of 2007 and 2008. We observed that application of AsA, SA and H2O2 applied through seed priming or foliar spray improved the physiological, biochemical, morphological and yield related traits, grain yield and grain quality of late spring sown maize in both years. In both years, we observed higher superoxide dismutase (SOD, catalase (CAT and peroxidase (POD activity in the plants where AsA, SA and H2O2were applied through seed priming or foliar spray than control. Membrane stability index (MSI, relative water contents (RWC, chlorophyll contents, grain yield and grain oil contents were also improved by exogenous application of AsA, SA and H2O2 in both years. Seed priming of AsA, SA and H2O2was equally effective as the foliar application. In conclusion, seed priming with AsA, SA and H2O2 may be opted to lessen the heat induced yield losses in late sown spring hybrid maize. Heat tolerance induced by ASA, SA and H2O2 may be attributed to increase in antioxidant activities and MSI which maintained RWC and chlorophyll contents in maize resulting in better grain yield in heat stress conditions.

  15. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: a comparison of dormant and non-dormant rice cultivars.

    Science.gov (United States)

    Liu, Yang; Fang, Jun; Xu, Fan; Chu, Jinfang; Yan, Cunyu; Schläppi, Michael R; Wang, Youping; Chu, Chengcai

    2014-06-20

    Seed dormancy is an important agronomic trait in cereals. Using deep dormant (N22), medium dormant (ZH11), and non-dormant (G46B) rice cultivars, we correlated seed dormancy phenotypes with abscisic acid (ABA) and gibberellin (GA) metabolism gene expression profiles and phytohormone levels during seed development and imbibition. A time course analysis of ABA and GA content during seed development showed that N22 had a high ABA level at early and middle seed developmental stages, while at late developmental stage it declined to the level of ZH11; however, its ABA/GA ratio maintained at a high level throughout seed development. By contrast, G46B had the lowest ABA content during seed development though at early developmental stage its ABA level was close to that of ZH11, and its ABA/GA ratio peaked at late developmental stage that was at the same level of ZH11. Compared with N22 and G46B, ZH11 had an even and medium ABA level during seed development and its ABA/GA ratio peaked at the middle developmental stage. Moreover, the seed development time-point having high ABA/GA ratio also had relatively high transcript levels for key genes in ABA and GA metabolism pathways across three cultivars. These indicated that the embryo-imposed dormancy has been induced before the late developmental stage and is determined by ABA/GA ratio. A similar analysis during seed imbibition showed that ABA was synthesized in different degrees for the three cultivars. In addition, water uptake assay for intact mature seeds suggested that water could permeate through husk barrier into seed embryo for all three cultivars; however, all three cultivars showed distinct colors by vanillin-staining indicative of the existence of flavans in their husks, which are dormancy inhibition compounds responsible for the husk-imposed dormancy. Copyright © 2014. Published by Elsevier Ltd.

  16. Assessing climate change effects on long-term forest development: adjusting growth, phenology, and seed production in a gap model

    NARCIS (Netherlands)

    Meer, van der P.J.; Jorritsma, I.T.M.; Kramer, K.

    2002-01-01

    The sensitivity of forest development to climate change is assessed using a gap model. Process descriptions in the gap model of growth, phenology, and seed production were adjusted for climate change effects using a detailed process-based growth modeland a regression analysis. Simulation runs over

  17. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy

    DEFF Research Database (Denmark)

    Barsberg, Søren Talbro; Lee, Y.-I.; Rasmussen, Hanne Nina

    2018-01-01

    Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344......Cite this article: Barsberg ST, Lee Y-I, Rasmussen HN. Development of C-lignin with G/S-lignin and lipids in orchid seed coats – an unexpected diversity exposed by ATR-FT-IR spectroscopy. Seed Science Research https:// doi.org/10.1017/S0960258517000344...

  18. Effects of Persea americana Mill. seed extracts on the postembryonic development of Musca domestica (Diptera: Muscoide

    Directory of Open Access Journals (Sweden)

    Silvia del C. Molina Bertrán

    2018-04-01

    Full Text Available Context: The synthetic insecticides used to control Diptera are harmful to the environment and humans. Extracts and compounds from plants are a more sustainable source for the development of bio-insecticides. Aims: To evaluate the efficacy of a hydroalcoholic extract of Persea americana Mill seeds as an alternative control of the species Musca domestica. Methods: The extracts were obtained by two methods, the Shaker (S and the Soxhlet extraction (SE method, using 94% ethanol as the solvent. Also, the qualitative chemical composition was determined by phytochemical screening. The effect of the two extracts on the post-embryonic development of the fly as well as the adulticidal effect was evaluated. Results: Phytochemical analysis revealed the presence of metabolites such as alkaloids, coumarins, tannins, flavonoids, sugars and amino acids. The influence on the post-embryonic development of M. domestica was demonstrated, especially on the viability of larvae and neolarvae to adults; however, the effect on the weight and duration of each period was low. The adulticidal effects of the extracts were determined by the lethal concentration 50(LC50 of 2.910 mg/100 mL and 3.944 mg/100 mL for the S and SE extracts, respectively. Conclusions: Both extracts showed their insecticidal effects against Musca domestica, but the extract elaborated by S method showed greater influence diminishing viability and better adulticidal effect.

  19. Development of on-line sorting system for detection of infected seed potatoes using visible near-infrared transmittance spectral technique

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dae Yong; Cho, Byoung Kwan [Dept. of Biosystems Engineering, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeun [Rural Development Administration, National Institute of Agricultural Engineering, Jeonju (Korea, Republic of); Kang, Jun Soon [Dept. of Horticultural Bioscience, Pusan National University, Pusan (Korea, Republic of)

    2015-02-15

    In this study, an online seed potato sorting system using a visible and near infrared (40 1100 nm) transmittance spectral technique and statistical model was evaluated for the nondestructive determination of infected and sound seed potatoes. Seed potatoes that had been artificially infected with Pectobacterium atrosepticum, which is known to cause a soil borne disease infection, were prepared for the experiments. After acquiring transmittance spectra from sound and infected seed potatoes, a determination algorithm for detecting infected seed potatoes was developed using the partial least square discriminant analysis method. The coefficient of determination(R{sup 2}{sub p}) of the prediction model was 0.943, and the classification accuracy was above 99% (n = 80) for discriminating diseased seed potatoes from sound ones. This online sorting system has good potential for developing a technique to detect agricultural products that are infected and contaminated by pathogens.

  20. Soil Seed Bank and Plant Community Development in Passive Restoration of Degraded Sandy Grasslands

    Directory of Open Access Journals (Sweden)

    Renhui Miao

    2016-06-01

    Full Text Available To evaluate the efficacy of passive restoration on soil seed bank and vegetation recovery, we measured the species composition and density of the soil seed bank, as well as the species composition, density, coverage, and height of the extant vegetation in sites passively restored for 0, 4, 7, and 12 years (S0, S4, S7, and S12 in a degraded grassland in desert land. Compared with S0, three more species in the soil seed bank at depths of 0–30 cm and one more plant species in the community was detected in S12. Seed density within the topsoil (0–5 cm was five times higher in S12 than that in S0. Plant densities in S7 and S12 were triple and quadruple than that in S0. Plant coverage was increased by 1.5 times (S4, double (S7, and triple (S12 compared with S0. Sørensen’s index of similarity in species composition between the soil seed bank and the plant community were high (0.43–0.63, but it was lower in short-term restoration sites (S4 and S7 than that in no and long-term restoration sites (S0 and S12. The soil seed bank recovered more slowly than the plant community under passive restoration. Passive restoration is a useful method to recover the soil seed bank and vegetation in degraded grasslands.

  1. Cellular recycling of proteins in seed dormancy alleviation and germination

    Directory of Open Access Journals (Sweden)

    Krystyna Oracz

    2016-07-01

    Full Text Available Each step of the seed-to-seed cycle of plant development including seed germination is characterized by a specific set of proteins. The continual renewal and/or replacement of these biomolecules are crucial for optimal plant adaptation. As proteins are the main effectors inside the cells, their levels need to be tightly regulated. This is partially achieved by specific proteolytic pathways via multicatalytic protease complexes defined as 20S and 26S proteasomes. In plants, the 20S proteasome is responsible for degradation of carbonylated proteins, while the 26S being a part of ubiquitin-proteasome pathway (UPP is known to be involved in proteolysis of phytohormone signaling regulators. On the other hand, the role of translational control of plant development is also well documented, especially in the context of pollen tube growth and light signaling. Despite the current progress that has been made in seed biology, the sequence of cellular events that determine if the seed can germinate or not are still far from complete understanding. The role and mechanisms of regulation of proteome composition during processes occurring in the plant’s photosynthetic tissues have been well characterized since many years, but in nonphotosynthetic seeds it has emerged as a tempting research task only since the last decade. This review discusses the recent discoveries providing insights into the role of protein turnover in seed dormancy alleviation, and germination, with a focus on the control of translation and proteasomal proteolysis. The presented novel data of translatome profiling in seeds highlighted that post-transcriptional regulation of germination results from a timely regulated initiation of translation. In addition, the importance of 26S proteasome in the degradation of regulatory elements of cellular signaling and that of the 20S complex in proteolysis of specific carbonylated proteins in hormonal- and light-dependent processes occurring in seeds is

  2. Sunflower (Helianthus annuus) long-chain acyl-coenzyme A synthetases expressed at high levels in developing seeds.

    Science.gov (United States)

    Aznar-Moreno, Jose A; Venegas Calerón, Mónica; Martínez-Force, Enrique; Garcés, Rafael; Mullen, Robert; Gidda, Satinder K; Salas, Joaquín J

    2014-03-01

    Long chain fatty acid synthetases (LACSs) activate the fatty acid chains produced by plastidial de novo biosynthesis to generate acyl-CoA derivatives, important intermediates in lipid metabolism. Oilseeds, like sunflower, accumulate high levels of triacylglycerols (TAGs) in their seeds to nourish the embryo during germination. This requires that sunflower seed endosperm supports very active glycerolipid synthesis during development. Sunflower seed plastids produce large amounts of fatty acids, which must be activated through the action of LACSs, in order to be incorporated into TAGs. We cloned two different LACS genes from developing sunflower endosperm, HaLACS1 and HaLACS2, which displayed sequence homology with Arabidopsis LACS9 and LACS8 genes, respectively. These genes were expressed at high levels in developing seeds and exhibited distinct subcellular distributions. We generated constructs in which these proteins were fused to green fluorescent protein and performed transient expression experiments in tobacco cells. The HaLACS1 protein associated with the external envelope of tobacco chloroplasts, whereas HaLACS2 was strongly bound to the endoplasmic reticulum. Finally, both proteins were overexpressed in Escherichia coli and recovered as active enzymes in the bacterial membranes. Both enzymes displayed similar substrate specificities, with a very high preference for oleic acid and weaker activity toward stearic acid. On the basis of our findings, we discuss the role of these enzymes in sunflower oil synthesis. © 2013 Scandinavian Plant Physiology Society.

  3. Flavonoids from leaves of Derris urucu: assessment of potential effects on seed germination and development of weeds

    Directory of Open Access Journals (Sweden)

    EWERTON A.S. DA SILVA

    2013-09-01

    Full Text Available In some previous studies, we described the isolation of nine compounds from leaves of Derris urucu, a species found widely in the Amazon rainforest, identified as five stilbenes and four dihydroflavonols. In this work, three of these dihydroflavonols [urucuol A (1, urucuol B (2 and isotirumalin (3] were evaluated to identify their potential as allelochemicals, and we are also reporting the isolation and structural determination of a new flavonoid [5,3′-dihydroxy-4′-methoxy-(7,6:5″,6″-2″,2″-dimethylpyranoflavanone (4]. We investigated the effects of the dihydroflavonols 1-3 on seed germination and radicle and hypocotyl growth of the weed Mimosa pudica, using solutions at 150 mg.L–1. Urucuol B, alone, was the substance with the greatest potential to inhibit seed germination (26%, while isotirumalin showed greater ability to reduce the development of the hypocotyl (25%, but none of the three substances showed the potential to inhibit radicle. When combined in pairs, the substances showed synergism for the development of root and hypocotyl and effects on seed germination that could be attributed to antagonism. When tested separately, the trend has become more intense effects on seed germination, while for the substances tested in pairs, the intensity of the effect was greater on development of weed.

  4. A statistical model for estimating maternal-zygotic interactions and parent-of-origin effects of QTLs for seed development.

    Directory of Open Access Journals (Sweden)

    Yanchun Li

    Full Text Available Proper development of a seed requires coordinated exchanges of signals among the three components that develop side by side in the seed. One of these is the maternal integument that encloses the other two zygotic components, i.e., the diploid embryo and its nurturing annex, the triploid endosperm. Although the formation of the embryo and endosperm contains the contributions of both maternal and paternal parents, maternally and paternally derived alleles may be expressed differently, leading to a so-called parent-of-origin or imprinting effect. Currently, the nature of how genes from the maternal and zygotic genomes interact to affect seed development remains largely unknown. Here, we present a novel statistical model for estimating the main and interaction effects of quantitative trait loci (QTLs that are derived from different genomes and further testing the imprinting effects of these QTLs on seed development. The experimental design used is based on reciprocal backcrosses toward both parents, so that the inheritance of parent-specific alleles could be traced. The computing model and algorithm were implemented with the maximum likelihood approach. The new strategy presented was applied to study the mode of inheritance for QTLs that control endoreduplication traits in maize endosperm. Monte Carlo simulation studies were performed to investigate the statistical properties of the new model with the data simulated under different imprinting degrees. The false positive rate of imprinting QTL discovery by the model was examined by analyzing the simulated data that contain no imprinting QTL. The reciprocal design and a series of analytical and testing strategies proposed provide a standard procedure for genomic mapping of QTLs involved in the genetic control of complex seed development traits in flowering plants.

  5. Study of some abnormalities of ovule development to seed in Pistacia vera L.

    Directory of Open Access Journals (Sweden)

    Najmeh Hosseini

    2014-05-01

    Full Text Available Seed production in some crops like pistachio is limited by some abnormalities in ovule development stages. In this study, the ovule developmental stages as well as abnormalities of these stages were investigated. Pistacia vera ovule is single, fullynucellate, monotegumental and converse (anatrope and is set in an ovary with basic placement and the Polygonum type embryo sac is organized in it one week after complete dehiscence. After pollination and fertilization of egg cell, after 6 weeks of complete dehiscence, the pericarpe was grown to final size and even the lignifications of endocarpe started but the zygote cell was in a dormant state and in 6-8 weeks after complete dehiscence the zygote cell division along an increase in endosperm division occured so that cotyledonary embryo was formed in 10-12 weeks after complete dehiscence and the cotyledons attained their final size in 3 weesks after that, namely 15 weeks after complete dehiscence and at this time, the seedless and filled fruits were completely distinguished. During the ovule development stages, some abnormalities were observed such as lack of embryo sac formation, embryo sac degeneration, small and abnormal embryo sac formation, vascular band collapse inside the funicule, presence of zygote without endosperm and presence of endosperm without zygote, and these abnormalities caused lack of enough ovule growth and seedless or semiseedless fruit formation in pistachio.

  6. Development of new risk based regulations

    International Nuclear Information System (INIS)

    Nielsen, L.

    1999-01-01

    A short presentation of the oil and gas industry in Norway, and a brief overview of the regulatory regime in the petroleum sector in Norway is given. Risk analysis has been performed in Norway since 1981 and the various applications will be described. These risk analyses are quite different from a nuclear PSA and some of these differences will be commented. Risk based optimisation techniques such as RCM (Reliability Centred Maintenance) and Risk Based Inspection is used in the industry, with very limited support from the risk analysis. Some of the limitation that exist when such techniques are imported from other industries will be commented on. NPD (Norwegian Petroleum Directorate) is revising our regulations and some of the future plants when it comes to risk informed regulatory requirements will be presented. (au)

  7. Legume Seed Production Meeting Market Requirements and Economic Impacts

    DEFF Research Database (Denmark)

    Boelt, Birte; Julier, Bernadette; Karagić, Đura

    2015-01-01

    The seed is the carrier of the genetic improvements brought about by modern plant breeding, and seed production is carried out in accordance with certification systems to guarantee consistent high quality. In forage legumes, breeding efforts are primarily related to the vegetative development...... of the plant, although the commercial success of an agronomically superior cultivar is dependent on a reliable supply of competitively priced seed. In seed production of the three most important forage legumes, alfalfa (Medicago sativa L.), white clover (Trifolium repens L.), and red clover (Trifolium pratense......-pollinated forage legumes it is further highly influenced by environmental conditions and crop management factors. Further investigations into the use of plant growth regulators and an improved understanding of the interaction between pollinators and the seed crop might improve future seed yields. There is likely...

  8. Distribution and utilization of nitrogenated compounds explanted by the soybean nodules by plants during seeds developing

    International Nuclear Information System (INIS)

    Alencar, Severino Matias de

    1997-01-01

    An experiment was carried out, using radioisotopes, for evaluation of the leaf, schuck and seeds areas and, examination of the pattern which is used by the nitrogenated compounds explanted by the soybean nodules

  9. Role of Translocted Signals in Regulating Root Development and Nutrient Uptake in Legumes

    Energy Technology Data Exchange (ETDEWEB)

    Atkins, C. A. [School of Plant Biology, University of Western Australia, Crawley, WA (Australia)

    2013-11-15

    Uptake of nutrients is achieved through the expression and activity of specific carrier/transporter mechanisms localized in the root system and distributed as a consequence of the development of the architecture of the system. Both root system development and the nutrient transport mechanisms are responsive to environmental factors that include nutrient supply and availability, water supply, salinity, soil acidity and compaction together with a wide range of biotic stresses. The response to each may be regulated at the molecular level by both local and systemic signals. These signals include the classical plant growth regulators but also low molecular weight compounds such as sugars and amino acids as well as macromolecules, including peptides, proteins and nucleic acids. Among the latter, recent research has shown that small RNA species and especially small interfering RNAs (siRNA) and microRNAs (miRNA) are potent and effective regulators of gene expression which, in the context of root development as well as nutrient uptake, have central and critical roles. Systemic (translocated) signals that specifically regulate root development and function are less well defined but analyses of phloem exudate in species of lupin (Lupinus albus and L. angustifolius) and species of Brassica and cucurbits have demonstrated that a wide range of macromolecules, including miRNAs, are present and potentially translocated from source organs (principally leaves) to sinks (shoot apical meristems, developing fruits and seeds, roots and nodules). While specific signaling roles for many of these macromolecules are yet to be discovered there are some that have been documented and their regulatory activity in organ development and functioning, as well as in nutrition, confirmed. The following article provides an up to date review and presents the results of recent research using lupin with emphasis on the analysis of small RNAs and their likely role(s) in regulation of root development and

  10. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system.

    Science.gov (United States)

    Biju, Sajitha; Fuentes, Sigfredo; Gupta, Dorin

    2017-10-01

    Silicon (Si) has been widely reported to have beneficial effect on mitigating drought stress in plants. However, the effect of Si on seed germination under drought conditions is still poorly understood. This research was carried out to ascertain the role of Si to abate polyethylene glycol-6000 mediated drought stress on seed germination and seedling growth of lentil. Results showed that drought stress significantly decreased the seed germination traits and increased the concentration of osmolytes (proline, glycine betaine and soluble sugars), reactive oxygen species (hydrogen peroxide and superoxide anion) and lipid peroxides in lentil seedlings. The activities of hydrolytic enzymes and antioxidant enzymes increased significantly under osmotic stress. The application of Si significantly enhanced the plants ability to withstand drought stress conditions through increased Si content, improved antioxidants, hydrolytic enzymes activity, decreased concentration of osmolytes and reactive oxygen species. Multivariate data analysis showed statistically significant correlations among the drought-tolerance traits, whereas cluster analysis categorised the genotypes into distinct groups based on their drought-tolerance levels and improvements in expression of traits due to Si application. Thus, these results showed that Si supplementation of lentil was effective in alleviating the detrimental effects of drought stress on seed germination and increased seedling vigour. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Shrub seed banks in mixed conifer forests of northern California and the role of fire in regulating abundance

    Science.gov (United States)

    Eric E. Knapp; Phillip C. Weatherspoon; Carl N. Skinner

    2012-01-01

    Understory shrubs play important ecological roles in forests of the western US, but they can also impede early tree growth and lead to fire hazard concerns when very dense. Some of the more common genera (Ceanothus, Arctostaphylos, and Prunus) persist for long periods in the seed bank, even in areas where plants have been...

  12. Regulations in establishing and developing urban entities

    Directory of Open Access Journals (Sweden)

    Ljubić Slavoljub C.

    2009-01-01

    Full Text Available The main topic of this work is to represent relatively new method of analyzing, planning and developing various projects in different architectural fields. The concept 'pattern' symbolizes a new view on objects and items that are already exist around us or those that will be created in the future. By explaining this concept, this work focus on describing 'pattern' as a new system or 'pattern language' that identifies foundation and development of unplanned cities. Every town or urban entity symbolizes 'pattern', but it is made from various 'patterns' as well. There are certain rules i.e. patterns that particular urban entities follow in order to establish themselves and 'pattern language' has been developed on that basis. The main purpose of this work is to emphasize this phenomenon and reveal the significance that 'patterns' have in urbanism development. Their understanding is of great importance so they can be implemented not only in theoretical but also in practical examination and analysis.

  13. Competition, Regulation and Development Research Forum ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    ... Forum : Competition and Regulatory Implementation Issues in Developing Countries ... create challenges that influence the operation of regulatory institutions. ... IWRA/IDRC webinar on climate change and adaptive water management.

  14. CvADH1, a member of short-chain alcohol dehydrogenase family, is inducible by gibberellin and sucrose in developing watermelon seeds.

    Science.gov (United States)

    Kim, Joonyul; Kang, Hong-Gyu; Jun, Sung-Hoon; Lee, Jinwon; Yim, Jieun; An, Gynheung

    2003-01-01

    To understand the molecular mechanisms that control seed formation, we selected a seed-preferential gene (CvADH1) from the ESTs of developing watermelon seeds. RNA blot analysis and in situ localization showed that CvADH1 was preferentially expressed in the nucellar tissue. The CvADH1 protein shared about 50% homology with short-chain alcohol dehydrogenase including ABA2 in Arabidopsis thaliana, stem secoisolariciresinol dehydrogenase in Forsythia intermedia, and 3beta-hydroxysterol dehydrogenase in Digitalis lanata. We investigated gene-expression levels in seeds from both normally pollinated fruits and those made parthenocarpic via N-(2-chloro-4-pyridyl)-N'-phenylurea treatment, the latter of which lack zygotic tissues. Whereas the transcripts of CvADH1 rapidly started to accumulate from about the pre-heart stage in normal seeds, they were not detectable in the parthenocarpic seeds. Treating the parthenogenic fruit with GA(3) strongly induced gene expression, up to the level accumulated in pollinated seeds. These results suggest that the CvADH1 gene is induced in maternal tissues by signals made in the zygotic tissues, and that gibberellin might be one of those signals. We also observed that CvADH1 expression was induced by sucrose in the parthenocarpic seeds. Therefore, we propose that the CvADH1 gene is inducible by gibberellin, and that sucrose plays an important role in the maternal tissues of watermelon during early seed development.

  15. Proteomics of Rice Seed Germination

    Directory of Open Access Journals (Sweden)

    Dongli eHe

    2013-07-01

    Full Text Available Seed is a condensed form of plant. Under suitable environmental conditions, it can resume the metabolic activity from physiological quiescent status, and mobilize the reserves, biosynthesize new proteins, regenerate organelles and cell membrane, eventually protrude the radicle and enter into seedling establishment. So far, how these activities are regulated in a coordinated and sequential manner is largely unknown. With the availability of more and more genome sequence information and the development of mass spectrometry (MS technology, proteomics has been widely applied in analyzing the mechanisms of different biological processes, and proved to be very powerful. Regulation of rice seed germination is critical for rice cultivation. In recent years, a lot of proteomic studies have been conducted in exploring the gene expression regulation, reserves mobilization and metabolisms reactivation, which brings us new insights on the mechanisms of metabolism regulation during this process. Nevertheless, it also invokes a lot of questions. In this mini-review, we summarized the progress in the proteomic studies of rice seed germination. The current challenges and future perspectives were also discussed, which might be helpful for the following studies.

  16. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L. Seeds

    Directory of Open Access Journals (Sweden)

    Walid Ahmed Korani

    2017-07-01

    Full Text Available Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP—expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC analyses. SICIA (Seed Infection Coverage and Intensity Analyzer, an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  17. Genotypic Regulation of Aflatoxin Accumulation but Not Aspergillus Fungal Growth upon Post-Harvest Infection of Peanut (Arachis hypogaea L.) Seeds.

    Science.gov (United States)

    Korani, Walid Ahmed; Chu, Ye; Holbrook, Corley; Clevenger, Josh; Ozias-Akins, Peggy

    2017-07-12

    Aflatoxin contamination is a major economic and food safety concern for the peanut industry that largely could be mitigated by genetic resistance. To screen peanut for aflatoxin resistance, ten genotypes were infected with a green fluorescent protein (GFP)-expressing Aspergillus flavus strain. Percentages of fungal infected area and fungal GFP signal intensity were documented by visual ratings every 8 h for 72 h after inoculation. Significant genotypic differences in fungal growth rates were documented by repeated measures and area under the disease progress curve (AUDPC) analyses. SICIA (Seed Infection Coverage and Intensity Analyzer), an image processing software, was developed to digitize fungal GFP signals. Data from SICIA image analysis confirmed visual rating results validating its utility for quantifying fungal growth. Among the tested peanut genotypes, NC 3033 and GT-C20 supported the lowest and highest fungal growth on the surface of peanut seeds, respectively. Although differential fungal growth was observed on the surface of peanut seeds, total fungal growth in the seeds was not significantly different across genotypes based on a fluorometric GFP assay. Significant differences in aflatoxin B levels were detected across peanut genotypes. ICG 1471 had the lowest aflatoxin level whereas Florida-07 had the highest. Two-year aflatoxin tests under simulated late-season drought also showed that ICG 1471 had reduced aflatoxin production under pre-harvest field conditions. These results suggest that all peanut genotypes support A. flavus fungal growth yet differentially influence aflatoxin production.

  18. Regulation of two loblolly pine (Pinus taeda L.) isocitrate lyase genes in megagametophytes of mature and stratified seeds and during postgerminative growth.

    Science.gov (United States)

    Mullen, R T; Gifford, D J

    1997-03-01

    Two full-length cDNAs encoding the glyoxysomal enzyme isocitrate lyase (ICL) were isolated from a lambda ZAP cDNA library prepared from megagametophyte mRNAs extracted from seeds imbibed at 30 degrees C for 8 days. The cDNAs, designated Ptbs ICL 8 and Ptbs ICL 12, have open reading frames of 1740 and 1719 bp, with deduced amino acid sequences of 580 and 573 residues, respectively. The predicted amino acid sequences of Ptbs ICL 8 and Ptbs ICL 12 exhibit a 79% identity with each other, and have a greater than 75% identity with ICLs from various angiosperm species. The C-termini of Ptbs ICL 8 and Ptbs ICL 12 terminate with the tripeptide Ser-Arg-Met and Ala-Arg-Met, respectively, both being conserved variants of the type 1 peroxisomal targeting signal. RNA blot and slot analysis revealed that Ptbs ICL 8 and Ptbs ICL 12 mRNAs were present at low levels in the megagametophyte of the mature and stratified seeds, and that the level of both transcripts increased markedly upon seed germination. Protein blot analysis indicated that the steady-state level of ICL was low in the mature and stratified seed, then increased rapidly upon seed germination, peaking at around 8-10 days after imbibition (DAI). Changes in the level of ICL activity in cell-free extracts was similar to the steady-state protein content with the exception that ICL activity was not detected in megagametophyte extracts of mature or stratified seeds. From 10-12 DAI when the megagametophyte tissue senesced, ICL activity decreased rapidly to near undetectable levels. In contrast, steady-state levels of ICL protein and mRNA remained relatively constant during megagametophyte senescence. In vivo synthesis of ICL protein was measured to shed light on these differences. ICL immunoselected from [(35)S]-methionine labelled proteins indicated that ICL was synthesized at very low levels during megagametophyte senescence. Together, the results show that loblolly pine ICL gene expression is complex. While temporal

  19. Blends of jackfruit seed starch-pectin in the development of mucoadhesive beads containing metformin HCl.

    Science.gov (United States)

    Nayak, Amit Kumar; Pal, Dilipkumar

    2013-11-01

    In this work, calcium pectinate-jackfruit (Artocarpus heterophyllus Lam.) seed starch (JFSS) mucoadhesive beads containing metformin HCl were developed through ionotropic-gelation. Effects of pectin and JFSS amounts on drug encapsulation efficiency (DEE), and cumulative drug release after 10 h (R10 h) were optimized using 3(2) factorial design. The optimized calcium pectinate-JFSS beads containing metformin HCl showed DEE of 94.11 ± 3.92%, R10 h of 48.88 ± 2.02%, and mean diameter of 2.06 ± 0.20 mm. The in vitro drug release from these beads was followed controlled-release (zero-order) pattern with super case-II transport mechanism. The beads were also characterized by SEM and FTIR. The pH of test mediums was found critical for swelling and mucoadhesion of these beads. The optimized calcium pectinate-JFSS beads also exhibited good mucoadhesivity and significant hypoglycemic effect in alloxan-induced diabetic rats over prolonged period after oral administration. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging.

    Science.gov (United States)

    Kanmani, Paulraj; Rhim, Jong-Whan

    2014-07-01

    Carrageenan-based antimicrobial films were developed by incorporation of grape fruit seed extract (GSE) at different concentration into the polymer using a solvent casing method and their physical, mechanical, and antimicrobial properties were examined. The carrageenan/GSE composite films appeared yellowish tint due to the polyphenolic compounds in the GSE. SEM analysis showed rough surface with sponge like structures on the cross section of the films. FT-IR results indicated at GSE had good compatibility with carrageenan. The amorphous structure of polymer films was not changed by the incorporation of GSE. But, the addition of GSE increased moisture content, water vapor permeability, and surface hydrophilicity of the films. The tensile strength and elastic modulus decreased with increasing content of GSE, however, the elongation at break increased significantly up to 6.6μg/mL of GSE then decreased thereafter. Thermal stability of the films was not influenced by GSE incorporation. The carrageenan/GSE composite films exhibited great antibacterial activity against food borne pathogens. These results suggest that the carrageenan-based composite films have a high potential for being used as an antimicrobial or active food packaging applications. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Biosynthesis of triacylglycerols containing very long chain monounsaturated acyl moieties in developing seeds

    International Nuclear Information System (INIS)

    Fehling, E.; Murphy, D.J.; Mukherjee, K.D.

    1990-01-01

    Particulate (15,000g) fractions from developing seeds of honesty (Lunaria annua L.) and mustard (Sinapis alba L.) synthesize radioactive very long chain monounsaturated fatty acids (gadoleic, erucic, and nervonic) from [1- 14 C]oleoyl-CoA and malonyl-CoA or from oleoyl-CoA and [2- 14 C]malonyl-CoA. The very long chain monounsaturated fatty acids are rapidly channeled to triacylglycerols and other acyl lipids without intermediate accumulation of their CoA thioesters. When [1- 14 C]oleoyl-CoA is used as the radioactive substrate, phosphatidylcholines and other phospholipids are most extensively radiolabeled by oleoyl moieties rather than by very long chain monounsaturated acyl moieties. When [2- 14 C]malonyl-CoA is used as the radioactive substrate, no radioactive oleic acid is formed and the newly synthesized very long chain monounsaturated fatty acids are extensively incorporated into phosphatidylcholines and other phospholipids as well as triacylglycerols. The pattern of labeling of the key intermediates of the Kennedy pathway, e.g. lysophosphatidic acids, phosphatidic acids, and diacylglycerols by the newly synthesized very long chain monounsaturated fatty acids is consistent with the operation of this pathway in the biosynthesis of triacylglycerols

  2. New observations on gametogenic development and reproductive experimental tools to support seed yield improvement in cowpea [Vigna unguiculata (L.) Walp].

    Science.gov (United States)

    Salinas-Gamboa, Rigel; Johnson, Susan D; Sánchez-León, Nidia; Koltunow, Anna M G; Vielle-Calzada, Jean-Philippe

    2016-06-01

    Cowpea reproductive tools. Vigna unguiculata L. Walp. (cowpea) is recognized as a major legume food crop in Africa, but seed yields remain low in most varieties adapted to local conditions. The development of hybrid cowpea seed that could be saved after each generation, enabling significant yield increases, will require manipulation of reproductive development from a sexual to an asexual mode. To develop new technologies that could support the biotechnological manipulation of reproductive development in cowpea, we examined gametogenesis and seed formation in two transformable, African-adapted, day-length-insensitive varieties. Here, we show that these two varieties exhibit distinct morphological and phenological traits but share a common developmental sequence in terms of ovule formation and gametogenesis. We present a reproductive calendar that allows prediction of male and female gametogenesis on the basis of sporophytic parameters related to floral bud size and reproductive organ development, determining that gametogenesis occurs more rapidly in the anther than in the ovule. We also show that the mode of megagametogenesis is of the Polygonum-type and not Oenothera-type, as previously reported. Finally, we developed a whole-mount immunolocalization protocol and applied it to detect meiotic proteins in the cowpea megaspore mother cell, opening opportunities for comparing the dynamics of protein localization during male and female meiosis, as well as other reproductive events in this emerging legume model system.

  3. Characterization of seed germination and protocorm development of Cyrtopodium glutiniferum (Orchidaceae promoted by mycorrhizal fungi Epulorhiza spp.

    Directory of Open Access Journals (Sweden)

    Marlon Corrêa Pereira

    2015-12-01

    Full Text Available Cyrtopodium glutiniferum is an endemic orchid of Brazil with potential medicinal and ornamental applications. As mycorrhizal fungi are essential for the initiation of the orchid life cycle, the aim of this study was to determine the strains of mycorrhizal fungi suitable for seed germination and protocorm development of C. glutiniferum and to characterize the symbiotic development of protocorms. Seeds of C. glutiniferum were inoculated with nine mycorrhizal fungi, Epulorhiza spp., Ceratorhiza spp., Rhizoctonia sp., originally isolated from Brazilian neotropical orchids. Only Epulorhiza isolates promoted seed germination and protocorm development. Three Epulorhiza isolates (M1, M6 = E. epiphytica, M20 = Epulorhiza sp. promoted protocorm development until leaf production at 63 days. The protocorms are comprised of parenchyma cells delimited by a unistratified epidermis; the parenchyma cells of the upper part of the protocorms are smaller than those located more towards the base. Intact and digested pelotons were observed inside of protocorms implying that the seedlings were capable of mycotrophy. Additionally, the development of a bud primordium only occurred after colonization by fungus. This study suggests that C. glutiniferum has a preference for strains of Epulorhiza and that fungus digestion is essential to protocorm development.

  4. Effect of cultural conditions on the seed-to-seed growth of Arabidopsis and Cardamine - A study of growth rates and reproductive development as affected by test tube seals

    Science.gov (United States)

    Hoshizaki, T.

    1982-01-01

    The effects of test tube seals on the growth, flowering, and seed pod formation of Arabidopsis thaliana (L.) Heynh., mouse ear cress, and Cardamine oligosperma Nutt, bitter cress, are studied in order to assess the conditions used in weightlessness experiments. Among other results, it is found that the growth (height) and flowering (date of bud appearance) were suppressed in mouse ear cress in tubes sealed with Saran. Seed pod formation which occurred by day 45 in open-to-air controls, was still lacking in the sealed plants even up to day 124. The growth and flowering of bitter cress were also suppressed by the Saran seal, although up to day 55 the Saran-sealed plants were taller. It is suggested that atmospheric composition was the cause of the suppression of growth, flowering, and seed pod development in these plants, since the mouse ear cress renewed their growth and then set seed pods after the Saran seal was ruptured.

  5. Live and let die - the B(sister MADS-box gene OsMADS29 controls the degeneration of cells in maternal tissues during seed development of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Xuelian Yang

    Full Text Available B(sister genes have been identified as the closest relatives of class B floral homeotic genes. Previous studies have shown that B(sister genes from eudicots are involved in cell differentiation during ovule and seed development. However, the complete function of B(sister genes in eudicots is masked by redundancy with other genes and little is known about the function of B(sister genes in monocots, and about the evolution of B(sister gene functions. Here we characterize OsMADS29, one of three MADS-box B(sister genes in rice. Our analyses show that OsMADS29 is expressed in female reproductive organs including the ovule, ovule vasculature, and the whole seed except for the outer layer cells of the pericarp. Knock-down of OsMADS29 by double-stranded RNA-mediated interference (RNAi results in shriveled and/or aborted seeds. Histological analyses of the abnormal seeds at 7 days after pollination (DAP indicate that the symplastic continuity, including the ovular vascular trace and the nucellar projection, which is the nutrient source for the filial tissue at early development stages, is affected. Moreover, degeneration of all the maternal tissues in the transgenic seeds, including the pericarp, ovular vascular trace, integuments, nucellar epidermis and nucellar projection, is blocked as compared to control plants. Our results suggest that OsMADS29 has important functions in seed development of rice by regulating cell degeneration of maternal tissues. Our findings provide important insights into the ancestral function of B(sister genes.

  6. A new set of ESTs from chickpea (Cicer arietinum L. embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development.

    Directory of Open Access Journals (Sweden)

    Shefali Gupta

    Full Text Available Considering the economic importance of chickpea (C. arietinum L. seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.

  7. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development.

    Science.gov (United States)

    Gupta, Shefali; Garg, Vanika; Bhatia, Sabhyata

    2015-01-01

    Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.

  8. Proteome Regulation during Olea europaea Fruit Development

    DEFF Research Database (Denmark)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana

    2013-01-01

    Background: Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation...

  9. Cytokinin signaling regulates cambial development in poplar

    Czech Academy of Sciences Publication Activity Database

    Nieminen, K.; Immanen, J.; Laxell, M.; Kauppinen, L.; Tarkowski, Petr; Doležal, Karel; Tähtiharju, S.; Elo, A.; Decourteix, M.; Ljung, K.; Bhalerao, R.; Keinonen, K.; Albert, V. A.; Helariutta, Y.

    2008-01-01

    Roč. 105, č. 50 (2008), s. 20032-20037 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50380511 Keywords : cambial activity * cambium * secondary development * Populus * CYTOKININ OXIDASE Subject RIV: CE - Biochemistry Impact factor: 9.380, year: 2008

  10. Development of impurity seeding and radiation enhancement in the helical divertor of LHD

    International Nuclear Information System (INIS)

    Mukai, K.; Masuzaki, S.; Peterson, B.J.

    2014-10-01

    Impurity seeding for the reduction of the divertor heat load was conducted in the Large Helical Device (LHD) using neon (Ne) and krypton (Kr) puffing. Enhanced radiation loss and reduction of the divertor heat load were observed without significant changes in stored energy and line averaged density. In the LHD, the radiated power fraction of the heating power, P rad /P heating , where P rad and P heating are the total radiation power and the heating power, respectively, is limited up to around 30% in hydrogen plasmas even for high density plasma just below the radiative collapse (n e,bar > 1 × 10 20 m -3 ), where n e,bar is the line averaged density. With Ne seeding, the ratio could be raised to 52% in spite of much lower density (n e,bar ∼ 1.3 × 10 19 m -3 ), albeit with a slight reduction in confinement. P rad /P heating ∼ 30% could be sustained for 3.4 s using multi-pulse Ne seeding in relatively high density plasmas in this study (n e,bar ∼ 4 × 10 19 m -3 ). Radiation profile measurement with an InfraRed Imaging Video Bolometer (IRVB) was conducted during Ne seeding. The localized supplemental radiation was observed along the helical divertor X-points (HDXs). The enhanced radiation structure was similar to the Ne radiation profile estimated by EMC3-EIRENE code. Kr seeding was also conducted to the plasma of n e,bar ∼ 3.1 × 10 19 m -3 . P rad /P heating ∼ 25% was obtained without significant change in stored energy. The enhancement of the plasma radiation has a slower time constant compared with the Ne seeding. The supplemental radiation area of the Kr seeded plasma moved from the HDXs to the core plasma. High-valent Kr ions are considered to be the dominant radiators from the plasma core region. (author)

  11. Stage-Specific Fatty Acid Fluxes Play a Regulatory Role in Glycerolipid Metabolism during Seed Development in Jatropha curcas L.

    Science.gov (United States)

    Chaitanya, Bharatula Sri Krishna; Kumar, Sumit; Kaki, Shiva Shanker; Balakrishna, Marrapu; Karuna, Mallampalli Sri Lakshmi; Prasad, Rachapudi Badari Narayana; Sastry, Pidaparty Seshadri; Reddy, Attipalli Ramachandra

    2015-12-23

    The present study describes the changes in lipid profile as well as fatty acid fluxes during seed development in Jatropha curcas L. Endosperm from 34, 37, and 40 days after anthesis (DAA), incubated with [(14)C]acetate, showed significant synthesis of phosphatidylcholine (PC) at seed maturation. The fatty acid methyl ester profile showed PC from 34 DAA was rich in palmitic acid (16:0), whereas PC from 37 and 40 DAA was rich in oleic acid (18:1n-9). Molecular species analysis of diacylglycerol (DAG) indicated DAG (16:0/18:2n-6) was in abundance at 34 DAA, whereas DAG (18:1n-9/18:2n-6) was significantly high at 40 DAA. Triacylglycerol (TAG) analysis revealed TAG (16:0/18:2n-6/16:0) was abundant at 34 DAA, whereas TAG (18:1n-9/18:2n-6/18:1n-9) formed the majority at 40 DAA. Expression of two types of diacylglycerol acyltransferases varied with seed maturation. These data demonstrate stage-specific distinct pools of PC and DAG synthesis during storage TAG accumulation in Jatropha seed.

  12. Development, Physico-Chemical and Sensory Properties of Biscuits Supplemented with Pumpkin Seeds to Combat Childhood Malnutrition in Pakistan

    International Nuclear Information System (INIS)

    Kanwal, S.; Raza, S.; Naseem, K.; Amjad, M.; Bibi, N.; Gillani, M.

    2015-01-01

    This study was carried out in Food Science and Product Development Institute, National Agricultural Research Centre, Islamabad, Pakistan in 2014. Nutritive pumpkin seed flour fortified biscuits were prepared with four different substituted levels of pumpkin seed flour in wheat flour (T/sub 2/ = 5%, T/sub 3/ = 10%, T/sub 4/ = 15% and T/sub 5/ = 20%), were compared with control (T/sub 1/). Chemical attributes of biscuits showed that T/sub 5/ has maximum level of pumpkin flour (20%) with maximum protein (12.30%), fat (28.29%), ash (4.13%), iron (2.28%) and zinc (3.11%). Sensory results also revealed increasing trend in all sensory parameters. Results showed acceptability at all levels but treatment T/sub 4/ with 15 % pumpkin seed flour scored highest (8.0) for maximum overall acceptability. It was concluded that pumpkin seed flour can be supplemented successfully to partially replace wheat flour to prepare highly nutritious biscuits without affecting its overall acceptability. (author)

  13. Development and appraisal of economical and sustainable approach for weed management in drill seeded aerobic rice (oryza sativa l.)

    International Nuclear Information System (INIS)

    Saqib, M.; Akbar, N.; Ehsanullah, A.; Ghafoor, A.

    2012-01-01

    Conventional rice cultivation by puddling and transplanting is a labor intensive activity. Water scarcity is a threat for the sustain ability of transplanted rice. In many areas of Asia, rice transplantation of rice is being replaced by direct seeding as farmers tried to solve the problems of labor cost and water scarcity but weed control is one of the major constraints to direct seeding. So, to control weeds in direct seeded rice present studies were designed. A two years study was conducted to develop sustainable and economical methods for managing weeds in aerobic rice grown by dry direct-seeding at Student's Farm, Department of Agronomy, University of Agriculture, Faisalabad during the years 2008 and 2009. Experiment was laid out in RCBD with five weed management strategies: hand weeding, hoeing with kasula, inter-row cultivation with tine cultivator, inter-row cultivation with spike hoe and chemical control with Nominee 100 SC along with control (no weeding). Weed dry weight was 300 g m/sup -2/, 257 g m/sup -2/, 225 g m/sup -2/ and 157 g m/sup -2/ less in hand weeding, hoeing, tine cultivator and Nominee 100 SC respectively than no weeding. Paddy yield was 221%, 203%, 181% and 105% more in hand weeding, hoeing, tine cultivator and Nominee 100 SC respectively than no weeding. (author)

  14. Development of Auto-Seeding System Using Image Processing Technology in the Sapphire Crystal Growth Process via the Kyropoulos Method

    Directory of Open Access Journals (Sweden)

    Churl Min Kim

    2017-04-01

    Full Text Available The Kyropoulos (Ky and Czochralski (Cz methods of crystal growth are used for large-diameter single crystals. The seeding process in these methods must induce initial crystallization by initiating contact between the seed crystals and the surface of the melted material. In the Ky and Cz methods, the seeding process lays the foundation for ingot growth during the entire growth process. When any defect occurs in this process, it is likely to spread to the entire ingot. In this paper, a vision system was constructed for auto seeding and for observing the surface of the melt in the Ky method. An algorithm was developed to detect the time when the internal convection of the melt is stabilized by observing the shape of the spoke pattern on the melt material surface. Then, the vision system and algorithm were applied to the growth furnace, and the possibility of process automation was examined for sapphire growth. To confirm that the convection of the melt was stabilized, the position of the island (i.e., the center of a spoke pattern was detected using the vision system and image processing. When the observed coordinates for the center of the island were compared with the coordinates detected from the image processing algorithm, there was an average error of 1.87 mm (based on an image with 1024 × 768 pixels.

  15. Proteome regulation during Olea europaea fruit development.

    Directory of Open Access Journals (Sweden)

    Linda Bianco

    Full Text Available Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes.In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies.This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  16. Proteome regulation during Olea europaea fruit development.

    Science.gov (United States)

    Bianco, Linda; Alagna, Fiammetta; Baldoni, Luciana; Finnie, Christine; Svensson, Birte; Perrotta, Gaetano

    2013-01-01

    Widespread in the Mediterranean basin, Olea europaea trees are gaining worldwide popularity for the nutritional and cancer-protective properties of the oil, mechanically extracted from ripe fruits. Fruit development is a physiological process with remarkable impact on the modulation of the biosynthesis of compounds affecting the quality of the drupes as well as the final composition of the olive oil. Proteomics offers the possibility to dig deeper into the major changes during fruit development, including the important phase of ripening, and to classify temporal patterns of protein accumulation occurring during these complex physiological processes. In this work, we started monitoring the proteome variations associated with olive fruit development by using comparative proteomics coupled to mass spectrometry. Proteins extracted from drupes at three different developmental stages were separated on 2-DE and subjected to image analysis. 247 protein spots were revealed as differentially accumulated. Proteins were identified from a total of 121 spots and discussed in relation to olive drupe metabolic changes occurring during fruit development. In order to evaluate if changes observed at the protein level were consistent with changes of mRNAs, proteomic data produced in the present work were compared with transcriptomic data elaborated during previous studies. This study identifies a number of proteins responsible for quality traits of cv. Coratina, with particular regard to proteins associated to the metabolism of fatty acids, phenolic and aroma compounds. Proteins involved in fruit photosynthesis have been also identified and their pivotal contribution in oleogenesis has been discussed. To date, this study represents the first characterization of the olive fruit proteome during development, providing new insights into fruit metabolism and oil accumulation process.

  17. Bank regulation and financial fragility in developing countries

    NARCIS (Netherlands)

    Klomp, Jeroen; Haan, de Jakob

    2015-01-01

    Using data for 1238 banks located in 94 developing and emerging countries, we explore whether the impact of bank regulation and supervision on banking risk (measured by the banks' Z-scores) depends on bank structure. Our findings suggest that stricter regulation and supervision increases the

  18. Self-Regulated Strategy Development. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2017

    2017-01-01

    "Self-Regulated Strategy Development" ("SRSD") is an intervention designed to improve students' academic skills through a six-step process that teaches students specific academic strategies and self-regulation skills. The practice is especially appropriate for students with learning disabilities, the focal population of the…

  19. Developing Young Children's Self-Regulation through Everyday Experiences

    Science.gov (United States)

    Florez, Ida Rose

    2011-01-01

    Every child is different. Some have difficulty expressing their ideas verbally. Some struggle to get along with peers or follow classroom routines. In each case, however, one thing is the same: improved learning and behavior requires strong self-regulation skills. Children develop foundational skills for self-regulation in the first five years of…

  20. Adolescents' Self-Regulation Development via the Sensory Room System

    Science.gov (United States)

    Kalimullin, Aydar M.; Kuvaldina, Elana A.; Koinova-Zoellner, Julia

    2016-01-01

    The urgency of the issue stated in this article is caused by the need for mastering skills and patterns of self-regulation when being an adolescent since this time is sensitive for developing processes of personal understanding and evolution. Thus, mastering skills and patterns of self-regulation as a necessary part of the whole ability of…

  1. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  2. Biotechnology regulation: limiting or contributing to biotech development?

    DEFF Research Database (Denmark)

    Hansen, Anne Grethe

    2001-01-01

    to the European arena, their role and extension are still an issue. In this paper, the often anticipated innovation-inhibiting effects of regulation are questioned by giving an account of regulations and debates in Denmark. An account which includes the shifting positions of industry, the research community......Modern biotechnology has been characterized by being surrounded by scientific and public debate and by interest conflicts. An early Danish debate and regulation has been criticized for inhibiting or retarding development and thus growth. Though much regulation and debate have been transferred...

  3. Regulation & Development of Membrane Transport Processes.

    Science.gov (United States)

    1985-05-15

    communication when they reach confluency. REFERENCES I. Adams, R. J., Schwartz, A., Grupp, G., Grupp, I., Lee , S. W., Wallick, E. T., Powell, T., Twist, V. W...Kyte, J. (1971) J. Biol. Chem., 246, 4157-4165. 16. Ledbetter , M. L. S. and Lubin, M. (1979) J. Cell Biol., 80, 150-165. 17. Louvard, D. (1980) Proc...Medicine Seattle, Washington 10 4 , tI 238 I) IVI "iLOJ(PMENT OF I’X-SEKNSI’I’IVI, Na (’IIANNI"IS The development of skeletal muscle has been studied

  4. Neurocognitive bases of emotion regulation development in adolescence

    Directory of Open Access Journals (Sweden)

    Saz P. Ahmed

    2015-10-01

    Full Text Available Emotion regulation is the ability to recruit processes to influence emotion generation. In recent years there has been mounting interest in how emotions are regulated at behavioural and neural levels, as well as in the relevance of emotional dysregulation to psychopathology. During adolescence, brain regions involved in affect generation and regulation, including the limbic system and prefrontal cortex, undergo protracted structural and functional development. Adolescence is also a time of increasing vulnerability to internalising and externalising psychopathologies associated with poor emotion regulation, including depression, anxiety and antisocial behaviour. It is therefore of particular interest to understand how emotion regulation develops over this time, and how this relates to ongoing brain development. However, to date relatively little research has addressed these questions directly. This review will discuss existing research in these areas in both typical adolescence and in adolescent psychopathology, and will highlight opportunities for future research. In particular, it is important to consider the social context in which adolescent emotion regulation develops. It is possible that while adolescence may be a time of vulnerability to emotional dysregulation, scaffolding the development of emotion regulation during this time may be a fruitful preventative target for psychopathology.

  5. 7 CFR 948.6 - Seed potatoes.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 8 2010-01-01 2010-01-01 false Seed potatoes. 948.6 Section 948.6 Agriculture... and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE IRISH POTATOES GROWN IN COLORADO Order Regulating Handling Definitions § 948.6 Seed potatoes. Seed potatoes or seed means any potatoes...

  6. 7 CFR 201.57 - Hard seeds.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57 Hard seeds. Seeds which remain hard at the end of the prescribed test because they have not absorbed water, due to an impermeable seed coat... percentage of germination. For flatpea, continue the swollen seed in test for 14 days when germinating at 15...

  7. Analysis of the embryo proteome of sycamore (Acer pseudoplatanus L.) seeds reveals a distinct class of proteins regulating dormancy release.

    Science.gov (United States)

    Pawłowski, Tomasz Andrzej; Staszak, Aleksandra Maria

    2016-05-20

    Acer pseudoplatanus seeds are characterized by a deep physiological embryo dormancy that requires a few weeks of cold stratification in order to promote germination. Understanding the function of proteins and their related metabolic pathways, in conjunction with the plant hormones implicated in the breaking of seed dormancy, would expand our knowledge pertaining to this process. In this study, a proteomic approach was used to analyze the changes occurring in seeds in response to cold stratification, which leads to dormancy release. In addition, the involvement of abscisic (ABA) and gibberellic acids (GA) was also examined. Fifty-three proteins showing significant changes were identified by mass spectrometry. An effect of ABA on protein variation was observed at the beginning of stratification, while the influence of GA on protein abundance was observed during the middle phase of stratification. The majority of proteins associated with dormancy breaking in the presence of only water, and also ABA or GA, were classified as being involved in metabolism and genetic information processing. For metabolic-related proteins, the effect of ABA on protein abundance was stimulatory for half of the proteins and inhibitory for half of the proteins. On the other hand, the effect on genetic information processing related proteins was stimulatory. GA was found to upregulate both metabolic-related and genetic information processing-related proteins. While seed dormancy breaking depends on proteins involved in a variety of processes, proteins associated with methionine metabolism (adenosine kinase, methionine synthase) and glycine-rich RNA binding proteins appear to be of particular importance. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Developments in safety standards and regulation

    International Nuclear Information System (INIS)

    Harbison, S.A.

    1994-01-01

    This paper explains, in broad terms, how regulatory control is exercised over licensed nuclear installations in the UK and how HSE has developed its safety standards to support its regulatory approach. It first sets out the scope of HSE's regulatory responsibilities, which NII exercises on its behalf, and briefly describes the licensing process and compliance monitoring through inspection over the life of a nuclear plant. It also refers to the role of assessment in NII's decision-making processes, and the part played in this by the consideration of costs and safety benefits. It then moves on to consider the challenges that HSE/NII are likely to face from the changing nuclear industry in the second half of the 1990s. (author)

  9. Trigonella foenum-graceum (Seed Extract Interferes with Quorum Sensing Regulated Traits and Biofilm Formation in the Strains of Pseudomonas aeruginosa and Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Fohad Mabood Husain

    2015-01-01

    Full Text Available Trigonella foenum-graecum L. (Fenugreek is an important plant of the Leguminosae family known to have medicinal properties. However, fraction based antiquorum sensing and antibiofilm activities have not been reported from this plant. In the present study T. foenum-graecum seed extract was sequentially fractionated and sub-MICs were tested for above activities. The methanol fraction of the extract demonstrated significant inhibition of AHL regulated virulence factors: protease, LasB elastase, pyocyanin production, chitinase, EPS, and swarming motility in Pseudomonas aeruginosa PAO1 and PAF79. Further, QS dependent virulence factor in the aquatic pathogen Aeromonas hydrophila WAF38 was also reduced. Application of T. foenum-graecum seed extract to PAO1, PAF79, and WAF38 decreased the biofilm forming abilities of the pathogens by significant levels. The extract also exhibited reduced AHL levels and subsequent downregulation of lasB gene. In vivo study showed an enhanced survival of PAO1-preinfected C. elegans after treatment with extract at 1 mg/mL. Further, the major compound detected by GC-MS, caffeine, reduced the production of QS regulated virulence factors and biofilm at 200 µg/mL concentration indicating its role in the activity of the methanol extract. The results of the present study reveal the potential anti-QS and antibiofilm property of T. foenum-graceum extract and caffeine.

  10. Effect of combined treatments of neutron radiation and plant growth regulator (GA) on seed germination and growth of rice

    International Nuclear Information System (INIS)

    Xie Chonghua; Wang Dan; Chen Yongjun; Wang Ying; Luo Jie; Liao Wei; Zheng Chun

    2007-01-01

    Rice seeds were irradiated with fast-neutron impulse pile and then were treated with different concentration of GA 3 . The effect of combined treatments on seeds germination and seedling growth were studied. The results showed that lethal pouring dose of neutron radiation on Hongai B and CB was 486 x 10 10 /cm 2 , Mianhui 2009 was 900 x 10 10 /cm 2 and Mianhui 2095 and Minghui 63 were 1350 x 10 10 /cm 2 . Semi-lethal pouring dose (LD 50 ) of neutron radiation on Hongai Band CB was 198-486 x 10 10 /cm 2 , Mianhui 2009 was about 486 x 10 10 /cm 2 , Minghui 63 was 629.49 x 10 10 /cm 2 and Mianhui 2095 is 774.69 x 10 10 /cm 2 . Radiation sensitivity of rice is Hongai B, CB>Mianhui 2009>Minghui 63>Mianhui 2095. GA 3 is a kind of efficient chemical radiation protection. 40 and 80 mg/L are the proper GA 3 concentrations of neutron irradiated rice seeds. (authors)

  11. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development

    Science.gov (United States)

    Thakur, Anita; Bhatla, Satish C

    2015-01-01

    A noteworthy metabolic signature accompanying oil body (OB) biogenesis during oilseed development is associated with the modulation of the oil body membranes proteins. Present work focuses on 2-dimensional polyacrylamide gel electrophoresis (2-D PAGE)-based analysis of the temporal changes in the OB membrane proteins analyzed by LC-MS/MS accompanying the onset of desiccation (20–30 d after anthesis; DAA) in the developing seeds of sunflower (Helianthus annuus L.). Protein spots unique to 20–30 DAA stages were picked up from 2-D gels for identification and the identified proteins were categorized into 7 functional classes. These include proteins involved in energy metabolism, reactive oxygen scavenging, proteolysis and protein turnover, signaling, oleosin and oil body biogenesis-associated proteins, desiccation and cytoskeleton. At 30 DAA stage, exclusive expressions of enzymes belonging to energy metabolism, desiccation and cytoskeleton were evident which indicated an increase in the metabolic and enzymatic activity in the cells at this stage of seed development (seed filling). Increased expression of cruciferina-like protein and dehydrin at 30 DAA stage marks the onset of desiccation. The data has been analyzed and discussed to highlight desiccation stage-associated metabolic events during oilseed development. PMID:26786011

  12. Development of Texturized Vegetable Protein from Lima Bean (Phaseolus lunatus and African Oil Bean Seed [Pentaclethrama crophylla (Benth]: Optimization Approach

    Directory of Open Access Journals (Sweden)

    Arueya Gibson. L.

    2017-06-01

    Full Text Available As part of measures to combat protein shortages in form of meat analogues, extrusion processing conditions for the development of Texturized Vegetable Protein (TVP from under-utilized sources (Lima bean and African oil bean seed are analysed. Optimum parameters for processing were established as being: barrel temperature (92.45°C, screw speed (101.48 rpm, feed moisture (59.63% and African oil bean seed protein concentrates (AOBSPC of 1%. Concentrations of essential amino-acids were also found to be significant (0.90-7.3% with a near absence of anti-nutritional factors (0.0022–1.0008 g/kg. Sensory evaluation showed that TVP5 (100% LBPC compared favourably with the control sample (cooked meat in overall acceptability. An Acceptable and nutritious meat analogue had been developed.

  13. Retinoic acid signalling in thymocytes regulates T cell development

    DEFF Research Database (Denmark)

    Wendland, Kerstin; Sitnik, Katarzyna Maria; Kotarsky, Knut

    in the regulatory regions of targetgenes. RA has been reported to play a direct role in regulating multiple aspects of peripheralT cell responses1, but whether endogenous RA signalling occurs in developingthymocytes and the potential impact of such signals in regulating T cell developmentremains unclear. To address......RARα. This blocks RA signalling in developing thymocytes from the DN3/4 stageonwards and thus allows us to study the role of RA in T cell development...

  14. Foliar application of molybdenum reduces yield loss and pre-harvest sprouting in japonica rice seed subjected to simulated flooding during seed development and maturation

    OpenAIRE

    Tejakhod, Sujittra; Hammond, John P.; Ellis, Richard H.

    2018-01-01

    Flooding damages rice crops and its incidence is increasing. Foliar spray applications of molybdenum (100, 600 or 3000 mg Mo L-1), abscisic acid (ABA, 50 μM), or deionised water (control) were made to pot-grown plants of the Japonica rice cv. Gleva at flag leaf appearance to determine their effects on seed yield and pre-harvest sprouting after flooding. Plants were submerged , to simulate flooding, for four days from 20 or 30 days after anthesis (DAA). Seed yield per plant, seed weight, and p...

  15. Manipulation of Auxin Response Factor 19 affects seed size in the woody perennial Jatropha curcas

    Science.gov (United States)

    Sun, Yanwei; Wang, Chunming; Wang, Ning; Jiang, Xiyuan; Mao, Huizhu; Zhu, Changxiang; Wen, Fujiang; Wang, Xianghua; Lu, Zhijun; Yue, Genhua; Xu, Zengfu; Ye, Jian

    2017-01-01

    Seed size is a major determinant of seed yield but few is known about the genetics controlling of seed size in plants. Phytohormones cytokinin and brassinosteroid were known to be involved in the regulation of herbaceous plant seed development. Here we identified a homolog of Auxin Response Factor 19 (JcARF19) from a woody plant Jatropha curcas and genetically demonstrated its functions in controlling seed size and seed yield. Through Virus Induced Gene Silencing (VIGS), we found that JcARF19 was a positive upstream modulator in auxin signaling and may control plant organ size in J. curcas. Importantly, transgenic overexpression of JcARF19 significantly increased seed size and seed yield in plants Arabidopsis thaliana and J. curcas, indicating the importance of auxin pathway in seed yield controlling in dicot plants. Transcripts analysis indicated that ectopic expression of JcARF19 in J. curcas upregulated auxin responsive genes encoding essential regulators in cell differentiation and cytoskeletal dynamics of seed development. Our data suggested the potential of improving seed traits by precisely engineering auxin signaling in woody perennial plants. PMID:28102350

  16. Preimplantation genetic diagnosis: development and regulation.

    Science.gov (United States)

    Thomas, C

    2006-06-01

    they have a conflict of interests between their children. As such, parents may not be the best proxy decision-makers in this area and the decision might be better made by an independent authority or court. This paper considers ethical and legal issues arising from PGD. It will compare the willingness of the HFEA in the United Kingdom to allow this process to be used even in cases where the condition suffered by the sibling is non-heritable, with the more restrictive guidelines in New Zealand and questions the constitutional basis on which ethics committees develop policy in the absence of a legislative framework.

  17. The transcriptome of the developing grain: a resource for understanding seed development and the molecular control of the functional and nutritional properties of wheat.

    Science.gov (United States)

    Rangan, Parimalan; Furtado, Agnelo; Henry, Robert J

    2017-10-11

    Wheat is one of the three major cereals that have been domesticated to feed human populations. The composition of the wheat grain determines the functional properties of wheat including milling efficiency, bread making, and nutritional value. Transcriptome analysis of the developing wheat grain provides key insights into the molecular basis for grain development and quality. The transcriptome of 35 genotypes was analysed by RNA-Seq at two development stages (14 and 30 days-post-anthesis, dpa) corresponding to the mid stage of development (stage Z75) and the almost mature seed (stage Z85). At 14dpa, most of the transcripts were associated with the synthesis of the major seed components including storage proteins and starch. At 30dpa, a diverse range of genes were expressed at low levels with a predominance of genes associated with seed defence and stress tolerance. RNA-Seq analysis of changes in expression between 14dpa and 30dpa stages revealed 26,477 transcripts that were significantly differentially expressed at a FDR corrected p-value cut-off at ≤0.01. Functional annotation and gene ontology mapping was performed and KEGG pathway mapping allowed grouping based upon biochemical linkages. This analysis demonstrated that photosynthesis associated with the pericarp was very active at 14dpa but had ceased by 30dpa. Recently reported genes for flour yield in milling and bread quality were found to influence wheat quality largely due to expression patterns at the earlier seed development stage. This study serves as a resource providing an overview of gene expression during wheat grain development at the early (14dpa) and late (30dpa) grain filling stages for use in studies of grain quality and nutritional value and in understanding seed biology.

  18. Oil palm seed distribution

    Directory of Open Access Journals (Sweden)

    Durand-Gasselin Tristan

    2005-03-01

    Full Text Available For a tropical plant, the oil palm commodity chain has the peculiarity of possessing a major seed production sector for reasons that are primarily genetic. This seed sector has numerous original aspects. Breeders are also propagators and usually also distribute their seeds. Oil palm seeds are semi-recalcitrant: they display pseudo-dormancy. Achieving seed germination is difficult and requires lengthy treatments and special installations. This restriction greatly influences seed distribution and the role of the different stakeholders in the commodity chain. It was only once it had been discovered how the “sh” gene functioned, which controls shell thickness, and when it became necessary to produce “tenera” seeds derived from exclusively “dura x pisifera” crosses, that a true seed market developed. In addition it is difficult to organize seed distribution to smallholders. This is partly due to difficulties that the profession, or a State-run organization, has in controlling middlemen networks, and partly to the absence of any protective systems (UPOV, plant breeder certificate, etc. that generally oblige breeders to preserve and propagate parents in their own installations. In fact there are major inequalities in the access to seeds between agroindustry and smallholders. Another peculiarity of the oil palm seed market is the virtually total absence of guarantees for buyers: the quality of the research conducted by breeders, the seed production strategies necessary for transferring genetic progress, and the technical quality of production. The only guarantee today comes from the relations of confidence established year after year between breeders/distributors and growers. In this fields, research can lead to some proposals: molecular biology offers some interesting prospects for certifying seed quality and social science develop effective communication methods.

  19. Study of social responsibilities of Hubei seed enterprises

    Directory of Open Access Journals (Sweden)

    Gangren Zhang

    2017-03-01

    Full Text Available The aim of this study is to analyze the current development situation of social responsibilities of Hubei seed enterprises in accordance with the specific features of them. Furthermore, it will also propose countermeasures and suggestions to improve the social responsibility level of Hubei seed enterprises. This study mainly applied document research method and questionnaire survey approach as the means to analyze the reason why there’s lack of social responsibilities among seed enterprises in Hubei. It also reached conclusions about how to improve the social responsibility level of Hubei seed enterprises from four aspects: enterprise, laws & regulations, social supervision, and government guidance & supervision, so as to provide theoretical reference for better development of Hubei seed industry.

  20. Proteomic profile of the nucellus of castor bean (Ricinus communis L.) seeds during development

    DEFF Research Database (Denmark)

    Nogueira, Fábio C S; Palmisano, Giuseppe; Soares, Emanoella L

    2012-01-01

    In this study, we performed a proteomic analysis of nucellus from two developmental stages of Ricinus communis seeds by a GeLC-MS/MS approach, using of a high resolution orbitrap mass spectrometer, which resulted in the identification of a total of 766 proteins that were grouped into 553 protein ...

  1. Development of an air knife to remove seed coat fragments during lint cleaning

    Science.gov (United States)

    An air knife is a tool commonly used to blow off debris in a manufacturing line. The knife may also be used to break the attachment force between a lint cleaner saw and a seed coat fragment (SCF) with attached fiber, and remove them. Work continued on evaluating an auxiliary air knife mounted on t...

  2. Endophytic bacteria in cacti seeds can improve the development of cactus seedlings.

    Science.gov (United States)

    M. Esther Puente; Ching Y. Li; Yoav Bashan

    2009-01-01

    A plant-bacterium association between the giant cardon cactus Pachycereus pringlei and endophytic bacteria help seedlings establish and grow on barren rock, This cactus, together with other desert plants, is responsible for weathering ancient lava flows in the Baja California Peninsula of Mexico.When cardon seeds are inoculated with endophytic...

  3. Development and evaluation of orodispersible tablets using a natural polysaccharide isolated from Cassia tora seeds

    Directory of Open Access Journals (Sweden)

    Harshal Pawar

    2014-06-01

    Conclusion: The present work revealed that C. tora seed polysaccharide has a good potential as a disintegrant in the formulation of orodispersible tablets. Because C. tora polysaccharide is inexpensive as compared to synthetic superdisintegrants, nontoxic, compatible, and easy to manufacture, it can be used in place of currently marketed superdisintegrants.

  4. Calendula oil processing : seed classification, oil extraction, refining process development and oil quality aspects

    NARCIS (Netherlands)

    Janssens, R.J.J.

    2000-01-01

    The difference in Calendula oil quality from fractions obtained after seed classification is enormous. The oil quality varies from excellent to very poor, according to important aspects such as in the hulls and dust fraction, high free fatty acid values (13% vs. 0.6%) are found. This can be

  5. Developing National Regulations in the United Arab Emirates

    International Nuclear Information System (INIS)

    Kaufer, Barry; Redwine, Kirk; Al Khafili, Helal; Hafidh, Salem

    2011-01-01

    The Federal Authority for Nuclear Regulation (FANR), in preparing, issuing and implementing regulations is seeking to be consistent with IAEA Safety Standards, to use risk informed and performance-based methodologies, to capitalise on licensing in the country of origin and to follow internationally recognised practices. FANR's intent is to produce high level regulations which are not prescriptive and which focus on the essential aspects of safety. Regulatory guides will also be provided to assist licensees with compliance. This paper discusses an overview of the regulatory framework in the UAE, the planned scope of the proposed regulations, the approach being taken under an internal management system to develop these regulations and regulatory guides in the UAE and. The current status and future plans will also be provided. (authors)

  6. Development of a method and technology for obtaining vegetable oil from safflower seeds

    Directory of Open Access Journals (Sweden)

    S. T. Antipov

    2017-01-01

    Full Text Available The article is designed and engineered compact line for processing grain safflower, which used the equipment of the increased efficiency, implementing progressive processes with application of modern physical methods of treatment. This line includes bucket Elevator (Noria, a receiving hopper , the air-sieve separator , intermediate tank, Trier (osgoodby and qualitronic, stone-dividing machine and separator for separation of Caucalis lappula, screw conveyor, intermediate bunker, peeler, oil press machines, the device for the deposition of oil (the sump, pump, frame filter. The process of collapse in the grinding pilot plant, in which the destruction of the epithelial layer of the shell is due to the fact that the compression stress in the impact zone exceeds the limit of elastic deformation of the shell of the grain. Conducted sieve analysis, which was studied granulometric composition fed to the compression of the particles of safflower seed , in this case to characterize the granulometric composition of the raw material, consisting of particles of irregular shape, used the concept of equivalent diameter. As a result of the experiments was the dependence of the equivalent particle diameter from the diameter of the sieve. Since the degree of extraction of safflower seed are hugely influenced by the moisture source of the product, was therefore carried out experimental studies of compaction with different moisture content of the seeds , and with the addition of Luz-Ki. From the analysis of graphic dependences were established a range of optimum moisture safflower seed 8,5--10%, providing the lowest residual oil content and hence the greatest yield of oil. Also managed to significantly increase the efficiency of extraction of oil by adding safflower seed pre-milled husks, which allowed to obtain cake with a residual oil content of 12% when you multiply pre-pressing and to 6% at the final extraction

  7. Development of a new bioprocess scheme using frozen seed train intermediates to initiate CHO cell culture manufacturing campaigns.

    Science.gov (United States)

    Seth, Gargi; Hamilton, Robert W; Stapp, Thomas R; Zheng, Lisa; Meier, Angela; Petty, Krista; Leung, Stephenie; Chary, Srikanth

    2013-05-01

    Agility to schedule and execute cell culture manufacturing campaigns quickly in a multi-product facility will play a key role in meeting the growing demand for therapeutic proteins. In an effort to shorten campaign timelines, maximize plant flexibility and resource utilization, we investigated the initiation of cell culture manufacturing campaigns using CHO cells cryopreserved in large volume bags in place of the seed train process flows that are conventionally used in cell culture manufacturing. This approach, termed FASTEC (Frozen Accelerated Seed Train for Execution of a Campaign), involves cultivating cells to high density in a perfusion bioreactor, and cryopreserving cells in multiple disposable bags. Each run for a manufacturing campaign would then come from a thaw of one or more of these cryopreserved bags. This article reviews the development and optimization of individual steps of the FASTEC bioprocess scheme: scaling up cells to greater than 70 × 10(6) cells/mL and freezing in bags with an optimized controlled rate freezing protocol and using a customized rack configuration. Flow cytometry analysis was also employed to understand the recovery of CHO cells following cryopreservation. Extensive development data were gathered to ensure that the quantity and quality of the drug manufactured using the FASTEC bioprocess scheme was acceptable compared to the conventional seed train process flow. The result of offering comparable manufacturing options offers flexibility to the cell culture manufacturing network. Copyright © 2012 Wiley Periodicals, Inc.

  8. Development of a generic seed crystal for the fabrication of large grain (RE)-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Shi, Y; Babu, N Hari; Cardwell, D A

    2005-01-01

    The critical current density, J c , irreversibility field, B irr , and magnetic field trapping ability of (LRE)-Ba-Cu-O bulk superconductors, where LRE is a light rare earth element such as Nd, Sm, Eu and Gd, are generally superior to those of the more common melt-processed Y-Ba-Cu-O (YBCO). The lack of availability of a suitable seed crystal to grow large, single grain (LRE)-Ba-Cu-O superconductors with controlled orientation, however, has hindered severely the development of these materials for engineering applications over the past ten years. In this communication we report for the first time the development of a generic seed crystal that can be used to fabricate any rare earth (RE) based (RE)-Ba-Cu-O ((RE)BCO) superconductor in the form of a large single grain with controlled orientation. The new seed crystal will potentially enable large grain (LRE)-Ba-Cu-O bulk superconductors to be fabricated routinely, as is the case for YBCO. This will enable the field trapping and current-carrying characteristics of these materials to be explored in more detail than has been possible to date. (rapid communication)

  9. Seeds of confusion : the impact of policies on seed systems

    NARCIS (Netherlands)

    Louwaars, N.P.

    2007-01-01

    Seed is basic to crop production. Next to its importance in production, food security and rural development, seed is a key element in many debates about technology development and transfer, biodiversity, globalisation and equity. The sustainable availability of good quality seed is thus an important

  10. Cloning of gibberellin 3 beta-hydroxylase cDNA and analysis of endogenous gibberellins in the developing seeds in watermelon.

    Science.gov (United States)

    Kang, Hong-Gyu; Jun, Sung-Hoon; Kim, Joonyul; Kawaide, Hiroshi; Kamiya, Yuji; An, Gynheung

    2002-02-01

    We have isolated Cv3h, a cDNA clone from the developing seeds of watermelon, and have demonstrated significant amino acid homology with gibberellin (GA) 3 beta-hydroxylases. This cDNA clone was expressed in Escherichia coli as a fusion protein that oxidized GA(9) and GA(12) to GA(4) and GA(14), respectively. The Cv3h protein had the highest similarity with pumpkin GA 2 beta,3 beta-hydroxylase, but did not possess 2 beta-hydroxylation function. RNA blot analysis showed that the gene was expressed primarily in the inner parts of developing seeds, up to 10 d after pollination (DAP). In the parthenocarpic fruits induced by treatment with 1-(2-chloro-4-pyridyl)-3-phenylurea (CPPU), the embryo and endosperm of the seeds were undeveloped, whereas the integumental tissues, of maternal origin, showed nearly normal development. Cv3h mRNA was undetectable in the seeds of CPPU-treated fruits, indicating that the GA 3 beta-hydroxylase gene was expressed in zygotic cells. In our analysis of endogenous GAs from developing seeds, GA(9) and GA(4) were detected at high levels but those of GA(20) and GA(1) were very low. This demonstrates that GA biosynthesis in seeds prefers a non-13-hydroxylation pathway over an early 13-hydroxylation pathway. We also analyzed endogenous GAs from seeds of the parthenocarpic fruits. The level of bioactive GA(4 )was much lower there than in normal seeds, indicating that bioactive GAs, unconnected with Cv3h, exist in integumental tissues during early seed development.

  11. The development of an emotional regulation scale for adolescents

    OpenAIRE

    Strauss, Monique; Raubenheimer, Jacques E; Campher, Daleen; Coetzee, Charika; Diedericks, Amorise; Gevers, Heidi; Green, Karla; van Niekerk, Sandré

    2016-01-01

    Emotional regulation is an important skill enabling or disabling the occupational engagement of adolescent clients. Evaluation is a key concept in the occupational therapy process, informing treatment approaches and outcomes. The authors could not identify a scale measuring emotional regulation strategies used by adolescent in the literature. A quantitative, descriptive study was done following a process of scale development. A survey with 78 items was designed which 404 adolescents from a te...

  12. Symbiotic in vitro seed propagation of Dendrobium: fungal and bacterial partners and their influence on plant growth and development.

    Science.gov (United States)

    Teixeira da Silva, Jaime A; Tsavkelova, Elena A; Zeng, Songjun; Ng, Tzi Bun; Parthibhan, S; Dobránszki, Judit; Cardoso, Jean Carlos; Rao, M V

    2015-07-01

    The genus Dendrobium is one of the largest genera of the Orchidaceae Juss. family, although some of its members are the most threatened today. The reason why many species face a vulnerable or endangered status is primarily because of anthropogenic interference in natural habitats and commercial overexploitation. The development and application of modern techniques and strategies directed towards in vitro propagation of orchids not only increases their number but also provides a viable means to conserve plants in an artificial environment, both in vitro and ex vitro, thus providing material for reintroduction. Dendrobium seed germination and propagation are challenging processes in vivo and in vitro, especially when the extreme specialization of these plants is considered: (1) their biotic relationships with pollinators and mycorrhizae; (2) adaptation to epiphytic or lithophytic life-styles; (3) fine-scale requirements for an optimal combination of nutrients, light, temperature, and pH. This review also aims to summarize the available data on symbiotic in vitro Dendrobium seed germination. The influence of abiotic factors as well as composition and amounts of different exogenous nutrient substances is examined. With a view to better understanding how to optimize and control in vitro symbiotic associations, a part of the review describes the strong biotic relations of Dendrobium with different associative microorganisms that form microbial communities with adult plants, and also influence symbiotic seed germination. The beneficial role of plant growth-promoting bacteria is also discussed.

  13. Effects of Soil Substrate Contaminated by Knotweed Leaves on Seed Development

    Czech Academy of Sciences Publication Activity Database

    Šerá, Božena

    2012-01-01

    Roč. 21, č. 3 (2012), s. 713-717 ISSN 1230-1485 R&D Projects: GA MŠk OC10032; GA MZe QH72117 Institutional research plan: CEZ:AV0Z60870520 Keywords : seed germination * early growth * hormesis * allelopathy * phytotoxicity * Reynoutria * biotechnology Subject RIV: DK - Soil Contamination ; De-contamination incl. Pesticides Impact factor: 0.462, year: 2012

  14. Investigations on embryo and endosperm development in gamma-irradiated Capsicum annuum L. and Capsicum pendulum Willd. seeds

    Energy Technology Data Exchange (ETDEWEB)

    Ilieva, I; Molkhova, E [Akademiya na Selskostopanskite Nauki, Sofia (Bulgaria). Inst. po Genetika

    1976-01-01

    Investigations were carried out concerning the effect of ionizing rays on pepper embryo development and on the radiosensitivity of single phases of embryogenesis. A single gamma-irradiation was effected with doses 1000, 1500, 2000 and 2500 rad, 7 days after flower pollination, when the preembryo had two cells. As a result of irradiation a shortening of the suspensor was established as well as delayed development or even totally blocked growth and degeneration of the embryo. Blocked cell division and degeneration of endospermal cells were observed. These disturbances lead to histologic changes in the seeds and to their non-viability.

  15. Investigations on embryo and endosperm development in gamma-irradiated Capsicum annuum L. and Capsicum pendulum Willd. seeds

    International Nuclear Information System (INIS)

    Ilieva, I.; Molkhova, E.

    1976-01-01

    Investigations were carried out concerning the effect of ionizing rays on pepper embryo development and on the radiosensitivity of single phases of embryogenesis. A single gamma-irradiation was effected with doses 1000, 1500, 2000 and 2500 rad, 7 days after flower pollination, when the preembryo had two cells. As a result of irradiation a shortening of the suspensor was established as well as delayed development or even totally blocked growth and degeneration of the embryo. Blocked cell division and degeneration of endospermal cells were observed. These disturbances lead to histologic changes in the seeds and to their non-viability. (author)

  16. Size, physiological quality, and green seed occurrence influenced by seeding rate in soybeans

    Directory of Open Access Journals (Sweden)

    André Sampaio Ferreira

    2017-05-01

    Full Text Available The seeding rate influences the intraspecific competition, which might affect the development and quality of seeds in soybean. However, the impact of seeding rate on the physical and physiological qualities of soybean seeds needs to be better elucidated. This study aimed to evaluate the effects of soybean plant density on the seed size as well as the effects of the interaction between the plant density and seed size on the seed mass, green seed occurence, and physiological seed quality. The experiments were carried out in the growing seasons of the years 2013/14 and 2014/15 in a Latossolo Vermelho distroférrico, under a randomized complete block design, using the NK 7059 RR cultivar with six replications. Four plant densities (150, 300, 440, and 560 thousand viable seeds ha–1 were evaluated. After the classification of seeds into four sizes, using a set of sieves, a 4 ×4 factorial scheme was used for the statistical analysis of the four plant densities and four seed sizes. The seed samples were evaluated for the seed mass, green seed percentage, germination, and vigor. Under thermal and water stress during seed development, an increase in the seeding rate led to a reduction in the green seed occurrence and an increase in the seed size and mass. However, in the absence of thermal and water stress, the seed size and mass were not altered by the seeding rate and, there was no occurrence of green seeds.

  17. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chi Kook; Cho, Byoung Kwan [College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeon [National Acadamy of Agricultural Science, Daejeon (Korea, Republic of); Kim, Moon S. [Environmental Microbial and Food Safety Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Washington (United States)

    2012-10-15

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  18. Growth and development of sugar sorghum (Sorghum saccharatum L. Pers. plants at different terms of sowing and seeding depth in the Forest-Steppe of Ukraine

    Directory of Open Access Journals (Sweden)

    Л. А. Герасименко

    2013-02-01

    Full Text Available The article features the results of research on phenological observations, biometric parameters of growth and development of the plants of sugar sorghum Silosnoe 42 variety during the vegetation at different terms of sowing and seeding depth in the Forest-Steppe of Ukraine. In particular, we show data on ground germination capacity of the seeds, the duration of the interphase periods, tillering, plant height and the diameter of the stem. It was established that the planting of sugar sorghum in mid-May (the third sowing date to the seeding depth of 4...6 cm enabled better plant development, as well as in these conditions the maximum values of plant growth and development were registered compared to the other test editions. Therefore, were would suggest the third term of sowing and seed depth 4...6 cm for growing the crop in this area.

  19. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    International Nuclear Information System (INIS)

    Ahn, Chi Kook; Cho, Byoung Kwan; Mo, Chang Yeon; Kim, Moon S.

    2012-01-01

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  20. Development in the Regulation of Wages and Working Conditions

    DEFF Research Database (Denmark)

    Høgedahl, Laust Kristian; Jørgensen, Henning

    2017-01-01

    The Nordic countries are renowned for their high level of unionization and collective bargaining. However, globalization, Europeanization, and an increasing individualization are often pictured as factors suppressing collective regulation. In this article, we look at the developments in the regul...... and in employee awareness, but Danish wage and salary earners also have an interest in extra support in the form of generalization and/or a politically regulated minimum wage....... in the regulation of wages and working conditions from a macro perspective by combing two large crosssectional surveys into a longitudinal study with point of departure in the Danish case. We find that collective bargaining coverage continues to stand surprisingly strong, both in terms of being very widespread...

  1. Consistent individual differences in seed disperser quality in a seed-eating fish

    NARCIS (Netherlands)

    Pollux, Bart J.A.

    2017-01-01

    Animal-mediated seed dispersal (zoochory) is considered to be an important mechanism regulating biological processes at larger spatial scales. To date, intra-specific variation in seed disperser quality within seed-dispersing animals has not been studied. Here, I employed seed feeding trials to

  2. Development of a safety and regulation systems simulation program II

    International Nuclear Information System (INIS)

    1985-05-01

    This report describes the development of a safety and regulation systems simulation program under contract to the Atomic Energy Control Board of Canada. A systems logic interaction simulation (SLISIM) program was developed for the AECB's HP-1000 computer which operates in the interactive simulation (INSIM) program environment. The SLISIM program simulates the spatial neutron dynamics, the regulation of the reactor power and in this version the CANDU-PHW 600 MW(e) computerized shutdown systems' trip parameters. The modular concept and interactive capability of the INSIM environment provides the user with considerable flexibility of the setup and control of the simulation

  3. 10 Years of Native Seed Certification in Germany - a Summary.

    Science.gov (United States)

    Mainz, Ann Kareen; Wieden, Markus

    2018-06-21

    Many renaturation projects and compensation areas are based on the use of seeds from regional indigenous wild plants, in the following: native or regional seeds. Despite this, such seeds make up only a small proportion of the total number of seeds used for greening projects - in Germany, for example, it is only around 1% (= 200 t/yr). Although the market for regional seeds is small, it is highly competitive. High-priced native seeds compete with flower mixes of unspecified origin and can only be differentiated from them by reliable quality seals. A quality assurance system based on seed legislation (EU Directive 2010/60, preservation mixtures) has been developed in a few European countries. However, quality assurance ends with the sale of the seeds. Thus, seed use remains unmonitored and often unsuitable material, or material foreign to the region, is planted in restoration areas. Unfortunately, nature conservation has not made seed-based restoration one of its key issues, neither at the European, nor at the national level. Currently there are many different local and regional standards, methods and private certificates that are confusing for users and which provide little continuity and predictability for producers. We recommend the establishment of an EU directive or a broadly agreed recommendation to the EU member states, spearheaded by nature conservation, which would define the standards for producing and using native seeds (e.g. harmonized regions that cross national borders, quality regulations). At the same time, wild plant interest groups should combine existing structures in order to strengthen seed-based restoration through international cooperation. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. 7 CFR 201.57a - Dormant seeds.

    Science.gov (United States)

    2010-01-01

    ... REGULATIONS Germination Tests in the Administration of the Act § 201.57a Dormant seeds. Dormant seeds are viable seeds, other than hard seeds, which fail to germinate when provided the specified germination..., or application of germination promoting chemicals. (b) The percentage of dormant seed, if present...

  5. Roles of Soybean Plasma Membrane Intrinsic Protein GmPIP2;9 in Drought Tolerance and Seed Development

    Directory of Open Access Journals (Sweden)

    Linghong Lu

    2018-04-01

    Full Text Available Aquaporins play an essential role in water uptake and transport in vascular plants. The soybean genome contains a total of 22 plasma membrane intrinsic protein (PIP genes. To identify candidate PIPs important for soybean yield and stress tolerance, we studied the transcript levels of all 22 soybean PIPs. We found that a GmPIP2 subfamily member, GmPIP2;9, was predominately expressed in roots and developing seeds. Here, we show that GmPIP2;9 localized to the plasma membrane and had high water channel activity when expressed in Xenopus oocytes. Using transgenic soybean plants expressing a native GmPIP2;9 promoter driving a GUS-reporter gene, it was found high GUS expression in the roots, in particular, in the endoderm, pericycle, and vascular tissues of the roots of transgenic plants. In addition, GmPIP2;9 was also highly expressed in developing pods. GmPIP2;9 expression significantly increased in short term of polyethylene glycol (PEG-mediated drought stress treatment. GmPIP2;9 overexpression increased tolerance to drought stress in both solution cultures and soil plots. Drought stress in combination with GmPIP2;9 overexpression increased net CO2 assimilation of photosynthesis, stomata conductance, and transpiration rate, suggesting that GmPIP2;9-overexpressing transgenic plants were less stressed than wild-type (WT plants. Furthermore, field experiments showed that GmPIP2;9-overexpressing plants had significantly more pod numbers and larger seed sizes than WT plants. In summary, the study demonstrated that GmPIP2;9 has water transport activity. Its relative high expression levels in roots and developing pods are in agreement with the phenotypes of GmPIP2;9-overexpressing plants in drought stress tolerance and seed development.

  6. Differentially Accumulated Proteins in Coffea arabica Seeds during Perisperm Tissue Development and Their Relationship to Coffee Grain Size.

    Science.gov (United States)

    Alves, Leonardo Cardoso; Magalhães, Diogo Maciel De; Labate, Mônica Teresa Veneziano; Guidetti-Gonzalez, Simone; Labate, Carlos Alberto; Domingues, Douglas Silva; Sera, Tumoru; Vieira, Luiz Gonzaga Esteves; Pereira, Luiz Filipe Protasio

    2016-02-24

    Coffee is one of the most important crops for developing countries. Coffee classification for trading is related to several factors, including grain size. Larger grains have higher market value then smaller ones. Coffee grain size is determined by the development of the perisperm, a transient tissue with a highly active metabolism, which is replaced by the endosperm during seed development. In this study, a proteomics approach was used to identify differentially accumulated proteins during perisperm development in two genotypes with regular (IPR59) and large grain sizes (IPR59-Graudo) in three developmental stages. Twenty-four spots were identified by MALDI-TOF/TOF-MS, corresponding to 15 proteins. We grouped them into categories as follows: storage (11S), methionine metabolism, cell division and elongation, metabolic processes (mainly redox), and energy. Our data enabled us to show that perisperm metabolism in IPR59 occurs at a higher rate than in IPR59-Graudo, which is supported by the accumulation of energy and detoxification-related proteins. We hypothesized that grain and fruit size divergences between the two coffee genotypes may be due to the comparatively earlier triggering of seed development processes in IPR59. We also demonstrated for the first time that the 11S protein is accumulated in the coffee perisperm.

  7. EPR in characterization of seeds paramagnetic species

    International Nuclear Information System (INIS)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C.

    2011-01-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe 2 O 3 ), magnetite (Fe 3 O 4 ), and ferrihydrite (Fe 5 HO 8 · 4H 2 O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn 2+ , which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band (∼ 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe 3+ present in the goethite at g ∼ 2, and in the seeds exist free radicals at g = 2:004, at room temperature

  8. EPR in characterization of seeds paramagnetic species

    Energy Technology Data Exchange (ETDEWEB)

    Luiz, A.P.C.; Mauro, M.F.F.L.; Portugal, K.O.; Barbana, V.M.; Guedes, C.L.B.; Mauro, E. di; Carneiro, C.E.A.; Zaia, D.A.M.; Prete, C.E.C. [Universidade Estadual de Londrina (UEL), PR (Brazil)

    2011-07-01

    Full text. In Brazil, since 1970s, renewable fuel programs has been developed in order to replace petroleum. Today a program that has been discussed is the bio diesel, which intend to replace diesel fuel, fossil oil, to bio diesel, renewal fuel. As seeds are the basis for production of oil and consequently processed into bio diesel, the goal of this work is to characterize and compare paramagnetic species present in the seeds by Electron Paramagnetic Resonance (EPR). Samples used in this study were seeds of sorghum, barley, corn, peanuts, soy beans, cotton, wheat, oats, mustard, rice, sunflower and turnip. Some paramagnetic species present in soil was also investigated as goethite (FeOOH), hematite (Fe{sub 2}O{sub 3}), magnetite (Fe{sub 3}O{sub 4}), and ferrihydrite (Fe{sub 5}HO{sub 8} {center_dot} 4H{sub 2}O), since, these species present in appreciable quantities in the soil can be present in the seeds and analyzed for comparison. The characterization of these species is essential to understand the EPR seeds spectra. Each sample is placed in a thin quartz tube 4 mm in diameter, and it is inserted into the cavity of the spectrometer at room temperature, at low temperature (77 K) and variable temperature using liquid nitrogen flow and hot flow through a compressor air. It was used as standard Mg O:Mn{sup 2+}, which is also inserted into the cavity. Shortly after the potency is regulated, frequency, amplitude and sweep the field. The spectroscopic analysis by EPR X-band ({approx} 9:5GHz), were performed at the Fluorescence and Electron Paramagnetic Resonance Laboratory, Exact Sciences Center, State University of Londrina, Parana state, Brazil, through an EPR spectrometer JEOL brand (JES-PE-3X). In the EPR spectra, spectroscopic factor or g factor and line width were determined in paramagnetic species. Studies from several seeds with EPR technique detected in all of them presence of same complex of Fe{sup 3+} present in the goethite at g {approx} 2, and in the seeds

  9. eQTL Networks Reveal Complex Genetic Architecture in the Immature Soybean Seed

    Directory of Open Access Journals (Sweden)

    Yung-Tsi Bolon

    2014-03-01

    Full Text Available The complex network of regulatory factors and interactions involved in transcriptional regulation within the seed is not well understood. To evaluate gene expression regulation in the immature seed, we utilized a genetical genomics approach on a soybean [ (L. Merr.] recombinant inbred line (RIL population and produced a genome-wide expression quantitative trait loci (eQTL dataset. The validity of the dataset was confirmed by mapping the eQTL hotspot for flavonoid biosynthesis-related genes to a region containing repeats of chalcone synthase (CHS genes known to correspond to the soybean inhibitor locus that regulates seed color. We then identified eQTL for genes with seed-specific expression and discovered striking eQTL hotspots at distinct genomic intervals on chromosomes (Chr 20, 7, and 13. The main eQTL hotspot for transcriptional regulation of fatty acid biosynthesis genes also coincided with regulation of oleosin genes. Transcriptional upregulation of genesets from eQTL with opposite allelic effects were also found. Gene–eQTL networks were constructed and candidate regulatory genes were identified from these three key loci specific to seed expression and enriched in genes involved in seed oil accumulation. Our data provides new insight into the complex nature of gene networks in the immature soybean seed and the genetic architecture that contributes to seed development.

  10. Gm1-MMP is involved in growth and development of leaf and seed, and enhances tolerance to high temperature and humidity stress in transgenic Arabidopsis.

    Science.gov (United States)

    Liu, Sushuang; Liu, Yanmin; Jia, Yanhong; Wei, Jiaping; Wang, Shuang; Liu, Xiaolin; Zhou, Yali; Zhu, Yajing; Gu, Weihong; Ma, Hao

    2017-06-01

    Matrix metalloproteinases (MMPs) are a family of zinc- and calcium-dependent endopeptidases. Gm1-MMP was found to play an important role in soybean tissue remodeling during leaf expansion. In this study, Gm1-MMP was isolated and characterized. Its encoding protein had a relatively low phylogenetic relationship with the MMPs in other plant species. Subcellular localization indicated that Gm1-MMP was a plasma membrane protein. Gm1-MMP showed higher expression levels in mature leaves, old leaves, pods, and mature seeds, as well as was involved in the development of soybean seed. Additionally, it was involved in response to high temperature and humidity (HTH) stress in R7 leaves and seeds in soybean. The analysis of promoter of Gm1-MMP suggested that the fragment from -399 to -299 was essential for its promoter activity in response to HTH stress. The overexpression of Gm1-MMP in Arabidopsis affected the growth and development of leaves, enhanced leaf and developing seed tolerance to HTH stress and improved seed vitality. The levels of hydrogen peroxide (H 2 O 2 ) and ROS in transgenic Arabidopsis seeds were lower than those in wild type seeds under HTH stress. Gm1-MMP could interact with soybean metallothionein-II (GmMT-II), which was confirmed by analysis of yeast two-hybrid assay and BiFC assays. All the results indicated that Gm1-MMP plays an important role in the growth and development of leaves and seeds as well as in tolerance to HTH stress. It will be helpful for us understanding the functions of Gm1-MMP in plant growth and development, and in response to abiotic stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2 in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues

    Directory of Open Access Journals (Sweden)

    Hyun Uk Kim

    2014-01-01

    Full Text Available The LEAFY COTYLEDON2 (LEC2 gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis, and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1, LEAFY COTYLEDON1-LIKE (L1L, FUSCA3 (FUS3, and ABSCISIC ACID INSENSITIVE 3 (ABI3 transcripts for seed maturation, and WRINKELED1 (WRI1 transcripts for fatty acid biosynthesis, as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1 and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11, in vegetative tissues.

  12. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues.

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1(Δ11)), in vegetative tissues.

  13. Ectopic overexpression of castor bean LEAFY COTYLEDON2 (LEC2) in Arabidopsis triggers the expression of genes that encode regulators of seed maturation and oil body proteins in vegetative tissues☆

    Science.gov (United States)

    Kim, Hyun Uk; Jung, Su-Jin; Lee, Kyeong-Ryeol; Kim, Eun Ha; Lee, Sang-Min; Roh, Kyung Hee; Kim, Jong-Bum

    2013-01-01

    The LEAFY COTYLEDON2 (LEC2) gene plays critically important regulatory roles during both early and late embryonic development. Here, we report the identification of the LEC2 gene from the castor bean plant (Ricinus communis), and characterize the effects of its overexpression on gene regulation and lipid metabolism in transgenic Arabidopsis plants. LEC2 exists as a single-copy gene in castor bean, is expressed predominantly in embryos, and encodes a protein with a conserved B3 domain, but different N- and C-terminal domains to those found in LEC2 from Arabidopsis. Ectopic overexpression of LEC2 from castor bean under the control of the cauliflower mosaic virus (CaMV) 35S promoter in Arabidopsis plants induces the accumulation of transcripts that encodes five major transcription factors (the LEAFY COTYLEDON1 (LEC1), LEAFY COTYLEDON1-LIKE (L1L), FUSCA3 (FUS3), and ABSCISIC ACID INSENSITIVE 3 (ABI3) transcripts for seed maturation, and WRINKELED1 (WRI1) transcripts for fatty acid biosynthesis), as well as OLEOSIN transcripts for the formation of oil bodies in vegetative tissues. Transgenic Arabidopsis plants that express the LEC2 gene from castor bean show a range of dose-dependent morphological phenotypes and effects on the expression of LEC2-regulated genes during seedling establishment and vegetative growth. Expression of castor bean LEC2 in Arabidopsis increased the expression of fatty acid elongase 1 (FAE1) and induced the accumulation of triacylglycerols, especially those containing the seed-specific fatty acid, eicosenoic acid (20:1Δ11), in vegetative tissues. PMID:24363987

  14. Rac1 Regulates Endometrial Secretory Function to Control Placental Development.

    Directory of Open Access Journals (Sweden)

    Juanmahel Davila

    2015-08-01

    Full Text Available During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions

  15. Rac1 Regulates Endometrial Secretory Function to Control Placental Development

    Science.gov (United States)

    Davila, Juanmahel; Laws, Mary J.; Kannan, Athilakshmi; Li, Quanxi; Taylor, Robert N.; Bagchi, Milan K.; Bagchi, Indrani C.

    2015-01-01

    During placenta development, a succession of complex molecular and cellular interactions between the maternal endometrium and the developing embryo ensures reproductive success. The precise mechanisms regulating this maternal-fetal crosstalk remain unknown. Our study revealed that the expression of Rac1, a member of the Rho family of GTPases, is markedly elevated in mouse decidua on days 7 and 8 of gestation. To investigate its function in the uterus, we created mice bearing a conditional deletion of the Rac1 gene in uterine stromal cells. Ablation of Rac1 did not affect the formation of the decidua but led to fetal loss in mid gestation accompanied by extensive hemorrhage. To gain insights into the molecular pathways affected by the loss of Rac1, we performed gene expression profiling which revealed that Rac1 signaling regulates the expression of Rab27b, another GTPase that plays a key role in targeting vesicular trafficking. Consequently, the Rac1-null decidual cells failed to secrete vascular endothelial growth factor A, which is a critical regulator of decidual angiogenesis, and insulin-like growth factor binding protein 4, which regulates the bioavailability of insulin-like growth factors that promote proliferation and differentiation of trophoblast cell lineages in the ectoplacental cone. The lack of secretion of these key factors by Rac1-null decidua gave rise to impaired angiogenesis and dysregulated proliferation of trophoblast cells, which in turn results in overexpansion of the trophoblast giant cell lineage and disorganized placenta development. Further experiments revealed that RAC1, the human ortholog of Rac1, regulates the secretory activity of human endometrial stromal cells during decidualization, supporting the concept that this signaling G protein plays a central and conserved role in controlling endometrial secretory function. This study provides unique insights into the molecular mechanisms regulating endometrial secretions that mediate stromal

  16. Seed dormancy and germination.

    Science.gov (United States)

    Penfield, Steven

    2017-09-11

    Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  17. Participatory tools working with crops, varieties and seeds. A guide for professionals applying participatory approaches in agrobiodiversity management, crop improvement and seed sector development

    NARCIS (Netherlands)

    Boef, de W.S.; Thijssen, M.H.

    2007-01-01

    Outline to the guide Within our training programmes on local management of agrobiodiversity, participatory crop improvement and the support of local seed supply participatory tools get ample attention. Tools are dealt with theoretically, are practised in class situations, but are also applied in

  18. Asymbiotic seed germination and in vitro seedling development of Paphiopedilum spicerianum: An orchid with an extremely small population in China

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-01-01

    Full Text Available Paphiopedilum spicerianum  is listed as one of the country’s Wild Plants with Extremely Small Populations (PSESP. Procedures were developed for asymbiotic seed germination and seedling development aimed at producing seedlings for reintroduction. The highest germination was achieved in RECW with a 24 h dark cycle after pretreatment with 1% NaOCl for 40 min after 30 days from germination. However, these protocorms remained white and did not develop further. Although germination was lower under the same conditions in MSCW, it resulted in healthier and greener protocorms. Of four suitable media tested to promote seedling formation, Hyponex No 1 medium with 1.0mgl−1α-naphthalene acetic acid, 0.5gl−1 activated charcoal and 10% banana homogenate was the most effective. Advanced seedling development was seen in all six tested media during a 4 month growing period, with the highest leaf growth rate seen in the same media used for seedling formation, supplemented with 1.0mgl−16-benzyladenine added to promote leaf growth. Fluorescein diacetate (FDA tests on seeds showed that higher salt concentrations in the medium and longer duration of exposure to NaOCl reduce germination because of damaging effects on the testa and the embryo cells.

  19. Inducing mutations through γ-irradiation in seeds of Mucuna pruriens for developing high L-DOPA-yielding genotypes.

    Science.gov (United States)

    Singh, Susheel Kumar; Yadav, Deepti; Lal, Raj Kishori; Gupta, Madan M; Dhawan, Sunita Singh

    2017-04-01

    To develop elite genotypes in Mucuna pruriens (L.) DC with high L-DOPA (L-3, 4 dihydroxyphenylalanine) yields, with non-itching characteristics and better adaptability by applying γ-irradiation. Molecular and chemical analysis was performed for screening based on specific characteristics desired for developing suitable genotypes. Developed, mutant populations were analyzed for L-DOPA % in seeds through TLC (thin layer chromatography), and the results obtained were validated with the HPLC (High performance liquid chromatography). The DNA (Deoxyribonucleic acid) was isolated from the leaf at the initial stage and used for DNA polymorphism. RNA (Ribonucleic acid) was isolated from the leaf during maturity and used for expression analysis. The selected mutant T-I-7 showed 5.7% L-DOPA content compared to 3.18% of parent CIM-Ajar. The total polymorphism obtained was 57% with the molecular marker analysis. The gene expression analysis showed higher fold change expression of the dopadecarboxylase gene (DDC) in control compared to selected mutants (T-I-7, T-II-23, T-IV-9, T-VI-1). DNA polymorphism was used for the screening of mutants for efficient screening at an early stage. TLC was found suitable for the large-scale comparative chemical analysis of L-DOPA. The expression profile of DDC clearly demonstrated the higher yields of L-DOPA in selected mutants developed by γ-irradiation in the seeds of the control.

  20. Career Development of Foreign Trained Immigrants from Regulated Professions

    Science.gov (United States)

    Novak, Lydia; Chen, Charles P.

    2013-01-01

    In this article, we aim to examine and understand the career development experiences of foreign-trained immigrants from regulated professions (FTIRPs) in Canada. To provide some background on immigration in a Canadian context, we focus on a myriad of factors that affect the vocational well-being of FTIRPs. We apply key concepts from several major…

  1. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  2. Development of Critical Thinking with Metacognitive Regulation and Toulmin Model

    Science.gov (United States)

    Gotoh, Yasushi

    2017-01-01

    Developing critical thinking is an important factor in education. In this study, the author defines critical thinking as the set of skills and dispositions which enable one to solve problems logically and to attempt to reflect autonomously by means of metacognitive regulation of one's own problem-solving processes. To identify the validity and…

  3. Developing regulations for occupational exposures to health hazards in Malaysia.

    Science.gov (United States)

    Rampal, Krishna Gopal; Mohd Nizam, J

    2006-11-01

    In Malaysia exposures in the workplace are regulated under the Factories and Machinery Act (FMA), 1967 and also under the more comprehensive Occupational Safety and Health Act (OSHA) enacted in 1994. With OSHA 1994 the philosophy of legislating safety and health in the workplace changed from one that was very prescriptive and containing detailed technical provisions under FMA, 1967 to one that is more flexible and encourages self-regulation under OSHA 1994. OSHA 1994 is supported by regulations, codes of practices and guidelines to further clarify the provisions in the Act. Under the FMA 1967 emphasis was on safety while with OSHA 1994 there has been equal emphasis on addressing health hazards in the workplace. Regulations for occupational exposures are developed by the Department of Occupational Safety and Health with tripartite and stakeholder consultation. When developing these regulations International Labor Organization Conventions, laws of other countries and occupational exposure standards adopted internationally are reviewed. The government also conducts surveys to collect information on both exposures and health effects in workplaces to have better understanding on specific occupational health problems. Effective law enforcement is crucial in ensuring compliance to safety and health law. The challenge at the moment is to ensure all employers and employees, particularly those in the small and medium enterprises, understand and comply with the provisions stipulated in the legislation.

  4. Effects of seed irradiation on the early development and mitochondrial RNA synthesis of 'Impala' barley

    Energy Technology Data Exchange (ETDEWEB)

    Baboth, E [Kerteszeti Kutato Intezet, Budapest (Hungary)

    1975-06-01

    The influence of fractionated ..gamma..-irradiation on barley seeds was investigated under outdoor and hothouse conditions. The doses were 250, 500, 1,000, and 2,000 rad. The resulting radiation effects were investigated from the point of view of molecular biology, i.e. studying the RNA synthesis of the mitochondria after /sup 14/C-labelling of uridine. The radiation influence on the length of the coleoptiles was another criterion. The irradiation findings are discussed in connection with the cultivation of better and more resistant plants for agriculture.

  5. Grape seed proanthocyanidins reactivate silenced tumor suppressor genes in human skin cancer cells by targeting epigenetic regulators

    International Nuclear Information System (INIS)

    Vaid, Mudit; Prasad, Ram; Singh, Tripti; Jones, Virginia; Katiyar, Santosh K.

    2012-01-01

    Grape seed proanthocyanidins (GSPs) have been shown to have anti-skin carcinogenic effects in in vitro and in vivo models. However, the precise epigenetic molecular mechanisms remain unexplored. This study was designed to investigate whether GSPs reactivate silenced tumor suppressor genes following epigenetic modifications in skin cancer cells. For this purpose, A431 and SCC13 human squamous cell carcinoma cell lines were used as in vitro models. The effects of GSPs on DNA methylation, histone modifications and tumor suppressor gene expressions were studied in these cell lines using enzyme activity assays, western blotting, dot-blot analysis and real-time polymerase chain reaction (RT-PCR). We found that treatment of A431 and SCC13 cells with GSPs decreased the levels of: (i) global DNA methylation, (ii) 5-methylcytosine, (iii) DNA methyltransferase (DNMT) activity and (iv) messenger RNA (mRNA) and protein levels of DNMT1, DNMT3a and DNMT3b in these cells. Similar effects were noted when these cancer cells were treated identically with 5-aza-2′-deoxycytidine, an inhibitor of DNA methylation. GSPs decreased histone deacetylase activity, increased levels of acetylated lysines 9 and 14 on histone H3 (H3-Lys 9 and 14) and acetylated lysines 5, 12 and 16 on histone H4, and reduced the levels of methylated H3-Lys 9. Further, GSP treatment resulted in re-expression of the mRNA and proteins of silenced tumor suppressor genes, RASSF1A, p16 INK4a and Cip1/p21. Together, this study provides a new insight into the epigenetic mechanisms of GSPs and may have significant implications for epigenetic therapy in the treatment/prevention of skin cancers in humans. -- Highlights: ►Epigenetic modulations have been shown to have a role in cancer risk. ►Proanthocyanidins decrease the levels of DNA methylation and histone deacetylation. ►Proanthocyanidins inhibit histone deacetylase activity in skin cancer cells. ►Proanthocyanidins reactivate tumor suppressor genes in skin

  6. Seed systems support in Kenya

    NARCIS (Netherlands)

    Munyi, Peter; Jonge, De Bram

    2015-01-01

    The threats of climate change and rising food prices have stirred renewed attention for seed and food security in Africa, inviting new thinking on the role of seed sector development in coping with these concerns. One conceptual framework that has gained attention is the Integrated Seed Sector

  7. Global pharmaceutical regulation: the challenge of integration for developing states.

    Science.gov (United States)

    Pezzola, Anthony; Sweet, Cassandra M

    2016-12-20

    This paper has set out to map the state of pharmaceutical regulation in the developing world through the construction of cross-national indices drawing from World Health Organization data. The last two decades have been characterized by deep changes for the pharmaceutical sector, including the complete transformation of intellectual property systems at the behest of the World Trade Organization and the consolidation of global active ingredient suppliers in China and India. Although the rules for ownership of medicine have been set and globally implemented, we know surprisingly little about how the standards for market entrance and regulation of pharmaceutical products have changed at the national level. How standardized are national pharmaceutical market systems? Do we find homogeneity or variation across the developing world? Are their patterns for understanding why some countries have moved closer to one global norm for pharmaceutical regulation and others have developed hybrid models for oversight of this sector? Access to medicine is a core tool in public health. This paper gauges the levels of standards in public and private generics markets for developing countries building on national-level pharmaceutical market surveys for 78 countries to offer three indicators of market oversight: State Regulatory Infrastructure, Monitoring the Private Market and Public Quality Control. Identifying the different variables that affect a state's institutional capacity and current standard level offers new insights to the state of pharmaceuticals in the developing world. It is notable that there are very few (none at the time of this paper) studies that map out the new global terrain for pharmaceutical regulation in the post-TRIPS context. This paper uses item response theory to develop original indicators of pharmaceutical regulation. We find remarkable resistance to the implementation of global pharmaceutical norms for quality standards in developing states and in

  8. Regulation of Development and Nitrogen Fixation in Anabaena

    Energy Technology Data Exchange (ETDEWEB)

    James W. Golden

    2008-10-17

    The regulation of development and cellular differentiation is important for all multicellular organisms. The nitrogen-fixing filamentous cyanobacterium Anabaena (also Nostoc) sp. PCC 7120 (hereafter Anabaena) provides a model of multicellular microbial development and pattern formation. Anabaena reduces N2 to ammonia in specialized terminally differentiated cells called heterocysts. A one-dimensional developmental pattern of single heterocysts regularly spaced along filaments of photosynthetic vegetative cells is established to form a multicellular organism composed of these two interdependent cell types. This multicellular growth pattern, the distinct phylogeny of cyanobacteria, and the suspected antiquity of heterocyst development make this an important model system. Our long-term goal is to understand the regulatory network required for heterocyst development and nitrogen fixation. This project is focused on two key aspects of heterocyst regulation: one, the mechanism by which HetR controls the initiation of differentiation, and two, the cis and trans acting factors required for expression of the nitrogen-fixation (nif) genes. HetR is thought to be a central regulator of heterocyst development but the partners and mechanisms involved in this regulation are unknown. Our recent results indicate that PatS and other signals that regulate heterocyst pattern cannot interact, directly or indirectly, with a R223W mutant of HetR. We plan to use biochemical and genetic approaches to identify proteins that interact with the HetR protein, which will help reveal the mechanisms underlying its regulation of development. Our second goal is to determine how the nif genes are expressed. It is important to understand the mechanisms controlling nif genes since they represent the culmination of the differentiation process and the essence of heterocyst function. The Anabaena genome lacks the genes required for expression of nif genes present in other organisms such as rpoN (sigma 54

  9. The development of radiation protection regulations in Malaysia

    International Nuclear Information System (INIS)

    Yusoff Ismail

    1995-01-01

    The paper begins by mentioning the established policy of the Government of Malaysia vis-a-vis protection against ionizing radiations as embodied in the Radioactive Substances Act 1968 and, later, the atomic Energy Licensing Act 1984. Then it turns to on the major events that influences the past, the present and the future development of the radiation protection regulations in Malaysia. it concludes with a vision where future Malaysia is seen drifting towards a consensus effort in radiation protection rendering self regulation the order of the day. (author)

  10. Priority Directions of Improving the State Regulation of Agriculture Development

    Directory of Open Access Journals (Sweden)

    Daniela Konstantinovna Sanakoeva

    2015-12-01

    Full Text Available The article reviews primary directions for economical regulation of agriculture, for solving problems of insufficient funds of agricultural enterprises. Goals for development of agricultural economics growth and competitive abilities are determined, economical measures for governmental support are described as functions of system for development of agricultural market. The authors reveal the problems of innovational and optimizational model for development of agriculture, and system of state regulative and supportive measures for implementing the innovational model of development by consolidation of self-development mechanisms within revealing of inner economical reserves and activisation of “growth points” for resource potential. The mutual system dependence for mechanisms of taxes and subsidiaries and their influence on budget and socio-economical externalities are analyzed. It is substantiated that the state regulation of agricultural markets must take into account low incomes of small agricultural business, not allowing to accumulate necessary funds for starting cooperation. Due to that, the article specially reviews issues of loan availableness for small agricultural enterprises, including private farmings, peasant farms and cooperatives created by them, and, for this goal, the issues of marketing effectiveness for production of such small forms of agriculture are further reviewed. As a result of research, the authors discovered the necessity for government support of socially important businesses in agriculture, which are not of high profitability and, due to that, are not attractive for investors, but are necessary for saving the traditional rural lifestyle and maintaining important social functions for sustainable development.

  11. Albendazole in environment: faecal concentrations in lambs and impact on lower development stages of helminths and seed germination.

    Science.gov (United States)

    Prchal, Lukáš; Podlipná, Radka; Lamka, Jiří; Dědková, Tereza; Skálová, Lenka; Vokřál, Ivan; Lecová, Lenka; Vaněk, Tomáš; Szotáková, Barbora

    2016-07-01

    Albendazole (ABZ), widely used benzimidazole anthelmintic, administered to animals enters via excrements into environment and may impact non-target organisms. Moreover, exposure of lower development stages of helminths to anthelmintics may also encourage the development of drug-resistant strains of helminths. In present project, the kinetics of ABZ (10 mg kg(-1) p.o.) and its metabolite (ABZ.SO, ABZSO2) elimination in faeces from treated Texel lambs were studied using UHPLC/MS/MS with the aim to find out their concentrations achievable in the environment. Consequently, the effect of these compounds on lower development stages of Barber's pole worm (Haemonchus contortus) and on germination of white mustard (Sinapis alba) seeds was evaluated. The results showed that ABZ concentrations in faeces excreted in 4-60 h after treatment were above the concentrations lethal for H. contortus eggs. Moreover, pre-incubation with sub-lethal doses of ABZ and ABZ.SO did not increase the resistance of H. contortus eggs and larvae to anthelmintics. On the other hand, concentrations of ABZ and ABZ.SO in faeces are so high that might have negative influence on non-target soil invertebrates. As neither ABZ nor its metabolites affect the germination of mustard seeds, phytoremediation could be considered as potential tool for detoxification of ABZ in the environment.

  12. Summary abstract: microspot target development with seeded and patterned plasma polymers

    International Nuclear Information System (INIS)

    Letts, S.A.; Miller, D.E.; Corley, R.A.; Tillotson, T.M.; Witt, L.A.

    1985-01-01

    In inertial confinement fusion (ICF) energy is transferred from the laser to the target through the interaction of extremely high intensity laser light with the target plasma. To better understand laser-plasma interactions, a new class of targets was designed to study long scale-length plasmas (many hundred times the laser wavelength) by measurement of the temperature and density of the plasma as a function of time. The specifications for the target called for a freestanding hydrocarbon polymer (CH) film with a sharply defined spot (microspot) in the center seeded with either silicon or sulfur. The target film was fabricated using a three-step procedure which consisted of deposition of the hydrocarbon film, definition of the microspot, and then deposition of a seeded spot through a mask. In the final assembly step, the film containing the microspot was mounted over a 1.5 mm diam hole in a support. The support was either a plastic ring or a copper foil electroplated with 3 μm of gold. The fabrication of this type of target is described

  13. Innovative farmers and regulatory gatekeepers: Genetically modified crops regulation and adoption in developing countries.

    Science.gov (United States)

    Sinebo, Woldeyesus; Maredia, Karim

    2016-01-02

    The regulation of genetically modified (GM) crops is a topical issue in agriculture and environment over the past 2 decades. The objective of this paper is to recount regulatory and adoption practices in some developing countries that have successfully adopted GM crops so that aspiring countries may draw useful lessons and best practices for their biosafatey regulatory regimes. The first 11 mega-GM crops growing countries each with an area of more than one million hectares in 2014 were examined. Only five out of the 11 countries had smooth and orderly adoption of these crops as per the regulatory requirement of each country. In the remaining 6 countries (all developing countries), GM crops were either introduced across borders without official authorization, released prior to regulatory approval or unapproved seeds were sold along with the approved ones in violation to the existing regulations. Rapid expansion of transgenic crops over the past 2 decades in the developing world was a result of an intense desire by farmers to adopt these crops irrespective of regulatory roadblocks. Lack of workable biosafety regulatory system and political will to support GM crops encouraged unauthorized access to GM crop varieties. In certain cases, unregulated access in turn appeared to result in the adoption of substandard or spurious technology which undermined performance and productivity. An optimal interaction among the national agricultural innovation systems, biosafety regulatory bodies, biotech companies and high level policy makers is vital in making a workable regulated progress in the adoption of GM crops. Factoring forgone opportunities to farmers to benefit from GM crops arising from overregulation into biosafety risk analysis and decision making is suggested. Building functional biosafety regulatory systems that balances the needs of farmers to access and utilize the GM technology with the regulatory imperatives to ensure adequate safety to the environment and human

  14. Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis.

    Science.gov (United States)

    Nakashima, Kazuo; Fujita, Yasunari; Katsura, Koji; Maruyama, Kyonoshin; Narusaka, Yoshihiro; Seki, Motoaki; Shinozaki, Kazuo; Yamaguchi-Shinozaki, Kazuko

    2006-01-01

    ABA-responsive elements (ABREs) are cis-acting elements and basic leucine zipper (bZIP)-type ABRE-binding proteins (AREBs) are transcriptional activators that function in the expression of RD29B in vegetative tissue of Arabidopsis in response to abscisic acid (ABA) treatment. Dehydration-responsive elements (DREs) function as coupling elements of ABRE in the expression of RD29A in response to ABA. Expression analysis using abi3 and abi5 mutants showed that ABI3 and ABI5 play important roles in the expression of RD29B in seeds. Base-substitution analysis showed that two ABREs function strongly and one ABRE coupled with DRE functions weakly in the expression of RD29A in embryos. In a transient transactivation experiment, ABI3, ABI5 and AREB1 activated transcription of a GUS reporter gene driven by the RD29B promoter strongly but these proteins activated the transcription driven by the RD29A promoter weakly. In 35S::ABI3 Arabidopsis plants, the expression of RD29B was up-regulated strongly, but that of RD29A was up-regulated weakly. These results indicate that the expression of RD29B having ABREs in the promoter is up-regulated strongly by ABI3, whereas that of RD29A having one ABRE coupled with DREs in the promoter is up-regulated weakly by ABI3. We compared the expression of 7000 Arabidopsis genes in response to ABA treatment during germination and in the vegetative growth stage, and that in 35S::ABI3 plants using a full-length cDNA microarray. The expression of ABI3- and/or ABA-responsive genes and cis-elements in the promoters are discussed.

  15. Transport of Cd and Zn to seeds of Indian mustard (Brassica juncea) during specific stages of plant growth and development.

    Science.gov (United States)

    Sankaran, Renuka P; Ebbs, Stephen D

    2008-01-01

    The accumulation of excess Cd in the seeds of cereal and other crops compromises their commercial value and presents a potential risk to human health. Indian mustard [Brassica juncea (L.) Czern.] is a moderate accumulator of heavy metals such as Cd and Zn, and the seeds are consumed throughout the world, particularly in the Indian subcontinent. The study here examined the transport of Cd into Indian mustard plants and to seeds as a function of external Cd and the stage of the life cycle (vegetative growth, flowering and seed set) to identify critical developmental windows where transport from roots to seeds was the greatest. Plants were also treated simultaneously with Zn to determine if Zn fertilization mitigated the transport of Cd to seeds. Plants treated with Cd during the seed set accumulated the highest concentrations of Cd, exceeding 8 mg kg(-1) dry weight in some instances. Cadmium accumulated during vegetative growth was not highly redistributed to seeds. No effects of Zn were observed with regard to Cd redistribution to seeds. This may be because of the relatively small Zn : Cd ratios tested. However, the results suggest that if Zn fertilization is to be used to reduce the Cd accumulation in seeds of this species, that plants should be treated during the seed set stage. As the seeds of Indian mustard consistently accumulated Cd to concentrations that exceed acceptable limits for food crops, additional study of Cd redistribution in this species is warranted.

  16. Integrated Seed Sector Development in Africa: A conceptual Framework for Creating Coherence Between Practices, Programs, and Policies

    NARCIS (Netherlands)

    Louwaars, N.P.; Boef, de W.S.

    2012-01-01