WorldWideScience

Sample records for regulates parathyroid hormone

  1. Negative regulation of parathyroid hormone-related protein expression by steroid hormones

    International Nuclear Information System (INIS)

    Kajitani, Takashi; Tamamori-Adachi, Mimi; Okinaga, Hiroko; Chikamori, Minoru; Iizuka, Masayoshi; Okazaki, Tomoki

    2011-01-01

    Highlights: → Steroid hormones repress expression of PTHrP in the cell lines where the corresponding nuclear receptors are expressed. → Nuclear receptors are required for suppression of PTHrP expression by steroid hormones, except for androgen receptor. → Androgen-induced suppression of PTHrP expression appears to be mediated by estrogen receptor. -- Abstract: Elevated parathyroid hormone-related protein (PTHrP) is responsible for humoral hypercalcemia of malignancy (HHM), which is of clinical significance in treatment of terminal patients with malignancies. Steroid hormones were known to cause suppression of PTHrP expression. However, detailed studies linking multiple steroid hormones to PTHrP expression are lacking. Here we studied PTHrP expression in response to steroid hormones in four cell lines with excessive PTHrP production. Our study established that steroid hormones negatively regulate PTHrP expression. Vitamin D receptor, estrogen receptor α, glucocorticoid receptor, and progesterone receptor, were required for repression of PTHrP expression by the cognate ligands. A notable exception was the androgen receptor, which was dispensable for suppression of PTHrP expression in androgen-treated cells. We propose a pathway(s) involving nuclear receptors to suppress PTHrP expression.

  2. Let-7 and MicroRNA-148 Regulate Parathyroid Hormone Levels in Secondary Hyperparathyroidism.

    Science.gov (United States)

    Shilo, Vitali; Mor-Yosef Levi, Irit; Abel, Roy; Mihailović, Aleksandra; Wasserman, Gilad; Naveh-Many, Tally; Ben-Dov, Iddo Z

    2017-08-01

    Secondary hyperparathyroidism commonly complicates CKD and associates with morbidity and mortality. We profiled microRNA (miRNA) in parathyroid glands from experimental hyperparathyroidism models and patients receiving dialysis and studied the function of specific miRNAs. miRNA deep-sequencing showed that human and rodent parathyroids share similar profiles. Parathyroids from uremic and normal rats segregated on the basis of their miRNA expression profiles, and a similar finding was observed in humans. We identified parathyroid miRNAs that were dysregulated in experimental hyperparathyroidism, including miR-29, miR-21, miR-148, miR-30, and miR-141 (upregulated); and miR-10, miR-125, and miR-25 (downregulated). Inhibition of the abundant let-7 family increased parathyroid hormone (PTH) secretion in normal and uremic rats, as well as in mouse parathyroid organ cultures. Conversely, inhibition of the upregulated miR-148 family prevented the increase in serum PTH level in uremic rats and decreased levels of secreted PTH in parathyroid cultures. The evolutionary conservation of abundant miRNAs in normal parathyroid glands and the regulation of these miRNAs in secondary hyperparathyroidism indicates their importance for parathyroid function and the development of hyperparathyroidism. Specifically, let-7 and miR-148 antagonism modified PTH secretion in vivo and in vitro , implying roles for these specific miRNAs. These findings may be utilized for therapeutic interventions aimed at altering PTH expression in diseases such as osteoporosis and secondary hyperparathyroidism. Copyright © 2017 by the American Society of Nephrology.

  3. Negative regulation of human parathyroid hormone gene promoter by vitamin D3 through nuclear factor Y

    International Nuclear Information System (INIS)

    Jaeaeskelaeinen, T.; Huhtakangas, J.; Maeenpaeae, P.H.

    2005-01-01

    The negative regulation of the human parathyroid hormone (PTH) gene by biologically active vitamin D 3 (1,25-dihydroxyvitamin D 3 ; 1,25(OH) 2 D 3 ) was studied in rat pituitary GH4C1 cells, which express factors needed for the negative regulation. We report here that NF-Y binds to sequences downstream of the site previously reported to bind the vitamin D receptor (VDR). Additional binding sites for NF-Y reside in the near vicinity and were shown to be important for full activity of the PTH gene promoter. VDR and NF-Y were shown to exhibit mutually exclusive binding to the VDRE region. According to our results, sequestration of binding partners for NF-Y by VDR also affects transcription through a NF-Y consensus binding element in GH4C1 but not in ROS17/2.8 cells. These results indicate that 1,25(OH) 2 D 3 may affect transcription of the human PTH gene both by competitive binding of VDR and NF-Y, and by modulating transcriptional activity of NF-Y

  4. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, pcognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  5. Parathyroid hormone and bone healing

    DEFF Research Database (Denmark)

    Ellegaard, M; Jørgensen, N R; Schwarz, P

    2010-01-01

    , no pharmacological treatments are available. There is therefore an unmet need for medications that can stimulate bone healing. Parathyroid hormone (PTH) is the first bone anabolic drug approved for the treatment of osteoporosis, and intriguingly a number of animal studies suggest that PTH could be beneficial...

  6. Relationship between parathyroid mass and parathyroid hormone level in hemodialysis patients with secondary hyperparathyroidism.

    Science.gov (United States)

    Fang, Li; Tang, Bing; Hou, Dawei; Meng, Meijuan; Xiong, Mingxia; Yang, Junwei

    2015-06-10

    To evaluate the influence of parathyroid mass on the regulation of parathyroid hormone (PTH) secretion, we investigated the relationship between the resected parathyroid gland in total parathyroidectomy and the parathyroid hormone level in hemodialysis patients with secondary hyperparathyroidism. From January 2009 to July 2014, 223 patients undergoing total parathyroidectomy were included. The size and the weight of parathyroid gland were measured during the operation. 874 parathyroid glands were removed. A positive correlation was identified between the size and the weight of resected parathyroid glands. We found that both the preoperative PTH and the reduction of PTH were significantly correlated with the size and the weight of parathyroid glands in a positive manner. However, in the subgroup of patients with PTH < 1000 pg/ml, no significant correlation was found. Larger parathyroid gland secretes more PTH and high level of serum PTH usually indicated that surgical removal might be required. However, since PTH levels could be influenced by the pharmaceutical drug, the large size of parathyroid gland might be used as a much more appropriate guide that indicates the requirement of surgery treatment even when the parathyroid hormone was less than 1000 pg/ml.

  7. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, plevels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  8. Parathyroid Hormone Levels and Cognition

    Science.gov (United States)

    Burnett, J.; Smith, S.M.; Aung, K.; Dyer, C.

    2009-01-01

    Hyperparathyroidism is a well-recognized cause of impaired cognition due to hypercalcemia. However, recent studies have suggested that perhaps parathyroid hormone itself plays a role in cognition, especially executive dysfunction. The purpose of this study was to explore the relationship of parathyroid hormone levels in a study cohort of elders with impaied cognition. Methods: Sixty community-living adults, 65 years of age and older, reported to Adult Protective Services for self-neglect and 55 controls matched (on age, ethnicity, gender and socio-economic status) consented and participated in this study. The research team conducted in-home comprehensive geriatric assessments which included the Mini-mental state exam (MMSE), the 15-item geriatric depression scale (GDS) , the Wolf-Klein clock test and a comprehensive nutritional panel, which included parathyroid hormone and ionized calcium. Students t tests and linear regression analyses were performed to assess for bivariate associations. Results: Self-neglecters (M = 73.73, sd=48.4) had significantly higher PTH levels compared to controls (M =47.59, sd=28.7; t=3.59, df=98.94, p<.01). There was no significant group difference in ionized calcium levels. Overall, PTH was correlated with the MMSE (r=-.323, p=.001). Individual regression analyses revealed a statistically significant correlation between PTH and MMSE in the self-neglect group (r=-.298, p=.024) and this remained significant after controlling for ionized calcium levels in the regression. No significant associations were revealed in the control group or among any of the other cognitive measures. Conclusion: Parathyroid hormone may be associated with cognitive performance.

  9. Parathyroid hormone-related protein blood test

    Science.gov (United States)

    ... ency/article/003691.htm Parathyroid hormone-related protein blood test To use the sharing features on this page, ... measures the level of a hormone in the blood, called parathyroid hormone-related protein. How the Test is Performed A blood sample is needed . How ...

  10. Down-regulation of ABCG2, a urate exporter, by parathyroid hormone enhances urate accumulation in secondary hyperparathyroidism.

    Science.gov (United States)

    Sugimoto, Ryusei; Watanabe, Hiroshi; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Sakaguchi, Yoshiaki; Murata, Michiya; Nishida, Kento; Miyamura, Shigeyuki; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-03-01

    Hyperuricemia occurs with increasing frequency among patients with hyperparathyroidism. However, the molecular mechanism by which the serum parathyroid hormone (PTH) affects serum urate levels remains unknown. This was studied in uremic rats with secondary hyperparathyroidism where serum urate levels were found to be increased and urate excretion in the intestine and kidney decreased, presumably due to down-regulation of the expression of the urate exporter ABCG2 in intestinal and renal epithelial membranes. These effects were prevented by administration of the calcimimetic cinacalcet, a PTH suppressor, suggesting that PTH may down-regulate ABCG2 expression. This was directly tested in intestinal Caco-2 cells where the expression of ABCG2 on the plasma membrane was down-regulated by PTH (1-34) while its mRNA level remained unchanged. Interestingly, an inactive PTH derivative (13-34) had no effect, suggesting that a posttranscriptional regulatory system acts through the PTH receptor to regulate ABCG2 plasma membrane expression. As found in an animal study, additional clinical investigations showed that treatment with cinacalcet resulted in significant reductions in serum urate levels together with decreases in PTH levels in patients with secondary hyperparathyroidism undergoing dialysis. Thus, PTH down-regulates ABCG2 expression on the plasma membrane to suppress intestinal and renal urate excretion, and the effects of PTH can be prevented by cinacalcet treatment. Copyright © 2016 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  11. The Essentials of Parathyroid Hormone Venous Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Taslakian, Bedros, E-mail: btaslakian@gmail.com [NYU Langone Medical Center, Department of Radiology, NYU School of Medicine (United States); Trerotola, Scott O., E-mail: streroto@uphs.upenn.edu [Perelman School of Medicine of the University of Pennsylvania, Department of Radiology (United States); Sacks, Barry, E-mail: bsacks@bidmc.harvard.edu [Beth Israel Deaconess Medical Center, Department of Interventional Radiology (United States); Oklu, Rahmi, E-mail: oklu.rahmi@mayo.edu [Mayo Clinic, Department of Interventional Radiology (United States); Deipolyi, Amy, E-mail: deipolya@mskcc.org [Memorial Sloan Kettering Cancer Center, Department of Radiology (United States)

    2017-01-15

    Hyperparathyroidism is an excess of parathyroid hormone in the blood due to over-activity of one or more parathyroid gland. Localization of abnormal glands with noninvasive imaging modalities, such as technetium sestamibi scan and cross-sectional imaging, has a high success rate. Parathyroid venous sampling is performed for patients with persistent or recurrent disease after previous parathyroid surgery, when repeat noninvasive imaging studies are negative or discordant. The success of invasive localization studies and results interpretation is dependent on the interventional radiologist’s understanding of the normal and ectopic anatomic locations of parathyroid glands, as well as their blood supply and venous drainage. Anatomic and technical considerations for selective parathyroid venous sampling are reviewed.

  12. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during....../ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...

  13. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during....../ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...... of a standardized method we show that the calcium set-point is normal or slightly elevated, indicating normal parathyroid reactivity to calcium in chronic renal failure....

  14. Parathyroid hormone secretion in chronic renal failure

    DEFF Research Database (Denmark)

    Madsen, J C; Rasmussen, A Q; Ladefoged, S D

    1996-01-01

    /ionized calcium curves were constructed, and a mean calcium set-point of 1.16 mmol/liter was estimated compared to the normal mean of about 1.13 mmol/liter. In conclusion, we demonstrate that it is important to use a standardized method to evaluate parathyroid hormone dynamics in chronic renal failure. By the use...... of a standardized method we show that the calcium set-point is normal or slightly elevated, indicating normal parathyroid reactivity to calcium in chronic renal failure.......The aim of study was to introduce and evaluate a method for quantifying the parathyroid hormone (PTH) secretion during hemodialysis in secondary hyperparathyroidism due to end-stage renal failure. We developed a method suitable for inducing sequential hypocalcemia and hypercalcemia during...

  15. Determination of hormone parathyroid by radioimmunoassay

    International Nuclear Information System (INIS)

    Fisher-Ferraro, Catalina; Moos de Ephraim, Monica; Mautalen, Carlos; Mitta, A.E.A.

    1978-10-01

    The labelling of bovine parathyroid hormone and its employment for the determination of seric PTH by radioimmunoanalysis is described. The specific activity of 131 I PTH is 200-350mCi/mg and the damage 3-5%. The method used for radioimmunoanalysis was that of C.D. Arnaud and coworkers. (author) [es

  16. The p27 Pathway Modulates the Regulation of Skeletal Growth and Osteoblastic Bone Formation by Parathyroid Hormone-Related Peptide.

    Science.gov (United States)

    Zhu, Min; Zhang, Jing; Dong, Zhan; Zhang, Ying; Wang, Rong; Karaplis, Andrew; Goltzman, David; Miao, Dengshun

    2015-11-01

    Parathyroid hormone-related peptide (PTHrP) 1-84 knock-in mice (Pthrp KI) develop skeletal growth retardation and defective osteoblastic bone formation. To further examine the mechanisms underlying this phenotype, microarray analyses of differential gene expression profiles were performed in long bone extracts from Pthrp KI mice and their wild-type (WT) littermates. We found that the expression levels of p27, p16, and p53 were significantly upregulated in Pthrp KI mice relative to WT littermates. To determine whether p27 was involved in the regulation by PTHrP of skeletal growth and development in vivo, we generated compound mutant mice, which were homozygous for both p27 deletion and the Pthrp KI mutation (p27(-/-) Pthrp KI). We then compared p27(-/-) Pthrp KI mice with p27(-/-), Pthrp KI, and WT littermates. Deletion of p27 in Pthrp KI mice resulted in a longer lifespan, increased body weight, and improvement in skeletal growth. At 2 weeks of age, skeletal parameters, including length of long bones, size of epiphyses, numbers of proliferating cell nuclear antigen (PCNA)-positive chondrocytes, bone mineral density, trabecular bone volume, osteoblast numbers, and alkaline phosphatase (ALP)-, type I collagen-, and osteocalcin-positive bone areas were increased in p27(-/-) mice and reduced in both Pthrp KI and p27(-/-) Pthrp KI mice compared with WT mice; however, these parameters were increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. As well, protein expression levels of PTHR, IGF-1, and Bmi-1, and the numbers of total colony-forming unit fibroblastic (CFU-f) and ALP-positive CFU-f were similarly increased in p27(-/-) Pthrp KI mice compared with Pthrp KI mice. Our results demonstrate that deletion of p27 in Pthrp KI mice can partially rescue defects in skeletal growth and osteoblastic bone formation by enhancing endochondral bone formation and osteogenesis. These studies, therefore, indicate that the p27 pathway may function downstream in the action

  17. Regulation of an H-ras-related transcript by parathyroid hormone in rat osteosarcoma cells

    Science.gov (United States)

    Scott, D. K.; Weaver, W. R.; Clohisy, J. C.; Brakenhoff, K. D.; Kahn, A. J.; Partridge, N. C.

    1992-01-01

    The rat osteosarcoma cell line UMR 106-01 is a commonly used model system for the study of osteoblast function. However, it also expresses a phenotype characteristic of transformed cells. To test whether the latter could be accounted for by aberrant oncogene expression, we probed Northern blots of UMR and other osteoblastic cells with a panel of oncogene probes. These blots, when probed with a cDNA specific for v-H-ras, revealed a 7.0-kilobase (kb) H-ras-related transcript (designated HRRT) in UMR 106-01 cells that was not expressed in other osteoblastic cells. Osteoblast-enriched calvarial cells expressed the typical 1.1-kb H-ras mRNA, which was absent in UMR cells. Additionally, Western blots of lysates of UMR cells documented the presence of three proteins immunologically related to H-rasp21. To determine whether HRRT represented a recombinant retrovirus product, Northern blots were probed with a cDNA specific for the highly conserved gag-pol region of Moloney murine leukemia virus. These blots showed parallel cross-reactivity with an apparently identical transcript of 7.0 kb. The 7.0-kb transcripts detected by both v-H-ras and gag-pol probes declined to the same extent after treatment with concentrations of PTH known to inhibit proliferation of these cells. PTH regulated the abundance of HRRT in a time- and dose-dependent manner, with greatest repression of the transcript after 8 h of treatment with 10(-8) M PTH. The decrease in HRRT could not be completely accounted for by changes in transcriptional activity, as determined by nuclear run-on assays.(ABSTRACT TRUNCATED AT 250 WORDS).

  18. Radioimmunoassay of parathyroid hormone: past and future

    International Nuclear Information System (INIS)

    Yalow, R.S.

    1986-01-01

    In this report on radioimmunoassay of parathyroid hormone (iPTH) it was shown that the rate of disappearance of iPTH from plasma differed markedly in patients with primary hyperthyroidism or those with uremia and secondary hyperparathyroidism and that for each patient the rate of disappearance depended on the antiserum used for assay. The heterogeneity of iPTH in plasma was soon rapidly confirmed in many laboratories. (Auth.)

  19. Parathyroid hormone in pediatric patients with β-thalassemia major ...

    African Journals Online (AJOL)

    The aim of the study is to estimate the level of serum parathyroid hormone and its relation to bone mineral density in transfusion dependent beta-thalassemia major children. Subjects and methods: We measured serum calcium, phosphorus and parathyroid hormone in a sample of pediatric patients with thalassemia, ...

  20. Parathyroid hormone: radioimmunoassay and clinical interpretation

    International Nuclear Information System (INIS)

    Hawker, C.D.

    1975-01-01

    A radioimmunoassay for serum immunoreactive parathyroid hormone (iPTH), which has had widespread clinical use for five years, is described in detail. The iPTH results in large groups of patients are reported, and are discussed in relation to the specificity of the assay and in relation to other assays. The assay has excellent precision and is highly proficient in discrimination of groups of patients. Ninety-three percent of 412 patients with surgically proven primary hyperparathyroidism were confidently separated from normal subjects or patients with hypercalcemia owing to other causes, while 86 percent of 160 patients with chronic renal failure and secondary hyperparathyroidism had iPTH values more than 2 S.D. above the normal mean. Results in patients with ectopic hyperparathyroidism were lower than in primary hyperparathyroidism although these groups showed considerable overlap. The antiserum used in this assay for iPTH appears to be specific for the carboxy-terminal region of the secreted or intact form of PTH but recognizes predominantly the secreted form rather than carboxy-terminal fragments believed to be in the circulation. It does not recognize amino terminal fragments. The assay is useful in selective venous catheterization for preoperative localization of hyperfunctioning parathyroid tissue

  1. Calcitonin and parathyroid hormone in blood serum of cancer patients

    Energy Technology Data Exchange (ETDEWEB)

    Tkacheva, G A; Kirsanov, A G; Burenin, I S [Akademiya Meditsinskikh Nauk SSSR, Moscow. Onkologicheskij Nauchnyj Tsentr

    1982-01-01

    A comparative radiommunoassay in the ratio of calcitonin and parathyroid hormone secretion was carried out in healthy controls (young and older than 40 years), patients with benign tumors, inflamatory processes and malignancies of the stomach, kidney, breast, prostate and lung. A significant increase in the ''calcitonin index'' (ratio of molar concentrations of calcitonin and parathyroid hormone) was established in patients with cancer of the breast, prostate and skeletal metastases of lung cancer, irrespective of the presence of primary tumor. This index is irrelevant in cases of gastric and renal carcinoma and cannot be used as indication of skeletal dissemination because of the predominant level of parathyroid hormone secretion.

  2. Hypoparathyroidism: Replacement Therapy with Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Lars Rejnmark

    2015-12-01

    Full Text Available Hypoparathyroidism (HypoPT is characterized by low serum calcium levels caused by an insufficient secretion of parathyroid hormone (PTH. Despite normalization of serum calcium levels by treatment with activated vitamin D analogues and calcium supplementation, patients are suffering from impaired quality of life (QoL and are at increased risk of a number of comorbidities. Thus, despite normalization of calcium levels in response to conventional therapy, this should only be considered as an apparent normalization, as patients are suffering from a number of complications and calcium-phosphate homeostasis is not normalized in a physiological manner. In a number of recent studies, replacement therapy with recombinant human PTH (rhPTH(1-84 as well as therapy with the N-terminal PTH fragment (rhPTH(1-34 have been investigated. Both drugs have been shown to normalize serum calcium while reducing needs for activated vitamin D and calcium supplements. However, once a day injections cause large fluctuations in serum calcium. Twice a day injections diminish fluctuations, but don't restore the normal physiology of calcium homeostasis. Recent studies using pump-delivery have shown promising results on maintaining normocalcemia with minimal fluctuations in calcium levels. Further studies are needed to determine whether this may improve QoL and lower risk of complications. Such data are needed before replacement with the missing hormone can be recommended as standard therapy.

  3. Parathyroid Hormone-Related Peptide: A Novel Endocrine Cardioprotective "Conditioning Mimetic".

    Science.gov (United States)

    Datta, Tanuka; Przyklenk, Karin; Datta, Nabanita S

    2017-11-01

    An as-yet limited body of evidence suggests that calcium-regulating endocrine hormones-in particular, parathyroid hormone-related peptide (PTHrP)-may have unappreciated cardioprotective effects. The current review focuses on the concept that PTHrP may, via modulation of classic cardioprotective signaling pathways, provide a novel strategy to attenuate myocardial ischemia-reperfusion injury.

  4. The metabolism of parathyroid hormone in kidney

    International Nuclear Information System (INIS)

    Hanao, Yasuhisa

    1978-01-01

    In order to investigate the mechanism and localization of parathyroid hormone (PTH), the degradation and the effects of calcium ion to PTH degradation in kidney, bovine PTH (b-PTH 1 - 84) and its synthetic N-terminal peptide (b-PTH 1 - 34) labeled with 125 I by Chloramine T methods ( 125 I-b-PTH 1 - 84 and 125 I-b-PTH 1 - 34) or labeled with horse radish peroxidase ( 125 I-POX-b-PTH 1 - 84 and 125 I-POX-bPTH 1-34) were used to study the disappearance from the blood stream and degradation and retention in the kidney after intravenous injections in male Wistar rats, weighing approximately 350 - 450 g. Degradation of PTH was studied in vitro, using isolated cells and homogenates of the kidney, and the effects of calcium ion to PTH degradation were furthermore studied, using our kidney perfusion system. PTH labeled with 125 I and POX was less degraded by the kidney than PTH labeled with 125 I alone. PTH 1 - 34 was more delayed in blood stream than PTH 1 - 84. Isolated intact kidney cells degrade PTH less efficiently than homogenates, indicating the prominance of microsomal degradative system in the kidney. The degradation of PTH in kidney was supposed to be controlled by calcium ion in our kidney perfusion system. (author)

  5. Role of the metabolism of parathyroid hormone

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.

    1978-01-01

    The heterogeneity of parathyroid hormone (PTH) in plasma has prompted investigations of the metabolism of PTH and its relationship to hormone action. The time course of tissue distribution and metabolism of electrolytically iodinated PTH (E-PTH) previously shown to retain biological activity was compared with that of inactive PTH iodinated with Chloramine-T (CT-PTH). Labeled PTH (0.4 μg) was injected in the saphenous veins of anesthetized rats which were sacrificed at 1, 3, 5, 10, and 20 min. Tissue extracts from kidney, liver, and serum were chromatographed to separate intact PTH from its metabolites. In the kidney, the initial rate of degradation of E-PTH was greater than that of CT-PTH. The difference in initial rates of metabolism may be due, in part, to receptor-specific hydrolysis on peritubular cell membranes which selectively act on biologically active PTH molecules. PTH-responsive adenyl cyclase activity in isolated kidney cortex plasma membranes was measured and PTH metabolism was monitored simultaneously. When degradation was completely blocked by histone f 3 (1 mg/ml), adenyl cyclase activity was significantly increased over control. In addition, when adenyl cyclase activity was negligible, the rate of PTH degradation by the membranes was not significantly diminished. Consistent with the in vivo data was the observation that E-PTH is metabolized by these membranes at a greater rate than CT-PTH. The data demonstrate the existence of a receptor-specific metabolism at sites which are independent of PTH receptor mediated adenyl cyclase activity

  6. Genetic Variants Associated with Circulating Parathyroid Hormone.

    Science.gov (United States)

    Robinson-Cohen, Cassianne; Lutsey, Pamela L; Kleber, Marcus E; Nielson, Carrie M; Mitchell, Braxton D; Bis, Joshua C; Eny, Karen M; Portas, Laura; Eriksson, Joel; Lorentzon, Mattias; Koller, Daniel L; Milaneschi, Yuri; Teumer, Alexander; Pilz, Stefan; Nethander, Maria; Selvin, Elizabeth; Tang, Weihong; Weng, Lu-Chen; Wong, Hoi Suen; Lai, Dongbing; Peacock, Munro; Hannemann, Anke; Völker, Uwe; Homuth, Georg; Nauk, Matthias; Murgia, Federico; Pattee, Jack W; Orwoll, Eric; Zmuda, Joseph M; Riancho, Jose Antonio; Wolf, Myles; Williams, Frances; Penninx, Brenda; Econs, Michael J; Ryan, Kathleen A; Ohlsson, Claes; Paterson, Andrew D; Psaty, Bruce M; Siscovick, David S; Rotter, Jerome I; Pirastu, Mario; Streeten, Elizabeth; März, Winfried; Fox, Caroline; Coresh, Josef; Wallaschofski, Henri; Pankow, James S; de Boer, Ian H; Kestenbaum, Bryan

    2017-05-01

    Parathyroid hormone (PTH) is a primary calcium regulatory hormone. Elevated serum PTH concentrations in primary and secondary hyperparathyroidism have been associated with bone disease, hypertension, and in some studies, cardiovascular mortality. Genetic causes of variation in circulating PTH concentrations are incompletely understood. We performed a genome-wide association study of serum PTH concentrations among 29,155 participants of European ancestry from 13 cohort studies ( n =22,653 and n =6502 in discovery and replication analyses, respectively). We evaluated the association of single nucleotide polymorphisms (SNPs) with natural log-transformed PTH concentration adjusted for age, sex, season, study site, and principal components of ancestry. We discovered associations of SNPs from five independent regions with serum PTH concentration, including the strongest association with rs6127099 upstream of CYP24A1 ( P =4.2 × 10 -53 ), a gene that encodes the primary catabolic enzyme for 1,25-dihydroxyvitamin D and 25-dihydroxyvitamin D. Each additional copy of the minor allele at this SNP associated with 7% higher serum PTH concentration. The other SNPs associated with serum PTH concentration included rs4074995 within RGS14 ( P =6.6 × 10 -17 ), rs219779 adjacent to CLDN14 ( P =3.5 × 10 -16 ), rs4443100 near RTDR1 ( P =8.7 × 10 -9 ), and rs73186030 near CASR ( P =4.8 × 10 -8 ). Of these five SNPs, rs6127099, rs4074995, and rs219779 replicated. Thus, common genetic variants located near genes involved in vitamin D metabolism and calcium and renal phosphate transport associated with differences in circulating PTH concentrations. Future studies could identify the causal variants at these loci, and the clinical and functional relevance of these variants should be pursued. Copyright © 2017 by the American Society of Nephrology.

  7. Parathyroid hormone in sodium-dependent hypertension

    International Nuclear Information System (INIS)

    Doris, P.A.; Harvey, S.; Pang, P.K.T.

    1987-01-01

    Plasma parathyroid hormone (pPTH) levels have been assessed in three separate radioimmunoassay systems in samples from Wistar-Kyoto rats. The animals were subjected to one of three dietary regimens throughout the study period: Group 1 animals consumed normal rat chow and drank tap water; Group 2 animals consumed normal rat chow and tap water was replaced with 0.05% saline solution; Group 3 animals consumed normal rat chow to which 2.5% CaCO 3 had been added and also drank 0.5% saline solution. Three assay systems were used to measure pPTH levels from trunk blood samples obtained by guillotine decapitation. One assay used an antiserum directed toward the vasoactive N terminal fragment 1-34 and produced pPTH measurements of 0.74 +/- 0.05 ng/ml in Gp 1 animals, 1.04 +/- 0.07 ng/ml in Gp 2 animals and 1.12 +/- 0.08 ng/ml in Gp 3 animals. This pattern was consistent with that obtained by another antiserum which had been raised against the intact 1-84 PTH molecule and produced values of 0.25 +/- 0.03 ng/ml in Gp 1 animals, 0.55 +/- 0.07 ng/ml in Gp 2 animals and 0.74 +/- 0.04 ng/ml in Gp 3 animals. Antiserum raised against the C-terminal did not show any difference in pPTH across groups. The authors conclude that saline consumption may increase some portions of circulating PTH. 26 references, 2 tables

  8. Aldosterone and parathyroid hormone interactions as mediators of metabolic and cardiovascular disease

    NARCIS (Netherlands)

    Tomaschitz, A.; Ritz, E.; Pieske, B.; Rus-Machan, J.; Kienreich, K.; Verheyen, N.; Gaksch, M.; Grubler, M.; Fahrleitner-Pammer, A.; Mrak, P.; Toplak, H.; Kraigher-Krainer, E.; Marz, W.; Pilz, S.

    2014-01-01

    Inappropriate aldosterone and parathyroid hormone (PTH) secretion is strongly linked with development and progression of cardiovascular (CV) disease. Accumulating evidence suggests a bidirectional interplay between parathyroid hormone and aldosterone. This interaction may lead to a disproportionally

  9. Intraoperative parathyroid hormone assay-cutting the Gordian knot

    Directory of Open Access Journals (Sweden)

    Chandralekha Tampi

    2014-01-01

    Full Text Available Background: Hyperparathyroidism is treated by surgical excision of the hyperfunctioning parathyroid gland. In case of adenoma the single abnormal gland is removed, while in hyperplasias, a subtotal excision, that is, three-and-a-half of the four glands are removed. This therapeutic decision is made intraoperatively through frozen section evaluation and is sometimes problematic, due to a histological overlap between hyperplasia and the adenoma. The intraoperative parathyroid hormone (IOPTH assay, propogated in recent years, offers an elegant solution, with a high success rate, due to its ability to identify the removal of all hyperfunctioning parathyroid tissue. Aim: To study the feasibility of using IOPTH in our setting. Materials and Methods: Seven patients undergoing surgery for primary hyperparathyroidism had their IOPTH levels evaluated, along with the routine frozen and paraffin sections. Results: All seven patients showed more than a 50% intraoperative fall in serum PTH after excision of the abnormal gland. This was indicative of an adenoma and was confirmed by histopathological examination and normalization of serum calcium postoperatively. Conclusion: The intraoperative parathyroid hormone is a sensitive and specific guide to a complete removal of the abnormal parathyroid tissue. It can be incorporated without difficulty as an intraoperative guide and is superior to frozen section diagnosis in parathyroid surgery.

  10. The thyroid hormone, parathyroid hormone and vitamin D associated hypertension

    Directory of Open Access Journals (Sweden)

    Sandeep Chopra

    2011-01-01

    Full Text Available Thyroid disorders and primary hyperparathyroidism have been known to be associated with increases in blood pressure. The hypertension related to hypothyroidism is a result of increased peripheral resistance, changes in renal hemodynamics, hormonal changes and obesity. Treatment of hypothyroidism with levo-thyroxine replacement causes a decrease in blood pressure and an overall decline in cardiovascular risk. High blood pressure has also been noted in patients with subclinical hypothyroidism. Hyperthyroidism, on the other hand, is associated with systolic hypertension resulting from an expansion of the circulating blood volume and increase in stroke volume. Increased serum calcium levels associated with a primary increase in parathyroid hormone levels have been also associated with high blood pressure recordings. The mechanism for this is not clear but the theories include an increase in the activity of the renin-angiotensin-aldosterone system and vasoconstriction. Treatment of primary hyperparathyroidism by surgery results in a decline in blood pressure and a decrease in the plasma renin activity. Finally, this review also looks at more recent evidence linking hypovitaminosis D with cardiovascular risk factors, particularly hypertension, and the postulated mechanisms linking the two.

  11. Carboxyl-terminal parathyroid hormone fragments: role in parathyroid hormone physiopathology.

    Science.gov (United States)

    D'Amour, Pierre; Brossard, Jean-Hugues

    2005-07-01

    Carboxyl-terminal parathyroid hormone (C-PTH) fragments constitute 80% of circulating PTH. Since the first 34 amino acids of the PTH structure are sufficient to explain PTH classical biological effects on the type I PTH/PTHrP receptor and since C-PTH fragments do not bind to this receptor, they have long been considered inactive. Recent data suggest the existence of a C-PTH receptor through which C-PTH fragments exert biological effects opposite to those of human PTH(1-84) on the type I PTH/PTHrP receptor. This is why a lot of attention has been paid to these fragments recently. In vivo, synthetic C-PTH fragments are able to decrease calcium concentration, to antagonize the calcemic response to human PTH(1-34) and human PTH(1-84) and to decrease the high bone turnover rate induced by human PTH(1-84). In vitro, they inhibit bone resorption, promote osteocyte apoptosis and exert a variety of effects on bone and cartilaginous cells. These effects are opposite to those of human PTH(1-84) on the PTH/PTHrP type I receptor. This suggests that the molecular forms of circulating PTH may control bone participation in calcium homeostasis via two different receptors. Clinically, the accumulation of C-PTH fragments in renal failure patients may cause PTH resistance and may be associated with adynamic bone disease. Rare parathyroid tumors, without a set point error, overproduce C-PTH fragments. The implication of C-PTH fragments in osteoporosis is still to be explored. C-PTH fragments represent a new field of investigation in PTH biology. More studies are necessary to disclose their real importance in calcium and bone homeostasis in health and disease.

  12. Aldosterone and parathyroid hormone: a precarious couple for cardiovascular disease

    NARCIS (Netherlands)

    Tomaschitz, A.; Ritz, E.; Pieske, B.; Fahrleitner-Pammer, A.; Kienreich, K.; Horina, J.H.; Drechsler, C.; Marz, W.; Ofner, M.; Pieber, T.R.; Pilz, S.

    2012-01-01

    Animal and human studies support a clinically relevant interaction between aldosterone and parathyroid hormone (PTH) levels and suggest an impact of the interaction on cardiovascular (CV) health. This review focuses on mechanisms behind the bidirectional interactions between aldosterone and PTH and

  13. Intra-operative parathyroid hormone measurements – experience of ...

    African Journals Online (AJOL)

    Background. Surgery is the treatment of choice for symptomatic primary hyperparathyroidism. The majority of research concerning intra-operative parathyroid hormone (ioPTH) measurements is conducted in university hospitals. Whether ioPTH measurements are feasible and useful in predicting the presence of remaining ...

  14. Current Nomenclature of Pseudohypoparathyroidism: Inactivating Parathyroid Hormone/Parathyroid Hormone-Related Protein Signaling Disorder.

    Science.gov (United States)

    Turan, Serap

    2017-12-30

    Disorders related to parathyroid hormone (PTH) resistance and PTH signaling pathway impairment are historically classified under the term of pseudohypoparathyroidism (PHP). The disease was first described and named by Fuller Albright and colleagues in 1942. Albright hereditary osteodystrophy (AHO) is described as an associated clinical entity with PHP, characterized by brachydactyly, subcutaneous ossifications, round face, short stature and a stocky build. The classification of PHP is further divided into PHP-Ia, pseudo-PHP (pPHP), PHP-Ib, PHP-Ic and PHP-II according to the presence or absence of AHO, together with an in vivo response to exogenous PTH and the measurement of Gsα protein activity in peripheral erythrocyte membranes in vitro. However, PHP classification fails to differentiate all patients with different clinical and molecular findings for PHP subtypes and classification become more complicated with more recent molecular characterization and new forms having been identified. So far, new classifications have been established by the EuroPHP network to cover all disorders of the PTH receptor and its signaling pathway. Inactivating PTH/PTH-related protein signaling disorder (iPPSD) is the new name proposed for a group of these disorders and which can be further divided into subtypes - iPPSD1 to iPPSD6. These are termed, starting from PTH receptor inactivation mutation (Eiken and Blomstrand dysplasia) as iPPSD1, inactivating Gsα mutations (PHP-Ia, PHP-Ic and pPHP) as iPPSD2, loss of methylation of GNAS DMRs (PHP-Ib) as iPPSD3, PRKAR1A mutations (acrodysostosis type 1) as iPPSD4, PDE4D mutations (acrodysostosis type 2) as iPPSD5 and PDE3A mutations (autosomal dominant hypertension with brachydactyly) as iPPSD6. iPPSDx is reserved for unknown molecular defects and iPPSDn+1 for new molecular defects which are yet to be described. With these new classifications, the aim is to clarify the borders of each different subtype of disease and make the classification

  15. Metabolism of labeled parathyroid hormone. V. Collected biological studies

    Energy Technology Data Exchange (ETDEWEB)

    Neuman, W F; Neuman, M W; Lane, K; Miller, L; Sammon, P J

    1975-01-01

    Biologically active /sup 125/I-labeled parathyroid hormone (/sup 125/I-PTH) was used in a series of studies in dogs and chickens designed to confirm and augment earlier studies in rats. As in rats, a three exponential equation was required to describe disappearance of /sup 125/I-PTH from the blood in the dog. The first two ''half-lives'' (1.8 and 7 min) accounted for the bulk of the dose. Also as in rats, deposition of apparently intact hormone took place rapidly in kidney, liver and bone in both the dog and the chicken. Degradation occurred very rapidly in all three target organs. Three labeled hormones of different biological activities were compared in the rat. Inactive, oxidized hormone was rejected by the liver but showed markedly increased deposition in kidney and the higher the purity of the hormone the higher was its uptake by liver. Exploration of a wide range of dosages revealed few effects on distribution (smaller depositon in liver and kidney at highest dosages, 65 ..mu..g/rat). Fresh sera did not degrade hormone rapidly or extensively. There was no deposition of hormone in intestinal mucosa, marrow, and red cells. Nephrectomy increased deposition in liver and bone. Finally, the perfused liver was capable of extensive degradation of the hormone.

  16. Therapy of hypoparathyroidism by replacement with parathyroid hormone

    DEFF Research Database (Denmark)

    Rejnmark, Lars; Underbjerg, Line; Sikjaer, Tanja

    2014-01-01

    Hypoparathyroidism (HypoPT) is a state of hypocalcemia due to inappropriate low levels of parathyroid hormone (PTH). HypoPT is normally treated by calcium supplements and activated vitamin D analogues. Although plasma calcium is normalized in response to conventional therapy, quality of life (Qo...... recently, continuous delivery of PTH by pump has appeared as a feasible alternative to injections. Plasma calcium levels do not fluctuate, urinary calcium is lowered, and bone turnover is only stimulated modestly (into the normal range). Further studies are needed to assess the long-term effects...

  17. Parathyroid hormone and vitamin D--markers for cardiovascular and all cause mortality in heart failure

    DEFF Research Database (Denmark)

    Schierbeck, Louise Lind; Jensen, Torben Slott; Bang, Ulrich

    2011-01-01

    To investigate levels of vitamin D and parathyroid hormone (PTH) in a population of heart failure (HF) patients, and to evaluate whether vitamin D and PTH are related to prognosis.......To investigate levels of vitamin D and parathyroid hormone (PTH) in a population of heart failure (HF) patients, and to evaluate whether vitamin D and PTH are related to prognosis....

  18. Parathyroid carcinoma survival: improvements in the era of intact parathyroid hormone monitoring?

    Directory of Open Access Journals (Sweden)

    Steve R. Martinez

    2013-02-01

    Full Text Available The intact parathyroid hormone (iPTH assay is a critical test in the diagnosis and management of PTH-mediated hypercalcemia, including parathyroid carcinoma (PCa. We hypothesized that the survival of patients diagnosed with PCa has improved since adoption of the iPTH assay into clinical practice. We identified all confirmed cases of PCa within the Surveillance, Epidemiology and End Results database from 1973 to 2006. Patients were categorized into two eras based upon introduction of the iPTH assay: 1973 to 1997 (era I and 1997 to 2006 (era II, when the iPTH assay was in standard use. We estimated overall survival (OS and disease-specific survival (DSS using the Kaplan-Meier method, with differences among survival curves assessed via log rank. Multivariate Cox proportional hazards models compared the survival rates between treatment eras while controlling for patient age, sex, race/ethnicity, tumor size, nodal status, extent of disease, and type of surgery. Multivariate models included patients undergoing potentially curative surgery and excluded those with dis- tant metastases. Risks of overall and disease-specific mortality were reported as hazard ratios with 95% confidence intervals. Study criteria were met by 370 patients. Median survival was 15.6 years. Five-year rates of OS and DSS were 78% and 88% for era I and 82% and 96% for era II. On multivariate analysis, age, black race, and unknown extent of disease predicted an increased risk of death from any cause. Treatment era did not predict OS. No factor predicted PCa-specific mortality. In multivariate analysis, neither OS nor DSS have improved in the current era that utilizes iPTH for the detection and management of PCa.

  19. Parathyroid hormone dependent T cell proliferation in uremic rats

    DEFF Research Database (Denmark)

    Lewin, E; Ladefoged, Jens; Brandi, L

    1993-01-01

    Chronic renal failure (CRF) is combined with an impairment of the immune system. The T cell may be a target for the action of parathyroid hormone (PTH). Rats with CRF have high blood levels of PTH. Therefore, the present investigation examined some aspects of the T cell function in both normal...... and CRF rats before and after parathyroidectomy and after an isogenic kidney transplantation. The T cell proliferative response to phytohemagglutinin (PHA) stimulation was significantly higher in peripheral blood mononuclear cell (PBMC) cultures obtained from CRF rats than from normal rats. After...... parathyroidectomy the T cells of normal as well as of uremic rats could still be significantly stimulated by PHA, but now no significant difference was seen. When CRF was reversed after an isogenic kidney transplantation and PTH reversed to levels in the normal range, the T cell proliferative response to PHA...

  20. Parathyroid hormone in renal transplanted recipients; a single center study

    Directory of Open Access Journals (Sweden)

    Nasri Hamid

    2013-01-01

    Full Text Available This investigation, aimed to study of intact parathormone (iPTH and calcium (Ca in a group of kidney transplanted patients and also we aimed to test the relationship of iPTH with various demographic data of kidney transplanted recipients. We studied 72 kidney transplanted persons with mean ages of 44±12 years. In this study, mean iPTH was 18.4±8.2 Pg/mL (median=16.5. A negative correlation of iPTH with creatinine clearance (r=-0.44, p0.05. In contrast to previous findings, in our patients, there was not secondary hyperparathyroidism. The results revealed suppressed PTH secretion. The reason may be due to excessive intake of calcium and Vitamin D analogues, which may suppress parathyroid hormone secretion.

  1. Fundamental and clinical study for PHT (parathyroid hormone) kit 'Yamasa'

    International Nuclear Information System (INIS)

    Fukunaga, Masao; Otsuka, Nobuaki; Furukawa, Takako; Morita, Rikushi

    1987-01-01

    A commercially available radioimmunoassay kit (Yamasa) for parathyroid hormone (PTH) is the midregion-specific assay system. Fundamental study of the PTH kit gave favorable results for specificity, reproducibility, dilution, and recovery. The serum PTH concentration was detectable among all 41 normal volunteers. The upper and lower limits of normal for PTH in serum were found to be 600 pg/ml and 184 pg/ml, respectively. PTH values were high for chronic renal failure (6/7) and primary hyperparathyroidism (41/41), and low for malignancy associated with hypercalcemia (5/25). It seems possible to discriminate hypercalcemic from normal subjects. The serum PTH concentration from the present assay system was significantly correlated with that from conventional carboxyl-terminal PTH, midregion PTH, amino-terminal PTH, and (1 - 84) PTH assay systems. The results indicate the potential of the Yamasa kit in evaluating calcium metabolism, as well as in detecting the presence of secondary hyperparathyroidism. (Namekawa, K.)

  2. Therapy of Hypoparathyroidism by Replacement with Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Lars Rejnmark

    2014-01-01

    Full Text Available Hypoparathyroidism (HypoPT is a state of hypocalcemia due to inappropriate low levels of parathyroid hormone (PTH. HypoPT is normally treated by calcium supplements and activated vitamin D analogues. Although plasma calcium is normalized in response to conventional therapy, quality of life (QoL seems impaired and patients are at increased risk of renal complications. A number of studies have suggested subcutaneous injections with PTH as an alternative therapy. By replacement with the missing hormone, urinary calcium may be lowered and QoL may improve. PTH replacement therapy (PTH-RT possesses, nevertheless, a number of challenges. If PTH is injected only once a day, fluctuations in calcium levels may occur resulting in hypercalcemia in the hours following an injection. Twice-a-day injections seem to cause less fluctuation in plasma calcium but do stimulate bone turnover to above normal. Most recently, continuous delivery of PTH by pump has appeared as a feasible alternative to injections. Plasma calcium levels do not fluctuate, urinary calcium is lowered, and bone turnover is only stimulated modestly (into the normal range. Further studies are needed to assess the long-term effects. If beneficial, it seems likely that standard treatment of HypoPT in the future will change into replacement therapy with the missing hormone.

  3. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    Science.gov (United States)

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest

  4. The Neuroendocrine Functions of the Parathyroid Hormone 2 Receptor

    Directory of Open Access Journals (Sweden)

    Arpad eDobolyi

    2012-10-01

    Full Text Available The G-protein coupled parathyroid hormone 2 receptor (PTH2R is concentrated in endocrine and limbic regions in the forebrain. Its endogenous ligand,tuberoinfundibular peptide of 39 residues (TIP39, is synthesized in only 2 brain regions, within the posterior thalamus and the lateral pons. TIP39-expressing neurons have a widespread projection pattern, which matches the PTH2R distribution in the brain. Neuroendocrine centers including the preoptic area, the periventricular, paraventricular, and arcuate nuclei contain the highest density of PTH2R-positive networks. The administration of TIP39 and an antagonist of the PTH2R as well as the investigation of mice that lack functional TIP39 and PTH2R revealed the involvement of the PTH2R in a variety of neural and neuroendocrine functions. TIP39 acting via the PTH2R modulates several aspects of the stress response. It evokes corticosterone release by activating corticotropin-releasing hormone-containing neurons in the hypothalamic paraventricular nucleus. Block of TIP39 signaling elevates the anxiety state of animals and their fear response, and increases stress-induced analgesia. TIP39 has also been suggested to affect the release of additional pituitary hormones including arginine vasopressin and growth hormone. A role of the TIP39-PTH2R system in thermoregulation was also identified. TIP39 may play a role in maintaining body temperature in a cold environment via descending excitatory pathways from the preoptic area. Anatomical and functional studies also implicated the TIP39-PTH2R system in nociceptive information processing. Finally, TIP39 induced in postpartum dams may play a role in the release of prolactin during lactation. Potential mechanisms leading to the activation of TIP39 neurons and how they influence the neuroendocrine system are also described. The unique TIP39-PTH2R neuromodulator system provides the possibility for developing drugs with a novel mechanism of action to control

  5. Desensitization of parathyroid hormone receptors on cultured bone cells

    International Nuclear Information System (INIS)

    Pun, K.K.; Ho, P.W.; Nissenson, R.A.; Arnaud, C.D.

    1990-01-01

    Administration of excessive amounts of parathyroid hormone (PTH) in the treatment of osteoporosis can reverse the beneficial effects of a low-dose, intermittent regime. To investigate the direct actions and the possible cellular mechanisms of PTH in inducing desensitization of PTH receptors, we studied the effects of desensitization on rat osteoblastic UMR-106 cells. When the osteoblasts were preincubated with bPTH-(1-34), complete refractoriness to a subsequent challenge with the hormone developed within 1 h and at hormone concentrations as low as 5 nM. When osteoblasts thus desensitized were incubated in hormone-free medium, recovery of the cAMP responses began within 2 h and reached maximum after 16 h. Cycloheximide did not affect the process of desensitization. [Nle8,Nle18,Tyr34]bPTH-(3-34)amide significantly impaired the desensitization process by PTH-(1-34) but did not have stimulatory effect on cAMP responses. No significant heterologous desensitization was obvious after preincubation with isoprenaline (50 microM), prostaglandin E1 (50 microM), or prostaglandin E2 (50 microM) for 2 h. Binding experiments with [125I]PLP-(1-36)amide after desensitization revealed that there was an approximate twofold decrease in receptor affinities as analyzed by Scatchard analysis, showing that the decrease in affinity was prominent in the process of desensitization. When the cells were treated with monensin during desensitization, PTH challenge after desensitization produced significantly lower cyclic AMP responses. Recovery after desensitization occurred over a period of 16 h. Inclusion of monensin, but not cycloheximide, impaired the recovery. The results show that homologous desensitization of rat osteoblasts to PTH is brought about by the occupancy of receptors by PTH-(1-34) but not by cAMP generation itself

  6. A relationship between vitamin D, parathyroid hormone, calcium levels and lactose intolerance in type 2 diabetic patients and healthy subjects.

    Science.gov (United States)

    Rana, SatyaVati; Morya, Rajesh Kumar; Malik, Aastha; Bhadada, Sanjay Kumar; Sachdeva, Naresh; Sharma, Gaurav

    2016-11-01

    Type 2 diabetes mellitus is chronic metabolic disorder. Common gastrointestinal symptoms in type 2 diabetic patients are flatulence, constipation and/or diarrhea. Reason for these may be lactose intolerance leading to change in vitamin D, Calcium and parathyroid hormone which further regulate bone mineralization. To measure lactose intolerance, vitamin D, calcium and parathyroid hormone in type 2 diabetic patients. 150 type 2 diabetic patients attending Endocrinology Clinic in PGI, Chandigarh and 150 age and sex matched healthy controls were enrolled. Lactose intolerance was measured using non-invasive lactose breath test. 25-hydroxyvitamin D (total) and Parathyroid hormone were measured in plasma using immunoassay. Serum calcium was measured using auto analyzer. T score was recorded from DXA scan for bone mineral density measurement. Lactose intolerance was observed significantly higher (plactose intolerant diabetic patients than lactose tolerant patients. Sixty seven percent (67%) of diabetic patients suffered from osteoporosis and 20% of controls. Eighty percent (80%) diabetic patients and 16% controls with osteoporosis suffered from lactose intolerance. From this study we can conclude that measurement of lactose intolerance using non-invasive lactose breath test is suggested for type 2 diabetic patients along with timely measurement of 25-OH vitamin D (total), calcium and parathyroid hormone levels. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Perioperative indicators of hypocalcemia in total thyroidectomy: the role of vitamin D and parathyroid hormone.

    Science.gov (United States)

    Salinger, Eric M; Moore, John T

    2013-12-01

    Hypocalcemia is a common complication of thyroidectomy. The aim of this study was to identify risk factors for this problem. This prospective analysis included 111 patients undergoing total or completion thyroidectomy. Preoperative vitamin D levels and postoperative day 1 parathyroid hormone levels were analyzed for their predictive effects on postoperative hypocalcemia. Patients with ionized calcium hypocalcemia. Younger age and low postoperative parathyroid hormone levels are predictive of symptomatic hypocalcemia. A parathyroid hormone level outside of the reference range may indicate a need for more aggressive postoperative calcium supplementation and treatment with activated vitamin D. Older patients with normal postoperative parathyroid hormone levels may be safely discharged with appropriate calcium supplementation. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. Vitamin D, parathyroid hormone, serum calcium and phosphorus in patients with schizophrenia and major depression.

    Science.gov (United States)

    Jamilian, Hamidreza; Bagherzadeh, Kamran; Nazeri, Zeinab; Hassanijirdehi, Marzieh

    2013-02-01

    Vitamin D deficiency has been associated with an increased risk of depression and schizophrenia. The aim was to compare serum levels of vitamin D, calcium, phosphorus and parathyroid hormone in schizophrenics, depressed patients and healthy subjects in an Iranian population. In a cross-sectional study, 100 patients with schizophrenia and 100 with major depression were enrolled. A questionnaire was filled by using medical records of patients. After that a serum sample was taken and levels of vitamin D, calcium, phosphorus and parathyroid hormone were assessed and then compared between the three groups. Post-hoc analysis of Tukey showed that vitamin D level in healthy participants was significantly higher than depressed patients and schizophrenics while there was no significant difference between vitamin D level in depressed and schizophrenic patients. The findings suggest that vitamin D affects the brain independent of hormonal pathways which regulate serum level of calcium. Non-significant difference in the serum level of vitamin D between the schizophrenics and the depressed patients suggests that the independent effect of vitamin D in brain is a general effect and is not specialized to a specific region or pathway in the brain; however, differences between psychiatric and non-psychiatric patients might be resulted from differences in psychosocial backgrounds.

  9. [Usefullness of intraoperatory parathyroid hormone measurement in surgical management of primary hyperparathyroidism due to a parathyroid adenoma].

    Science.gov (United States)

    Obiols, Gabriel; Catalán, Roberto; Alasà, Cristian; Baena, Juan Antonio; Fort, José Manuel; Gémar, Enrique; Mesa, Jordi

    2003-09-13

    Surgical neck exploration of the 4 parathyroid glands is quite an aggressive procedure for most patients with primary hyperparathyroidism (PHPT) due to a parathyroid adenoma. Intraoperatory measurement of parathyroid hormone (PTH) seems to be a useful tool for the management of these cases, allowing the use of minimally invasive surgical techniques with a lower morbidity. Our aims was to assess the usefulness of PTH intraoperatory measurement for the surgical management of PHPT. We studied 27 consecutive patients, diagnosed with PHPT secondary to parathyroid adenoma. Localization studies included neck ultrasonography and Tc-MIBI scintigraphy. PTH at the stage of anesthesia induction as well as 5 and 10 minutes after the removal of the adenoma was determined. A PTH decrement greater than 50% at 10 minutes was considered as curative. PTH was measured by an immunoluminometric method (Advantage, Nichols). In all cases, calcium levels were normal 24 hours after the operation, and therefore all them were considered as cured. PTH levels decreased more than 50% in all patients. In one case, PTH levels remained high after the exeresis of a preoperatively localized lesion. The pathologic study confirmed that it was a normal parathyroid gland. We then continued the surgical exploration which eventually allowed us to find a contralateral adenoma. A further PTH measurement showed an over 50% decrease. Therefore, PTH was predictive of surgical success in all 28 measurements. Intraoperatory determination of PTH is useful for the surgical management of PHPT and it could allow the use of minimally invasive surgical techniques.

  10. Fibroblast Growth Factor (FGF) 23 Regulates the Plasma Levels of Parathyroid Hormone In Vivo Through the FGF Receptor in Normocalcemia, But Not in Hypocalcemia

    DEFF Research Database (Denmark)

    Mace, Maria L; Gravesen, Eva; Nordholm, Anders

    2018-01-01

    hypocalcemia. We demonstrated that FGF23 rapidly inhibited PTH secretion and that this effect was completely blocked by inhibition of the FGF receptor. Furthermore, inhibition of the FGF receptor by itself significantly increased PTH levels, indicating that FGF23 has a suppressive tonus on the parathyroid...... gland's PTH secretion. In acute hypocalcemia, there was no effect of either recombinant FGF23 or FGF receptor inhibition on the physiological response to the low ionized calcium levels. In conclusion, FGF23 has an inhibitory tonus on PTH secretion in normocalcemia and signals through the FGF receptor....... In acute hypocalcemia, when increased PTH secretion is needed to restore the calcium homeostasis, this inhibitory effect of FGF23 is abolished....

  11. Parathyroid hormone contributes to the down-regulation of cytochrome P450 3A through the cAMP/PI3K/PKC/PKA/NF-κB signaling pathway in secondary hyperparathyroidism.

    Science.gov (United States)

    Watanabe, Hiroshi; Sugimoto, Ryusei; Ikegami, Komei; Enoki, Yuki; Imafuku, Tadashi; Fujimura, Rui; Bi, Jing; Nishida, Kento; Sakaguchi, Yoshiaki; Murata, Michiya; Maeda, Hitoshi; Hirata, Kenshiro; Jingami, Sachiko; Ishima, Yu; Tanaka, Motoko; Matsushita, Kazutaka; Komaba, Hirotaka; Fukagawa, Masafumi; Otagiri, Masaki; Maruyama, Toru

    2017-12-01

    Chronic kidney disease (CKD), which affects, not only renal clearance, but also non-renal clearance, is accompanied by a decline in renal function. Although it has been suggested that humoral factors, such as uremic toxins that accumulate in the body under CKD conditions, could be involved in the changes associated with non-renal drug clearance, the overall process is not completely understood. In this study, we report on the role of parathyroid hormone (PTH), a middle molecule uremic toxin, on the expression of drug metabolizing or transporting proteins using rats with secondary hyperparathyroidism (SHPT) as models. In SHPT rats, hepatic and intestinal CYP3A expression was suppressed, but the changes were recovered by the administration of the calcimimetic cinacalcet, a PTH suppressor. Under the same experimental conditions, a pharmacokinetic study using orally administered midazolam, a substrate for CYP3A, showed that the AUC was increased by 5 times in SHPT rats, but that was partially recovered by a cinacalcet treatment. This was directly tested in rat primary hepatocytes and intestinal Caco-2 cells where the expression of the CYP3A protein was down-regulated by PTH (1-34). In Caco-2 cells, PTH (1-34) down-regulated the expression of CYP3A mRNA, but an inactive PTH derivative (13-34) had no effect. 8-Bromo-cyclic adenosine monophosphate, a membrane-permeable cAMP analog, reduced mRNA expression of CYP3A whereas the inhibitors of PI3K, NF-κB, PKC and PKA reversed the PTH-induced CYP3A down-regulation. These results suggest that PTH down-regulates CYP3A through multiple signaling pathways, including the PI3K/PKC/PKA/NF-κB pathway after the elevation of intracellular cAMP, and the effect of PTH can be prevented by cinacalcet treatment. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The secretory response of parathyroid hormone to acute hypocalcemia in vivo is independent of parathyroid glandular sodium/potassium-ATPase activity

    DEFF Research Database (Denmark)

    Martuseviciene, Giedre; Hofman-Bang, Jacob; Clausen, Torben

    2011-01-01

    increased in response to ethylene glycol tetraacetic acid-induced acute hypocalcemia and to the same extent in both vehicle and ouabain groups. The glands were removed, and inhibition of the ATPase was measured by (86)rubidium uptake, which was found to be significantly decreased in ouabain......-treated parathyroid glands, indicating inhibition of the ATPase. As ouabain induced systemic hyperkalemia, the effect of high potassium on hormone secretion was also examined but was found to have no effect. Thus, inhibition of the parathyroid gland sodium/potassium-ATPase activity in vivo had no effect...... on the secretory response to acute hypocalcemia. Hence, the suggested importance of this ATPase in the regulation of PTH secretion could not be confirmed in this in vivo model....

  13. Parathyroid hormone impairs extrarenal potassium tolerance in the rat

    International Nuclear Information System (INIS)

    Sugarman, A.; Kahn, T.

    1988-01-01

    The effect of parathyroid hormone (PTH) on the extrarenal disposition of an acute potassium load was examined in acutely nephrectomized rats infused with KCl alone or in combination with PTH, with serial monitoring of plasma potassium every 10 min. The rise in plasma potassium concentration (ΔPK) in the PTH group was higher than control. PTH was then administered along with KCl to two groups of nephrectomized and acutely thyroparathyroidectomized (TPTX) rats in doses of 1 and 0.25 U · kg -1 · min -1 for 90 min. ΔPK with PTH in both groups was higher than TPTX control. The two higher doses of PTH resulted in a decrease in mean arterial pressure from their respective controls. A similar reduction in arterial pressure in three groups of nephrectomized rats by administration of hydralazine or nitroprusside or by acute blood loss did not change ΔPK subsequent to potassium infusion from that in control rats. Furthermore, the lowest dose of PTH did not lower arterial pressure from its respective control. Therefore, hypotension is not a cause for the PTH-induced potassium intolerance. Serum levels of insulin, aldosterone, catecholamines, calcium, plasma HCO 3 concentration, and pH were not different in PTH-infused vs. respective control rats. These data suggest that PTH impairs extrarenal potassium disposal in the rat. The effect of PTH may relate to enhanced calcium entry into cells

  14. Role of the metabolism of parathyroid hormone. [Rats

    Energy Technology Data Exchange (ETDEWEB)

    Teitelbaum, Anne P. [Univ. of Rochester, NY (United States)

    1978-01-01

    The heterogeneity of parathyroid hormone (PTH) in plasma has prompted investigations of the metabolism of PTH and its relationship to hormone action. The time course of tissue distribution and metabolism of electrolytically iodinated PTH (E-PTH) previously shown to retain biological activity was compared with that of inactive PTH iodinated with Chloramine-T (CT-PTH). Labeled PTH (0.4 μg) was injected in the saphenous veins of anesthetized rats which were sacrificed at 1, 3, 5, 10, and 20 min. Tissue extracts from kidney, liver, and serum were chromatographed to separate intact PTH from its metabolites. In the kidney, the initial rate of degradation of E-PTH was greater than that of CT-PTH. The difference in initial rates of metabolism may be due, in part, to receptor-specific hydrolysis on peritubular cell membranes which selectively act on biologically active PTH molecules. PTH-responsive adenyl cyclase activity in isolated kidney cortex plasma membranes was measured and PTH metabolism was monitored simultaneously. When degradation was completely blocked by histone f3 (1 mg/ml), adenyl cyclase activity was significantly increased over control. In addition, when adenyl cyclase activity was negligible, the rate of PTH degradation by the membranes was not significantly diminished. Consistent with the in vivo data was the observation that E-PTH is metabolized by these membranes at a greater rate than CT-PTH. The data demonstrate the existence of a receptor-specific metabolism at sites which are independent of PTH receptor mediated adenyl cyclase activity.

  15. Levels of parathyroid hormone and calcitonin in serum among atomic bomb survivors

    International Nuclear Information System (INIS)

    Fujiwara, Saeko; Yokoyama, Naokata; Sasaki, Hideo; Kodama, Kazunori; Sposto, R.; Shimaoka, Katsutaro; Shiraki, Mastaka

    1994-01-01

    To examines the potential causes of increased levels of calcium in serum with increasing dose of atomic bomb radiation, which was obtained from the previous preliminary analysis, levels of parathyroid hormone (PTH) and calcitonin in serum were examined among 1459 subjects in Hiroshima and Nagasaki. A significant effect of radiation on levels of calcium, PTH and calcitonin in serum was found, even after patients with hyperparathyroidism were excluded. The level of calcium in serum increased with radiation dose; this can be explained partly by the increase in the level of PTH with radiation dose. However, the dose effect on calcium remained even after adjustment for PTH, calcitonin and confounding factors such as renal function, serum albumin level and medication. Parathyroid hormone increased initially by 6.8% per gray, but the dose response leveled off after about 1 Gy. The level of calcitonin increased with radiation dose, probably in part due to feedback mechanisms stimulated by the increase in calcium. However, after adjustment for the level of calcium, the increase in the level of calcitonin with dose was still found. Although the etiological mechanisms of the effect of radiation on serum levels of calcium, PTH and calcitonin are unclear, radiation exposure may affect secretion of PTH and calcitonin and regulation of calcium a long time after atomic bomb exposure. 21 refs., 3 figs., 6 tabs

  16. Parathyroid hormone secretion in chronic human endogenous hypercortisolism

    Directory of Open Access Journals (Sweden)

    Lanna C.M.M.

    2002-01-01

    Full Text Available Osteoporosis is a common manifestation of Cushing's syndrome, but the mechanisms responsible for this abnormality have not been defined. With the objective of analyzing parathyroid hormone (PTH secretion in chronic hypercortisolism (CH, we evaluated 11 healthy subjects and 8 patients with CH, 6 with Cushing's disease and 2 with adrenal adenoma. These volunteers were submitted to tests of PTH stimulation through hypocalcemia (EDTA, PTH suppression through hypercalcemia (iv and oral calcium, and evaluation of bone mineral density (BMD by DEXA. During the test of PTH stimulation, the calcium and magnesium concentrations of the normal and CH groups were similar. Patients with CH showed an increased PTH response to the hypocalcemic stimulus compared to controls. PTH values were significantly higher in the CH group at 70 (17.5 ± 3.5 vs 10.2 ± 1.3 pmol/l, P = 0.04, and 120 min (26.1 ± 5.9 vs 11.3 ± 1.9 pmol/l, P = 0.008 of EDTA infusion. The area under the curve for PTH during EDTA infusion was also significantly higher in patients with CH than in normal subjects (1867 ± 453 and 805 ± 148 pmol l-1 2 h-1, P = 0.02. During the test of PTH suppression, calcium, magnesium and PTH levels of the patients with hypercortisolism and controls were similar. BMD was decreased in patients with hypercortisolism in the spine (0.977 ± 0.052 vs 1.205 ± 0.038 g/cm² in controls, P<0.01. In conclusion, our results show that subjects with CH present decreased bone mass mainly in trabecular bone. The use of dynamic tests permitted the detection of increased PTH secretion in response to a hypocalcemic stimulus in CH patients that may probably be involved in the occurrence of osteoporosis in this state.

  17. Parathyroid Hormone Measurement in Prediction of Hypocalcaemia following Thyroidectomy

    International Nuclear Information System (INIS)

    Mehrvarz, S.; Mohebbi, H. A.; Motamedi, M. H. K.; Khatami, S. M.; Reazie, R.; Rasouli, H. R.

    2014-01-01

    Objective: To determine the risk of postthyroidectomy hypocalcaemia by measuring parathyroid hormone (PTH) level after thyroidectomy. Study Design: Cross-sectional study. Place and Duration of Study: Baqiyatallah Hospital, Tehran, Iran, from March 2008 to July 2010. Methodology: All included patients were referred for total or near bilateral thyroidectomy. Serum Calcium (Ca) and PTH levels were measured before and 24 hours after surgery. In low Ca cases or development of hypocalcaemia symptoms, daily monitoring of Ca levels were continued. Data were analyzed using SPSS 20 software (SPSS, Chicago, IL, USA). A p-value less than 0.05 were considered statistically significant. To assess the standard value of useful predictive factors, we used receiver operating characteristic (ROC) curves. Results: Of total 99 patients who underwent bilateral thyroidectomy, 47 patients (47.5%) developed hypocalcaemia, out of them, 12 (25.5%) became symptomatic while 2 patients developed permanent hypoparathyroidism. After surgery, mean rank of PTH level within the normocalcaemic and hypocalcaemic patients was 55.34 and 44.1 respectively, p=0.052. Twenty four hours after surgery, 62% drop in PTH was associated with 83.3% of symptomatic hypocalcaemic. For diagnosis of symptomatic hypocalcaemia, 62% PTH drop had sensitivity and specificity were 83.3% and 90.80%. The area under the ROC curve for the PTH postoperative and PTH drop for diagnostic symptomatic hypocalcaemia were 0.835 and 0.873 respectively. Conclusion: Measuring PTH levels after 24 hours postthyroidectomy is not reliable factor for predicting hypocalcaemia itself. For predicting the risk of hypocalcaemia after thyroidectomy it is more reliable to measure the serum PTH level before and after operation and compare the reduction level of percentage of PTH drop for predicting the risk of hypocalcaemia. (author)

  18. Vitamin D, parathyroid hormone, and acroosteolysis in systemic sclerosis.

    Science.gov (United States)

    Braun-Moscovici, Yolanda; Furst, Daniel E; Markovits, Doron; Rozin, Alexander; Clements, Philip J; Nahir, Abraham Menahem; Balbir-Gurman, Alexandra

    2008-11-01

    .Sclerodactyly with acroosteolysis (AO) and calcinosis are prominent features of systemic sclerosis (SSc), but the pathogenesis of these findings is poorly understood. Vitamin D and parathyroid hormone (PTH) have a crucial role in bone metabolism and resorption and may affect AO and calcinosis. We assessed vitamin D and PTH in patients with SSc. Medical records of 134 consecutive patients with SSc (American College of Rheumatology criteria) followed at the rheumatology department during the years 2003-2006 were reviewed for clinical assessment, laboratory evaluation [including 25(OH) vitamin D, calcium, phosphorus, alkaline phosphatase, PTH, creatinine, and albumin]; imaging data confirming AO and/or calcinosis. Patients followed routinely at least once a year were included (81 patients). Of these, 60 patients' medical records were found to have complete, relevant clinical, laboratory, and radiographic imaging. Thirteen patients had diffuse disease and 47 limited disease - 51 women and 9 men, 44 Jews and 16 Arabs; mean age 55 +/- 14 years; disease duration 8 +/- 6 years. AO with or without calcinosis was observed in 42 patients (70%). Vitamin D deficiency was found in 46% of patients (16 out of 44 Jewish patients, 10 out of 16 Arab patients). PTH was elevated in 21.7% of patients. Significant correlations were observed between acroosteolysis and PTH (p = 0.015), calcinosis (p = 0.009), and disease duration (p = 0.008), and between PTH and vitamin D levels (p = 0.01). All patients had normal serum concentrations of calcium, phosphorus, magnesium, and albumin, and liver and kidney functions. In this group of Mediterranean patients with SSc, the incidence of vitamin D deficiency and secondary hyperparathyroidism was surprisingly high. This finding correlated with the occurrence of AO and calcinosis. Low levels of vitamin D may reflect silent malabsorption and might be a risk factor for secondary hyperparathyroidism and bone resorption. Traditional dress habits and low

  19. Acute regulation of circulating parathyroid hormone (PTH) molecular forms by calcium: utility of PTH fragments/PTH(1-84) ratios derived from three generations of PTH assays.

    Science.gov (United States)

    D'Amour, Pierre; Räkel, Agnès; Brossard, Jean-Hugues; Rousseau, Louise; Albert, Caroline; Cantor, Tom

    2006-01-01

    The quantitative evaluation of circulating PTH peaks revealed by PTH assays after HPLC separation constitutes the best way to study the behavior of PTH molecular forms, but it is also impractical. The objective of the study was to investigate the regulation of circulating PTH molecular forms by calcium through the use of PTH fragments/PTH (1-84) ratios derived from PTH assays with different specificities before and after HPLC separation of circulating PTH. CaCl2 and Na citrate were infused in eight volunteers. PTH was measured in serum and HPLC fractions at different calcium concentrations in PTH assays reacting with regions 1-2 (CA), 12-18 (T), and 65-69 (C) of the PTH structure. From hypo- to hypercalcemia, the C/CA ratio had the highest range (1.92 to 9.75; P < 0.001), and the C/T ratio had a higher range (1.69 to 6.11; P < 0.01) than the T/CA ratio (1.15 to 1.86). Human (h) PTH (1-84) represented 32.7 and 4.3% of circulating PTH in hypo- and hypercalcemic HPLC profiles, respectively. These numbers were 5 and 0.9% for amino-terminal (N)-PTH, an amino-terminal form of PTH distinct from hPTH (1-84), 7.3 and 6.8% for non-(1-84) PTH or large C-PTH fragments with a partially preserved N structure, and 54.9 and 88.1% for C-PTH fragments missing a N structure. The HPLC C-PTH fragments to hPTH (1-84) ratio had the most extensive range (1.67 to 20.58). Despite their quantitative differences, all ratios identified identical behavior of PTH fragments relative to PTH (1-84). PTH assay ratios are an adequate tool to investigate the modulation of PTH molecular forms, even if all PTH assays show some undesirable cross-reactivity with certain circulating forms of PTH.

  20. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    International Nuclear Information System (INIS)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua; Li, Zubing

    2012-01-01

    Highlights: ► Different PTH administration exerts different effects on condylar chondrocyte. ► Intermittent PTH administration suppresses condylar chondrocyte proliferation. ► Continuous PTH administration maintains condylar chondrocyte proliferating. ► Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular asymmetry.

  1. Effects of intermittent versus continuous parathyroid hormone administration on condylar chondrocyte proliferation and differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qi; Wan, Qilong; Yang, Rongtao; Zhou, Haihua [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Li, Zubing, E-mail: lizubing0827@163.com [The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China); Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, Wuhan 430079 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer Different PTH administration exerts different effects on condylar chondrocyte. Black-Right-Pointing-Pointer Intermittent PTH administration suppresses condylar chondrocyte proliferation. Black-Right-Pointing-Pointer Continuous PTH administration maintains condylar chondrocyte proliferating. Black-Right-Pointing-Pointer Intermittent PTH administration enhances condylar chondrocyte differentiation. -- Abstract: Endochondral ossification is a complex process involving chondrogenesis and osteogenesis regulated by many hormones and growth factors. Parathyroid hormone (PTH), one of the key hormones regulating bone metabolism, promotes osteoblast differentiation and osteogenesis by intermittent administration, whereas continuous PTH administration inhibits bone formation. However, the effects of PTH on chondrocyte proliferation and differentiation are still unclear. In this study, intermittent PTH administration presented enhanced effects on condylar chondrocyte differentiation and bone formation, as demonstrated by increased mineral nodule formation and alkaline phosphatase (ALP) activity, up-regulated runt-related transcription factor 2 (RUNX2), ALP, collagen type X (COL10a1), collagen type I (COL1a1), osteocalcin (OCN), bone sialoprotein (BSP), bone morphogenetic protein 2 (BMP2) and osterix (OSX) mRNA and/or protein expression. On the contrary, continuous PTH administration promoted condylar chondrocyte proliferation and suppressed its differentiation, as demonstrated by up-regulated collagen type II (COL2a1) mRNA expression, reduced mineral nodule formation and down-regulated expression of the mRNAs and/or proteins mentioned above. Our data suggest that PTH can regulate condylar chondrocyte proliferation and differentiation, depending on the type of PTH administration. These results provide new insight into the effects of PTH on condylar chondrocytes and new evidence for using local PTH administration to cure mandibular

  2. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    Science.gov (United States)

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  3. Radioimmunoassay of parathyroid hormone (parathyrin) in monkey and man

    International Nuclear Information System (INIS)

    Hargis, G.K.; Williams, G.A.; Reynolds, W.A.; Kawahara, W.; Jackson, B.; Bowser, E.N.; Pitkin, R.M.

    1977-01-01

    A radioimmunoassay for rhesus monkey and human innumoreactive parathyrin was developed in which a selected anti-bovine parathyrin antiserum, radioiodinated purified bovine parathyrin tracer, and human parathyroid tissue-culture media standards were used. The resulting data indicate that the method is sensitive, specific, accurate and reproducible; it is valid for both the rhesus monkey and the human; the serum immunoreactive parathyrin concentration of the monkey is essentially the same as that in man; monkey immunoreactive parathyrin responds to changes in serum calcium concentration similarly to that in man; and the rhesus monkey is therefore a suitable species in which to study parathyroid physiology, from which conclusions can be applied to the human

  4. A threshold for low-protein-diet-induced elevations in parathyroid hormone

    DEFF Research Database (Denmark)

    Kerstetter, J E; Svastisalee, C M; Caseria, D M

    2000-01-01

    We reported previously that lowering dietary protein intake in young healthy women to 0.7 g/kg depressed intestinal calcium absorption and was accompanied by elevations in parathyroid hormone (PTH). Moderate amounts of dietary protein (1.0 g/kg) did not appear to perturb calcium homeostasis....

  5. Comparison of renal and osseous binding of parathyroid hormone and hormonal fragments

    International Nuclear Information System (INIS)

    Demay, M.; Mitchell, J.; Goltzman, D.

    1985-01-01

    The authors compared receptor binding and adenylate cyclase stimulation of intact bovine parathyroid hormone (bPTH)-(1-84) and the synthetic amino-terminal fragments, bPTH-(1-34) and rat PTH (rPTH)-(1-34). In both canine renal membranes and cloned rat osteosarcoma cells the amino-terminal fragments bound to a single order of sites; the affinity of rPTH-(1-34) exceeded that of bPTH-(1-34), correlating with its higher potency in stimulating adenylate cyclase. In studies with oxidized bPTH-(1--84), the middle and carboxyl regions of intact PTH were found to bind to both tissues but with higher affinity to osteosarcoma cells than to renal membranes. Our results demonstrate that rPTH-(1--34) is the most favorable probe of amino-terminal PTH binding and the most potent of the PTH peptides in stimulating renal and osseous adenylate cyclase. The results also show that midregion and carboxyl determinants within intact PTH contribute to hormone binding, which does not correlate with adenylate cyclase activation and appears more significant for skeletal than for renal binding

  6. Parathyroid hormone depresses cytosolic pH and DNA synthesis in osteoblast-like cells

    International Nuclear Information System (INIS)

    Reid, I.R.; Civitelli, R.; Avioli, L.V.; Hruska, K.A.

    1988-01-01

    It has recently become apparent that a number of hormones and growth factors modulate cytosolic pH (pH i ) and there is some evidence that this in turn may influence cell growth. The authors have examined the effects of parathyroid hormone (PTH) on both these parameters in an osteoblast-like cell line, UMR 106. Preliminary studies, using the pH-sensitive fluorescent probe 2',7'-bis(2-carboxyethyl)-5,(6)-carboxyfluorescein indicated that these cells regulate pH i by means of an amiloride-inhibitable Na + -H + exchanger. Rat PTH-(1-34) (rPTH) caused a progressive dose-related decrease in pH i with a half-maximal effect at 10 -11 M. The diacylglycerol analogue, phorbol 12-myristate 13-acetate, increased both pH i and [ 3 H]thymidine incorporation, and amiloride reduced both indexes. However, rPTH remained a potent inhibitor of [ 3 H]thymidine incorporation in the presence of amiloride, even though it did not affect pH i in these circumstances. It is concluded that PTH decreases pH i and growth in UMR 106 cells but that these changes can be dissociated. Depression of pH i may have other important effects on bone metabolism, such as reducing cell-cell communication, and may be associated with alkalinization of the bone fluid compartment

  7. Intraoperative measurement of parathyroid hormone: A Copernican revolution in the surgical treatment of hyperparathyroidism.

    Science.gov (United States)

    Gioviale, Maria Concetta; Damiano, Giuseppe; Altomare, Roberta; Maione, Carolina; Buscemi, Salvatore; Buscemi, Giuseppe; Lo Monte, Attilio Ignazio

    2016-04-01

    Intraoperative parathyroid hormone (PTH) monitoring in the setting of the operating room represents a valuable example of the rationale use of the laboratory diagnostic in a patient-oriented approach. Rapid intraoperative PTH (ioPTH) assay is a valid tool for an accurate evaluation of the success of parathyroid surgery. The reliability of the user-friendly portable systems as well as the collaboration between operators and surgical staff allow the one-site monitoring of the ioPTH decrements on the course of the surgical management of hyperparathyroidism. The rapid answer provided by an effective decrement of PTH during parathyroidectomy contributes dramatically to the efficacy of parathyroid surgery and the reduction of the number of re-operations. Therefore the dose of ioPTH is a valid and reliable support for the success of the intervention of parathyroidectomy at controlled costs. Copyright © 2015 IJS Publishing Group Limited. Published by Elsevier Ltd. All rights reserved.

  8. Model of the complex of Parathyroid hormone-2 receptor and Tuberoinfundibular peptide of 39 residues

    Directory of Open Access Journals (Sweden)

    Persson Bengt

    2010-10-01

    Full Text Available Abstract Background We aim to propose interactions between the parathyroid hormone-2 receptor (PTH2R and its ligand the tuberoinfundibular peptide of 39 residues (TIP39 by constructing a homology model of their complex. The two related peptides parathyroid hormone (PTH and parathyroid hormone related protein (PTHrP are compared with the complex to examine their interactions. Findings In the model, the hydrophobic N-terminus of TIP39 is buried in a hydrophobic part of the central cavity between helices 3 and 7. Comparison of the peptide sequences indicates that the main discriminator between the agonistic peptides TIP39 and PTH and the inactive PTHrP is a tryptophan-phenylalanine replacement. The model indicates that the smaller phenylalanine in PTHrP does not completely occupy the binding site of the larger tryptophan residue in the other peptides. As only TIP39 causes internalisation of the receptor and the primary difference being an aspartic acid in position 7 of TIP39 that interacts with histidine 396 in the receptor, versus isoleucine/histidine residues in the related hormones, this might be a trigger interaction for the events that cause internalisation. Conclusions A model is constructed for the complex and a trigger interaction for full agonistic activation between aspartic acid 7 of TIP39 and histidine 396 in the receptor is proposed.

  9. Serum phosphorus reduction in dialysis patients treated with cinacalcet for secondary hyperparathyroidism results mainly from parathyroid hormone reduction

    DEFF Research Database (Denmark)

    Zitt, Emanuel; Fouque, Denis; Jacobson, Stefan H

    2013-01-01

    The calcimimetic cinacalcet lowers parathyroid hormone (PTH), calcium (Ca) and phosphorus (P) in dialysis patients with secondary hyperparathyroidism (SHPT). We explored serum P changes in dialysis patients treated with cinacalcet, while controlling for vitamin D sterol and phosphate binder (PB...

  10. Cinacalcet reduces plasma intact parathyroid hormone, serum phosphate and calcium levels in patients with secondary hyperparathyroidism irrespective of its severity.

    LENUS (Irish Health Repository)

    2011-09-01

    To evaluate the relationship between the severity of secondary hyperparathyroidism (SHPT) - defined in terms of baseline plasma intact parathyroid hormone (iPTH) level - and the magnitude of response to cinacalcet.

  11. Using the failure mode and effects analysis model to improve parathyroid hormone and adrenocorticotropic hormone testing

    Directory of Open Access Journals (Sweden)

    Magnezi R

    2016-12-01

    Full Text Available Racheli Magnezi,1 Asaf Hemi,1 Rina Hemi2 1Department of Management, Public Health and Health Systems Management Program, Bar Ilan University, Ramat Gan, 2Endocrine Service Unit, Sheba Medical Center, Tel Aviv, Israel Background: Risk management in health care systems applies to all hospital employees and directors as they deal with human life and emergency routines. There is a constant need to decrease risk and increase patient safety in the hospital environment. The purpose of this article is to review the laboratory testing procedures for parathyroid hormone and adrenocorticotropic hormone (which are characterized by short half-lives and to track failure modes and risks, and offer solutions to prevent them. During a routine quality improvement review at the Endocrine Laboratory in Tel Hashomer Hospital, we discovered these tests are frequently repeated unnecessarily due to multiple failures. The repetition of the tests inconveniences patients and leads to extra work for the laboratory and logistics personnel as well as the nurses and doctors who have to perform many tasks with limited resources.Methods: A team of eight staff members accompanied by the Head of the Endocrine Laboratory formed the team for analysis. The failure mode and effects analysis model (FMEA was used to analyze the laboratory testing procedure and was designed to simplify the process steps and indicate and rank possible failures.Results: A total of 23 failure modes were found within the process, 19 of which were ranked by level of severity. The FMEA model prioritizes failures by their risk priority number (RPN. For example, the most serious failure was the delay after the samples were collected from the department (RPN =226.1.Conclusion: This model helped us to visualize the process in a simple way. After analyzing the information, solutions were proposed to prevent failures, and a method to completely avoid the top four problems was also developed. Keywords: failure mode

  12. Radioimmunological assay of the biologically active fragment of the human parathyroid hormone

    International Nuclear Information System (INIS)

    Desplan, C.; Jullienne, A.; Raulais, D.; Rivaille, P.; Barlet, J.P.; Moukthar, M.S.; Milhaud, G.

    1977-01-01

    The authors describe a RIA of the biologically active fraction (N-terminal) of human parathyroid hormone. This homologous test uses antibodies obtained in goats against a N-terminal 1-34 fragment of hPTH synthetised according to the method of Niall and Coll. In this system, natural hPTH of different origin (extracts from parathyroid adenomas, adenomal culture medium, hyperparathyroid plasma, adsorption chromatography extract of normal human plasma) behaved in the same manner as the synthetic reference hormone 1-34 hPTHN. The RIA detected PTH in 65% of the normal subjects and distinguished the normal values from the values of hyperparathyroid patients, which makes it suitable for clinical practice. (AJ) [de

  13. PARATHYROID HORMONE VALUES IN THYROID GLAND SURGERIES BY HARMONIC SCALPEL AND BY CONVENTIONAL METHODS

    OpenAIRE

    Grabovac, Stjepan; Prgomet, Drago; Janjanin, Saša; Đanić Hadžibegović, Ana

    2013-01-01

    We have examined if there are any differences in intraoperative and early postoperative concentrations of parathyroid hormone between the first group of patients, who had thyroidectomy surgery performed by harmonic scalpel, and the second group of patients operated on by standard techniqes with the use of electrocoagulation and ligature as primary hemostatic procedures. All the patients having total thyroidectomy had their blood taken in four measurement points; immediately after the inductio...

  14. Hypercalcemia and high parathyroid hormone-related protein concentration associated with malignant melanoma in a dog.

    Science.gov (United States)

    Pressler, Barrak M; Rotstein, David S; Law, Jerry M; Rosol, Thomas J; LeRoy, Bruce; Keene, Bruce W; Jackson, Mark W

    2002-07-15

    A 12-year-old Cocker Spaniel with an oral malignant melanoma was evaluated for progressive lethargy and anorexia. No metastases were identified during antemortem evaluation, but severe hypercalcemia was evident. Antemortem diagnostic testing failed to identify a cause for the hypercalcemia. No neoplasms other than the melanoma were identified on postmortem examination. Serum parathyroid hormone-related protein concentration was markedly high, and the melanoma had moderate to marked immunostaining for this protein. Paraneoplastic syndromes are rare in dogs with malignant melanoma.

  15. Radioimmunoassays specific for the midregion (44-68) of parathyroid hormone

    International Nuclear Information System (INIS)

    Mallette, L.E.

    1984-01-01

    A lot of research has been done for characterization of the regional specificity of radioimunnoassays for Parathyroid Hormone (PTH). The main portion of plasma PTH consists of biologically inactive fragments, with a long half-life compared to active PTH. In this article a midregion-specific radioimmunoassay for PTH is described, the non-specific binding values and plasma creatinine influence are discussed. Finally some plasma measurements of hypo-, hyperparathyroid and hypercalcemic patients are presented. (Auth.)

  16. Falls relate to vitamin D and parathyroid hormone in an Australian nursing home and hostel.

    Science.gov (United States)

    Stein, M S; Wark, J D; Scherer, S C; Walton, S L; Chick, P; Di Carlantonio, M; Zajac, J D; Flicker, L

    1999-10-01

    To determine whether falling relates to serum levels of vitamin D and parathyroid hormone. A cross-sectional study with retrospective analysis. An aged-care institution in Melbourne Australia. Ambulant nursing home and hostel residents (n = 83). Frequency of falling, frequency of going outdoors, use of cane or walker, age, sex, weight, type of accommodation, and duration of residence. Serum concentrations of 25-hydroxyvitamin D, 1,25-dihydroxyvitamin D, and parathyroid hormone (PTH). Plasma concentrations of albumin, calcium, phosphate, and creatinine. Use of furosemide or non-benzodiazepine anticonvulsants. Median age of residents was 84 years. The cohort was vitamin D deficient with a median (interquartile range) 25-hydroxyvitamin D level of 27 (18-37) nmol/L (one-third the reference range median), P falling, higher serum PTH remained independently associated with falling, with an odds ratio (95% confidence interval) for falling of 5.6 (1.7-18.5) per unit of the natural logarithm of serum PTH. Other terms in the regression were hostel accommodation, odds ratio .04 (.01-.25), and ability to walk without aids, odds ratio .07 (.01-.37). In ambulant nursing home and hostel residents, residents who fall have lower serum 25-hydroxyvitamin D and higher serum parathyroid hormone levels than other residents. The association between falling and serum PTH persists after adjustment for other variables.

  17. The role of menin in parathyroid tumorigenesis.

    LENUS (Irish Health Repository)

    Davenport, Colin

    2009-01-01

    Primary hyperparathyroidism is a common disorder that involves the pathological enlargement of one or more parathyroid glands resulting in excessive production of parathyroid hormone (PTH). The exact pathogenesis of this disease remains to be fully understood. In recent years interest has focussed on the interaction between menin protein and the transforming growth factor (TGF)-beta\\/Smad signalling pathway. In vitro experimentation has demonstrated that the presence of menin is required for TGF-beta to effectively inhibit parathyroid cell proliferation and PTH production. This observation correlates with the almost universal occurrence of parathyroid tumors accompanying the inactivation of menin in multiple endocrine neoplasia Type 1 (MEN1) syndrome and the high rate of somatic menin gene mutations seen in sporadic parathyroid adenomas. This chapter aims to review the role of menin in primary hyperparathyroidism and parathyroid hormone-regulation, including the influences of MEN1 gene mutations on parathyroid cell proliferation, differentiation and tumorigenesis.

  18. Premenstrual Symptoms in Dysmenorrheic College Students: Prevalence and Relation to Vitamin D and Parathyroid Hormone Levels

    Directory of Open Access Journals (Sweden)

    Bayan A. Obeidat

    2012-11-01

    Full Text Available Objectives: To determine the prevalence of premenstrual symptoms (PMS due to primary dysmenorrhea among a sample of university female students, and to explore possible association with vitamin D and parathyroid (PTH levels, as well as frequency of consumption of dairy products. Design: A cross-sectional study. Setting: One Jordanian university. Subjects: A total of 177 female students aged between 18 and 24 years who experienced primary dysmenorrhea participated in the study and completed a self administered questionnaire to collect information concerning demographics, menstruation- related information, associated specified premenstrual symptoms, and consumption of dairy products. Plasma 25-hydroxyvitamin vitamin D level and intact parathyroid hormone level were measured. Results: Of the 177 participants 91.5% had two or more symptoms among which fatigue, mood swings, anxiety, abdominal bloating, and depression were the most prevalent symptoms. There was no evident association between presence of symptoms and vitamin D status, PTH level or dairy products consumption. Headaches and social withdrawal were significantly lower in those women who consumed high amounts of dairy products. Conclusion: Premenstrual symptoms are very common in young women with primary dysmenorrhea. PMS has no relation to levels of vitamin D, parathyroid hormone or dairy products consumption. Headache and social withdrawal may be affected by dairy product consumption.

  19. Low parathyroid hormone levels in bedridden geriatric patients with vitamin D deficiency.

    Science.gov (United States)

    Björkman, Mikko P; Sorva, Antti J; Risteli, Juha; Tilvis, Reijo S

    2009-06-01

    To identify the clinical conditions associated with low parathyroid hormone (PTH) in patients with vitamin D deficiency and to evaluate the stability of the blunted PTH response to vitamin D deficiency over 6 months. Secondary analysis of a randomized double-blind controlled vitamin D supplementation trial. Four long-term care hospitals in Helsinki, Finland. Two hundred eighteen chronically bedridden patients. Plasma 25-hydroxyvitamin D (25-OHD), intact PTH, amino-terminal propeptide of type I procollagen (PINP), carboxy-terminal telopeptide of type I collagen (ICTP), activities of daily living (ADLs), and body mass index (BMI) were measured at baseline and at 6 months. Patient records were reviewed for demographic data. PTH was within reference values (8-73 ng/L) despite low 25-OHD level (bedridden patients with vitamin D deficiency. Attenuated parathyroid function appears to be associated with immobilization that causes accelerated bone resorption. Further studies addressing the possible adverse effects of low PTH are warranted.

  20. New aspects of radioimmunochemical measurement of human parathyroid hormone using the labelled antibody technique

    International Nuclear Information System (INIS)

    Hesch, R.D.; McIntosh, C.H.S.; Woodhead, J.S.; Welsh National School of Medicine, Cardiff

    1975-01-01

    Two forms of heterogeneity of parathyroid hormone (PTH) have given rise to conflicting results: one due to the heterogeneity of the secreted species from the gland and their peripheral metabolism and the other representing the immunochemical heterogeneity of the available antibodies. We have developed sequence specific assays using the technique of labelled antibodies. Therefore, results of assays measuring the C-terminal part and the (1-34)-N-terminal part of the molecule could be compared to those of an assay for hormone bearing both N- and C-terminal antigenic determinants. This assay is supposed to detect predominantly (1-84)-intact hormone. The immunoradiometric assay of (1-34)-PTH has a sensitivity of 0.04 ng/ml. This technique avoids the critical iodination of the hormone fragment containing no tyrosine. There is the expected overlap between normal subjects and patients with primary and secondary hyperparathyroidism. The most important finding are results from patients undergoing neck catheterization. We demonstrated nonuniform secretion of different species of PTH by parathyroid adenomata and normal glands. This supports the hypothesis of cleavage of the (1-84)-molecule in the gland. (orig.) [de

  1. Parathyroid hormone related protein concentration in human serum and CSF correlates with age.

    Science.gov (United States)

    Kushnir, Mark M; Peterson, Lisa K; Strathmann, Frederick G

    2018-02-01

    Parathyroid Hormone-Related Protein (PTHrP) is involved in intracellular calcium (Ca) regulation, and has been demonstrated to participate in regulation of Ca in brain cells, activation of neurons, and modulation of pain. However, there are conflicting reports regarding the presence of PTHrP in CSF. PTHrP and Ca were quantified in paired CSF and serum samples using mass spectrometry-based methods. Associations between PTHrP and Ca concentrations with age, sex and concentrations of nine CSF diagnostic markers in a set of 140 paired serum and CSF patient samples were evaluated. The observed median PTHrP concentration in CSF was 51 times higher than in serum; the median concentration of Ca in CSF was 1.8 times lower than in serum. We observed positive correlation between concentrations of PTHrP in CSF and serum (p=0.013). Distribution of PTHrP concentrations in serum was associated with age (p=0.0068) and the concentrations were higher in women. In samples with serum calcium concentrations within the reference intervals (n=118), central 95% distribution of concentrations for Ca-CSF, PTHrP-serum and PTHrP-CSF were 5.4 (4.5-6.1) mg/dL, 1.2 (0.5-2.5) pmol/L, 62 (22-125) pmol/L, respectively. Our data demonstrate that PTHrP is a normal constituent of human CSF with median concentrations 51 fold higher than in serum. Elevated serum PTHrP concentrations were positively correlated with age and significantly higher in women. Our data suggest that CSF could be a significant source of circulating PTHrP. Copyright © 2017 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Parathyroid hormone, calcitonin, and vitamin D 1974: Present status of physiological studies and analysis of calcium homeostasis

    Science.gov (United States)

    Potts, J. T., Jr.; Swenson, K. G.

    1975-01-01

    The role of parathyroid hormone, calcitonin, and vitamin D in the control of calcium and bone metabolism was studied. Particular emphasis was placed on the physiological adaptation to weightlessness and, as a potential model for this purpose, on the immobilization characteristic of space flight or prolonged bed rest. The biosynthesis, control of secretion, and metabolism of these hormonal agents is considered.

  3. Thiazide increases serum calcium in anuric patients: the role of parathyroid hormone.

    Science.gov (United States)

    Vasco, Raquel F V; Reis, Eduardo T; Moyses, Rosa M A; Elias, Rosilene M

    2017-12-01

    We evaluated the effect of hydrochlorothiazide in a sample of anuric patients on hemodialysis and found an increase in serum calcium, which occurred only in those with parathyroid hormone >300 pg/ml. This finding highlights the extra-renal effect of this diuretic and a possible role of parathyroid hormone in the mechanism. Thiazide diuretics are commonly used in patients with chronic kidney disease to treat hypertension. Their effects on calcium and bone metabolism are not well established, once calciuria may not fully explain levels of calcium and parathyroid hormone (PTH) in this population. A previous study has suggested that thiazides require the presence of PTH as a permissive condition for its renal action. In anuric patients, however, the role of PTH, if any, in the thiazide effect is unknown. To assess thiazide extra renal effect on serum calcium and whether such an effect is reliant on PTH, hydrochlorothiazide (HCTZ) 100 mg was given orally once a day to a sample of 19 anuric patients on hemodialysis for 2 weeks. Laboratories' analyses were obtained in three phases: baseline, after diuretic use, and after a 2-week washout phase. We demonstrated that serum calcium (Ca) increased in ten patients (52.6%) after HCTZ use, returning to previous levels after the washout period. Out of the 19 patients, ten presented PTH ≥ 300 pg/ml, and Ca has increased in eight of them, whereas in the other nine patients with PTH < 300 pg/ml, serum Ca has increased only in two individuals (RR risk of increase Ca 3.9; p = 0.012). HCTZ was capable of increasing serum Ca in a sample of anuric patients on hemodialysis and seems this effect is highly dependent on PTH levels. Caution is required while interpreting this result, as the small sample size might implicate in a finding caused by chance.

  4. Normal epidermal growth factor receptor signaling is dispensable for bone anabolic effects of parathyroid hormone.

    Science.gov (United States)

    Schneider, Marlon R; Dahlhoff, Maik; Andrukhova, Olena; Grill, Jessica; Glösmann, Martin; Schüler, Christiane; Weber, Karin; Wolf, Eckhard; Erben, Reinhold G

    2012-01-01

    Although the bone anabolic properties of intermittent parathyroid hormone (PTH) have long been employed in the treatment of osteoporosis, the molecular mechanisms behind this action remain largely unknown. Previous studies showed that PTH increases the expression and the activity of epidermal growth factor receptor (EGFR) in osteoblasts, and activation of ERK1/2 by PTH in osteoblasts was demonstrated to induce the proteolytical release of EGFR ligands and EGFR transactivation. However, conclusive evidence for an important role of the EGFR system in mediating the anabolic actions of intermittent PTH on bone in vivo is lacking. Here, we evaluated the effects of intermittent PTH on bone in Waved-5 (Wa5) mice which carry an antimorphic Egfr allele whose product acts as a dominant negative receptor. Heterozygous Wa5 females and control littermates received a subcutaneous injection of PTH (80 μg/kg) or buffer on 5 days per week for 4 weeks. Wa5 mice had slightly lower total bone mineral density (BMD), but normal cancellous bone volume and turnover in the distal femoral metaphysis. The presence of the antimorphic Egfr allele neither influenced the PTH-induced increase in serum osteocalcin nor the increases in distal femoral BMD, cortical thickness, cancellous bone volume, and cancellous bone formation rate. Similarly, the PTH-induced rise in lumbar vertebral BMD was unchanged in Wa5 relative to wild-type mice. Wa5-derived osteoblasts showed considerably lower basal extracellular signal-regulated kinase 1/2 (ERK1/2) activation as compared to control osteoblasts. Whereas activation of ERK1/2 by the EGFR ligand amphiregulin was largely blocked in Wa5 osteoblasts, treatment with PTH induced ERK1/2 activation comparable to that observed in control osteoblasts, relative to baseline levels. Our data indicate that impairment of EGFR signaling does not affect the anabolic action of intermittent PTH on cancellous and cortical bone. Copyright © 2011. Published by Elsevier Inc.

  5. Clinical application of determination of plasma intact parathyroid hormone content in kidney disease

    International Nuclear Information System (INIS)

    Zhu Mei; Wang Zhaohui; Zhou Xiaoli; Ren Chunling; Chen Huaqian

    2011-01-01

    Objective: To observe intact parathyroid hormone in kidney disease with clinical application. Methods: Plasma i-PTH level was measured in 46 patients with chronic renal insufficiency lose compensation stage, 39 patients with chronic renal failure, 35 patients with uremia. Besides, control group (n=41) was established. Results: Result shown that plasma i-PTH levels were experiment group and control group were obvious difference (P<0.01), among experiment group plasma i-PTH level was obvious difference (P<0.01). Conclusion: Results suggested along with renal function were worsen that plasma i-PTH level increasing gradually during renal insufficiency. (authors)

  6. Radioimmunoassay for the middle region of human parathyroid hormone: comparison of two radioiodinated synthetic peptides

    International Nuclear Information System (INIS)

    Sharp, M.E.; Marx, S.J.

    1985-01-01

    Two synthetic peptides were evaluated to develop radioligands for midregion-specific radioimmunoassay (RIA) of human parathyroid hormone (hPTH). Both radioligands were tested using three anti-PTH sera of proven clinical utility. While each of these midregion-directed antisera showed unique specificity, they all reacted with high affinity with both radioligands and none of them discriminated significantly between the two synthetic midregion peptides. Analysis of data on the relation of serum calcium and hPTH midregion immunoreactivity showed a useful separation of groups (all nonazotemic) with primary hyperparathyroidism, secondary hyperparathyroidism, primary hypoparathyroidism and secondary hypoparathyroidism. (Auth.)

  7. [Bone Cell Biology Assessed by Microscopic Approach. The effect of parathyroid hormone and teriparatide on bone].

    Science.gov (United States)

    Takahata, Masahiko

    2015-10-01

    Continuous exposure to parathyroid hormone (PTH) leads to hypercalcemia and a decrease in bone volume, which is referred to as its catabolic effect, while intermittent exogenously administered PTH leads to an anabolic effect on bone. Intermittent administration of PTH dramatically increases bone remodeling and modeling through their direct and indirect effects on the functional cells of bone remodeling units and their precursors. These effects on bone metabolism differ according to dosing frequency of PTH. Therefore, different dosing frequency of PTH shows different therapeutic effects on bone in terms of bone volume and bone quality in patients with osteoporosis.

  8. Determination of calcitonin and the parathyroid hormone in blood serum for diagnosis of tumor metastases to the skeleton

    International Nuclear Information System (INIS)

    Smirnov, Yu.N.

    1986-01-01

    Calcitonin and parathyroid hormone were determined using a radioimmunoassay in the blood serum of lung, breast and kidney cancer patients who had undergone combined treatment for major disease, healthy males, patients with spinal tuberculosis and patients with eosinophilic granuloma of the cranial bones. A significant rise of the calsitonin level and change in the ratio of calcitonin and the parathyroid hormone were established in the blood serum of patients with tumor metastases to the skeleton, spinal tuberculosis and eosiniphilic cranial granuloma. During cancer patients monitoring the determination of calcitonin is recommended as a screening test for sceletal metastases to select patients for γ-topographic investigation

  9. Isolation and characterization of the human parathyroid hormone-like peptide gene

    International Nuclear Information System (INIS)

    Mangin, M.; Ikeda, K.; Dreyer, B.E.; Broadus, A.E.

    1989-01-01

    A parathyroid hormone-like peptide (PTH-LP) has recently been identified in human tumors associated with the syndrome of humoral hypercalcemia of malignancy. The peptide appears to be encoded by a single-copy gene that gives rise to multiple mRNAs that are heterogeneous at both their 5' and their 3' ends. Alternative RNA splicing is responsible for the 3' heterogeneity and results in mRNAs encoding three different peptides, each with a unique C terminus. The authors have isolated and characterized the human PTHLP gene. The gene is a complex transcriptional unit spanning more than 12 kilobases of DNA and containing six exons. Two 5' exons encode distinct 5' untranslated regions and are separated by a putative promoter element, indicating that the gene either has two promoters or is alternatively spliced from a single promoter upstream of the first exon. The middle portion of the PTHLP gene, comprising exons 2-4, has an organizational pattern of introns and exons identical to that of the parathyroid hormone gene, consistent with a common ancestral origin of these two genes. Exon 4 of the PTHLP gene encodes the region common to all three peptides and the C terminus of the shortest peptide, and exons 5 and 6 encode the unique C termini of the other two peptides. Northern analysis of mRNAs from four human tumors of different histological types reveals the preferential use of 3' splicing patterns of individual tumors

  10. ALX 111: ALX1-11, parathyroid hormone (1-84) - NPS Allelix, PREOS, PTH, recombinant human parathyroid hormone, rhPTH (1-84).

    Science.gov (United States)

    2003-01-01

    ALX 111 [parathyroid hormone (1-84) - NPS Allelix, recombinant human parathyroid hormone, rhPTH (1-84), PREOS] is a full-length, recombinant human parathyroid hormone. It has potential as an anti-osteoporotic agent, due to its properties as a bone formation stimulant. This profile has been selected from R&D Insight, a pharmaceutical intelligence database produced by Adis International Ltd. It has been recommended that ALX 111 should be given for 1 to 2 years and may be given in combination with an antiresorptive agent, such as estrogen or a bisphosphonate. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. NPS harmaceuticals has signed an agreement with Bio-Imaging Technologies, which will provide all image handling and analysis for this trial. Until 1994, Allelix Biopharmaceuticals and Glaxo in Canada were involved in a joint venture to investigate the efficacy of ALX 111 in osteoporosis. Allelix was subsequently, until September 1998, collaborating with Astra of Sweden in developing ALX 111. Astra had acquired exclusive worldwide rights to ALX 111 and was responsible for development of the agent. However, Astra returned all rights to ALX 111 to Allelix as a result of its merger with Zeneca to form AstraZeneca. In December 1999, Allelix Biopharmaceuticals merged with NPS Pharmaceuticals. This combined company is operating as NPS Pharmaceuticals in the US and as NPS Allelix in Canada. The merger has enabled a phase III study of ALX 111 to begin in the US, Europe and South America. The phase III trial of ALX 111 for the treatment of osteoporosis has completed patient enrolment, and phase II trials have been completed in Canada and the Netherlands. The 18-month, phase III, multicentre, placebo-controlled trial (Treatment of Osteoporosis with

  11. Effect of enamel matrix derivative and parathyroid hormone on bone formation in standardized osseous defects: an experimental study in minipigs

    DEFF Research Database (Denmark)

    Jensen, Simon S; Chen, B; Bornstein, Michael M

    2011-01-01

    Previous experimental studies have indicated that locally administered enamel matrix derivative (EMD) and parathyroid hormone (PTH) may have a stimulatory effect on bone formation. However, it is not clear if the positive effect of EMD is related to its effect on the periodontium as a whole...

  12. Rapid intraoperative parathyroid hormone assay--more than just a comfort measure.

    LENUS (Irish Health Repository)

    Hanif, F

    2012-02-03

    BACKGROUND: Minimally invasive radio-guided parathyroidectomy (MIRP) has been embraced as an acceptable therapeutic approach to primary hyperparathyroidism. Preoperative sestamibi scanning has facilitated this technique. Here we evaluate the addition of a rapid intraoperative parathyroid hormone (iPTH) assay for patients undergoing MIRP. METHODS: A series of 51 patients underwent sestamibi localization of parathyroid glands followed by MIRP for primary hyperparathyroidism. Using peripheral venous samples, iPTH levels were measured prior to gland excision, as well as post-excision at 5, 10, and 15 minutes, taking a 50% reduction in iPTH level as indicative of complete excision. Next, changes in serum iPTH were compared with preoperative and postoperative changes in serum calcium, as well as levels of intraoperative ex-vivo radiation counts taken by hand-held gamma probe. RESULTS: In this series, a drop of greater than 50% in iPTH levels was observed in 94% of patients (n=48). Moreover, a significant drop in iPTH occurred within 10 minutes of excision in the majority (n=42) of cases (P<0.004). Changes in iPTH were comparable with the therapeutic reduction in calcium levels, as well as with the change in intraoperative ex-vivo gamma counts. CONCLUSIONS: This study demonstrates that the addition of an iPTH assay to MIRP provides a quick and reliable intraoperative diagnostic modality in confirming correct adenoma removal. Moreover, it precludes the requirement of frozen section.

  13. The Role of Cyclic AMP and Its Relationship to Parathyroid Hormone Response in an In Vitro Model of Chondrogenesis.

    Science.gov (United States)

    1992-06-01

    factors on bone and cartilage cell equilibria and differentiation will enhance our understanding of bone metabolism in health and disease . A. Parathyroid...1984. Difference between 1-84 parathyroid hormone and the 1-34 fragment on renal tubular calcium transport in the dog . Miner. Electrolyte Metab., ]A...general dentist during a four-year tour. In June 1989, Dr. Semba entered the Postdoctoral Periodontics program at the University of Texas Health Science Center in San Antonio in conjunction with Wilford Hall USAF Medical Center.

  14. Effect of parathyroid hormone and calcium ions on substrate oxidation by isolated glomeruli of the rat.

    Science.gov (United States)

    Wang, M S; Kurokawa, K

    1981-11-05

    Effect of Ca2+ and parathyroid hormone (PTH) on 14 CO2 production from certain metabolic substrates by isolated glomeruli of rat kidney were examined. Increasing calcium concentration in the incubation medium inhibited 14CO2 production from 14C-labeled alpha-ketoglutarate and succinate, stimulated 14CO2 production from [1-14C]glucose and [1-14C]glutamate, but was without effect on that from [6-14C]glucose. PTH in the presence but not in the absence of Ca2+ inhibited 14CO2 production from labeled alpha-ketoglutarate and glutamate but not from labeled glucose. Additions of cyclic AMP as well as hormonal agents known to act directly on the glomureli, such as histamine, epinephrine, prostaglandin E2, vasopressin, angiotensin II and insulin, did not alter 14 CO2 production from labeled alpha-ketoglutarate. These data show the presence of calcium-dependent inhibitory actions on PTH on oxidation of alpha-ketoglutarate and glutamate which may be independent of cyclic AMP. These metabolic effects of PTH may underlie the alteration in the glomerular ultrafiltration coefficient and glomerular filtration induced by the hormone.

  15. Detection of parathyroid hormone using an electrochemical impedance biosensor based on PAMAM dendrimers.

    Science.gov (United States)

    Özcan, Hakkı Mevlüt; Sezgintürk, Mustafa Kemal

    2015-01-01

    This paper presents a novel hormone-based impedimetric biosensor to determine parathyroid hormone (PTH) level in serum for diagnosis and monitoring treatment of hyperparathyroidism, hypoparathyroidism and thyroid cancer. The interaction between PTH and the biosensor was investigated by an electrochemical method. The biosensor was based on the gold electrode modified by 12-mercapto dodecanoic (12MDDA). Antiparathyroid hormone (anti-PTH) was covalently immobilized on to poly amidoamine dendrimer (PAMAM) which was bound to a 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide/N-hydroxysuccinimide (EDC/NHS) couple, self-assembled monolayer structure from one of the other NH2 sites. The immobilization of anti-PTH was monitored by electrochemical impedance spectroscopy, cyclic voltammetry and scanning electron microscope techniques. After the optimization studies of immobilization materials such as 12MDDA, EDC-NHS, PAMAM, and glutaraldehyde, the performance of the biosensor was investigated in terms of linearity, sensitivity, repeatability, and reproducibility. PTH was detected within a linear range of 10-60 fg/mL. Finally the described biosensor was used to monitor PTH levels in artificial serum samples. © 2015 American Institute of Chemical Engineers.

  16. Nontruncated amino-terminal parathyroid hormone overproduction in two patients with parathyroid carcinoma: a possible link to HRPT2 gene inactivation.

    Science.gov (United States)

    Caron, Philippe; Simonds, William F; Maiza, Jean-Christophe; Rubin, Mishaela; Cantor, Tom; Rousseau, Louise; Bilezikian, John P; Souberbielle, Jean-Claude; D'Amour, Pierre

    2011-06-01

    Some patients with parathyroid carcinoma present with an over-production of nontruncated amino-terminal (NT-N) parathyroid hormone (PTH), a post-transcriptionally modified form of PTH(1-84). This is usually picked up on an elevated whole (W) PTH (third-generation)/total (T) (second-generation) PTH assay ratio (N > 0·8). Two parathyroid cancer patients with several episodes of hypercalcaemia and multiple surgeries are described. In both patients, W-PTH, T-PTH and circulating PTH molecular forms separated by high-pressure liquid chromatography (HPLC) were measured with the same assays. qPCR was used to study HRPT2 gene mutation. The first patient had total calcium of 3·8 and 3·22 mmol/l before the fourth and fifth surgeries, and third/second-generation PTH ratios of 2·95 and 3·6, respectively. After the fourth surgery, the ratio remained normal for 1 year and increased progressively to 3·6 over 15 months. This preceded hypercalcaemia by 6 months. The ratio became normal after the fifth surgery. HPLC analysis disclosed an over-expression of NT-N PTH to 82·2% (N < 10%) relative to hPTH(1-84) before the fifth surgery. A deletion of all the tested exons of the HRPT2 gene was identified. In the second patient, W-PTH/T-PTH ratio was 0·89 when serum calcium was 3·3 mmol/l. NT-N PTH was also over-expressed at 51·9%. An inactivating mutation of the HRPT2 gene was also identified. This may suggest that a progressive rise in third/second-generation ratio may have possible clinical utility to monitor parathyroid cancer recurrence. A possible association between NT-N PTH overproduction and HRPT2 gene inactivation is also suggested. © 2011 Blackwell Publishing Ltd.

  17. Effect of parathyroid hormone on transport by toad and turtle bladder

    International Nuclear Information System (INIS)

    Sabatini, S.; Kurtzman, N.A.

    1987-01-01

    The authors recently demonstrated that parathyroid hormone (PTH) inhibited both vasopressin- and cyclic AMP-stimulated water transport in the toad bladder. This was associated with an increase in calcium uptake by isolated epithelial cells. They postulated that PTH exerts its action on H 2 O transport by directly stimulating calcium uptake. The current study was designed to compare the effects of PTH and the calcium ionophore, A23187, on H 2 O and Na transport and Hμ secretion in toad and turtle bladders. In toad bladder, PTH and A23187 decreased arginine vasopressin (AVP)-stimulated H 2 O flow and short-circuit current (SCC) after 60 min serosal incubation. In turtle bladder A23187 decreased SCC to 79.3 +/- 3.6% of base line (P + secretion in turtle bladders. Both PTH and A23187 increased 45 Ca uptake in toad bladder epithelial cells; only A23187 increased 45 Ca uptake in the turtle bladder. The different action of PTH in these two membranes, compared with that of the calcium ionophore, illustrates the selectivity of PTH on membrane transport. PTH increases calcium uptake and decreases transport only in a hormone-sensitive epithelium, whereas the ionophore works in virtually all living membranes. The mode of action of these two agents to increase calcium uptake is, therefore likely different

  18. Regional myocardial blood flow distribution during intracoronary infusion of parathyroid hormone

    International Nuclear Information System (INIS)

    Crass, M.F. III; Lust, R.M.

    1986-01-01

    Although low doses of the biologically-active fragment of parathyroid hormone PTH-(1-34), have been shown to produce potent dilation of the coronary circulation specific regional and transmural (endo/epi) myocardial blood flow (MBF) responses to the hormone have not been described. Anesthetized open-chest mongrel dogs were instrumented to quantitate coronary blood flow and other cardiodynamic parameters. PTH-(1-34) was infused into the left circumflex artery (.008 nmol kg -1 min -1 ). Using the reference withdrawal method, radionuclide-labeled microspheres were injected before (basal flow), during (8 min after new steady-state flow), and after (restoration of basal flow) a 20 min infusion of PTH-(1-34). MFB increased from 76 +- 1.9 to 152 +- 3.5 ml min -1 100 g -1 (P < .001) during PTH-(1-34) infusion. No differences in endo/epi flow ratio or regional coronary blood flow within the left ventricle were detected. Thus, in anesthetized dogs, the increase in MBF observed secondary to the PTH-(1-34)-induced decrease in coronary resistance appeared to be uniform transmurally and regionally, and is probably not the result of a shunting or steal phenomenon

  19. Usefulness of a rapid immunometric assay for intraoperative parathyroid hormone measurements

    Directory of Open Access Journals (Sweden)

    M.N. Ohe

    2003-06-01

    Full Text Available Intraoperative parathyroid hormone (IO-PTH measurements have been proposed to improve operative success rates in primary, secondary and tertiary hyperparathyroidism (PHP, SHP and THP. Thirty-one patients requiring parathyroidectomy were evaluated retrospectively from June 2000 to January 2002. Sixteen had PHP, 7 SHP and 8 THP. Serum samples were taken at times 0 (before resection, 10, 20 and 30 min after resection of each abnormal parathyroid gland. Samples from 28 patients were frozen at -70ºC for subsequent tests, whereas samples from three patients were tested while surgery was being performed. IO-PTH was measured using the Elecsys immunochemiluminometric assay (Roche, Mannheim, Germany. The time necessary to perform the assay was 9 min. All samples had a second measurement taken by a conventional immunofluorimetric method. We considered as cured patients who presented normocalcemia in PHP and THP, and normal levels of PTH in SHP one month after surgery and who remained in this condition throughout the follow-up of 1 to 20 months. When rapid PTH assay was compared with a routine immunofluorimetric assay, excellent correlation was observed (r = 0.959, P < 0.0001. IO-PTH measurement showed a rapid average decline of 78.8% in PTH 10 min after adenoma resection in PHP and all patients were cured. SHP patients had an average IO-PTH decrease of 89% 30 min after total parathyroidectomy and cure was observed in 85.7%. THP showed an average IO-PTH decrease of 91.9%, and cure was obtained in 87.5% of patients. IO-PTH can be a useful tool that might improve the rate of successful treatment of PHP, SHP and THP.

  20. Novel, selective vitamin D analog suppresses parathyroid hormone in uremic animals and postmenopausal women.

    Science.gov (United States)

    Zella, Julia B; Plum, Lori A; Plowchalk, David R; Potochoiba, Michael; Clagett-Dame, Margaret; DeLuca, Hector F

    2014-01-01

    The use of 1α-hydroxylated vitamin D therapy to control secondary hyperparathyroidism in renal failure patients has been a success story, culminating with the demonstration of increased life expectancy in patients treated with these compounds. However, hypercalcemic episodes have been a recurrent problem with these therapies and have resulted in the added use of calcium mimetics. Clearly there is good reason to search for improved vitamin D therapy. In our inventory of vitamin D compounds, 2-methylene-19-nor-(20S)-1α,25-dihydroxyvitamin D3 (2MD) surfaced as a potential candidate. This was based on its preferential localization in the parathyroid gland and a clear suppression of serum parathyroid hormone (PTH) levels without a change in serum calcium in a clinical trial in postmenopausal women. 2MD has now been tested in the rat 5/6-nephrectomy model of renal failure, and in postmenopausal women to determine if it can suppress serum PTH at doses that do not elevate serum calcium and serum phosphorus concentrations. Daily oral treatment of uremic rats on 2.5 ng/bw/day of 2MD dramatically suppressed PTH without a change in serum calcium or serum phosphorus. Further, PTH was suppressed in postmenopausal women after only 3 daily oral doses of 2MD that continued for 4 weeks with no change in serum calcium or serum phosphorus. These results coupled with a pharmacokinetic half-life of ~24 h suggest that 2MD given either daily or at the time of dialysis may be a superior therapy for secondary hyperparathyroidism in chronic renal failure patients.

  1. Intra-operative parathyroid hormone monitoring through central laboratory is accurate in renal secondary hyperparathyroidism.

    Science.gov (United States)

    Vulpio, Carlo; Bossola, Maurizio; Di Stasio, Enrico; Pepe, Gilda; Nure, Eda; Magalini, Sabina; Agnes, Salvatore

    2016-05-01

    The usefulness, the methods and the criteria of intra-operative monitoring of the parathyroid hormone (ioPTH) during parathyroidectomy (PTX) for renal secondary hyperparathyroidism (rSHPT) in patients on chronic hemodialysis remain still matter of debate. The present study aimed to evaluate the ability of a low cost central-laboratory second generation PTH assay to predict an incomplete resection of parathyroid glands (PTG). The ioPTH decay was determined In 42 consecutive patients undergoing PTX (15 subtotal and 27 total without auto-transplant of PTG) for rSHPT. The ioPTH monitoring included five samples: pre-intubation, post-manipulation of PTG and at 10, 20 and 30min post-PTG excision. The patients with PTH exceeding the normal value (65pg/ml) at the first postoperative week, 6 and 12months were classified as persistent rSHPT. The concentrations of ioPTH declined significantly over time in patients who received total or subtotal PTX; however, no difference was found between the two types of PTX. Irrespective of the type of PTX and the number of PTG removed, combining the absolute and percentage of ioPTH decay at 30min after PTG excision, we found high sensitivity (100%), specificity (92%), negative predictive value (100%) and accuracy (93%) in predicting the persistence of rSHPT. The monitoring of the ioPTH decline by a low cost central-laboratory second generation assay is extremely accurate in predicting the persistence of disease in patients on maintenance hemodialysis undergoing surgery for rSHPT. Copyright © 2016 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Measurement of human serum parathyroid hormone in disorders of calcium metabolism and during administration of certain gut hormones

    International Nuclear Information System (INIS)

    Coetzee, J.; Klaff, L.J.; Epstein, S.

    1980-01-01

    A sensitive radio-immunoassay for parathyroid hormone (PTH) using the commercially available antisera AS 211/32 and AS 211/41 has been established. The lower limit of sensitivity of the assay is 0,25 ng/ml. Seventy-nine per cent of normal subjects have PTH levels in the measurable range, with a mean of 0,49 ng/ml (SD more or less 0,26 ng/ml). Only 1 of 9 patients with proven primary hyperparathyroidism had a normal serum PTH value. The mean serum PTH value in this group was 3,0 more or less 0,26 ng/ml, which differed significantly from that in the normal group (P<0,001). The serum PTH level of 33 patients on chronic haemodialysis was uniformly raised, while in 8 patients with hypoparathyroidism PTH levels were undetectable. Patients with malignant disease presented a mixed picture, with raised, normal or undetectable PTH levels. We investigated a possible relationship between the gut hormones, gastrin, secretin and cholecystokininpancreozymin (CCK-PZ) and PTH secretion in human volunteers. No effect was found, although the investigations were conducted over relatively short time periods

  3. Synergistic effect of parathyroid hormone and growth hormone on trabecular and cortical bone formation in hypophysectomized rats.

    Science.gov (United States)

    Guevarra, Maria Sarah N; Yeh, James K; Castro Magana, Mariano; Aloia, John F

    2010-01-01

    Growth hormone (GH) deficiency in pediatric patients results in short stature and osteopenia. We postulated that the GH and parathyroid hormone (PTH) combination would result in improvement in bone growth and bone formation. Forty hypophysectomized female rats at age 8 weeks were divided into hypophysectomy (HX), HX + PTH (62.5 microg/kg, s.c. daily), HX + GH (3.33 mg/kg, s.c. daily), and HX + PTH + GH for a 4-week study. GH increased body weight, bone growth, bone mineral content (BMC) and bone mineral density (BMD), whereas PTH increased BMC and BMD without a significant effect on bone size. GH increased both periosteal and endocortical bone formation and cortical size, while PTH increased only endocortical bone formation. GH mitigated the trabecular bone loss by increasing bone formation, while PTH increased bone mass by increasing bone formation and suppressing osteoclast number per bone area. The result of combined intervention shows an increase in trabecular, periosteal and endocortical bone formation and suppression of bone resorption resulting in a synergistic effect on increasing trabecular and cortical bone volume and BMD. The combination treatment of PTH and GH increases bone growth, bone formation, decreases bone resorption and has a synergistic effect on increasing bone density and bone mass. Copyright (c) 2010 S. Karger AG, Basel.

  4. Overproduction and secretion of a novel amino-terminal form of parathyroid hormone from a severe type of parathyroid hyperplasia in uremia.

    Science.gov (United States)

    Arakawa, Toshio; D'Amour, Pierre; Rousseau, Louise; Brossard, Jean-Hugues; Sakai, Makoto; Kasumoto, Hiroomi; Igaki, Naoya; Goto, Takeo; Cantor, Tom; Fukagawa, Masafumi

    2006-05-01

    Measurement of bioactive parathyroid hormone (PTH) is essential for optimal management of bone abnormalities in dialysis patients. This can be accomplished by PTH measurements using third-generation PTH assays, which detect more or less of the first six amino acids of the PTH structure. Such assays do not detect non-(1-84) PTH fragments, such as human PTH (7-84), which are recognized by the second-generation PTH assays that use a detection antibody that recognizes an epitope within the 13-34 region of the PTH structure. Therefore, third-generation PTH results are expected to be lower than those that are obtained with second-generation PTH assays. Rare exceptions to this rule have been reported for patients with severe primary hyperparathyroidism or parathyroid cancer. Sera and gland extracts were analyzed from a dialysis patient with high bone turnover disease and with surprising higher PTH levels by a third-generation assay than by a second-generation assay. This finding normalized after the surgical removal of an enlarged gland with a single nodule, an advanced type of nodular hyperplasia. HPLC fractionation of sera and gland extracts revealed the overproduction and secretion of a PTH molecule with an intact amino-terminus structure distinct from (1-84) PTH. This form of PTH was readily detectable by third-generation PTH assays but was poorly reactive in second-generation PTH assays. Therefore, parathyroid glands with advanced uremic nodular hyperplasia may overproduce and secrete a novel, biologically active form of PTH with an intact 1-6 region but a presumably modified 12-18 region required for the detection in second-generation PTH assays.

  5. Effect of eplerenone on parathyroid hormone levels in patients with primary hyperparathyroidism: a randomized, double-blind, placebo-controlled trial

    Directory of Open Access Journals (Sweden)

    Tomaschitz Andreas

    2012-09-01

    Full Text Available Abstract Background Increasing evidence suggests the bidirectional interplay between parathyroid hormone and aldosterone as an important mechanism behind the increased risk of cardiovascular damage and bone disease observed in primary hyperparathyroidism. Our primary object is to assess the efficacy of the mineralocorticoid receptor-blocker eplerenone to reduce parathyroid hormone secretion in patients with parathyroid hormone excess. Methods/design Overall, 110 adult male and female patients with primary hyperparathyroidism will be randomly assigned to eplerenone (25 mg once daily for 4 weeks and 4 weeks with 50 mg once daily after dose titration] or placebo, over eight weeks. Each participant will undergo detailed clinical assessment, including anthropometric evaluation, 24-h ambulatory arterial blood pressure monitoring, echocardiography, kidney function and detailed laboratory determination of biomarkers of bone metabolism and cardiovascular disease. The study comprises the following exploratory endpoints: mean change from baseline to week eight in (1 parathyroid hormone(1–84 as the primary endpoint and (2 24-h systolic and diastolic ambulatory blood pressure levels, NT-pro-BNP, biomarkers of bone metabolism, 24-h urinary protein/albumin excretion and echocardiographic parameters reflecting systolic and diastolic function as well as cardiac dimensions, as secondary endpoints. Discussion In view of the reciprocal interaction between aldosterone and parathyroid hormone and the potentially ensuing target organ damage, the EPATH trial is designed to determine whether eplerenone, compared to placebo, will effectively impact on parathyroid hormone secretion and improve cardiovascular, renal and bone health in patients with primary hyperparathyroidism. Trial registration ISRCTN33941607

  6. Marker of Bone Resorption in Acute Response to Exogenous or Endogenous Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Vit Zikan

    2008-01-01

    Full Text Available Parathyroid hormone (PTH changes morphology of osteoclasts within minutes after its systemic administration. The aim of our study was to test in healthy men whether both exogenous and endogenous PTH could change acutely (minutes to hours the serum cross-linked C-telopeptide of type I collagen (beta CTX, which is released during osteoclastic resorption of bone. Twelve healthy men (age range 24–34 yr were each studied during 180 min on a control period, after a single subcutaneous injection of teriparatide, and after 30 min EDTA infusion to stimulate endogenous PTH secretion. The tests were started after overnight fast, 3 h after a standard calcium load. The EDTA infusion induced a significant decrease in serum ionized calcium (by 8.5% at 33 min and a significant increase in plasma PTH (by 305% at 33 min. Both the EDTA and teriparatide resulted in a significant increase in beta CTX (p < 0.001 with maximum increases of 64% and 80%, respectively. A mild, but significant decrease in beta CTX was observed during the control test period. In conclusion, single-dose teriparatide injection as well as a stimulation of endogenous PTH in healthy men results in an acute increase of the bone resorption marker.

  7. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    Energy Technology Data Exchange (ETDEWEB)

    Falzon, Miriam, E-mail: mfalzon@utmb.edu; Bhatia, Vandanajay [Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555 (United States)

    2015-06-18

    Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation.

  8. Parathyroid hormone related to bone regeneration in grafted and nongrafted tooth extraction sockets in rats.

    Science.gov (United States)

    Kuroshima, Shinichiro; Al-Salihi, Zeina; Yamashita, Junro

    2013-02-01

    The quality and quantity of bone formed in tooth extraction sockets impact implant therapy. Therefore, the establishment of a new approach to enhance bone formation and to minimize bone resorption is important for the success of implant therapy. In this study, we investigated whether intermittent parathyroid hormone (PTH) therapy enhanced bone formation in grafted sockets. Tooth extractions of the maxillary first molars were performed in rats, and the sockets were grafted with xenograft. Intermittent PTH was administered either for 7 days before extractions, for 14 days after extractions, or both. The effect of PTH therapy on bone formation in the grafted sockets was assessed using microcomputed tomography at 14 days after extractions. PTH therapy for 7 days before extractions was not effective to augment bone fill, whereas PTH therapy for 14 days after operation significantly augmented bone formation in the grafted sockets. Intermittent PTH therapy starting right after tooth extractions significantly enhanced bone fill in the grafted sockets, suggesting that PTH therapy can be a strong asset for the success of the ridge preservation procedure.

  9. Serum intact parathyroid hormone levels in cats with chronic kidney disease

    Directory of Open Access Journals (Sweden)

    Luciano H. Giovaninni

    2013-02-01

    Full Text Available Chronic kidney disease (CKD is frequently observed in cats and it is characterized as a multisystemic illness, caused by several underlying metabolic changes, and secondary renal hyperparathyroidism (SRHPT is relatively common; usually it is associated with the progression of renal disease and poor prognosis. This study aimed at determining the frequency of SRHPT, and discussing possible mechanisms that could contribute to the development of SRHPT in cats at different stages of CKD through the evaluation of calcium and phosphorus metabolism, as well as acid-base status. Forty owned cats with CKD were included and divided into three groups, according to the stages of the disease, classified according to the International Renal Interest Society (IRIS as Stage II (n=12, Stage III (n=22 and Stage IV (n=6. Control group was composed of 21 clinically healthy cats. Increased serum intact parathyroid hormone (iPTH concentrations were observed in most CKD cats in all stages, and mainly in Stage IV, which hyperphosphatemia and ionized hypocalcemia were detected and associated to the cause for the development of SRHPT. In Stages II and III, however, ionized hypercalcemia was noticed suggesting that the development of SRHPT might be associated with other factors, and metabolic acidosis could be involved to the increase of serum ionized calcium. Therefore, causes for the development of SRHPT seem to be multifactorial and they must be further investigated, mainly in the early stages of CKD in cats, as hyperphosphatemia and ionized hypocalcemia could not be the only factors involved.

  10. Determining the Levels of Vitamin D and Parathyroid Hormone in Patients on Hemodialysis

    Directory of Open Access Journals (Sweden)

    Mihaylov R.

    2016-03-01

    Full Text Available Vitamin D deficiency is fequently observed in chronic kidney disease. We conducted this study to determine the concentration of the above-mentioned parameters and the correlation between them in order to optimize therapy with vitamin D in patients with end-stage renal disease (ESRD on hemodialysis. In 53 patients on hemodialysis due to ESRD, vitamin D [Calcidiol (25(OHD], parathyroid hormone (PTH, calcium, phosphorus, albuminuria, albumin:creatinine ratio (ACR and other parameters have been followed up. Analysis of the levels of vitamin D has been carried out by High Performance Liquid Chromatography (HPLC, the PTH is determined by the system Centaur XP, Siemens Diagnostic, Electro-chemiluminescence immunoassay (ECLIA, and for albumin in urine we used immunological method [Miltigent microalbumin assay (Abbott Laboratories Diagnostics. We found out deficiency and insufficiency of vitamin D in 56.6% and 37.7%, as well as average 4.5 times increase in the PTH, hyperphosphatemia, hypocalcemia, albuminuria (A2 or A3, over 10 times increase in the ACR, secondary hyperparathyroidism. We registered a negative correlation between vitamin D and PTH. We confirmed the increase in creatinine and cystatin C in the patients on hemodialysis. There are few literature data for patients on hemodialysis, however, regarding the extent of the vitamin deficiency and its relationship with PTH, albuminuria, calcium, phosphorus, etc. Our data have indicated that patients on hemodialysis due to ESRD are associated with high incidence of vitamin D insufficiency or deficiency.

  11. Sensitive and rapid immunoassay for parathyroid hormone using magnetic particle labels and magnetic actuation.

    Science.gov (United States)

    Dittmer, W U; de Kievit, P; Prins, M W J; Vissers, J L M; Mersch, M E C; Martens, M F W C

    2008-09-30

    A rapid method for the sensitive detection of proteins using actuated magnetic particle labels, which are measured with a giant magneto-resistive (GMR) biosensor, is described. The technique involves a 1-step sandwich immunoassay with no fluid replacement steps. The various assay binding reactions as well as the bound/free separation are entirely controlled by magnetic forces induced by electromagnets above and below the sensor chip. During the assay, particles conjugated with tracer antibodies are actuated through the sample for target capture, and rapidly brought to the sensor surface where they bind to immobilized capture antibodies. Weakly or unbound labels are removed with a magnetic force oriented away from the GMR sensor surface. For the measurement of parathyroid hormone (PTH), a detection limit in the 10 pM range is obtained with a total assay time of 15 min when 300 nm particles are used. The same sensitivity can be achieved in 5 min when 500 nm particles are used. If 500 nm particles are employed in a 15-minute assay, then 0.8 pM of PTH is detectable. The low sample volume, high analytical performance and high speed of the test coupled with the compact GMR biosensor make the system especially suitable for sensitive testing outside of laboratory environments.

  12. Benefits resulting from 1- and 6-hour parathyroid hormone and calcium levels after thyroidectomy.

    Science.gov (United States)

    Payne, Richard J; Tewfik, Marc A; Hier, Michael P; Tamilia, Michael; Mac Namara, Elizabeth; Young, Jonathan; Black, Martin J

    2005-09-01

    Previous studies have established the efficacy of post-thyroidectomy hypocalcemia monitoring using parathyroid hormone (PTH) and corrected calcium levels at 1 and 6 hours. The goal of this study was to measure the impact of managing patients based on the above findings with respect to: duration of hospital stays, rates of transient hypocalcemia, number of blood tests, cost savings, and discharge from the hospital as early as 8 hours post-thyroidectomy without compromising safety. This is a prospective study involving 95 total thyroidectomy patients using historical data as controls. The previous protocol was modified in that all blood tests ceased for patients meeting the 6-hour critical level of PTH > or = 28 ng/L and simultaneous corrected calcium > or = 2.14 mmol/L (8.56 mg/dL). Furthermore, patients with 1-hour PTH levels cost savings of 766 Canadian dollars per patient. The new algorithm resulting from PTH and corrected calcium monitoring at 1 and 6 hours post-thyroidectomy has led to significant cost savings for our institution. It has also translated into greater patient satisfaction as a result of fewer blood tests, a lower incidence of transient hypocalcemia, and significantly shorter hospital stays.

  13. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    Directory of Open Access Journals (Sweden)

    Miriam Falzon

    2015-06-01

    Full Text Available Chronic pancreatitis (CP, a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation.

  14. [Relation between parathyroid hormone and cardiovascular risk in patients with vitamin D deficiency].

    Science.gov (United States)

    Casado Cerrada, Jesús; Parra Caballero, Pedro; Vega Piris, Lorena; Suárez Fernández, Carmen

    2013-10-05

    Vitamin D deficiency and parathyroid hormone (PTH) are associated with an increased cardiovascular risk and arterial stiffness. The aim of our study is to compare the cardiovascular risk in subjects with low vitamin D, attending to the PTH concentration, as well as evaluating the response after administration of vitamin D. Prospective study of patients with a concentration of 25(OH)-vitamin D below 30nmol/l. We evaluated vascular risk parameters as blood pressure, arterial stiffness, lipid profile and glucose metabolism. Patients received vitamin D supplements for 3 months, after which the previous parameters were reassessed. A total of 32 patients were included. Those with PTH over 65pg/ml were older, had worse renal function, higher systolic blood pressure, pulse pressure and arterial stiffness. Treatment with vitamin D showed a statistically significant trend to lower blood pressure and pulse wave velocity. The increase in PTH in patients with low vitamin D involves poor control of blood pressure and increased vascular stiffness. Vitamin D replacement shows a tendency to reduce these parameters. Copyright © 2012 Elsevier España, S.L. All rights reserved.

  15. Role of Parathyroid Hormone-Related Protein Signaling in Chronic Pancreatitis

    International Nuclear Information System (INIS)

    Falzon, Miriam; Bhatia, Vandanajay

    2015-01-01

    Chronic pancreatitis (CP), a progressive inflammatory disease where acini are destroyed and replaced by fibrous tissue, increases the risk for pancreatic cancer. Risk factors include alcohol, smoking, and obesity. The effects of these risk factors are exacerbated in patients with mutations in genes that predispose to CP. The different environmental and genetic factors produce the same clinical phenotype; once CP develops, disease course is the same regardless of etiology. Critical questions still need to be answered to understand what modifies predisposition to develop CP in persons exposed to risk factors. We postulate that risk factors modulate endogenous pathways, with parathyroid hormone-related protein (PTHrP) signaling being one such pathway. In support, PTHrP levels are elevated in mice treated with alcohol, and in mouse models of cerulein- and pancreatic duct ligation-induced CP. Disrupting the Pthrp gene in acinar cells exerts protective effects (decreased edema, histological damage, amylase and cytokine release, and fibrosis) in these CP models. PTHrP levels are elevated in human CP. Currently, CP care lacks specific pharmacological interventions. Targeting PTHrP signaling may present a novel therapeutic strategy that inhibits pancreatic inflammation and fibrosis, especially since the risk of developing pancreatic cancer is strongly associated with duration of chronic inflammation

  16. Role of parathyroid hormone in determination of fat mass in patients with Vitamin D deficiency

    Directory of Open Access Journals (Sweden)

    Raman K Marwaha

    2017-01-01

    Full Text Available Background: Obesity has become a global epidemic and it is rising is Asia. Vitamin D deficiency (VDD is widely prevalent in the Indian subcontinent. Studies have linked VDD to obesity and shown correlation between parathyroid hormone (PTH, 25-hydroxy Vitamin D (25(OHD, and fat mass (FM. However, studies on the role of PTH among subjects with VDD are lacking. Objective: The objective of this study is to study the role of PTH in the determination of FM in participants with VDD. Subjects: Five hundred and fifty-one adults (m:247, f:304 were included in this study. Materials and Methods: Total and regional (trunk, arm, and leg FM was assessed by dual X-ray absorptometry. Biochemical and hormonal parameters such as calcium, phosphorus, alkaline phosphatase, ionic calcium, 25(OHD, and PTH were also analyzed. Results: The mean age of the study population was 58.8 ± 15.8 years (Male: [63.3 ± 13.1], Female: [55.2 ± 16.9]. FM and body mass index were significantly lower in females with higher levels of serum 25(OHD. Total FM was negatively correlated with serum 25(OHD (r = −0.363, P < 0.0001 and positively correlated with serum PTH (r: 0.262, P < 0.0001 in females only. Females with VDD and secondary hyperparathyroidism had higher FM than those with normal PTH. Conclusions: Females with VDD had higher total and regional FM. However, this correlation was evident only in those with high serum PTH levels, suggesting a potential role of PTH in the accumulation of FM.

  17. Assay-specific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays.

    Science.gov (United States)

    Souberbielle, Jean-Claude; Fayol, Véronique; Sault, Corinne; Lawson-Body, Ethel; Kahan, André; Cormier, Catherine

    2005-02-01

    The recent development of nonradioactive automated assays for serum parathyroid hormone (PTH) and 25-hydroxyvitamin D (25OHD) has made measurement of these two hormones possible in many laboratories. In this study, we compared two new assays for PTH and 25OHD adapted on an automated analyzer, the LIAISON, with two manual immunoassays used worldwide. We studied 228 osteoporotic patients, 927 healthy individuals, 38 patients with primary hyperparathyroidism, and 167 hemodialyzed patients. Serum PTH was measured with the Allegro and the LIAISON assays, and 25OHD was measured with DiaSorin RIA and the LIAISON assay. Regression analysis was used to calculate decision thresholds for the LIAISON assays that were equivalent to those of the Allegro PTH and DiaSorin 25OHD assays. The 25OHD concentrations obtained with the LIAISON assay and the RIA in osteoporotic patients were well correlated (r = 0.83; P 50 nmol/L as eligible for the reference population for the LIAISON PTH assay. In this group, the 3rd-97th percentile interval for LIAISON PTH was 3-51 ng/L. Considering upper reference limits of 46 and 51 ng/L for the Allegro and LIAISON assays, respectively, the frequency of above-normal PTH concentrations in patients with primary hyperparathyroidism was similar in both assays. Regression analysis between serum PTH measured by the Allegro and LIAISON assays in 167 hemodialyzed patients and the corresponding Bland-Altman analysis of these data suggest that the LIAISON PTH assay tends to read higher than the Allegro assay at low concentrations but lower at high concentrations (>300 ng/L). Because clinical decision limits for both PTH and 25OHD should be assay specific, we propose equivalences between these assays and two manual assays used worldwide. These assay-specific decision limits should help potential users of the LIAISON PTH and 25OHD assays.

  18. Mechanisms of Normalisation of Bone Metabolism during Recovery from Hyperthyroidism: Potential Role for Sclerostin and Parathyroid Hormone

    Directory of Open Access Journals (Sweden)

    Elżbieta Skowrońska-Jóźwiak

    2015-01-01

    Full Text Available Sclerostin, a protein expressed by osteocytes, is a negative regulator of bone formation. The aim of the study was to investigate the relationship between parathyroid hormone (PTH and markers of bone metabolism and changes of sclerostin concentrations before and after treatment of hyperthyroidism. Patients and Methods. The study involved 33 patients (26 women, age (mean ± SD 48 ± 15 years, with hyperthyroidism. Serum sclerostin, PTH, calcium, and bone markers [osteocalcin (OC and collagen type I cross-linked C-telopeptide I (CTX] were measured at diagnosis of hyperthyroidism and after treatment with thiamazole. Results. After treatment of hyperthyroidism a significant decrease in free T3 (FT3 and free T4 (FT4 concentrations was accompanied by marked decrease of serum sclerostin (from 43.7 ± 29.3 to 28.1 ± 18.4 pmol/L; p<0.001, OC (from 35.6 ± 22.0 to 27.0 ± 14.3 ng/mL; p<0.001, and CTX (from 0.49 ± 0.35 to 0.35 ± 0.23 ng/dL; p<0.005, accompanied by an increase of PTH (from 29.3 ± 14.9 to 39.8 ± 19.8; p<0.001. During hyperthyroidism there was a positive correlation between sclerostin and CTX (rs=0.41, p<0.05 and between OC and thyroid hormones (with FT3  rs=0.42, with FT4  rs=0.45, p<0.05. Conclusions. Successful treatment of hyperthyroidism results in a significant decrease in serum sclerostin and bone markers concentrations, accompanied by an increase of PTH.

  19. Relationship Between Aldosterone and Parathyroid Hormone, and the Effect of Angiotensin and Aldosterone Inhibition on Bone Health

    DEFF Research Database (Denmark)

    L.S., Bislev; T., Sikjaer; L., Rolighed

    2015-01-01

    Emerging evidence suggests a stimulating effect of parathyroid hormone (PTH) on the reninnullangiotensinnullaldosterone system (RAAS). In primary hyperparathyroidism, chronic-elevated PTH levels seem to stimulate the RAAS which may explain the increased risk of cardiovascular disease (CVD......). In addition to increased PTH levels, low vitamin D levels may also directly increase risk of CVD, as vitamin D, itself, has been shown to inhibit the RAAS. Angiotensin II, aldosterone and cortisol all negatively impact bone health. Hyperaldosteronism is associated with a reversible secondary...... hyperparathyroidism due to increased renal calcium excretion. Moreover, the angiotensin II receptor is expressed by human parathyroid tissue, and angiotensin may therefore directly stimulates PTH secretion. An increased bone loss is found in patients with hyperaldosteronism. The angiotensin II receptor seems main...

  20. [Parathyroid hormone and its analogues - molecular mechanisms of action and efficacy of osteoporosis therapy].

    Science.gov (United States)

    Misiorowski, Waldemar

    2011-01-01

    Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.

  1. Parathyroid hormone and its analogues--molecular mechanisms of action and efficacy in osteoporosis therapy.

    Science.gov (United States)

    Misiorowski, Waldemar

    2011-01-01

    Most medical agents currently applied in osteoporosis therapy act by inhibiting bone resorption and reducing bone remodelling, i.e. they inhibit the process of bone mass loss by suppressing bone resorption processes. These drugs provide an ideal therapeutic option to prevent osteoporosis progression. They however have a rather limited usefulness when the disease has already reached its advanced stages with distinctive bone architecture lesions. The fracture risk reduction rate, achieved in the course of anti-resorptive therapy, is insufficient for patients with severe osteoporosis to stop the downward spiral of their quality of life (QoL) with a simultaneously increasing threat of premature death. The activity of the N-terminal fragment of 1-34 human parathormone (teriparatide - 1-34 rhPTH), a parathyroid hormone (PTH) analogue obtained via genetic engineering , is expressed by increased bone metabolism, while promoting new bone tissue formation by stimulating the activity of osteoblasts more than that of osteoclasts. The anabolic activity of PTH includes both its direct effect on the osteoblast cell line, and its indirect actions exerted via its regulatory effects on selected growth factors, e.g. IGF-1 or sclerostin. However, the molecular mechanisms responsible for the actual anabolic effects of PTH remain mostly still unclear. Clinical studies have demonstrated that therapeutic protocols with the application of PTH analogues provide an effective protection against all osteoporotic fracture types in post-menopausal women and in elderly men with advanced osteoporosis. Particular hopes are pinned on the possibility of applying PTH in the therapy of post-steroid osteoporosis, mainly to suppress bone formation, the most important pathological process in this regard. The relatively short therapy period with a PTH analogue (24 months) should then be replaced and continued by anti-resorptive treatment.

  2. Vitamin D deficiency in Korean children: prevalence, risk factors, and the relationship with parathyroid hormone levels

    Directory of Open Access Journals (Sweden)

    In Hyuk Chung

    2014-06-01

    Full Text Available PurposeThis study was performed to investigate the relationship between serum vitamin D and parathyroid hormone (PTH levels as well as to describe the prevalence and the risk factors of vitamin D deficiency (VDD in Korean children.MethodsParticipants were 1,212 children aged 4 to 15 years, who visited Bundang CHA Medical Center (located at 37°N between March 2012 and February 2013. Overweight was defined as body mass index≥85th percentile. Participants were divided into 4 age groups and 2 seasonal groups. VDD was defined by serum 25-hydroxyvitamin D (25OHD <20 ng/mL.ResultsThe level of 25OHD was significantly lower in overweight group than in normal weight group (17.1±5.1 ng/mL vs. 19.1±6.1 ng/mL, P<0.001. Winter-spring season (odds ratio [OR], 4.46; 95% confidence interval [CI], 3.45-5.77, older age group (OR, 1.60; 95% CI, 1.36-1.88, and overweight (OR, 2.21; 95% CI, 1.62-3.01 were independently related with VDD. The PTH levels were significantly higher in VDD group compared to vitamin D insufficiency and sufficiency group (P<0.001. In normal weight children, 25OHD (β=-0.007, P<0.001 and ionized calcium (β=-0.594, P=0.007 were independently related with PTH, however, these associations were not significant in overweight children.ConclusionVDD is very common in Korean children and its prevalence increases in winter-spring season, in overweight children and in older age groups. Further investigation on the vitamin D and PTH metabolism according to adiposity is required.

  3. Anabolic action of parathyroid hormone (PTH) does not compromise bone matrix mineral composition or maturation.

    Science.gov (United States)

    Vrahnas, Christina; Pearson, Thomas A; Brunt, Athena R; Forwood, Mark R; Bambery, Keith R; Tobin, Mark J; Martin, T John; Sims, Natalie A

    2016-12-01

    Intermittent administration of parathyroid hormone (PTH) is used to stimulate bone formation in patients with osteoporosis. A reduction in the degree of matrix mineralisation has been reported during treatment, which may reflect either production of undermineralised matrix or a greater proportion of new matrix within the bone samples assessed. To explore these alternatives, high resolution synchrotron-based Fourier Transform Infrared Microspectroscopy (sFTIRM) coupled with calcein labelling was used in a region of non-remodelling cortical bone to determine bone composition during anabolic PTH treatment compared with region-matched samples from controls. 8week old male C57BL/6 mice were treated with vehicle or 50μg/kg PTH, 5 times/week for 4weeks (n=7-9/group). Histomorphometry confirmed greater trabecular and periosteal bone formation and 3-point bending tests confirmed greater femoral strength in PTH-treated mice. Dual calcein labels were used to match bone regions by time-since-mineralisation (bone age) and composition was measured by sFTIRM in six 15μm 2 regions at increasing depth perpendicular to the most immature bone on the medial periosteal edge; this allowed in situ measurement of progressive changes in bone matrix during its maturation. The sFTIRM method was validated in vehicle-treated bones where the expected progressive increases in mineral:matrix ratio and collagen crosslink type ratio were detected with increasing bone maturity. We also observed a gradual increase in carbonate content that strongly correlated with an increase in longitudinal stretch of the collagen triple helix (amide I:amide II ratio). PTH treatment did not alter the progressive changes in any of these parameters from the periosteal edge through to the more mature bone. These data provide new information about how the bone matrix matures in situ and confirm that bone deposited during PTH treatment undergoes normal collagen maturation and normal mineral accrual. Copyright © 2016

  4. Parathyroid hormone induces the Nrna family of nuclear orphan receptors in vivo

    International Nuclear Information System (INIS)

    Pirih, Flavia Q.; Aghaloo, Tara L.; Bezouglaia, Olga; Nervina, Jeanne M.; Tetradis, Sotirios

    2005-01-01

    Parathyroid hormone (PTH) has both anabolic and catabolic effects on bone metabolism, although the molecular mechanisms mediating these effects are largely unknown. Among the transcription factors induced by Pth in osteoblasts are the nerve growth factor-inducible factor B (NR4A; NGFI-B) family of orphan nuclear receptors: Nurr1, Nur77, and NOR-1. PTH induces NR4A members through the cAMP-protein kinase A (PKA) pathway in vitro. We report here that PTH rapidly and transiently induced expression of all three NR4A genes in PTH-target tissues in vivo. In calvaria, long bones, and kidneys, NR4A induction was maximal 0.5-1 h after a single intraperitoneal (i.p.) injection of 80 μg/kg PTH. Nur77 demonstrated the highest expression, followed, in order, by Nurr1 and NOR-1. In calvaria and long bone, PTH-induced expression of each NR4A gene was detectable at 10 μg/kg i.p. with maximum induction at 40-80 μg/kg. PTH (3-34) did not induce NR4A mRNA levels in calvaria, long bone, and kidney in vivo, confirming our in vitro results that NR4A genes are induced primarily through the cAMP-PKA pathway. The magnitude of PTH-induced NR4A expression was comparable in vivo and in vitro. However, NR4A mRNA levels peaked and returned to baseline faster in vivo. Both in vivo and in vitro, PTH induced NR4A pre-mRNA levels suggesting that induction of these genes is, at least in part, through activation of mRNA synthesis. The in vivo induction of the NR4A family members by PTH suggests their involvement in, at least some, PTH-induced changes in bone metabolism

  5. Response of induced bone defects in horses to collagen matrix containing the human parathyroid hormone gene.

    Science.gov (United States)

    Backstrom, Kristin C; Bertone, Alicia L; Wisner, Erik R; Weisbrode, Stephen E

    2004-09-01

    To determine whether human parathyroid hormone (hPTH) gene in collagen matrix could safely promote bone formation in diaphyseal or subchondral bones of horses. 8 clinically normal adult horses. Amount, rate, and quality of bone healing for 13 weeks were determined by use of radiography, quantitative computed tomography, and histomorphometric analysis. Diaphyseal cortex and subchondral bone defects of metacarpi were filled with hPTH(1-34) gene-activated matrix (GAM) or remained untreated. Joints were assessed on the basis of circumference, synovial fluid analysis, pain on flexion, lameness, and gross and histologic examination. Bone volume index was greater for cortical defects treated with hPTH(1-34) GAM, compared with untreated defects. Bone production in cortical defects treated with hPTH(1-34) GAM positively correlated with native bone formation in untreated defects. In contrast, less bone was detected in hPTH(1-34) GAM-treated subchondral bone defects, compared with untreated defects, and histology confirmed poorer healing and residual collagen sponge. Use of hPTH(1-34) GAM induced greater total bone, specifically periosteal bone, after 13 weeks of healing in cortical defects of horses. The hPTH(1-34) GAM impeded healing of subchondral bone but was biocompatible with joint tissues. Promotion of periosteal bone formation may be beneficial for healing of cortical fractures in horses, but the delay in onset of bone formation may negate benefits. The hPTH(1-34) GAM used in this study should not be placed in articular subchondral bone defects, but contact with articular surfaces is unlikely to cause short-term adverse effects.

  6. The Association between Depression and Vitamin D and Parathyroid Hormone Levels in Adolescents

    Directory of Open Access Journals (Sweden)

    Müsemma Karabel

    2016-02-01

    Full Text Available Background Depression, a challenging disorder, affects 1–6% of adolescents and early onset often predicts more serious manifestations in later life. Elevated Parathyroid hormone (PTH, parathormone levels have reported among adults with depression. In this study, the roles of 25(OH D (vitamin D and parathormone during adolescence, in which the frequency of depression is high, were studied. Materials and Methods Patients who were followed-up jointly at both clinics and whose 25(OH D and PTH levels were evaluated and questioned "Depression Scale for Children" for depression at the same time, were included in the study. Cases’ socio-demographic data, 25(OH D and PTH levels and Depression Scale’ scores were recorded. Results Depression was diagnosed in 35 (25.3% of the 138 patients. No differences were found between vitamin D and parathormone in terms of age and gender in groups either with or without depression. Negative correlation was found between the vitamin D levels and depression score in the group with depression   (r=-0.368; P=0.03. A significant and positive correlation was found between the PTH levels and depression score (r=0.399; P=0.018. A significant and negative correlation was found between 25(OH D and PTH levels. Conclusion Even if clinical depression is absent, the frequency of depressive symptoms is increased with decreased vitamin D levels and increased PTH levels, independent of other factors.  The prevention of depression, specifically in adolescents, is important to decrease possible suicidal and homicidal thoughts that might arise during adulthood, and substance abuse. Maintaining vitamin D support during adolescence, as with the first year of life, is necessary for both the prevention and treatment of depression.

  7. Significant association between parathyroid hormone and uric acid level in men

    Directory of Open Access Journals (Sweden)

    Chin KY

    2015-08-01

    Full Text Available Kok-Yong Chin,1 Soelaiman Ima Nirwana,1 Wan Zurinah Wan Ngah21Department of Pharmacology, 2Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, MalaysiaBackground: Previous reports of patients undergoing parathyroidectomy and of patients receiving teriparatide as antiosteoporotic treatment have suggested a plausible relationship between parathyroid hormone (PTH and uric acid. However, similar data at population level were lacking. The current study aimed to determine the relationship between PTH and uric acid in a group of apparently healthy Malaysian men.Methods: A cross-sectional study was conducted among 380 Malay and Chinese men aged 20 years and above, residing in the Klang Valley, Malaysia. Their body anthropometry was measured, and their fasting blood samples were collected for biochemical analysis. The relationship between PTH and uric acid was analyzed using regression analysis.Results: Increased serum PTH level was significantly associated with increased serum uric acid level (β=0.165; P=0.001. Increased PTH level was also significantly associated with the condition of hyperuricemia in the study population (odds ratio [OR], 1.045; 95% confidence interval [CI], 1.017–1.075; P=0.002. All analyses were adjusted for age, body mass index, vitamin D, total calcium, inorganic phosphate, blood urea nitrogen and creatinine levels.Conclusion: There is a significant positive relationship between PTH level and uric acid level in Malaysian men. This relationship and its clinical significance should be further investigated in a larger longitudinal study. Keywords: hyperuricemia, Asian, cross-sectional study, uric acid, urate

  8. Vitamin D, parathyroid hormone and cardiovascular risk: the good, the bad and the ugly.

    Science.gov (United States)

    Pascale, Antonietta V; Finelli, Rosa; Giannotti, Rocco; Visco, Valeria; Fabbricatore, Davide; Matula, Ida; Mazzeo, Pietro; Ragosa, Nicola; Massari, Angelo; Izzo, Raffaele; Coscioni, Enrico; Illario, Maddalena; Ciccarelli, Michele; Trimarco, Bruno; Iaccarino, Guido

    2018-02-01

    : 25-Hydroxyvitamin D insufficiency and increased cardiovascular risk (CVR) association is still debated. The vitamin D (VitD)-dependent parathyroid hormone (PTH) is considered as the possible actuator of VitD effects on CVR. To investigate the association of CVR, PTH and VitD, we carried out blood pressure measurements and blood samples and collected information on dietary habits, anamnestic, clinical and metabolic data of 451 participants in the Salerno area (Southern Italy) during the World Hypertension Day (17 May). CVR was calculated according to the Framingham CVR charts. The overall population mean age was 51.6 ± 0.7 years, and female sex was slightly prevalent (55%). VitD deficiency (<20 ng/ml) was most frequent (59.7%). In this population, VitD and CVR did not correlate. VitD and PTH inversely correlated (r = -0.265, P < 0.001) as expected. PTH was in direct correlation (r = 0.225, P < 0.001) with CVR. Elevated PTH (75 percentile; ≥49.5 pg/ml) levels identify a population with higher CVR (11.8 ± 0.5 vs. 8.5 ± 0.3, P < 0.001). In a multivariate analysis, both age and PTH correlate to CVR, but not VitD. In conclusion, VitD does not directly affect CVR in the overall population. Rather, increased PTH might be a better predictor of CVR.

  9. Activated effects of parathyroid hormone-related protein on human hepatic stellate cells.

    Directory of Open Access Journals (Sweden)

    Fen-Fen Liang

    Full Text Available BACKGROUND & AIMS: After years of experiments and clinical studies, parathyroid hormone-related protein(PTHrP has been shown to be a bone formation promoter that elicits rapid effects with limited adverse reaction. Recently, PTHrP was reported to promote fibrosis in rat kidney in conjunction with transforming growth factor-beta1 (TGF-β1, which is also a fibrosis promoter in liver. However, the effect of PTHrP in liver has not been determined. In this study, the promoting actions of PTHrP were first investigated in human normal hepatic stellate cells (HSC and LX-2 cell lines. METHODS: TGF-β1, alpha-smooth muscle actin (α-SMA, matrix metalloproteinase 2 (MMP-2, and collagen I mRNA were quantified by real-time polymerase chain reaction (PCR after HSCs or LX-2 cells were treated with PTHrP(1-36 or TGF-β1. Protein levels were also assessed by western-blot analysis. Alpha-SMA were also detected by immunofluorescence, and TGF-β1 secretion was measured with enzyme-linked immunosorbent assay (ELISA of HSC cell culture media. RESULTS: In cultured human HSCs, mRNA and protein levels of α-SMA, collagen I, MMP-2, and TGF-β1 were increased by PTHrP treatment. A similar increasing pattern was also observed in LX-2 cells. Moreover, PTHrP significantly increased TGF-β1 secretion in cultured media from HSCs. CONCLUSIONS: PTHrP activated HSCs and promoted the fibrosis process in LX-2 cells. These procedures were probably mediated via TGF-β1, highlighting the potential effects of PTHrP in the liver.

  10. Two Years of Cinacalcet Hydrochloride Treatment Decreased Parathyroid Gland Volume and Serum Parathyroid Hormone Level in Hemodialysis Patients With Advanced Secondary Hyperparathyroidism.

    Science.gov (United States)

    Yamada, Shunsuke; Tokumoto, Masanori; Taniguchi, Masatomo; Toyonaga, Jiro; Suehiro, Takaichi; Eriguchi, Rieko; Fujimi, Satoru; Ooboshi, Hiroaki; Kitazono, Takanari; Tsuruya, Kazuhiko

    2015-08-01

    The long-term effect of cinacalcet hydrochloride treatment on parathyroid gland (PTG) volume has been scarcely investigated in patients with moderate to advanced secondary hyperparathyroidism (SHPT). The present study was a prospective observational study to determine the effect of cinacalcet treatment on PTG volume and serum biochemical parameters in 60 patients with renal SHPT, already treated with intravenous vitamin D receptor activator (VDRA). Measurement of biochemical parameters and PTG volumes were performed periodically, which were analyzed by stratification into tertiles across the baseline parathyroid hormone (PTH) level or PTG volume. We also determined the factors that can estimate the changes in PTG volume and the achievement of the target PTH range by multivariable analyses. Two years of cinacalcet treatment significantly decreased the serum levels of PTH, calcium, and phosphate, followed by the improvement of achieving the target ranges for these parameters recommended by the Japanese Society for Dialysis Therapy. Cinacalcet decreased the maximal and total PTG volume by about 30%, and also decreased the serum PTH level independent of the baseline serum PTH level and PTG volume. Ten out of 60 patients showed 30% increase in maximal PTG after 2 years. Multivariable analysis showed that patients with nodular PTG at baseline and patients with higher serum calcium and PTH levels at 1 year were likely to exceed the target range of PTH at two years. In conclusion, cinacalcet treatment with intravenous VDRA therapy decreased both PTG volume and serum intact PTH level, irrespective of the pretreatment PTG status and past treatment history. © 2015 The Authors. Therapeutic Apheresis and Dialysis © 2015 International Society for Apheresis.

  11. Early effects of synthetic bovine parathyroid hormone and synthetic salmon calcitonin on urinary excretion of cyclic AMP, phosphate and calcium in man.

    Science.gov (United States)

    Caniggia, A; Gennari, C; Vattimo, A; Nardi, P; Nuti, R; Galli, M

    1976-04-20

    Bovine synthetic parathyroid hormone infused intravenously in man increased both the urinary excretion of cyclic AMP and the urinary excretion of phosphate whereas a Salmon synthetic calcitonin infusion increased the urinary excretion of phosphate without change in urinary excretion of cyclic AMP. These data are consistent with the hypothesis that different renal mechanisms are involved in the response to each hormone.

  12. Parathyroid diseases and animal models.

    Science.gov (United States)

    Imanishi, Yasuo; Nagata, Yuki; Inaba, Masaaki

    2012-01-01

    CIRCULATING CALCIUM AND PHOSPHATE ARE TIGHTLY REGULATED BY THREE HORMONES: the active form of vitamin D (1,25-dihydroxyvitamin D), fibroblast growth factor (FGF)-23, and parathyroid hormone (PTH). PTH acts to stimulate a rapid increment in serum calcium and has a crucial role in calcium homeostasis. Major target organs of PTH are kidney and bone. The oversecretion of the hormone results in hypercalcemia, caused by increased intestinal calcium absorption, reduced renal calcium clearance, and mobilization of calcium from bone in primary hyperparathyroidism. In chronic kidney disease, secondary hyperparathyroidism of uremia is observed in its early stages, and this finally develops into the autonomous secretion of PTH during maintenance hemodialysis. Receptors in parathyroid cells, such as the calcium-sensing receptor, vitamin D receptor, and FGF receptor (FGFR)-Klotho complex have crucial roles in the regulation of PTH secretion. Genes such as Cyclin D1, RET, MEN1, HRPT2, and CDKN1B have been identified in parathyroid diseases. Genetically engineered animals with these receptors and the associated genes have provided us with valuable information on the patho-physiology of parathyroid diseases. The application of these animal models is significant for the development of new therapies.

  13. Effect of parathyroid hormone-related protein in an in vitro hypertrophy model for mesenchymal stem cell chondrogenesis.

    Science.gov (United States)

    Mueller, Michael B; Fischer, Maria; Zellner, Johannes; Berner, Arne; Dienstknecht, Thomas; Kujat, Richard; Prantl, Lukas; Nerlich, Michael; Tuan, Rocky S; Angele, Peter

    2013-05-01

    Mesenchymal stem cells (MSCs) express markers of hypertrophic chondrocytes during chondrogenic differentiation. We tested the suitability of parathyroid hormone-related protein (PTHrP), a regulator of chondrocyte hypertrophy in embryonic cartilage development, for the suppression of hypertrophy in an in vitro hypertrophy model of chondrifying MSCs. Chondrogenesis was induced in human MSCs in pellet culture for two weeks and for an additional two weeks cultures were either maintained in standard chondrogenic medium or transferred to a hypertrophy-enhancing medium. PTHrP(1-40) was added to the medium throughout the culture period at concentrations from 1 to 1,000 pM. Pellets were harvested on days one, 14 and 28 for biochemical and histological analysis. Hypertrophic medium clearly enhanced the hypertrophic phenotype, with increased cell size, and strong alkaline phosphatase (ALP) and type X collagen staining. In chondrogenic medium, 1-100 pM PTHrP(1-40) did not inhibit chondrogenic differentiation, whereas 1,000 pM PTHrP(1-40) significantly reduced chondrogenesis. ALP activity was dose-dependently reduced by PTHrP(1-40) at 10-1,000 pM in chondrogenic conditions. Under hypertrophy-enhancing conditions, PTHrP(1-40) did not inhibit the induction of the hypertrophy. At the highest concentration (1,000 pM) in the hypertrophic group, aggregates were partially dedifferentiated and differentiated areas of these aggregates maintained their hypertrophic appearance. PTHrP(1-40) treatment dose-dependently reduced ALP expression in MSC pellets cultured under standard chondrogenic conditions and is thus beneficial for the maintenance of the chondrogenic phenotype in this medium condition. When cultured under hypertrophy-enhancing conditions, PTHrP(1-40) could not diminish the induced enhancement of hypertrophy in the MSC pellets.

  14. Recombinant human parathyroid hormone related protein 1-34 and 1-84 and their roles in osteoporosis treatment.

    Directory of Open Access Journals (Sweden)

    Hua Wang

    Full Text Available Osteoporosis is a common disorder characterized by compromised bone strength that predisposes patients to increased fracture risk. Parathyroid hormone related protein (PTHrP is one of the candidates for clinical osteoporosis treatment. In this study, GST Gene Fusion System was used to express recombinant human PTHrP (hPTHrP 1-34 and 1-84. To determine whether the recombinant hPTHrP1-34 and 1-84 can enhance renal calcium reabsorption and promote bone formation, we examined effects of recombinant hPTHrP1-34 and 1-84 on osteogenic lineage commitment in a primary bone marrow cell culture system and on osteoporosis treatment. Results revealed that both of recombinant hPTHrP1-34 and 1-84 increased colony formation and osteogenic cell differentiation and mineralization in vitro; however, the effect of recombinant hPTHrP1-84 is a little stronger than that of hPTHrP1-34. Next, ovariectomy was used to construct osteoporosis animal model (OVX to test activities of these two recombinants in vivo. HPTHrP1-84 administration elevated serum calcium by up-regulating the expression of renal calcium transporters, which resulted in stimulation of osteoblastic bone formation. These factors contributed to augmented bone mass in hPTHrP1-84 treated OVX mice but did not affect bone resorption. There was no obvious bone mass alteration in hPTHrP1-34 treated OVX mice, which may be, at least partly, associated with shorter half-life of hPTHrP1-34 compared to hPTHrP1-84 in vivo. This study implies that recombinant hPTHrP1-84 is more effective than hPTHrP1-34 to enhance renal calcium reabsorption and to stimulate bone formation in vivo.

  15. Vitamin D status and 5-year changes in urine albumin creatinine ratio and parathyroid hormone in a general population

    DEFF Research Database (Denmark)

    Skaaby, Tea; Husemoen, Lise Lotte Nystrup; Pisinger, Charlotta

    2013-01-01

    and negatively correlated with glomerular filtration rate. We investigated the association between vitamin D status and 5-year changes in urine albumin creatinine ratio (UACR) and parathyroid hormone (PTH). A random sample of 6,784 individuals aged 30-60 years from a general population participated in the Inter......99 study in 1999-2001. Vitamin D (serum-25-hydroxyvitamin D) was measured at baseline by high-performance liquid chromatography. UACR and PTH were measured at baseline and follow-up. Increased UACR was defined as UACR >4.0 mg/g reflecting the upper quartile at baseline. We included 4,330 individuals...

  16. The measurement of serum human parathyroid hormone (h-PTH53-84) and effect of exercise on calcium metabolism

    International Nuclear Information System (INIS)

    Torizumi, Kazutami; Taniguchi, Yoshiyuki; Aibata, Hirofumi; Kiji, Shigeyuki; Ueyoshi, Akitaka; Shimizu, Eiji; Okamoto, Yukiharu; Tuda, Tadaaki; Ota, Kiichiro

    1987-01-01

    This study was focussed our attention on the measurement within the upper physiological level of human serum parathyroid hormone (PTH), using kits of human PTH 53 - 84. This assay kit was able to detect serum PTH in sera with suble changes of serum calcium concentrations before and after short term exercise. These serum PTH levels before and after exercise seemed to be changed within the upper physiological levels of PTH. Thus, this study suggested that the assay kit was likely to become a useful tool of the measurement of the physiological level of serum PTH in humans. (author)

  17. Effect of metabolic control on parathyroid hormone secretion in diabetic patients

    Directory of Open Access Journals (Sweden)

    Paula F.J.A.

    2001-01-01

    Full Text Available The metabolic derangement caused by diabetes mellitus may potentially affect bone mineral metabolism. In the present study we evaluated the effect of diabetes metabolic control on parathyroid hormone (PTH secretion during stimulation with EDTA infusion. The study was conducted on 24 individuals, 8 of them normal subjects (group N: glycated hemoglobin - HbA1C = 4.2 ± 0.2%; range = 3.5-5.0%, 8 patients with good and regular metabolic control (group G-R: HbA1C = 7.3 ± 0.4%; range = 6.0-8.5%, and 8 patients with poor metabolic control (group P: HbA1C = 12.5 ± 1.0%; range: 10.0-18.8%. Blood samples were collected at 10-min intervals throughout the study (a basal period of 30 min and a 2-h period of EDTA infusion, 30 mg/kg body weight and used for the determination of ionized calcium, magnesium, glucose and intact PTH. Basal ionized calcium levels were slightly lower in group P (1.19 ± 0.01 mmol/l than in group N (1.21 ± 0.01 mmol/l and group G-R (1.22 ± 0.01 mmol/l. After EDTA infusion, the three groups presented a significant fall in calcium, but with no significant difference among them at any time. Basal magnesium levels and levels determined during EDTA infusion were significantly lower (P<0.01 in group P than in group N. The induction of hypocalcemia caused an elevation in PTH which was similar in groups N and G-R but significantly higher than in group P throughout the infusion period (+110 min, N = 11.9 ± 2.1 vs G-R = 13.7 ± 1.6 vs P = 7.5 ± 0.7 pmol/l; P<0.05 for P vs N and G-R. The present results show that PTH secretion is impaired in patients with poorly controlled diabetes.

  18. Systemic administration of mesenchymal stem cells combined with parathyroid hormone therapy synergistically regenerates multiple rib fractures.

    Science.gov (United States)

    Cohn Yakubovich, Doron; Sheyn, Dmitriy; Bez, Maxim; Schary, Yeshai; Yalon, Eran; Sirhan, Afeef; Amira, May; Yaya, Alin; De Mel, Sandra; Da, Xiaoyu; Ben-David, Shiran; Tawackoli, Wafa; Ley, Eric J; Gazit, Dan; Gazit, Zulma; Pelled, Gadi

    2017-03-09

    A devastating condition that leads to trauma-related morbidity, multiple rib fractures, remain a serious unmet clinical need. Systemic administration of mesenchymal stem cells (MSCs) has been shown to regenerate various tissues. We hypothesized that parathyroid hormone (PTH) therapy would enhance MSC homing and differentiation, ultimately leading to bone formation that would bridge rib fractures. The combination of human MSCs (hMSCs) and a clinically relevant PTH dose was studied using immunosuppressed rats. Segmental defects were created in animals' fifth and sixth ribs. The rats were divided into four groups: a negative control group, in which animals received vehicle alone; the PTH-only group, in which animals received daily subcutaneous injections of 4 μg/kg teriparatide, a pharmaceutical derivative of PTH; the hMSC-only group, in which each animal received five injections of 2 × 10 6 hMSCs; and the hMSC + PTH group, in which animals received both treatments. Longitudinal in vivo monitoring of bone formation was performed biweekly using micro-computed tomography (μCT), followed by histological analysis. Fluorescently-dyed hMSCs were counted using confocal microscopy imaging of histological samples harvested 8 weeks after surgery. PTH significantly augmented the number of hMSCs that homed to the fracture site. Immunofluorescence of osteogenic markers, osteocalcin and bone sialoprotein, showed that PTH induced cell differentiation in both exogenously administered cells and resident cells. μCT scans revealed a significant increase in bone volume only in the hMSC + PTH group, beginning by the 4 th week after surgery. Eight weeks after surgery, 35% of ribs in the hMSC + PTH group had complete bone bridging, whereas there was complete bridging in only 6.25% of ribs (one rib) in the PTH-only group and in none of the ribs in the other groups. Based on the μCT scans, biomechanical analysis using the micro-finite element method demonstrated that

  19. Temporal trends and determinants of longitudinal change in 25-hydroxyvitamin D and parathyroid hormone levels.

    Science.gov (United States)

    Berger, Claudie; Greene-Finestone, Linda S; Langsetmo, Lisa; Kreiger, Nancy; Joseph, Lawrence; Kovacs, Christopher S; Richards, J Brent; Hidiroglou, Nick; Sarafin, Kurtis; Davison, K Shawn; Adachi, Jonathan D; Brown, Jacques; Hanley, David A; Prior, Jerilynn C; Goltzman, David

    2012-06-01

    Vitamin D is essential for facilitating calcium absorption and preventing increases in parathyroid hormone (PTH), which can augment bone resorption. Our objectives were to examine serum levels of 25-hydroxyvitamin D [25(OH)D] and PTH, and factors related to longitudinal change in a population-based cohort. This is the first longitudinal population-based study looking at PTH and 25(OH)D levels. We analyzed 3896 blood samples from 1896 women and 829 men in the Canadian Multicentre Osteoporosis Study over a 10-year period starting in 1995 to 1997. We fit hierarchical models with all available data and adjusted for season. Over 10 years, vitamin D supplement intake increased by 317 (95% confidence interval [CI] 277 to 359) IU/day in women and by 193 (135 to 252) IU/day in men. Serum 25(OH)D (without adjustment) increased by 9.3 (7.3 to 11.4) nmol/L in women and by 3.5 (0.6 to 6.4) nmol/L in men but increased by 4.7 (2.4 to 7.0) nmol/L in women and by 2.7 (-0.6 to 6.2) nmol/L in men after adjustment for vitamin D supplements. The percentage of participants with 25(OH)D levels <50 nmol/L was 29.7% (26.2 to 33.2) at baseline and 19.8% (18.0 to 21.6) at year 10 follow-up. PTH decreased over 10 years by 7.9 (5.4 to 11.3) pg/mL in women and by 4.6 (0.2 to 9.0) pg/mL in men. Higher 25(OH)D levels were associated with summer, younger age, lower body mass index (BMI), regular physical activity, sun exposure, and higher total calcium intake. Lower PTH levels were associated with younger age and higher 25(OH)D levels in both women and men and with lower BMI and participation in regular physical activity in women only. We have observed concurrent increasing 25(OH)D levels and decreasing PTH levels over 10 years. Secular increases in supplemental vitamin D intake influenced both changes in serum 25(OH)D and PTH levels. Copyright © 2012 American Society for Bone and Mineral Research.

  20. Direct suppressive effect of acute metabolic and respiratory alkalosis on parathyroid hormone secretion in the dog.

    Science.gov (United States)

    Lopez, Ignacio; Rodriguez, Mariano; Felsenfeld, Arnold J; Estepa, Jose Carlos; Aguilera-Tejero, Escolastico

    2003-08-01

    Acute alkalosis may directly affect PTH secretion. The effect of acute metabolic and respiratory alkalosis was studied in 20 dogs. PTH values were lower in the metabolic (5.6 +/- 0.8 pg/ml) and respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml). Acute alkalosis is an independent factor that decreases PTH values during normocalcemia and delays the PTH response to hypocalcemia. We recently showed that acute metabolic and respiratory acidosis stimulated PTH secretion. This study was designed to evaluate whether acute metabolic and respiratory alkalosis suppressed parathyroid hormone (PTH) secretion. Three groups of 10 dogs were studied: control, acute metabolic alkalosis, and acute respiratory alkalosis. Metabolic alkalosis was induced with an infusion of sodium bicarbonate and respiratory alkalosis by hyperventilation. Calcium chloride was infused to prevent alkalosis-induced hypocalcemia during the first 60 minutes. During the next 30 minutes, disodium EDTA was infused to induce hypocalcemia and to evaluate the PTH response to hypocalcemia. Because the infusion of sodium bicarbonate resulted in hypernatremia, the effect of hypernatremia was studied in an additional group that received hypertonic saline. After 60 minutes of a normocalcemic clamp, PTH values were less (p respiratory (1.8 +/- 0.6 pg/ml) alkalosis groups than in the control group (27 +/- 5 pg/ml); the respective blood pH values were 7.61 +/- 0.01, 7.59 +/- 0.02, and 7.39 +/- 0.02. The maximal PTH response to hypocalcemia was similar among the three groups. However, the maximal PTH response was observed after a decrease in ionized calcium of 0.20 mM in the control group but not until a decrease of 0.40 mM in the metabolic and respiratory alkalosis groups. In contrast to the metabolic alkalosis group, hypernatremia (157 +/- 2 mEq/liter) in the hypertonic saline group was associated with an increased PTH value (46 +/- 4 pg/ml). Finally, the half-life of intact PTH

  1. Intermittent Parathyroid Hormone Enhances Cancellous Osseointegration of a Novel Murine Tibial Implant

    Science.gov (United States)

    Yang, Xu; Ricciardi, Benjamin F.; Dvorzhinskiy, Aleksey; Brial, Caroline; Lane, Zachary; Bhimani, Samrath; Burket, Jayme C.; Hu, Bin; Sarkisian, Alexander M.; Ross, F. Patrick; van der Meulen, Marjolein C.H.; Bostrom, Mathias P.G.

    2015-01-01

    Background: Long-term fixation of uncemented joint implants requires early mechanical stability and implant osseointegration. To date, osseointegration has been unreliable and remains a major challenge in cementless total knee arthroplasty. We developed a murine model in which an intra-articular proximal tibial titanium implant with a roughened stem can be loaded through the knee joint. Using this model, we tested the hypothesis that intermittent injection of parathyroid hormone (iPTH) would increase proximal tibial cancellous osseointegration. Methods: Ten-week-old female C57BL/6 mice received a subcutaneous injection of PTH (40 μg/kg/day) or a vehicle (n = 45 per treatment group) five days per week for six weeks, at which time the baseline group was killed (n = 6 per treatment group) and an implant was inserted into the proximal part of the tibiae of the remaining mice. Injections were continued until the animals were killed at one week (n = 7 per treatment group), two weeks (n = 14 per treatment group), or four weeks (n = 17 per treatment group) after implantation. Outcomes included peri-implant bone morphology as analyzed with micro-computed tomography (microCT), osseointegration percentage and bone area fraction as shown with backscattered electron microscopy, cellular composition as demonstrated by immunohistochemical analysis, and pullout strength as measured with mechanical testing. Results: Preimplantation iPTH increased the epiphyseal bone volume fraction by 31.6%. When the data at post-implantation weeks 1, 2, and 4 were averaged for the iPTH-treated mice, the bone volume fraction was 74.5% higher in the peri-implant region and 168% higher distal to the implant compared with the bone volume fractions in the same regions in the vehicle-treated mice. Additionally, the trabecular number was 84.8% greater in the peri-implant region and 74.3% greater distal to the implant. Metaphyseal osseointegration and bone area fraction were 28.1% and 70.1% higher

  2. Role of paraoxonase-1 in bone anabolic effects of parathyroid hormone in hyperlipidemic mice

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Jinxiu [Department of Physiology, University of California, Los Angeles (United States); Cheng, Henry [Department of Medicine, University of California, Los Angeles (United States); Atti, Elisa [Division of Diagnostic and Surgical Sciences, School of Dentistry, University of California, Los Angeles (United States); Shih, Diana M. [Department of Medicine, University of California, Los Angeles (United States); Demer, Linda L. [Department of Physiology, University of California, Los Angeles (United States); Department of Medicine, University of California, Los Angeles (United States); Department of Bioengineering, University of California, Los Angeles (United States); Tintut, Yin, E-mail: ytintut@mednet.ucla.edu [Department of Medicine, University of California, Los Angeles (United States)

    2013-02-01

    Highlights: ► Anabolic effects of PTH were tested in hyperlipidemic mice overexpressing PON1. ► Expression of antioxidant regulatory genes was induced in PON1 overexpression. ► Bone resorptive activity was reduced in PON1 overexpressing hyperlipidemic mice. ► PON1 restored responsiveness to intermittent PTH in bones of hyperlipidemic mice. -- Abstract: Hyperlipidemia blunts anabolic effects of intermittent parathyroid hormone (PTH) on cortical bone, and the responsiveness to PTH are restored in part by oral administration of the antioxidant ApoA-I mimetic peptide, D-4F. To evaluate the mechanism of this rescue, hyperlipidemic mice overexpressing the high-density lipoprotein-associated antioxidant enzyme, paraoxonase 1 (Ldlr{sup −/−}PON1{sup tg}) were generated, and daily PTH injections were administered to Ldlr{sup −/−}PON1{sup tg} and to littermate Ldlr{sup −/−} mice. Expression of bone regulatory genes was determined by realtime RT-qPCR, and cortical bone parameters of the femoral bones by micro-computed tomographic analyses. PTH-treated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTH receptor (PTH1R), activating transcription factor-4 (ATF4), and osteoprotegerin (OPG) in femoral cortical bone, as well as significantly greater cortical bone mineral content, thickness, and area in femoral diaphyses compared with untreated Ldlr{sup −/−}PON1{sup tg} mice. In contrast, in control mice (Ldlr{sup −/−}) without PON1 overexpression, PTH treatment did not induce these markers. Calvarial bone of PTH-treated Ldlr{sup −/−}PON1{sup tg} mice also had significantly greater expression of osteoblastic differentiation marker genes as well as BMP-2-target and Wnt-target genes. Untreated Ldlr{sup −/−}PON1{sup tg} mice had significantly greater expression of PTHR1 than untreated Ldlr{sup −/−} mice, whereas sclerostin expression was reduced. In femoral cortical bones, expression levels of transcription factors, Fox

  3. Calcium, parathyroid hormone, oxytocin and pH profiles in the whelping bitch.

    Science.gov (United States)

    Hollinshead, F K; Hanlon, D W; Gilbert, R O; Verstegen, J P; Krekeler, N; Volkmann, D H

    2010-06-01

    Despite the high prevalence of primary uterine inertia in whelping bitches, the underlying pathogenesis remains unclear. The objectives were to i) determine serum concentrations of total calcium, ionized calcium (iCa), parathyroid hormone (PTH), and blood pH in normally whelping bitches throughout the peri-parturient period; and ii) investigate relationships among iCa, PTH, and acid-base status, and the role that they and oxytocin may have in the underlying pathogenesis of canine uterine inertia. Bitches were randomly selected from a population of German Shepherd Dog bitches with a history of uncomplicated parturition (Group 1; n=10), and from a population of Labrador bitches with a clinical history of an increased incidence of uterine inertia and stillbirths (Group 2; n=20). Jugular blood samples were collected daily from -4 d to the onset of whelping (t=0 h), and then every 4h until the last pup was born. Overall, bitches from Group 2 had higher mean+/-SEM serum concentrations of PTH (4.72+/-2.45 pmol/L, P<0.001), lower iCa (1.31+/-0.08 pmol/L, P<0.05), and higher venous pH (7.41+/-0.03, P<0.005) than bitches from Group 1 (2.9+/-1.44 pmol/L, 1.38+/-0.06 mmol/L, and 7.33+/-0.02, respectively) during the periparturient period. However, there was no significant difference between Groups 1 and 2 for serum oxytocin concentrations during the periparturient period (45.5+/-40 and 65.5+/-82 pg/mL). We inferred that low iCa resulting from a rising pH and decreasing PTH during the periparturient period may have contributed to decreased uterine contractility and increased risk of stillbirths. Therefore, manipulating the cationic/anionic difference in diets of pregnant bitches, similar to the bovine model for hypocalcamia, may reduce the incidence of stillbirths in the bitch. 2010 Elsevier Inc. All rights reserved.

  4. Serum levels of parathyroid hormone-M, magnesium and calcium and their inter-relationship in patients with acute pancreatitis

    International Nuclear Information System (INIS)

    Liu Qi; Zhou Li; Lu Yuanhan; Wang Yan; Wang Yan; Liu Huarong

    2002-01-01

    Objective: To study the changes of serum parathyroid hormone-M, magnesium, and calcium levels and their interrelationships in patients with mild acute pancreatitis (MAP) and severe acute pancreatitis (SAP). Methods: Serum level of PTH-M was measured by means of radioimmunoassay, serum magnesium and calcium levels were determines with automatic biochemical analytical apparatus. Results: 1) Serum levels of PTH-M in acute period and daring recovery in patients with MAP and SAP were not significant different from those in controls (p > 0.05); serum levels of magnesium and calcium in cute period of patients with SAP were significantly lower than those in controls (p<0.01); 2) There was a linear positive correlation between serum levels of PTH-M and serum magnesium in acute-phase of SAP patients, correlation coefficient r = 0.413 (p<0.05). Conclusion: That presence of hypocalcemia in patients with severe acute pancreatitis did not lead to parathyroid hormone-M responsive rise, that might be due to the presence of hypomagnesemia

  5. Hypercalcemia in hyperthyroidism: patterns of serum calcium, parathyroid hormone, and 1,25-dihydroxyvitamin D3 levels during management of thyrotoxicosis.

    Science.gov (United States)

    Iqbal, Ayesha A; Burgess, Elizabeth H; Gallina, Daniel L; Nanes, Mark S; Cook, Curtiss B

    2003-01-01

    To present two cases of hypercalcemia associated with thyrotoxicosis and to describe serial biochemical findings during the course of treatment of hyperthyroidism. We report two cases, illustrate the changes in serum calcium, parathyroid hormone, and 1,25-dihydroxyvitamin D3 levels during management of thyrotoxicosis, and compare our findings with those in previous studies. Hypercalcemia attributable to thyrotoxicosis is well documented, but the mechanism for the hypercalcemia is incompletely understood. Our first patient had a complicated medical history and several potential causes of hypercalcemia, including recurrent hyperparathyroidism, metastatic breast cancer, and relapse of previously treated thyrotoxicosis. A suppressed parathyroid hormone level and negative bone and computed tomographic scans excluded the first two factors. After thyroid ablation with 131I, the serum calcium and thyroxine levels decreased, and the parathyroid hormone and 1,25-dihydroxyvitamin D3 levels normalized. Our second patient, who was referred to our institution with a preliminary diagnosis of hypercalcemia associated with malignant disease and who had no symptoms of hyperthyroidism, was found to have a high free thyroxine level, diffuse enlargement of the thyroid, and high uptake (58%) of 123I on a thyroid scan. After thyroid ablation, the serum calcium, 1,25-dihydroxyvitamin D3, and intact parathyroid hormone levels normalized, and the free thyroxine level declined. The probable pathogenesis of hypercalcemia in thyrotoxicosis is reviewed with respect to thyroid hormone and its effect on bone turnover. Physicians should consider thyrotoxicosis in the differential diagnosis of hypercalcemia.

  6. Parathyroid hormone inhibition of Na{sup +}/H{sup +} exchanger 3 transcription: Intracellular signaling pathways and transcription factor expression

    Energy Technology Data Exchange (ETDEWEB)

    Neri, Elida Adalgisa; Bezerra, Camila Nogueira Alves, E-mail: camilab@icb.usp.br; Queiroz-Leite, Gabriella Duarte; Polidoro, Juliano Zequini; Rebouças, Nancy Amaral

    2015-06-12

    The main transport mechanism of reabsorption of sodium bicarbonate and fluid in the renal proximal tubules involves Na{sup +}/H{sup +} exchanger 3 (NHE3), which is acutely and chronically downregulated by parathyroid hormone (PTH). Although PTH is known to exert an inhibitory effect on NHE3 expression and transcription, the molecular mechanisms involved remain unclear. Here, we demonstrated that, in opossum kidney proximal tubule (OKP) cells, PTH-induced inhibition of Nhe3 gene promoter occurs even in the core promoter that controls expression of the reporter gene. We found that inhibition of the protein kinase A (PKA) and Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathways transformed PTH from an inhibitor of promoter activity into an activator of that same activity, as did point mutations in the EGR1, Sp1, and Sp3 binding consensus elements in the promoter. In nuclear extracts of PTH-treated OKP cells, we also observed increased expression of EGR1 mRNA and of some Sp3 isoforms. Electrophoretic mobility shift assay showed a supershift of the −61 to −42-bp probe with an anti-EGR1 antibody in PTH-treated cells, suggesting that EGR1 binding is relevant for the inhibitory activity of PTH. We conclude that PTH-induced inhibition of NHE3 transcription is related to higher EGR1 expression; to EGR1 binding to the proximal and core promoters; and to PKA and JAK/STAT pathway activation. This mechanism might be responsible, at least in part, for lower NHE3 expression and sodium reabsorption in renal proximal tubules in the presence of high PTH levels. - Highlights: • PTH regulation of Nhe3 promoter depends on EGR1 binding. • EGR1, PKA and JAK/STAT are involved in PTH inhibition of the Nhe3 promoter. • PTH alters expression of EGR1 and Sp3. • PTH inhibits the Nhe3 promoter by regulating PKA and JAK/STAT signaling.

  7. Effect of high fat diet on pulmonary expression of parathyroid hormone-related protein and its downstream targets

    Directory of Open Access Journals (Sweden)

    Learta Oruqaj

    2016-10-01

    Full Text Available Aims: Parathyroid hormone-related protein (PTHrP is involved in lung development and surfactant production. The latter one requires a paracrine interaction between type II alveolar cells and lipofibroblasts in which leptin triggers PTHrP-induced effects. Whether increased plasma leptin levels, as they occur in high fat diet, modify the expression of PTHrP remains unclear. Furthermore, the effect of high fat diet under conditions of forced pulmonary remodelling such as response to post myocardial infarction remains to be defined. Materials and methods: C57 bl/6 mice were randomized to either normal diet or high fat diet at an age of 6 weeks. Seven months later, the mice were euthanized and the lung was removed and frozen in fluid nitrogen until use. Samples were analyzed by real-time RT-PCR and western blot. Leptin deficient mice were used to investigate the effect of leptin on pulmonary expression of PTHrP more directly. A subgroup of mice with and without high fat diet underwent in vivo ischemia (45 min and reperfusion (4 weeks. Finally, experiments were repeated with prolonged high-fat diet. Key findings: High fat diet increased plasma leptin levels by 30.4% and the pulmonary mRNA expression of PTHrP (1,447-fold, PTH-1 receptor (4.21-fold, and PTHrP-downstream targets ADRP (7.54-fold and PPARγ (5.27-fold. Pulmonary PTHrP expression was reduced in leptin deficient mice by 88% indicating leptin dependent regulation. High fat diet further improved changes in pulmonary adaptation caused by ischemia/reperfusion (1.48-fold increased PTH-1 receptor protein expression. These effects were lost during prolonged high fat diet. Significance: This study established that physiological regulation of leptin plasma levels by high fat diet affects the pulmonary PTHrP expression and of PTHrP downstream targets. Modification of pulmonary expression of PTH-1 receptors by high fat diet after myocardial infarction suggests that the identified interaction may

  8. Inhibition of parathyroid hormone release by maitotoxin, a calcium channel activator

    International Nuclear Information System (INIS)

    Fitzpatrick, L.A.; Yasumoto, T.; Aurbach, G.D.

    1989-01-01

    Maitotoxin, a toxin derived from a marine dinoflagellate, is a potent activator of voltage-sensitive calcium channels. To further test the hypothesis that inhibition of PTH secretion by calcium is mediated via a calcium channel we studied the effect of maitotoxin on dispersed bovine parathyroid cells. Maitotoxin inhibited PTH release in a dose-dependent fashion, and inhibition was maximal at 1 ng/ml. Chelation of extracellular calcium by EGTA blocked the inhibition of PTH by maitotoxin. Maitotoxin enhanced the effects of the dihydropyridine calcium channel agonist (+)202-791 and increased the rate of radiocalcium uptake in parathyroid cells. Pertussis toxin, which ADP-ribosylates and inactivates a guanine nucleotide regulatory protein that interacts with calcium channels in the parathyroid cell, did not affect the inhibition of PTH secretion by maitotoxin. Maitotoxin, by its action on calcium channels allows entry of extracellular calcium and inhibits PTH release. Our results suggest that calcium channels are involved in the release of PTH. Inhibition of PTH release by maitotoxin is not sensitive to pertussis toxin, suggesting that maitotoxin may act distal to the site interacting with a guanine nucleotide regulatory protein, or maitotoxin could interact with other ions or second messengers to inhibit PTH release

  9. Mini-review: regulation of the renal NaCl cotransporter by hormones.

    Science.gov (United States)

    Rojas-Vega, Lorena; Gamba, Gerardo

    2016-01-01

    The renal thiazide-sensitive NaCl cotransporter, NCC, is the major pathway for salt reabsorption in the distal convoluted tubule. The activity of this cotransporter is critical for regulation of several physiological variables such as blood pressure, serum potassium, acid base metabolism, and urinary calcium excretion. Therefore, it is not surprising that numerous hormone-signaling pathways regulate NCC activity to maintain homeostasis. In this review, we will provide an overview of the most recent evidence on NCC modulation by aldosterone, angiotensin II, vasopressin, glucocorticoids, insulin, norepinephrine, estradiol, progesterone, prolactin, and parathyroid hormone. Copyright © 2016 the American Physiological Society.

  10. The study of calcitriol, cinacalcet combined with nursing intervention effect of SHPT, calcium, phosphorus metabolism and parathyroid hormone on MHD patients

    Directory of Open Access Journals (Sweden)

    Le Chen

    2017-06-01

    Full Text Available Objective: To investigate calcitriol, cinacalcet plus comprehensive intervention on maintenance hemodialysis (MHD patients with secondary hyperparathyroidism (SHPT calcium (Ca, phosphorus (P metabolism and parathyroid hormone (PTH effect. Methods: A total of 80 cases of patients with SHPT from January 2014 to January 2016 in our hospital were randomly divided into observation group and control group, control group to eat the whole piece of cinacalcet hydrochloride oral tablets, the initial dose of 25 mg/d, every 2 to 4 weeks, according to Ca×P, parathyroid hormone (iPTH test results adjust the dose, the maximum dose of not more than 75 mg/d, the observation group in the control group on the basis of oral administration of Calcitriol Soft Capsules 0.25 g/d, 3 times/week, 2 groups were given comprehensive intervention measures, to evaluate the curative effect after 3 months of treatment. The 2 groups before and after treatment collected fasting peripheral venous blood, the determination of Ca, P and alkaline phosphatase by colorimetric method (ALP, Ca, P product calculation (Ca×P, to detect the level of iPTH before and after treatment by ELISA method; TY-6858-HI type ultrasound instrument, measuring length, width and thickness of the parathyroid glands, and calculate the parathyroid gland volume. Results: in the observation group after treatment, Ca, Ca×P increased degree, P, ALP, iPTH lower than the control group, the size of the parathyroid gland was better than the control group. Conclusion: calcitriol, cinacalcet combined intervention therapy has good clinical effect in patients with MHD SHPT, Ca, P can effectively improve the metabolism, reduce the level of iPTH, reduce the parathyroid gland volume is worthy of promotion.

  11. Expression and localization of Indian hedgehog (Ihh) and parathyroid hormone related protein (PTHrP) in the human growth plate during pubertal development.

    Science.gov (United States)

    Kindblom, J M; Nilsson, O; Hurme, T; Ohlsson, C; Sävendahl, L

    2002-08-01

    Indian Hedgehog (Ihh) has been reported to control the rate of cartilage differentiation during skeletal morphogenesis in rodents through a negative feedback loop involving parathyroid hormone related protein (PTHrP). The role of Ihh and PTHrP in the regulation of human epiphyseal chondrocytes is unknown. The aim of the current study was to examine the expression and localization of Ihh and PTHrP in the human growth plate at various pubertal stages. Growth plate biopsies were obtained from patients subjected to epiphyseal surgery and the expression of Ihh and PTHrP was detected by immunohistochemistry. We show that Ihh and PTHrP are expressed mainly in early hypertrophic chondrocytes in the human growth plate. The levels of expression of Ihh and PTHrP are higher in early stages of puberty than later. Our results suggest that Ihh and PTHrP are present in the human growth plate and that Ihh and PTHrP may be involved in the regulation of pubertal growth in humans.

  12. Study of Red Cell Fragility in Different Stages of Chronic Kidney Disease in Relation to Parathyroid Hormone.

    Science.gov (United States)

    Panda, Suchismita; Mishra, Anuva; Jena, Manoranjan; Rout, Sashi Bhusan; Mohapatra, Srikrushna

    2017-08-01

    Anaemia is one of the common complications associated with Chronic Kidney Disease (CKD) responsible for the increase in the morbidity and mortality in such patients. Several factors have been attributed to cause renal anaemia, amongst which hyperparathyroidism is one of the less recognised reasons. Most studies have been conducted in this regard in CKD patients undergoing haemodialysis. The level of PTH in early stages of chronic kidney disease has not been much studied. The excess amount of Parathyroid Hormone (PTH) secondary to CKD has been suggested to be a causative factor for anaemia. To evaluate the serum PTH level in CKD patients before haemodialysis and to study the association of the haemoglobin status with the parathyroid hormone. Forty CKD patients above 18 years of age before haemodialysis and 25 age and sex matched healthy controls were included in the study. Routine biochemical and haematological parameters such as Routine Blood Sugar (RBS), urea, creatinine, Na + , K + , Ca 2+ , PTH and Hb% were perfomed. Red cell osmotic fragility was measured by serial dilutions of whole blood with varying concentrations of sodium chloride ranging from 0.1% to 0.9%. The study revealed a significant fall in Hb%, along with a rise in Median Osmotic Fragility (MOF) and PTH in the CKD patients when compared to the control group. Linear regression of PTH with Hb% revealed significant negative association between both the parameters with a R 2 value of 0.677. Multilinear regression analysis of MOF and other independent variables such as Hb%, Na + , K + , Ca 2+ , urea, PTH and creatinine highlighted the variance of MOF by 72%, maximal variance contributed by PTH. Receiver Operating Curve (ROC) analysis revealed an area under the curve of 0.980 with a sensitivity of 100% and specificity of 87% in detecting osmotic fragility at a cut off value of PTH ≥100 pg/ml. The underlying cause of anaemia should be identified early in the CKD patients before haemodialysis. Secondary

  13. Uremic restless legs syndrome (RLS) and sleep quality in patients with end-stage renal disease on hemodialysis: potential role of homocysteine and parathyroid hormone.

    Science.gov (United States)

    Gade, Katrin; Blaschke, Sabine; Rodenbeck, Andrea; Becker, Andreas; Anderson-Schmidt, Heike; Cohrs, Stefan

    2013-01-01

    The aetiology of uremic restless legs syndrome (RLS) remains unclear. Our research investigated whether an elevated plasma concentration of the excitatory amino acid homocysteine might be associated with RLS occurrence in patients with chronic renal insufficiency on hemodialysis. Total plasma homocysteine as well as creatinine, urea, folate, parathyroid hormone, hemoglobin, iron, ferritin, phosphate, calcium, magnesium, and albumin levels were compared between 26 RLS-affected (RLSpos) and 26 non-affected (RLSneg) patients on chronic hemodialysis. We further compared subjective sleep quality between RLSpos and RLSneg patients using the Pittsburgh-Sleep-Quality-Index and investigated possible relationships between laboratory parameters and sleep quality. Taking individual albumin concentrations into account, a significant positive correlation between total plasma homocysteine and RLS occurrence was observed (r= 0.246; p=0.045). Sleep quality was significantly more reduced in RLSpos compared to RLSneg patients and RLS severity correlated positively with impairment of sleep quality. Bad sleep quality in all patients was associated with higher concentrations of parathyroid hormone. Our results suggest a possible aetiological role of homocysteine in uremic RLS. They confirm that uremic RLS is an important factor causing sleep impairment in patients on hemodialysis. Higher parathyroid hormone levels might also be associated with bad sleep quality in these patients. © 2013 S. Karger AG, Basel.

  14. Parathyroid hormone-related peptide plasma concentrations in patients on hemodialysis

    DEFF Research Database (Denmark)

    Nordholm, Anders; Rix, M.; Olgaard, K.

    2014-01-01

    the same receptor, the PTH1R, and it has been shown experimentally that PTHrP enhances the PTH secretory response to hypocalcemia, indicating a link between the two hormones. METHODS: Together with a number of parameters involved in mineral homeostasis plasma PTHrP was measured before hemodialysis in 90...

  15. Parathyroid hormone measurement and 99Tcm-MIBI imaging for hyperparathyroidism diagnosis

    International Nuclear Information System (INIS)

    Zhao Yunyun; Wang Qian; Li Yuan; Yue Minggang; Li Hebei

    2011-01-01

    Objective: To evaluate 99 Tc m -MIBI imaging in patients with hyperparathyroidism and its correlation with serum intact PTH level. Methods: Seventy patients with suspicious hyperparathyroidism underwent 99 Tc m -MIBI imaging and serum intact PTH measurement. Abnormal increased uptake lesion appeared at early phase and even more clearly at delayed phase was considered as the positive by 99 Tc m -MIBI imaging. A cut-off value of PTH >88 ng/L was taken as the criteria for hyperparathyroidism diagnosis. The diagnostic efficacy of 99 Tc m -MIBI imaging combined with serum PTH measurement was assessed according to post-surgical histopathology or clinical follow-up. For those operated patients, Pearson correlation coefficient between serum PTH and the gland volume was calculated. Results: Hyperparathyroidism was confirmed in 38 patients by histopathology (n=36) or follow-up (n=2). The overall diagnostic accuracy of 99 Tc m -MIBI imaging was 90.0% (63/70), in which the accuracy was 80.0% (12/15) for patients with normal serum PTH and 92.7% (51/55) for those with elevated serum PTH. False positive 99 Tc m -MIBI imaging were found in 3 patients with normal serum PTH. The diagnostic accuracy of abnormally high serum PTH combined with 99 Tc m -MIBI imaging was 94.3% (66/70). There was a positive correlation between serum PTH level and the volume of pathologic parathyroid glands (r=0.782, P<0.001). Conclusions: Serum PTH measurement may help to improve the diagnostic accuracy of 99 Tc m -MIBI imaging in patients with hyperparathyroidism. (authors)

  16. Parathyroid Hormone (1-34 Might Not Improve Early Bone Healing after Sinus Augmentation in Healthy Rabbits

    Directory of Open Access Journals (Sweden)

    Jisun Huh

    2017-01-01

    Full Text Available Purpose. This study evaluated the effect of administering intermittent parathyroid hormone [PTH (1-34, henceforth PTH] on the early-stage bone healing of maxillary sinus augmentation in healthy rabbits. Materials and Methods. Bovine bone mineral was grafted on the sinuses of 20 female New Zealand white rabbits. The animals were randomly divided into two groups, PTH (n=10 or saline (n=10, in which either PTH or saline was injected subcutaneously 5 days a week for 2 weeks. Half of the animals in each group were killed at 2 weeks postoperatively and the other half were killed at 4 weeks postoperatively. The dosage of PTH was 10 μg/kg/day. Radiographic and histomorphometric analyses were performed. Result. The new bone area (NBA did not differ significantly between the PTH and saline groups. The NBA in the PTH group in the total augmented area and in the demarcated window, center, and Schneiderian membrane regions increased significantly from 2 to 4 weeks. The number of osteoclasts decreased significantly from 2 to 4 weeks in both groups, with no difference between the two groups. Conclusion. Intermittent PTH might not stimulate new bone formation in healthy rabbits during the first 4 weeks of healing.

  17. Parathyroid Hormone Polymorphism RS6254 is Associated with the Development and Severity of Osteoporosis in Asymptomatic but not Normocalcemic Hyperthyroidism.

    Science.gov (United States)

    Díaz-Soto, G; Romero, E; Pérez-Castrillón, J L; Jauregui, O I; de Luis Román, D

    2016-12-01

    Although normocalcemic and asymptomatic hyperparathyroidism (HPT) are becoming more common, they remain only partially understood. Parathyroid hormone ( PTH ) polymorphisms have been associated with disease severity in classical HPT. The aim of the present study was to evaluate the clinical effect of PTH polymorphism (rs6254) in normocalcemic and asymptomatic HPT. A prospective study of 61 consecutive patients with normocalcemic or asymptomatic HPT was carried out. Secondary causes of HPT were ruled out. All patients were followed for≥1 year. Calcium and phosphorus metabolism parameters were assessed at least twice during the follow-up period to classify as normocalcemic or asymptomatic HPT. Bone mineral density (BMD) and the rs6254 polymorphism genotype were also assessed. Genotype rs6254GG was observed in 23 patients (37.7%) whereas GA and AA genotypes were presented in 29 (47.5%) and 9 (14.8%) patients, respectively. Age, sex and genotype distributions were comparable in both groups. In asymptomatic but not normocalcemic HPT patients, the GG genotype was associated with a significantly higher level of intact PTH [200.2 (SD 76.5) vs. 113.3 (SD 25.9) pg/ml; peffect of rs6254GA polymorphism on the development and severity of BMD complications in patients with asymptomatic but not normocalcemic HPT. Further studies are needed to confirm this finding and to assess the effect of other polymorphisms in normocalcemic and asymptomatic HPT. © Georg Thieme Verlag KG Stuttgart · New York.

  18. A sensitive electrochemical sensor for in vitro detection of parathyroid hormone based on a MoS2-graphene composite

    Science.gov (United States)

    Kim, Hyeong-U.; Kim, Hye Youn; Kulkarni, Atul; Ahn, Chisung; Jin, Yinhua; Kim, Yeongseok; Lee, Kook-Nyung; Lee, Min-Ho; Kim, Taesung

    2016-10-01

    This paper reports a biosensor based on a MoS2-graphene (MG) composite that can measure the parathyroid hormone (PTH) concentration in serum samples from patients. The interaction between PTH and MG was analysed via an electrochemical sensing technique. The MG was functionalized using L-cysteine. Following this, PTH could be covalently immobilized on the MG sensing electrode. The properties of MG were evaluated using scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and Fourier transform infrared spectrometry. Following optimization of immobilized materials—such as MG, PTH, and alkaline phosphatase (ALP)—the performance of the MG sensor was investigated via cyclic voltammetry, to assess its linearity, repeatability, and reproducibility. Electrochemical impedance spectroscopy was performed on graphene oxide (GO) and MG-modified electrodes to confirm the capture of a monoclonal antibody (MAb) targeting PTH. Furthermore, the ALP-PTH-MG sensor exhibits a linear response towards PTH from artificial serum over a range of 1-50 pg mL-1. Moreover, patient sera (n = 30) were evaluated using the ALP-PTH-MG sensor and compared using standard equipment (Roche E 170). The P-value is less than 0.01 when evaluated with a t-test using Welch’s correction. This implies that the fabricated sensor can be deployed for medical diagnosis.

  19. Humoral Hypercalcemia of Malignancy with a Parathyroid Hormone-Related Peptide-Secreting Intrahepatic Cholangiocarcinoma Accompanied by a Gastric Cancer

    Directory of Open Access Journals (Sweden)

    Katsushi Takeda

    2017-01-01

    Full Text Available Humoral hypercalcemia of malignancy (HHM is caused by the oversecretion of parathyroid hormone-related peptide (PTHrP from malignant tumors. Although any tumor may cause HHM, that induced by intrahepatic cholangiocarcinoma (ICC or gastric cancer (GC is rare. We report here a 74-year-old male who displayed HHM with both ICC and GC and showed an elevated serum PTHrP level. Treatment of the hypercalcemia with saline, furosemide, elcatonin, and zoledronic acid corrected his serum calcium level and improved symptoms. Because treatment of ICC should precede that of GC, we chose chemotherapy with cisplatin (CDDP and gemcitabine (GEM. Chemotherapy reduced the size of the ICC and decreased the serum PTHrP level. One year after diagnosis, the patient was alive in the face of a poor prognosis for an ICC that produced PTHrP. Immunohistochemical staining for PTHrP was positive for the ICC and negative for the GC, leading us to believe that the cause of the HHM was a PTHrP-secreting ICC. In conclusion, immunohistochemical staining for PTHrP may be useful in discovering the cause of HHM in the case of two cancers accompanied by an elevated serum PHTrP level. Chemotherapy with CDDP and GEM may be the most appropriate treatment for a PTHrP-secreting ICC.

  20. Serum 25-hydroxyvitamin D, calcium and parathyroid hormone levels in Native and European populations in Greenland

    DEFF Research Database (Denmark)

    Andersen, Stig; Noahsen, Paneeraq; Rex, Karsten F

    2018-01-01

    Ca homoeostasis is important to human health and tightly controlled by powerful hormonal mechanisms that display ethnic variation. Ethnic variations could occur also in Arctic populations where the traditional Inuit diet is low in Ca and sun exposure is limited. We aimed to assess factors important....... Recommendations are to evaluate mechanisms underlying the ethnic influence on Ca homoeostasis and to assess the impact of transition in dietary habits on Ca homoeostasis and skeletal health in Arctic populations....

  1. Network identification of hormonal regulation.

    Directory of Open Access Journals (Sweden)

    Daniel J Vis

    Full Text Available Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for detecting regulatory relations between hormones. This is demonstrated with a cohort of obese women, who underwent blood sampling at 10 minute intervals for 24-hours. The cohort was treated with bromocriptine in an attempt to clarify how hormone relations change by treatment. The detected regulatory relations are summarized in a network graph and treatment-induced changes in the relations are determined. The proposed method identifies many relations, including well-known ones. Ultimately, the method provides ways to improve the description and understanding of normal hormonal relations and deviations caused by disease or treatment.

  2. Distribution of genes for parathyroid hormone (PTH)-related peptide, Indian hedgehog, PTH receptor and patched in the process of experimental spondylosis in mice.

    Science.gov (United States)

    Nakase, Takanobu; Ariga, Kenta; Meng, Wenxiang; Iwasaki, Motoki; Tomita, Tetsuya; Myoui, Akira; Yonenobu, Kazuo; Yoshikawa, Hideki

    2002-07-01

    Little is known about the molecular mechanisms underlying the process of spondylosis. The authors determined the extent of genetic localization of major regulators of chondrogenesis such as Indian hedgehog (Ihh) and parathyroid hormone (PTH)-related peptide (PTHrP) and their receptors during the development of spondylosis in their previously established experimental mouse model. Experimental spondylosis was induced in 5-week-old ICR mice. The cervical spines were chronologically harvested, and histological sections were prepared. Messenger (m) RNA for PTHrP, Ihh, PTH receptor (PTHR; a receptor for PTHrP), patched (Ptc; a receptor for Ihh), bone morphogenetic protein (BMP)-6, and collagen type X (COL10; a marker for mature chondrocyte) was localized in the tissue sections by performing in situ hybridization. In the early stage, mRNA for COL10, Ihh, and BMP-6 was absent; however, mRNA for PTHrP, PTHR, and Ptc was detected in the anterior margin of the cervical discs. In the late stage, evidence of COL10 mRNA began to be detected, and transcripts for Ihh, PTHrP, and BMP-6 were localized in hypertrophic chondrocytes adjacent to the bone-forming area in osteophyte. Messenger RNA for Ptc and PTHR continued to localize at this stage. In control mice, expression of these genes was absent. The localization of PTHrP, Ihh, BMP-6, and the receptors PTHR and Ptc demonstrated in the present experimental model indicates the possible involvement of molecular signaling by PTHrP (through the PTHR), Ihh (through the Ptc), and BMP-6 in the regulation of chondrocyte maturation leading to endochondral ossification in spondylosis.

  3. Vitamin D Deficiency and a Blunted Parathyroid Hormone Response in Children with Attention-Deficit/Hyperactivity Disorder.

    Science.gov (United States)

    Avcil, Sibelnur; Uysal, Pinar; Yilmaz, Mustafa; Erge, Duygu; Demirkaya, Sevcan K; Eren, Esra

    2017-03-01

    Attention-deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed neuropsychiatric disorder of childhood. The etiopathogenesis of ADHD has not been fully defined. Recent evidence has suggested a pathophysiological role of vitamin D deficiency in ADHD. In this study, we evaluated the serum levels of 25-hydroxy vitamin D (25(OH)D), parathyroid hormone (PTH), calcium (Ca), phosphate (P), and alkaline phosphatase (ALP) in children with ADHD. The study group consisted of 105 children diagnosed with ADHD according to DSM-IV-TR criteria. A control group, matched for age and gender, was composed of 95 healthy children. Venous blood samples were collected, and 25(OH)D, PTH, Ca, P, and ALP levels were measured. The mean serum 25(OH)D, Ca, and P levels of the children with ADHD were significantly lower than those of the healthy controls. There were no significant differences between the groups regarding PTH and ALP. Serum PTH levels were found to be normal, but vitamin D deficiency, hypocalcemia, and hypophosphatemia were observed in children with ADHD. There was no correlation between serum PTH and Ca levels in children with ADHD, whereas, there was a negative correlation between serum PTH and Ca levels in healthy controls. There was no correlation between serum 25(OH)D and PTH levels in children with ADHD, whereas, there was a negative correlation between serum 25(OH)D and PTH levels in healthy controls. There were no significant differences in all parameters' levels among the subtypes of ADHD. The findings suggest that ADHD is associated with vitamin D deficiency, blunted PTH response, and impaired Ca homeostasis in children.

  4. Serum of 25-Hydroxyvitamin D and Intact Parathyroid Hormone Levels in Postmenopausal Women with Hip and Upper Limb Fractures.

    Science.gov (United States)

    Lv, Jiang-Tao; Zhang, Ying-Ying; Tian, Shao-Qi; Sun, Kang

    2016-05-01

    To assess the serum of 25-hydroxyvitamin D (25(OH)D) and intact parathyroid hormone (iPTH) levels in postmenopausal women from northern China with hip and upper limb fractures. Case-control. Affiliated Hospital of Qingdao University. Postmenopausal women diagnosed with hip fracture (n = 335) and matched controls without fracture (n = 335). Between 2011 and 2013, fasting venous samples were analyzed for 25(OH)D, iPTH, alkaline phosphatase (ALP), calcium, and phosphorus. All women completed a standardized questionnaire designed to document putative risk factors for fractures. Eight percent of participants had vitamin D deficiency, and 66.0% had secondary hyperparathyroidism. Serum 25(OH)D levels were significantly (P lower in women with hip fracture than in controls. Multivariate logistic regression analysis adjusted for common risk factors showed that serum 25(OH)D of 20 ng/mL or less was an independent indicator of hip fracture (odds ratio (OR) = 2.98, 95% confidence interval (CI) = 2.11-4.20) and concomitant upper limb fracture in those with existing hip fractures (OR = 4.77, 95% CI = 1.60-10.12). The area under the receiver operating characteristic curve of 25(OH)D was 0.77 (95% CI = 0.68-0.84) for hip fracture and 0.80 (95% CI = 0.72-0.89) for hip and upper limb fractures. Vitamin D insufficiency and secondary hyperparathyroidism were a common problem in postmenopausal women who presented with concomitant hip and upper limb fractures, suggesting that they might contribute to the pathophysiology of fractures in postmenopausal women. © 2016, Copyright the Authors Journal compilation © 2016, The American Geriatrics Society.

  5. Parathyroid hormone-related protein (PTHrP) expression and bone invasion by oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Tsuchimochi, Makoto; Kameta, Ayako; Harada, Mikiko; Okada, Yasuo; Katagiri, Masataka

    1999-01-01

    Parathyroid hormone-related protein (PTHrP) indirectly stimulates osteoclastic bone resorption through osteoblasts in humoral hypercalcemia of malignancy. We reported that the serum concentration of PTHrP elevated in terminal stage patients with oral squamous cell carcinoma (SCC) in 1996. Therefore, PTHrP is a candidate for direct bone resorption factor released from the tumor tissue. The purpose of this study was to elucidate the correlation between the direct bone invasion by oral SCC and PTHrP expression. The serum C-PTHrP concentration was measured in 53 patients with oral SCC. The immunohistochemical study using PTHrP (labeled streptoavidin-biotin method, 38-64 monoclonal and 1-34 polyclonal antibody) was performed in 53 biopsy specimens. The bone invasion was assessed by using panoramic radiographs and bone scintigrams ( 99m Tc-MDP). The mean serum C-PTHrP concentration in the bone invasion identified group was 43.1±17.2 pmol/1. In the non-bone invasion group it was 42.0±18.0 pmol/1. No significant correlation was found between serum C-PTHrP levels and bone invasion or between PTHrP (1-34) and (38-64) expression in tumors and bone invasion. These results showed that there is no relationship between PTHrP expression in the biopsy specimen and direct bone invasion. Since the expression of PTHrP in the tumor tissue attached to the bone or surgical specimens has not been investigated, it is still unclear if PTHrP plays a role in direct bone resorption by oral SCC. (author)

  6. Mobilization of endogenous bone marrow derived endothelial progenitor cells and therapeutic potential of parathyroid hormone after ischemic stroke in mice.

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    Full Text Available Stroke is a major neurovascular disorder threatening human life and health. Very limited clinical treatments are currently available for stroke patients. Stem cell transplantation has shown promising potential as a regenerative treatment after ischemic stroke. The present investigation explores a new concept of mobilizing endogenous stem cells/progenitor cells from the bone marrow using a parathyroid hormone (PTH therapy after ischemic stroke in adult mice. PTH 1-34 (80 µg/kg, i.p. was administered 1 hour after focal ischemia and then daily for 6 consecutive days. After 6 days of PTH treatment, there was a significant increase in bone marrow derived CD-34/Fetal liver kinase-1 (Flk-1 positive endothelial progenitor cells (EPCs in the peripheral blood. PTH treatment significantly increased the expression of trophic/regenerative factors including VEGF, SDF-1, BDNF and Tie-1 in the brain peri-infarct region. Angiogenesis, assessed by co-labeled Glut-1 and BrdU vessels, was significantly increased in PTH-treated ischemic brain compared to vehicle controls. PTH treatment also promoted neuroblast migration from the subventricular zone (SVZ and increased the number of newly formed neurons in the peri-infarct cortex. PTH-treated mice showed significantly better sensorimotor functional recovery compared to stroke controls. Our data suggests that PTH therapy improves endogenous repair mechanisms after ischemic stroke with functional benefits. Mobilizing endogenous bone marrow-derived stem cells/progenitor cells using PTH and other mobilizers appears an effective and feasible regenerative treatment after ischemic stroke.

  7. Serum uric acid is associated with left ventricular hypertrophy independent of serum parathyroid hormone in male cardiac patients.

    Directory of Open Access Journals (Sweden)

    Shu-ichi Fujita

    Full Text Available BACKGROUND: Several studies have shown that serum uric acid (UA is associated with left ventricular (LV hypertrophy. Serum levels of parathyroid hormone (PTH, which has bbe shown to be correlated with UA, is also known to be associated with cardiac hypertrophy; however, whether the association between UA and cardiac hypertrophy is independent of PTH remains unknown. PURPOSE: We investigated whether the relationship between serum uric acid (UA and LV hypertrophy is independent of intact PTH and other calcium-phosphate metabolism-related factors in cardiac patients. METHODS AND RESULTS: In a retrospective study, the association between UA and left ventricular mass index was assessed among 116 male cardiac patients (mean age 65 ± 12 years who were not taking UA lowering drugs. The median UA value was 5.9 mg/dL. Neither age nor body mass index differed significantly among the UA quartile groups. Patients with higher UA levels were more likely to be taking loop diuretics. UA showed a significant correlation with intact PTH (R = 0.34, P<0.001 but not with other calcium-phosphate metabolism-related factors. Linear regression analysis showed that log-transformed UA showed a significant association with left ventricular mass index, and this relationship was found to be significant exclusively in patients who were not taking loop and/or thiazide diuretics. Multivariate logistic regression analysis showed that log-transformed UA was independently associated with LV hypertrophy with an odds ratio of 2.79 (95% confidence interval 1.48-5.28, P = 0.002 per one standard deviation increase. CONCLUSIONS: Among cardiac patients, serum UA was associated with LV hypertrophy, and this relationship was, at least in part, independent of intact PTH levels, which showed a significant correlation with UA in the same population.

  8. Effects of Different Dietary Interventions on Calcitriol, Parathyroid Hormone, Calcium, and Phosphorus: Results from the DASH Trial

    Directory of Open Access Journals (Sweden)

    Ahmed Hassoon

    2018-03-01

    Full Text Available The “Dietary Approaches to Stop Hypertension” (DASH diet, rich in fiber and low-fat dairy, effectively lowers blood pressure. DASH’s effect on calcitriol and other markers of bone-mineral metabolism is unknown. This secondary analysis of the DASH trial aimed to determine the effect of dietary patterns on blood concentrations of calcitriol, parathyroid hormone (PTH, ionized calcium, and urinary excretion of calcium and phosphorus. Outcomes were available in 334 participants in the trial. After a 3-week run-in on the control diet, participants were randomized to control, fruits and vegetables (F&V, or DASH diets. Outcomes were assessed at the end of run-in, and during the last week of the intervention period. Mean age of participants was 45.7 ± 10.7 years, 46% female, and 57% African-American. Mean ± Standard Deviation(SD baseline serum concentrations of calcitriol, PTH, and ionized calcium were 37.8 ± 9.2 pg/mL, 46.1 ± 18.5 pg/mL and 5.2 ± 0.23 mg/dL, respectively. Mean (±SD urinary calcium and phosphorus excretions were 150.1 ± 77.8 and 708.0 ± 251.8 mg/24 h, respectively. Compared with control, DASH reduced calcitriol −3.32 pg/mL (p = 0.004. Otherwise, there was no significant effect on other biomarkers. DASH lowered serum calcitriol perhaps more among African-Americans. These results raise important questions about the interpretation and clinical significance of low calcitriol concentrations in the setting of recommended diets.

  9. Comparison of parathyroid hormone and G-CSF treatment after myocardial infarction on perfusion and stem cell homing.

    Science.gov (United States)

    Huber, Bruno C; Fischer, Rebekka; Brunner, Stefan; Groebner, Michael; Rischpler, Christoph; Segeth, Alexander; Zaruba, Marc M; Wollenweber, Tim; Hacker, Marcus; Franz, Wolfgang-Michael

    2010-05-01

    Mobilization of stem cells by granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI); however, clinical trials failed to be effective. In search for alternative cytokines, parathyroid hormone (PTH) was recently shown to promote cardiac repair by enhanced neovascularization and cell survival. To compare the impact of the two cytokines G-CSF and PTH on myocardial perfusion, mice were noninvasively and repetitively investigated by pinhole single-photon emission computed tomography (SPECT) after MI. Mobilization and homing of bone marrow-derived stem cells (BMCs) was analyzed by fluorescence-activated cell sorter (FACS) analysis. Mice (C57BL/6J) were infarcted by left anterior descending artery ligation. PTH (80 mug/kg) and G-CSF (100 mug/kg) were injected for 5 days. Perfusion defects were determined by (99m)Tc-sestamibi SPECT at days 6 and 30 after MI. The number of BMCs characterized by Lin(-)/Sca-1(+)/c-kit(+) cells in peripheral blood and heart was analyzed by FACS. Both G-CSF and PTH treatment resulted in an augmented mobilization of BMCs in the peripheral blood. Contrary to G-CSF and controls, PTH and the combination showed significant migration of BMCs in ischemic myocardium associated with a significant reduction of perfusion defects from day 6 to day 30. A combination of both cytokines had no additional effects on migration and perfusion. In our preclinical model, SPECT analyses revealed the functional potential of PTH reducing size of infarction together with an enhanced homing of BMCs to the myocardium in contrast to G-CSF. A combination of both cytokines did not improve the functional outcome, suggesting clinical applications of PTH in ischemic heart diseases.

  10. Parathyroid hormone promotes the disassembly of cytoskeletal actin and myosin in cultured osteoblastic cells: Mediation by cyclic AMP

    International Nuclear Information System (INIS)

    Egan, J.J.; Gronowicz, G.; Rodan, G.A.

    1991-01-01

    Parathyroid hormone (PTH) alters the shape of osteoblastic cells both in vivo and in vitro. In this study, we examined the effect of PTH on cytoskeletal actin and myosin, estimated by polyacrylamide gel electrophoresis of Triton X-100 (1%) nonextractable proteins. After 2-5 minutes, PTH caused a rapid and transient decrease of 50-60% in polymerized actin and myosin associated with the Triton X-100 nonextractable cytoskeleton. Polymerized actin returned to control levels by 30 min. The PTH effect was dose-dependent with an IC50 of about 1 nM, and was partially inhibited by the (3-34) PTH antagonist. PTH caused a rapid transient rise in cyclic AMP (cAMP) in these cells that peaked at 4 min, while the nadir in cytoskeletal actin and myosin was recorded around 5 min. The intracellular calcium chelator Quin-2/AM (10 microM) also decreased cytoskeletal actin and myosin, to the same extent as did PTH (100 nM). To distinguish between cAMP elevation and Ca++ reduction as mediators of PTH action, we measured the phosphorylation of the 20 kD (PI 4.9) myosin light chain in cells preincubated with [32P]-orthophosphate. The phosphorylation of this protein decreased within 2-3 min after PTH addition and returned to control levels after 5 min. The calcium ionophore A-23187 did not antagonize this PTH effect. Visualization of microfilaments with rhodamine-conjugated phalloidin showed that PTH altered the cytoskeleton by decreasing the number of stress fibers. These changes in the cytoskeleton paralleled changes in the shape of the cells from a spread configuration to a stellate form with retracting processes. The above findings indicate that the alteration in osteoblast shape produced by PTH involve relatively rapid and transient changes in cytoskeletal organization that appear to be mediated by cAMP

  11. Lack of endogenous parathyroid hormone delays fracture healing by inhibiting vascular endothelial growth factor‑mediated angiogenesis.

    Science.gov (United States)

    Ding, Qingfeng; Sun, Peng; Zhou, Hao; Wan, Bowen; Yin, Jian; Huang, Yao; Li, Qingqing; Yin, Guoyong; Fan, Jin

    2018-07-01

    Intermittent low‑dose injections of parathyroid hormone (PTH) have been reported to exert bone anabolic effects and to promote fracture healing. As an important proangiogenic cytokine, vascular endothelial growth factor (VEGF) is secreted by bone marrow mesenchymal stem cells (BMSCs) and osteoblasts, and serves a crucial regulatory role in the process of vascular development and regeneration. To investigate whether lack of endogenous PTH causes reduced angiogenic capacity and thereby delays the process of fracture healing by downregulating the VEGF signaling pathway, a PTH knockout (PTHKO) mouse fracture model was generated. Fracture healing was observed using X‑ray and micro‑computerized tomography. Bone anabolic and angiogenic markers were analyzed by immunohistochemistry and western blot analysis. The expression levels of VEGF and associated signaling pathways in murine BMSC‑derived osteoblasts were measured by quantitative polymerase chain reaction and western blot analysis. The expression levels of protein kinase A (PKA), phosphorylated‑serine/threonine protein kinase (pAKT), hypoxia‑inducible factor‑1α (HIF1α) and VEGF were significantly decreased in BMSC‑derived osteoblasts from PTHKO mice. In addition, positive platelet endothelial cell adhesion molecule staining was reduced in PTHKO mice, as determined by immunohistochemistry. The expression levels of HIF1α, VEGF, runt‑related transcription factor 2, osteocalcin and alkaline phosphatase were also decreased in PTHKO mice, and fracture healing was delayed. In conclusion, lack of endogenous PTH may reduce VEGF expression in BMSC‑derived osteoblasts by downregulating the activity of the PKA/pAKT/HIF1α/VEGF pathway, thus affecting endochondral bone formation by causing a reduction in angiogenesis and osteogenesis, ultimately leading to delayed fracture healing.

  12. Delayed administration of recombinant human parathyroid hormone improves early biomechanical strength in a rat rotator cuff repair model.

    Science.gov (United States)

    Duchman, Kyle R; Goetz, Jessica E; Uribe, Bastian U; Amendola, Andrew M; Barber, Joshua A; Malandra, Allison E; Fredericks, Douglas C; Hettrich, Carolyn M

    2016-08-01

    Despite advances in intraoperative techniques, rotator cuff repairs frequently do not heal. Recombinant human parathyroid hormone (rhPTH) has been shown to improve healing at the tendon-to-bone interface in an established acute rat rotator cuff repair model. We hypothesized that administration of rhPTH beginning on postoperative day 7 would result in improved early load to failure after acute rotator cuff repair in an established rat model. Acute rotator cuff repairs were performed in 108 male Sprague-Dawley rats. Fifty-four rats received daily injections of rhPTH beginning on postoperative day 7 until euthanasia or a maximum of 12 weeks postoperatively. The remaining 54 rats received no injections and served as the control group. Animals were euthanized at 2 and 16 weeks postoperatively and evaluated by gross inspection, biomechanical testing, and histologic analysis. At 2 weeks postoperatively, rats treated with rhPTH demonstrated significantly higher load to failure than controls (10.9 vs. 5.2 N; P = .003). No difference in load to failure was found between the 2 groups at 16 weeks postoperatively, although control repairs more frequently failed at the tendon-to-bone interface (45.5% vs. 22.7%; P = .111). Blood vessel density appeared equivalent between the 2 groups at both time points, but increased intracellular and extracellular vascular endothelial growth factor expression was noted in the rhPTH-treated group at 2 weeks. Delayed daily administration of rhPTH resulted in increased early load to failure and equivalent blood vessel density in an acute rotator cuff repair model. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  13. Intermittent Administration of Parathyroid Hormone [1-34] Prevents Particle-Induced Periprosthetic Osteolysis in a Rat Model.

    Directory of Open Access Journals (Sweden)

    Fanggang Bi

    Full Text Available We examined whether intermittent administration of parathyroid hormone [1-34] (PTH[1-34]; 60 μg/kg/day can prevent the negative effects of titanium (Ti particles on implant fixation and periprosthetic osteolysis in a rat model. Eighteen adult male rats (12 weeks old, bones still growing received intramedullary Ti implants in their bilateral femurs; 6 rats from the blank group received vehicle injections, and 12 rats from the control group and PTH treatment group received Ti particle injections at the time of operation and intra-articular injections 2 and 4 weeks postoperatively. Six of the rats that received Ti particles from the PTH group also received PTH[1-34] treatment. Six weeks postoperatively, all specimens were collected for assessment by X-ray, micro-CT, biomechanical, scanning electron microscopy (SEM, and dynamic histomorphometry. A lower BMD, BV/TV, Tb.N, maximal fixation strength, and mineral apposition rate were observed in the control group compared to the blank group, demonstrating that a periprosthetic osteolysis model had been successfully established. Administration of PTH[1-34] significantly increased the bone mineral density of the distal femur, BV/TV, Tb.N, Tb.Th, Tb.Sp, Con.D, SMI, and maximal fixation strength in the PTH group compared to that in the control group. SEM revealed higher bone-implant contact, thicker lamellar bone, and larger trabecular bone area in the PTH group than in the control group. A higher mineral apposition rate was observed in the PTH group compared to both the blank and control groups. These findings imply that intermittent administration of PTH[1-34] prevents periprosthetic osteolysis by promoting bone formation. The effects of PTH[1-34] were evaluated at a suprapharmacological dosage to the human equivalent in rats; therefore, additional studies are required to demonstrate its therapeutic potential in periprosthetic osteolysis.

  14. Effect of Etelcalcetide vs Placebo on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: Two Randomized Clinical Trials.

    Science.gov (United States)

    Block, Geoffrey A; Bushinsky, David A; Cunningham, John; Drueke, Tilman B; Ketteler, Markus; Kewalramani, Reshma; Martin, Kevin J; Mix, T Christian; Moe, Sharon M; Patel, Uptal D; Silver, Justin; Spiegel, David M; Sterling, Lulu; Walsh, Liron; Chertow, Glenn M

    2017-01-10

    Secondary hyperparathyroidism contributes to extraskeletal complications in chronic kidney disease. To evaluate the effect of the intravenous calcimimetic etelcalcetide on serum parathyroid hormone (PTH) concentrations in patients receiving hemodialysis. Two parallel, phase 3, randomized, placebo-controlled treatment trials were conducted in 1023 patients receiving hemodialysis with moderate to severe secondary hyperparathyroidism. Trial A was conducted in 508 patients at 111 sites in the United States, Canada, Europe, Israel, Russia, and Australia from March 12, 2013, to June 12, 2014; trial B was conducted in 515 patients at 97 sites in the same countries from March 12, 2013, to May 12, 2014. Intravenous administration of etelcalcetide (n = 503) or placebo (n = 513) after each hemodialysis session for 26 weeks. The primary efficacy end point was the proportion of patients achieving greater than 30% reduction from baseline in mean PTH during weeks 20-27. A secondary efficacy end point was the proportion of patients achieving mean PTH of 300 pg/mL or lower. The mean age of the 1023 patients was 58.2 (SD, 14.4) years and 60.4% were men. Mean PTH concentrations at baseline and during weeks 20-27 were 849 and 384 pg/mL vs 820 and 897 pg/mL in the etelcalcetide and placebo groups, respectively, in trial A; corresponding values were 845 and 363 pg/mL vs 852 and 960 pg/mL in trial B. Patients randomized to etelcalcetide were significantly more likely to achieve the primary efficacy end point: in trial A, 188 of 254 (74.0%) vs 21 of 254 (8.3%; P secondary hyperparathyroidism, use of etelcalcetide compared with placebo resulted in greater reduction in serum PTH over 26 weeks. Further studies are needed to assess clinical outcomes as well as longer-term efficacy and safety. clinicaltrials.gov Identifiers: NCT01788046.

  15. Defective postnatal endochondral bone development by chondrocyte-specific targeted expression of parathyroid hormone type 2 receptor.

    Science.gov (United States)

    Panda, Dibyendu Kumar; Goltzman, David; Karaplis, Andrew C

    2012-12-15

    The human parathyroid hormone type 2 receptor (PTH2R) is activated by PTH and by tuberoinfundibular peptide of 39 residues (TIP39), the latter likely acting as its natural ligand. Although the receptor is expressed at highest levels in the nervous system, we have observed that both PTH2R and TIP39 are expressed in the newborn mouse growth plate, with the receptor localizing in the resting zone and the ligand TIP39 localizing exclusively in prehypertrophic and hypertrophic chondrocytes. To address the role of PTH2R in postnatal skeletal growth and development, Col2a1-hPTH2R (PTH2R-Tg) transgenic mice were generated. The mice were viable and of nearly normal size at birth. Expression of the transgene in the growth plate was limited to chondrocytes. We found that chondrocyte proliferation was decreased, as determined by in vivo BrdU labeling of proliferating chondrocytes and CDK4 and p21 expression in the growth plate of Col2a1-hPTH2R transgenic mice. Similarly, the differentiation and maturation of chondrocytes was delayed, as characterized by decreased Sox9 expression and weaker immunostaining for the chondrocyte differentiation markers collagen type II and type X and proteoglycans. As well, there was altered expression of Gdf5, Wdr5, and β-catenin, factors implicated in chondrocyte maturation, proliferation, and differentiation.These effects impacted on the process of endochondral ossification, resulting in delayed formation of the secondary ossification center, and diminished trabecular bone volume. The findings substantiate a role for PTH2R signaling in postnatal growth plate development and subsequent bone mass acquisition.

  16. Pregnancy-associated plasma protein-A modulates the anabolic effects of parathyroid hormone in mouse bone.

    Science.gov (United States)

    Clifton, Kari B; Conover, Cheryl A

    2015-12-01

    Intermittent parathyroid hormone (PTH) is a potent anabolic therapy for bone, and several studies have implicated local insulin-like growth factor (IGF) signaling in mediating this effect. The IGF system is complex and includes ligands and receptors, as well as IGF binding proteins (IGFBPs) and IGFBP proteases. Pregnancy-associated plasma protein-A (PAPP-A) is a metalloprotease expressed by osteoblasts in vitro that has been shown to enhance local IGF action through cleavage of inhibitory IGFBP-4. This study was set up to test two specific hypotheses: 1) Intermittent PTH treatment increases the expression of IGF-I, IGFBP-4 and PAPP-A in bone in vivo, thereby increasing local IGF activity. 2) In the absence of PAPP-A, local IGF activity and the anabolic effects of PTH on bone are reduced. Wild-type (WT) and PAPP-A knock-out (KO) mice were treated with 80 μg/kg human PTH 1-34 or vehicle by subcutaneous injection five days per week for six weeks. IGF-I, IGFBP-4 and PAPP-A mRNA expression in bone were significantly increased in response to PTH treatment. PTH treatment of WT mice, but not PAPP-A KO mice, significantly increased expression of an IGF-responsive gene. Bone mineral density (BMD), as measured by DEXA, was significantly decreased in femurs of PAPP-A KO compared to WT mice with PTH treatment. Volumetric BMD, as measured by pQCT, was significantly decreased in femoral midshaft (primarily cortical bone), but not metaphysis (primarily trabecular bone), of PAPP-A KO compared to WT mice with PTH treatment. These data suggest that stimulation of PAPP-A expression by intermittent PTH treatment contributes to PTH bone anabolism in mice. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Insulin-like growth factor I is required for the anabolic actions of parathyroid hormone on mouse bone

    Science.gov (United States)

    Bikle, Daniel D.; Sakata, Takeshi; Leary, Colin; Elalieh, Hashem; Ginzinger, David; Rosen, Clifford J.; Beamer, Wesley; Majumdar, Sharmila; Halloran, Bernard P.

    2002-01-01

    Parathyroid hormone (PTH) is a potent anabolic agent for bone, but the mechanism(s) by which it works remains imperfectly understood. Previous studies have indicated that PTH stimulates insulin-like growth factor (IGF) I production, but it remains uncertain whether IGF-I mediates some or all of the skeletal actions of PTH. To address this question, we examined the skeletal response to PTH in IGF-I-deficient (knockout [k/o]) mice. These mice and their normal littermates (NLMs) were given daily injections of PTH (80 microg/kg) or vehicle for 2 weeks after which their tibias were examined for fat-free weight (FFW), bone mineral content, bone structure, and bone formation rate (BFR), and their femurs were assessed for mRNA levels of osteoblast differentiation markers. In wild-type mice, PTH increased FFW, periosteal BFR, and cortical thickness (C.Th) of the proximal tibia while reducing trabecular bone volume (BV); these responses were not seen in the k/o mice. The k/o mice had normal mRNA levels of the PTH receptor and increased mRNA levels of the IGF-I receptor but markedly reduced basal mRNA levels of the osteoblast markers. Surprisingly, these mRNAs in the k/o bones increased several-fold more in response to PTH than the mRNAs in the bones from their wild-type littermates. These results indicate that IGF-I is required for the anabolic actions of PTH on bone formation, but the defect lies distal to the initial response of the osteoblast to PTH.

  18. Vitamin D Status and Its Association with Parathyroid Hormone Concentration in Brazilians

    Directory of Open Access Journals (Sweden)

    Juliana Sálvio Martins

    2017-01-01

    Full Text Available Vitamins are organic compounds that play a vital role in the control of metabolic processes. The D complex is considered a nutrient with a hormonal action and has an important participation in the constant maintenance of serum and extracellular calcium levels. The present study aims to analyze the results of 105.588 vitamin D (25(OHD measurements obtained from a database from a clinical analysis laboratory in Brazil, between the years of 2011 and 2013. The values of 25(OHD were correlated with age, gender, and values of PTH. The results show a high prevalence of values of 25(OHD considered inadequate, characterizing 76% of the studied population. It was observed that 26,5% of the individuals had deficiency and 49,5% had insufficiency of vitamin D. It was also shown that there was a negative correlation between 25(OHD and PTH levels. In conclusion, this study is in accordance with others that show a high prevalence of vitamin D deficiency in different populations and alerts us for the importance of these measurements and analysis in clinical practice and as a base for diagnosis and treatment of hypovitaminosis.

  19. [Effect of emotional-algesic stress on the hormonal function of thyroid and parathyroid glands].

    Science.gov (United States)

    Kuripka, V I; Belokon', L E; Iakushev, V S

    1989-01-01

    Experiments on 215 Wistar rats have revealed that the state of the endured stress is an essential factor inducing disturbance in functioning of the hypothalamus-adenohypophysis-thyroid gland system accompanied by disturbance in regulation of the thyrotropin and triiodothyronine formation under conditions of myocardium necrosis development.

  20. Network identification of hormonal regulation

    NARCIS (Netherlands)

    Vis, D.J.; Westerhuis, J.A.; Hoefsloot, H.C.J.; Roelfsema, F.; Greef, J. van der; Hendriks, M.M.W.B.; Smilde, A.K.

    2014-01-01

    Relations among hormone serum concentrations are complex and depend on various factors, including gender, age, body mass index, diurnal rhythms and secretion stochastics. Therefore, endocrine deviations from healthy homeostasis are not easily detected or understood. A generic method is presented for

  1. Mechanisms for the bone anabolic effect of parathyroid hormone treatment in humans

    DEFF Research Database (Denmark)

    Aslan, Derya; Dahl Andersen, Mille; Gede, Lene Bjerring

    2012-01-01

    . However, development of the biochemical measurement of PTH in the 1980s led us to understand the regulation of PTH secretion and calcium metabolism which subsequently paved the way for the use of PTH as an anabolic treatment of osteoporosis as, when given intermittently, it has strong anabolic effects...... in bone. This could not have taken place without the basic understanding achieved by the biochemical measurements of PTH. The stimulatory effects of PTH on bone formation have been explained by the so-called ‘anabolic window’, which means that during PTH treatment, bone formation is in excess over bone...... resorption during the first 6–18 months. This is due to the following: (1) PTH up-regulates c-fos expression in bone cells, (2) IGF is essential for PTH's anabolic effect, (3) bone lining cells are driven to differentiate into osteoblasts, (4) mesenchymal stem cells adhesion to bone surface is enhanced, (5...

  2. The Role of Parathyroid Hormone-Related Protein (PTHrP in Osteoblast Response to Microgravity: Mechanistic Implications for Osteoporosis Development.

    Directory of Open Access Journals (Sweden)

    Anne Camirand

    Full Text Available Prolonged skeletal unloading through bedrest results in bone loss similar to that observed in elderly osteoporotic patients, but with an accelerated timeframe. This rapid effect on weight-bearing bones is also observed in astronauts who can lose up to 2% of their bone mass per month spent in Space. Despite the important implications for Spaceflight travelers and bedridden patients, the exact mechanisms involved in disuse osteoporosis have not been elucidated. Parathyroid hormone-related protein (PTHrP regulates many physiological processes including skeletal development, and has been proposed as a mechanosensor. To investigate the role of PTHrP in microgravity-induced bone loss, trabecular and calvarial osteoblasts (TOs and COs from Pthrp +/+ and -/- mice were subjected to actual Spaceflight for 6 days (Foton M3 satellite. Pthrp +/+, +/- and -/- osteoblasts were also exposed to simulated microgravity for periods varying from 6 days to 6 weeks. While COs displayed little change in viability in 0g, viability of all TOs rapidly decreased in inverse proportion to PTHrP expression levels. Furthermore, Pthrp+/+ TOs displayed a sharp viability decline after 2 weeks at 0g. Microarray analysis of Pthrp+/+ TOs after 6 days in simulated 0g revealed expression changes in genes encoding prolactins, apoptosis/survival molecules, bone metabolism and extra-cellular matrix composition proteins, chemokines, insulin-like growth factor family members and Wnt-related signalling molecules. 88% of 0g-induced expression changes in Pthrp+/+ cells overlapped those caused by Pthrp ablation in normal gravity, and pulsatile treatment with PTHrP1-36 not only reversed a large proportion of 0g-induced effects in Pthrp+/+ TOs but maintained viability over 6-week exposure to microgravity. Our results confirm PTHrP efficacy as an anabolic agent to prevent microgravity-induced cell death in TOs.

  3. Chronological gene expression of parathyroid hormone-related protein (PTHrP) in the stellate reticulum of the rat: implications for tooth eruption.

    Science.gov (United States)

    Yao, Shaomian; Pan, Fenghui; Wise, Gary E

    2007-03-01

    Tooth eruption is a localized event that requires the expression of certain molecules at precise times to regulate bone resorption and bone formation. Parathyroid hormone-related protein (PTHrP) may be one of those molecules. Although PTHrP is produced in the stellate reticulum (SR) of the tooth and exerts its effect on the adjacent dental follicle, its expression pattern in the SR is unknown. Thus, it was the objectives of this study to determine the chronology of expression of PTHrP, and then to determine its effect on vascular endothelial growth factor (VEGF) expression for osteoclastogenesis and on bone morphogenetic protein-2 (BMP-2) for bone growth. Laser capture microdissection and RT-PCR were used to determine the chronological expression of PTHrP in vivo. In vitro, dental follicle cells were incubated with PTHrP and RT-PCR was conducted to determine its effect on VEGF and BMP-2 gene expression. PTHrP was maximally expressed at day 7 postnatally in the SR with the level of expression still high at day 9. In vitro, PTHrP upregulated VEGF120 and VEGF164 expression after 4h of incubation with a maximum effect at 6h. PTHrP upregulated BMP-2 gene expression with a maximal effect at 2h. Because the secondary burst of osteoclastogenesis needed for eruption occurs around day 10, it is possible that PTHrP is stimulating this osteoclastogenesis by upregulating VEGF. Concurrently, the upregulation of BMP-2 by PTHrP may stimulate bone growth at the base of the bony crypt to promote eruption.

  4. Endogenous Parathyroid Hormone Promotes Fracture Healing by Increasing Expression of BMPR2 through cAMP/PKA/CREB Pathway in Mice

    Directory of Open Access Journals (Sweden)

    Wei Zhou

    2017-06-01

    Full Text Available Background/Aims: Endogenous parathyroid hormone (PTH plays an important role in fracture healing. This study investigated whether endogenous PTH regulates fracture healing by bone morphogenetic protein (BMP and/or the transforming growth factor-β (TGF-β signaling pathway. Methods: Eight-week-old wild-type (WT and PTH-knockout (PTH KO male mice were selected, and models of open right-femoral fracture were constructed. Fracture healing and callus characteristics of mice in the two groups were compared by X-ray, micro-computed tomography, histological, and immunohistochemical examinations. Bone marrow mesenchymal stem cells (BMMSCs of 8-week-old WT and PTHKO male mice were obtained and induced into osteoblasts and chondrocytes. Results: We found that expression levels of Runt-related transcription factor (RUNX2, bone morphogenetic protein-receptor-type Ⅱ (BMPR2, phosphorylated Smad 1/5/8, and phosphorylated cyclic adenosine monophosphate-responsive element binding protein (CREB in the callus of PTHKO mice were significantly decreased, whereas no significant difference in expression of SOX9, TGF-βR2,or pSMAD2/3 was observed between PTHKO and WT mice. Additionally, the activity of osteoblast alkaline phosphatase was low at 7 days post-induction, and was upregulated by addition of PTH or dibutyryl cyclic adenosine monophosphate (dbcAMP to the cell culture. Furthermore, H89 (protein kinase A inhibitoreliminated the simulating effects of PTH and dbcAMP, and a low concentration of cyclic adenosine monophosphate (cAMP was observed in PTHKO mouse BMMSCs. Conclusion: These results suggested that endogenous PTH enhanced BMPR2 expression by a cAMP/PKA/CREB pathway in osteoblasts, and increased RUNX2 expression through transduction of the BMP/pSMAD1/5/8 signaling pathway.

  5. Association of Drug Effects on Serum Parathyroid Hormone, Phosphorus, and Calcium Levels With Mortality in CKD: A Meta-analysis.

    Science.gov (United States)

    Palmer, Suetonia C; Teixeira-Pinto, Armando; Saglimbene, Valeria; Craig, Jonathan C; Macaskill, Petra; Tonelli, Marcello; de Berardis, Giorgia; Ruospo, Marinella; Strippoli, Giovanni F M

    2015-12-01

    Serum parathyroid hormone (PTH), phosphorus, and calcium levels are surrogate outcomes that are central to the evaluation of drug treatments in chronic kidney disease (CKD). This systematic review evaluates the evidence for the correlation between drug effects on biochemical (PTH, phosphorus, and calcium) and all-cause and cardiovascular mortality end points in adults with CKD. Systematic review and meta-analysis. Adults with CKD. Randomized trials reporting drug effects on biochemical and mortality end points. Drug interventions with effects on serum PTH, phosphorus, and calcium levels, including vitamin D compounds, phosphate binders, cinacalcet, bisphosphonates, and calcitonin. Correlation between drug effects on biochemical and all-cause and cardiovascular mortality. 28 studies (6,999 participants) reported both biochemical and mortality outcomes and were eligible for analysis. Associations between drug effects on surrogate biochemical end points and corresponding effects on mortality were weak and imprecise. All correlation coefficients were less than 0.70, and 95% credible intervals were generally wide and overlapped with zero, consistent with the possibility of no association. The exception was an inverse correlation between drug effects on serum PTH levels and all-cause mortality, which was nominally significant (-0.64; 95% credible interval, -0.85 to -0.15), but the strength of this association was very imprecise. Risk of bias within available trials was generally high, further reducing confidence in the summary correlations. Findings were robust to adjustment for age, baseline serum PTH level, allocation concealment, CKD stage, and drug class. Low power in analyses and combining evidence from many different drug comparisons with incomplete data across studies. Drug effects on serum PTH, phosphorus, and calcium levels are weakly and imprecisely correlated with all-cause and cardiovascular death in the setting of CKD. Risks of mortality (patient

  6. AN OPEN-LABEL EXTENSION STUDY OF PARATHYROID HORMONE RHPTH(1-84) IN ADULTS WITH HYPOPARATHYROIDISM.

    Science.gov (United States)

    Lakatos, Peter; Bajnok, Laszlo; Lagast, Hjalmar; Valkusz, Zsuzsanna

    2016-05-01

    Hypoparathyroidism is characterized by inadequate parathyroid hormone (PTH), resulting in hypocalcemia, hyperphosphatemia, and bone abnormalities. Adults with hypoparathyroidism treated with recombinant human PTH, rhPTH(1-84), in the 24-week, phase III REPLACE study maintained serum calcium despite reductions in oral calcium and active vitamin D. This study assessed the long-term efficacy and safety of rhPTH(1-84) for hypoparathyroidism. This was a 24-week, open-label, flexible-dose extension study of REPLACE (REPEAT) conducted in 3 outpatient centers in Hungary. Patients who previously completed or enrolled in REPLACE received 50 μg/day rhPTH(1-84), escalated to 75 and then to 100 μg/day, if needed, to reduce active vitamin D and oral calcium. The primary endpoint was ≥50% reduction in oral calcium (or ≤500 mg/day) and active vitamin D (or calcitriol ≤0.25 μg/day or alfacalcidol ≤0.50 μg/day) with normocalcemia. Twenty-four patients (n = 16 previously treated with rhPTH[1-84]; n = 8 rhPTH[1-84]-naïve) were enrolled and completed the study. At Week 24, 75% of patients (95% confidence interval [CI], 53.3-90.2%) achieved the study endpoint; 58% eliminated oral calcium and active vitamin D. Urinary calcium, serum phosphate, and calcium × phosphate (Ca × P) product decreased by Week 24. Mean serum bone turnover markers increased with rhPTH(1-84). Treatment-emergent adverse events (TEAEs) were reported by 92% of patients. No serious adverse events (AEs) occurred. This study used a simplified treatment algorithm intended to better mimic typical clinical practice and demonstrated the extended efficacy and safety of rhPTH(1-84) in patients with hypoparathyroidism and confirmed the REPLACE findings. Sustained rhPTH(1-84) efficacy up to 48 weeks was observed despite treatment interruption between studies.

  7. Effect of Etelcalcetide vs Cinacalcet on Serum Parathyroid Hormone in Patients Receiving Hemodialysis With Secondary Hyperparathyroidism: A Randomized Clinical Trial.

    Science.gov (United States)

    Block, Geoffrey A; Bushinsky, David A; Cheng, Sunfa; Cunningham, John; Dehmel, Bastian; Drueke, Tilman B; Ketteler, Markus; Kewalramani, Reshma; Martin, Kevin J; Moe, Sharon M; Patel, Uptal D; Silver, Justin; Sun, Yan; Wang, Hao; Chertow, Glenn M

    2017-01-10

    Secondary hyperparathyroidism contributes to extraskeletal calcification and is associated with all-cause and cardiovascular mortality. Control is suboptimal in the majority of patients receiving hemodialysis. An intravenously (IV) administered calcimimetic could improve adherence and reduce adverse gastrointestinal effects. To evaluate the relative efficacy and safety of the IV calcimimetic etelcalcetide and the oral calcimimetic cinacalcet. A randomized, double-blind, double-dummy active clinical trial was conducted comparing IV etelcalcetide vs oral placebo and oral cinacalcet vs IV placebo in 683 patients receiving hemodialysis with serum parathyroid hormone (PTH) concentrations higher than 500 pg/mL on active therapy at 164 sites in the United States, Canada, Europe, Russia, and New Zealand. Patients were enrolled from August 2013 to May 2014, with end of follow-up in January 2015. Etelcalcetide intravenously and oral placebo (n = 340) or oral cinacalcet and IV placebo (n = 343) for 26 weeks. The IV study drug was administered 3 times weekly with hemodialysis; the oral study drug was administered daily. The primary efficacy end point was noninferiority of etelcalcetide at achieving more than a 30% reduction from baseline in mean predialysis PTH concentrations during weeks 20-27 (noninferiority margin, 12.0%). Secondary end points included superiority in achieving biochemical end points (>50% and >30% reduction in PTH) and self-reported nausea or vomiting. The mean (SD) age of the trial participants was 54.7 (14.1) years and 56.2% were men. Etelcalcetide was noninferior to cinacalcet on the primary end point. The estimated difference in proportions of patients achieving reduction in PTH concentrations of more than 30% between the 198 of 343 patients (57.7%) randomized to receive cinacalcet and the 232 of 340 patients (68.2%) randomized to receive etelcalcetide was -10.5% (95% CI, -17.5% to -3.5%, P for noninferiority, secondary hyperparathyroidism, the

  8. Serum levels of parathyroid hormone and markers of bone metabolism in patients with rheumatoid arthritis. Relationship to disease activity and glucocorticoid treatment

    DEFF Research Database (Denmark)

    Jensen, Tonny Joran; Hansen, M; Madsen, J C

    2001-01-01

    OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before and ....... The increased levels of markers of type I collagen metabolism (s-ICTP, Pyr) and s-AlbCorrCa2+ in patients with active disease and patients treated with GC may be a result of increased degradation in synovium, cartilage and bone due to the inflammatory process.......OBJECTIVE: To evaluate the influence of inflammatory activity and glucocorticoid (GC) treatment on serum parathyroid hormone (s-PTH) and bone metabolism in patients with rheumatoid arthritis (RA). Furthermore, in patients with active RA, to examine the PTH secretion and Ca2+ set point before...... groups. The levels of urine pyridinoline (Pyr) and s-albumin-corrected calcium (s-AlbCorrCa2+) were elevated in patients with active disease and patients treated with GC. S-PTH and s-phosphate were within normal ranges. S-TAP, s-ICTP, Pyr and s-AlbCorrCa2+ correlated positively with indices of disease...

  9. [Hormone regulation of male fertility].

    Science.gov (United States)

    Anselmo, J G

    1975-01-01

    An innocuous, sure, reversible means of male fertility control which does not disturb the libido is being sought. 20 healthy volunteers from ages 20 to 36 participated, using a 2nd form of protection when necessary. 10 received implants of 60 mg testosterone equally divided into 3 tubes, and began oral ingestion of 100 mg weekly, divided into daily doses, of R2323 (13-ethyl-17-hydroxy-gonen 4,9,11, trien-3-one) until the sperm became ineffective. Then oral doses were given according to personal requirements from 50 to 25 mg. The 2nd series of 10 received no testosterone implants, but followed the same scheme for oral ingestion. All patients but 1 reduced their sperm count and 80% were low enough to consider the sperm inactive. For those who used the hormone treatment as the only protection against pregnancy, no pregnancy occurred. Of the 1st group, 2 had excessive weight gain, 3 felt their libido reduced, and 1 had pain in the nipples and 1 had pain in the hepatic region. Recuperation of normal sperm characteristics was slow, especially motility and vitality. The spermogram is so altered during treatment that any accidental pregnancy could result in a defective egg and serious complications. It should definitely be avoided.

  10. The Gut Hormones in Appetite Regulation

    Directory of Open Access Journals (Sweden)

    Keisuke Suzuki

    2011-01-01

    Full Text Available Obesity has received much attention worldwide in association with an increased risk of cardiovascular diseases, diabetes, and cancer. At present, bariatric surgery is the only effective treatment for obesity in which long-term weight loss is achieved in patients. By contrast, pharmacological interventions for obesity are usually followed by weight regain. Although the exact mechanisms of long-term weight loss following bariatric surgery are yet to be fully elucidated, several gut hormones have been implicated. Gut hormones play a critical role in relaying signals of nutritional and energy status from the gut to the central nervous system, in order to regulate food intake. Cholecystokinin, peptide YY, pancreatic polypeptide, glucagon-like peptide-1, and oxyntomodulin act through distinct yet synergistic mechanisms to suppress appetite, whereas ghrelin stimulates food intake. Here, we discuss the role of gut hormones in the regulation of food intake and body weight.

  11. HORMONAL REGULATION OF SELENIUM ACCUMULATION BY PLANTS

    Directory of Open Access Journals (Sweden)

    N. A. Golubkina

    2015-01-01

    Full Text Available Hormonal regulation is considered to be a unique mechanism controlling growth and development of living organism. The review discusses the correlations between pant hormonal status of non-accumulators and hyper-accumulators of Se with the accumulation levels of this microelement. The phenomenon of stimulation and redistribution of selenium as a result of phytohormone treatment, the peculiarities of phytohormones effect among different species and cultivars, and influence of plant sexualization on selenium accumulation are described in article. Data of hormonal regulation of selenium level for spinach, garlic, perennial onion, Brassica chinenesis and Valeriana officialis are presented in the review.

  12. Parathyroid carcinoma in tertiary hyperparathyroidism.

    Science.gov (United States)

    Kim, Byung Seup; Ryu, Han Suk; Kang, Kyung Ho; Park, Sung Jun

    2016-10-01

    Parathyroid carcinoma is a rare disease of unknown etiology. This study presents a case of parathyroid carcinoma in a patient with tertiary hyperparathyroidism. Despite a successful kidney transplantation, the intact parathyroid hormone (iPTH) level of the patient was elevated consistently and could not be controlled by medical therapy. Due to the development of tertiary hyperparathyroidism with bone pain and osteoporosis, subtotal parathyroidectomy was performed 4 months after the kidney transplantation. Histological evaluation revealed that one of four parathyroid lesions was a parathyroid carcinoma, while the others were diffuse hyperplasia. Postoperative laboratory studies indicated a decreased level of iPTH. A positron emission tomography-computed tomography performed 6 months after the operation revealed no evidence of local recurrence or distant metastasis. Copyright © 2013. Published by Elsevier Taiwan.

  13. Parathyroid hyperplasia

    Science.gov (United States)

    ... LJ, de Kretser DM, et al, eds. Endocrinology: Adult and Pediatric . 7th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 63. Thakker R. The parathyroid glands, hypercalcemia and hypocalcemia. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  14. Parathyroid adenoma

    Science.gov (United States)

    ... LJ, de Kretser DM, et al, eds. Endocrinology: Adult and Pediatric . 7th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 63. Thakker RV. The parathyroid glands, hypercalcemia, and hypocalcemia. In: Goldman L, Schafer AI, eds. Goldman's Cecil ...

  15. Influence of a low calcium and phosphorus diet on the anabolic effect of human parathyroid hormone (1-38) in female rats

    DEFF Research Database (Denmark)

    Steiner, P.D.; Forrer, R.; Kneissel, Michaela

    2001-01-01

    Parathyroid hormone (PTH) or synthetic N-terminal PTH fragments administered intermittently have been established as anabolic agents in animal and human bones. In the present study, the influence of a low calcium diet on the anabolic effect of human PTH(1-38) [hPTH(1-38)] was investigated. Forty......-eight 10-week-old female Sprague-Dawley rats were randomly assigned to a diet with a low calcium content (LCa) or a diet with the recommended amount of calcium (RCa). After an adaptation period of 15 days, the rats were randomly assigned to hPTH(1-38) treatment (+LCa/+RCa) or vehicle only (-LCa....../-RCa) for an additional 14 days. Total bone mineral density (BMD) values of several bones were determined using quantitative computed tomography and from ratios of ash weight to volume. Biomechanical competence of the fourth lumbar vertebrae and of the right femora was assessed. An anabolic effect could be detected...

  16. Cellular effects and delivery propensity of penetratin is influenced by conjugation to parathyroid hormone fragment 1-34 in synergy with pH

    DEFF Research Database (Denmark)

    Kristensen, Mie; Nielsen, Line Hagner; Zor, Kinga

    2018-01-01

    The cell-penetrating peptide (CPP) penetratin, has demonstrated potential as a carrier for transepithelial delivery of cargo peptides, such as the therapeutically relevant part of parathyroid hormone, i.e. PTH(1-34). The purpose of the present study was to elucidate the relevance of modifying the pH...... evaluated by using the Real-Time-GLO assay as well as by microscopy following Tryphan blue staining. Morphological Caco-2 cell changes were studied exploiting the impedance-based xCELLigence system as well as optically using the oCelloscope setup. Finally, the effect of pH on the folding propensity...... the conjugation approach, the PTH(1-34) permeation was significantly enhanced by lowering the pH from 7.4 to 5, but also associated with a compromised barrier and a lowering of the cellular viability. The negative effects on the cellular viability following cellular incubation with the PTH(1-34)-penetratin...

  17. Effects of parathyroid hormone alone or in combination with antiresorptive therapy on bone mineral density and fracture risk--a meta-analysis

    DEFF Research Database (Denmark)

    Vestergaard, P; Jørgensen, Niklas R; Mosekilde, L

    2007-01-01

    AIM: The effects of parathyroid hormone (PTH) alone or in combination with antiresorptive therapy on changes in bone mineral density (BMD) and fracture risk were studied. MATERIALS AND METHODS: Randomised placebo controlled trials were retrieved from the PubMed, Web of Science or Embase databases......, nausea and discomfort at the injection sites. Only limited data are currently available on fracture risk reduction with PTH plus antiresorptive therapies. CONCLUSION: Although the number of studies on non-vertebral fractures is limited, our pooled analysis revealed that PTH alone or in combination...... are necessary. No studies comparing PTH, PTH plus antiresorptive drugs and antiresorptive drug versus placebo in a factorial design are available; consequently, we were unable to draw any conclusions on the superiority of PTH plus antiresorptive drug versus antiresorptive drug or PTH alone with respect to BMD...

  18. Vitamin D and parathyroid hormone are associated with gait instability and poor balance performance in mid-age to older aged women.

    Science.gov (United States)

    Bird, Marie-Louise; El Haber, Natalie; Batchelor, Frances; Hill, Keith; Wark, John D

    2018-01-01

    Vitamin D status and parathyroid hormone (PTH) levels influence the risk of accidental falls in older people, but the mechanisms underlying this effect remain unclear. Investigate the relationship between circulating PTH and 25 hydroxyvitamin D (25-OHD) levels and clinical tests of gait stability and balance as physical fall risk factors. We hypothesized that high levels of PTH and low 25-OHD levels would be significantly associated with gait stability and decreased balance performance. Observational cohort study. Australian community. 119 healthy, ambulatory female twin adults aged 47-80 years residing in Victoria, Australia. Serum PTH and 25-OHD levels with clinical tests of gait stability [double support duration (DSD)] and dynamic balance (Step Test). Associations were investigated by regression analysis and by comparing groups divided by tertiles of PTH (4.9pmol/L) and 25-OHD (75 nmol/L) using analysis of variance. Serum PTH was associated positively with DSD, with an increase of 10.6-15.7% when the mid and highest PTH tertiles were compared to the lowest tertile (p <0.025) when 25-OHD was included in the regression analysis. 25-OHD was significantly associated with DSD (greater by 10.6-11.1% when lowest and mid-tertiles compared with the highest 25-OHD tertile) (p <0.025) and dynamic balance (better performance by 12.6% in the highest compared with the lowest 25OHD tertile) (p <0.025). These findings reveal an important new relationship between parathyroid hormone and gait stability parameters and add to understanding of the role of 25-OHD in motor control of gait and dynamic balance in community-dwelling women across a wide age span. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Serum 25(OHD Level and Parathyroid Hormone in Chinese Adult Population: A Cross-Sectional Study in Guiyang Urban Community from Southeast of China

    Directory of Open Access Journals (Sweden)

    Zhang Qiao

    2013-01-01

    Full Text Available Objective. To evaluate vitamin D status and serum parathyroid hormone (IPTH of healthy adults living in Guiyang. Design and Participants. We conducted a cross-sectional evaluation in the General Community in Guiyang by cluster sampling method. The data was a part of 1510 participants (634 men, 876 women aged 20–79 years median 45.2 years from November 2009 to February 2010 in Guiyang Health Measures Survey. Measurements. Aradioimmunoassay was used to measure the level of 25-hydroxyvitamin D [25(OHD] and intact parathyroid hormone (iPTH. Results.The mean serum 25(OHD level was (20.4 ± 9.0 ng/mL and the highest level among participants aged 40–59 years (22.8 ng/mL. The mean serum PTH level was (32.1 ± 13.7 pg/mL and the lowest level among participants aged 40–50 years (30.8 ng/mL. Serum 25(OHD was below 50 nmol/liter in 52.3%, below 75 nmol/liter in 84.6%, and above 75 nmol/liter in 15.4% of the respondents. Secondary hyperparathyroidism was 5.4% (5.4% among men and 4.6% among women. The prevalence of secondary hyperparathyroidism increased (5.8%, 6.5%, and 7.1%, resp. with decreasing serum 25(OHD levels among subjects who were 30 to 20, 19.9 to 10, and <10 ng/mL, respectively. Serum 25(OHD was inversely associated with serum PTH. Conclusions. Vitamin D insufficiency and its complication of secondary hyperparathyroidism are common.

  20. Management and surgical treatment of parathyroid crisis secondary to parathyroid tumors: report of four cases.

    Science.gov (United States)

    Ameerudden, Shakil; He, Xianghui

    2011-01-01

    Parathyroid crisis, also known as a parathyroid storm, is a rare and serious complication of primary hyperparathyroidism. Four cases are reported here in which patients presented to hospital with general complaints due to hypercalcemia secondary to hyperparathyroidism. Blood test results upon admission showed high levels of serum calcium and parathyroid hormone, and medical treatment initiated to lower the calcium level was ineffective. After relevant investigations, each patient underwent surgical exploration of the parathyroid glands, followed by excision of a pathological parathyroid tumor. There was a prompt decrease in parathyroid hormone level immediately after surgery. Histology reports revealed that patients had parathyroid adenoma. All patients recovered after surgery, with serum calcium levels restored back to normal and with resolution of all symptoms of hypercalcemia. This report illustrates how often this disease is initially misdiagnosed, and how prompt appropriate surgical treatment provides the best outcome for the patient.

  1. Regulation of Thyroid Hormone Bioactivity in Health and Disease

    NARCIS (Netherlands)

    R.P. Peeters (Robin)

    2005-01-01

    textabstractTThyroid hormone plays an essential role in a variety of metabolic processes in the human body. Examples are the effects of thyroid hormone on metabolism and on the heart. The production of thyroid hormone by the thyroid is regulated by thyroid stimulating hormone (TSH) via the TSH

  2. Phosphorylation of Ribosomal Protein S6 Mediates Mammalian Target of Rapamycin Complex 1-Induced Parathyroid Cell Proliferation in Secondary Hyperparathyroidism.

    Science.gov (United States)

    Volovelsky, Oded; Cohen, Gili; Kenig, Ariel; Wasserman, Gilad; Dreazen, Avigail; Meyuhas, Oded; Silver, Justin; Naveh-Many, Tally

    2016-04-01

    Secondary hyperparathyroidism is characterized by increased serum parathyroid hormone (PTH) level and parathyroid cell proliferation. However, the molecular pathways mediating the increased parathyroid cell proliferation remain undefined. Here, we found that the mTOR pathway was activated in the parathyroid of rats with secondary hyperparathyroidism induced by either chronic hypocalcemia or uremia, which was measured by increased phosphorylation of ribosomal protein S6 (rpS6), a downstream target of the mTOR pathway. This activation correlated with increased parathyroid cell proliferation. Inhibition of mTOR complex 1 by rapamycin decreased or prevented parathyroid cell proliferation in secondary hyperparathyroidism rats and in vitro in uremic rat parathyroid glands in organ culture. Knockin rpS6(p-/-) mice, in which rpS6 cannot be phosphorylated because of substitution of all five phosphorylatable serines with alanines, had impaired PTH secretion after experimental uremia- or folic acid-induced AKI. Uremic rpS6(p-/-) mice had no increase in parathyroid cell proliferation compared with a marked increase in uremic wild-type mice. These results underscore the importance of mTOR activation and rpS6 phosphorylation for the pathogenesis of secondary hyperparathyroidism and indicate that mTORC1 is a significant regulator of parathyroid cell proliferation through rpS6. Copyright © 2016 by the American Society of Nephrology.

  3. Hormonal Regulation of Mammary Gland Development and Breast Cancer

    National Research Council Canada - National Science Library

    Xian, Wa; Rosen, Jeffrey M

    2004-01-01

    Our laboratory is interested in studying the mechanisms by which lactogenic hormones regulate Beta-casein gene expression and how alterations in the levels of these hormones may function in the growth...

  4. Synchronous parathyroid adenoma and papillary thyroid carcinoma ...

    African Journals Online (AJOL)

    Simultaneous existence of parathyroid adenoma and thyroid nonmedullary carcinoma is rarely observed. A 52‑year‑old female was diagnosed approximately 4 years ago with primary hyperparathyroidism (PHPT) on the basis of hypercalcemia and elevated serum parathyroid hormone (PTH) level. Clinically, PHPT ...

  5. Vitamin D supplementation has minor effects on parathyroid hormone and bone turnover markers in vitamin D-deficient bedridden older patients.

    Science.gov (United States)

    Björkman, Mikko; Sorva, Antti; Risteli, Juha; Tilvis, Reijo

    2008-01-01

    to evaluate the effects of vitamin D supplementation on parathyroid function and bone turnover in aged, chronically immobile patients. a randomised double-blind controlled trial. two hundred and eighteen long-term inpatients aged over 65 years. the patients were randomised into treatment groups of I-III, each receiving 0 IU, 400 IU and 1200 IU cholecalciferol per day, respectively. In case of inadequate consumption of dairy products, patients received a daily calcium substitution of 500 mg. plasma concentrations of 25-hydroxyvitamin D (25-OHD), intact parathyroid hormone (PTH), amino-terminal propeptide of type I procollagen (PINP), a marker of bone formation, and carboxy-terminal telopeptide of type I collagen (ICTP), a marker of bone resorption, were measured at baseline and after 6 months. the patients (age 84.5 years) were chronically bedridden. The baseline 25-OHD was low (23 nmol/l), correlated inversely with PINP, and tended to associate inversely with PTH. The prevalence of vitamin D deficiency (VDD) (25-OHD < 50 nmol/l) was 98% and PTH was elevated in 23% of the patients. Vitamin D supplementation significantly increased 25-OHD concentrations (124% group II, 204% group III) and decreased PTH (-7% group II, -8% group III). PINP tended to decrease, but ICTP tended to increase, and only their ratio decreased significantly. The tendency of ICTP to increase was inconsistent. Changes in 25-OHD correlated inversely with those in PTH and PINP. vitamin D supplementation has minor effects on PTH and bone turnover in chronically immobilised aged patients with VDD. Further comparative studies and meta-analyses are warranted to elucidate the confounding effects of different mobility levels on the benefits of vitamin D supplementation in patients with differing baseline PTH levels.

  6. Parathyroid cysts: a clinical and radiological challenge.

    Science.gov (United States)

    Witherspoon, Jolene; Lewis, Michael

    2012-02-01

    Parathyroid cysts are rare causes of neck swelling accounting for 0.6% of thyroid and parathyroid lesions. They may be functional, resulting in the release of parathyroid hormone, or non-functional. Non-functional cysts may be cosmetically unacceptable or cause dysphagia, dyspnoea or recurrent laryngeal nerve palsy as a result of compression. This article presents a young woman who was diagnosed with a thyroid cyst both on examination and imaging. However, the final histology confirmed this to be parathyroid in origin and this should be considered in the differential of such neck swellings.

  7. Black bear parathyroid hormone has greater anabolic effects on trabecular bone in dystrophin-deficient mice than in wild type mice.

    Science.gov (United States)

    Gray, Sarah K; McGee-Lawrence, Meghan E; Sanders, Jennifer L; Condon, Keith W; Tsai, Chung-Jui; Donahue, Seth W

    2012-09-01

    Duchenne muscular dystrophy (DMD) is an X-linked neuromuscular disease that has deleterious consequences in muscle and bone, leading to decreased mobility, progressive osteoporosis, and premature death. Patients with DMD experience a higher-than-average fracture rate, particularly in the proximal and distal femur and proximal tibia. The dystrophin-deficient mdx mouse is a model of DMD that demonstrates muscle degeneration and fibrosis and osteoporosis. Parathyroid hormone, an effective anabolic agent for post-menopausal and glucocorticoid-induced osteoporosis, has not been explored for DMD. Black bear parathyroid hormone (bbPTH) has been implicated in the maintenance of bone properties during extended periods of disuse (hibernation). We cloned bbPTH and found 9 amino acid residue differences from human PTH. Apoptosis was mitigated and cAMP was activated by bbPTH in osteoblast cultures. We administered 28nmol/kg of bbPTH 1-84 to 4-week old male mdx and wild type mice via daily (5×/week) subcutaneous injection for 6 weeks. Vehicle-treated mdx mice had 44% lower trabecular bone volume fraction than wild type mice. No changes were found in femoral cortical bone geometry or mechanical properties with bbPTH treatment in wild type mice, and only medio-lateral moment of inertia changed with bbPTH treatment in mdx femurs. However, μCT analyses of the trabecular regions of the distal femur and proximal tibia showed marked increases in bone volume fraction with bbPTH treatment, with a greater anabolic response (7-fold increase) in mdx mice than wild type mice (2-fold increase). Trabecular number increased in mdx long bone, but not wild type bone. Additionally, greater osteoblast area and decreased osteoclast area were observed with bbPTH treatment in mdx mice. The heightened response to PTH in mdx bone compared to wild type suggests a link between dystrophin deficiency, altered calcium signaling, and bone. These findings support further investigation of PTH as an anabolic

  8. A case report: Giant cystic parathyroid adenoma presenting with parathyroid crisis after Vitamin D replacement.

    Science.gov (United States)

    Asghar, Ali; Ikram, Mubasher; Islam, Najmul

    2012-07-28

    Parathyroid adenoma with cystic degeneration is a rare cause of primary hyperparathyroidism. The clinical and biochemical presentation may mimic parathyroid carcinoma. We report the case of a 55 year old lady, who had longstanding history of depression and acid peptic disease. Serum calcium eight months prior to presentation was slightly high, but she was never worked up. She was found to be Vitamin D deficient while being investigated for generalized body aches. A month after she was replaced with Vitamin D, she presented to us with parathyroid crisis. Her corrected serum calcium was 23.0 mg/dL. She had severe gastrointestinal symptoms and acute kidney injury. She had unexplained consistent hypokalemia until surgery. Neck ultrasound and CT scan revealed giant parathyroid cyst extending into the mediastinum. After initial medical management for parathyroid crisis, parathyroid cystic adenoma was surgically excised. Her serum calcium, intact parathyroid hormone, creatinine and potassium levels normalized after surgery. This case of parathyroid crisis, with very high serum calcium and parathyroid hormone levels, is a rare presentation of parathyroid adenoma with cystic degeneration. This case also highlights that Vitamin D replacement may unmask subclinical hyperparathyroidism. Consistent hypokalemia until surgery merits research into its association with hypercalcemia.

  9. Conjugation of a cell-penetrating peptide to parathyroid hormone affects its structure, potency, and transepithelial permeation

    DEFF Research Database (Denmark)

    Kristensen, Mie; de Groot, Anne Marit; Berthelsen, Jens

    2015-01-01

    hormone, i.e. PTH(1-34), and to evaluate the effect with regards to secondary structure, potency in Saos-2 cells, immunogenicity, safety as well as the transepithelial permeation across monolayers by using the Caco-2 cell culture model. Further, co-administration of CPP and PTH(1-34) as an alternative...

  10. Sequential treatment with basic fibroblast growth factor and parathyroid hormone restores lost cancellous bone mass and strength in the proximal tibia of aged ovariectomized rats

    DEFF Research Database (Denmark)

    Wronski, T.J.; Ratkus, A.M.; Thomsen, Jesper Skovhus

    2001-01-01

    This study was designed to determine whether sequential treatment with basic fibroblast growth factor (bFGF) and parathyroid hormone (PTH) can restore lost cancellous bone mass and strength at a severely osteopenic skeletal site in aged ovariectomized (OVX) rats. Female Sprague-Dawley rats were...... intravenously (iv) daily with bFGF for 14 days at a dose of 200 microg/kg body weight. At the end of bFGF treatment, one group was killed whereas the other group was subjected to 8 weeks of treatment with synthetic human PTH 1-34 [hPTH(1-34)] consisting of subcutaneous (sc) injections 5 days/week at a dose...... of 80 microg/kg. Another group of OVX rats was treated iv with vehicle for 2 weeks followed by treatment with PTH alone for 8 weeks. Other groups of sham-operated control rats and OVX rats were treated iv and sc with vehicle alone. The right proximal tibia from each rat was processed undecalcified...

  11. The expressions of the SOX trio, PTHrP (parathyroid hormone-related peptide)/IHH (Indian hedgehog protein) in surgically induced osteoarthritis of the rat.

    Science.gov (United States)

    Kim, So-Young; Im, Gun-Il

    2011-05-01

    This study was performed to investigate the expressions of the SOX trio, PTHrP (parathyroid hormone-related peptide) and IHH (Indian hedgehog protein) in OA (osteoarthritis) using surgically induced rat OA model. After 12 weeks, the articular cartilage from the distal femur was harvested. The expressions of the SOX trio, PTHrP and IHH were explored at gene, protein and epigenetic levels by real-time PCR (n = 5), immunohistochemistry (n = 5) and MSP (methylation-specific PCR). The findings from OA cartilage of the right knees were compared with those from the left knees as the control. The gene expressions of SOX-5, -6, -9 decreased by 58, 20 and 40%, respectively, in the OA cartilage, while their respective protein expressions increased. The PTHrP and IHH gene expressions decreased by 75 and 81%, respectively, although their protein expressions increased. Findings from MSP demonstrated increased methylation in the promoter regions of SOX-5 and -9 genes. This study demonstrated that increased methylation in the promoters of these genes may explain the low gene expression in the surgically induced OA model, whereas elevated protein expression is speculated to be from lag effect in the gene-protein expression.

  12. Effects of Intermittent Administration of Parathyroid Hormone (1-34 on Bone Differentiation in Stromal Precursor Antigen-1 Positive Human Periodontal Ligament Stem Cells

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Wang

    2016-01-01

    Full Text Available Periodontitis is the most common cause of tooth loss and bone destruction in adults worldwide. Human periodontal ligament stem cells (hPDLSCs may represent promising new therapeutic biomaterials for tissue engineering applications. Stromal precursor antigen-1 (STRO-1 has been shown to have roles in adherence, proliferation, and multipotency. Parathyroid hormone (PTH has been shown to enhance proliferation in osteoblasts. Therefore, in this study, we aimed to compare the functions of STRO-1(+ and STRO-1(− hPDLSCs and to investigate the effects of PTH on the osteogenic capacity of STRO-1(+ hPDLSCs in order to evaluate their potential applications in the treatment of periodontitis. Our data showed that STRO-1(+ hPDLSCs expressed higher levels of the PTH-1 receptor (PTH1R than STRO-1(− hPDLSCs. In addition, intermittent PTH treatment enhanced the expression of PTH1R and osteogenesis-related genes in STRO-1(+ hPDLSCs. PTH-treated cells also exhibited increased alkaline phosphatase activity and mineralization ability. Therefore, STRO-1(+ hPDLSCs represented a more promising cell resource for biomaterials and tissue engineering applications. Intermittent PTH treatment improved the capacity for STRO-1(+ hPDLSCs to repair damaged tissue and ameliorate the symptoms of periodontitis.

  13. Prophylactic oral calcium supplementation therapy to prevent early post thyroidectomy hypocalcemia and evaluation of postoperative parathyroid hormone levels to detect hypocalcemia: A prospective randomized study.

    Science.gov (United States)

    Arer, Ilker Murat; Kus, Murat; Akkapulu, Nezih; Aytac, Huseyin Ozgur; Yabanoglu, Hakan; Caliskan, Kenan; Tarim, Mehmet Akin

    2017-02-01

    Postoperative hypocalcemia is the most common complication after total thyroidectomy. Postoperative parathyroid hormone (PTH) measurement is one of the methods to detect or prevent postoperative hypocalcemia. Prophylactic oral calcium supplementation is another method to prevent early postoperative hypocalcemia. The aim of this study is to detect the accurate timing of PTH and evaluate efficacy of routine oral calcium supplementation for postoperative hypocalcemia. A total of 106 patients were performed total thyroidectomy. Rotuine oral calcium supplementation was given to group 1 and no treatment to group 2 according to randomization. Serum calcium and PTH level of patients in group 2 at postoperative 6, 12 and 24 h and patients in both groups at postoperative day 7 were evaluated. Patients were compared according to age, sex, operation findings, serum calcium and PTH levels and symptomatic hypocalcemia. Half of the patients (50%) were in group 1. Most of the patients were female (83%). The most common etiology of thyroid disease was multinodular goiter (64.1%). Oral calcium supplementation was given to 18 (33.9%) patients in group 2. Symptomatic hypocalcemia for group 1 and 2 was found to be 1.9 and 33.9% respectively (p hypocalcemia. Prophylactic oral calcium supplementation therapy can prevent early post-thyroidectomy hypocalcemia with advantages of being cost effective and safe. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  14. Calcitonin causes a sustained inhibition of protein kinase C-stimulated bone resorption in contrast to the transient inhibition of parathyroid hormone-induced bone resorption

    International Nuclear Information System (INIS)

    Ransjoe, M.; Lerner, U.H.

    1990-01-01

    Calcitonin is a well known inhibitor of osteoclastic bone resortion, both in vivo and in vitro. However, it is also known that calcitonin has only a transient inhibitory effect on bone resorption. The mechanism for this so-called ''escape from inhibition'' phenomenon is not clear. In the present study, the inhibitory effect of calcitonin on phorbol ester-induced bone resorption was examined in cultured neonatal mouse calvaria. Bone resorption was assessed as the release of radioactivity from bones prelabelled in vivo with 45 Ca. Two proteon kinase C-activating phorbol esters, phorbol-12-myristate-13-acetate and phorbol-12,13-dibutyrate, both stimulated 45 Ca release in 120-h cultures at a concentration of 10 nmul/l. Calcitonin (30 nmol/l) inhibited phorbol esterstimulated bone resorption without any ''escape from inhibition''. This was in contrast to the transient inhibitory effect of calcitonin on bone resorption stimulated by parathyroid hormone (10 nmol/l), prostaglandin E 2 (2 μmol/l), and bradykinin (1 μmol/l). Our results suggest that activation of protein kinase C produces a sustained inhibitory effect of calcitonin on bone resorption. (author)

  15. Associations of Sun Exposure with 25-Hydroxyvitamin D and Parathyroid Hormone Levels in a Cohort of Hypertensive Patients: The Graz Endocrine Causes of Hypertension (GECOH Study

    Directory of Open Access Journals (Sweden)

    Stefan Pilz

    2012-01-01

    Full Text Available Sunlight-induced vitamin D, synthesis in the skin is the major source of vitamin D, but data on the relationship of sun-related behaviour with vitamin D and parathyroid hormone (PTH levels are relatively sparse. We evaluated whether habitual sun exposure is associated with 25-hydroxyvitamin D (25[OH]D and PTH levels and whether there exist seasonal variations. We examined 111 hypertensive patients in Austria (latitude 47° N. Frequent sunbathing at home and outdoor sports were associated with higher 25(OHD levels (P<0.05 for both. Red or blond scalp hair as a child, memory of sunburns, preferring sunbathing, frequent stays on the beach or in open-air pools, and solarium use were associated with lower PTH levels (P<0.05 for all. Multiple linear regression analyses including age, sex, and body mass index showed that sun exposure score was significantly associated with 25(OHD (beta coefficient=0.27; P=0.004 and by trend with PTH (beta coefficient=−0.16; P=0.09. These associations were more prominent in summer in which 25(OHD levels were significantly higher compared to winter. Translation of these findings into recommendations for the prevention and treatment of vitamin D deficiency remains a challenge for the future.

  16. Effects of parathyroid hormone on cortical porosity, non-enzymatic glycation and bone tissue mechanics in rats with type 2 diabetes mellitus.

    Science.gov (United States)

    Campbell, G M; Tiwari, S; Hofbauer, C; Picke, A-K; Rauner, M; Huber, G; Peña, J A; Damm, T; Barkmann, R; Morlock, M M; Hofbauer, L C; Glüer, C-C

    2016-01-01

    Type 2 diabetes mellitus increases skeletal fragility; however, the contributing mechanisms and the efficacy of bone-forming agents are unclear. We studied diabetes and parathyroid hormone (PTH) treatment effects on cortical porosity (Ct.Po), non-enzymatic glycation (NEG) and bone mechanics in Zucker diabetic fatty (ZDF) rats. Eleven-week old ZDF diabetic (DB) and non-diabetic (ND) rats were given 75μg/kg PTH (1-84) or vehicle 5days per week over 12weeks. The right femora and L4 vertebrae were excised, micro-CT scanned, and tested in 3-point bending and uniaxial compression, respectively. NEG of the samples was determined using fluorescence. Diabetes increased Ct.Po (vertebra (vert): +40.6%, femur (fem): +15.5% vs. ND group, pbone tissue mechanics where reductions in vertebral maximum strain (-22%) and toughness (-42%) were observed in the DB vs. ND group (pbone mechanics, which were not improved with PTH treatment. PTH therapy alone may worsen diabetic bone mechanics through formation of new bone with high AGEs cross-linking. Optimal treatment regimens must address both improvements of bone mass and glycemic control in order to successfully reduce diabetic bone fragility. This article is part of a Special Issue entitled "Bone and diabetes". Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Parathyroid hormone blocks the stimulatory effect of insulin-like growth factor-I on collagen synthesis in cultured 21-day fetal rat calvariae

    International Nuclear Information System (INIS)

    Kream, B.E.; Petersen, D.N.; Raisz, L.G.

    1990-01-01

    We examined the interaction of parathyroid hormone (PTH) and recombinant human insulin-like growth factor I (IGF-I) on collagen synthesis in 21-day fetal rat calvariae as assessed by measuring the incorporation of [ 3 H]proline into collagenase-digestible protein. After 96 hours of culture, 10 nM PTH antagonized the stimulation of collagen synthesis and partially blocked the increase in dry weight produced by 10 nM IGF-I. The effect of PTH to block IGF-I stimulated collagen synthesis was observed in the central bone of calvariae and was mimicked by forskolin and phorbol 12-myristate 13-acetate, but not by 1,25-dihydroxyvitamin D3, transforming growth factor-alpha or dexamethasone. Our data are consistent with the concept that the direct effect of PTH is to inhibit basal CDP labeling and fully oppose IGF-I stimulated CDP labeling. The finding that this effect of PTH is mimicked by forskolin and PMA suggests that this block in IGF-I stimulation of CDP labeling involves both cAMP and protein kinase C mediated pathways

  18. Combination therapy of Nigella sativa and human parathyroid hormone on bone mass, biomechanical behavior and structure in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Altan, Mehmet Fatih; Kanter, Mehmet; Donmez, Senayi; Kartal, Murat Emre; Buyukbas, Sadik

    2007-01-01

    Extracts of the seeds of Nigella sativa (NS), an annual herbaceous plant of the Ranunculaceae family, have been used for many years for therapeutic purposes, including their potential anti-diabetic properties. The aim of the present study was to test the hypothesis that combined treatment with NS and human parathyroid hormone (hPTH) is more effective than treatment with NS or hPTH alone in improving bone mass, connectivity, biomechanical behaviour and strength in insulin-dependent diabetic rats. Diabetes was induced by intraperitoneal injection of streptozotocin (STZ) at a single dose of 50mg/kg. The diabetic rats received NS (2ml/kg/day, i.p.), hPTH (6microg/kg/day, i.p.) or NS and hPTH combined for 4 weeks, starting 8 weeks after STZ injection. The beta-cells of the pancreatic islets of Langerhans were examined by immunohistochemical methods. In addition, bone sections of femora were processed for histomorphometry and biomechanical analysis. In diabetic rats, the beta-cells were essentially negative for insulin-immunoreactivity. NS treatment (alone or in combination with hPTH) significantly increased the area of insulin immunoreactive beta-cells in diabetic rats; however, hPTH treatment alone only led to a slightly increase in the insulin-immunoreactivity. These results suggest that NS might be used in a similar manner to insulin as a safe and effective therapy for diabetes and might be useful in the treatment of diabetic osteopenia.

  19. Identification of a cDNA encoding a parathyroid hormone-like peptide from a human tumor associated with humoral hypercalcemia of malignancy

    International Nuclear Information System (INIS)

    Mangin, M.; Webb, A.C.; Dreyer, B.E.

    1988-01-01

    Humoral hypercalcemia of malignancy is a common paraneoplastic syndrome that appears to be mediated in many instances by a parathyroid hormone-like peptide. Poly(A) + RNA from a human renal carcinoma associated with this syndrome was enriched by preparative electrophoresis and used to construct an enriched cDNA library in phage λgt10. The library was screened with a codon-preference oligonucleotide synthesized on the basis of a partial N-terminal amino acid sequence from a human tumor-derived peptide, and a 2.0 kilo-base cDNA was identified. The cDNA encodes a 177 amino acid protein consisting of a 36 amino acid leader sequence and a 141 amino acid mature peptide. The first 13 amino acids of the deduced sequence of the mature peptide display strong homology to human PTH, with complete divergence thereafter. RNA blot-hybridization analysis revealed multiple transcripts in mRNA from tumors associated with the humor syndrome and also in mRNA from normal human keratinocytes. Southern blot analysis of genomic DNA from humans and rodents revealed a simple pattern compatible with a single-copy gene. The gene has been mapped to chromosome 12

  20. Regulation of gut hormone secretion. Studies using isolated perfused intestines

    DEFF Research Database (Denmark)

    Svendsen, Berit; Holst, Jens Juul.

    2016-01-01

    hormones is highly increased after gastric bypass operations, which have turned out to be an effective therapy of not only obesity but also type 2 diabetes. These effects are likely to be due, at least in part, to increases in the secretion of these gut hormones (except GIP). Therefore, stimulation...... of the endogenous hormone represents an appealing therapeutic strategy, which has spurred an interest in understanding the regulation of gut hormone secretion and a search for particularly GLP-1 and PYY secretagogues. The secretion of the gut hormones is stimulated by oral intake of nutrients often including...

  1. Spectrum of single photon emission computed tomography/computed tomography findings in patients with parathyroid adenomas.

    Science.gov (United States)

    Chakraborty, Dhritiman; Mittal, Bhagwant Rai; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay

    2011-01-01

    Primary hyperparathyroidism results from excessive parathyroid hormone secretion. Approximately 85% of all cases of primary hyperparathyroidism are caused by a single parathyroid adenoma; 10-15% of the cases are caused by parathyroid hyperplasia. Parathyroid carcinoma accounts for approximately 3-4% of cases of primary disease. Technetium-99m-sestamibi (MIBI), the current scintigraphic procedure of choice for preoperative parathyroid localization, can be performed in various ways. The "single-isotope, double-phase technique" is based on the fact that MIBI washes out more rapidly from the thyroid than from abnormal parathyroid tissue. However, not all parathyroid lesions retain MIBI and not all thyroid tissue washes out quickly, and subtraction imaging is helpful. Single photon emission computed tomography (SPECT) provides information for localizing parathyroid lesions, differentiating thyroid from parathyroid lesions, and detecting and localizing ectopic parathyroid lesions. Addition of CT with SPECT improves the sensitivity. This pictorial assay demonstrates various SPECT/CT patterns observed in parathyroid scintigraphy.

  2. The administration of intermittent parathyroid hormone affects functional recovery from trochanteric fractured neck of femur: a randomised prospective mixed method pilot study.

    Science.gov (United States)

    Chesser, T J S; Fox, R; Harding, K; Halliday, R; Barnfield, S; Willett, K; Lamb, S; Yau, C; Javaid, M K; Gray, A C; Young, J; Taylor, H; Shah, K; Greenwood, R

    2016-06-01

    We wished to assess the feasibility of a future randomised controlled trial of parathyroid hormone (PTH) supplements to aid healing of trochanteric fractures of the hip, by an open label prospective feasibility and pilot study with a nested qualitative sub study. This aimed to inform the design of a future powered study comparing the functional recovery after trochanteric hip fracture in patients undergoing standard care, versus those who undergo administration of subcutaneous injection of PTH for six weeks. We undertook a pilot study comparing the functional recovery after trochanteric hip fracture in patients 60 years or older, admitted with a trochanteric hip fracture, and potentially eligible to be randomised to either standard care or the administration of subcutaneous PTH for six weeks. Our desired outcomes were functional testing and measures to assess the feasibility and acceptability of the study. A total of 724 patients were screened, of whom 143 (20%) were eligible for recruitment. Of these, 123 were approached and 29 (4%) elected to take part. However, seven patients did not complete the study. Compliance with the injections was 11 out of 15 (73%) showing the intervention to be acceptable and feasible in this patient population. Only 4% of patients who met the inclusion criteria were both eligible and willing to consent to a study involving injections of PTH, so delivering this study on a large scale would carry challenges in recruitment and retention. Methodological and sample size planning would have to take this into account. PTH administration to patients to enhance fracture healing should still be considered experimental. Cite this article: Bone Joint J 2016;98-B:840-5. ©2016 Chesser et al.

  3. Differences between hospitals in attainment of parathyroid hormone treatment targets in chronic kidney disease do not reflect differences in quality of care.

    Science.gov (United States)

    Peeters, Mieke J; van Zuilen, Arjan D; van den Brand, Jan A J G; Blankestijn, Peter J; ten Dam, Marc A G J; Wetzels, Jack F M

    2012-08-06

    Transparency in quality of care (QoC) is stimulated and hospitals are compared and judged on the basis of indicators of performance on specific treatment targets. In patients with chronic kidney disease, QoC differed significantly between hospitals. In this analysis we explored additional parameters to explain differences between centers in attainment of parathyroid hormone (PTH) treatment targets. Using MASTERPLAN baseline data, we selected one of the worst (center A) and one of the best (center B) performing hospitals. Differences between the two centers were analyzed from the year prior to start of the MASTERPLAN study until the baseline evaluation. Determinants of PTH were assessed. 101 patients from center A (median PTH 9.9 pmol/l, in 67 patients exceeding recommended levels) and 100 patients from center B (median PTH 6.5 pmol/l, in 34 patients exceeding recommended levels), were included. Analysis of clinical practice did not reveal differences in PTH management between the centers. Notably, hyperparathyroidism resulted in a change in therapy in less than 25% of patients. In multivariate analysis kidney transplant status, MDRD-4, and treatment center were independent predictors of PTH. However, when MDRD-6 (which accounts for serum urea and albumin) was used instead of MDRD-4, the center effect was reduced. Moreover, after calibration of the serum creatinine assays treatment center no longer influenced PTH. We show that differences in PTH control between centers are not explained by differences in treatment, but depend on incomparable patient populations and laboratory techniques. Therefore, results of hospital performance comparisons should be interpreted with great caution.

  4. Vitamin D and its relation with ionic calcium, parathyroid hormone, maternal and neonatal characteristics in pregnancy after roux-en-Y gastric bypass.

    Science.gov (United States)

    Medeiros, Marina; Matos, Andréa C; Pereira, Silvia E; Saboya, Carlos; Ramalho, Andréa

    2016-03-01

    The objective of this study was to evaluate vitamin D nutritional status and its relation with ionic calcium, parathyroid hormone (PTH), maternal anthropometry and perinatal outcomes in pregnant women who previously underwent Roux-en-Y gastric bypass (RYGB) surgery. In a clinic specialized in obesity control located in the city of Rio de Janeiro (Brazil), the following information were collected for adult women who underwent RYGB before pregnancy: serum concentrations of vitamin D [25(OH)D], calcium and PTH per gestational trimester and data on maternal anthropometry, gestational intercurrences and perinatal outcomes. The present study included 46 post-RYGB pregnant women. The prevalence of pregnant women with deficiency (≤20 ng/mL) or insufficiency (≥21 and 29 ng/mL) of vitamin D was above 70% in all trimesters. The prevalence of calcium deficiency was 15.2% in the first and in the second trimesters and 20% in the third trimester, while the prevalence of excess PTH was 19.6, 30.4 and 32.6% in the first, the second and the third trimesters, respectively. In the second and the third trimesters, a significant difference was observed between concentrations of 25(OH)D, and a negative correlation was observed between concentrations of calcium and PTH. Association of 25(OH)D with urinary tract infection (UTI) was found, but there was no association with calcium, PTH, maternal anthropometry, type of delivery and weight and gestational age at birth The post-RYGB pregnant women showed an elevated serum inadequacy (deficiency or insufficiency) of 25(OH)D during pregnancy. Maternal vitamin D status showed no association with maternal variables, except UTI, and the neonatal variables analyzed.

  5. Long-term effects of intermittent equine parathyroid hormone fragment (ePTH-1-37) administration on bone metabolism in healthy horses.

    Science.gov (United States)

    Weisrock, Katharina U; Winkelsett, Sarah; Martin-Rosset, William; Forssmann, Wolf-Georg; Parvizi, Nahid; Coenen, Manfred; Vervuert, Ingrid

    2011-11-01

    Intermittent administration of parathyroid hormone (PTH) is an anabolic therapy for osteoporotic conditions in humans. This study evaluated the effects of equine PTH fragment (ePTH-1-37) administration on bone metabolism in 12 healthy horses. Six horses each were treated once daily for 120days with subcutaneous injections of 0.5μg/kg ePTH-1-37 or placebo. Blood was collected to determine ionized calcium (Ca(++)), total Ca (Ca(T)), inorganic phosphorus, serum equine osteocalcin (eOC), carboxy-terminal telopeptide of type I collagen (ICTP), bone-specific alkaline phosphatase, and carboxy-terminal cross-linked telopeptide of type I collagen. Bone mineral density (BMD) was determined with dual X-ray absorptiometry of the metacarpus and calcaneus. Significantly higher blood Ca(++) and plasma Ca(T) concentrations were measured 5h after ePTH-1-37 administration compared to placebo. Higher serum eOC concentrations were found for ePTH-1-37 treatment at days 90 (P<0.05) and 120 (P=0.05). Significantly higher serum ICTP levels were observed with ePTH-1-37 treatment at days 60 and 90. For both study groups, BMD increased significantly in the calcaneus. Long-term use of ePTH-1-37 seemed to have no negative effects on bone metabolism in healthy horses. The absence of undesirable side effects is the premise to ensure safety for further clinical investigations in horses with increased bone resorption processes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Effects of Serum Albumin, Calcium Levels, Cancer Stage and Performance Status on Weight Loss in Parathyroid Hormone-Related Peptide Positive or Negative Patients with Cancer

    Directory of Open Access Journals (Sweden)

    Ji-Yeon Lee

    2018-03-01

    Full Text Available BackgroundA recent animal study showed that parathyroid hormone-related peptide (PTHrP is associated with cancer cachexia by promoting adipose tissue browning, and we previously demonstrated that PTHrP predicts weight loss (WL in patients with cancer. In this study, we investigated whether prediction of WL by PTHrP is influenced by clinical factors such as serum albumin, corrected calcium levels, cancer stage, and performance status (PS.MethodsA cohort of 219 patients with cancer whose PTHrP level was measured was enrolled and followed for body weight (BW changes. Subjects were divided into two groups by serum albumin (cutoff value, 3.7 g/dL, corrected calcium (cutoff value, 10.5 mg/dL, cancer stage (stage 1 to 3 or 4, or PS (Eastern Cooperative Oncology Group 0 to 1 or 2 to 4, respectively. Clinically significant WL was defined as either percent of BW change (% BW <−5% or % BW <−2% plus body mass index (BMI <20 kg/m2.ResultsAfter a median follow-up of 327 days, 74 patients (33.8% experienced clinically significant WL. A positive PTHrP level was associated with a 2-fold increased risk of WL after adjusting for age, baseline BMI, serum albumin, corrected calcium level, cancer stage, and PS. The effect of PTHrP on WL remained significant in patients with low serum albumin, stage 4 cancer, and good PS. Regardless of calcium level, the effect of PTHrP on WL was maintained, although there was an additive effect of higher calcium and PTHrP levels.ConclusionEarly recognition of patients with advanced cancer who are PTHrP positive with hypercalcemia or hypoalbuminemia is needed for their clinical management.

  7. Effects of continual intermittent administration of parathyroid hormone on implant stability in the presence of osteoporosis: an in vivo study using resonance frequency analysis in a rabbit model

    Directory of Open Access Journals (Sweden)

    Yoshifumi Oki

    Full Text Available Abstract Objective: This study aimed to evaluate the effects of continual intermittent administration of parathyroid hormone (PTH on implant stability in the presence of osteoporosis, using rabbit models. Material and Methods: Fifteen female New Zealand white rabbits underwent ovariectomy and were administered glucocorticoids to induce osteoporosis, following which they were divided into three groups. The first group received intermittent subcutaneous PTH for 4 weeks until implant placement (PTH1, while the second and third groups received PTH (PTH2 and saline (control, respectively, for 4 weeks before and after implant placement. After intermittent administration of PTH or saline, titanium implants were inserted into the left femoral epiphyses of all animals, and the implant stability quotient (ISQ was measured immediately after placement to assess the primary stability and at 2 and 4 weeks after implant placement to assess osseointegration. At 4 weeks after implant placement, histological and histomorphometric evaluations were conducted and the bone area around the implant socket was measured as a ratio of the total bone area to the total tissue area. Results: Regarding primary stability, the ISQ values for the PTH1 and PTH2 groups were significantly higher than those for the control group (p<0.05. Concerning osseointegration, the ISQ values at 2 and 4 weeks were significantly higher for the PTH2 group than for the PTH1 and control (p<0.05 groups. Histological assessments showed a thicker and more trabecular bone around the implant sockets in the PTH2 specimens than in the PTH1 and control specimens. The bone area around the implant socket was significantly greater in the PTH2 group than in the PTH1 and control groups (p<0.05. Conclusions: Our results suggest that continual intermittent PTH administration before and after dental implant placement is effective for the achievement of favorable stability and osseointegration in the presence of

  8. Alterations in vitamin D metabolite, parathyroid hormone and fibroblast growth factor-23 concentrations in sclerostin-deficient mice permit the maintenance of a high bone mass.

    Science.gov (United States)

    Ryan, Zachary C; Craig, Theodore A; McGee-Lawrence, Meghan; Westendorf, Jennifer J; Kumar, Rajiv

    2015-04-01

    Humans with mutations of the sclerostin (SOST) gene, and knockout animals in which the Sost gene has been experimentally deleted, exhibit an increase in bone mass. We review the mechanisms by which Sost knockout mice are able to accrete increased amounts of calcium and phosphorus required for the maintenance of a high bone mass. Recently published information from our laboratory, shows that bone mass is increased in Sost-deficient mice through an increase in osteoblast and a decrease in osteoclast activity, which is mediated by activation of β-catenin and an increase in prostacyclin synthesis in osteocytes and osteoblasts. The increases in calcium and phosphorus retention required for enhanced bone mineral accretion are brought about by changes in the vitamin D endocrine system, parathyroid hormone (PTH) and fibroblast growth factor-23 (FGF-23). Thus, in Sost knockout mice, concentrations of serum 1,25-dihydroxyvitamin D (1,25(OH)2D) are increased and concentrations of FGF-23 are decreased thereby allowing a positive calcium and phosphorus balance. Additionally, in the absence of Sost expression, urinary calcium is decreased, either through a direct effect of sclerostin on renal calcium handling, or through its effect on the synthesis of 1,25(OH)2D. Adaptations in vitamin D, PTH and FGF-23 physiology occur in the absence of sclerostin expression and mediate increased calcium and phosphorus retention required for the increase in bone mineralization. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Thyroid hormone is required for hypothalamic neurons regulating cardiovascular functions

    NARCIS (Netherlands)

    Mittag, J.; Lyons, D.J.; Sällström, J.; Vujoviv, M.; Dudazy-Gralla, S.; Warner, A.; Wallis, K.; Alkemade, A.; Nordström, K.; Monyer, H.; Broberger, C.; Arner, A.; Vennström, B.

    2013-01-01

    Thyroid hormone is well known for its profound direct effects on cardiovascular function and metabolism. Recent evidence, however, suggests that the hormone also regulates these systems indirectly through the central nervous system. While some of the molecular mechanisms underlying the hormone’s

  10. Regulation of abiotic and biotic stress responses by plant hormones

    DEFF Research Database (Denmark)

    Grosskinsky, Dominik Kilian; van der Graaff, Eric; Roitsch, Thomas Georg

    2016-01-01

    Plant hormones (phytohormones) are signal molecules produced within the plant, and occur in very low concentrations. In the present chapter, the current knowledge on the regulation of biotic and biotic stress responses by plant hormones is summarized with special focus on the novel insights...... into the complex hormonal crosstalk of classical growth stimulating plant hormones within the naturally occurring biotic and abiotic multistress environment of higher plants. The MAPK- and phytohormone-cascades which comprise a multitude of single molecules on different signalling levels, as well as interactions...

  11. Human articular chondrocytes secrete parathyroid hormone-related protein and inhibit hypertrophy of mesenchymal stem cells in coculture during chondrogenesis.

    Science.gov (United States)

    Fischer, J; Dickhut, A; Rickert, M; Richter, W

    2010-09-01

    The use of bone marrow-derived mesenchymal stem cells (MSCs) has shown promise in cell-based cartilage regeneration. A yet-unsolved problem, however, is the unwanted up-regulation of markers of hypertrophy, such as alkaline phosphatase (AP) and type X collagen, during in vitro chondrogenesis and the formation of unstable calcifying cartilage at heterotopic sites. In contrast, articular chondrocytes produce stable, nonmineralizing cartilage. The aim of this study was to address whether coculture of MSCs with human articular chondrocytes (HACs) can suppress the undesired hypertrophy in differentiating MSCs. MSCs were differentiated in chondrogenic medium that had or had not been conditioned by parallel culture with HAC pellets, or MSCs were mixed in the same pellet with the HACs (1:1 or 1:2 ratio) and cultured for 6 weeks. Following in vitro differentiation, the pellets were transplanted into SCID mice. The gene expression ratio of COL10A1 to COL2A1 and of Indian hedgehog (IHH) to COL2A1 was significantly reduced by differentiation in HAC-conditioned medium, and less type X collagen protein was deposited relative to type II collagen. AP activity was significantly lower (P chondrogenesis. The main inhibitory effects seen with HAC-conditioned medium were reproducible by PTHrP supplementation of unconditioned medium. HAC-derived soluble factors and direct coculture are potent means of improving chondrogenesis and suppressing the hypertrophic development of MSCs. PTHrP is an important candidate soluble factor involved in this effect.

  12. Environmental effects on hormonal regulation of testicular descent

    DEFF Research Database (Denmark)

    Toppari, J; Virtanen, H E; Skakkebaek, N E

    2006-01-01

    cause some cases of undescended testis. Similarly, androgen insensitivity or androgen deficiency can cause cryptorchidism. Estrogens have been shown to down regulate INSL3 and thereby cause maldescent. Thus, a reduced androgen-estrogen ratio may disturb testicular descent. Environmental effects changing......Regulation of testicular descent is hormonally regulated, but the reasons for maldescent remain unknown in most cases. The main regulatory hormones are Leydig cell-derived testosterone and insulin-like factor 3 (INSL3). Luteinizing hormone (LH) stimulates the secretion of these hormones...... hypothesize that an exposure to a mixture of chemicals with anti-androgenic or estrogenic properties (either their own activity or their effect on androgen-estrogen ratio) may be involved in cryptorchidism....

  13. Modelling synergistic effects of appetite regulating hormones

    DEFF Research Database (Denmark)

    Schmidt, Julie Berg; Ritz, Christian

    2016-01-01

    We briefly reviewed one definition of dose addition, which is applicable within the framework of generalized linear models. We established how this definition of dose addition corresponds to effect addition in case only two doses per compound are considered for evaluating synergistic effects. The....... The link between definitions was exemplified for an appetite study where two appetite hormones were studied....

  14. Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing.

    Science.gov (United States)

    Warden, Stuart J; Komatsu, David E; Rydberg, Johanna; Bond, Julie L; Hassett, Sean M

    2009-03-01

    Fracture healing is thought to be naturally optimized; however, recent evidence indicates that it may be manipulated to occur at a faster rate. This has implications for the duration of morbidity associated with bone injuries. Two interventions found to accelerate fracture healing processes are recombinant human parathyroid hormone [1-34] (PTH) and low-intensity pulsed ultrasound (LIPUS). This study aimed to investigate the individual and combined effects of PTH and LIPUS on fracture healing. Bilateral midshaft femur fractures were created in Sprague-Dawley rats, and the animals treated 7 days/week with PTH (10 microg/kg) or a vehicle solution. Each animal also had one fracture treated for 20 min/day with active-LIPUS (spatial-averaged, temporal-averaged intensity [I(SATA)]=100 mW/cm(2)) and the contralateral fracture treated with inactive-LIPUS (placebo). Femurs were harvested 35 days following injury to permit micro-computed tomography, mechanical property and histological assessments of the fracture calluses. There were no interactions between PTH and LIPUS indicating that their effects were additive rather than synergistic. These additive effects were contrasting with LIPUS primarily increasing total callus volume (TV) without influencing bone mineral content (BMC), and PTH having the opposite effect of increasing BMC without influencing TV. As a consequence of the effect of LIPUS on TV but not BMC, it decreased volumetric bone mineral density (vBMD) resulting in a less mature callus. The decreased maturity and persistence of cartilage at the fracture site when harvested offset any beneficial mechanical effects of the increased callus size with LIPUS. In contrast, the effect of PTH on callus BMC but not TV resulted in increased callus vBMD and a more mature callus. This resulted in PTH increasing fracture site mechanical strength and stiffness. These data suggest that PTH may have utility in the treatment of acute bone fractures, whereas LIPUS at an I(SATA) of

  15. Parathyroid Hormone Induces Bone Cell Motility and Loss of Mature Osteocyte Phenotype through L-Calcium Channel Dependent and Independent Mechanisms.

    Directory of Open Access Journals (Sweden)

    Matthew Prideaux

    Full Text Available Parathyroid Hormone (PTH can exert both anabolic and catabolic effects on the skeleton, potentially through expression of the PTH type1 receptor (PTH1R, which is highly expressed in osteocytes. To determine the cellular and molecular mechanisms responsible, we examined the effects of PTH on osteoblast to osteocyte differentiation using primary osteocytes and the IDG-SW3 murine cell line, which differentiate from osteoblast to osteocyte-like cells in vitro and express GFP under control of the dentin matrix 1 (Dmp1 promoter. PTH treatment resulted in an increase in some osteoblast and early osteocyte markers and a decrease in mature osteocyte marker expression. The gene expression profile of PTH-treated Day 28 IDG-SW3 cells was similar to PTH treated primary osteocytes. PTH treatment induced striking changes in the morphology of the Dmp1-GFP positive cells in IDG-SW3 cultures and primary cells from Dmp1-GFP transgenic mice. The cells changed from a more dendritic to an elongated morphology and showed increased cell motility. E11/gp38 has been shown to be important for cell migration, however, deletion of the E11/gp38/podoplanin gene had no effect on PTH-induced motility. The effects of PTH on motility were reproduced using cAMP, but not with protein kinase A (PKA, exchange proteins activated by cAMP (Epac, protein kinase C (PKC or phosphatidylinositol-4,5-bisphosphonate 3-kinase (Pi3K agonists nor were they blocked by their antagonists. However, the effects of PTH were mediated through calcium signaling, specifically through L-type channels normally expressed in osteoblasts but decreased in osteocytes. PTH was shown to increase expression of this channel, but decrease the T-type channel that is normally more highly expressed in osteocytes. Inhibition of L-type calcium channel activity attenuated the effects of PTH on cell morphology and motility but did not prevent the downregulation of mature osteocyte marker expression. Taken together, these

  16. Threshold levels of 25-hydroxyvitamin D and parathyroid hormone for impaired bone health in children with congenital ichthyosis and type IV and V skin.

    Science.gov (United States)

    Sethuraman, G; Sreenivas, V; Yenamandra, V K; Gupta, N; Sharma, V K; Marwaha, R K; Bhari, N; Irshad, M; Kabra, M; Thulkar, S

    2015-01-01

    Patients with congenital ichthyosis, especially those with darker skin types, are at increased risk of developing vitamin D deficiency and rickets. The relationships between 25-hydroxyvitamin D [25(OH)D], parathyroid hormone (PTH) and bone health have not been studied previously, in ichthyosis. To determine the threshold levels of 25(OH)D and PTH for impaired bone health in children with congenital ichthyosis. In this cross-sectional study, 119 children with ichthyosis and 168 controls were recruited. Serum 25(OH)D, PTH, calcium, phosphate and alkaline phosphatase (ALP) were measured. Radiological screening for rickets was carried out only in children with ichthyosis. Forty-seven children with ichthyosis had either clinical or radiological evidence of rickets. The correlation between serum 25(OH)D and PTH showed that a serum level of 25(OH)D 8 ng mL(-1) was associated with a significant increase in PTH. The correlation between PTH and ALP showed that a serum PTH level of 75 pg mL(-1) was associated with a significant increase in ALP levels. Of the different clinical phenotypes of ichthyosis, both autosomal recessive congenital ichthyosis (ARCI) and epidermolytic ichthyosis (EI) were found to have significantly increased PTH, ALP and radiological rickets scores compared with common ichthyosis. Serum levels of 25(OH)D ≤ 8 ng mL(-1) and PTH ≥ 75 pg mL(-1) significantly increases the risk for development of rickets [odds ratio (OR) 2·8; 95% confidence interval (CI) 1·05-7·40; P = 0·04] in ichthyosis. Among the different types, patients with ARCI (OR 4·83; 95% CI 1·74-13·45; P < 0·01) and EI (OR 5·71; 95% CI 1·74-18·79; P < 0·01) are at an increased risk of developing rickets. © 2014 British Association of Dermatologists.

  17. Treatment with N- and C-Terminal Peptides of Parathyroid Hormone-Related Protein Partly Compensate the Skeletal Abnormalities in IGF-I Deficient Mice

    Science.gov (United States)

    Portal-Núñez, Sergio; Murillo-Cuesta, Silvia; Lozano, Daniel; Cediel, Rafael; Esbrit, Pedro

    2014-01-01

    Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1–36) and PTHrP (107–111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1–36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1–36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone. PMID:24503961

  18. Serum Parathyroid Hormone Responses to Vitamin D Supplementation in Overweight/Obese Adults: A Systematic Review and Meta-Analysis of Randomized Clinical Trials

    Directory of Open Access Journals (Sweden)

    Ashley Lotito

    2017-03-01

    Full Text Available Obesity is often associated with vitamin D deficiency and secondary hyperparathyroidism. Vitamin D supplementation typically leads to the reductions in serum parathyroid hormone (PTH levels, as shown in normal weight individuals. Meanwhile, the dose of vitamin D supplementation for the suppression of PTH may differ in overweight and obese adults. We conducted a systematic review and meta-analysis of randomized controlled trials to determine the dose of vitamin D supplementation required to suppress PTH levels in overweight/obese individuals. We identified 18 studies that examined overweight or obese healthy adults who were supplemented with varying doses of vitamin D3. The primary outcomes examined were changes in PTH and serum 25-hydroxyvitamin D (25OHD levels from baseline to post-treatment. The results of the meta-analysis showed that there was a significant treatment effect of vitamin D supplementation on PTH, total standardized mean difference (SMD (random effects = −0.38 (95% CI = −0.56 to −0.20, t = −4.08, p < 0.001. A significant treatment effect of vitamin D supplementation was also found on 25OHD, total SMD (random effects = 2.27 (95% CI = 1.48 to 3.06 t = 5.62, p < 0.001. Data from available clinical trials that supplemented adults with D3 ranging from 400 IU to 5714 IU, showed that 1000 IU of vitamin D supplementation best suppressed serum PTH levels, total SMD = −0.58, while vitamin D supplementation with 4000 IU showed the greatest increase in serum 25OH levels. Vitamin D and calcium supplementation of 700 IU and 500 mg, respectively, also showed a significant treatment effect on the suppression of PTH with a total SMD = −5.30 (95% CI = −9.72 to −0.88. In conclusion, the meta analysis of available clinical trials indicates that 1000 IU vitamin D supplementation can suppress serum PTH levels, while 4000 IU of vitamin D was associated with the largest increase in serum 25OHD levels in the overweight and obese

  19. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor

    Science.gov (United States)

    Kong, Li; Zhao, Yun-Peng; Tian, Qing-Yun; Feng, Jian-Quan; Kobayashi, Tatsuya; Merregaert, Joseph; Liu, Chuan-Ju

    2016-01-01

    Chondrogenesis and endochondral ossification are precisely controlled by cellular interactions with surrounding matrix proteins and growth factors that mediate cellular signaling pathways. Here, we report that extracellular matrix protein 1 (ECM1) is a previously unrecognized regulator of chondrogenesis. ECM1 is induced in the course of chondrogenesis and its expression in chondrocytes strictly depends on parathyroid hormone–related peptide (PTHrP) signaling pathway. Overexpression of ECM1 suppresses, whereas suppression of ECM1 enhances, chondrocyte differentiation and hypertrophy in vitro and ex vivo. In addition, target transgene of ECM1 in chondrocytes or osteoblasts in mice leads to striking defects in cartilage development and endochondral bone formation. Of importance, ECM1 seems to be critical for PTHrP action in chondrogenesis, as blockage of ECM1 nearly abolishes PTHrP regulation of chondrocyte hypertrophy, and overexpression of ECM1 rescues disorganized growth plates of PTHrP-null mice. Furthermore, ECM1 and progranulin chondrogenic growth factor constitute an interaction network and act in concert in the regulation of chondrogenesis.—Kong, L., Zhao, Y.-P., Tian, Q.-Y., Feng, J.-Q., Kobayashi, T., Merregaert, J., Liu, C.-J. Extracellular matrix protein 1, a direct targeting molecule of parathyroid hormone–related peptide, negatively regulates chondrogenesis and endochondral ossification via associating with progranulin growth factor. PMID:27075243

  20. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  1. Stages of Parathyroid Cancer

    Science.gov (United States)

    ... syndrome . Treatment with radiation therapy may increase the risk of developing a parathyroid adenoma. Signs and symptoms of parathyroid cancer include weakness, feeling tired, and a lump in the neck. Most ...

  2. Parathyroid hormone (PTH) blood test

    Science.gov (United States)

    ... PTH) intact molecule; Intact PTH; Hyperparathyroidism - PTH blood test; Hypoparathyroidism - PTH blood test ... drinking for some period of time before the test. Most often, you will not need to fast ...

  3. Parathyroid Hormone Activates Phospholipase C (PLC)-Independent Protein Kinase C Signaling Pathway via Protein Kinase A (PKA)-Dependent Mechanism: A New Defined Signaling Route Would Induce Alternative Consideration to Previous Conceptions.

    Science.gov (United States)

    Tong, Guojun; Meng, Yue; Hao, Song; Hu, Shaoyu; He, Youhua; Yan, Wenjuan; Yang, Dehong

    2017-04-20

    BACKGROUND Parathyroid hormone (PTH) is an effective anti-osteoporosis agent, after binding to its receptor PTHR1, several signaling pathways, including cAMP/protein kinase A (PKA) and phospholipase C (PLC)/protein kinase C (PKC), are initiated through G proteins; with the cAMP/PKA pathway as the major pathway. Earlier studies have reported that PTHR1 might also activate PKC via a PLC-independent mechanism, but this pathway remains unclear. MATERIAL AND METHODS In HEK293 cells, cAMP accumulation was measured with ELISA and PKC was measured with fluorescence resonance energy transfer (FRET) analysis using CKAR plasmid. In MC3T3-E1 cells, real-time PCR was performed to examine gene expressions. Then assays for cell apoptosis, cell differentiation, alkaline phosphatase activity, and mineralization were performed. RESULTS The FRET analysis found that PTH(1-34), [G1,R19]PTH(1-34) (GR(1-34), and [G1,R19]PTH(1-28) (GR(1-28) were all activated by PKC. The PKC activation ability of GR(1-28) was blocked by cAMP inhibitor (Rp-cAMP) and rescued with the addition of active PKA-α and PKA-β. The PKC activation ability of GR(1-34) was partially inhibited by Rp-cAMP. In MC3T3-E1 cells, gene expressions of ALP, CITED1, NR4a2, and OSX that was regulated by GR(1-28) were significantly changed by the pan-PKC inhibitor Go6983. After pretreatment with Rp-cAMP, the gene expressions of ALP, CITED1, and OPG were differentially regulated by GR(1-28) or GR(1-34), and the difference was blunted by Go6983. PTH(1-34), GR(1-28), and GR(1-34) significantly decreased early apoptosis and augmented osteoblastic differentiation in accordance with the activities of PKA and PKC. CONCLUSIONS PLC-independent PKC activation induced by PTH could be divided into two potential mechanisms: one was PKA-dependent and associated with PTH(1-28); the other was PKA-independent and associated with PTH(29-34). We also found that PTH could activate PLC-independent PKC via PKA-dependent mechanisms.

  4. Hypothyroidism associated with parathyroid disorders.

    Science.gov (United States)

    Mantovani, Giovanna; Elli, Francesca Marta; Corbetta, Sabrina

    2017-03-01

    Hypothyroidism may occur in association with congenital parathyroid disorders determining parathyroid hormone insufficiency, which is characterized by hypocalcemia and concomitant inappropriately low secretion of parathormone (PTH). The association is often due to loss of function of genes common to thyroid and parathyroid glands embryonic development. Hypothyroidism associated with hypoparathyroidism is generally mild and not associated with goiter; moreover, it is usually part of a multisystemic involvement not restricted to endocrine function as occurs in patients with 22q11 microdeletion/DiGeorge syndrome, the most frequent disorders. Hypothyroidism and hypoparathyroidism may also follow endocrine glands' damages due to autoimmunity or chronic iron overload in thalassemic disorders, both genetically determined conditions. Finally, besides PTH deficiency, hypocalcemia can be due to PTH resistance in pseudohypoparathyroidism; when hormone resistance is generalized, patients can suffer from hypothyroidism due to TSH resistance. In evaluating patients with hypothyroidism and hypocalcemia, physical examination and clinical history are essential to drive the diagnostic process, while routine genetic screening is not recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates

    DEFF Research Database (Denmark)

    Fernández-Pérez, Leandro; Guerra, Borja; Díaz-Chico, Juan C

    2013-01-01

    The liver responds to estrogens and growth hormone (GH) which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk...

  6. The role of leptin and other hormones related to bone metabolism and appetite-regulation as determinants of gain in body fat and fat-free mass in 8-11 year old children

    DEFF Research Database (Denmark)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni

    2015-01-01

    Background: Regulation of body composition during childhood is complex. Numerous hormones are potentially involved. Leptin has been proposed to restrain weight gain, but results are inconsistent. Objectives: We examined if baseline fasting levels of ghrelin, adiponectin, leptin, insulin, insulin......-like growth factor I (IGF-1), osteocalcin and intact parathyroid hormone (iPTH) were associated with body composition cross-sectionally and longitudinally in 633 8-11-year-olds. Design: Data on hormones and body composition by Dual-energy X-ray absorptiometry from OPUS School Meal Study were used. We looked...... at baseline hormones as predictors of baseline fat mass index (FMI) or fat-free mass index (FFMI), and also subsequent changes (three and six months) in FMI or FFMI using models with hormones individually or combined. Results: Cross-sectionally, baseline leptin was positively associated with FMI in girls (0...

  7. Core binding factor beta (Cbfβ) controls the balance of chondrocyte proliferation and differentiation by upregulating Indian hedgehog (Ihh) expression and inhibiting parathyroid hormone-related protein receptor (PPR) expression in postnatal cartilage and bone formation.

    Science.gov (United States)

    Tian, Fei; Wu, Mengrui; Deng, Lianfu; Zhu, Guochun; Ma, Junqing; Gao, Bo; Wang, Lin; Li, Yi-Ping; Chen, Wei

    2014-07-01

    Core binding factor beta (Cbfβ) is essential for embryonic bone morphogenesis. Yet the mechanisms by which Cbfβ regulates chondrocyte proliferation and differentiation as well as postnatal cartilage and bone formation remain unclear. Hence, using paired-related homeobox transcription factor 1-Cre (Prx1-Cre) mice, mesenchymal stem cell-specific Cbfβ-deficient (Cbfβ(f/f) Prx1-Cre) mice were generated to study the role of Cbfβ in postnatal cartilage and bone development. These mutant mice survived to adulthood but exhibited severe sternum and limb malformations. Sternum ossification was largely delayed in the Cbfβ(f/f) Prx1-Cre mice and the xiphoid process was noncalcified and enlarged. In newborn and 7-day-old Cbfβ(f/f) Prx1-Cre mice, the resting zone was dramatically elongated, the proliferation zone and hypertrophic zone of the growth plates were drastically shortened and disorganized, and trabecular bone formation was reduced. Moreover, in 1-month-old Cbfβ(f/f) Prx1-Cre mice, the growth plates were severely deformed and trabecular bone was almost absent. In addition, Cbfβ deficiency impaired intramembranous bone formation both in vivo and in vitro. Interestingly, although the expression of Indian hedgehog (Ihh) was largely reduced, the expression of parathyroid hormone-related protein (PTHrP) receptor (PPR) was dramatically increased in the Cbfβ(f/f) Prx1-Cre growth plate, indicating that that Cbfβ deficiency disrupted the Ihh-PTHrP negative regulatory loop. Chromatin immunoprecipitation (ChIP) analysis and promoter luciferase assay demonstrated that the Runx/Cbfβ complex binds putative Runx-binding sites of the Ihh promoter regions, and also the Runx/Cbfβ complex directly upregulates Ihh expression at the transcriptional level. Consistently, the expressions of Ihh target genes, including CyclinD1, Ptc, and Pthlh, were downregulated in Cbfβ-deficient chondrocytes. Taken together, our study reveals not only that Cbfβ is essential for chondrocyte

  8. Direct Regulation of Mitochondrial RNA Synthesis by Thyroid Hormone

    Science.gov (United States)

    Enríquez, José A.; Fernández-Silva, Patricio; Garrido-Pérez, Nuria; López-Pérez, Manuel J.; Pérez-Martos, Acisclo; Montoya, Julio

    1999-01-01

    We have analyzed the influence of in vivo treatment and in vitro addition of thyroid hormone on in organello mitochondrial DNA (mtDNA) transcription and, in parallel, on the in organello footprinting patterns at the mtDNA regions involved in the regulation of transcription. We found that thyroid hormone modulates mitochondrial RNA levels and the mRNA/rRNA ratio by influencing the transcriptional rate. In addition, we found conspicuous differences between the mtDNA dimethyl sulfate footprinting patterns of mitochondria derived from euthyroid and hypothyroid rats at the transcription initiation sites but not at the mitochondrial transcription termination factor (mTERF) binding region. Furthermore, direct addition of thyroid hormone to the incubation medium of mitochondria isolated from hypothyroid rats restored the mRNA/rRNA ratio found in euthyroid rats as well as the mtDNA footprinting patterns at the transcription initiation area. Therefore, we conclude that the regulatory effect of thyroid hormone on mitochondrial transcription is partially exerted by a direct influence of the hormone on the mitochondrial transcription machinery. Particularly, the influence on the mRNA/rRNA ratio is achieved by selective modulation of the alternative H-strand transcription initiation sites and does not require the previous activation of nuclear genes. These results provide the first functional demonstration that regulatory signals, such as thyroid hormone, that modify the expression of nuclear genes can also act as primary signals for the transcriptional apparatus of mitochondria. PMID:9858589

  9. Parathyroid cysts: the Latin-American experience.

    Science.gov (United States)

    Román-González, Alejandro; Aristizábal, Natalia; Aguilar, Carolina; Palacios, Karen; Pérez, Juan Camilo; Vélez-Hoyos, Alejandro; Duque, Carlos Simon; Sanabria, Alvaro

    2016-12-01

    Parathyroid cyst is an infrequent and unsuspected disease. There are more than 300 hundred cases reported in the world literature, a few of them are from Latin America. The experience of our centers and a review of the cases are presented. Case report of a series of patients with parathyroid cyst from our institutions according to the CARE guidelines (Case Reports). A search of Medline, Embase, BIREME ( Biblioteca Regional de Medicina ) LILACS ( Literatura Latinoamericana y del Caribe en Ciencias de la Salud ), Google Scholar and Scielo ( Scientific Electronic Library on Line ) databases and telephonic or email communications with other experts from Latin-America was performed . Six patients with parathyroid cyst were found in our centers in Colombia. Most of them were managed with aspiration of the cyst. Two of them required surgery. Only one case was functional. Twelve reports from Latin America were found for a total of 18 cases in our region adding ours. Parathyroid cysts are uncommonly reported in Latin America. Most of them are diagnosed postoperatively. Suspicion for parathyroid cyst should be raised when a crystal clear fluid is aspirated from a cyst. The confirmation of the diagnosis may be easily done if parathyroid hormone (PTH) level is measured in the cyst fluid.

  10. The combined effect of Parathyroid hormone (1-34) and whole-body Vibration exercise in the treatment of OSteoporosis (PaVOS)- study protocol for a randomized controlled trial

    DEFF Research Database (Denmark)

    Jepsen, Ditte Beck; Ryg, Jesper; Jørgensen, Niklas Rye

    2018-01-01

    Background: PaVOS is a randomized controlled trial (RCT) which aims to address the use of whole-body vibration exercise (WBV) in combination with parathyroid hormone 1-34 fragment teriparatide (PTH 1-34) treatment in patients with osteoporosis. PTH 1-34 is an effective but expensive anabolic...... fracture risk. Methods/design: PaVOS is a multicenter, assessor-blinded, superiority, two-armed randomized controlled trial (RCT). Postmenopausal women (n = 40, aged 50 years and older) starting taking PTH 1-34 from outpatient clinics will be randomized and assigned to a PTH 1-34 + WBV-exercise group...... (intervention group), or a PTH 1-34-alone group (control group). The intervention group will undergo WBV three sessions a week (12 min each, including 1:1 ratio of exercise: rest, 30 Hz, 1 mm amplitude) for a 12-month intervention period. Both the intervention and the control group will receive PTH 1...

  11. Cryopreservation of Parathyroid Glands

    Directory of Open Access Journals (Sweden)

    Marlon A. Guerrero

    2010-01-01

    Full Text Available The risk of permanent hypoparathyroidism following thyroid and parathyroid surgery is around 1% in the hands of experienced endocrine surgeons. Although this complication is rare, rendering a patient permanently aparathyroid has significant consequences on the health and quality of life of the patient. Immediate autotransplantation of parathyroid glands that are injured or unintentionally removed offers the best possibility of graft viability and functionality. However, since the majority of cases of hypoparathyroidism are transient, immediate autotransplantation can complicate postoperative surveillance in certain patients, especially those with primary hyperparathyroidism. Cryopreservation of parathyroid tissue is an alternate technique that was developed to treat patients with permanent hypoparathyroidism. This method allows for parathyroid tissue to be stored and then autotransplanted in a delayed fashion once permanent hypoparathyroidism is confirmed. This article provides a contemporary review on cryopreservation of parathyroid tissue and its current role in thyroid and parathyroid surgery.

  12. Synchronous Parathyroid and Papillary Thyroid Carcinoma

    Directory of Open Access Journals (Sweden)

    Shi-Dou Lin

    2005-02-01

    Full Text Available Concomitant thyroid disease is not unusual among patients with primary hyperparathyroidism. However, the simultaneous occurrence of parathyroid and thyroid carcinoma is extremely rare. We report a 38-year-old man with primary hyperparathyroidism who presented with osteitis fibrosa cystica complicated with pathologic femoral neck fracture. Preoperative investigation for exclusion of multiple endocrine neoplasia did not find evidence of medullary thyroid carcinoma or pheochromocytoma, but imaging studies revealed the presence of nodules in the right lobe and a parathyroid lesion over the left inferior pole of the thyroid gland. Total thyroidectomy, left parathyroidectomy, and bipolar hemiarthroplasty of the left hip were then performed simultaneously. The resected specimens were pathologically identified as papillary thyroid carcinoma and parathyroid carcinoma, respectively. After the operation, 131I ablation therapy was administered at a dose of 120 mCi. Additional doses of 30 mCi were given yearly as serum thyroglobulin level became elevated. Serum calcium level remained normal during yearly follow-up. Although parathyroid carcinoma is an uncommon cause of parathyroid hormone-dependent hypercalcemia, it should nonetheless be given due consideration because its surgical approach differs from that of parathyroid adenoma. As the coexistence of parathyroid and non-medullary thyroid carcinoma has previously been reported, the possibility of both malignancies must also be considered in the setting of primary hyperparathyroidism with thyroid nodules. If confirmed with preoperative parathyroid scintigraphic and other laboratory studies, an optimal outcome may be achieved with complete resection of both tumors at the time of initial operation, followed by adjunctive therapy.

  13. Status of calcium regulating hormonal systems in delayed period in persons exposed to occupational exposure of low doses of ionizing radiations

    International Nuclear Information System (INIS)

    Dospolova, Zh.G.; Abylaev, Zh.A.

    1997-01-01

    Purpose of study is consideration of endocrine system participation in development of calcium exchange disorders in persons exposed to action of low dose radiation . By radio- immune method in blood serum of 150 liquidators of Chernobyl accident consequences the concentration the following hormones were determined: parathormone, T 3 , T 4 , TSH, cortisol, ACTH, testosteron, insulin. Content of these hormones have been studied in according to following radiation factors: value of absorbed doses of external irradiation, degree of radioactive contamination of zone and exposition duration. It was determined, that basically dishormone disorders development have been concerned with parathormone, cortisol, hormones of thyroid axis, and in some cases to ACTH and insulin. Liquidators' frequencies of normal and changed concentration of calcium regulating hormones are sited in tabular form. It was established, that examined persons in result hormone disorders have of decrease functions of pituitary glands (76.78 %), pancreas (55 %), thyroid gland (24.31 %) and sex glands (19.23 %) and simultaneously cases of increase functions of parathyroid gland (58.2 %), adrenal glands (52.32 %) and adeno-pituitary glands (17.39). It is concluded, that inter hormonal correlation disorders are accompanying with morphologic and functional futures of secretory activity changes

  14. Radioimmunoassay of polypeptide hormones and enzymes

    International Nuclear Information System (INIS)

    Felber, J.P.

    1974-01-01

    General principles of radioimmunoassay are reviewed. Detailed procedures are reviewed for the following hormones: insulin, pituitary hormones, gonadotropins, parathyroid hormone, ACTH, glucagon, gastrin, and peptide hormones. Radioimmunoassay of enzymes is also discussed. (U.S.)

  15. The management of acute parathyroid crisis secondary to parathyroid carcinoma: a case report

    Directory of Open Access Journals (Sweden)

    O'Malley Diarmuid

    2010-01-01

    Full Text Available Abstract Introduction Hypercalcaemic hyperparathyroid crisis is a rare but life-threatening complication of primary hyperparathyroidism. Parathyroid carcinoma is a rare malignancy with an incidence of 0.5% to 4% of all reported cases of primary hyperparathyroidism. Case presentation We report the case of a 60-year-old Caucasian man with hypercalcaemic hyperparathyroid crisis associated with parathyroid carcinoma. He presented with a classic hypercalcaemic syndrome and his serum calcium and parathyroid hormone levels were at 4.65 mmol/L and 1743 ng/L, respectively. He initially presented with a two-week history of weakness and lethargy and a one-week history of vomiting, polyuria and polydipsia. An emergency left thyroid lobectomy and left lower parathyroidectomy were performed. There was a prompt decrease in his parathyroid hormone level immediately after surgery. Histology revealed that our patient had a 4-cm parathyroid carcinoma. Conclusion In patients with parathyroid carcinoma, the optimal surgical treatment is en bloc resection with ipsilateral thyroid lobectomy and removal of any enlarged or abnormal lymph nodes. Surgery is the only curative treatment. In our patient, prompt surgical intervention proved successful. At six months the patient is well with no evidence of disease recurrence. This case highlights the importance of considering a hyperparathyroid storm in the context of a parathyroid carcinoma. Parathyroid carcinoma is a rare entity and our knowledge is mainly derived from case reports and retrospective studies. This case report increases awareness of this serious and life-threatening complication. This report also illustrates how prompt and appropriate management provides the best outcome for the patient.

  16. The management of acute parathyroid crisis secondary to parathyroid carcinoma: a case report.

    Science.gov (United States)

    Rock, Kathy; Fattah, Nariman; O'Malley, Diarmuid; McDermott, Enda

    2010-01-29

    Hypercalcaemic hyperparathyroid crisis is a rare but life-threatening complication of primary hyperparathyroidism. Parathyroid carcinoma is a rare malignancy with an incidence of 0.5% to 4% of all reported cases of primary hyperparathyroidism. We report the case of a 60-year-old Caucasian man with hypercalcaemic hyperparathyroid crisis associated with parathyroid carcinoma. He presented with a classic hypercalcaemic syndrome and his serum calcium and parathyroid hormone levels were at 4.65 mmol/L and 1743 ng/L, respectively. He initially presented with a two-week history of weakness and lethargy and a one-week history of vomiting, polyuria and polydipsia. An emergency left thyroid lobectomy and left lower parathyroidectomy were performed. There was a prompt decrease in his parathyroid hormone level immediately after surgery. Histology revealed that our patient had a 4-cm parathyroid carcinoma. In patients with parathyroid carcinoma, the optimal surgical treatment is en bloc resection with ipsilateral thyroid lobectomy and removal of any enlarged or abnormal lymph nodes. Surgery is the only curative treatment. In our patient, prompt surgical intervention proved successful. At six months the patient is well with no evidence of disease recurrence. This case highlights the importance of considering a hyperparathyroid storm in the context of a parathyroid carcinoma. Parathyroid carcinoma is a rare entity and our knowledge is mainly derived from case reports and retrospective studies. This case report increases awareness of this serious and life-threatening complication. This report also illustrates how prompt and appropriate management provides the best outcome for the patient.

  17. The management of acute parathyroid crisis secondary to parathyroid carcinoma: a case report.

    LENUS (Irish Health Repository)

    Rock, Kathy

    2010-01-01

    ABSTRACT: INTRODUCTION: Hypercalcaemic hyperparathyroid crisis is a rare but life-threatening complication of primary hyperparathyroidism. Parathyroid carcinoma is a rare malignancy with an incidence of 0.5% to 4% of all reported cases of primary hyperparathyroidism. CASE PRESENTATION: We report the case of a 60-year-old Caucasian man with hypercalcaemic hyperparathyroid crisis associated with parathyroid carcinoma. He presented with a classic hypercalcaemic syndrome and his serum calcium and parathyroid hormone levels were at 4.65 mmol\\/L and 1743 ng\\/L, respectively. He initially presented with a two-week history of weakness and lethargy and a one-week history of vomiting, polyuria and polydipsia. An emergency left thyroid lobectomy and left lower parathyroidectomy were performed. There was a prompt decrease in his parathyroid hormone level immediately after surgery. Histology revealed that our patient had a 4-cm parathyroid carcinoma. CONCLUSION: In patients with parathyroid carcinoma, the optimal surgical treatment is en bloc resection with ipsilateral thyroid lobectomy and removal of any enlarged or abnormal lymph nodes. Surgery is the only curative treatment. In our patient, prompt surgical intervention proved successful. At six months the patient is well with no evidence of disease recurrence. This case highlights the importance of considering a hyperparathyroid storm in the context of a parathyroid carcinoma. Parathyroid carcinoma is a rare entity and our knowledge is mainly derived from case reports and retrospective studies. This case report increases awareness of this serious and life-threatening complication. This report also illustrates how prompt and appropriate management provides the best outcome for the patient.

  18. Current insights into hormonal regulation of microspore embryogenesis

    Directory of Open Access Journals (Sweden)

    Iwona eŻur

    2015-06-01

    Full Text Available Plant growth regulator (PGR crosstalk and interaction with the plant’s genotype and environmental factors play a crucial role in microspore embryogenesis (ME, controlling microspore-derived embryo differentiation and development as well as haploid/doubled haploid plant regeneration. The complexity of the PGR network which could exist at the level of biosynthesis, distribution, gene expression or signaling pathways, renders the creation of an integrated model of ME-control crosstalk impossible at present. However, the analysis of the published data together with the results received recently with the use of modern analytical techniques brings new insights into hormonal regulation of this process. This review presents a short historical overview of the most important milestones in the recognition of hormonal requirements for effective ME in the most important crop plant species and complements it with new concepts that evolved over the last decade of ME studies.

  19. Circadian regulation of hormone signaling and plant physiology.

    Science.gov (United States)

    Atamian, Hagop S; Harmer, Stacey L

    2016-08-01

    The survival and reproduction of plants depend on their ability to cope with a wide range of daily and seasonal environmental fluctuations during their life cycle. Phytohormones are plant growth regulators that are involved in almost every aspect of growth and development as well as plant adaptation to myriad abiotic and biotic conditions. The circadian clock, an endogenous and cell-autonomous biological timekeeper that produces rhythmic outputs with close to 24-h rhythms, provides an adaptive advantage by synchronizing plant physiological and metabolic processes to the external environment. The circadian clock regulates phytohormone biosynthesis and signaling pathways to generate daily rhythms in hormone activity that fine-tune a range of plant processes, enhancing adaptation to local conditions. This review explores our current understanding of the interplay between the circadian clock and hormone signaling pathways.

  20. Tissue specific regulation of lipogenesis by thyroid hormone

    Energy Technology Data Exchange (ETDEWEB)

    Blennemann, B.; Freake, H. (Univ. of Connecticut, Storrs (United States))

    1990-02-26

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone.

  1. Tissue specific regulation of lipogenesis by thyroid hormone

    International Nuclear Information System (INIS)

    Blennemann, B.; Freake, H.

    1990-01-01

    Thyroid hormone stimulates long chain fatty acid synthesis in rat liver by increasing the amounts of key lipogenic enzymes. Sparse and conflicting data exist concerning its action on this pathway in other tissues. The authors recently showed that, in contrast to liver, hypothyroidism stimulates lipogenesis in brown adipose tissue and have now systematically examined the effects of thyroid state on fatty acid synthesis in other rat tissues. Lipogenesis was assessed by tritiated water incorporation. Euthyroid hepatic fatty acid synthesis (16.6um H/g/h) was reduced to 30% in hypothyroid rats and increased 3 fold in hyperthyroidism. Lipogenesis was detected in euthyroid kidney and heart and these levels were also stimulated by thyroid hormone treatment. Brown adipose tissue was unique in showing increased lipogenesis in the hypothyroid state. Hyperthyroid levels were not different from euthyroid. Effects in white adipose tissue were small and inconsistent. Brain, skin and lung were all lipogenically active, but did not respond to changes in thyroid state. Low but detectable levels of fatty acid synthesis were measured in muscle, which also were non-responsive. A wide spectrum of responses to thyroid hormone are seen in different rat tissues and thus the pathway of long chain fatty acid synthesis would appear to be an excellent model for examining the tissue specific regulation of gene expression by thyroid hormone

  2. Chemical regulators of plant hormones and their applications in basic research and agriculture.

    Science.gov (United States)

    Jiang, Kai; Asami, Tadao

    2018-04-20

    Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.

  3. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  4. Regulation of gonadotropin-releasing hormone neurons by glucose

    Science.gov (United States)

    Roland, Alison V.; Moenter, Suzanne M.

    2011-01-01

    Reproduction is influenced by energy balance, but the physiological pathways mediating their relationship have not been fully elucidated. As the central regulators of fertility, gonadotropin-releasing hormone (GnRH) neurons integrate numerous physiological signals, including metabolic cues. Circulating glucose levels regulate GnRH release and may in part mediate the effects of negative energy balance on fertility. Existing evidence suggests that neural pathways originating in the hindbrain, as well as in the hypothalamic feeding nuclei, transmit information concerning glucose availability to GnRH neurons. Here we review recent evidence suggesting that GnRH neurons may directly sense changes in glucose availability by a mechanism involving adenosine monophosphate-activated protein kinase (AMPK). These findings expand our understanding of how metabolic signaling in the brain regulates reproduction. PMID:21855365

  5. Hormonal regulation of floret closure of rice (Oryza sativa)

    Science.gov (United States)

    Huang, Youming; Zeng, Xiaochun

    2018-01-01

    Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA), indole-3-butyric acid (IBA), 1-naphthalene-acetic acid (NAA), 2,4-dichlorophenoxy acetic acid (2,4-D) and 3,6-dichloro-2-methoxybenzoic acid (DIC) and abscisic acid (ABA) on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013–2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of the varieties

  6. Hormonal regulation of floret closure of rice (Oryza sativa.

    Directory of Open Access Journals (Sweden)

    Youming Huang

    Full Text Available Plant hormones play important roles in regulating every aspect of growth, development, and metabolism of plants. We are interested in understanding hormonal regulation of floret opening and closure in plants. This is a particularly important problem for hybrid rice because regulation of flowering time is vitally important in hybrid rice seed production. However, little was known about the effects of plant hormones on rice flowering. We have shown that jasmonate and methyl jasmonate play significant roles in promoting rice floret opening. In this study, we investigated the effects of auxins including indole-3-acidic acid (IAA, indole-3-butyric acid (IBA, 1-naphthalene-acetic acid (NAA, 2,4-dichlorophenoxy acetic acid (2,4-D and 3,6-dichloro-2-methoxybenzoic acid (DIC and abscisic acid (ABA on floret closure of four fertile and three sterile varieties of rice. The results from field studies in three growing seasons in 2013-2015 showed that the percentages of closed florets were significantly lower in plants treated with IAA, IBA, 2,4-D, DIC and NAA and that the durations of floret opening were significantly longer in plants treated with the same auxins. The auxins exhibited time- and concentration-dependant effects on floret closure. ABA displayed opposite effects of auxins because it increased the percentages of floret closure and decreased the length of floret opening of rice varieties. The degree of auxin-inhibiting and ABA-promoting effects on floret closure was varied somewhat but not significantly different among the rice varieties. Endogenous IAA levels were the highest in florets collected shortly before opening followed by a sharp decline in florets with maximal angles of opening and a significant jump of IAA levels shortly after floret closure in both fertile and sterile rice plants. ABA levels showed an opposite trend in the same samples. Our results showed that auxins delayed but ABA promoted the closure of rice floret regardless of

  7. Diagnosis of secondary hyperparathyroidism with 99mTc-MIBI/131I parathyroid imaging in chronic renal failure

    International Nuclear Information System (INIS)

    Tang Anwu; Luo Yaowu; Wu Yongkang; Pan Jianzhong; Ji Liangyuan

    1995-01-01

    20 chronic renal failure (CRF) patients and 15 normals were investigated with radionuclide parathyroid imaging and parathyroid hormone (PTH) RIA measurement for the detection of hyperparathyroidism. The serum PTH concentrations were 800.47 +- 665.25 pmol/L and 82.81 +- 13.79 pmol/L in two groups respectively. The radionuclide parathyroid images revealed that 1∼4 enlarged parathyroid glands were visualized in the CRF patients, none in the normals

  8. Effects of prostaglandin E/sub 1/ on the metabolism in rat parathyroid gland in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Licata, A A [Rochester Univ., NY (USA). School of Medicine and Dentistry; Au, W Y [Arkansas Univ., Little Rock (USA); Vera, J; Bartter, F C [National Institutes of Health, Bethesda, MD (USA)

    1979-01-04

    Some effects of prostaglandin E/sub 1/ on the metabolism of rat parathyroid glands have been investigated using a culture system containing basal Eagle's medium supplemented with 5-10% heat-inactivated rat serum. Rat parathyroid glands incorporate (/sup 3/H)fucose and /sup 14/C-labeled amino acids into cellular glycoproteins and secrete some of these into the culture medium. Gel filtration chromatography separates these glycoproteins into three classes, the smallest of which (peak 3) is secreted with immunoreactive parathyroid hormone. In cultures of 48 h, prostaglandin E/sub 1/ (1 ..mu..g/ml) specifically inhibits the secretion of peak 3 and of parathyroid hormone but has no effect on the incorporation of (/sup 3/H)-fucose, /sup 14/C-labeled amino acids, or (/sup 3/H)uridine into parathyroid glands. Cytochalasin B inhibits the secretion of parathyroid hormone and the incorporation of isotopic fucose and amino acids. Cortisol stimulates incorporation of (/sup 3/H)fucose and the secretion of parathyroid hormone even in the presence of inhibitory doses of prostaglandin E/sub 1/. It is concluded that, in organ culture, prostaglandin E/sub 1/ inhibits the secretion of parathyroid hormone and of a specific glycoprotein the function of which may be related to the secretion of the hormone.

  9. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby.

    Science.gov (United States)

    Sakamoto, Tatsuya; Nishiyama, Yudai; Ikeda, Aoi; Takahashi, Hideya; Hyodo, Susumu; Kagawa, Nao; Sakamoto, Hirotaka

    2015-01-01

    The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV) injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors.

  10. Neurohypophysial Hormones Regulate Amphibious Behaviour in the Mudskipper Goby.

    Directory of Open Access Journals (Sweden)

    Tatsuya Sakamoto

    Full Text Available The neurohypophysial hormones, arginine vasotocin and isotocin, regulate both hydromineral balance and social behaviors in fish. In the amphibious mudskipper, Periophthalmus modestus, we previously found arginine-vasotocin-specific regulation of aggressive behavior, including migration of the submissive subordinate into water. This migration also implies the need for adaptation to dehydration. Here, we examined the effects of arginine vasotocin and isotocin administration on the amphibious behavior of individual mudskippers in vivo. The mudskippers remained in the water for an increased period of time after 1-8 h of intracerebroventricular (ICV injection with 500 pg/g arginine vasotocin or isotocin. The 'frequency of migration' was decreased after ICV injection of arginine vasotocin or isotocin, reflecting a tendency to remain in the water. ICV injections of isotocin receptor antagonist with arginine vasotocin or isotocin inhibited all of these hormonal effects. In animals kept out of water, mRNA expression of brain arginine vasotocin and isotocin precursors increased 3- and 1.5-fold, respectively. Given the relatively wide distribution of arginine vasotocin fibres throughout the mudskipper brain, induction of arginine vasotocin and isotocin under terrestrial conditions may be involved also in the preference for an aquatic habitat as ligands for brain isotocin receptors.

  11. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia) : the Longitudinal Aging Study Amsterdam

    NARCIS (Netherlands)

    Visser, Marjolein; Deeg, Dorly J H; Lips, Paul

    2003-01-01

    The age-related change in hormone concentrations has been hypothesized to play a role in the loss of muscle mass and muscle strength with aging, also called sarcopenia. The aim of this prospective study was to investigate whether low serum 25-hydroxyvitamin D (25-OHD) and high serum PTH

  12. Combination Therapy with Zoledronic Acid and Parathyroid Hormone Improves Bone Architecture and Strength following a Clinically-Relevant Dose of Stereotactic Radiation Therapy for the Local Treatment of Canine Osteosarcoma in Athymic Rats.

    Science.gov (United States)

    Curtis, Ryan C; Custis, James T; Ehrhart, Nicole P; Ehrhart, E J; Condon, Keith W; Gookin, Sara E; Donahue, Seth W

    2016-01-01

    Clinical studies using definitive-intent stereotactic radiation therapy (SRT) for the local treatment of canine osteosarcoma (OSA) have shown canine patients achieving similar median survival times as the current standard of care (amputation and adjuvant chemotherapy). Despite this, there remains an unacceptable high risk of pathologic fracture following radiation treatment. Zoledronic acid (ZA) and parathyroid hormone (PTH) are therapeutic candidates for decreasing this fracture risk post-irradiation. Due to differing mechanisms, we hypothesized that the combined treatment with ZA and PTH would significantly improve bone healing more than ZA or PTH treatment alone. Using an orthotopic model of canine osteosarcoma in athymic rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12 Gy x 3 fractions, 36 Gy total). Groups included 36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment. Our study showed significant increases in bone volume and increased polar moments of inertia (in the distal femoral metaphysis) 8 weeks after radiation in the combined (ZA/PTH) treatment group as compared to radiation treatment alone. Histomorphometric analysis revealed evidence of active mineralization at the study endpoint as well as successful tumor-cell kill across all treatment groups. This work provides further evidence for the expanding potential indications for ZA and PTH therapy, including post-irradiated bone disease due to osteosarcoma.

  13. Combination Therapy with Zoledronic Acid and Parathyroid Hormone Improves Bone Architecture and Strength following a Clinically-Relevant Dose of Stereotactic Radiation Therapy for the Local Treatment of Canine Osteosarcoma in Athymic Rats.

    Directory of Open Access Journals (Sweden)

    Ryan C Curtis

    Full Text Available Clinical studies using definitive-intent stereotactic radiation therapy (SRT for the local treatment of canine osteosarcoma (OSA have shown canine patients achieving similar median survival times as the current standard of care (amputation and adjuvant chemotherapy. Despite this, there remains an unacceptable high risk of pathologic fracture following radiation treatment. Zoledronic acid (ZA and parathyroid hormone (PTH are therapeutic candidates for decreasing this fracture risk post-irradiation. Due to differing mechanisms, we hypothesized that the combined treatment with ZA and PTH would significantly improve bone healing more than ZA or PTH treatment alone. Using an orthotopic model of canine osteosarcoma in athymic rats, we evaluated bone healing following clinically-relevant doses of radiation therapy (12 Gy x 3 fractions, 36 Gy total. Groups included 36 Gy SRT only, 36 Gy SRT plus ZA, 36 Gy SRT plus ZA and PTH, 36 Gy SRT plus PTH, and 36 Gy SRT plus localized PTH treatment. Our study showed significant increases in bone volume and increased polar moments of inertia (in the distal femoral metaphysis 8 weeks after radiation in the combined (ZA/PTH treatment group as compared to radiation treatment alone. Histomorphometric analysis revealed evidence of active mineralization at the study endpoint as well as successful tumor-cell kill across all treatment groups. This work provides further evidence for the expanding potential indications for ZA and PTH therapy, including post-irradiated bone disease due to osteosarcoma.

  14. Problems in early diagnosis of bladder cancer in a spinal cord injury patient: Report of a case of simultaneous production of granulocyte colony stimulating factor and parathyroid hormone-related protein by squamous cell carcinoma of urinary bladder

    Directory of Open Access Journals (Sweden)

    Singh Gurpreet

    2002-08-01

    Full Text Available Abstract Background Typical symptoms and signs of a clinical condition may be absent in spinal cord injury (SCI patients. Case presentation A male with paraplegia was passing urine through penile sheath for 35 years, when he developed urinary infections. There was no history of haematuria. Intravenous urography showed bilateral hydronephrosis. The significance of abnormal outline of bladder was not appreciated. As there was large residual urine, he was advised intermittent catheterisation. Serum urea: 3.5 mmol/L; creatinine: 77 umol/L. A year later, serum urea: 36.8 mmol/l; creatinine: 632 umol/l; white cell count: 22.2; neutrophils: 18.88. Ultrasound: bilateral hydronephrosis. Bilateral nephrostomy was performed. Subsequently, blood tests showed: Urea: 14.2 mmol/l; Creatinine: 251 umol/l; Adjusted Calcium: 3.28 mmol/l; Parathyroid hormone: A repeat ultrasound scan demonstrated a tumour arising from right lateral wall; biopsy revealed squamous cell carcinoma. In view of persistently high white cell count and high calcium level, immunohistochemistry for G-CSF and PTHrP was performed. Dense staining of tumour cells for G-CSF and faintly positive staining for C-terminal PTHrP were observed. This patient expired about five months later. Conclusion This case demonstrates how delay in diagnosis of bladder cancer could occur in a SCI patient due to absence of characteristic symptoms and signs.

  15. Parathyroid Cancer—Health Professional Version

    Science.gov (United States)

    Parathyroid cancer often presents as a benign adenoma, though malignant carcinomas are possible. Parathyroid adenomas represent a common endocrine problem, whereas parathyroid carcinomas are very rare tumors. Find evidence-based information on parathyroid cancer treatment.

  16. Regulation of the juvenile hormone titre in the Colorado potato beetle

    NARCIS (Netherlands)

    Kramer, S.J.

    1978-01-01

    Three main topics were investigated in regulation of the titre of juvenile hormone in haemolymph of the Colorado potato beetle ( Leptinotarsa decemlineata Say): enzymic breakdown of the hormone; binding and protection of the hormone by carrier proteins; the synthetic capacity of

  17. Transcriptional regulation by nonclassical action of thyroid hormone

    Directory of Open Access Journals (Sweden)

    Moeller Lars C

    2011-08-01

    Full Text Available Abstract Thyroid hormone (TH is essential for normal development, growth and metabolism. Its effects were thought to be principally mediated through triiodothyronine (T3, acting as a ligand for the nuclear TH receptors (TRs α and β residing on thyroid hormone response elements (TREs in the promoter of TH target genes. In this classical model of TH action, T3 binding to TRs leads to recruitment of basal transcription factors and increased transcription of TH responsive genes. Recently, the concept of TH action on gene expression has become more diverse and now includes nonclassical actions of T3 and T4: T3 has been shown to activate PI3K via the TRs, which ultimately increases transcription of certain genes, e.g. HIF-1α. Additionally, both T3 and thyroxine (T4 can bind to a membrane integrin, αvβ3, which leads to activation of the PI3K and MAPK signal transduction pathways and finally also increases gene transcription, e.g. of the FGF2 gene. Therefore, these initially nongenomic, nonclassical actions seem to serve as additional interfaces for transcriptional regulation by TH. Aim of this perspective is to summarize the genes that are currently known to be induced by nonclassical TH action and the mechanisms involved.

  18. Thyroid hormones regulate selenoprotein expression and selenium status in mice.

    Directory of Open Access Journals (Sweden)

    Jens Mittag

    Full Text Available Impaired expression of selenium-containing proteins leads to perturbed thyroid hormone (TH levels, indicating the central importance of selenium for TH homeostasis. Moreover, critically ill patients with declining serum selenium develop a syndrome of low circulating TH and a central downregulation of the hypothalamus-pituitary-thyroid axis. This prompted us to test the reciprocal effect, i.e., if TH status would also regulate selenoprotein expression and selenium levels. To investigate the TH dependency of selenium metabolism, we analyzed mice expressing a mutant TH receptor α1 (TRα1+m that confers a receptor-mediated hypothyroidism. Serum selenium was reduced in these animals, which was a direct consequence of the mutant TRα1 and not related to their metabolic alterations. Accordingly, hyperthyroidism, genetically caused by the inactivation of TRβ or by oral TH treatment of adult mice, increased serum selenium levels in TRα1+m and controls, thus demonstrating a novel and specific role for TRα1 in selenium metabolism. Furthermore, TH affected the mRNA levels for several enzymes involved in selenoprotein biosynthesis as well as serum selenoprotein P concentrations and the expression of other antioxidative selenoproteins. Taken together, our results show that TH positively affects the serum selenium status and regulates the expression of several selenoproteins. This demonstrates that selenium and TH metabolism are interconnected through a feed-forward regulation, which can in part explain the rapid parallel downregulation of both systems in critical illness.

  19. Secondary hypertension due to concomitant aldosterone-producing adenoma and parathyroid adenoma.

    Science.gov (United States)

    Chau, Katrina; Holmes, Daniel; Melck, Adrienne; Chan-Yan, Clifford

    2015-02-01

    There is a growing body of evidence supporting a bidirectional relationship between parathyroid hormone (PTH) and aldosterone (Aldo). We report a case of secondary hypertension due to concomitant Aldo-producing adenoma (APA) and parathyroid adenoma (PA) requiring both unilateral adrenalectomy and parathyroidectomy. © American Journal of Hypertension, Ltd 2014. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Regulation of renal NaPi-2 expression and tubular phosphate reabsorption by growth hormone in the juvenile rat.

    Science.gov (United States)

    Woda, Craig B; Halaihel, Nabil; Wilson, Paul V; Haramati, Aviad; Levi, Moshe; Mulroney, Susan E

    2004-07-01

    Growth hormone (GH) is an important factor in the developmental adaptation to enhance P(i) reabsorption; however, the nephron sites and mechanisms by which GH regulates renal P(i) uptake remain unclear and are the focus of the present study. Micropuncture experiments were performed after acute thyroparathyroidectomy in the presence and absence of parathyroid hormone (PTH) in adult (14- to 17-wk old), juvenile (4-wk old), and GH-suppressed juvenile male rats. While the phosphaturic effect of PTH was blunted in the juvenile rat compared with the adult, suppression of GH in the juvenile restored fractional P(i) excretion to adult levels. In the presence or absence of PTH, GH suppression in the juvenile rat caused a significant increase in the fractional P(i) delivery to the late proximal convoluted (PCT) and early distal tubule, so that delivery was not different from that in adults. These data were confirmed by P(i) uptake studies into brush-border membrane (BBM) vesicles. Immunofluorescence studies indicate increased BBM type IIa NaP(i) cotransporter (NaPi-2) expression in the juvenile compared with adult rat, and GH suppression reduced NaPi-2 expression to levels observed in the adult. GH replacement in the [N-acetyl-Tyr(1)-d-Arg(2)]-GRF-(1-29)-NH(2)-treated juveniles restored high NaPi-2 expression and P(i) uptake. Together, these novel results demonstrate that the presence of GH in the juvenile animal is crucial for the early developmental upregulation of BBM NaPi-2 and, most importantly, describe the enhanced P(i) reabsorption along the PCT and proximal straight nephron segments in the juvenile rat.

  1. Hormones

    Science.gov (United States)

    Hormones are your body's chemical messengers. They travel in your bloodstream to tissues or organs. They work ... glands, which are special groups of cells, make hormones. The major endocrine glands are the pituitary, pineal, ...

  2. [Parathyroid cancer in a patient with previous history of hypernephroma: a clinical case].

    Science.gov (United States)

    Martín Navarro, J; Mendoza, E; Mateos, P; Cereceda, A; Coca, S

    2007-01-01

    We report the clinical case of a 55 year-old male patient, with a previous history of nephrectomy by hypernephroma sixteen years ago, first presenting hypercalcemia and rising of intact parathyroid hormone (iPTH) levels. A localization study revealed an intrathyroid nodule with cystic appearance. After undergoing a hemi-thyroidectomy, the patient is diagnosed with parathyroid carcinoma. This article analyzes previously published cases presenting parathyroidal pathologies associated with hypernephroma. A broader differential diagnosis--including the screening of parathyroidal pathologies should be considered in patients with hypercalcemia and hypernephroma.

  3. Thyroid hormones regulate skeletal muscle regeneration after acute injury.

    Science.gov (United States)

    Leal, Anna Lúcia R C; Albuquerque, João Paulo C; Matos, Marina S; Fortunato, Rodrigo S; Carvalho, Denise P; Rosenthal, Doris; da Costa, Vânia Maria Corrêa

    2015-02-01

    We evaluated the effects of hypo- and hyperthyroid statuses during the initial phase of skeletal muscle regeneration in rats. To induce hypo- or hyperthyroidism, adult male Wistar rats were treated with methimazole (0.03%) or T4 (10 μg/100 g), respectively, for 10 days. Three days before sacrifice, a crush injury was produced in the solear muscles of one half of the animals, while the other half remained intact. T3, T4, TSH, and leptin serum levels were not affected by the injury. Serum T3 and T4 levels were significantly increased in hyperthyroid and hyper-injury animals. Hypothyroidism was confirmed by the significant increase in serum TSH levels in hypothyroid and hypo-injury animals. Injury increased cell infiltration and macrophage accumulation especially in hyperthyroid animals. Both type 2 and type 3 deiodinases were induced by lesion, and the opposite occurred with the type 1 isoform, at least in the control and hyperthyroid groups. Injury increased both MyoD and myogenin expression in all the studied groups, but only MyoD expression was increased by thyroidal status only at the protein level. We conclude that thyroid hormones modulate skeletal muscle regeneration possibly by regulating the inflammatory process, as well as MyoD and myogenin expression in the injured tissue.

  4. Hypocalcemic stimulation and nonselective venous sampling for localizing parathyroid adenomas: work in progress.

    Science.gov (United States)

    Doppman, J L; Skarulis, M C; Chang, R; Alexander, H R; Bartlett, D; Libutti, S K; Marx, S J; Spiegel, A M

    1998-07-01

    To evaluate whether the release of parathyroid hormone (PTH) from parathyroid tumors during selective parathyroid arteriography can help localize the tumors. In 20 patients (six men, 14 women; age range, 24-72 years) with parathyroid tumors undergoing parathyroid arteriography after failed surgery, serial measurements of PTH were obtained during selective arteriography with nonionic contrast material. PTH levels were measured in the superior vena cava (SVC) before and at varying times from 20 to 120 seconds after arteriography. A 1.4-fold increase in the PTH level of the postarteriographic SVC samples enabled correct prediction of the site of adenoma in 13 of the 20 patients (65%). Of nine patients with positive arteriograms, eight had positive results of postarteriographic sampling. Of 11 patients with negative arteriograms, five had positive results of postarteriographic sampling. Sampling the SVC for PTH gradients after selective parathyroid arteriography correctly indicated the site of the adenoma in 13 of 20 patients (65%).

  5. BACULOVIRUS REPLICATION ALTERS HORMONE-REGULATED HOST DEVELOPMENT.

    Science.gov (United States)

    The baculovirus Lymantria dispar nuclear polyhedrosis virus interferes with insect larval development by altering the host's hormonal system. The level of haemolymph ecdysteroids, the insect moulting hormone, was found to be higher in virus-infected larvae than in uninfected cont...

  6. Physiological Regulation of Gut Peptide Hormone (PYY) Levels by Age, Sex, Hormonal and Nutritional Status in Rats

    International Nuclear Information System (INIS)

    Hebashy, M.I.A.; Mazen, G.M.A.

    2007-01-01

    Peptide YY hormone (PYY) was recently appreciated as an important gut hormonal regulator of appetite. PYY is produced by the gut and released into the circulation after food intake and is found to decrease appetite. The main form of PYY, both stored and circulated, is PYY(3-36), the N-terminal truncated form of the full length peptide so, peripheral injections of PYY(3-36) in rats inhibit food intake in experimental animals as well as in lean and obese human subjects. Also, this hormone has been suggested to be an attractive therapeutic option for obesity. PYY levels are influenced by age and the highest hormone level is achieved in early postnatal life (day 30) and is decreased thereafter. PYY levels were also dependent on thyroid hormone status and being decreased in hyperthyroid rats. The PYY levels observed in acute and chronic food restricted rats indicated that, in situations of decreased energy intake, the lower PYY levels could serve to regulate central pathways and facilitate food intake. Contrary, in pregnant rats, PYY levels were enhanced at late gestation. The aim of this study was to assess the influence of age, sex, thyroid status, pregnancy and food restriction on PYY levels in rats. The underling mechanisms through which PYY levels alternated as a result of sex, age, pregnancy, thyroidal and nutritional status were discussed in the light of recent research outcomes

  7. Interrelation of hormonal regulation parameters and metabolic processes in children from the families with radiation risk

    International Nuclear Information System (INIS)

    Korenjev, M.M.; Kashkalda, D.A.; Borisko, G.O.; Cherevatova, S.Kh.; Bondarenko, V.A.; Kalmikova, N.V.; Spyivak, T.V.

    2010-01-01

    Interrelations of the indices of lipid peroxidation and antioxidant system with hormone level were investigated in teenagers born from the parents who participated in Chornobyl accident clean-up. Multiple inter-systemic relations indicating participation of hormonal regulation mechanisms in promotion of redox processes were revealed. In girls from the families of Chornobyl accident clean-up participants, LP and AOP processes dependent significantly on the level of steroid hormones. In boys, the relations with thyroid system dominated.

  8. Multiplex Immunoassay Profiling of Hormones Involved in Metabolic Regulation.

    Science.gov (United States)

    Stephen, Laurie; Guest, Paul C

    2018-01-01

    Multiplex immunoassays are used for rapid profiling of biomarker proteins and small molecules in biological fluids. The advantages over single immunoassays include lower sample consumption, cost, and labor. This chapter details a protocol to develop a 5-plex assay for glucagon-like peptide 1, growth hormone, insulin, leptin, and thyroid-stimulating hormone on the Luminex ® platform. The results of the analysis of insulin in normal control subjects are given due to the important role of this hormone in nutritional programming diseases.

  9. Parathyroid hormone, but not vitamin D, is associated with the metabolic syndrome in morbidly obese women and men: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Hager Helle

    2009-02-01

    Full Text Available Abstract Background The prevalence of vitamin D insufficiency and secondary hyperparathyroidism is high among morbidly obese subjects. Further, low serum levels of 25-hydroxyvitamin D (25 [OH]D and magnesium have been associated with increased risk of the metabolic syndrome (MS, and recently, a possible link between PTH and MS has been reported. Although it is well known that the synthesis and secretion of PTH is regulated by serum levels of calcium, phosphate, magnesium and 25(OHD, less is known about the possible clustered affiliation of these parameters with MS. We aimed to explore whether MS is associated with abnormal serum levels of PTH, 25(OHD and magnesium in a population of morbidly obese patients. Methods Fasting serum levels of 25(OHD, PTH and magnesium were assessed in a cross-sectional cohort study of 1,017 consecutive morbidly obese patients (68% women. Multiple logistic regression analyses were used to assess the independent effect of PTH, 25(OHD and magnesium on the odds for MS (National Cholesterol Education Program [NCEP] after adjustment for confounding factors. Results Sixty-eight percent of the patients had MS. Patients with MS had lower mean serum magnesium (P Conclusion The PTH level, but not the vitamin D level, is an independent predictor of MS in treatment seeking morbidly obese Caucasian women and men. Randomized controlled clinical trials, including different therapeutic strategies to lower PTH, e.g. calcium/vitamin D supplementation and weight reduction, are necessary to explore any cause-and-effect relationship.

  10. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin-releasing hormone (CRH) in psoriasis and ... Methods: Psoriasis and normal skin biopsy samples were obtained from three psoriatic and ... established in literature that stress signals such.

  11. Fortification of Yogurts with Vitamin D and Calcium Enhances the Inhibition of Serum Parathyroid Hormone and Bone Resorption Markers: A Double Blind Randomized Controlled Trial in Women over 60 Living in a Community Dwelling Home.

    Science.gov (United States)

    Bonjour, J-P; Benoit, V; Atkin, S; Walrand, S

    2015-05-01

    To evaluate whether fortification of yogurts with vitamin D and calcium exerts an additional lowering effect on serum parathyroid hormone (PTH) and bone resorption markers (BRM) as compared to iso-caloric and iso-protein dairy products in aged white women at risk of fragility fractures. A randomized double-blind controlled trial. A community dwelling home. Forty-eight women over 60 years (mean age 73.4). Consumption during 84 days of two 125 g servings of either vitamin D and calcium-fortified yogurts (FY) at supplemental levels of 10 µg vitamin D3/d and 520 mg/d of calcium (total=800 mg/d), or non fortified control yogurts (CY) providing 280 mg/d of calcium. Serum changes from baseline (D0) to D28, D56 and D84 in 25OHD, PTH and in two BRM: Tartrate-resistant-acid-phosphatase-isoform-5b (TRAP5b) and carboxy-terminal-cross-linked-telopeptide of type-I-collagen (CTX). The 10 years risk of major and hip fractures were 13.1 and 5.0%, and 12.9 and 4.2 %, in FY and CY groups, respectively. From D0 to D84, serum 25OHD increased (mean±SE) from 34.3±2.4 to 56.3±2.4 nmol/L in FY (n=24) and from 35.0±2.5 to 41.3±3.0 nmol/L in CY (n=24), (P=0.00001). The corresponding changes in PTH were from 64.1±5.1 to 47.4±3.8 ng/L in FY and from 63.5±4.6 to 60.7±4.2 ng/L in CY (P=0.0011). After D84, TRAP5b was reduced significantly (P=0.0228) and CTX fell though not significantly (P=0.0773) in FY compared to CY. This trial in aged white women living in a community dwelling home at risk for osteoporotic fractures confirms that fortification of dairy products with vitamin D3 and calcium should provide a greater prevention of secondary hyperparathyroidism and accelerated bone resorption as compared to non-fortified equivalent foods.

  12. A regulator of G Protein signaling, RGS3, inhibits gonadotropin-releasing hormone (GnRH-stimulated luteinizing hormone (LH secretion

    Directory of Open Access Journals (Sweden)

    Musgrove Lois C

    2001-11-01

    Full Text Available Abstract Background Luteinizing hormone secreted by the anterior pituitary gland regulates gonadal function. Luteinizing hormone secretion is regulated both by alterations in gonadotrope responsiveness to hypothalamic gonadotropin releasing hormone and by alterations in gonadotropin releasing hormone secretion. The mechanisms that determine gonadotrope responsiveness are unknown but may involve regulators of G protein signaling (RGSs. These proteins act by antagonizing or abbreviating interaction of Gα proteins with effectors such as phospholipase Cβ. Previously, we reported that gonadotropin releasing hormone-stimulated second messenger inositol trisphosphate production was inhibited when RGS3 and gonadotropin releasing hormone receptor cDNAs were co-transfected into the COS cell line. Here, we present evidence for RGS3 inhibition of gonadotropin releasing hormone-induced luteinizing hormone secretion from cultured rat pituitary cells. Results A truncated version of RGS3 (RGS3T = RGS3 314–519 inhibited gonadotropin releasing hormone-stimulated inositol trisphosphate production more potently than did RSG3 in gonadotropin releasing hormone receptor-bearing COS cells. An RSG3/glutathione-S-transferase fusion protein bound more 35S-Gqα than any other member of the G protein family tested. Adenoviral-mediated RGS3 gene transfer in pituitary gonadotropes inhibited gonadotropin releasing hormone-stimulated luteinizing hormone secretion in a dose-related fashion. Adeno-RGS3 also inhibited gonadotropin releasing hormone stimulated 3H-inositol phosphate accumulation, consistent with a molecular site of action at the Gqα protein. Conclusions RGS3 inhibits gonadotropin releasing hormone-stimulated second messenger production (inositol trisphosphate as well as luteinizing hormone secretion from rat pituitary gonadotropes apparently by binding and suppressing the transduction properties of Gqα protein function. A version of RGS3 that is amino

  13. Hormonal regulation of AMPA receptor trafficking and memory formation

    Directory of Open Access Journals (Sweden)

    Harmen J Krugers

    2009-10-01

    Full Text Available Humans and rodents retain memories for stressful events very well. The facilitated retention of these memories is normally very useful. However, in susceptible individuals a variety of pathological conditions may develop in which memories related to stressful events remain inappropriately present, such as in post-traumatic stress disorder. The memory enhancing effects of stress are mediated by hormones, such as norepinephrine and glucocorticoids which are released during stressful experiences. Here we review recently identified molecular mechanisms that underlie the effects of stress hormones on synaptic efficacy and learning and memory. We discuss AMPA receptors as major target for stress hormones and describe a model in which norepinephrine and glucocorticoids are able to strengthen and prolong different phases of stressful memories.

  14. Direct demonstration of D1 dopamine receptors in the bovine parathyroid gland using the D1 selective antagonist [125I]-SCH 23982

    International Nuclear Information System (INIS)

    Monsma, F.J. Jr.; Sibley, D.R.

    1989-01-01

    The presence of D1 dopamine receptors in the parathyroid gland has been proposed based on the demonstration of dopaminergic regulation of adenylate cyclase activity and parathyroid hormone release in dispersed bovine parathyroid cells. Using a radioiodinated D1 selective antagonist [125I]-SCH 23982, we have now directly labeled and characterized the D1 dopamine receptors in bovine parathyroid gland membranes. [125I]-SCH 23982 binds in a saturable manner with high affinity and low nonspecific binding to membranes prepared from bovine parathyroid glands. D1 dopamine receptors are present in this preparation at a concentration of approximately 130 fMoles/mg protein and [125I]-SCH 23982 binding increases with increasing protein concentration in a linear fashion. Determination of the Kd using the association (k1) and dissociation (k-1) rate constants revealed good agreement with the Kd determined by saturation analysis (390 pM vs. 682 pM, respectively). Inhibition of 0.3 nM [125I]-SCH 23982 binding by a series of dopaminergic antagonists verified the D1 nature of this binding site, exhibiting appropriate affinities and rank order of potency. The competition curves of all antagonists exhibited Hill coefficients that were not significantly different from 1. Inhibition of [125I]-SCH 23982 binding by dopamine and other dopaminergic agonists revealed the presence of high and low affinity agonist binding sites. Addition of 200 microM GppNHp effected a complete conversion of high affinity dopamine binding sites to a homogeneous population of low affinity dopamine sites. The D1 receptors identified in the parathyroid gland with [125I]-SCH 23982 appear to be pharmacologically identical with those previously characterized in the central nervous system

  15. Dependence of calcium on thyroid hormone for the regulation of ...

    African Journals Online (AJOL)

    concentration by mobilizing intracellular Ca2+. The mobilization of intracellular Ca2+in the absence of transmembrane Ca2+influx has been accepted as evidence for a cell-surface Ca2+ - receptor. The possible role of thyroid hormone in the ...

  16. Hormones & growth regulators can be useful to foresters

    Science.gov (United States)

    Albert G., Jr. Snow

    1959-01-01

    Trees, like other plants, contain many natural chemicals of the sort that we call hormones. Research is gradually revealing that, in the behavior of a tree, these chemicals may be almost as important as the basic influences of heredity and environment.

  17. Up-regulation of corticotropin releasing hormone is associated with ...

    African Journals Online (AJOL)

    Purpose: To determine the expression of corticotropin-releasing hormone (CRH) in psoriasis and normal skin biopsy samples, and to correlate the expression of CRH with the expression of CRHBP and inflammatory cytokines IL-8 and IL-33. Methods: Psoriasis and normal skin biopsy samples were obtained from three ...

  18. PARATHYROID CYTOLOGY: A DIAGNOSTIC DILEMMA

    Directory of Open Access Journals (Sweden)

    Naval Kishore Bajaj

    2016-09-01

    Full Text Available INTRODUCTION Neck nodules are common in clinical practice which are accessible to Fine needle aspiration cytology (FNAC. Thyroid being the commonest organ to present as the nodular lesions. Parathyroid lesions can be incidentally encountered during FNA of a thyroid nodule Fine needle aspiration cytology is a safe economical and leading investigation in the diagnosis of neck nodules. Thyroid and parathyroid nodules are indistinguishable clinically. An attempt is made to familiarise the pathologist about the cytomorphological features of parathyroid nodules and simple approach to differentiate from thyroid nodules. MATERIALS AND METHODS It is a retrospective study conducted over a period of 5 years from 2011-2016. Twelve cases of histologically proven parathyroidal lesions are the subjects of study of which 4 cases were diagnosed as parathyroidal cyst and rest as parathyroid adenoma. All the cases underwent fine needle aspiration cytology under ultrasound guidance, Smears were made, stained by H & E and PAP staining method, the slides were reviewed by two cytopathologists. Biochemical and radiological findings were evaluated before giving definitive cytological diagnosis. RESULTS A total number of 12 cases which were histologically proven as parathyroidal lesion. Out of which 4 were cystic lesions which were excluded from the study. Rest of the 8 cases confirmed as parathyroid adenoma which had FNAC were evaluated. 5 cases had positive cytohistological correlation. Three out of 8 cases were diagnosed as papillary carcinoma of thyroid, Toxic nodular goitre and Hurthle cell neoplasm due to varied cytomorphology. CONCLUSION Parathyroidal lesions has got low sensitivity and specificity in cytology. The confident diagnosis of parathyroid neoplasm was made in conjunction with biochemical and advanced radiological imaging. In neck nodules which are asymptomatic and at abnormal locations, FNAC through its cytomorphological features has an edge in

  19. Hormonal regulation of wheat growth during hydroponic culture

    Science.gov (United States)

    Wetherell, Donald

    1988-01-01

    Hormonal control of root growth has been explored as one means to alleviate the crowding of plant root systems experienced in prototype hydroponic biomass production chambers being developed by the CELSS Breadboard Project. Four plant hormones, or their chemical analogs, which have been reported to selectively inhibit root growth, were tested by adding them to the nutrient solutions on day 10 of a 25 day growth test using spring wheat in hydroponic cultures. Growth and morphological changes is both shoot and root systems were evaluated. In no case was it possible to inhibit root growth without a comparable inhibition of shoot growth. It was concluded that this approach is unlikely to prove useful for wheat.

  20. Activation of calcium-sensing receptor accelerates apoptosis in hyperplastic parathyroid cells

    International Nuclear Information System (INIS)

    Mizobuchi, Masahide; Ogata, Hiroaki; Hatamura, Ikuji; Saji, Fumie; Koiwa, Fumihiko; Kinugasa, Eriko; Koshikawa, Shozo; Akizawa, Tadao

    2007-01-01

    Calcimimetic compounds inhibit not only parathyroid hormone (PTH) synthesis and secretion, but also parathyroid cell proliferation. The aim of this investigation is to examine the effect of the calcimimetic compound NPS R-568 (R-568) on parathyroid cell death in uremic rats. Hyperplastic parathyroid glands were obtained from uremic rats (subtotal nephrectomy and high-phosphorus diet), and incubated in the media only or the media which contained high concentration of R-568 (10 -4 M), or 10% cyclodextrin, for 6 h. R-568 treatment significantly suppressed medium PTH concentration compared with that of the other two groups. R-568 treatment not only increased the number of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling assay-positive cells, but also induced the morphologic changes of cell death determined by light or electron microscopy. These results suggest that CaR activation by R-568 accelerates parathyroid cell death, probably through an apoptotic mechanism in uremic rats in vitro

  1. Hormonal regulation of phosphatidylcholine synthesis by reversible modulation of cytidylyltransferase.

    OpenAIRE

    Kelly, K L; Gutierrez, G; Martin, A

    1988-01-01

    The effect of both lipolytic and antilipolytic hormones on the turnover of phosphatidylcholine in freshly isolated rat adipocytes was investigated. Treatment of adipocytes with agonists such as glucagon or isoprenaline that stimulate lipolysis through a cyclic AMP-dependent mechanism caused an increase in the incorporation of [Me-3H]choline into phosphatidylcholine. Pulse-chase studies indicated that the stimulation was due to an increase in the conversion of choline into phosphatidylcholine,...

  2. Stress Hormones and their Regulation in a Captive Dolphin Population

    Science.gov (United States)

    2015-09-30

    out-of- water stress protocol. The observed response to the stress protocol was similar to that of ACTH administrations (see Parent Project for...CD, Booth R, Wasser S, Cotte L, Jensen E, Crocker D, Houser D (2013). The progestin megestrol acetate suppresses the HPA axis in bottlenose dolphin...Kellar, N.M., Cockrem, J., Romano, T., Booth, R.K. and Wasser , S.K. (2015) Natural variation in stress hormones, comparisons across matrices, and

  3. Thyroid Hormones Are Transport Substrates and Transcriptional Regulators of Organic Anion Transporting Polypeptide 2B1.

    Science.gov (United States)

    Meyer Zu Schwabedissen, Henriette E; Ferreira, Celio; Schaefer, Anima M; Oufir, Mouhssin; Seibert, Isabell; Hamburger, Matthias; Tirona, Rommel G

    2018-07-01

    Levothyroxine replacement therapy forms the cornerstone of hypothyroidism management. Variability in levothyroxine oral absorption may contribute to the well-recognized large interpatient differences in required dose. Moreover, levothyroxine-drug pharmacokinetic interactions are thought to be caused by altered oral bioavailability. Interestingly, little is known regarding the mechanisms contributing to levothyroxine absorption in the gastrointestinal tract. Here, we aimed to determine whether the intestinal drug uptake transporter organic anion transporting polypeptide 2B1 (OATP2B1) may be involved in facilitating intestinal absorption of thyroid hormones. We also explored whether thyroid hormones regulate OATP2B1 gene expression. In cultured Madin-Darby Canine Kidney II/OATP2B1 cells and in OATP2B1-transfected Caco-2 cells, thyroid hormones were found to inhibit OATP2B1-mediated uptake of estrone-3-sulfate. Competitive counter-flow experiments evaluating the influence on the cellular accumulation of estrone-3-sulfate in the steady state indicated that thyroid hormones were substrates of OATP2B1. Additional evidence that thyroid hormones were OATP2B1 substrates was provided by OATP2B1-dependent stimulation of thyroid hormone receptor activation in cell-based reporter assays. Bidirectional transport studies in intestinal Caco-2 cells showed net absorptive flux of thyroid hormones, which was attenuated by the presence of the OATP2B1 inhibitor, atorvastatin. In intestinal Caco-2 and LS180 cells, but not in liver Huh-7 or HepG2 cells, OATP2B1 expression was induced by treatment with thyroid hormones. Reporter gene assays revealed thyroid hormone receptor α -mediated transactivation of the SLCO2B1 1b and the SLCO2B1 1e promoters. We conclude that thyroid hormones are substrates and transcriptional regulators of OATP2B1. These insights provide a potential mechanistic basis for oral levothyroxine dose variability and drug interactions. Copyright © 2018 by The American

  4. Correlação entre fotoproteção e concentrações de 25 hidroxi-vitamina D e paratormônio Correlation between photoprotection and 25 hydroxyvitamin D and parathyroid hormone levels

    Directory of Open Access Journals (Sweden)

    Marcus Maia

    2007-06-01

    Full Text Available FUNDAMENTOS- A preocupação com o risco de câncer da pele levou à difusão da fotoproteção em larga escala, e atualmente se discute se haveria, associado a essa recomendação, risco para o desenvolvimento de hipovitaminose D. OBJETIVOS - Avaliar em pacientes orientados para proteção solar, o estado atual de seu estoque de vitamina D. MÉTODOS - Avaliaram-se as concentrações de 25 hidroxivitamina D (25OHD e do hormônio da paratireóide (PTH em grupos de indivíduos com e sem orientação para fotoproteção, moradores da cidade de São Paulo. RESULTADOS - Encontrou-se diferença significativa entre os níveis de 25OHD, maiores no grupo fotoexposto, 35,4ng/mL [21,86- 72,20], em relação ao fotoprotegido, 29,2ng/mL [23,10-45,80]. Também houve diferença com relação ao PTH, maior no grupo fotoexposto, 29,8pg/mL [18,98-73,94], do que no fotoprotegido, 19,24pg/mL [8,06-66,18]. CONCLUSÕES - Apesar dessas diferenças, não havia indivíduos deficientes de vitamina D nessa amostra, e os níveis de PTH mantiveram- se dentro dos valores de normalidade. A radiação ultravioleta solar do cotidiano foi suficiente para promover uma síntese adequada de 25OHD.BACKGROUND - The great concern about skin cancer risk led to the dissemination of photoprotection in high scale. Nowadays the association of this recommendation and the risk of develop hypovitaminosis D is discussed. OBJECTIVE - To evaluate vitamin D storage in patients submitted to sun protection. METHODS - The levels of 25-hydroxyvitamin D (25OHD and parathyroid hormone (PTH were evaluated in groups of individuals living in the city of São Paulo who received or not orientation about photoprotection. RESULTS - Significant differences in 25OHD levels were found between the groups, being higher in the photoexposed group (35.40 ng/mL [21.86-72.20] as compared to the photoprotected group (29.20 ng/mL [23.10-45.80]. There was also difference in PTH levels, being higher in the photoexposed

  5. Impact of Growth Hormone on Regulation of Adipose Tissue.

    Science.gov (United States)

    Troike, Katie M; Henry, Brooke E; Jensen, Elizabeth A; Young, Jonathan A; List, Edward O; Kopchick, John J; Berryman, Darlene E

    2017-06-18

    Increasing prevalence of obesity and obesity-related conditions worldwide has necessitated a more thorough understanding of adipose tissue (AT) and expanded the scope of research in this field. AT is now understood to be far more complex and dynamic than previously thought, which has also fueled research to reevaluate how hormones, such as growth hormone (GH), alter the tissue. In this review, we will introduce properties of AT important for understanding how GH alters the tissue, such as anatomical location of depots and adipokine output. We will provide an overview of GH structure and function and define several human conditions and cognate mouse lines with extremes in GH action that have helped shape our understanding of GH and AT. A detailed discussion of the GH/AT relationship will be included that addresses adipokine production, immune cell populations, lipid metabolism, senescence, differentiation, and fibrosis, as well as brown AT and beiging of white AT. A brief overview of how GH levels are altered in an obese state, and the efficacy of GH as a therapeutic option to manage obesity will be given. As we will reveal, the effects of GH on AT are numerous, dynamic and depot-dependent. © 2017 American Physiological Society. Compr Physiol 7:819-840, 2017. Copyright © 2017 John Wiley & Sons, Inc.

  6. Coexistence of parathyroid adenoma and papillary thyroid carcinoma: Experience of a single center

    Directory of Open Access Journals (Sweden)

    Ebubekir Gündeş

    2013-01-01

    Full Text Available Objective: The aim of this study was to describe experienceswith concurrent parathyroid adenoma and papillarythyroid carcinoma.Methods: Eight patients with concurrent parathyroid adenomaand papillary thyroid carcinoma were identifiedbetween 2005 and 2012, and their medical records werereviewed retrospectively.Results: Of the eight patients identified, two were maleand six were female; their mean age was 53.6 years.The mean serum calcium concentration was 11.7 mg/dL.Intact parathyroid hormone (iPTH concentrations werehigh in all patients, with a mean concentration of 338 pg/mL. The most frequently used surgical technique was totalthyroidectomy plus parathyroid adenoma excision (n=6.The mean size of the thyroid carcinoma was 1.2 cm, andone case showed metastatic lymph nodes in the centralcompartment. The mean parathyroid adenoma size wasfound to be 2.1(0.6- 3.5 cm, according to the longest sizeof the adenom. Six patients (75% developed postoperativecomplications, including temporary symptomatic hypocalcemiain 4 patients (50%, hematoma developmentin 1 patient (12.5% and temporary vocal cord paralysis inone patient (12.5%.Conclusion: Thyroid carcinoma and parathyroid adenomaare rarely concomitant. Rarely hyperparathyroidismmay be accompanied with thyroid carcinomas so preoperativelythyroid gland should be properly examined. Thyroidwith parathyroid surgery are risk factors of recurrentlaryngeal nerve injury and hypoparathyroidism.Key words: Papillary thyroid cancer; parathyroid adenoma;thyroidectomy

  7. Water-clear cell adenoma of the parathyroid. A case report with immunohistochemistry and electron microscopy.

    Science.gov (United States)

    Grenko, R T; Anderson, K M; Kauffman, G; Abt, A B

    1995-11-01

    We report a water-clear cell adenoma of the parathyroid gland, a lesion which to our knowledge has not been described previously. Like its rare but well-described hyperplastic counterpart, water-clear cell hyperplasia, this adenoma is composed of cells with abundant foamy-to-granular cytoplasm and mild nuclear pleomorphism. The cells form glandular structures and cell nests separated by fine fibrovascular septae. The tumor cells stain positively with anti-parathyroid hormone and show characteristic glassy and flocculate material by electron microscopy. Unlike water-clear cell hyperplasia, water-clear cell adenoma is a solitary lesion that compresses the residual nonneoplastic parathyroid gland.

  8. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus

    OpenAIRE

    Jeanneteau, Freddy D.; Lambert, W. Marcus; Ismaili, Naima; Bath, Kevin G.; Lee, Francis S.; Garabedian, Michael J.; Chao, Moses V.

    2012-01-01

    Regulation of the hypothalamic–pituitary–adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased ...

  9. Genetics Home Reference: parathyroid cancer

    Science.gov (United States)

    ... skeletal problems. These problems include increased urine production (polyuria), deposits of calcium in the kidneys (nephrocalcinosis) leading ... Institute: Parathyroid Cancer Treatment PDQ National Institute of Diabetes and Digestive and Kidney Diseases: Primary Hyperparathyroidism Educational ...

  10. DYNAMIC BEHAVIOR OF A DELAY-DIFFERENTIAL EQUATION MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    During the menstrual cycle, pituitary hormones stimulate the growth and development of ovarian follicles and the release of an ovum to be fertilized. The ovarian follicles secrete hormones during the cycle that regulate the production of the pituitary hormones creating positi...

  11. Hormonal regulation of lipid metabolism in developing coho salmon, Oncorhynchus kisutch

    International Nuclear Information System (INIS)

    Sheridan, M.A.

    1985-01-01

    Lipid metabolism in juvenile coho salmon is characterized, and adaptive changes in lipid mobilization are described in relation to development and hormonal influences. The rates of lipogenesis and lipolysis were determined in selected tissues of juvenile salmon during the period of seawater preadaptive development (smoltification). Neutral lipid (sterol) and fatty acid synthesis in the liver and mesenteric fat was measured by tritium incorporation. Fatty acid synthesis in the liver and mesenteric fat decreased by 88% and 81%, respectively, between late February (parr) and early June (smolt). To assess the role of hormones in smoltification-associated lipid depletion, growth hormone, prolactin, thyroxin and cortisol were administered in vivo early in development (parr) to determine if any of these factors could initiate the metabolic responses normally seen later in development (smolt). Growth hormone stimulated lipid mobilization from coho salmon parr. Prolactin strongly stimulated lipid mobilization in coho parr. Thyroxin and cortisol also stimulated lipid mobilization for coho salmon parr. The direct effect of hormones was studied by in vitro pH-stat incubation of liver slices. These data suggest that norepinephrine stimulates fatty acid release via β-adrenergic pathways. Somatostatin and its partial analogue from the fish caudal neurosecretory system, urotensin II, also affect lipid mobilization. These results establish the presence of hormone-sensitive lipase in salmon liver and suggest that the regulation of lipid metabolism in salmon involves both long-acting and short-acting hormonal agents

  12. Hormonal regulation of gluconeogenic gene transcription in the liver

    Indian Academy of Sciences (India)

    Prakash

    and in various nutritional states such as high protein diets and fasting ... Glucose levels in the circulation are regulated by the liver, the metabolic centre which produces glucose ..... AMP-activated kinase (AMPK) under energy stress blocks.

  13. Hormonal regulation of phosphatidylcholine synthesis by reversible modulation of cytidylyltransferase.

    Science.gov (United States)

    Kelly, K L; Gutierrez, G; Martin, A

    1988-01-01

    The effect of both lipolytic and antilipolytic hormones on the turnover of phosphatidylcholine in freshly isolated rat adipocytes was investigated. Treatment of adipocytes with agonists such as glucagon or isoprenaline that stimulate lipolysis through a cyclic AMP-dependent mechanism caused an increase in the incorporation of [Me-3H]choline into phosphatidylcholine. Pulse-chase studies indicated that the stimulation was due to an increase in the conversion of choline into phosphatidylcholine, which was both time- and dose-dependent. The stimulatory effect of isoprenaline was inhibited in a dose-dependent manner by oxytocin or insulin. Oxytocin inhibited the incorporation of [Me-3H]choline into phosphatidylcholine in both the presence and the absence of isoprenaline, whereas in the absence of isoprenaline insulin increased the incorporation of [Me-3H]choline into phosphatidylcholine. The effects of isoprenaline, oxytocin and insulin on the incorporation of [3H]choline into phosphatidylcholine were paralleled by changes in the activity of CTP:phosphocholine cytidylyltransferase. PMID:2849424

  14. Regulation of extrarenal potassium homeostasis by adrenal hormones in rats.

    Science.gov (United States)

    Bia, M J; Tyler, K A; DeFronzo, R A

    1982-06-01

    The effect of chronic (7-10 days) adrenal insufficiency on extrarenal potassium tolerance was examined by infusing potassium into rats after acute nephrectomy. The increment in plasma potassium concentration was significantly higher in glucocorticoid-replaced adrenalectomized rats versus controls (max delta PK 3.59 +/-0.11 vs. 2.93 +/- 0.08 meq/liter; P less than 0.001). The impairment in extrarenal potassium tolerance in adrenalectomized rats could not be attributed to acidemia, hypotension, changes in plasma insulin or glucose concentration, or potassium retention prior to study. Acute replacement with aldosterone resulted in significant improvement in the rise in plasma potassium after KCl (max delta PK 3.18 +/- 0.06 meq/liter; P less than 0.005 compared with aldosterone-deficient adrenalectomized rats but higher than in controls, P less than 0.02). If given on a chronic basis, aldosterone replacement led to a complete correction of the defect (max delta PK = 2.89 +/- 0.08 meq/liter). Acute epinephrine replacement in adrenalectomized rats also returned potassium tolerance to normal (max delta PK = 3.02 +/- 0.10 meq/liter). The results demonstrate that extrarenal potassium tolerance is impaired in chronic adrenal insufficiency and suggest that both aldosterone and epinephrine deficiency may contribute to the defect, since replacement with either hormone returns potassium tolerance toward normal. Accordingly, both aldosterone and epinephrine have important extrarenal mechanisms of action.

  15. Hormonal regulation of Na -K -ATPase in cultured epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, J.P.; Jones, D.; Wiesmann, W.P.

    1986-08-01

    Aldosterone and insulin stimulate Na transport through mechanisms involving protein synthesis. Na -K -ATPase has been implicated in the action of both hormones. The authors examined the effect of aldosterone and insulin on Na -K -ATPase in epithelial cells in culture derived from toad urinary bladder (TB6C) and toad kidney (A6). Aldosterone, but not insulin, increases short-circuit current (I/sub sc/) in TB6C cells. Aldosterone increases Na -K -(TSP)ATPase activity after 18 h of incubation, but no effect can be seen at 3 and 6 h. Amiloride, which inhibits aldosterone-induced increases in I/sub sc/, has no effect on either basal or aldosterone stimulated enzyme activity. Both aldosterone and insulin increase I/sub sc/ in A6 cells and when added together are synergistic. Aldosterone stimulates enzyme activity in A6 cells, but insulin alone has no effect. However, aldosterone and insulin together stimulate enzyme activity more than aldosterone alone. It appears that stimulation of Na -K -ATPase activity is involved in aldosterone action in both cell lines but does not appear to be due to increased Na entry, since enhanced enzyme activity is not inhibited by amiloride. In contrast, insulin alone has no direct effect on Na -K -ATPase, although the increased enzyme activity following both agents in combination may explain their synergism on I/sub sc/.

  16. Estrogens regulate the hepatic effects of Growth Hormone, a hormonal interplay with multiple fates

    Directory of Open Access Journals (Sweden)

    Leandro eFernandez-Perez

    2013-06-01

    Full Text Available The liver responds to estrogens and GH which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk with endocrine, metabolic, and sex-differentiated functions of GH. Most previous studies have been focused on the influence of estrogens on pituitary GH secretion, which has a great impact on hepatic transcriptional regulation. However, there is strong evidence that estrogens can influence the GH-regulated endocrine and metabolic functions in the human liver by acting at the level of GHR-STAT5 signaling pathway. This cross-talk is relevant because the widespread exposition of estrogen or estrogen-related compounds in human. Therefore, GH or estrogen signaling deficiency as well as the influence of estrogens on GH biology can cause a dramatic impact in liver physiology during mammalian development and in adulthood. In this review, we will summarize the current status of the influence of estrogen on GH actions in liver. A better understanding of estrogen-GH interplay in liver will lead to improved therapy of children with growth disorders and of adults with GH deficiency.

  17. Tumour nuclear oestrogen receptor beta 1 correlates inversely with parathyroid tumour weight.

    Science.gov (United States)

    Haglund, Felix; Rosin, Gustaf; Nilsson, Inga-Lena; Juhlin, C Christofer; Pernow, Ylva; Norenstedt, Sophie; Dinets, Andrii; Larsson, Catharina; Hartman, Johan; Höög, Anders

    2015-03-01

    Primary hyperparathyroidism (PHPT) is a common endocrinopathy, frequently caused by a parathyroid adenoma, rarely by a parathyroid carcinoma that lacks effective oncological treatment. As the majority of cases are present in postmenopausal women, oestrogen signalling has been implicated in the tumourigenesis. Oestrogen receptor beta 1 (ERB1) and ERB2 have been recently identified in parathyroid adenomas, the former inducing genes coupled to tumour apoptosis. We applied immunohistochemistry and slide digitalisation to quantify nuclear ERB1 and ERB2 in 172 parathyroid adenomas, atypical adenomas and carcinomas, and ten normal parathyroid glands. All the normal parathyroid glands expressed ERB1 and ERB2. The majority of tumours expressed ERB1 (70.6%) at varying intensities, and ERB2 (96.5%) at strong intensities. Parathyroid carcinomas expressed ERB1 in three out of six cases and ERB2 in five out of six cases. The intensity of tumour nuclear ERB1 staining significantly correlated inversely with tumour weight (P=0.011), and patients whose tumours were classified as ERB1-negative had significantly greater tumour weight as well as higher serum calcium (P=0.002) and parathyroid hormone levels (P=0.003). Additionally, tumour nuclear ERB1 was not expressed differentially with respect to sex or age of the patient. Levels of tumour nuclear ERB2 did not correlate with clinical characteristics. In conclusion, decreased ERB1 immunoreactivity is associated with increased tumour weight in parathyroid adenomas. Given the previously reported correlation with tumour-suppressive signalling, selective oestrogen receptor modulation (SERMs) may play a role in the treatment of parathyroid carcinomas. Future studies of SERMs and oestrogen treatment in PHPT should consider tumour weight as a potential factor in pharmacological responsiveness. © 2015 The authors.

  18. Thyroid Hormone Regulates the Expression of the Sonic Hedgehog Signaling Pathway in the Embryonic and Adult Mammalian Brain

    OpenAIRE

    Desouza, Lynette A.; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E.; Kottmann, Andreas H.; Tole, Shubha; Vaidya, Vidita A.

    2011-01-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and...

  19. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  20. APPLICATIONS OF A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE

    Science.gov (United States)

    APPLICATIONS OF A MODEL FOR THE HORMONAL REGULATION OF THE MENSTRUAL CYCLE. Leona H. Clark1, Paul M. Schlosser2, and James F. Selgrade3. 1US Environmental Protection Agency, ORD, NHEERL, ETD, Research Triangle Park, NC; 2CIIT, Research Triangle Park, NC; 3North Carolina State Un...

  1. Pathophysiologic Changes in Extracellular pH Modulate Parathyroid Calcium-Sensing Receptor Activity and Secretion via a Histidine-Independent Mechanism.

    Science.gov (United States)

    Campion, Katherine L; McCormick, Wanda D; Warwicker, Jim; Khayat, Mohd Ezuan Bin; Atkinson-Dell, Rebecca; Steward, Martin C; Delbridge, Leigh W; Mun, Hee-Chang; Conigrave, Arthur D; Ward, Donald T

    2015-09-01

    The calcium-sensing receptor (CaR) modulates renal calcium reabsorption and parathyroid hormone (PTH) secretion and is involved in the etiology of secondary hyperparathyroidism in CKD. Supraphysiologic changes in extracellular pH (pHo) modulate CaR responsiveness in HEK-293 (CaR-HEK) cells. Therefore, because acidosis and alkalosis are associated with altered PTH secretion in vivo, we examined whether pathophysiologic changes in pHo can significantly alter CaR responsiveness in both heterologous and endogenous expression systems and whether this affects PTH secretion. In both CaR-HEK and isolated bovine parathyroid cells, decreasing pHo from 7.4 to 7.2 rapidly inhibited CaR-induced intracellular calcium (Ca(2+)i) mobilization, whereas raising pHo to 7.6 potentiated responsiveness to extracellular calcium (Ca(2+)o). Similar pHo effects were observed for Ca(2+)o-induced extracellular signal-regulated kinase phosphorylation and actin polymerization and for L-Phe-induced Ca(2+)i mobilization. Intracellular pH was unaffected by acute 0.4-unit pHo changes, and the presence of physiologic albumin concentrations failed to attenuate the pHo-mediated effects. None of the individual point mutations created at histidine or cysteine residues in the extracellular domain of CaR attenuated pHo sensitivity. Finally, pathophysiologic pHo elevation reversibly suppressed PTH secretion from perifused human parathyroid cells, and acidosis transiently increased PTH secretion. Therefore, pathophysiologic pHo changes can modulate CaR responsiveness in HEK-293 and parathyroid cells independently of extracellular histidine residues. Specifically, pathophysiologic acidification inhibits CaR activity, thus permitting PTH secretion, whereas alkalinization potentiates CaR activity to suppress PTH secretion. These findings suggest that acid-base disturbances may affect the CaR-mediated control of parathyroid function and calcium metabolism in vivo. Copyright © 2015 by the American Society of

  2. Giant parathyroid adenoma: differential aspects compared to parathyroid carcinoma

    Directory of Open Access Journals (Sweden)

    Marta Araujo Castro

    2017-05-01

    Full Text Available The 85% of cases of primary hyperparathyroidism (PHPT are due to parathyroid adenomas (PA and less than 1% to parathyroid carcinomas (PC. The PA usually measure <2 cm, weigh <1 g and generate a mild PHPT, whereas the PC usually exceeds these dimensions and are associated with a severe PHPT. However, giant PA (GPA, which is defined as those larger than 3 g, has been documented. Those may be associated with very high levels of PTH and calcium. In these cases, their differentiation before and after surgery with PC is very difficult. We present a case of severe PHPT associated with a large parathyroid lesion, and we discuss the differential aspects between the GPA and PC.

  3. Hormonal regulation of alveolarization: structure-function correlation

    Directory of Open Access Journals (Sweden)

    Godinez Marye H

    2006-03-01

    Full Text Available Abstract Background Dexamethasone (Dex limits and all-trans-retinoic acid (RA promotes alveolarization. While structural changes resulting from such hormonal exposures are known, their functional consequences are unclear. Methods Neonatal rats were treated with Dex and/or RA during the first two weeks of life or were given RA after previous exposure to Dex. Morphology was assessed by light microscopy and radial alveolar counts. Function was evaluated by plethysmography at d13, pressure volume curves at d30, and exercise swim testing and arterial blood gases at both d15 and d30. Results Dex-treated animals had simplified lung architecture without secondary septation. Animals given RA alone had smaller, more numerous alveoli. Concomitant treatment with Dex + RA prevented the Dex-induced changes in septation. While the results of exposure to Dex + RA were sustained, the effects of RA alone were reversed two weeks after treatment was stopped. At d13, Dex-treated animals had increased lung volume, respiratory rate, tidal volume, and minute ventilation. On d15, both RA- and Dex-treated animals had hypercarbia and low arterial pH. By d30, the RA-treated animals resolved this respiratory acidosis, but Dex-treated animals continued to demonstrate blood gas and lung volume abnormalities. Concomitant RA treatment improved respiratory acidosis, but failed to normalize Dex-induced changes in pulmonary function and lung volumes. No differences in exercise tolerance were noted at either d15 or d30. RA treatment after the period of alveolarization also corrected the effects of earlier Dex exposure, but the structural changes due to RA alone were again lost two weeks after treatment. Conclusion We conclude that both RA- and corticosteroid-treatments are associated with respiratory acidosis at d15. While RA alone-induced changes in structure andrespiratory function are reversed, Dex-treated animals continue to demonstrate increased respiratory rate, minute

  4. A parathyroid scintigraphy case study

    International Nuclear Information System (INIS)

    O'Leary, Desiree

    2005-01-01

    Background: There has been much debate concerning the most suitable protocol for parathyroid scintigraphy; the merits of various radiopharmaceuticals versus the correct imaging protocol to visualise both ectopic and anatomically placed adenomas against the various equipment choices have been debated. Aim: To demonstrate, through the use of a case study, the necessity of changing imaging protocols for parathyroid scintigraphy where a definitive imaging diagnosis is absent in the face of strong clinical suspicion. Method: Use is made of Tc99mMIBI, full field chest scintigraphy, a clearly defined imaging protocol and SPECT imaging to locate ectopic parathyroid tissue in a female patient with significant symptoms of parathyroid hyperfunction. Results: A single hyperfunctioning adenoma is located in the pre-carinal area of the mediastinum. Using a radioguided surgical technique the hyperfunctioning tissue is excised and confirmed by histopathology. Conclusion: Whilst a dramatic reduction in patient symptoms was not seen immediately in this patient, the symptoms of the illness have been subsiding since January 2003. This case study demonstrates the necessity of changing imaging protocols for parathyroid scintigraphy where a definitive imaging diagnosis is absent in the face of strong clinical suspicion

  5. Neuromedin s as novel putative regulator of luteinizing hormone secretion.

    Science.gov (United States)

    Vigo, E; Roa, J; López, M; Castellano, J M; Fernandez-Fernandez, R; Navarro, V M; Pineda, R; Aguilar, E; Diéguez, C; Pinilla, L; Tena-Sempere, M

    2007-02-01

    Neuromedin S (NMS), a 36 amino acid peptide structurally related to neuromedin U, was recently identified in rat brain as ligand for the G protein-coupled receptor FM4/TGR-1, also termed neuromedin U receptor type-2 (NMU2R). Central expression of NMS appears restricted to the suprachiasmatic nucleus, and NMS has been involved in the regulation of dark-light rhythms and suppression of food intake. Reproduction is known to be tightly regulated by metabolic and photoperiodic cues. Yet the potential contribution of NMS to the control of reproductive axis remains unexplored. We report herein analyses of hypothalamic expression of NMS and NMU2R genes, as well as LH responses to NMS, in different developmental and functional states of the female rat. Expression of NMS and NMU2R genes was detected at the hypothalamus along postnatal development, with significant fluctuations of their relative levels (maximum at prepubertal stage and adulthood). In adult females, hypothalamic expression of NMS (which was confined to suprachiasmatic nucleus) and NMU2R significantly varied during the estrous cycle (maximum at proestrus) and was lowered after ovariectomy and enhanced after progesterone supplementation. Central administration of NMS evoked modest LH secretory responses in pubertal and cyclic females at diestrus, whereas exaggerated LH secretory bursts were elicited by NMS at estrus and after short-term fasting. Conversely, NMS significantly decreased elevated LH concentrations of ovariectomized rats. In summary, we provide herein novel evidence for the ability of NMS to modulate LH secretion in the female rat. Moreover, hypothalamic expression of NMS and NMU2R genes appeared dependent on the functional state of the female reproductive axis. Our data are the first to disclose the potential implication of NMS in the regulation of gonadotropic axis, a function that may contribute to the integration of circadian rhythms, energy balance, and reproduction.

  6. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  7. The unique cysteine knot regulates the pleotropic hormone leptin.

    Directory of Open Access Journals (Sweden)

    Ellinor Haglund

    Full Text Available Leptin plays a key role in regulating energy intake/expenditure, metabolism and hypertension. It folds into a four-helix bundle that binds to the extracellular receptor to initiate signaling. Our work on leptin revealed a hidden complexity in the formation of a previously un-described, cysteine-knotted topology in leptin. We hypothesized that this unique topology could offer new mechanisms in regulating the protein activity. A combination of in silico simulation and in vitro experiments was used to probe the role of the knotted topology introduced by the disulphide-bridge on leptin folding and function. Our results surprisingly show that the free energy landscape is conserved between knotted and unknotted protein, however the additional complexity added by the knot formation is structurally important. Native state analyses led to the discovery that the disulphide-bond plays an important role in receptor binding and thus mediate biological activity by local motions on distal receptor-binding sites, far removed from the disulphide-bridge. Thus, the disulphide-bridge appears to function as a point of tension that allows dissipation of stress at a distance in leptin.

  8. Increased parathyroid expression of klotho in uremic rats

    DEFF Research Database (Denmark)

    Hofman-Bang, J.; Martuseviciene, G.; Santini, M.A.

    2010-01-01

    /6 nephrectomy rat model of secondary hyperparathyroidism. Parathyroid klotho gene expression and protein were significantly increased in severely uremic hyperphosphatemic rats, but not affected by moderate uremia and normal serum phosphorus. Calcitriol suppressed klotho gene and protein expression in severe...... secondary hyperparathyroidism, despite a further increase in plasma phosphate. Both FGFR1 IIIC and Na+/K+-ATPase gene expression were significantly elevated in severe secondary hyperparathyroidism. Parathyroid gland klotho expression and the plasma calcium ion concentration were inversely correlated. Thus......, our study suggests that klotho may act as a positive regulator of PTH expression and secretion in secondary hyperparathyroidism....

  9. Hormonal regulation of colour change in eyes of a cryptic fish

    Directory of Open Access Journals (Sweden)

    Helen Nilsson Sköld

    2015-01-01

    Full Text Available Colour change of the skin in lower vertebrates such as fish has been a subject of great scientific and public interest. However, colour change also takes place in eyes of fish and while an increasing amount of data indicates its importance in behaviour, very little is known about its regulation. Here, we report that both eye and skin coloration change in response to white to black background adaptation in live sand goby Pomatoschistus minutes, a bentic marine fish. Through in vitro experiments, we show that noradrenaline and melanocyte concentrating hormone (MCH treatments cause aggregation of pigment organelles in the eye chromatophores. Daylight had no aggregating effect. Combining forskolin to elevate intracellular cyclic adenosine monophosphate (cAMP with MCH resulted in complete pigment dispersal and darkening of the eyes, whereas combining prolactin, adrenocorticotrophic hormone (ACTH or melanocyte stimulating hormone (α-MSH with MCH resulted in more yellow and red eyes. ACTH and MSH also induced dispersal in the melanophores, resulting in overall darker eyes. By comparing analysis of eyes, skin and peritoneum, we conclude that the regulation pattern is similar between these different tissues in this species which is relevant for the cryptic life strategy of this species. With the exception of ACTH which resulted in most prominent melanophore pigment dispersal in the eyes, all other treatments provided similar results between tissue types. To our knowledge, this is the first study that has directly analysed hormonal regulation of physiological colour change in eyes of fish.

  10. Nuclear medicine diagnostic experience for 25 patients with parathyroid disease accompanied elevated serum PTH level

    International Nuclear Information System (INIS)

    Su Li; Huang Chenggang; Niu Wenqiang; Wu Liwen

    2010-01-01

    Objective: To explore nuclear medicine diagnostic method for parathyroid disease accompanied elevated serum parathyroid hormone (PTH) level. Methods: The images of 25 patients with parathyroid disease were obtained by SPECT 99 Tc m -MIBI double-phase parathyroid imaging and 99 Tc m -methylene diphosphonate ( 99 Tc m -MDP) whole-body static bone imaging. All subject were measured serum PTH, calcium, phosphorus and alkaline phosphatase. Results: (1) Serum PTH level increased to varying degrees in patients with primary hyperparathyroidism (PHPT), secondary hyperparathyroidism (SHPT). (2) PHPT and SHPT showed significant change before and after surgery (t=6.24 and t=6.85, P 99 Tc m -MIBI were above 90%. (4) Whole-body bone imaging results of SHPT patients showed complex and diverse caused by high background, increased uptakes mainly. 99 Tc m -MIBI dual-phase parathyroid imaging showed hyperparathyroidism in varying degree, up to 56% or more. Conclusion: Determination of serum PTH combined SPECT for parathyroid and whole-body bone imaging showed high clinical value in diagnosis and treatment of parathyroid disease. (authors)

  11. Hormone response element binding proteins: novel regulators of vitamin D and estrogen signaling.

    Science.gov (United States)

    Lisse, Thomas S; Hewison, Martin; Adams, John S

    2011-03-01

    Insights from vitamin D-resistant New World primates and their human homologues as models of natural and pathological insensitivity to sterol/steroid action have uncovered a family of novel intracellular vitamin D and estrogen regulatory proteins involved in hormone action. The proteins, known as "vitamin D or estrogen response element-binding proteins", behave as potent cis-acting, transdominant regulators to inhibit steroid receptor binding to DNA response elements and is responsible for vitamin D and estrogen resistances. This set of interactors belongs to the heterogeneous nuclear ribonucleoprotein (hnRNP) family of previously known pre-mRNA-interacting proteins. This review provides new insights into the mechanism by which these novel regulators of signaling and metabolism can act to regulate responses to vitamin D and estrogen. In addition the review also describes other molecules that are known to influence nuclear receptor signaling through interaction with hormone response elements. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    International Nuclear Information System (INIS)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh; Godbole, Madan M.

    2010-01-01

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1α, NRF-1α and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  13. Evidence of a bigenomic regulation of mitochondrial gene expression by thyroid hormone during rat brain development

    Energy Technology Data Exchange (ETDEWEB)

    Sinha, Rohit Anthony; Pathak, Amrita; Mohan, Vishwa; Babu, Satish; Pal, Amit; Khare, Drirh [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India); Godbole, Madan M., E-mail: madangodbole@yahoo.co.in [Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014 (India)

    2010-07-02

    Hypothyroidism during early mammalian brain development is associated with decreased expression of various mitochondrial encoded genes along with evidence for mitochondrial dysfunction. However, in-spite of the similarities between neurological disorders caused by perinatal hypothyroidism and those caused by various genetic mitochondrial defects we still do not know as to how thyroid hormone (TH) regulates mitochondrial transcription during development and whether this regulation by TH is nuclear mediated or through mitochondrial TH receptors? We here in rat cerebellum show that hypothyroidism causes reduction in expression of nuclear encoded genes controlling mitochondrial biogenesis like PGC-1{alpha}, NRF-1{alpha} and Tfam. Also, we for the first time demonstrate a mitochondrial localization of thyroid hormone receptor (mTR) isoform in developing brain capable of binding a TH response element (DR2) present in D-loop region of mitochondrial DNA. These results thus indicate an integrated nuclear-mitochondrial cross talk in regulation of mitochondrial transcription by TH during brain development.

  14. Expression of neuropeptide W in rat stomach mucosa: regulation by nutritional status, glucocorticoids and thyroid hormones.

    Science.gov (United States)

    Caminos, Jorge E; Bravo, Susana B; García-Rendueles, María E R; Ruth González, C; Garcés, Maria F; Cepeda, Libia A; Lage, Ricardo; Suárez, Miguel A; López, Miguel; Diéguez, Carlos

    2008-02-07

    Neuropeptide W (NPW) is a recently identified neuropeptide that binds to G-protein-coupled receptor 7 (GPR7) and 8 (GPR8). In rodent brain, NPW mRNA is confined to specific nuclei in hypothalamus, midbrain and brainstem. Expression of NPW mRNA has also been confirmed in peripheral organs such as stomach. Several reports suggested that brain NPW is implicated in the regulation of energy and hormonal homeostasis, namely the adrenal and thyroid axes; however the precise physiological role and regulation of peripheral NPW remains unclear. In this study, we examined the effects of nutritional status on the regulation of NPW in stomach mucosa. Our results show that in this tissue, NPW mRNA and protein expression is negatively regulated by fasting and food restriction, in all the models we studied: males, females and pregnant females. Next, we examined the effect of glucocorticoids and thyroid hormones on NPW mRNA expression in the stomach mucosa. Our data showed that NPW expression is decreased in this tissue after glucocorticoid treatment or hyperthyroidism. Conversely, hypothyroidism induces a marked increase in the expression of NPW in rat stomach. Overall, these data indicate that stomach NPW is regulated by nutritional and hormonal status.

  15. Metabolic regulation of the plant hormone indole-3-acetic acid

    Energy Technology Data Exchange (ETDEWEB)

    Jerry D. Cohen

    2009-11-01

    The phytohormone indole-3-acetic acid (IAA, auxin) is important for many aspects of plant growth, development and responses to the environment yet the routes to is biosynthesis and mechanisms for regulation of IAA levels remain important research questions. A critical issue concerning the biosynthesis if IAA in plants is that redundant pathways for IAA biosynthesis exist in plants. We showed that these redundant pathways and their relative contribution to net IAA production are under both developmental and environmental control. We worked on three fundamental problems related to how plants get their IAA: 1) An in vitro biochemical approach was used to define the tryptophan dependent pathway to IAA using maize endosperm, where relatively large amounts of IAA are produced over a short developmental period. Both a stable isotope dilution and a protein MS approach were used to identify intermediates and enzymes in the reactions. 2) We developed an in vitro system for analysis of tryptophan-independent IAA biosynthesis in maize seedlings and we used a metabolite profiling approach to isolate intermediates in this reaction. 3) Arabidopsis contains a small family of genes that encode potential indolepyruvate decarboxylase enzymes. We cloned these genes and studied plants that are mutant in these genes and that over-express each member in the family in terms of the level and route of IAA biosynthesis. Together, these allowed further development of a comprehensive picture of the pathways and regulatory components that are involved in IAA homeostasis in higher plants.

  16. Hormonal regulation of hepatic glycogenolysis in the carp, Cyprinus carpio

    International Nuclear Information System (INIS)

    Janssens, P.A.; Lowrey, P.

    1987-01-01

    Carp (Cyprinus carpio) liver maintained normal glycogen content and enzyme complement for several days in organ culture. Epinephrine-stimulated glycogenolysis, phosphorylase activation, and cyclic AMP (cAMP) accumulation in a concentration-dependent manner with EC 50 s of 100, 100, and 500 nM, respectively. These actions were blocked by the β-adrenergic antagonist, propranolol, but not by the α-adrenergic antagonist phentolamine. Glycogenolysis and tissue cAMP were uninfluenced by 10 -6 M arginine vasotocin, arginine vasopressin, lysine vasotocin, lysine vasopressin, mesotocin, or oxytocin, but were slightly increased by 10 -5 M isotocin and slightly decreased by 10 -6 M angiotensin II. [ 125 I]-iodocyanopindolol (ICP), a β-adrenergic ligand, bound to isolated carp liver membranes with a K/sub D/ of 83 pM. Maximum binding of 45 fmol/mg protein was at 600 pM. Propranolol, isoprenaline, epinephrine, phenylephrine, norepinephrine, and phenoxybenzamine displaced ICP with K/sub D/s of 100 nM, 2, 20, 20, 60, and 200 μM, respectively. The α-adrenergic antagonists, yohimbine and prazosin, showed no specific binding. These data provide evidence that catecholamines act via β-adrenergic receptors in carp liver and that α-adrenergic receptors are not present. Vasoactive peptides play no significant role in regulation of carp liver glycogenolysis

  17. The interaction between strigolactones and other plant hormones in the regulation of plant development

    Directory of Open Access Journals (Sweden)

    Xi eCheng

    2013-06-01

    Full Text Available Plant hormones are small molecules derived from various metabolic pathways and are important regulators of plant development. The most recently discovered phytohormone class comprises the carotenoid-derived strigolactones (SLs. For a long time these compounds were only known to be secreted into the rhizosphere where they act as signalling compounds, but now we know they are also active as endogenous plant hormones and they have been in the spotlight ever since. The initial discovery that SLs are involved in the inhibition of axillary bud outgrowth, initiated a multitude of other studies showing that SLs also play a role in defining root architecture, secondary growth, hypocotyl elongation and seed germination, mostly in interaction with other hormones. Their coordinated action enables the plant to respond in an appropriate manner to environmental factors such as temperature, shading, day length and nutrient availability. Here, we will review the current knowledge on the crosstalk between SLs and other plant hormones – such as auxin, cytokinin, abscisic acid, ethylene and gibberellins - during different physiological processes. We will furthermore take a bird’s eye view of how this hormonal crosstalk enables plants to respond to their ever changing environments.

  18. Evaluation of a potential parathyroid dysfunction under treatment with radioactive iodine of benign thyroid diseases

    International Nuclear Information System (INIS)

    Schumacher, Serena Christine

    2011-01-01

    The intention of the present thesis was the evaluation of a potential parathyroid dysfunction under treatment with radioactive iodine of benign thyroid diseases. It was to be examined whether a change in the parathyroid function would arise within the first week on treatment. So far there are some minor studies existing describing significant changes in the parathyroid hormone serum level within the first months after radioactive iodine therapy of benign and malignant thyroid diseases. Moreover, it is a fact that external beam-radiotherapy can induce neoplasia and that the risk for the subsequent development of primary hyperparathyroidism doubles or triples after external beam-radiotherapy of the head and neck. Up to now, however, an increased incidence for primary hyperparathyroidism following treatment with radioactive iodine ( 131 I) could not be proved. At the department of nuclear medicine of the university hospital Giessen-Marburg GmbH, location Marburg, a prospective cohort study was executed on radioactive iodine therapy of benign thyroid diseases with 105 probands (75 women / 30 men, mean age 60.62 ± 14.3 years). According to their thyroid diseases these 105 probands were classified into following subgroups: thyroid adenoma with 23 patients, multifocal thyroid autonomy with 8 patients, disseminated thyroid autonomy with 37 patients as well as the subgroup Graves' hyperthyroidism (without Graves' ophtalmopathy) and accordingly Graves' disease (with Graves' ophtalmopathy) with 37 patients. The serum level of the intact parathyroid hormone was determined directly before starting the radioactive iodine therapy on the admission day and on day 1, 3 and 5 of the radioactive iodine therapy as well as at the ambulant follow-up examination one month after the start of the therapy. In case of 99 of 105 probands the serum level of parathyroid hormone declined on treatment with 131 I with its nadir on day 3 of therapy (decline by 15.71 ng/l or 27

  19. The renin-angiotensin-aldosterone system and calcium-regulatory hormones.

    Science.gov (United States)

    Vaidya, A; Brown, J M; Williams, J S

    2015-09-01

    There is increasing evidence of a clinically relevant interplay between the renin-angiotensin-aldosterone system and calcium-regulatory systems. Classically, the former is considered a key regulator of sodium and volume homeostasis, while the latter is most often associated with skeletal health. However, emerging evidence suggests an overlap in regulatory control. Hyperaldosteronism and hyperparathyroidism represent pathophysiologic conditions that may contribute to or perpetuate each other; aldosterone regulates parathyroid hormone and associates with adverse skeletal complications, and parathyroid hormone regulates aldosterone and associates with adverse cardiovascular complications. As dysregulation in both systems is linked to poor cardiovascular and skeletal health, it is increasingly important to fully characterize how they interact to more precisely understand their impact on human health and potential therapies to modulate these interactions. This review describes the known clinical interactions between these two systems including observational and interventional studies. Specifically, we review studies describing the inhibition of renin activity by calcium and vitamin D, and a potentially bidirectional and stimulatory relationship between aldosterone and parathyroid hormone. Deciphering these relationships might clarify variability in outcomes research, inform the design of future intervention studies and provide insight into the results of prior and ongoing intervention studies. However, before these opportunities can be addressed, more effort must be placed on shifting observational data to the proof of concept phase. This will require reallocation of resources to conduct interventional studies and secure the necessary talent.

  20. Regucalcin expression in bovine tissues and its regulation by sex steroid hormones in accessory sex glands.

    Directory of Open Access Journals (Sweden)

    Laura Starvaggi Cucuzza

    Full Text Available Regucalcin (RGN is a mammalian Ca2+-binding protein that plays an important role in intracellular Ca2+ homeostasis. Recently, RGN has been identified as a target gene for sex steroid hormones in the prostate glands and testis of rats and humans, but no studies have focused on RGN expression in bovine tissues. Thus, in the present study, we examined RGN mRNA and protein expression in the different tissues and organs of veal calves and beef cattle. Moreover, we investigated whether RGN expression is controlled through sex steroid hormones in bovine target tissues, namely the bulbo-urethral and prostate glands and the testis. Sex steroid hormones are still illegally used in bovine husbandry to increase muscle mass. The screening of the regulation and function of anabolic sex steroids via modified gene expression levels in various tissues represents a new approach for the detection of illicit drug treatments. Herein, we used quantitative PCR, western blot and immunohistochemistry analyses to demonstrate RGN mRNA and protein expression in bovine tissues. In addition, estrogen administration down-regulated RGN gene expression in the accessory sex glands of veal calves and beef cattle, while androgen treatment reduced RGN gene expression only in the testis. The confirmation of the regulation of RGN gene expression through sex steroid hormones might facilitate the potential detection of hormone abuse in bovine husbandry. Particularly, the specific response in the testis suggests that this tissue is ideal for the detection of illicit androgen administration in veal calves and beef cattle.

  1. Dancing with Hormones: A Current Perspective of Nitrate Signaling and Regulation in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Peizhu Guan

    2017-09-01

    Full Text Available In nature and agriculture, nitrate availability is a main environmental cue for plant growth, development and stress responses. Nitrate signaling and regulation are hence at the center of communications between plant intrinsic programs and the environment. It is also well known that endogenous phytohormones play numerous critical roles in integrating extrinsic cues and intrinsic responses, regulating and refining almost all aspects of plant growth, development and stress responses. Therefore, interaction between nitrate and phytohormones, such as auxins, cytokinins, abscisic acid, gibberellins, and ethylene, is prevalent. The growing evidence indicates that biosynthesis, de-conjugation, transport, and signaling of hormones are partly controlled by nitrate signaling. Recent advances with nitrate signaling and transcriptional regulation in Arabidopsis give rise to new paradigms. Given the comprehensive nitrate transport, sensing, signaling and regulations at the level of the cell and organism, nitrate itself is a local and long-distance signal molecule, conveying N status at the whole-plant level. A direct molecular link between nitrate signaling and cell cycle progression was revealed with TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20 – NIN-LIKE PROTEIN 6/7 (NLP6/7 regulatory nexus. NLPs are key regulators of nitrogen responses in plants. TCPs function as the main regulators of plant morphology and architecture, with the emerging role as integrators of plant developmental responses to the environment. By analogy with auxin being proposed as a plant morphogen, nitrate may be an environmental morphogen. The morphogen-gradient-dependent and cell-autonomous mechanisms of nitrate signaling and regulation are an integral part of cell growth and cell identification. This is especially true in root meristem growth that is regulated by intertwined nitrate, phytohormones, and glucose-TOR signaling pathways. Furthermore, the nitrate

  2. Diagnosing parathyroid glands: a revision

    International Nuclear Information System (INIS)

    Soroa, V.E.; Rank, G.

    2015-01-01

    Descriptions of the different benign parathyroid pathologies: primary, secondary and tertiary hyperparathyroidism and the possible diagnostic nuclear medicine techniques. We discuss the different acquisition modalities: planar, pinhole, subtraction, SPECT, SPECT/CT and PET/CT. Optimal recommendations for the patient preparation and acquisition, as well as false positive and negative results are also mentioned. Radiopharmaceuticals dosimetry is included. Statements related to other imaging modalities and the one with highest specificity: Ultrasound plus Nuclear Medicine. Emphasize of optimal results of the dual Phase 99m Tc-Setamibi in SPECT and the best selection with SPECT/CT, if available. Mention is done of the curative surgical treatment and the selective venous PTH sampling (excellent result if pre-surgical levels descended to 50 %, circumstances of false outcomes are also presented). Brief enumeration of PET/CT compounds, as another possibility that still has to proof its role in the diagnostic armamentarium of parathyroid pathology. Conclusion: The best diagnostic performance has been obtained with 99m Tc-Sestamibi in SPECT/CT as well as with the subtraction 131 I / 99m Tc-Sestamibi or 99m Tc-pertecneciate/ 99m Tc-Sestamibi methods. Nuclear Medicine is relevant in pointing parathyroid pathology in the surgical act and for a second look re-intervention. PET/CT radiopharmaceuticals are other possibilities that must still demonstrate its value in the diagnostic armamentarium of parathyroid pathologies. (authors) [es

  3. Octreotide Uptake in Parathyroid Adenoma

    Directory of Open Access Journals (Sweden)

    Seyhan Karaçavuş

    2012-08-01

    Full Text Available The patient with a history of bone pain and muscle weakness, was thought to have oncogenic osteomalacia as a result of biochemical investigations and directed to Nuclear Medicine Department for a whole-body bone scintigraphy and 111In-octreotide scintigraphy. There was no focal pathologic tracer uptake, but generalized marked increase in skeletal uptake on bone scintigraphy. Octreotide scintigraphy showed accumulation of octreotide in the region of the left lobe of the thyroid gland in the neck. Thereafter, parathyroid scintigraphy was performed with technetium-99m labeled metroxy-isobutyl-isonitryl (99mTc-MIB and MIBI scan demonstrated radiotracer uptake at the same location with octreotide scintigraphy. The patient underwent left inferior parathyroidectomy and histopathology confirmed a parathyroid adenoma. Somatostatin receptor positive parathyroid adenoma may show octreotide uptake. Octreotide scintigraphy may be promising and indicate a possibility of using somatostatin analogues for the medical treatment of somatostatin receptor positive parathyroid tumors. (MIRT 2012;21:77-79

  4. Specific DNA-binding proteins and DNA sequences involved in steroid hormone regulation of gene expression

    International Nuclear Information System (INIS)

    Spelsberg, T.; Hora, J.; Horton, M.; Goldberger, A.; Littlefield, B.; Seelke, R.; Toyoda, H.

    1987-01-01

    Steroid hormones circulate in the blood and are taken by target cells via complexes with intracellular binding proteins termed receptors, that are hormone and tissue specific. Each receptor binds it specific steroid with very high affinity, having an equilibrium dissociation constant (K/sub d/) in the range of 10 -9 to 10 -10 M. Once bound by their specific steroid hormones, the steroid receptors undergo a conformational change which allows them to bind with high affinity to sites on chromatin, termed nuclear acceptor sites. There are estimated 5,000 to 10,000 of these sites expressed with an equal number not expressed (''masked'') in intact chromatin. The result of the binding to nuclear acceptor sites is an alteration of gene transcription or, in some cases, gene expression as measured by the changing levels of specific RNAs and proteins in that target tissue. Each steroid regulates specific effects on the RNA and protein profiles. The chronology of the above mechanism of action after injection of radiolabelled steroid as is follows: Steroid-receptor complex formation (1 minute), nuclear acceptor sites (2 minutes), effects on RNA synthesis (10 to 30 minutes), and finally the changing protein profiles via changes in protein synthesis and protein turnover (1 to 6 hours). Thus steroid receptors represent one of the first identified intracellular gene regulation proteins. The receptor molecules themselves are regulated by the presence or absence of the steroid molecule

  5. The relationship between polyamines and hormones in the regulation of wheat grain filling.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available The grain weight of wheat is strongly influenced by filling. Polyamines (PA are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd, spermine (Spm, and putrescine (Put, were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA, zeatin (Z + zeatin riboside (ZR, abscisic acid (ABA, ethylene (ETH and gibberellin 1+4 (GAs, were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat.

  6. The Relationship between Polyamines and Hormones in the Regulation of Wheat Grain Filling

    Science.gov (United States)

    Liu, Yang; Gu, Dandan; Wu, Wei; Wen, Xiaoxia; Liao, Yuncheng

    2013-01-01

    The grain weight of wheat is strongly influenced by filling. Polyamines (PA) are involved in regulating plant growth. However, the effects of PA on wheat grain filling and its mechanism of action are unclear. The objective of the present study was to investigate the relationship between PAs and hormones in the regulation of wheat grain filling. Three PAs, spermidine (Spd), spermine (Spm), and putrescine (Put), were exogenously applied, and the grain filling characteristics and changes in endogenous PA and hormones, i.e., indole-3-acetic acid (IAA), zeatin (Z) + zeatin riboside (ZR), abscisic acid (ABA), ethylene (ETH) and gibberellin 1+4 (GAs), were quantified during wheat grain filling. Exogenous applications of Spd and Spm significantly increased the grain filling rate and weight, but exogenous Put had no significant effects on these measures. Exogenous Spd and Spm significantly increased the endogenous Spd, Spm, Z+ZR, ABA, and IAA contents and significantly decreased ETH evolution in grains. The endogenous Spd, Spm and Z+ZR contents were positively and significantly correlated with the grain filling rate and weight of wheat, and the endogenous ETH evolution was negatively and significantly correlated with the wheat grain filling rate and weight. Based upon these results, we concluded that PAs were involved in the balance of hormones that regulated the grain filling of wheat. PMID:24205154

  7. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Hongyan, E-mail: hongyan_dong@hc-sc.gc.ca [Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0K9 (Canada); Yauk, Carole L. [Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0K9 (Canada); Wade, Michael G. [Hazard Identification Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Ottawa, Ontario, Canada K1A 0K9 (Canada)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Thyroid hormone receptor binds to the promoter region of Barhl1. Black-Right-Pointing-Pointer Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. Black-Right-Pointing-Pointer Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. Black-Right-Pointing-Pointer Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined with chromatin immunoprecipitation (ChIP-chip), we identified a TR{beta} binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA-protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TR{beta} revealed that one of these fragments bound TR{beta}. This complex was shifted with the addition of anti-TR{beta} antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1

  8. Barhl1 is directly regulated by thyroid hormone in the developing cerebellum of mice

    International Nuclear Information System (INIS)

    Dong, Hongyan; Yauk, Carole L.; Wade, Michael G.

    2011-01-01

    Highlights: ► Thyroid hormone receptor binds to the promoter region of Barhl1. ► Barhl1 expression in cerebellum is negatively regulated by thyroid hormone. ► Negative regulation of Barhl1 by thyroid hormone was confirmed in vitro. ► Thyroid hormone may play a role in normal brain development through transcriptional control of Barhl1. -- Abstract: Thyroid hormones (THs) are essential for the brain development. Despite considerable effort, few genes directly regulated by THs have been identified. In this study, we investigate the effects of THs on the regulation of Barhl1, a transcription factor that regulates sensorineural development. Using DNA microarray combined with chromatin immunoprecipitation (ChIP-chip), we identified a TRβ binding site in the promoter of Barhl1. The binding was further confirmed by ChIP-PCR. The site is located approximately 755 bp upstream of the transcription start site. Reporter vectors containing the binding site or mutated fragments were transfected into GH3 cells. T3 treatment decreased the transcriptional activity of the wild fragment but not the mutant. Two 28 bp oligonucleotides containing sequences that resemble known TH response elements (TREs) were derived from this binding site and DNA–protein interaction was performed using electrophoretic mobility shift assays (EMSA). Binding analysis in a nuclear extract containing TRβ revealed that one of these fragments bound TRβ. This complex was shifted with the addition of anti-TRβ antibody. We investigated Barhl1 expression in animal models and TH-treated cultured cells. Both long term treatment with 6-propyl-2-thiouracil and short-term treatment with 0.05% methimazole/1% sodium perchlorate (both treatments render mice hypothyroid) resulted in up-regulation of Barhl1. TH supplementation of hypothyroid mice caused a decrease in the expression of Barhl1 compared to control animals. Similarly, the expression of Barhl1 in cultured GH3 decreased with the addition of T3. Given

  9. Diminished parathyroid gland responsiveness to hypocalcemia in diabetic patients with uremia.

    Science.gov (United States)

    Heidbreder, E; Götz, R; Schafferhans, K; Heidland, A

    1986-01-01

    The parathyroid gland responsiveness to hypocalcemia induced by short-term calcium-free hemodialysis in patients with insulin-dependent diabetes mellitus was investigated in comparison with 10 nondiabetic uremic patients and compared with test results from the autonomic nervous system. Diabetic patients had lower C-terminal parathyroid hormone (cPTH) levels before hemodialysis than uremic control patients and showed a significantly smaller increase in cPTH during hypocalcemia. The neurological tests revealed severe disturbances of the autonomic functions in the diabetic group. In conclusion, the disturbances observed in the parathyroid secretory pattern are probably caused by gland dysfunction; it is hypothesized that the defective autonomic nervous system has an additional effect on the development of this hormonal dysfunction.

  10. Effectiveness of Intraoperative Parathyroid Monitoring (ioPTH) in predicting a multiglandular or malignant parathyroid disease.

    Science.gov (United States)

    Dobrinja, C; Santandrea, G; Giacca, M; Stenner, Elisabetta; Ruscio, Maurizio; de Manzini, Nicolò

    2017-05-01

    The main goal of our study was to confirm the usefulness of intra-operative parathyroid hormone (PTH) monitoring (ioPTH) when using minimally invasive techniques for treatment of sporadic Primary hyperparathyroidism (pHTP). Furthermore, we aimed to evaluate if ioPTH monitoring may help to predict the etiology of primary hyperparathyroidism, especially in malignant or multiglandular parathyroid disease. A retrospective review of 125 consecutive patients with pHPT who underwent parathyroidectomy between 2001 and 2016 at the Department of General Surgery was performed. For each patient, the specific preoperative work-up consisted of: high-resolution US of the neck by a skilled sonographer, sestamibi parathyroid scan, laryngoscopy, and serum measurement of PTH, serum calcium levels, and serum 25(OH)D levels. The study included 125 consecutive patients who underwent surgery for pHPT. At the histological examination, we registered 113 patients with simple adenomatous pathology (90,4%), 5 atypical adenomas (4%), 3 cases of parathyroid carcinoma (2,4%),, , and 4 histological exams of different nature (3,2%). Overall, 6 cases (4,8%) of multiglandular disease were found. We reported 10 cases (8%) of recurrent/persistent hyperparathyroidism: 1/10 in a patient affected by atypical adenoma, 9/10 in patients with benign pathology. Regarding these 10 cases, in three (30%) patients, ioPTH wasn't dosed (only frozen section (FS) exam was taken), in 5 cases (50%) ioPTH dropped more than 50% compared to basal value (false negative results), and in 2 (20%) cases, ioPTH did not drop >50% from the first samples taken, the extemporary exam had confirmed the presence of adenoma and the probable second hyperfunctioning adenoma was not found. IoPTH determinations ensure operative success of surgical resection in almost all hyperfunctioning tissue; in particular it is very important during minimally invasive parathyroidectomy, as it allows avoiding bilateral neck exploration. The use of io

  11. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2002-12-03

    The authors have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, they developed a molecular model that has facilitated the understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5 EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 and three HLS1-LIKE genes in the laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the award period, they have identified and begun preliminary characterization of two genes that genetically act upstream of the ethylene receptors. ETO1 and RAN1 encode negative regulators of ethylene biosynthesis and signaling respectively. Progress on the analysis of these genes along with HOOKLESS1 is described.

  12. Molecular and Genetic Analysis of Hormone-Regulated Differential Cell Elongation in Arabidopsis

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, Joseph R.

    2005-09-15

    We have utilized the response of Arabidopsis seedlings to the plant hormone ethylene to identify new genes involved in the regulation of ethylene biosynthesis, perception, signal transduction and differential cell growth. In building a genetic framework for the action of these genes, we have developed a molecular model that has facilitated our understanding of the molecular requirements of ethylene for cell elongation processes. The ethylene response pathway in Arabidopsis appears to be primarily linear and is defined by the genes: ETR1, ETR2, ERS1, ERS2, EIN4, CTR1, EIN2, EIN3, EIN5, EIN6, and EIN. Downstream branches identified by the HLS1, EIR1, and AUX1 genes involve interactions with other hormonal (auxin) signals in the process of differential cell elongation in the hypocotyl hook. Cloning and characterization of HLS1 (and three HLL genes) and ETO1 (and ETOL genes) in my laboratory has been supported under this award. HLS1 is required for differential elongation of cells in the hypocotyl and may act in the establishment of hormone gradients. Also during the previous period, we have identified and characterized a gene that genetically acts upstream of the ethylene receptors. ETO1 encodes negative regulators of ethylene biosynthesis.

  13. Endogenous ovarian hormones affect mitochondrial efficiency in cerebral endothelium via distinct regulation of PGC-1 isoforms.

    Science.gov (United States)

    Kemper, Martin F; Zhao, Yuanzi; Duckles, Sue P; Krause, Diana N

    2013-01-01

    Mitochondria support the energy-intensive functions of brain endothelium but also produce damaging-free radicals that lead to disease. Previously, we found that estrogen treatment protects cerebrovascular mitochondria, increasing capacity for ATP production while decreasing reactive oxygen species (ROS). To determine whether these effects occur specifically in endothelium in vivo and also explore underlying transcriptional mechanisms, we studied freshly isolated brain endothelial preparations from intact and ovariectomized female mice. This preparation reflects physiologic influences of circulating hormones, hemodynamic forces, and cell-cell interactions of the neurovascular unit. Loss of ovarian hormones affected endothelial expression of the key mitochondrial regulator family, peroxisome proliferator-activated receptor γ coactivator 1 (PGC-1), but in a unique way. Ovariectomy increased endothelial PGC-1α mRNA but decreased PGC-1β mRNA. The change in PGC-1β correlated with decreased mRNA for crucial downstream mitochondrial regulators, nuclear respiratory factor 1 and mitochondrial transcription factor A, as well as for ATP synthase and ROS protection enzymes, glutamate-cysteine ligase and manganese superoxide dismutase. Ovariectomy also decreased mitochondrial biogenesis (mitochondrial/nuclear DNA ratio). These results indicate ovarian hormones normally act through a distinctive regulatory pathway involving PGC-1β to support cerebral endothelial mitochondrial content and guide mitochondrial function to favor ATP coupling and ROS protection.

  14. Molecular mechanisms of regulation of growth hormone gene expression in cultured rat pituitary cells by thyroid and glucocorticoid hormones

    International Nuclear Information System (INIS)

    Yaffe, B.M.

    1989-01-01

    In cultured GC cells, a rat pituitary tumor cell line, growth hormone [GH] is induced in a synergistic fashion by physiologic concentrations of thyroid and glucocorticoid hormones. Abundant evidence indicates that these hormones mediate this response via their specific receptors. The purpose of this thesis is to explore the mechanisms by which these hormones affect GH production. When poly (A) + RNA was isolated from cells grown both with and without hormones and translated in a cell-free wheat germ system, the preGH translation products were shown to be proportional to immunoassayable GH production under all combinations of hormonal milieux, indicating that changes in GH production is modulated at a pretranslational level. A cDNA library was constructed from poly (A) + RNA and one clone containing GH cDNA sequences was isolated. This was used to confirm the above results by Northern dot blot analysis. This probe was also used to assess hormonal effects on GH mRNA half-life and synthetic rates as well as GH gene transcription rates in isolated nuclei. Using a pulse-chase protocol in which cellular RNA was labeled in vivo with [ 3 H]uridine, and quantitating [ 3 H]GHmRNA directly by hybridization to GH cDNA bound to nitrocellulose filters, GHmRNA was found to have a half-life of approximately 50 hours, and was not significantly altered by the presence of inducing hormones

  15. Gene expression of placental hormones regulating energy balance in small for gestational age neonates.

    Science.gov (United States)

    Struwe, Ellen; Berzl, Gabriele M; Schild, Ralf L; Dötsch, Jörg

    2009-01-01

    Fetal growth restriction is associated with an increased risk for metabolic and cardiovascular disease in later life. To further elucidate mechanisms that might be involved in the process of prenatal programming, we measured the adipokines leptin, resistin, and adiponectin and the GH-releasing hormone ghrelin in the placenta of small for gestational age (SGA) neonates. The control group included 24 placentas of appropriate for gestational age (AGA) newborns, in the study group were 16 placentas of SGA neonates. Gene expression of leptin, resistin, adiponectin, and ghrelin was examined. For hormones showing alterations in gene regulation placental protein expression was measured by Western blot. Placental mRNA expression of leptin was significantly increased in SGA placentas (p=0.0035, related to beta-actin). Protein concentration was increased, as well. There were no differences in placental resistin, adiponectin, or ghrelin gene expressions between SGA neonates and controls. Leptin was the only hormone to demonstrate a significant inverse correlation with birth weight (r=-0.44, p=0.01). Adiponectin correlated significantly with leptin (r=0.53, p=0.0023) and ghrelin (r=0.50, p=0.0045). Placental leptin gene expression and protein concentration showed the expected increase in the SGA group. Leptin was inversely correlated with birth weight. Positive correlation of adiponectin with leptin and ghrelin expression suggests an interaction between these hormones in the placenta. However, the unchanged expression of resistin, adiponectin, and ghrelin in SGA placentas and the absence of correlation with birth weight cast doubt whether these hormones produced in the placenta play a key role in fetal programming.

  16. Non-functioning parathyroid cystic tumour: malignant or not? Report of a case.

    Science.gov (United States)

    Cocorullo, G; Scerrino, G; Melfa, G; Raspanti, C; Rotolo, G; Mannino, V; Richiusa, P; Cabibi, D; Giannone, A G; Porrello, C; Gulotta, G

    2017-01-01

    Parathyroid carcinoma (PC) is a very rare endocrine tumour, usually characterized by symptoms such as a neck mass, dysphonia, severe hypercalcemia exceeding 140 mg/L and elevated serum parathyroid hormone levels, even more than 5 times the upper limit of normal. Non-functioning parathyroid cancer is extremely rare and, in this case, its pre-operative diagnosis is often difficult. A 54-year old female patient, referring dysphagia and dysphonia, underwent neck ultrasound and neck CT. A left thyroid nodule, probably cystic, was found. It presented caudal extent on anterior mediastinum causing compression of the left lateral wall of the trachea. The preoperative calcemia was into the normal range. The patient underwent left thyroid lobectomy. Histological exam showed a cystic lesion, immunohistochemically originating from parathyroid that oriented for carcinoma. The 18 months follow-up did not show a residual-recurrent disease. The parathyroid origin of a neck lesion could not be suspected before surgery when specific laboratory tests are not available and clinical effects of hyperparathyroidism syndrome are not present. Histological features are not always sufficient for the differential diagnosis between the parathyroid adenoma and carcinoma. The immunohistochemistry is an useful tool that can aid to reach the definite diagnosis.

  17. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  18. Parathyroid Scintigraphy in Renal Hyperparathyroidism

    Science.gov (United States)

    Taïeb, David; Ureña-Torres, Pablo; Zanotti-Fregonara, Paolo; Rubello, Domenico; Ferretti, Alice; Henter, Ioline; Henry, Jean-François; Schiavi, Francesca; Opocher, Giuseppe; Blickman, Johan G.; Colletti, Patrick M.; Hindié, Elif

    2015-01-01

    Secondary hyperparathyroidism (sHPT) is a major complication for patients with end-stage renal disease on long-term hemodialysis or peritoneal dialysis. When the disease is resistant to medical treatment, patients with severe sHPT are typically referred for parathyroidectomy (PTx), which usually improves biological parameters as well as clinical signs and symptoms. Unfortunately, early surgical failure with persistent disease may occur in 5%–10% of patients and recurrence reaches 20%–30% at 5 years. Presently, the use of parathyroid scintigraphy in sHPT is usually limited to the management of surgical failures after initial PTx. This review describes the strengths and limitations of typical 99mTc-sestamibi imaging protocols, and highlights the potential benefits of using parathyroid scintigraphy in the initial workup of surgical patients. PMID:23751837

  19. Grass Carp Follisatin: Molecular Cloning, Functional Characterization, Dopamine D1 Regulation at Pituitary Level, and Implication in Growth Hormone Regulation

    Directory of Open Access Journals (Sweden)

    Roger S. K. Fung

    2017-08-01

    Full Text Available Activin is involved in pituitary hormone regulation and its pituitary actions can be nullified by local production of its binding protein follistatin. In our recent study with grass carp, local release of growth hormone (GH was shown to induce activin expression at pituitary level, which in turn could exert an intrapituitary feedback to inhibit GH synthesis and secretion. To further examine the activin/follistatin system in the carp pituitary, grass carp follistatin was cloned and confirmed to be single-copy gene widely expressed at tissue level. At the pituitary level, follistatin signals could be located in carp somatotrophs, gonadotrophs, and lactotrophs. Functional expression also revealed that carp follistatin was effective in neutralizing activin’s action in stimulating target promoter with activin-responsive elements. In grass carp pituitary cells, follistatin co-treatment was found to revert activin inhibition on GH mRNA expression. Meanwhile, follistatin mRNA levels could be up-regulated by local production of activin but the opposite was true for dopaminergic activation with dopamine (DA or its agonist apomorphine. Since GH stimulation by DA via pituitary D1 receptor is well-documented in fish models, the receptor specificity for follistatin regulation by DA was also investigated. Using a pharmacological approach, the inhibitory effect of DA on follistatin gene expression was confirmed to be mediated by pituitary D1 but not D2 receptor. Furthermore, activation of D1 receptor by the D1-specific agonist SKF77434 was also effective in blocking follistatin mRNA expression induced by activin and GH treatment both in carp pituitary cells as well as in carp somatotrophs enriched by density gradient centrifugation. These results, as a whole, suggest that activin can interact with dopaminergic input from the hypothalamus to regulate follistatin expression in carp pituitary, which may contribute to GH regulation by activin/follistatin system

  20. BONE SEVERE FORM OF HYPERPARATHYROIDISM IN A PATIENT WITH ADENOMA OF PARATHYROID GLAND

    Directory of Open Access Journals (Sweden)

    K. M. Petrosyan

    2018-01-01

    Full Text Available Hyperparathyroidism is one of the most common endocrinopathies. This disease leads to a violation of phosphorus-calcium metabolism and the washing out of calcium from bone tissue. Breach of the skeleton’s structure in hyperparathyroidism is often mistaken for metastatic bone damage, which leads to incorrect treatment tactics. In this work we present the clinical observation of a patient with an adenoma of the parathyroid gland and a severe bone form of hyperparathyroidism. Multiple lesions of bones with destruction of the cortical layer and the presence of the softtissue component were initially regarded as metastases in the bone. However, the morphological pattern of bone foci, as well as an elevated level of calcium and parathyroid hormone, made it possible to diagnose the bony form of hyperparathyroidism. The search for the cause of hyperparathyroidism revealed a tumor in the projection of the right lower parathyroid gland. Surgical removal of parathyroid adenoma led to the normalization of the level of calcium and parathyroid hormone. The article presents data of laboratory-instrumental methods of research and the results of surgical treatment of a patient.

  1. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats

    International Nuclear Information System (INIS)

    Dziendzikowska, K.; Krawczyńska, A.; Oczkowski, M.; Królikowski, T.; Brzóska, K.; Lankoff, A.; Dziendzikowski, M.; Stępkowski, T.; Kruszewski, M.

    2016-01-01

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20 nm AgNPs (groups Ag I and Ag II) and 200 nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Ag I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24 h, 7 days and 28 days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28 days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. - Highlights: • Assessment of the toxic effects of AgNPs/AgSPs on the regulation of male reproductive function • AgNP −/AgSP-induced alterations of sex steroid status in male Wistar rats.

  2. Progressive effects of silver nanoparticles on hormonal regulation of reproduction in male rats

    Energy Technology Data Exchange (ETDEWEB)

    Dziendzikowska, K., E-mail: k.dziendzikowska@gmail.com [Division of Nutrition Physiology, Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw (Poland); Krawczyńska, A. [Laboratory of Molecular Biology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna (Poland); Oczkowski, M.; Królikowski, T. [Division of Nutrition Physiology, Department of Dietetics, Faculty of Human Nutrition and Consumer Science, Warsaw University of Life Sciences – SGGW, Nowoursynowska 159C, 02-776 Warsaw (Poland); Brzóska, K. [Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Lankoff, A. [Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, Świetokrzyska 15, 25-406 Kielce (Poland); Dziendzikowski, M. [Airworthiness Division, Air Force Institute of Technology, Ks. Boleslawa 6, 01-494 Warsaw (Poland); Stępkowski, T. [Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw (Poland); Kruszewski, M. [Department of Medical Biology and Translational Research, Faculty of Medicine, University of Information Technology and Management, Sucharskiego 2, 35-225 Rzeszów (Poland); Department of Molecular Biology and Translational Research, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin (Poland); and others

    2016-12-15

    The growing use of silver nanoparticles (AgNPs) in various applications, including consumer, agriculture and medicine products, has raised many concerns about the potential risks of nanoparticles (NPs) to human health and the environment. An increasing body of evidence suggests that AgNPs may have adverse effects of humans, thus the aim of this study was to investigate the effects of AgNPs on the male reproductive system. Silver particles (20 nm AgNPs (groups Ag I and Ag II) and 200 nm Ag sub-micron particles (SPs) (group Ag III)) were administered intravenously to male Wistar rats at a dose of 5 (groups Ag I and Ag III) or 10 (group Ag II) mg/kg of body weight. The biological material was sampled 24 h, 7 days and 28 days after injection. The obtained results revealed that the AgNPs had altered the luteinising hormone concentration in the plasma and the sex hormone concentration in the plasma and testes. Plasma and intratesticular levels of testosterone and dihydrotestosterone were significantly decreased both 7 and 28 days after treatment. No change in the prolactin and sex hormone-binding globulin concentration was observed. Exposure of the animals to AgNPs resulted in a considerable decrease in 5α-reductase type 1 and the aromatase protein level in the testis. Additionally, expression analysis of genes involved in steroidogenesis and the steroids metabolism revealed significant down-regulation of Star, Cyp11a1, Hsd3b1, Hsd17b3 and Srd5a1 mRNAs in AgNPs/AgSPs-exposed animals. The present study demonstrates the potential adverse effect on the hormonal regulation of the male reproductive function following AgNP/AgSP administration, in particular alterations of the sex steroid balance and expression of genes involved in steroidogenesis and the steroids metabolism. - Highlights: • Assessment of the toxic effects of AgNPs/AgSPs on the regulation of male reproductive function • AgNP −/AgSP-induced alterations of sex steroid status in male Wistar rats.

  3. Interplay of oxytocin, vasopressin, and sex hormones in the regulation of social recognition.

    Science.gov (United States)

    Gabor, Christopher S; Phan, Anna; Clipperton-Allen, Amy E; Kavaliers, Martin; Choleris, Elena

    2012-02-01

    Social Recognition is a fundamental skill that forms the basis of behaviors essential to the proper functioning of pair or group living in most social species. We review here various neurobiological and genetic studies that point to an interplay of oxytocin (OT), arginine-vasopressin (AVP), and the gonadal hormones, estrogens and testosterone, in the mediation of social recognition. Results of a number of studies have shown that OT and its actions at the medial amygdala seem to be essential for social recognition in both sexes. Estrogens facilitate social recognition, possibly by regulating OT production in the hypothalamus and the OT receptors at the medial amygdala. Estrogens also affect social recognition on a rapid time scale, likely through nongenomic actions. The mechanisms of these rapid effects are currently unknown but available evidence points at the hippocampus as the possible site of action. Male rodents seem to be more dependent on AVP acting at the level of the lateral septum for social recognition than female rodents. Results of various studies suggest that testosterone and its metabolites (including estradiol) influence social recognition in males primarily through the AVP V1a receptor. Overall, it appears that gonadal hormone modulation of OT and AVP regulates and fine tunes social recognition and those behaviors that depend upon it (e.g., social bonds, social hierarchies) in a sex specific manner. This points at an important role for these neuroendocrine systems in the regulation of the sex differences that are evident in social behavior and of sociality as a whole.

  4. Specific regulation of thermosensitive lipid droplet fusion by a nuclear hormone receptor pathway.

    Science.gov (United States)

    Li, Shiwei; Li, Qi; Kong, Yuanyuan; Wu, Shuang; Cui, Qingpo; Zhang, Mingming; Zhang, Shaobing O

    2017-08-15

    Nuclear receptors play important roles in regulating fat metabolism and energy production in humans. The regulatory functions and endogenous ligands of many nuclear receptors are still unidentified, however. Here, we report that CYP-37A1 (ortholog of human cytochrome P450 CYP4V2), EMB-8 (ortholog of human P450 oxidoreductase POR), and DAF-12 (homolog of human nuclear receptors VDR/LXR) constitute a hormone synthesis and nuclear receptor pathway in Caenorhabditis elegans This pathway specifically regulates the thermosensitive fusion of fat-storing lipid droplets. CYP-37A1, together with EMB-8, synthesizes a lipophilic hormone not identical to Δ7-dafachronic acid, which represses the fusion-promoting function of DAF-12. CYP-37A1 also negatively regulates thermotolerance and lifespan at high temperature in a DAF-12-dependent manner. Human CYP4V2 can substitute for CYP-37A1 in C. elegans This finding suggests the existence of a conserved CYP4V2-POR-nuclear receptor pathway that functions in converting multilocular lipid droplets to unilocular ones in human cells; misregulation of this pathway may lead to pathogenic fat storage.

  5. PARATHYROID CANCER OCCURRING IN RELAPSING SECONDARY HYPERPARATHYROIDISM

    Directory of Open Access Journals (Sweden)

    I. V. Kotova

    2016-01-01

    Full Text Available We present a clinical case of parathyroid cancer in a patient with relapsing secondary hyperparathyroidism at 4 years after subtotal parathyroidectomy. Its unique character is related to the combination of relapsing secondary hyperparathyroidism, parathyromatosis, ectopic of an adenomatous hyperplastic parathyroid gland into the thyroid gland, and parathyroid cancer. Several most complicated aspects of parathyroid surgery are disclosed, such as the choice of strategy for surgical intervention in secondary hyperparathyroidism, complexity of morphological and cytological diagnostics of this disorder.

  6. Effects of sex steroid hormones, thyroid hormone levels, and insulin regulation on thyrotoxic periodic paralysis in Chinese men

    OpenAIRE

    Li, Wang; Changsheng, Chen; Jiangfang, Fu; Bin, Gao; Nanyan, Zhang; Xiaomiao, Li; Deqiang, Li; Ying, Xing; Wensong, Zai; Qiuhe, Ji

    2010-01-01

    Our study is to determine the expression of thyroid hormone, sex hormone, insulin, and C-peptide in Chinese male patients with thyrotoxic periodic paralysis (TPP). This study covered 102 patients with hyperthyroidism from Xijing Hospital. According to whether occurrence of TPP or not, patients were divided into two groups (those that were hyperthyroid with and without TPP) that were, matched with age, blood pressure, urea, and creatinine. We found the body mass index (BMI) in patients with TP...

  7. The role of gut hormones and the hypothalamus in appetite regulation.

    Science.gov (United States)

    Suzuki, Keisuke; Simpson, Katherine A; Minnion, James S; Shillito, Joyceline C; Bloom, Stephen R

    2010-01-01

    The World Health Organisation has estimated that by 2015 approximately 2.3 billion adults will be overweight and more than 700 million obese. Obesity is associated with an increased risk of diabetes, cardiovascular events, stroke and cancer. The hypothalamus is a crucial region for integrating signals from central and peripheral pathways and plays a major role in appetite regulation. In addition, there are reciprocal connections with the brainstem and higher cortical centres. In the arcuate nucleus of the hypothalamus, there are two major neuronal populations which stimulate or inhibit food intake and influence energy homeostasis. Within the brainstem, the dorsal vagal complex plays a role in the interpretation and relaying of peripheral signals. Gut hormones act peripherally to modulate digestion and absorption of nutrients. However, they also act as neurotransmitters within the central nervous system to control food intake. Peptide YY, pancreatic polypeptide, glucagon-like peptide-1 and oxyntomodulin suppress appetite, whilst ghrelin increases appetite through afferent vagal fibres to the caudal brainstem or directly to the hypothalamus. A better understanding of the role of these gut hormones may offer the opportunity to develop successful treatments for obesity. Here we review the current understanding of the role of gut hormones and the hypothalamus on food intake and body weight control.

  8. Steroid hormone regulation of EMP2 expression and localization in the endometrium

    Directory of Open Access Journals (Sweden)

    Williams Carmen J

    2008-04-01

    Full Text Available Abstract Background The tetraspan protein epithelial membrane protein-2 (EMP2, which mediates surface display of diverse proteins, is required for endometrial competence in blastocyst implantation, and is uniquely correlated with poor survival from endometrial adenocarcinoma tumors. Because EMP2 is differentially expressed in the various stages of the murine and human estrous cycle, we tested the hypothesis that the steroid hormones progesterone and estrogen influence EMP2 expression and localization. Methods Frozen human proliferative and secretory endometrium were collected and analyzed for EMP2 expression using SDS-PAGE/Western blot analysis. The response of EMP2 to progesterone and estradiol was determined using a combination of real-time PCR, SDS-PAGE/Western blot analysis, and confocal immunofluorescence in the human endometrial carcinoma cell line RL95-2. To confirm the in vitro results, ovariectomized mice were treated with progesterone or estradiol, and EMP2 expression was analyzed using immunohistochemistry. Results Within normal human endometrium, EMP2 expression is upregulated in the secretory phase relative to the proliferative phase. To understand the role of steroid hormones on EMP2 expression, we utilized RL95-2 cells, which express both estrogen and progesterone receptors. In RL95-2 cells, both estradiol and progesterone induced EMP2 mRNA expression, but only progesterone induced EMP2 protein expression. To compare steroid hormone regulation of EMP2 between humans and mice, we analyzed EMP2 expression in ovarectomized mice. Similar to results observed in humans, progesterone upregulated endometrial EMP2 expression and induced EMP2 translocation to the plasma membrane. Estradiol did not promote translocation to the cell surface, but moderately induced EMP2 expression in cytoplasmic compartments in vivo. Conclusion These findings suggest that targeting of EMP2 to specific locations under the influence of these steroid hormones may

  9. Energy homeostasis and appetite regulating hormones as predictors of weight loss in men and women.

    Science.gov (United States)

    Williams, Rebecca L; Wood, Lisa G; Collins, Clare E; Morgan, Philip J; Callister, Robin

    2016-06-01

    Sex differences in weight loss are often seen despite using the same weight loss program. There has been relatively little investigation of physiological influences on weight loss success in males and females, such as energy homeostasis and appetite regulating hormones. The aims were to 1) characterise baseline plasma leptin, ghrelin and adiponectin concentrations in overweight and obese males and females, and 2) determine whether baseline concentrations of these hormones predict weight loss in males and females. Subjects were overweight or obese (BMI 25-40 kg/m(2)) adults aged 18-60 years. Weight was measured at baseline, and after three and six months participation in a weight loss program. Baseline concentrations of leptin, adiponectin and ghrelin were determined by enzyme-linked immunosorbent assay (ELISA). An independent t-test or non-parametric equivalent was used to determine any differences between sex. Linear regression determined whether baseline hormone concentrations were predictors of six-month weight change. Females had significantly higher baseline concentrations of leptin, adiponectin and unacylated ghrelin as well as ratios of leptin:adiponectin and leptin:ghrelin. The ratio of acylated:unacylated ghrelin was significantly higher in males. In males and females, a higher baseline concentration of unacylated ghrelin predicted greater weight loss at six months. Additionally in females, higher baseline total ghrelin predicted greater weight loss and a higher ratio of leptin:ghrelin predicted weight gain at six months. A higher pre-weight-loss plasma concentration of unacylated ghrelin is a modest predictor of weight loss success in males and females, while a higher leptin:ghrelin ratio is a predictor of weight loss failure in females. Further investigation is required into what combinations and concentrations of these hormones are optimal for weight loss success. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    Science.gov (United States)

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  11. Studies on the mechanism of quinone action on hormonal regulation of metabolism in the rat liver

    International Nuclear Information System (INIS)

    Cheng, E.Y.

    1989-01-01

    The mechanism of quinone actions in liver cell metabolism had been investigated using menadione as a model compound. Previous reports suggested that quinones and free radicals could produce perturbations in cellular calcium homeostasis. Since calcium plays an important role in the regulation of cellular metabolic processes, then regulation of cytosolic calcium concentrations, and thus of cellular metabolism, by calcium-mobilizing hormones such as phenylephrine and vasopressin could possibly be modified by quinones such as menadione. Methods used to approach this hypothesis included the assay for activation of glycogen phosphorylase, an indirect index of calcium mobilization; the determination of calcium mobilization with 45 Ca efflux exchange and with fluorescent calcium indicator fura-2; and the measurement of phosphatidylinositides, an important link in the membrane-associated receptor-mediated signal transduction mechanism

  12. Action of the schistosomotic spleen in male mices on the regulation of thyroid hormones

    International Nuclear Information System (INIS)

    Neves, S.R.S.; Silva, I.M.S.; Pereira, S.S.L.; Lima Filho, G.L.; Catanho, M.T.J.A.; Neves, E.S.; Silveira, M.F.G.

    1997-01-01

    For the purpose to study the action of the schistosomotic spleen on the regulation of TSH, T4 and albumin levels in serum, spleens from adults mice infected by Schistosoma mansoni were homogeneized, centrifuged and cromatographed in a column of Sephadex G-100, resulting in two proteans fractions (I and II). The biologic activity was determinated through the administration of the fractions by intraperitoneal way (IP), in male mice aged 27-30 days, in a period of three following days. Five days after the last administration, the animals were sacrified and their blood was collected for obtainment of serum and determination of TSH, T4 and albumin levels. Obtained results showed that the albumin levels no change when compared to control and that fraction I infected change the TSH and T4 levels, but the fraction II infected no change this levels. These results suggest that spleens from mice infected by S. mansoni have a factor that modifies the hormonal regulation in level hypophysial and the synthesis of thyroid hormones (T4), changing the basal metabolism. The seric levels of TSH and T4 were determined by radioimmunoassay using I-125. (author). 12 refs., 1 tab

  13. Regulation of pituitary hormones and cell proliferation by components of the extracellular matrix

    Directory of Open Access Journals (Sweden)

    M. Paez-Pereda

    2005-10-01

    Full Text Available The extracellular matrix is a three-dimensional network of proteins, glycosaminoglycans and other macromolecules. It has a structural support function as well as a role in cell adhesion, migration, proliferation, differentiation, and survival. The extracellular matrix conveys signals through membrane receptors called integrins and plays an important role in pituitary physiology and tumorigenesis. There is a differential expression of extracellular matrix components and integrins during the pituitary development in the embryo and during tumorigenesis in the adult. Different extracellular matrix components regulate adrenocorticotropin at the level of the proopiomelanocortin gene transcription. The extracellular matrix also controls the proliferation of adrenocorticotropin-secreting tumor cells. On the other hand, laminin regulates the production of prolactin. Laminin has a dynamic pattern of expression during prolactinoma development with lower levels in the early pituitary hyperplasia and a strong reduction in fully grown prolactinomas. Therefore, the expression of extracellular matrix components plays a role in pituitary tumorigenesis. On the other hand, the remodeling of the extracellular matrix affects pituitary cell proliferation. Matrix metalloproteinase activity is very high in all types of human pituitary adenomas. Matrix metalloproteinase secreted by pituitary cells can release growth factors from the extracellular matrix that, in turn, control pituitary cell proliferation and hormone secretion. In summary, the differential expression of extracellular matrix components, integrins and matrix metalloproteinase contributes to the control of pituitary hormone production and cell proliferation during tumorigenesis.

  14. BIOCHEMICAL MARKERS OF BONE RESORPTION AND HORMONAL REGULATION OF BONE METABOLISM FOLLOWING LIVER TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    V. P. Buzulina

    2013-01-01

    Full Text Available Aim. Comparative evaluation of two biochemical markers of bone resorption and hormonal regulation of bone metabolism in liver recipients. Methods and results. Bоne densitometry of L2–L4 and neck of femur, serum level of some hormones (PTH, vitamin D3, estradiol, testosterone regulating osteoclastogenesis as well as com- parative analyses of two bone resorption markers β-crosslaps and tartrate-resistant acid phosphatase type 5b (TRAP-5b were fulfilled in patients after orthotopic liver transplantation (OLT. In 1 month after OLT bone density reduction of L2–L4 and neck of femur; decrease of vitamin D3, estradiol in women, testosterone in men and increase levels of bone resorption markers were observed. In 1 and 2 years after OLT the rise of bone density, increased levels of PTH, estradiol, testosterone and decreased β-crosslaps levels were revealed, while vitamin D3 and TRAP-5b levels remained stable. Conclusion. TRAP-5b was found to be a more speciffic marker of bone resorption, independent from collagen metabolism in liver. Osteoporosis defined in long-term period after OLT was associated with higher TRAP-5b and revialed in women with low estradiol level. 

  15. Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone.

    Science.gov (United States)

    Cheong, Sam P S; Huang, Juan; Bendena, William G; Tobe, Stephen S; Hui, Jerome H L

    2015-11-01

    Arthropods are the most successful group of animals, and are found in diverse habitats; they account for more than 80% of described animal species. A rigid exoskeleton is a common feature that is shared across the different groups of arthropods. The exoskeleton offers protection and is shed between developmental stages via a unique evolutionarily conserved process known as molting/ecdysis. Molting is triggered by steroid hormones, the ecdysteroids, and the regulation of their biosynthesis has long been proposed as a contributor to the success of arthropods during evolution. Nevertheless, how novelties arose that contributed to the diversifications of arthropods remain unclear. Juvenile hormones (JHs) are sequiterpenoids that were thought to be unique to insects, modulating the timing of metamorphosis in conjunction with the actions of ecdysteroids. Here, we revisit the old question of "the role that the sesquiterpenoids play in arthropod evolution" with a focus on the neglected non-insect arthropods. We hypothesize that the sesquiterpenoid, methyl farnesoate (MF), had already established regulatory functions in the last common ancestor of arthropods, and the difference in the regulation of biosynthesis and degradation of sesquiterpenoids, such as MF and JH, was another major driving force in the successful radiation of insects. © The Author 2015. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  16. BDNF and glucocorticoids regulate corticotrophin-releasing hormone (CRH) homeostasis in the hypothalamus.

    Science.gov (United States)

    Jeanneteau, Freddy D; Lambert, W Marcus; Ismaili, Naima; Bath, Kevin G; Lee, Francis S; Garabedian, Michael J; Chao, Moses V

    2012-01-24

    Regulation of the hypothalamic-pituitary-adrenal (HPA) axis is critical for adaptation to environmental changes. The principle regulator of the HPA axis is corticotrophin-releasing hormone (CRH), which is made in the parventricular nucleus and is an important target of negative feedback by glucocorticoids. However, the molecular mechanisms that regulate CRH are not fully understood. Disruption of normal HPA axis activity is a major risk factor of neuropsychiatric disorders in which decreased expression of the glucocorticoid receptor (GR) has been documented. To investigate the role of the GR in CRH neurons, we have targeted the deletion of the GR, specifically in the parventricular nucleus. Impairment of GR function in the parventricular nucleus resulted in an enhancement of CRH expression and an up-regulation of hypothalamic levels of BDNF and disinhibition of the HPA axis. BDNF is a stress and activity-dependent factor involved in many activities modulated by the HPA axis. Significantly, ectopic expression of BDNF in vivo increased CRH, whereas reduced expression of BDNF, or its receptor TrkB, decreased CRH expression and normal HPA functions. We find the differential regulation of CRH relies upon the cAMP response-element binding protein coactivator CRTC2, which serves as a switch for BDNF and glucocorticoids to direct the expression of CRH.

  17. TGF-β signaling in insects regulates metamorphosis via juvenile hormone biosynthesis.

    Science.gov (United States)

    Ishimaru, Yoshiyasu; Tomonari, Sayuri; Matsuoka, Yuji; Watanabe, Takahito; Miyawaki, Katsuyuki; Bando, Tetsuya; Tomioka, Kenji; Ohuchi, Hideyo; Noji, Sumihare; Mito, Taro

    2016-05-17

    Although butterflies undergo a dramatic morphological transformation from larva to adult via a pupal stage (holometamorphosis), crickets undergo a metamorphosis from nymph to adult without formation of a pupa (hemimetamorphosis). Despite these differences, both processes are regulated by common mechanisms that involve 20-hydroxyecdysone (20E) and juvenile hormone (JH). JH regulates many aspects of insect physiology, such as development, reproduction, diapause, and metamorphosis. Consequently, strict regulation of JH levels is crucial throughout an insect's life cycle. However, it remains unclear how JH synthesis is regulated. Here, we report that in the corpora allata of the cricket, Gryllus bimaculatus, Myoglianin (Gb'Myo), a homolog of Drosophila Myoglianin/vertebrate GDF8/11, is involved in the down-regulation of JH production by suppressing the expression of a gene encoding JH acid O-methyltransferase, Gb'jhamt In contrast, JH production is up-regulated by Decapentaplegic (Gb'Dpp) and Glass-bottom boat/60A (Gb'Gbb) signaling that occurs as part of the transcriptional activation of Gb'jhamt Gb'Myo defines the nature of each developmental transition by regulating JH titer and the interactions between JH and 20E. When Gb'myo expression is suppressed, the activation of Gb'jhamt expression and secretion of 20E induce molting, thereby leading to the next instar before the last nymphal instar. Conversely, high Gb'myo expression induces metamorphosis during the last nymphal instar through the cessation of JH synthesis. Gb'myo also regulates final insect size. Because Myo/GDF8/11 and Dpp/bone morphogenetic protein (BMP)2/4-Gbb/BMP5-8 are conserved in both invertebrates and vertebrates, the present findings provide common regulatory mechanisms for endocrine control of animal development.

  18. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    OpenAIRE

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regu...

  19. Differential regulation of cystic fibrosis transmembrane conductance regulator and Na+,K+ -ATPase in gills of striped bass, Morone saxatilis: effect of salinity and hormones

    DEFF Research Database (Denmark)

    Madsen, Steffen; Jensen, Lars Nørholm; Tipsmark, Christian Kølbaek

    2007-01-01

    -regulated kinase (ERK) 1/2 was stimulated by EGF but not affected by IGF-I. This study is the first to report a branchial EGF response and to demonstrate a functional ERK 1/2 pathway in the teleost gill. In conclusion, CFTR and Na(+),K(+) -ATPase are differentially regulated by salinity and hormones in gills...

  20. Changes of hormones regulating electrolyte metabolism after space flight and hypokinesia

    Science.gov (United States)

    Macho, L.; Fickova, M.; Lichardus, B.; Kvetnansky, R.; Carrey, R. M.; Grigoriev, A.; Popova, I. A.; Tigranian, R. A.; Noskov, V. B.

    The changes of hormones in plasma involved in the body fluid regulation were studied in human subjects during and after space flights in relation to redistribution of body fluids in the state of weightlessness. Since hypokinesia was used as a model for simulation of some effects of the stay in microgravity the plasma hormone levels in rats exposed to hypokinesia were also investigated. Plasma aldosterone values showed great individual variations during the first inflight days, the increased levels were observed with prolongation of space flights. The important elevation was found in the recovery period, however it was interesting to note, that in some cosmonauts with repeated exposure to space flight, the postflight plasma aldosterone levels were not elevated. The urine excretion of aldosterone was increased inflight, however in postflight period the decrease or increase were found in the first 1-5 days. The increase of plasma renin activity was observed in flight and postflight period. The rats were exposed to hypokinesia (forced restriction of motor activity) for 1, 7 and 60 days and urine was collected during last 24 hours. The animals were sacrificed and the concentration of electrolytes and of levels of corticosterone aldosteron (A), ANF and plasma-renin activity (PRA) were determined in plasma. In urine excretion of sodium and potassium were estimated. An important increase of plasma renin activity and aldosterone concentration was found after short-term hypokinesia (1 day). These hormonal values appear to decrease with time (7 days) and are not significantly different from controls after long-term hypokinesia (60 days). A decrease of values ANF in plasma was observed after 1 and 7 days hypokinesia. After prolonged hypokinesia a decrease of sodium plasma concentration was observed. The excretion of sodium in urine was higher in long-term hypokinetic animals. There were no significant changes of plasma potassium levels in rats exposed to hypokinesia, however

  1. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Jacob Wewer; Larsen, Olav

    2018-01-01

    OBJECTIVE: Bile acids (BAs) facilitate fat absorption and may play a role in glucose and metabolism regulation, stimulating the secretion of gut hormones. The relative importance and mechanisms involved in BA-stimulated secretion of appetite and metabolism regulating hormones from the gut...... and pancreas is not well described and was the purpose of this study. METHODS: The effects of bile acids on the secretion of gut and pancreatic hormones was studied in rats and compared to the most well described nutritional secretagogue: glucose. The molecular mechanisms that underlie the secretion...... was studied by isolated perfused rat and mouse small intestine and pancreas preparations and supported by immunohistochemistry, expression analysis, and pharmacological studies. RESULTS: Bile acids robustly stimulate secretion of not only the incretin hormones, glucose-dependent insulinotropic peptide (GIP...

  2. TBLR1 regulates the expression of nuclear hormone receptor co-repressors

    Directory of Open Access Journals (Sweden)

    Brown Stuart

    2006-08-01

    Full Text Available Abstract Background Transcription is regulated by a complex interaction of activators and repressors. The effectors of repression are large multimeric complexes which contain both the repressor proteins that bind to transcription factors and a number of co-repressors that actually mediate transcriptional silencing either by inhibiting the basal transcription machinery or by recruiting chromatin-modifying enzymes. Results TBLR1 [GenBank: NM024665] is a co-repressor of nuclear hormone transcription factors. A single highly conserved gene encodes a small family of protein molecules. Different isoforms are produced by differential exon utilization. Although the ORF of the predominant form contains only 1545 bp, the human gene occupies ~200 kb of genomic DNA on chromosome 3q and contains 16 exons. The genomic sequence overlaps with the putative DC42 [GenBank: NM030921] locus. The murine homologue is structurally similar and is also located on Chromosome 3. TBLR1 is closely related (79% homology at the mRNA level to TBL1X and TBL1Y, which are located on Chromosomes X and Y. The expression of TBLR1 overlaps but is distinct from that of TBL1. An alternatively spliced form of TBLR1 has been demonstrated in human material and it too has an unique pattern of expression. TBLR1 and the homologous genes interact with proteins that regulate the nuclear hormone receptor family of transcription factors. In resting cells TBLR1 is primarily cytoplasmic but after perturbation the protein translocates to the nucleus. TBLR1 co-precipitates with SMRT, a co-repressor of nuclear hormone receptors, and co-precipitates in complexes immunoprecipitated by antiserum to HDAC3. Cells engineered to over express either TBLR1 or N- and C-terminal deletion variants, have elevated levels of endogenous N-CoR. Co-transfection of TBLR1 and SMRT results in increased expression of SMRT. This co-repressor undergoes ubiquitin-mediated degradation and we suggest that the stabilization of

  3. Hypothalamic regulation of thyroid-stimulating hormone and prolactin release : the role of thyrotrophin-releasing hormone

    NARCIS (Netherlands)

    G.A.C. van Haasteren (Goedele)

    1995-01-01

    textabstractThyrotrophin-releasing-hormone (TRH), a tripeptide, is produced by hypothalamic neurons and transported along their axons to the median eminence (ME). From there it is released at nerve terminals into hypophyseal portal blood. It is then transported to the anterior pituitary gland where

  4. Hormonal regulation of aquaporin 3: opposing actions of prolactin and cortisol in tilapia gill.

    Science.gov (United States)

    Breves, Jason P; Inokuchi, Mayu; Yamaguchi, Yoko; Seale, Andre P; Hunt, Bethany L; Watanabe, Soichi; Lerner, Darren T; Kaneko, Toyoji; Grau, E Gordon

    2016-09-01

    Aquaporins (Aqps) are expressed within key osmoregulatory tissues where they mediate the movement of water and selected solutes across cell membranes. We leveraged the functional plasticity of Mozambique tilapia (Oreochromis mossambicus) gill epithelium to examine how Aqp3, an aquaglyceroporin, is regulated in response to osmoregulatory demands. Particular attention was paid to the actions of critical osmoregulatory hormones, namely, prolactin (Prl), growth hormone and cortisol. Branchial aqp3 mRNA levels were modulated following changes in environmental salinity, with enhanced aqp3 mRNA expression upon transfer from seawater to freshwater (FW). Accordingly, extensive Aqp3 immunoreactivity was localized to cell membranes of branchial epithelium in FW-acclimated animals. Upon transferring hypophysectomized tilapia to FW, we identified that a pituitary factor(s) is required for Aqp3 expression in FW. Replacement with ovine Prl (oPrl) was sufficient to stimulate Aqp3 expression in hypophysectomized animals held in FW, an effect blocked by coinjection with cortisol. Both oPrl and native tilapia Prls (tPrl177 and tPrl188) stimulated aqp3 in incubated gill filaments in a concentration-related manner. Consistent with in vivo responses, coincubation with cortisol blocked oPrl-stimulated aqp3 expression in vitro Our data indicate that Prl and cortisol act directly upon branchial epithelium to regulate Aqp3 in tilapia. Thus, within the context of the diverse actions of Prl on hydromineral balance in vertebrates, we define a new role for Prl as a regulator of Aqp expression. © 2016 Society for Endocrinology.

  5. Action of specific thyroid hormone receptor α(1) and β(1) antagonists in the central and peripheral regulation of thyroid hormone metabolism in the rat.

    Science.gov (United States)

    van Beeren, Hermina C; Kwakkel, Joan; Ackermans, Mariëtte T; Wiersinga, Wilmar M; Fliers, Eric; Boelen, Anita

    2012-12-01

    The iodine-containing drug amiodarone (Amio) and its noniodine containing analogue dronedarone (Dron) are potent antiarrhythmic drugs. Previous in vivo and in vitro studies have shown that the major metabolite of Amio, desethylamiodarone, acts as a thyroid hormone receptor (TR) α(1) and β(1) antagonist, whereas the major metabolite of Dron debutyldronedarone acts as a selective TRα(1) antagonist. In the present study, Amio and Dron were used as tools to discriminate between TRα(1) or TRβ(1) regulated genes in central and peripheral thyroid hormone metabolism. Three groups of male rats received either Amio, Dron, or vehicle by daily intragastric administration for 2 weeks. We assessed the effects of treatment on triiodothyronine (T(3)) and thyroxine (T(4)) plasma and tissue concentrations, deiodinase type 1, 2, and 3 mRNA expressions and activities, and thyroid hormone transporters monocarboxylate transporter 8 (MCT8), monocarboxylate transporter 10 (MCT10), and organic anion transporter 1C1 (OATP1C1). Amio treatment decreased serum T(3), while serum T(4) and thyrotropin (TSH) increased compared to Dron-treated and control rats. At the central level of the hypothalamus-pituitary-thyroid axis, Amio treatment decreased hypothalamic thyrotropin releasing hormone (TRH) expression, while increasing pituitary TSHβ and MCT10 mRNA expression. Amio decreased the pituitary D2 activity. By contrast, Dron treatment resulted in decreased hypothalamic TRH mRNA expression only. Upon Amio treatment, liver T(3) concentration decreased substantially compared to Dron and control rats (50%, p<0.01), but liver T(4) concentration was unaffected. In addition, liver D1, mRNA, and activity decreased, while the D3 activity and mRNA increased. Liver MCT8, MCT10, and OATP1C1 mRNA expression were similar between groups. Our results suggest an important role for TRα1 in the regulation of hypothalamic TRH mRNA expression, whereas TRβ plays a dominant role in pituitary and liver thyroid

  6. ROLE OF IMAGING TESTS FOR PREOPERATIVE LOCATION OF PATHOLOGIC PARATHYROID TISSUE IN PATIENTS WITH PRIMARY HYPERPARATHYROIDISM.

    Science.gov (United States)

    Coelho, Maria Caroline Alves; de Oliveira E Silva de Morais, Nathalie Anne; Beuren, Andrea Cristiani; Lopes, Cristiane Bertolino; Santos, Camila Vicente; Cantoni, Joyce; Neto, Leonardo Vieira; Lima, Maurício Barbosa

    2016-09-01

    Primary hyperparathyroidism (PHPT) can be cured by parathyroidectomy, and the preoperative location of enlarged pathologic parathyroid glands is determined by imaging studies, especially cervical ultrasonography and scintigraphy scanning. The aim of this retrospective study was to evaluate the use of preoperative cervical ultrasonography and/or parathyroid scintigraphy in locating pathologic parathyroid tissue in a group of patients with PHPT followed in the same endocrine center. We examined the records of 61 patients who had undergone parathyroidectomy for PHPT following (99m)Tc-sestamibi scintigraphy scan and/or cervical ultrasonography. Scintigraphic and ultrasonographic findings were compared to histopathologic results of the surgical specimens. Ultrasonography detected enlarged parathyroid glands in 87% (48/55) of patients with PHPT and (99m)Tc-sestamibi scintigraphy in 79% (37/47) of the cases. Ultrasonography was able to correctly predict the surgical findings in 75% (41/55) of patients and scintigraphy in 72% (34/47). Of 7 patients who had negative ultrasonography, scintigraphy correctly predicted the surgical results in 2 (29%). Of 10 patients who had negative scintigraphy, ultrasonography correctly predicted the surgical results in 4 (40%). When we analyzed only patients with solitary eutopic parathyroid adenomas, the predictive positive values of ultrasonography and scintigraphy were 90% and 86%, respectively. Cervical ultrasonography had a higher likelihood of a correct positive test and a greater predictive positive value for solitary adenoma compared to (99m)Tc-sestamibi and should be used as the first diagnostic tool for preoperative localization of affected parathyroid glands in PHPT. Ca = calcium IEDE = Instituto Estadual de Diabetes e Endocrinologia Luiz Capriglione PHPT = primary hyperparathyroidism PTH = parathyroid hormone.

  7. Resection of parathyroid tumor in the aorticopulmonary window without prior neck exploration

    International Nuclear Information System (INIS)

    McHenry, C.; Walsh, M.; Jarosz, H.; Henkin, R.; Tope, J.; Lawrence, A.M.; Paloyan, E.

    1988-01-01

    Of 522 patients with hyperparathyroidism operated on from 1973 to 1987 at our institution, there were seven (1.3%), each with an ectopic, hyperfunctioning mediastinal parathyroid adenoma, who required median sternotomy. In three of these seven patients, the tumor was located in the aorticopulmonary window. A 61-year-old woman with primary hyperparathyroidism had a preoperative thallium-technetium subtraction scan that showed thallium uptake at the base of the heart without any uptake in the neck. After further workup and without prior neck exploration, a parathyroid adenoma was found in the aorticopulmonary window through a median sternotomy. Six months later, serum calcium, phosphorus, and parathyroid hormone values remain normal. Two other cases of parathyroid adenoma in the aorticopulmonary window are presented. Of these two patients, the thallium scan was a key element in the immediate mediastinal exploration of one, who was transferred from another hospital comatose and intubated, in acute hypercalcemic crisis. Since mediastinal parathyroid tumors that necessitate median sternotomy occur in less than 2% of patients with primary hyperparathyroidism, we do not advocate routine preoperative localization studies before an initial cervical operation; localization, however, may be justified in selected cases, such as in critically ill patients or in instances of acute hyperparathyroidism, when the first operation needs to be curative

  8. The role of thyroid hormones in regulating of fatty acid spectrum of brain lipids: ontogenetic aspect

    Directory of Open Access Journals (Sweden)

    Rodynskiy A.G.

    2016-05-01

    Full Text Available In experiments on rats of three age groups the role of thyroid hormones in the regulation of fatty acid spectrum of cortical and hippocampus lipids was studied. It was found that on the background of decreased thyroid status content of polyunsaturated fractions of free fatty acids, significantly changed depending on the age of the animals. In particular, in juvenile rats hypothyroidism was accompanied by a decrease almost twice the number of pentacodan acid decreased lipids viscosity in neurocortex. In old rats reduce of pentacodan acid in the cortex (38% was supplemented by significant (77% decrease in linoleic and linolenic acids. Unlike the two age groups deficiency of thyroid hormones in young animals caused accumulation of free polyunsatarated fatty acids (C18: 2.3 in the cerebral cortex by 74%, which may be associated with a decrease of this fraction in fatty acid spectrum of lipids and increase of viscosity properties of the membranes. These restruc­turing may be associated with modulation of synaptic transmission of specific neurotransmitter systems in the brain.

  9. Hormonal and metabolic regulation of tomato fruit sink activity and yield under salinity

    DEFF Research Database (Denmark)

    Albacete, Alfonso; Cantero-Navarro, Elena; Balibrea, María E.

    2014-01-01

    Salinization of water and soil has a negative impact on tomato (Solanum lycopersicum L.) productivity by reducing growth of sink organs and by inducing senescence in source leaves. It has been hypothesized that yield stability implies the maintenance or increase of sink activity in the reproductive...... structures, thus contributing to the transport of assimilates from the source leaves through changes in sucrolytic enzymes and their regulation by phytohormones. In this study, classical and functional physiological approaches have been integrated to study the influence of metabolic and hormonal factors...... sucrolytic activities (mainly cwInv and sucrose synthase), sink strength, and fruit weight, whereas the ethylene-releasing compound ethephon had a negative effect in equivalent non-stressed fruits. Fruit yield was increased by both the constitutive expression of CIN1 in the fruits (up to 4-fold) or IPT...

  10. Hormone-sensitive lipase (HSL) expression and regulation in skeletal muscle

    DEFF Research Database (Denmark)

    Langfort, J; Ploug, T; Ihlemann, J

    1998-01-01

    Because the enzymatic regulation of muscle triglyceride metabolism is poorly understood we explored the character and activation of neutral lipase in muscle. Western blotting of isolated rat muscle fibers demonstrated expression of hormone-sensitive lipase (HSL). In incubated soleus muscle...... epinephrine increased neutral lipase activity by beta-adrenergic mechanisms involving cyclic AMP-dependent protein kinase (PKA). The increase was paralleled by an increase in glycogen phosphorylase activity and could be abolished by antiserum against HSL. Electrical stimulation caused a transient increase...... in activity of both neutral lipase and glycogen phosphorylase. The increase in lipase activity during contractions was not influenced by sympathectomy or propranolol. Training diminished the epinephrine induced lipase activation in muscle but enhanced the activation as well as the overall concentration...

  11. A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing

    DEFF Research Database (Denmark)

    Thomas Danielsen, E.; E. Møller, Morten; Yamanaka, Naoki

    2016-01-01

    Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis...... and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition...... and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms...

  12. Regulation of feeding behavior and psychomotor activity by corticotropin-releasing hormone (CRH in fish

    Directory of Open Access Journals (Sweden)

    Kouhei eMatsuda

    2013-05-01

    Full Text Available Corticotropin-releasing hormone (CRH is a hypothalamic neuropeptide belonging to a family of neuropeptides that includes urocortins, urotensin I and sauvagine in vertebrates. CRH and urocortin act as anorexigenic factors for satiety regulation in fish. In a goldfish model, intracerebroventricular (ICV administration of CRH has been shown to affect not only food intake, but also locomotor and psychomotor activities. In particular, CRH elicits anxiety-like behavior as an anxiogenic neuropeptide in goldfish, as is the case in rodents. This paper reviews current knowledge of CRH and its related peptides derived from studies of teleost fish, as representative non-mammals, focusing particularly on the role of the CRH system, and examines its significance from a comparative viewpoint.

  13. Isotocin Regulates Growth Hormone but Not Prolactin Release From the Pituitary of Ricefield Eels

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2018-04-01

    Full Text Available The neurohypophyseal hormone oxytocin (Oxt has been shown to stimulate prolactin (Prl synthesis and release from the adenohypophysis in rats. However, little is known about the functional roles of Oxt-like neuropeptides in the adenohypophysis of non-mammalian vertebrates. In this study, cDNAs encoding ricefield eel oxytocin-like receptors (Oxtlr, namely isotocin (Ist receptor 1 (Istr1 and 2 (Istr2, were isolated and specific antisera were generated, respectively. RT-PCR and Western blot analysis detected the presence of both Istr1 and Istr2 in the brain and pituitary, but differential expression in some peripheral tissues, including the liver and kidney, where only Istr1 was detected. In the pituitary, immunoreactive Istr1 and Istr2 were differentially distributed, with the former mainly in adenohypophyseal cell layers adjacent to the neurohypophysis, whereas the latter in peripheral areas of the adenohypophysis. Double immunofluorescent images showed that immunostaining of Istr1, but not Istr2 was localized to growth hormone (Gh cells, but neither of them was expressed in Prl cells. Ist inhibited Gh release in primary pituitary cells of ricefield eels and increased Gh contents in the pituitary gland of ricefield eels at 6 h after in vivo administration. Ist inhibition of Gh release is probably mediated by cAMP, PKC/DAG, and IP3/Ca2+ pathways. In contrast, Ist did not affect either prl gene expression or Prl contents in primary pituitary cells. Results of this study demonstrated that Ist may not be involved in the regulation of Prl, but inhibit Gh release via Istr1 rather than Istr2 in ricefield eels, and provided evidence for the direct regulation of Gh cells by oxytocin-like neuropeptides in the pituitary of non-mammalian vertebrates.

  14. Isotocin Regulates Growth Hormone but Not Prolactin Release From the Pituitary of Ricefield Eels

    Science.gov (United States)

    Yang, Wei; Zhang, Ning; Shi, Boyang; Zhang, Shen; Zhang, Lihong; Zhang, Weimin

    2018-01-01

    The neurohypophyseal hormone oxytocin (Oxt) has been shown to stimulate prolactin (Prl) synthesis and release from the adenohypophysis in rats. However, little is known about the functional roles of Oxt-like neuropeptides in the adenohypophysis of non-mammalian vertebrates. In this study, cDNAs encoding ricefield eel oxytocin-like receptors (Oxtlr), namely isotocin (Ist) receptor 1 (Istr1) and 2 (Istr2), were isolated and specific antisera were generated, respectively. RT-PCR and Western blot analysis detected the presence of both Istr1 and Istr2 in the brain and pituitary, but differential expression in some peripheral tissues, including the liver and kidney, where only Istr1 was detected. In the pituitary, immunoreactive Istr1 and Istr2 were differentially distributed, with the former mainly in adenohypophyseal cell layers adjacent to the neurohypophysis, whereas the latter in peripheral areas of the adenohypophysis. Double immunofluorescent images showed that immunostaining of Istr1, but not Istr2 was localized to growth hormone (Gh) cells, but neither of them was expressed in Prl cells. Ist inhibited Gh release in primary pituitary cells of ricefield eels and increased Gh contents in the pituitary gland of ricefield eels at 6 h after in vivo administration. Ist inhibition of Gh release is probably mediated by cAMP, PKC/DAG, and IP3/Ca2+ pathways. In contrast, Ist did not affect either prl gene expression or Prl contents in primary pituitary cells. Results of this study demonstrated that Ist may not be involved in the regulation of Prl, but inhibit Gh release via Istr1 rather than Istr2 in ricefield eels, and provided evidence for the direct regulation of Gh cells by oxytocin-like neuropeptides in the pituitary of non-mammalian vertebrates.

  15. New avenues for regulation of lipid metabolism by thyroid hormones and analogs.

    Science.gov (United States)

    Senese, Rosalba; Lasala, Pasquale; Leanza, Cristina; de Lange, Pieter

    2014-01-01

    Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs). The classic, active TH, 3,5,3'-triiodo-L-thyronine (T3) acts predominantly by binding to nuclear receptors termed TH receptors (TRs), that recognize TH response elements (TREs) on the DNA, and so regulate transcription. T3 also acts through "non-genomic" pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TRα. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2), that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism.

  16. New Avenues for Regulation of Lipid Metabolism by Thyroid Hormones and Analogs

    Directory of Open Access Journals (Sweden)

    Rosalba eSenese

    2014-12-01

    Full Text Available Weight loss due to negative energy balance is a goal in counteracting obesity and type 2 diabetes mellitus. The thyroid is known to be an important regulator of energy metabolism through the action of thyroid hormones (THs. The classic, active TH, 3,5,3’-triiodo-L-thyronine (T3 acts predominantly by binding to nuclear receptors termed TH receptors (TRs, that recognize TH response elements (TREs on the DNA, and so regulate transcription. T3 also acts through non-genomic pathways that do not necessarily involve TRs. Lipid-lowering therapies have been suggested to have potential benefits, however, the establishment of comprehensive therapeutic strategies is still awaited. One drawback of using T3 in counteracting obesity has been the occurrence of heart rhythm disturbances. These are mediated through one TR, termed TR alpha. The end of the previous century saw the exploration of TH mimetics that specifically bind to TR beta in order to prevent cardiac disturbances, and TH derivatives such as 3,5-diiodo-L-thyronine (T2, that possess interesting biological activities. Several TH derivatives and functional analogs have low affinity for the TRs, and are suggested to act predominantly through non-genomic pathways. All this has opened new perspectives in thyroid physiology and TH derivative usage as anti-obesity therapies. This review addresses the pros and cons of these compounds, in light of their effects on energy balance regulation and on lipid/cholesterol metabolism.

  17. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Directory of Open Access Journals (Sweden)

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  18. L-tyrosine and L-DOPA as hormone-like regulators of melanocytes functions

    Science.gov (United States)

    Slominski, Andrzej; Zmijewski, Michal; Pawelek, John

    2011-01-01

    Summary Evidence reveals that L-tyrosine and L-DOPA, besides serving as substrates and intermediates of melanogenesis, are also bioregulatory agents acting not only as inducers and positive regulators of melanogenesis but also as regulators of other cellular functions. These can be mediated through action on specific receptors or through non-receptor mediated mechanisms. The substrate induced (L-tyrosine and/or L-DOPA) melanogenic pathway would autoregulate itself as well as it would regulate the melanocyte functions through activity of its structural or regulatory proteins and through intermediates of melanogenesis and melanin itself. Dissection of regulatory and autoregulatory elements of this process may elucidate how substrate induced autoregulatory pathways have evolved from prokaryotic or simple eukaryotic organisms to complex systems in vertebrates. This could substantiate older theory proposing that receptors for amino-acid derived hormones arose from the receptors for those amino acids, and that nuclear receptors evolved from primitive intracellular receptors binding nutritional factors or metabolic intermediates. PMID:21834848

  19. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.

    Science.gov (United States)

    Sjögren, Klara; Leung, Kin-Chuen; Kaplan, Warren; Gardiner-Garden, Margaret; Gibney, James; Ho, Ken K Y

    2007-07-01

    Muscle is a target of growth hormone (GH) action and a major contributor to whole body metabolism. Little is known about how GH regulates metabolic processes in muscle or the extent to which muscle contributes to changes in whole body substrate metabolism during GH treatment. To identify GH-responsive genes that regulate substrate metabolism in muscle, we studied six hypopituitary men who underwent whole body metabolic measurement and skeletal muscle biopsies before and after 2 wk of GH treatment (0.5 mg/day). Transcript profiles of four subjects were analyzed using Affymetrix GeneChips. Serum insulin-like growth factor I (IGF-I) and procollagens I and III were measured by RIA. GH increased serum IGF-I and procollagens I and III, enhanced whole body lipid oxidation, reduced carbohydrate oxidation, and stimulated protein synthesis. It induced gene expression of IGF-I and collagens in muscle. GH reduced expression of several enzymes regulating lipid oxidation and energy production. It reduced calpain 3, increased ribosomal protein L38 expression, and displayed mixed effects on genes encoding myofibrillar proteins. It increased expression of circadian gene CLOCK, and reduced that of PERIOD. In summary, GH exerted concordant effects on muscle expression and blood levels of IGF-I and collagens. It induced changes in genes regulating protein metabolism in parallel with a whole body anabolic effect. The discordance between muscle gene expression profiles and metabolic responses suggests that muscle is unlikely to contribute to GH-induced stimulation of whole body energy and lipid metabolism. GH may regulate circadian function in skeletal muscle by modulating circadian gene expression with possible metabolic consequences.

  20. Adrenal Gland Microenvironment and Its Involvement in the Regulation of Stress-induced Hormone Secretion during Sepsis.

    Directory of Open Access Journals (Sweden)

    Waldemar Kanczkowski

    2016-12-01

    Full Text Available Survival of all living organisms depends on maintenance of a steady state of homeostasis, which process relies on its ability to react and adapt to various physical and emotional threats. The defense against stress is executed by the hypothalamic-pituitary-adrenal axis and the sympathetic-adrenal medullary system. Adrenal gland is a major effector organ of stress system. During stress adrenal gland rapidly respond with increased secretion of glucocorticoids and catecholamines into circulation, which hormones, in turn, affect metabolism, to provide acutely energy, vasculature to increase blood pressure and the immune system to prevent it from extensive activation. Sepsis resulting from microbial infections is a sustained and extreme example of stress situation. In many critical ill patients levels of both corticotropin-releasing hormone and adrenocorticotropin, two major regulators of adrenal hormone production, are suppressed. Levels of glucocorticoids however, remain normal or are elevated in these patients, suggesting a shift from central to local intraadrenal regulation of adrenal stress response. Among many mechanisms potentially involved in this process, reduced glucocorticoid metabolism and local intraadrenal activation of hormone production mediated by adrenocortical and chromaffin cell interactions, the adrenal vascular system and the immune-adrenal crosstalk play a key role. Consequently, any impairment in function of these systems, can ultimately affect adrenal stress response. The purpose of this mini review is to present and discuss recent advances in our understanding of the adrenal gland microenvironment, and its role in regulation of stress-induced hormone secretion.

  1. Exercise training during normobaric hypoxic confinement does not alter hormonal appetite regulation.

    Directory of Open Access Journals (Sweden)

    Tadej Debevec

    Full Text Available Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health.Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼ 4000 m simulated altitude (FIO2 = 0.139 ± 0.003% either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8 ± 2.4 yrs, BMI = 22.9 ± 1.2 kg · m(-2 or without any exercise (Sedentary group; N = 6 Age = 24.8 ± 3.1 yrs, BMI = 22.3 ± 2.5 kg · m(-2. A meal tolerance test was performed before (Pre and after the confinement (Post to quantify fasting and postp randial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests.While body mass decreased in both groups (-1.4 kg; p = 0.01 following the confinement, whole body fat mass was only reduced in the Exercise group (-1.5 kg; p = 0.01. At Post, postprandial serum insulin was reduced in the Sedentary group (-49%; p = 0.01 and postprandial plasma glucose in the Exercise group (-19%; p = 0.03. Fasting serum total cholesterol levels were reduced (-12%; p = 0.01 at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (-16%; p = 0.01. No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05.These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but

  2. Exercise training during normobaric hypoxic confinement does not alter hormonal appetite regulation.

    Science.gov (United States)

    Debevec, Tadej; Simpson, Elizabeth J; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-01-01

    Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼ 4000 m simulated altitude (FIO2 = 0.139 ± 0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8 ± 2.4 yrs, BMI = 22.9 ± 1.2 kg · m(-2)) or without any exercise (Sedentary group; N = 6 Age = 24.8 ± 3.1 yrs, BMI = 22.3 ± 2.5 kg · m(-2)). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postp randial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. While body mass decreased in both groups (-1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (-1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (-49%; p = 0.01) and postprandial plasma glucose in the Exercise group (-19%; p = 0.03). Fasting serum total cholesterol levels were reduced (-12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (-16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can

  3. Dopamine-regulated adrenocorticotropic hormone secretion in lactating rats: functional plasticity of melanotropes.

    Science.gov (United States)

    Oláh, Márk; Fehér, Pálma; Ihm, Zsófia; Bácskay, Ildikó; Kiss, Timea; Freeman, Marc E; Nagy, Gyorgy M; Vecsernyés, Miklós

    2009-01-01

    Pro-opiomelanocortin (POMC) is processed to adrenocorticotropic hormone (ACTH) and beta-lipotropin in corticotropes of the anterior lobe, and to alpha-melanocyte-stimulating hormone (alpha-MSH) and beta-endorphin in melanotropes of the intermediate lobe (IL) of the pituitary gland. While ACTH secretion is predominantly under the stimulatory influence of the hypothalamic factors, hormone secretion of the IL is tonically inhibited by neuroendocrine dopamine (NEDA) neurons. Lobe-specific POMC processing is not absolute. For example, D(2) type DA receptor (D2R)-deficient mice have elevated plasma ACTH levels, although it is known that corticotropes do not express D2R(s). Moreover, observations that suckling does not influence alpha-MSH release, while it induces an increase in plasma ACTH is unexplained. The aim of the present study was to investigate the involvement of the NEDA system in the regulation of ACTH secretion and the participation of the IL in ACTH production in lactating rats. Untreated and estradiol (E(2))-substituted ovariectomized (OVX) females were also studied. The concentration of ACTH in the IL was higher in lactating rats than in OVX rats, while the opposite change in alpha-MSH level of the IL was observed. DA levels in the IL and the neural lobe were lower in lactating rats than in OVX rats. Suckling-induced ACTH response was eliminated by pretreatment with the DA receptor agonist, bromocriptine (BRC). Inhibition of DA biosynthesis by alpha-methyl-p-tyrosine (alphaMpT) and blockade of D2R by domperidone (DOM) elevated plasma ACTH levels, but did not influence plasma alpha-MSH levels in lactating rats. The same drugs had opposite effects in OVX and OVX + E(2) animals. In lactating mothers, BRC was able to block ACTH responses induced by both alphaMpT and DOM. Surgical denervation of the IL elevated basal plasma levels of ACTH. Taken together, these data indicate that melanotropes synthesize ACTH during lactation and its release from these cells is

  4. The role of leptin and other hormones related to bone metabolism and appetite regulation as determinants of gain in body fat and fat-free mass in 8-11-year-old children.

    Science.gov (United States)

    Dalskov, Stine-Mathilde; Ritz, Christian; Larnkjær, Anni; Damsgaard, Camilla T; Petersen, Rikke A; Sørensen, Louise B; Ong, Ken K; Astrup, Arne; Mølgaard, Christian; Michaelsen, Kim F

    2015-03-01

    Regulation of body composition during childhood is complex. Numerous hormones are potentially involved. Leptin has been proposed to restrain weight gain, but results are inconsistent. We examined whether baseline fasting levels of ghrelin, adiponectin, leptin, insulin, IGF-I, osteocalcin, and intact parathyroid hormone (iPTH) were associated with body composition cross sectionally and longitudinally in 633 8-11-year-olds. Data on hormones and body composition by dual-energy x-ray absorptiometry from the OPUS School Meal Study were used. We looked at baseline hormones as predictors of baseline fat mass index (FMI) or fat-free mass index (FFMI), and also subsequent changes (3 and 6 months) in FMI or FFMI using models with hormones individually or combined. Cross-sectionally, baseline leptin was positively associated with FMI in girls (0.211 kg/m(2) pr. μg/mL; 97.5% confidence interval [CI],0.186-0.236; P < .001) and boys (0.231 kg/m(2) pr. μg/mL; 97.5% CI, 0.200-0.261; P < .001). IGF-I in both sexes and iPTH in boys were positively associated with FMI. An inverse association between adiponectin and FFMI in boys and a positive association between IGF-I and FFMI were found in girls. In longitudinal models, baseline leptin was inversely associated with subsequent changes in FMI (-0.018 kg/m(2) pr. μg/mL; 97.5% CI, -0.034 - -0.002; P = .028) and FFMI (-0.014 kg/m(2) pr. μg/mL; 97.5% CI, -0.024 - -0.003; P = .006) in girls. Cross-sectional findings support that leptin is produced in proportion to body fat mass, but the longitudinal observations support that leptin inhibits gains in FMI and FFMI in girls, a finding that may reflect preserved leptin sensitivity in this predominantly normal weight population.

  5. Thyroid hormone regulates the expression of the sonic hedgehog signaling pathway in the embryonic and adult Mammalian brain.

    Science.gov (United States)

    Desouza, Lynette A; Sathanoori, Malini; Kapoor, Richa; Rajadhyaksha, Neha; Gonzalez, Luis E; Kottmann, Andreas H; Tole, Shubha; Vaidya, Vidita A

    2011-05-01

    Thyroid hormone is important for development and plasticity in the immature and adult mammalian brain. Several thyroid hormone-responsive genes are regulated during specific developmental time windows, with relatively few influenced across the lifespan. We provide novel evidence that thyroid hormone regulates expression of the key developmental morphogen sonic hedgehog (Shh), and its coreceptors patched (Ptc) and smoothened (Smo), in the early embryonic and adult forebrain. Maternal hypo- and hyperthyroidism bidirectionally influenced Shh mRNA in embryonic forebrain signaling centers at stages before fetal thyroid hormone synthesis. Further, Smo and Ptc expression were significantly decreased in the forebrain of embryos derived from hypothyroid dams. Adult-onset thyroid hormone perturbations also regulated expression of the Shh pathway bidirectionally, with a significant induction of Shh, Ptc, and Smo after hyperthyroidism and a decline in Smo expression in the hypothyroid brain. Short-term T₃ administration resulted in a significant induction of cortical Shh mRNA expression and also enhanced reporter gene expression in Shh(+/LacZ) mice. Further, acute T₃ treatment of cortical neuronal cultures resulted in a rapid and significant increase in Shh mRNA, suggesting direct effects. Chromatin immunoprecipitation assays performed on adult neocortex indicated enhanced histone acetylation at the Shh promoter after acute T₃ administration, providing further support that Shh is a thyroid hormone-responsive gene. Our results indicate that maternal and adult-onset perturbations of euthyroid status cause robust and region-specific changes in the Shh pathway in the embryonic and adult forebrain, implicating Shh as a possible mechanistic link for specific neurodevelopmental effects of thyroid hormone.

  6. Effects of phospho- and calciotropic hormones on electrolyte transport in the proximal tubule

    DEFF Research Database (Denmark)

    Lee, Justin J; Plain, Allein; Beggs, Megan R

    2017-01-01

    ), active vitamin D 3, and fibroblast growth factor 23 (FGF23). The organs central to this are the kidneys, intestine, and bone. In the kidney, the proximal tubule reabsorbs the majority of filtered calcium and phosphate, which amounts to more than 60% and 90%, respectively. The basic molecular mechanisms......Calcium and phosphate are critical for a myriad of physiological and cellular processes within the organism. Consequently, plasma levels of calcium and phosphate are tightly regulated. This occurs through the combined effects of the phospho- and calciotropic hormones, parathyroid hormone (PTH...... as their regulation of active vitamin D 3 synthesis in this nephron segment. The integrative effects of both phospho- and calciotropic hormones on proximal tubular solute transport and subsequently whole body calcium-phosphate balance thus have been further complicated. Here, we first review the molecular mechanisms...

  7. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas

    DEFF Research Database (Denmark)

    Kuhre, Rune Ehrenreich; Albrechtsen, Nicolai Jacob Wewer; Larsen, Olav

    2018-01-01

    ), and glucagon-like peptide-1 (GLP-1), but also glucagon and insulin in vivo, to levels comparable to those resulting from glucose stimulation. The mechanisms of GLP-1, neurotensin, and peptide YY (PYY) secretion was secondary to intestinal absorption and depended on activation of basolateral membrane Takeda G......OBJECTIVE: Bile acids (BAs) facilitate fat absorption and may play a role in glucose and metabolism regulation, stimulating the secretion of gut hormones. The relative importance and mechanisms involved in BA-stimulated secretion of appetite and metabolism regulating hormones from the gut...... and pancreas is not well described and was the purpose of this study. METHODS: The effects of bile acids on the secretion of gut and pancreatic hormones was studied in rats and compared to the most well described nutritional secretagogue: glucose. The molecular mechanisms that underlie the secretion...

  8. Thyroid hormone regulation of epidermal growth factor receptor levels in mouse mammary glands

    International Nuclear Information System (INIS)

    Vonderhaar, B.K.; Tang, E.; Lyster, R.R.; Nascimento, M.C.

    1986-01-01

    The specific binding of iodinated epidermal growth factor ([ 125 I]iodo-EGF) to membranes prepared from the mammary glands and spontaneous breast tumors of euthyroid and hypothyroid mice was measured in order to determine whether thyroid hormones regulate the EGF receptor levels in vivo. Membranes from hypothyroid mammary glands of mice at various developmental ages bound 50-65% less EGF than those of age-matched euthyroid controls. Treatment of hypothyroid mice with L-T4 before killing restored binding to the euthyroid control level. Spontaneous breast tumors arising in hypothyroid mice also bound 30-40% less EGF than tumors from euthyroid animals even after in vitro desaturation of the membranes of endogenous growth factors with 3 M MgCl2 treatment. The decrease in binding in hypothyroid membranes was due to a decrease in the number of binding sites, not to a change in affinity of the growth factor for its receptor, as determined by Scatchard analysis of the binding data. Both euthyroid and hypothyroid membranes bound EGF primarily to a single class of high affinity sites [dissociation constant (Kd) = 0.7-1.8 nM]. Euthyroid membranes bound 28.4 +/- (SE) 0.6 fmol/mg protein, whereas hypothyroid membranes bound 15.5 +/- 1.0 fmol/mg protein. These data indicate that EGF receptor levels in normal mammary glands and spontaneous breast tumors in mice are subject to regulation by thyroid status

  9. Adrenal clocks and the role of adrenal hormones in the regulation of circadian physiology.

    Science.gov (United States)

    Leliavski, Alexei; Dumbell, Rebecca; Ott, Volker; Oster, Henrik

    2015-02-01

    The mammalian circadian timing system consists of a master pacemaker in the suprachiasmatic nucleus (SCN) and subordinate clocks that disseminate time information to various central and peripheral tissues. While the function of the SCN in circadian rhythm regulation has been extensively studied, we still have limited understanding of how peripheral tissue clock function contributes to the regulation of physiological processes. The adrenal gland plays a special role in this context as adrenal hormones show strong circadian secretion rhythms affecting downstream physiological processes. At the same time, they have been shown to affect clock gene expression in various other tissues, thus mediating systemic entrainment to external zeitgebers and promoting internal circadian alignment. In this review, we discuss the function of circadian clocks in the adrenal gland, how they are reset by the SCN and may further relay time-of-day information to other tissues. Focusing on glucocorticoids, we conclude by outlining the impact of adrenal rhythm disruption on neuropsychiatric, metabolic, immune, and malignant disorders. © 2014 The Author(s).

  10. Neurons Containing Orexin or Melanin Concentrating Hormone Reciprocally Regulate Wake and Sleep

    Directory of Open Access Journals (Sweden)

    Roda Rani eKonadhode

    2015-01-01

    Full Text Available There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep-wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap we used optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH. The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our data indicated that optogenetic stimulation of MCH neurons in wildtype mice (J Neuroscience, 2013 robustly increased both non-REM and REM sleep. MCH neuron stimulation increased sleep during the animal’s normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive. Our studies indicate that the MCH neurons belong within an overall model of sleep-wake regulation.

  11. Differential regulation of thyrotropin subunit apoprotein and carbohydrate biosynthesis by thyroid hormone

    International Nuclear Information System (INIS)

    Taylor, T.; Weintraub, B.D.

    1985-01-01

    The regulation of TSH apoprotein and carbohydrate biosynthesis by thyroid hormone was studied by incubating pituitaries from normal and hypothyroid (3 weeks post-thyroidectomy) rats in medium containing [ 14 C]alanine and [ 3 H] glucosamine. After 6 h, samples were sequentially treated with anti-TSH beta to precipitate TSH and free TSH beta, anti-LH beta to clear the sample of LH and free LH beta, then anti-LH alpha to precipitate free alpha-subunit. Total proteins were acid precipitated. All precipitates were subjected to electrophoresis on sodium dodecyl sulfate-polyacrylamide gels, which were then sliced and assayed by scintillation spectrometry. In hypothyroid pituitaries plus medium, [ 14 C]alanine incorporation in combined and free beta-subunits was 26 times normal and considerably greater than the 3.4-fold increase seen in total protein; combined and free alpha-subunits showed no specific increase in apoprotein synthesis. [ 3 H]Glucosamine incorporation in combined alpha- and beta-subunits in hypothyroid samples was 13 and 21 times normal, respectively, and was greater than the 1.9-fold increase in total protein; free alpha-subunit showed no specific increase in carbohydrate synthesis. The glucosamine to alanine ratio, reflecting relative glycosylation of newly synthesized molecules, was increased in hypothyroidism for combined alpha-subunits, but not for combined beta-subunits, free alpha-subunits, or total proteins. In summary, short term hypothyroidism selectively stimulated TSH beta apoprotein synthesis and carbohydrate synthesis of combined alpha- and beta-subunits. Hypothyroidism also increased the relative glycosylation of combined alpha-subunit. Thus, thyroid hormone deficiency appears to alter the rate-limiting step in TSH assembly (i.e. beta-subunit synthesis) as well as the carbohydrate structure of TSH, which may play important roles in its biological function

  12. Dual isotope, single acquisition parathyroid imaging

    International Nuclear Information System (INIS)

    Triantafillou, M.; McDonald, H.J.

    1998-01-01

    Full text: Nuclear Medicine parathyroid imaging using Thallium-201(TI) and Technetium-99m(Tc) is an often used imaging modality for the detection of parathyroid adenomas and hyper parathyroidism. The conventional Tl/Tc subtraction technique requires 2 separate injections and acquisitions which are then normalised and subtracted from each other. This lengthy technique is uncomfortable for patients and can result in false positive scan results due to patient movement between and during the acquisition process. We propose a simplified injection and single acquisition technique, that reduces the chance of movement and thus reduces the chance of false positive scan results. The technique involves the injection of Tc followed by the Tl injection 10 minutes later. After a further 10 min wait, imaging is performed using a dual isotope acquisition, with window (W) 1 set on 140 keV 20%W 5% off peak and W2 peaked for 70 keV 20%W., acquired for 10 minutes. We have imaged 27 patients with this technique, 15 had positive parathyroid imaging. Of the 15, 11 had positive ultrasound correlation. Of the remaining 4, 2 have had positive surgical findings for adenomas, the other 2 are awaiting follow-up. Of the 12 patients with negative parathyroid imaging, 2 have been shown to be false - negative with surgery. In conclusion, the single acquisition technique suggested by us is a valid method of imaging parathyroids that reduces the chance of false positive results due to movement

  13. Adipokine zinc-α2-glycoprotein regulated by growth hormone and linked to insulin sensitivity.

    Science.gov (United States)

    Balaz, Miroslav; Ukropcova, Barbara; Kurdiova, Timea; Gajdosechova, Lucia; Vlcek, Miroslav; Janakova, Zuzana; Fedeles, Jozef; Pura, Mikulas; Gasperikova, Daniela; Smith, Steven R; Tkacova, Ruzena; Klimes, Iwar; Payer, Juraj; Wolfrum, Christian; Ukropec, Jozef

    2015-02-01

    Hypertrophic obesity is associated with impaired insulin sensitivity and lipid-mobilizing activity of zinc-α2-glycoprotein. Adipose tissue (AT) of growth hormone (GH) -deficient patients is characterized by extreme adipocyte hypertrophy due to defects in AT lipid metabolism. It was hypothesized that zinc-α2-glycoprotein is regulated by GH and mediates some of its beneficial effects in AT. AT from patients with GH deficiency and individuals with obesity-related GH deficit was obtained before and after 5-year and 24-month GH supplementation therapy. GH action was tested in primary human adipocytes. Relationships of GH and zinc-α2-glycoprotein with adipocyte size and insulin sensitivity were evaluated in nondiabetic patients with noncancerous cachexia and hypertrophic obesity. AT in GH-deficient adults displayed a substantial reduction of zinc-α2-glycoprotein. GH therapy normalized AT zinc-α2-glycoprotein. Obesity-related relative GH deficit was associated with almost 80% reduction of zinc-α2-glycoprotein mRNA in AT. GH increased zinc-α2-glycoprotein mRNA in both AT of obese men and primary human adipocytes. Interdependence of GH and zinc-α2-glycoprotein in regulating AT morphology and metabolic phenotype was evident from their relationship with adipocyte size and AT-specific and whole-body insulin sensitivity. The results demonstrate that GH is involved in regulation of AT zinc-α2-glycoprotein; however, the molecular mechanism linking GH and zinc-α2-glycoprotein in AT is yet unknown. © 2014 The Obesity Society.

  14. Regulation of hepatic level of fatty-acid-binding protein by hormones and clofibric acid in the rat.

    Science.gov (United States)

    Nakagawa, S; Kawashima, Y; Hirose, A; Kozuka, H

    1994-01-01

    Regulation of the hepatic level of fatty-acid-binding protein (FABP) by hormones and p-chlorophenoxyisobutyric acid (clofibric acid) was studied. The hepatic level of FABP, measured as the oleic acid-binding capacity of the cytosolic FABP fraction, was decreased in streptozotocin-diabetic rats. The level of FABP was markedly increased in adrenalectomized rats, and the elevation was prevented by the administration of dexamethasone. Hypothyroidism decreased the level of FABP and hyperthyroidism increased it. A high correlation between the incorporation of [14C]oleic acid in vivo into hepatic triacylglycerol and the level of FABP was found for normal, diabetic and adrenalectomized rats. The level of FABP was increased by administration of clofibric acid to rats in any altered hormonal states, as was microsomal 1-acylglycerophosphocholine (1-acyl-GPC) acyltransferase, a peroxisome-proliferator-responsive parameter. These results suggest that the hepatic level of FABP is under regulation by multiple hormones and that clofibric acid induces FABP and 1-acyl-GPC acyltransferase by a mechanism which may be distinct from that by which hormones regulate the level of FABP. PMID:8110197

  15. Thyroid hormone regulates muscle function during cold acclimation in zebrafish (Danio rerio).

    Science.gov (United States)

    Little, Alexander G; Seebacher, Frank

    2013-09-15

    Thyroid hormone (TH) is a universal regulator of growth, development and metabolism during cold exposure in mammals. In zebrafish (Danio rerio), TH regulates locomotor performance and metabolism during cold acclimation. The influence of TH on locomotor performance may be via its effect on metabolism or, as has been shown in mammals, by modulating muscle phenotypes. Our aim was to determine whether TH influences muscle phenotypes in zebrafish, and whether this could explain changes in swimming capacity in response to thermal acclimation. We used propylthiouracil and iopanoic acid to induce hypothyroidism in zebrafish over a 3-week acclimation period to either 18 or 28°C. To verify that physiological changes following hypothyroid treatment were in fact due to the action of TH, we supplemented hypothyroid fish with 3,5-diiodothryronine (T2) or 3,5,3'-triiodothyronine (T3). Cold-acclimated fish had significantly greater sustained swimming performance (Ucrit) but not burst speed. Greater Ucrit was accompanied by increased tail beat frequency, but there was no change in tail beat amplitude. Hypothyroidism significantly decreased Ucrit and burst performance, as well as tail beat frequency and SERCA activity in cold-acclimated fish. However, myofibrillar ATPase activity increased in cold-acclimated hypothyroid fish. Hypothyroid treatment also decreased mRNA concentrations of myosin heavy chain fast isoforms and SERCA 1 isoform in cold-acclimated fish. SERCA 1 mRNA increased in warm-acclimated hypothyroid fish, and SERCA 3 mRNA decreased in both cold- and warm-acclimated hypothyroid fish. Supplementation with either T2 or T3 restored Ucrit, burst speed, tail beat frequency, SERCA activity and myosin heavy chain and SERCA 1 and 3 mRNA levels of hypothyroid fish back to control levels. We show that in addition to regulating development and metabolism in vertebrates, TH also regulates muscle physiology in ways that affect locomotor performance in fish. We suggest that the

  16. Gonadotropin-Releasing Hormone Regulates Expression of the DNA Damage Repair Gene, Fanconi anemia A, in Pituitary Gonadotroph Cells1

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2007-01-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse LβT2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of LβT2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature αT3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA. PMID:15128600

  17. Gonadotropin-releasing hormone regulates expression of the DNA damage repair gene, Fanconi anemia A, in pituitary gonadotroph cells.

    Science.gov (United States)

    Larder, Rachel; Chang, Lynda; Clinton, Michael; Brown, Pamela

    2004-09-01

    Gonadal function is critically dependant on regulated secretion of the gonadotropin hormones from anterior pituitary gonadotroph cells. Gonadotropin biosynthesis and release is triggered by the binding of hypothalamic GnRH to GnRH receptor expressed on the gonadotroph cell surface. The repertoire of regulatory molecules involved in this process are still being defined. We used the mouse L beta T2 gonadotroph cell line, which expresses both gonadotropin hormones, as a model to investigate GnRH regulation of gene expression and differential display reverse transcription-polymerase chain reaction (RT-PCR) to identify and isolate hormonally induced changes. This approach identified Fanconi anemia a (Fanca), a gene implicated in DNA damage repair, as a differentially expressed transcript. Mutations in Fanca account for the majority of cases of Fanconi anemia (FA), a recessively inherited disease identified by congenital defects, bone marrow failure, infertility, and cancer susceptibility. We confirmed expression and hormonal regulation of Fanca mRNA by quantitative RT-PCR, which showed that GnRH induced a rapid, transient increase in Fanca mRNA. Fanca protein was also acutely upregulated after GnRH treatment of L beta T2 cells. In addition, Fanca gene expression was confined to mature pituitary gonadotrophs and adult mouse pituitary and was not expressed in the immature alpha T3-1 gonadotroph cell line. Thus, this study extends the expression profile of Fanca into a highly specialized endocrine cell and demonstrates hormonal regulation of expression of the Fanca locus. We suggest that this regulatory mechanism may have a crucial role in the GnRH-response mechanism of mature gonadotrophs and perhaps the etiology of FA.

  18. Recent Advances in Thyroid Hormone Regulation: Toward a New Paradigm for Optimal Diagnosis and Treatment

    OpenAIRE

    Rudolf Hoermann; John E. M. Midgley; Rolf Larisch; Johannes W. Dietrich; Johannes W. Dietrich; Johannes W. Dietrich

    2017-01-01

    In thyroid health, the pituitary hormone thyroid-stimulating hormone (TSH) raises glandular thyroid hormone production to a physiological level and enhances formation and conversion of T4 to the biologically more active T3. Overstimulation is limited by negative feedback control. In equilibrium defining the euthyroid state, the relationship between TSH and FT4 expresses clusters of genetically determined, interlocked TSH–FT4 pairs, which invalidates their statistical correlation within the eu...

  19. Parathyroid adenoma apoplexy as a temporary solution of primary hyperparathyroidism: a case report

    Directory of Open Access Journals (Sweden)

    Pereira Francisco A

    2007-11-01

    Full Text Available Abstract Introduction The natural history of patients with spontaneous parathyroid necrosis is unknown. In this case report we describe the clinical course, laboratory, radiographic, bone densitometry tests, parathyroid ultrasonography and scintigraphy examinations of a patient performed over a period of eight years after she first presented with a sudden episode of spontaneous resolution of primary hyperparathyroidism (PHPT. Case presentation A 24-year-old woman with a clinical history and laboratory and radiographic tests compatible with PHPT suffered a sudden episode of cervical pain and presented with clinical evidence of hypocalcemia. Biopsy of a cervical nodule revealed necrotic material compatible with ischemia of the parathyroid. The follow-up of the patient presented four distinct phases: the first, which lasted two years, was compatible with a period of bone hunger during which it was necessary to introduce calcitriol and calcium carbonate. During this period, the patient showed bone mass gain. The second phase was characterized by normalization of calcium and parathyroid hormone levels and its end was difficult to define. During the third phase there was a recurrence of hypercalcemia associated with elevated parathyroid hormone (PTH levels and loss of bone mass. The last phase corresponded to the interval after parathyroidectomy, which was characterized by normalization of serum levels of calcium and PTH, as well as bone mass gain. Conclusion This case report indicates that spontaneous resolution of PHPT by adenoma necrosis is potentially temporary. Thus, in cases in which a conservative approach is chosen, clinical and laboratory follow-up is indispensable. Bone mass measurement is a useful tool in the follow-up of these cases. However, this option exposes the patient to a potential roller-coaster ride of bone mass gain and loss, whose long term consequences are still unknown.

  20. Effects of different modes of exercise on appetite and appetite-regulating hormones.

    Science.gov (United States)

    Kawano, Hiroshi; Mineta, Mayuko; Asaka, Meiko; Miyashita, Masashi; Numao, Shigeharu; Gando, Yuko; Ando, Takafumi; Sakamoto, Shizuo; Higuchi, Mitsuru

    2013-07-01

    The present study determined the changes in appetite and appetite-regulating gut hormones during and following bouts of both rope skipping exercise (weight-bearing) and bicycle ergometer exercise (non-weight-bearing). After a 12-h fast, 15 young men (mean ± SD, age 24.4 ± 1.7 yrs, maximal oxygen uptake 47.0 ± 6.5 mL/kg/min) participated in three 160 min trials: (1) rope skipping exercise (295 ± 40 kcal, 3 sets × 10 min with 5-min interval, then rested for 120 min); (2) bicycle ergometer exercise (288 ± 36 kcal, 3 sets × 10 min with 5-min interval, then rested for 120 min); (3) control (rested for 160 min). Ratings of perceived hunger and acylated ghrelin were suppressed and total peptide YY (PYY) were increased during and immediately after exercise in both exercise trials, but glucagon liked peptide-1 was not changed. Furthermore, suppressed hunger during rope skipping exercise was greater than that during bicycle ergometer exercise, but there were no differences in acylated ghrelin and total PYY. These results indicate that weight-bearing exercise has a greater exercise-induced appetite suppressive effect compared with non-weight-bearing exercise, and both forms of exercise lowered acylated ghrelin and increased total PYY, but the changes did not differ significantly between exercise modes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Regulation of the growth hormone (GH) receptor and GH-binding protein mRNA

    Energy Technology Data Exchange (ETDEWEB)

    Kaji, Hidesuke; Ohashi, Shin-Ichirou; Abe, Hiromi; Chihara, Kazuo [Kobe Univ. School of Medicine, Kobe (Japan)

    1994-12-31

    In fasting rats, a transient increase in growth hormone-binding protein (GHBP) mRNA levels was observed after 1 day, in muscle, heart, and liver, but not in fat tissues. The liver GH receptor (GHR) mRNA level was significantly increased after 1 day (but not after 5 days) of bovine GH (bGH) treatment in fed rats. Both the liver GHR mRNA level and the net increment of plasma IGF-I markedly decreased after 5 days of bGH administration in fasting rats. These findings suggest that GHR and GHBP mRNAs in the liver are expressed in a different way and that the expression of GHBP mRNA is regulated differently between tissues, at least in rats. The results also suggest that refractoriness to GH in a sustained fasting state might be beneficial in preventing anabolic effects of GH. In humans, GHR mRNA in lymphocytes, from subjects with either GH-deficiency or acromegaly, could be detected by the reverse transcription-polymerase chain reaction method. In one patient with partial GH insensitivity, a heterozygous missense mutation (P561T) was identified in the cytoplasmic domain of GHR. 15 refs., 4 figs.

  2. Regulation of connexin26 and connexin43 expression in rat endometrium by ovarian steroid hormones.

    Science.gov (United States)

    Grümmer, R; Chwalisz, K; Mulholland, J; Traub, O; Winterhager, E

    1994-12-01

    A distinct spatial and temporal pattern of connexin26 and connexin43 (cx26 and cx43) expression was observed in the rat endometrium in response to embryo implantation; however, connexin expression was suppressed during the preimplantation period. Pseudopregnant rats did not show connexin mRNA, while artificial decidualization induced by a scratch led to a strong expression of cx26 and cx43 in the endometrium of these animals. In order to examine the regulatory effects of ovarian steroid hormones on connexin expression, ovariectomized rats were treated with progesterone (P) and/or estradiol-17 beta (E2). Untreated, ovariectomized animals expressed mRNA for cx43, but not for cx26. Endometrial expression of mRNA for both connexins was strongly enhanced by E2 treatment; immunolabeling revealed protein for cx26 in the uterine luminal epithelial cells and for cx43 in the uterine stromal cells. P treatment, either alone or in combination with E2, suppressed expression of connexin mRNA. P suppression in the presence of E2 was reversible when P was withdrawn. When administered on Days 0-2 of pregnancy, the antiprogestin onapristone inhibited the effect of P and gave rise to strong expression of both connexin transcripts. These results demonstrate that expression of cx26 and cx43 in the rat uterine endometrium is differentially regulated by E2 and P during early pregnancy.

  3. Hormonal regulation of the growth of leaves and inflorescence stalk in Muscari armeniacum Leichtl.

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2016-04-01

    Full Text Available It is known that chilling of Muscari bulbs is necessary for the growth of the inflorescence stalk and flowering, but not for the growth of leaves. Gibberellic acid (GA accelerated stem growth and flowering in chilled Muscari bulbs. In the present experiment it was shown that in unchilled derooted Muscari bulbs the growth of leaves, but not the growth of the inflorescence stalk, was observed when bulbs were stored in water, GA at a concentration of 50 and 100 mg/L, benzyladenine (BA at a concentration of 25 and 50 mg/L, or a mixture of GA+BA (50+25 mg/L, but abscisic acid (ABA at a concentration of 10 mg/L greatly inhibited the growth of leaves. In chilled derooted Muscari bulbs the growth of leaves and inflorescence stalk was observed when bulbs were stored in water or GA, but BA and GA+BA treatments totally inhibited the growth of the inflorescence stalk without an effect on the growth of leaves. These results clearly showed that the growth of leaves and inflorescence stalk in Muscari bulbs are controlled by plant growth regulators in different ways. ABA totally inhibited the growth of leaves and inflorescence stalk in chilled derooted Muscari bulbs. It was shown that after the excision of the inflorescence bud in cultivated chilled Muscari bulbs, the inflorescence stalk died, but application of indole-3-acetic acid (IAA 0.5% in the place of the removed inflorescence bud induced the growth of the inflorescence stalk. IAA applied under the inflorescence bud inhibited the development of flowers (flower-bud blasting and induced the growth of the inflorescence stalk below the treatment site. These results are discussed with reference to hormonal regulation of stem (stalk growth in tulip, narcissus, hyacinth, and Hippeastrum.

  4. Hormonal changes in spring barley after triazine herbicide treatment and its mixtures of regulators of polyamine biosynthesis

    Directory of Open Access Journals (Sweden)

    Pavol Trebichalský

    2017-01-01

    Full Text Available Plants adapt to abiotic stress by undergoing diverse biochemical and physiological changes that involve hormone-dependent signalling pathways. The effects of regulators of polyamine biosynthesis can be mimicked by exogenous chemical regulators such as herbicide safeners, which not only enhance stress tolerance but also confer hormetic benefits such as increased vigor and yield. The phytohormones, abscisic acid (ABA and auxin (IAA play key roles in regulating stress responses in plants. Two years pot trials at Slovak University of agriculture Nitra were carried out with analyses of contents of plant hormones in spring barley grain of variety Kompakt: indolyl-acetic acid (IAA and abscisic acid (ABA, after exposing of tested plants to herbicide stress, as well as the possible decrease of these stress factors with application of regulators of polyamine synthesis was evaluated. At 1st year in spring barley grain after application of solo triazine herbicide treatment in dose 0,5 L.ha-1 an increase of all analyzed plant hormones was observed and contrary, at 2nd year there was the decrease of their contents. From our work there is an obvious influence of herbicide stress induced by application of certain dose of triazine herbicide at 1st year. Expect of the variant with mixture of triazine herbicide (in amount of 0,5 L.ha-1 and 29,6 g.ha-1 DAB, at this year all by us applied regulators of polyamine synthesis reduced the level of both plant hormones. Higher affect of stress caused by enhanced content of soluble macroelements in soil where the plants of barley were grown was observed next year. Soil with increased contents of macronutrients (mg.kg-1: N30.7 + P108.3 + K261.5 + Mg604.2 had reducing effect on contents of plant hormones in barley grain at variant treated with solo triazine herbicide (in dose at 0,5 L.ha-1 in comparison to control variant. The mixtures of regulators of polyamine synthesis reduced the contents of IAA only in comparison to

  5. Liver X receptor β controls thyroid hormone feedback in the brain and regulates browning of subcutaneous white adipose tissue.

    Science.gov (United States)

    Miao, Yifei; Wu, Wanfu; Dai, Yubing; Maneix, Laure; Huang, Bo; Warner, Margaret; Gustafsson, Jan-Åke

    2015-11-10

    The recent discovery of browning of white adipose tissue (WAT) has raised great research interest because of its significant potential in counteracting obesity and type 2 diabetes. Browning is the result of the induction in WAT of a newly discovered type of adipocyte, the beige cell. When mice are exposed to cold or several kinds of hormones or treatments with chemicals, specific depots of WAT undergo a browning process, characterized by highly activated mitochondria and increased heat production and energy expenditure. However, the mechanisms underlying browning are still poorly understood. Liver X receptors (LXRs) are one class of nuclear receptors, which play a vital role in regulating cholesterol, triglyceride, and glucose metabolism. Following our previous finding that LXRs serve as repressors of uncoupling protein-1 (UCP1) in classic brown adipose tissue in female mice, we found that LXRs, especially LXRβ, also repress the browning process of subcutaneous adipose tissue (SAT) in male rodents fed a normal diet. Depletion of LXRs activated thyroid-stimulating hormone (TSH)-releasing hormone (TRH)-positive neurons in the paraventricular nucleus area of the hypothalamus and thus stimulated secretion of TSH from the pituitary. Consequently, production of thyroid hormones in the thyroid gland and circulating thyroid hormone level were increased. Moreover, the activity of thyroid signaling in SAT was markedly increased. Together, our findings have uncovered the basis of increased energy expenditure in male LXR knockout mice and provided support for targeting LXRs in treatment of obesity.

  6. Circulating forms of immunoreactive parathyroid hormone-related protein for identifying patients with humoral hypercalcemia of malignancy. A comparative study with C-terminal (109-141)- and N-terminal (1-86)-region-specific PTHrP radioassay

    International Nuclear Information System (INIS)

    Suehiro, Mitsuko; Murakami, Minoru; Fukuchi, Minoru

    1994-01-01

    We evaluated the circulating forms of immunoreactive parathyroid hormone-related protein(PTHrP) in 115 healthy subjects and 122 patients with malignant diseases by using radioassay systems (RAS) specific for the C-terminal (109-141) fragment of PTHrP (C-RAS) and for the N-terminal(1-86) (N-RAS). PTHrP levels in healthy controls ranged from 1.5 to 38.2 (mean: 24.5) pmol/L with the C-RAS and from 0.9 to 2.5 (mean: 1.7) pmol/L with the N-RAS. The ratio of circulating N-terminal fragment (N) to C-terminal fragment (C) of PTHrP was calculated to be about 1 : 14.4 in the healthy subjects. Of the 122 patients with malignant diseases, 40 (32.8%) had circulating PTHrP levels undetectable with the N-RAS, but only 11 (9.0%) patients had levels undetectable with the C-RAS. Of the former 122 patients, 41 (33.6%) had high PTHrP as determined with the C-RAS, and 10 (8.2%) had high PTHrP as determined with the N-RAS. The former of these included only 8 (19.5%) humoral hypercalcemia malignancy(HHM) patients, while the latter included 8 (80.0%) HHM patients. The circulating N to C ratio was about 1 : 70.7 in the HHM patients. The N and C obtained with the different RASs showed a close correlation (r=0.86). The values also showed a close correlation with serum Ca; r=0.75 for C-RAS and r=0.81 for N-RAS. In addition, the correlation between the PTHrP reading obtained with the different RASs and serum Cr were: r=0.42 with C-RAS and r=0.26 with N-RAS. The circulating form of immunoreactive PTHrP fragments is therefore comprised mainly of PTHrP (109-141). In contrast, circulating concentrations of the PTHrP (1-86) fragment are very low, but detection of the PTHrP (1-86) fragment with the N-RAS is a more useful indicator of HHM with fewer false positive results and is less likely to be influenced by renal function than the detection of the PHPrP (109-141) fragment with C-RAS. (author)

  7. Pituitary Gonadotropins, Prolactin and Growth Hormone Differentially Regulate AQP1 Expression in the Porcine Ovarian Follicular Cells

    Directory of Open Access Journals (Sweden)

    Mariusz T. Skowronski

    2017-12-01

    Full Text Available The present in vitro study analyzed whether the hormones that affect the ovarian follicular steroidogenesis process also participate in the regulation of AQP1 mRNA and protein expression. Granulosa (Gc and theca cells (Tc of medium and large porcine ovarian follicles were exposed to follicle-stimulating hormone (FSH, luteinizing hormone (LH, prolactin (PRL and growth hormone (GH for 24 h in separated cells and co-cultures of these cells. Real-time PCR, Western blotting, immunofluorescence and volumetric analysis were then performed. Gonadotropins, PRL and GH had a stimulatory impact on AQP1 mRNA and protein expression in Gc and Tc of medium and large ovarian cells. Moreover, swelling assays, in response to a hypotonic environment, demonstrated the functional presence of AQPs in porcine Gc and Tc. Immunofluorescence analysis showed that AQP1 protein was mainly localized in the perinuclear region of the cytoplasm, endosomes and cell membranes of Gc and Tc from medium and large follicles. It seems possible that AQP1 present in Gc and Tc cells may be implicated not only in the regulation of water homeostasis required for follicle development but also in cell proliferation and migration.

  8. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    Energy Technology Data Exchange (ETDEWEB)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-05-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references.

  9. Human ketone body production and utilization studied using tracer techniques: Regulation by free fatty acids, insulin, catecholamines, and thyroid hormones

    International Nuclear Information System (INIS)

    Keller, U.; Lustenberger, M.; Mueller-Brand, J.G.; Gerber, P.P.; Stauffacher, W.

    1989-01-01

    Ketone body concentrations fluctuate markedly during physiological and pathological conditions. Tracer techniques have been developed in recent years to study production, utilization, and the metabolic clearance rate of ketone bodies. This review describes data on the roles of insulin, catecholamines, and thyroid hormones in the regulation of ketone body kinetics. The data indicate that insulin lowers ketone body concentrations by three independent mechanisms: first, it inhibits lipolysis, and thus lowers free fatty acid availability for ketogenesis; second, it restrains ketone body production within the liver; third, it enhances peripheral ketone body utilization. To assess these effects in humans in vivo, experimental models were developed to study insulin effects with controlled concentrations of free fatty acids, insulin, glucagon, and ketone bodies. Presently available data also support an important role of catecholamines in increasing ketone body concentrations. Evidence was presented that norepinephrine increases ketogenesis not only by stimulating lipolysis, and thus releasing free fatty acids, but also by increasing intrahepatic ketogenesis. Thyroid hormone availability was associated with lipolysis and ketogenesis. Ketone body concentrations after an overnight fast were only modestly elevated in hyperthyroidism resulting from increased peripheral ketone body clearance. There was a significant correlation between serum triiodothyronine levels and the ketone body metabolic clearance rate. Thus, ketone body homeostasis in human subjects resulted from the interaction of hormones such as insulin, catecholamines, and thyroid hormones regulating lipolysis, intrahepatic ketogenesis, and peripheral ketone body utilization. 58 references

  10. Gibberellin hormone signal perception: down-regulating DELLA repressors of plant growth and development

    Science.gov (United States)

    The gibberellin (GA) hormone signal is perceived by a receptor with homology to hormone sensitive lipases, GID1 (GA-INSENSITIVE DWARF1). This leads to GA-stimulated responses including stem elongation, seed germination, and the transition to flowering. GA-binding enables GID1 to interact with and ...

  11. Radioimmunoassay of hormones for clinical trials of fertility regulating agents in developing countries

    International Nuclear Information System (INIS)

    1975-01-01

    The need for accurate hormonal assay is emphasized, and becomes more urgent as hormones, in addition to their conventional medical use are being increasinly used for family planning purposes, particularly in developing countries. Readily available facilities and laboratories for the assay of hormone strength are therefore required, and also for the standardization of methods and techniques for such assays. Radioimmunology appears and excellent tool for this. Analytical techniques in actual use and techniques of potential future use are considered. Techniques for assessing hormone strength, potenty and doses are outlined. Criteria are developed, required for establishing a calibration and standardization laboratory for hormone strength. These criteria include a discussion of the necessary staff, location of such a facility and the material and equipment needed. Help from consultants, staff training, and the growth in sample analysis and corresponding financial aspects are discussed. Finally, the problems are reviewed of creating national laboratories which can be developed as services available for certain geographical regions

  12. Normal Parathyroid Function with Decreased Bone Mineral Density in Treated Celiac Disease

    Directory of Open Access Journals (Sweden)

    Bernard Lemieux

    2001-01-01

    Full Text Available Decreased bone mineral density (BMD has been reported in patients with celiac disease in association with secondary hyperparathyroidism. The present study investigated whether basal parathyroid hormone (PTH remained elevated and whether abnormalities of parathyroid function were still present in celiac disease patients treated with a gluten-free diet. Basal seric measurements of calcium and phosphate homeostasis and BMD were obtained in 17 biopsy-proven patients under treatment for a mean period of 5.7±3.7 years (range 1.1 to 15.9. In addition, parathyroid function was studied with calcium chloride and sodium citrate infusions in seven patients. Basal measurements of patients were compared with those of 26 normal individuals, while parathyroid function results were compared with those of seven sex- and age-matched controls. Basal results were similar in patients and controls except for intact PTH (I-PTH (3.77±0.88 pmol/L versus 2.28±0.63 pmol/L, P<0.001, which was higher in the former group but still within normal limits. Mean 25-hydroxy vitamin D and 1,25-dihydroxy vitamin D values were normal in patients. Parathyroid function results were also found to be similar in both groups. Compared with a reference population of the same age (Z score, patients had significantly lower BMDs of the hip (-0.60±0.96 SDs, P<0.05 and lumbar spine (-0.76±1.15 SDs, P<0.05. T scores were also decreased for the hip (-1.3±0.9 SDs, P<0.0001 and lumbar spine (-1.4±1.35 SDs, P<0.0001, with two to three patients being osteoporotic (T score less than -2.5 SDs and seven to eight osteopenic (T score less than -1 SDs but greater than or equal to -2.5 SDs in at least one site. Height and weight were the only important determinants of BMD values by multivariate or logistical regression analysis in these patients. The results show higher basal I-PTH values with normal parathyroid function in treated celiac disease. Height and weight values are, but I-PTH values are not

  13. Mammary gland-specific nuclear factor activity is positively regulated by lactogenic hormones and negatively by milk stasis.

    Science.gov (United States)

    Schmitt-Ney, M; Happ, B; Hofer, P; Hynes, N E; Groner, B

    1992-12-01

    The mammary gland-specific nuclear factor (MGF) is a crucial contributor to the regulation of transcription from the beta-casein gene promoter. The beta-casein gene encodes a major milk protein, which is expressed in mammary epithelial cells during lactation and can be induced by lactogenic hormones in the clonal mammary epithelial cell line HC11. We have investigated the specific DNA-binding activity of MGF in mammary epithelial cells in vivo and in vitro. Comparison of MGF in HC11 cells and mammary gland cells from lactating mice revealed molecules with identical DNA-binding properties. Bandshift and UV cross-linking experiments indicated that MGF in HC11 cells has a higher mol wt than MGF found in mice. Little MGF activity was detected in nuclear extracts from HC11 cells cultured in the absence of lactogenic hormones. Lactogenic hormone treatment of HC11 cells led to a strong induction of MGF activity. The induction of MGF activity as well as utilization of the beta-casein promoter were suppressed when epidermal growth factor was present in the tissue culture medium simultaneously with the lactogenic hormones. In lactating animals, MGF activity is regulated by suckling, milk stasis, and systemic hormone signals. The mammary glands from maximally lactating animals, 16 days postpartum, contain drastically reduced MGF activity after removal of the pups for only 8 h. The down-regulation of MGF by pup withdrawal was slower in early lactation, 6 days postpartum. We also investigated the relative contributions of local signals, generated by milk stasis, and systemic hormone signals to the regulation of MGF activity. The access to one row of mammary glands of lactating mothers was denied to the pups for 24 h. High levels of MGF were found in the accessible mammary glands, and intermediate levels of MGF were found in the inaccessible glands of the same mouse. Very low MGF levels were detected when the pups were removed from the dams for 24 h. We conclude that systemic as

  14. The use of cinacalcet in pregnancy to treat a complex case of parathyroid carcinoma.

    Science.gov (United States)

    Nadarasa, K; Bailey, M; Chahal, H; Raja, O; Bhat, R; Gayle, C; Grossman, A B; Druce, M R

    2014-01-01

    We present the case of a patient with metastatic parathyroid carcinoma whose hypercalcaemia was medically managed through two pregnancies. The diagnosis was made when the patient presented with chronic knee pain and radiological findings consistent with a brown tumour, at the age of 30. Her corrected calcium and parathyroid hormone (PTH) levels were significantly elevated. Following localisation studies, a right parathyroidectomy was performed with histology revealing parathyroid carcinoma, adherent to thyroid tissue. Aged 33, following biochemical recurrence of disease, the patient underwent a second operation. A subsequent CT and FDG-PET revealed bibasal pulmonary metastases. Aged 35, the patient was referred to our unit for treatment of persistent hypercalcaemia. The focus of treatment at this time was debulking metastatic disease using radiofrequency ablation. Despite advice to the contrary, the patient conceived twice while taking cinacalcet. Even though there are limited available data regarding the use of cinacalcet in pregnancy, both pregnancies continued to term with the delivery of healthy infants, using intensive medical management for persistent hypercalcaemia. Parathyroid carcinoma is a rare cause of primary hyperparathyroidism.Hypercalcaemia during pregnancy can result in significant complications for both the mother and the foetus.The use of high-dose cinacalcet in pregnancy has been shown, in this case, to aid in the management of resistant hypercalcaemia without teratogenicity.

  15. Atypical manifestation of parathyroid carcinoma with late-onset distant metastases

    Directory of Open Access Journals (Sweden)

    MarinaTsoli

    2017-10-01

    Full Text Available Parathyroid carcinoma is an extremely rare endocrine malignancy that accounts for less than 1% of cases of primary hyperparathyroidism. We report a 44-year-old woman who presented with fatigue and diffuse bone pain. Laboratory findings revealed highly elevated serum calcium and parathyroid hormone (PTH levels and a 4.5 × 3 × 2.5 cm cystic lesion in the lower pole of the right thyroid lobe that was shown histologically to be a parathyroid carcinoma. Ten years later, the patient developed brain and pulmonary metastases and recurrence of PTH-related hypercalcemia. Treatment of hypercalcemia along with localized radiotherapy and various chemotherapy regimens failed to induce a biochemical or radiological response. In conclusion, parathyroid carcinoma is a rare neoplasia that may develop metastases even after prolonged follow-up, for which there is no evidence-based treatment besides surgery. Different chemotherapeutic schemes did not prove to be of any benefit in our case highlighting the need for registering such patients to better understand tumor biology and develop specific treatment.

  16. Interest of scintigraphic imaging in Madagascar for the diagnosis of ectopic parathyroid adenoma, about one case

    International Nuclear Information System (INIS)

    Andriantsoa, J.; Andriamanalina, T.; Ramamonjy, A.; Ranivontsoarivony, M.; Ramahandridona, G.; Razafindramboa, H.; Gizy Ratiambahoaka, D.

    2008-01-01

    This study reports the first case of ectopic parathyroid adenoma, diagnosed in the Department of Nuclear Medicine in Antananarivo. This clinical vignette illustrates the interest of the MIBI-Tc-99 m scan in locating this adenoma and its diagnostic confirmation after six years of erratic diagnosis. A whole body bone scintigraphy has also allowed to assess the state of bone metabolism and study outbreaks of fracture. The parathyroid scintigraphy was carried out after intra-venous administration of 666 MBq of MIBI- 99m Tc. Dynamic images, static early and late static were acquired with a gamma camera E-Cam Siemens. The whole body bone scan was carried out after administration of 555 MBq of M.D.P.-Tc-99 m. The results evidenced the presence of an para-aortic increased uptake area pointing to a left parathyroid adenoma. The persistence of a late left sub maxillary increased uptake area raises, however, a reservation about the existence of a second adenoma. The bone scan displayed global skeletal remodeling, non suggestive of metastases, as it was mentioned with the CT-scan. In a diagnostic tools limited environment, skeletal pain refractory to pain-killers, a chronic hypercalcemia associated with an increased parathyroid hormone level, should trigger the scintigraphic exploration in order to avoid bone and renal complications

  17. Fine-Needle Aspiration Cytology of Parathyroid Carcinoma Mimic Hürthle Cell Thyroid Neoplasm

    Directory of Open Access Journals (Sweden)

    Chutintorn Sriphrapradang

    2014-01-01

    Full Text Available Background. Fine-needle aspiration (FNA can cause misdiagnosis of cytomorphological findings between parathyroid and thyroid lesions. Case Presentation. A 31-year-old man presented with a palpable neck mass on the right thyroid lobe. FNA cytology was reported as intrathyroidal lymphoid hyperplasia. After 5 years, repeated FNA was done on the enlarged nodule with result of Hürthle cell lesion. Prior to right lobectomy, laboratories revealed elevated serum calcium and parathyroid hormone (PTH. Careful history taking revealed chronic knee pain and ossifying fibroma at the maxilla. Ultrasonography showed a 2.8 cm mass inferior to right thyroid lobe. Pathology from en bloc resection was parathyroid carcinoma and immunohistochemical study revealed positivity for PTH. Genetic analysis found somatic mutation of CDC73 gene in exon1 (c.70delG which caused premature stop codon in amino acid 26 (p.Glu24Lysfs2*. The final diagnosis was hyperparathyroidism-jaw tumor syndrome. Conclusions. FNA cytology of parathyroid can mimic thyroid lesion. It is important to consider and correlate the entire information from clinical history, laboratory, imaging, and FNA.

  18. Thyroid Hormone Receptor Beta in the Ventromedial Hypothalamus Is Essential for the Physiological Regulation of Food Intake and Body Weight

    Directory of Open Access Journals (Sweden)

    Saira Hameed

    2017-06-01

    Full Text Available The obesity epidemic is a significant global health issue. Improved understanding of the mechanisms that regulate appetite and body weight will provide the rationale for the design of anti-obesity therapies. Thyroid hormones play a key role in metabolic homeostasis through their interaction with thyroid hormone receptors (TRs, which function as ligand-inducible transcription factors. The TR-beta isoform (TRβ is expressed in the ventromedial hypothalamus (VMH, a brain area important for control of energy homeostasis. Here, we report that selective knockdown of TRβ in the VMH of adult mice results in severe obesity due to hyperphagia and reduced energy expenditure. The observed increase in body weight is of a similar magnitude to murine models of the most extreme forms of monogenic obesity. These data identify TRβ in the VMH as a major physiological regulator of food intake and energy homeostasis.

  19. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    Energy Technology Data Exchange (ETDEWEB)

    Beildeck, Marcy E. [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States); Gelmann, Edward P. [Columbia University, Department of Medicine, New York, NY (United States); Byers, Stephen W., E-mail: byerss@georgetown.edu [Lombardi Comprehensive Cancer Center, Georgetown University, 3970 Reservoir Road, NW, Washington, DC 20057 (United States)

    2010-07-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  20. Cross-regulation of signaling pathways: An example of nuclear hormone receptors and the canonical Wnt pathway

    International Nuclear Information System (INIS)

    Beildeck, Marcy E.; Gelmann, Edward P.; Byers, Stephen W.

    2010-01-01

    Predicting the potential physiological outcome(s) of any given molecular pathway is complex because of cross-talk with other pathways. This is particularly evident in the case of the nuclear hormone receptor and canonical Wnt pathways, which regulate cell growth and proliferation, differentiation, apoptosis, and metastatic potential in numerous tissues. These pathways are known to intersect at many levels: in the intracellular space, at the membrane, in the cytoplasm, and within the nucleus. The outcomes of these interactions are important in the control of stem cell differentiation and maintenance, feedback loops, and regulating oncogenic potential. The aim of this review is to demonstrate the importance of considering pathway cross-talk when predicting functional outcomes of signaling, using nuclear hormone receptor/canonical Wnt pathway cross-talk as an example.

  1. Parathyroid Cancer Treatment (PDQ®)—Patient Version

    Science.gov (United States)

    The parathyroid glands are four pea-sized organs found in the neck near the thyroid gland. Find out about risk and genetic factors, symptoms, tests to diagnose, prognosis, staging, and treatment for parathyroid cancer.

  2. Parathyroid Cancer Treatment (PDQ®)—Health Professional Version

    Science.gov (United States)

    Parathyroid cancer is very rare and is usually treated with surgery. Learn about the diagnosis, risk and genetic factors, staging, treatment, and management of parathyroid cancer in this expert-reviewed summary.

  3. Vinclozolin Exposure in Utero Induces Postpubertal Prostatitis and Reduces Sperm Production via a Reversible Hormone-Regulated Mechanism

    OpenAIRE

    Cowin, Prue A.; Gold, Elspeth; Aleksova, Jasna; O'Bryan, Moira K.; Foster, Paul M. D.; Scott, Hamish S.; Risbridger, Gail P.

    2010-01-01

    Vinclozolin is an endocrine-disrupting chemical (EDC) that binds with high affinity to the androgen receptor (AR) and blocks the action of gonadal hormones on male reproductive organs. An alternative mechanism of action of Vinclozolin involves transgenerational effects on the male reproductive tract. We previously reported in utero Vinclozolin exposure-induced prostatitis (prostate inflammation) in postpubertal rats concurrent with down-regulation of AR and increased nuclear factor-κB activat...

  4. Functioning lipoadenoma of the parathyroid: Case report and literature review

    International Nuclear Information System (INIS)

    Bleiweiss, I.J.; Harpaz, N.; Strauchen, J.A.; Wagner, R.; Biller, H.F.

    1989-01-01

    Lipoadenoma of the parathyroid gland is a rare histologic variant of parathyroid adenoma that is usually functional and associated with clinical hyperparathyroidism. We report a case in which a radiolabeled thallium scan failed to demonstrate evidence of an adenoma, presumably because of the tumor's high fat content. The literature concerning this entity is reviewed. To our knowledge there are no other reported cases in which parathyroid scanning was used in diagnostic studies of parathyroid lipoadenoma. 15 references

  5. Preoperative localization of parathyroid carcinoma using Tc-99m MIBI.

    Science.gov (United States)

    Kitapçi, M T; Tastekin, G; Turgut, M; Caner, B; Kars, A; Barista, I; Bekdik, C

    1993-03-01

    A patient with parathyroid cancer is presented who underwent Tc-99m MIBI scintigraphy. The Tc-99m MIBI image demonstrated increased accumulation of activity at the lower pole of the left thyroid lobe which was later confirmed as a parathyroid cancer. Uptake by parathyroid cancer must be kept in mind as a cause of increased Tc-99m MIBI accumulation when a disease is in question in the thyroid or parathyroid gland.

  6. Abscisic acid regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin.

    Science.gov (United States)

    Rowe, James H; Topping, Jennifer F; Liu, Junli; Lindsey, Keith

    2016-07-01

    Understanding the mechanisms regulating root development under drought conditions is an important question for plant biology and world agriculture. We examine the effect of osmotic stress on abscisic acid (ABA), cytokinin and ethylene responses and how they mediate auxin transport, distribution and root growth through effects on PIN proteins. We integrate experimental data to construct hormonal crosstalk networks to formulate a systems view of root growth regulation by multiple hormones. Experimental analysis shows: that ABA-dependent and ABA-independent stress responses increase under osmotic stress, but cytokinin responses are only slightly reduced; inhibition of root growth under osmotic stress does not require ethylene signalling, but auxin can rescue root growth and meristem size; osmotic stress modulates auxin transporter levels and localization, reducing root auxin concentrations; PIN1 levels are reduced under stress in an ABA-dependent manner, overriding ethylene effects; and the interplay among ABA, ethylene, cytokinin and auxin is tissue-specific, as evidenced by differential responses of PIN1 and PIN2 to osmotic stress. Combining experimental analysis with network construction reveals that ABA regulates root growth under osmotic stress conditions via an interacting hormonal network with cytokinin, ethylene and auxin. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  7. An integrated mechanism of pediatric pseudotumor cerebri syndrome: evidence of bioenergetic and hormonal regulation of cerebrospinal fluid dynamics.

    Science.gov (United States)

    Sheldon, Claire A; Kwon, Young Joon; Liu, Grant T; McCormack, Shana E

    2015-02-01

    Pseudotumor cerebri syndrome (PTCS) is defined by the presence of elevated intracranial pressure (ICP) in the setting of normal brain parenchyma and cerebrospinal fluid (CSF). Headache, vision changes, and papilledema are common presenting features. Up to 10% of appropriately treated patients may experience permanent visual loss. The mechanism(s) underlying PTCS is unknown. PTCS occurs in association with a variety of conditions, including kidney disease, obesity, and adrenal insufficiency, suggesting endocrine and/or metabolic derangements may occur. Recent studies suggest that fluid and electrolyte balance in renal epithelia is regulated by a complex interaction of metabolic and hormonal factors; these cells share many of the same features as the choroid plexus cells in the central nervous system (CNS) responsible for regulation of CSF dynamics. Thus, we posit that similar factors may influence CSF dynamics in both types of fluid-sensitive tissues. Specifically, we hypothesize that, in patients with PTCS, mitochondrial metabolites (glutamate, succinate) and steroid hormones (cortisol, aldosterone) regulate CSF production and/or absorption. In this integrated mechanism review, we consider the clinical and molecular evidence for each metabolite and hormone in turn. We illustrate how related intracellular signaling cascades may converge in the choroid plexus, drawing on evidence from functionally similar tissues.

  8. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis.

    Science.gov (United States)

    Hu, Fang; Xu, Yong; Liu, Feng

    2016-06-01

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes. Copyright © 2016 the American Physiological Society.

  9. Effect of high sugar intake on glucose transporter and weight regulating hormones in mice and humans.

    Directory of Open Access Journals (Sweden)

    Yvonne Ritze

    Full Text Available OBJECTIVE: Sugar consumption has increased dramatically over the last decades in Western societies. Especially the intake of sugar-sweetened beverages seems to be a major risk for the development of obesity. Thus, we compared liquid versus solid high-sugar diets with regard to dietary intake, intestinal uptake and metabolic parameters in mice and partly in humans. METHODS: Five iso-caloric diets, enriched with liquid (in water 30% vol/vol or solid (in diet 65% g/g fructose or sucrose or a control diet were fed for eight weeks to C57bl/6 mice. Sugar, liquid and caloric intake, small intestinal sugar transporters (GLUT2/5 and weight regulating hormone mRNA expression, as well as hepatic fat accumulation were measured. In obese versus lean humans that underwent either bariatric surgery or small bowel resection, we analyzed small intestinal GLUT2, GLUT5, and cholecystokinin expression. RESULTS: In mice, the liquid high-sucrose diet caused an enhancement of total caloric intake compared to the solid high-sucrose diet and the control diet. In addition, the liquid high-sucrose diet increased expression of GLUT2, GLUT5, and cholecystokinin expression in the ileum (P<0.001. Enhanced liver triglyceride accumulation was observed in mice being fed the liquid high-sucrose or -fructose, and the solid high-sucrose diet compared to controls. In obese, GLUT2 and GLUT5 mRNA expression was enhanced in comparison to lean individuals. CONCLUSIONS: We show that the form of sugar intake (liquid versus solid is presumably more important than the type of sugar, with regard to feeding behavior, intestinal sugar uptake and liver fat accumulation in mice. Interestingly, in obese individuals, an intestinal sugar transporter modulation also occurred when compared to lean individuals.

  10. Thyroid hormone regulation of Sirtuin 1 expression and implications to integrated responses in fasted mice.

    Science.gov (United States)

    Cordeiro, Aline; de Souza, Luana Lopes; Oliveira, Lorraine Soares; Faustino, Larissa Costa; Santiago, Letícia Aragão; Bloise, Flavia Fonseca; Ortiga-Carvalho, Tania Maria; Almeida, Norma Aparecida Dos Santos; Pazos-Moura, Carmen Cabanelas

    2013-02-01

    Sirtuin 1 (SIRT1), a NAD(+)-dependent deacetylase, has been connected to beneficial effects elicited by calorie restriction. Physiological adaptation to starvation requires higher activity of SIRT1 and also the suppression of thyroid hormone (TH) action to achieve energy conservation. Here, we tested the hypothesis that those two events are correlated and that TH may be a regulator of SIRT1 expression. Forty-eight-hour fasting mice exhibited reduced serum TH and increased SIRT1 protein content in liver and brown adipose tissue (BAT), and physiological thyroxine replacement prevented or attenuated the increment of SIRT1 in liver and BAT of fasted mice. Hypothyroid mice exhibited increased liver SIRT1 protein, while hyperthyroid ones showed decreased SIRT1 in liver and BAT. In the liver, decreased protein is accompanied by reduced SIRT1 activity and no alteration in its mRNA. Hyperthyroid and hypothyroid mice exhibited increases and decreases in food intake and body weight gain respectively. Food-restricted hyperthyroid animals (pair-fed to euthyroid group) exhibited liver and BAT SIRT1 protein levels intermediary between euthyroid and hyperthyroid mice fed ad libitum. Mice with TH resistance at the liver presented increased hepatic SIRT1 protein and activity, with no alteration in Sirt1 mRNA. These results suggest that TH decreases SIRT1 protein, directly and indirectly, via food ingestion control and, in the liver, this reduction involves TRβ. The SIRT1 reduction induced by TH has important implication to integrated metabolic responses to fasting, as the increase in SIRT1 protein requires the fasting-associated suppression of TH serum levels.

  11. Are separable aromatase systems involved in hormonal regulation of the male brain

    International Nuclear Information System (INIS)

    Hutchison, J.B.; Schumacher, M.; Steimer, T.; Gahr, M.

    1990-01-01

    In vitro study of testosterone (T) metabolism shows that formation of estradiol-17 beta (E2) is regionally specific within the preoptic area (POA) of the male ring dove. The POA is known to be involved in the formation of E2 required for specific components of male sexual behavior. Two sub-areas of high aromatase activity, anterior (aPOA) and posterior preoptic (pPOA) areas, have been identified. Aromatase activity is higher in aPOA than in pPOA. The aromatase activity within the aPOA is also more sensitive to the inductive effects of low circulating T, derived from subcutaneous silastic implants, than the enzyme activity in pPOA. Kinetic analysis of preoptic fractions indicates that a similar high-affinity enzyme occurs in both areas (apparent Km less than 14 nM), but the Vmax of aPOA enzyme activity is higher than pPOA. Cells containing estrogen receptors (ER) are localized in areas of high aromatase activity. There is overlap between immunostained cells in the aPOA and in samples containing inducible aromatase activity measured in vitro. Within the aPOA there is a higher density of ER cells in the nucleus preopticus medialis. The pPOA area also contains ER, notably in the nucleus interstitialis, but at a lower density. We conclude that the hormonal regulation of the male preoptic-anterior hypothalamic region, which is a target for the behavioral action of T, involves at least two inducible aromatase systems with associated estrogen receptor cells

  12. Parathyroid and bone imaging in primary hyperparathyroidism

    Institute of Scientific and Technical Information of China (English)

    ZHU Rui-Sen; LU Han-Kui; LUO Quan-Yong; CHEN Li-Bo; MA Ji-Xiao

    2004-01-01

    Skeletal derangements occur quite often in patient with primary hyperparathyroidism (PHPT). We investigated parathyroid and bone imagings in 59 cases of pathologically proven PHPT. Forty-nine cases were pathologically proven parathyroid adenomas; 8 presented hyperplasia and the other 2 were adenocarcinomas. Parathyroid imaging (early phase imaging, EPI) was conducted at 30 min after injecting 740~925MBq 99mTc-MIBI and 2~3h later (delayed phase imaging, DPI) separately. The following thyroid imagings were performed at the same posture 10 min after intravenous injection of 74~111MBq 99mTcO4-. The 99mTc- MIBI subtraction imaging data were obtained by subtracting thyroid imaging from that of DPI. Among 49 cases of proven hyperparathyroid adenoma 45 yielded positive imagings. Eight cases with hyperplasia gave negative results. The results were positive in 2 cases of parathyroid adenocarcinoma. Results of 99mTc-MDP/bone imaging: 35 cases of hyperparathyroid adenocarcinoma (disease duration 1-6 months) showed normal bone images, while 14 cases showed superscan images, course being 4-12 months. Bone imaging for 2 cases of adenocarcinoma showed multiple, radioactive aggregated foci (brown tumor imaging); course lasting 10-24 months. The results of bone imaging in 8 cases of hyperplasia/ hyperparathyroidism were normal. It was concluded that diagnostic accuracy for parathyroid was 79.6% and for parathyroid adenoma was 91.8%, and the technique has no diagnostic value for hyperplasia. The 99mTc-MDP / bone imaging results for PHPT can be classified into three categories, i.e. normal, superscan and brown tumor. The imaging results correlated well with the different categories and degrees of bone damage, the duration of clinical course and the pathological types. Therefore, it's important to use bone imaging data in association with therapy to reflect the stage and progress of PHPT.

  13. A parathyroid adenoma case study: Protocol review

    International Nuclear Information System (INIS)

    Sorensen, B.J.; Chu, J.M.G.

    1998-01-01

    Full text: Technetium-99m ( 99m Tc) Sestamibi as opposed to Thallous-201 Chloride and 99m Tc Sodium Pertechnetate subtraction, has become the radiopharmaceutical of choice for detection of parathyroid adenomas. A 17-year-old female patient presented to the department for a parathyroid 99m Tc Sestamibi scan to evaluate possible parathyroid adenoma/s. She was initially admitted with increasing serum Calcium levels, polyuria, abdominal pain and general malaise. The patient was injected with 900MBq of 99m Tc Sestamibi, and a pinhole dynamic at a distance of 10 cm from the neck was acquired followed by a 5-minute static image at 7 cm. Single Photon Emission Computed Tomography (SPECT) was then performed on a dual-head gamma camera followed by an anterior and posterior 10-minute static image. At 3 and 5 hours post injection the 10-minute static image was repeated. This study was reported as normal with uniform uptake and washout of the tracer over the 5-hour period. An ultrasound study was performed, and it showed a lesion believed to be a parathyroid adenoma measuring 2.2 x 0.8 x 0.4 cm in size in the right upper lobe of the thyroid. A subsequent thyroid scan was performed to confirm that it was non-functioning thyroid tissue. The patient was injected with 250MBq of 99m Tc Sodium Pertechnetate and scanned with a pinhole collimator at a distance of 7 cm. When the 99m Tc Sestamibi and 99m Tc Sodium Pertechnetate scan were viewed together, it was clear that there was excess 99m Tc Sestamibi distribution on the right upper lobe of the thyroid, which washed out over time. This corresponded to the ultrasound findings and was confirmed at surgery to be a parathyroid adenoma. A 99m Tc Sodium Pertechnetate scan and an ultrasound are now also routinely performed on patients presenting for 99m Tc Sestamibi parathyroid scans

  14. Nonoxidized, biologically active parathyroid hormone determines mortality in hemodialysis patients

    DEFF Research Database (Denmark)

    Tepel, Martin; Armbruster, Franz Paul; Grön, Hans Jürgen

    2013-01-01

    Background: It was shown that nonoxidized PTH (n-oxPTH) is bioactive, whereas the oxidation of PTH results in a loss of biological activity. Methods: In this study we analyzed the association of n-oxPTH on mortality in hemodialysis patients using a recently developed assay system. Results......: Hemodialysis patients (224 men, 116 women) had a median age of 66 years. One hundred seventy patients (50%) died during the follow-up period of 5 years. Median n-oxPTH levels were higher in survivors (7.2 ng/L) compared with deceased patients (5.0 ng/L; P = .002). Survival analysis showed an increased survival...... in the highest n-oxPTH tertile compared with the lowest n-oxPTH tertile (χ(2), 14.3; P = .0008). Median survival was 1702 days in the highest n-oxPTH tertile, whereas it was only 453 days in the lowest n-oxPTH tertile. Multivariable-adjusted Cox regression showed that higher age increased odds for death, whereas...

  15. Parathyroid Hormone Directs Bone Marrow Mesenchymal Cell Fate.

    Science.gov (United States)

    Fan, Yi; Hanai, Jun-Ichi; Le, Phuong T; Bi, Ruiye; Maridas, David; DeMambro, Victoria; Figueroa, Carolina A; Kir, Serkan; Zhou, Xuedong; Mannstadt, Michael; Baron, Roland; Bronson, Roderick T; Horowitz, Mark C; Wu, Joy Y; Bilezikian, John P; Dempster, David W; Rosen, Clifford J; Lanske, Beate

    2017-03-07

    Intermittent PTH administration builds bone mass and prevents fractures, but its mechanism of action is unclear. We genetically deleted the PTH/PTHrP receptor (PTH1R) in mesenchymal stem cells using Prx1Cre and found low bone formation, increased bone resorption, and high bone marrow adipose tissue (BMAT). Bone marrow adipocytes traced to Prx1 and expressed classic adipogenic markers and high receptor activator of nuclear factor kappa B ligand (Rankl) expression. RANKL levels were also elevated in bone marrow supernatant and serum, but undetectable in other adipose depots. By cell sorting, Pref1 + RANKL + marrow progenitors were twice as great in mutant versus control marrow. Intermittent PTH administration to control mice reduced BMAT significantly. A similar finding was noted in male osteoporotic patients. Thus, marrow adipocytes exhibit osteogenic and adipogenic characteristics, are uniquely responsive to PTH, and secrete RANKL. These studies reveal an important mechanism for PTH's therapeutic action through its ability to direct mesenchymal cell fate. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Parathyroid aspiration directed by angiography: an alternative to venous sampling

    International Nuclear Information System (INIS)

    Krudy, A.G.; Doppman, J.L.; Marx, S.J.; Norton, J.A.; Spiegel, A.M.; Santora, A.C. II; Aurbach, G.D.

    1984-01-01

    Not all parathyroid glands can be visualized by CT or ultrasound and, therefore, cannot be aspirated using these techniques. The authors report the localization of a parathyroid gland by arteriography and needle aspiration under fluoroscopic guidance. This technique can be used to confirm a diagnosis of hypervascular parathyroid tissue that cannot otherwise be confirmed

  17. Regulation of fatty acid composition and lipid storage by thyroid hormone in mouse liver

    OpenAIRE

    Yao, Xuan; Hou, Sarina; Zhang, Duo; Xia, Hongfeng; Wang, Yu-Cheng; Jiang, Jingjing; Yin, Huiyong; Ying, Hao

    2014-01-01

    Background Thyroid hormones (THs) are potent hormones modulating liver lipid homeostasis. The perturbation of lipid homeostasis is a hallmark of non-alcoholic fatty liver disease (NAFLD), a very common liver disorder. It was reported that NAFLD patients were associated with higher incidence of hypothyroidism. However, whether abnormal thyroid function contributes to the pathogenesis of NAFLD remains unclear. Results We used in vivo models to investigate the influence of hypothyroidism and TH ...

  18. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit

    Directory of Open Access Journals (Sweden)

    Heiko Löhr

    2018-05-01

    Full Text Available Summary: Anorexigenic pro-opiomelanocortin (Pomc/alpha-melanocyte stimulating hormone (αMSH neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful. : The melanocortin system controls energy homeostasis and somatic growth, but the underlying mechanisms are elusive. Löhr et al. identify a functional neural circuit in which Pomc neurons stimulate hypothalamic somatostatin neurons, thereby inhibiting hypophyseal growth hormone production. Excessive feeding and acquired leptin resistance attenuate this pathway, allowing faster somatic growth when food resources are rich. Keywords: Pomc neuron, somatostatin neuron, somatic growth, growth hormone, melanocortin system, high-fat diet, obesity, leptin resistance, zebrafish, mouse

  19. Evaluation of a potential parathyroid dysfunction under treatment with radioactive iodine of benign thyroid diseases; Pruefung einer potentiellen strahleninduzierten Nebenschilddruesenfunktionsstoerung waehrend einer Radioiodtherapie benigner Schilddruesenerkrankung

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Serena Christine

    2011-09-28

    The intention of the present thesis was the evaluation of a potential parathyroid dysfunction under treatment with radioactive iodine of benign thyroid diseases. It was to be examined whether a change in the parathyroid function would arise within the first week on treatment. So far there are some minor studies existing describing significant changes in the parathyroid hormone serum level within the first months after radioactive iodine therapy of benign and malignant thyroid diseases. Moreover, it is a fact that external beam-radiotherapy can induce neoplasia and that the risk for the subsequent development of primary hyperparathyroidism doubles or triples after external beam-radiotherapy of the head and neck. Up to now, however, an increased incidence for primary hyperparathyroidism following treatment with radioactive iodine ({sup 131}I) could not be proved. At the department of nuclear medicine of the university hospital Giessen-Marburg GmbH, location Marburg, a prospective cohort study was executed on radioactive iodine therapy of benign thyroid diseases with 105 probands (75 women / 30 men, mean age 60.62 ± 14.3 years). According to their thyroid diseases these 105 probands were classified into following subgroups: thyroid adenoma with 23 patients, multifocal thyroid autonomy with 8 patients, disseminated thyroid autonomy with 37 patients as well as the subgroup Graves' hyperthyroidism (without Graves' ophtalmopathy) and accordingly Graves' disease (with Graves' ophtalmopathy) with 37 patients. The serum level of the intact parathyroid hormone was determined directly before starting the radioactive iodine therapy on the admission day and on day 1, 3 and 5 of the radioactive iodine therapy as well as at the ambulant follow-up examination one month after the start of the therapy. In case of 99 of 105 probands the serum level of parathyroid hormone declined on treatment with {sup 131}I with its nadir on day 3 of therapy (decline by 15.71 ng

  20. Maxillary brown tumor as initial presentation of parathyroid adenoma: A case report

    Directory of Open Access Journals (Sweden)

    Hon-Ke Sia

    2012-07-01

    Full Text Available Brown tumor is a rare late-stage skeletal change caused by long-term stimulation of excess parathyroid hormone. It is not neoplastic, but a reparative cellular process. Common sites of brown tumor are the ribs, clavicle, long bones and pelvic girdle. Solitary maxillary brown tumor as initial presentation of primary hyperparathyroidism is rare; it is often accompanied by brown tumors of the other facial bones. Here, we present the first case of solitary maxillary brown tumor in a 29-year-old ethnic Chinese woman with initial presentation of a large tumor filling the left maxillary sinus. Underlying long-standing primary hyperparathyroidism caused by a large parathyroid adenoma was finally diagnosed. Brown tumor tends to be misdiagnosed as malignancy, and delayed diagnosis of the underlying hyperparathyroidism is common. Our case validates the suggestion that young women have a higher probability of brown tumor. Biopsy of the suspicious bone tumor and blood tests for calcium and parathyroid hormone level are crucial and essential to reach the correct diagnosis. Most brown tumors show spontaneous regression after parathyroidectomy. However, direct excision of the brown tumor may be indicated to avoid the risk of facial deformity and orbital compression at a special anatomical site, as in our case.

  1. A FEEDBACK MODEL FOR TESTICULAR-PITUITARY AXIS HORMONE KINETICS AND THEIR EFFECTS ON THE REGULATION OF THE PROSTATE IN ADULT MALE RATS

    Science.gov (United States)

    The testicular-hypothalamic-pituitary axis regulates male reproductive system functions. A model describing the kinetics and dynamics of testosterone (T), dihydrotestosterone (DHT) and luteinizing hormone (LH) was developed based on a model by Barton and Anderson (1997). The mode...

  2. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    Science.gov (United States)

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA 3 ) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA 3 content and GA 3 /ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA 3 /ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA 3 /ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Delayed Surgery for Parathyroid Adenoma Misdiagnosed as a Thyroid Nodule and Treated with Radiofrequency Ablation

    Directory of Open Access Journals (Sweden)

    Ho-Su Kim

    2013-09-01

    Full Text Available Primary hyperparathyroidism occurs as a result of isolated parathyroid adenoma in 80% to 85% of all cases. A 99mtechnetium (99mTc sestamibi scan or neck ultrasonography is used to localize the neoplasm prior to surgical intervention. A 53-year-old female was referred for the exclusion of metabolic bone disease. She presented with low back pain that had persisted for the past 6 months and elevated serum alkaline phosphatase (1,253 IU/L. Four years previously, she had been diagnosed at a local hospital with a 2.3-cm thyroid nodule, which was determined to be pathologically benign. Radiofrequency ablation was performed at the same hospital because the nodule was still growing during the follow-up period 2 years before the visit to our hospital, and the procedure was unsuccessful in reducing the size of the nodule. The results of the laboratory tests in our hospital were as follows: serum calcium, 14.6 mg/dL; phosphorus, 3.5 mg/dL; and intact parathyroid hormone (iPTH, 1,911 pg/mL. Neck ultrasonography and 99mTc sestamibi scan detected a 5-cm parathyroid neoplasm in the left lower lobe of the patient's thyroid; left parathyroidectomy was performed. This case indicated that thyroid ultrasonographers and pathologists need to be experienced enough to differentiate a parathyroid neoplasm from a thyroid nodule; 99mTc sestamibi scan, serum calcium, and iPTH levels can help to establish the diagnosis of parathyroid neoplasm.

  4. Effect of TheraCyte-encapsulated parathyroid cells on lumbar fusion in a rat model.

    Science.gov (United States)

    Chen, Sung-Hsiung; Huang, Shun-Chen; Lui, Chun-Chung; Lin, Tzu-Ping; Chou, Fong-Fu; Ko, Jih-Yang

    2012-09-01

    Implantation of TheraCyte 4 × 10(6) live parathyroid cells can increase the bone marrow density of the spine of ovariectomized rats. There has been no published study examining the effect of such implantation on spinal fusion outcomes. The purpose of this study was to examine the effect of TheraCyte-encapsulated parathyroid cells on posterolateral lumbar fusions in a rat model. Forty Sprague-Dawley rats underwent single-level, intertransverse process spinal fusions using iliac crest autograft. The rats were randomly assigned to two groups: Group 1 rats received sham operations on their necks (control; N = 20); Group 2 rats were implanted with TheraCyte-encapsulated 4 × 10(6) live parathyroid cells into the subcutis of their necks (TheraCyte; N = 20). Six weeks after surgery the rats were killed. Fusion was assessed by inspection, manual palpation, radiography, and histology. Blood was drawn to measure the serum levels of calcium, phosphorus, and intact parathyroid hormone (iPTH). Based on manual palpation, the control group had a fusion rate of 33 % (6/18) and the TheraCyte group had a fusion rate of 72 % (13/18) (P = 0.044). Histology confirmed the manual palpation results. Serum iPTH levels were significantly higher in the TheraCyte group compared with the control group (P TheraCyte-encapsulated 4 × 10(6) live parathyroid cells than in control rats without significant change in serum calcium or phosphorus concentrations. As with any animal study, the results may not extrapolate to a higher species. Further studies are needed to determine if these effects are clinically significant.

  5. Image diagnosis of parathyroid glands in patients with secondary hyperparathyroidism

    International Nuclear Information System (INIS)

    Kuriyama, Keiko; Kozuka, Takahiro; Morimoto, Shizuo; Ikezoe, Junpei; Arisawa, Jun; Akira, Masanori; Koide, Takuo; Oka, Toshitsugu; Sone, Shusuke.

    1986-01-01

    Ultrasonography (US) and computed tomography (CT) of the neck were performed in 12 patients with chronic renal failure and secondary hyperparathyroidism. Twenty-eight of 44 excised parathyroid glands were visualized by US preoperatively (64 %). By CT, 20 parathyroid glands were detected (45 %). US was superior to CT for demonstrating parathyroid glands weighing between 500 and 1500 mg. There was no difference between US and CT for demonstrating parathyroid glands weighing more than 1500 mg and less than 500 mg. For definite diagnosis of secondary hyperparathyroidism and preoperative localization, US is modality of choice initially, and then CT can be employed to search for mediastinal parathyroid gland. (author)

  6. [Role of the Periaqueductal Gray Matter of the Midbrain in Regulation of Somatic Pain Sensitivity During Stress: Participation of Corticotropin-Releasing Factor and Glucocorticoid Hormones].

    Science.gov (United States)

    Yarushkina, N I; Filaretova, L P

    2015-01-01

    Periaqueductal gray matter of the midbrain (PAGM) plays a crucial role in the regulation of pain sensitivity under stress, involving in the stress-induced analgesia. A key hormonal system of adaptation under stress is the hypothalamic-pituitary-adrenocortical (HPA) axis. HPA axis's hormones, corticotropin-releasing factor (CRF) and glucocorticoids, are involved in stress-induced analgesia. Exogenous hormones of the HPA axis, similarly to the hormones produced under stress, may cause an analgesic effect. CRF-induced analgesia may be provided by glucocorticoid hormones. CRF and glucocorticoids-induced effects on somatic pain sensitivity may be mediated by PAGM. The aim of the review was to analyze the data of literature on the role of PAGM in the regulation of somatic pain sensitivity under stress and in providing of CRF and glucocorticoid-induced analgesia.

  7. Cyclooxygenase 2 Promotes Parathyroid Hyperplasia in ESRD

    Science.gov (United States)

    Zhang, Qian; Qiu, Junsi; Li, Haiming; Lu, Yanwen; Wang, Xiaoyun; Yang, Junwei; Wang, Shaoqing; Zhang, Liyin; Gu, Yong; Hao, Chuan-Ming

    2011-01-01

    Hyperplasia of the PTG underlies the secondary hyperparathyroidism (SHPT) observed in CKD, but the mechanism underlying this hyperplasia is incompletely understood. Because aberrant cyclooxygenase 2 (COX2) expression promotes epithelial cell proliferation, we examined the effects of COX2 on the parathyroid gland in uremia. In patients with ESRD who underwent parathyroidectomy, clusters of cells within the parathyroid glands had increased COX2 expression. Some COX2-positive cells exhibited two nuclei, consistent with proliferation. Furthermore, nearly 78% of COX2-positive cells expressed proliferating cell nuclear antigen (PCNA). In the 5/6-nephrectomy rat model, rats fed a high-phosphate diet had significantly higher serum PTH levels and larger parathyroid glands than sham-operated rats. Compared with controls, the parathyroid glands of uremic rats exhibited more PCNA-positive cells and greater COX2 expression in the chief cells. Treatment with COX2 inhibitor celecoxib significantly reduced PCNA expression, attenuated serum PTH levels, and reduced the size of the glands. In conclusion, COX2 promotes the pathogenesis of hyperparathyroidism in ESRD, suggesting that inhibiting the COX2 pathway could be a potential therapeutic target. PMID:21335517

  8. Carcinoma of the parathyroid gland with hyperparathyroidism

    Energy Technology Data Exchange (ETDEWEB)

    Trevino Canamar, G.; Vogel, H.

    1983-02-01

    A patient with an endocrine-active carcinoma of the parathyroid gland was observed. The typical signs of hyperthyroidism could be seen in the skelettal system. Symptoms of bone and kidney diseases dominated the clinical picture. The symptomatology corresponded to a subchronic primary hyperparathyroidism.

  9. Carcinoma of the parathyroid gland with hyperparathyroidism

    International Nuclear Information System (INIS)

    Trevino Canamar, G.; Vogel, H.

    1983-01-01

    A patient with an endocrine-active carcinoma of the parathyroid gland was observed. The typical signs of hyperthyroidism could be seen in the skelettal system. Symptoms of bone and kidney diseases dominated the clinical picture. The symptomatology corresponded to a subchronic primary hyperparathyroidism. (orig.) [de

  10. Maxillary brown tumour: unusual presentation of parathyroid ...

    African Journals Online (AJOL)

    This is a report of a maxillary brown tumour caused by primary hyperparathyroidism (HPT) secondary to parathyroid carcinoma. A 62-year-old man presented with a large swelling in the right maxilla, which caused right-sided nasal obstruction, intermittent bleeding and diplopia. A computed tomography scan demonstrated ...

  11. Hormonal regulation of epithelial organization in a three-dimensional breast tissue culture model.

    Science.gov (United States)

    Speroni, Lucia; Whitt, Gregory S; Xylas, Joanna; Quinn, Kyle P; Jondeau-Cabaton, Adeline; Barnes, Clifford; Georgakoudi, Irene; Sonnenschein, Carlos; Soto, Ana M

    2014-01-01

    The establishment of hormone target breast cells in the 1970's resulted in suitable models for the study of hormone control of cell proliferation and gene expression using two-dimensional (2D) cultures. However, to study mammogenesis and breast tumor development in vitro, cells must be able to organize in three-dimensional (3D) structures like in the tissue. We now report the development of a hormone-sensitive 3D culture model for the study of mammogenesis and neoplastic development. Hormone-sensitive T47D breast cancer cells respond to estradiol in a dose-dependent manner by forming complex epithelial structures. Treatment with the synthetic progestagen promegestone, in the presence of estradiol, results in flat epithelial structures that display cytoplasmic projections, a phenomenon reported to precede side-branching. Additionally, as in the mammary gland, treatment with prolactin in the presence of estradiol induces budding structures. These changes in epithelial organization are accompanied by collagen remodeling. Collagen is the major acellular component of the breast stroma and an important player in tumor development and progression. Quantitative analysis of second harmonic generation of collagen fibers revealed that collagen density was more variable surrounding budding and irregularly shaped structures when compared to more regular structures; suggesting that fiber organization in the former is more anisotropic than in the latter. In sum, this new 3D model recapitulates morphogenetic events modulated by mammogenic hormones in the breast, and is suitable for the evaluation of therapeutic agents.

  12. Altered drug metabolism during pregnancy: hormonal regulation of drug-metabolizing enzymes.

    Science.gov (United States)

    Jeong, Hyunyoung

    2010-06-01

    Medication use during pregnancy is prevalent, but pharmacokinetic information of most drugs used during pregnancy is lacking in spite of known effects of pregnancy on drug disposition. Accurate pharmacokinetic information is essential for optimal drug therapy in mother and fetus. Thus, understanding how pregnancy influences drug disposition is important for better prediction of pharmacokinetic changes of drugs in pregnant women. Pregnancy is known to affect hepatic drug metabolism, but the underlying mechanisms remain unknown. Physiological changes accompanying pregnancy are probably responsible for the reported alteration in drug metabolism during pregnancy. These include elevated concentrations of various hormones such as estrogen, progesterone, placental growth hormones and prolactin. This review covers how these hormones influence expression of drug-metabolizing enzymes (DMEs), thus potentially responsible for altered drug metabolism during pregnancy. The reader will gain a greater understanding of the altered drug metabolism in pregnant women and the regulatory effects of pregnancy hormones on expression of DMEs. In-depth studies in hormonal regulatory mechanisms as well as confirmatory studies in pregnant women are warranted for systematic understanding and prediction of the changes in hepatic drug metabolism during pregnancy.

  13. Change of body height is regulated by thyroid hormone during metamorphosis in flatfishes and zebrafish.

    Science.gov (United States)

    Xu, Juan; Ke, Zhonghe; Xia, Jianhong; He, Fang; Bao, Baolong

    2016-09-15

    Flatfishes with more body height after metamorphosis should be better adapted to a benthic lifestyle. In this study, we quantified the changes in body height during metamorphosis in two flatfish species, Paralichthys olivaceus and Platichthys stellatus. The specific pattern of cell proliferation along the dorsal and ventral edge of the body to allow fast growth along the dorsal/ventral axis might be related to the change of body height. Thyroid hormone