WorldWideScience

Sample records for regulates nerve growth

  1. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  2. NF-κB Regulates B-Cell-Derived Nerve Growth Factor Expression

    Institute of Scientific and Technical Information of China (English)

    Klaus Heese; Noriko Inoue; Tohru Sawada

    2006-01-01

    In the mammalian brain, four neurotrophins have been identified: nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3) and neurotrophin-4/5 (NT-4/5). NGF exerts an important role in the development and functions of the central and peripheral nervous system. However, it has recently been documented that several types of immune cells, such as mast cells, lymphocytes, basophils and eosinophils, produce,store and release NGF. Accumulating preclinical and clinical data indicate that dysfunctions of NGF and the other neurotrophins may contribute to impaired immune responses and concentration of NGF frequently correlates with disease severity. Thus, the aim of this study was to elucidate the potential signaling mechanisms of cytokineneurotrophins interactions contributing to increased NGF levels. Our data show that the transcription factorNF-κB plays a pivotal role in regulating B-cell-derived NGF expression.

  3. Nerve Growth Factor Signaling from Membrane Microdomains to the Nucleus: Differential Regulation by Caveolins

    Science.gov (United States)

    Spencer, Ambre; Yu, Lingli; Guili, Vincent; Reynaud, Florie; Ding, Yindi; Ma, Ji; Jullien, Jérôme; Koubi, David; Gauthier, Emmanuel; Cluet, David; Falk, Julien; Castellani, Valérie; Yuan, Chonggang; Rudkin, Brian B.

    2017-01-01

    Membrane microdomains or “lipid rafts” have emerged as essential functional modules of the cell, critical for the regulation of growth factor receptor-mediated responses. Herein we describe the dichotomy between caveolin-1 and caveolin-2, structural and regulatory components of microdomains, in modulating proliferation and differentiation. Caveolin-2 potentiates while caveolin-1 inhibits nerve growth factor (NGF) signaling and subsequent cell differentiation. Caveolin-2 does not appear to impair NGF receptor trafficking but elicits prolonged and stronger activation of MAPK (mitogen-activated protein kinase), Rsk2 (ribosomal protein S6 kinase 2), and CREB (cAMP response element binding protein). In contrast, caveolin-1 does not alter initiation of the NGF signaling pathway activation; rather, it acts, at least in part, by sequestering the cognate receptors, TrkA and p75NTR, at the plasma membrane, together with the phosphorylated form of the downstream effector Rsk2, which ultimately prevents CREB phosphorylation. The non-phosphorylatable caveolin-1 serine 80 mutant (S80V), no longer inhibits TrkA trafficking or subsequent CREB phosphorylation. MC192, a monoclonal antibody towards p75NTR that does not block NGF binding, prevents exit of both NGF receptors (TrkA and p75NTR) from lipid rafts. The results presented herein underline the role of caveolin and receptor signaling complex interplay in the context of neuronal development and tumorigenesis. PMID:28338624

  4. Developmentally Regulated Expression of the Nerve Growth Factor Receptor Gene in the Periphery and Brain

    Science.gov (United States)

    Buck, C. R.; Martinez, Humberto J.; Black, Ira B.; Chao, Moses V.

    1987-05-01

    Nerve growth factor (NGF) regulates development and maintenance of function of peripheral sympathetic and sensory neurons. A potential role for the trophic factor in brain has been detected only recently. The ability of a cell to respond to NGF is due, in part, to expression of specific receptors on the cell surface. To study tissue-specific expression of the NGF receptor gene, we have used sensitive cRNA probes for detection of NGF receptor mRNA. Our studies indicate that the receptor gene is selectively and specifically expressed in sympathetic (superior cervical) and sensory (dorsal root) ganglia in the periphery, and by the septum-basal forebrain centrally, in the neonatal rat in vivo. Moreover, examination of tissues from neonatal and adult rats reveals a marked reduction in steady-state NGF receptor mRNA levels in sensory ganglia. In contrast, a 2- to 4-fold increase was observed in the basal forebrain and in the sympathetic ganglia over the same time period. Our observations suggest that NGF receptor mRNA expression is developmentally regulated in specific areas of the nervous system in a differential fashion.

  5. Discoordinate regulation of different K channels in cultured rat skeletal muscle by nerve growth factor.

    Science.gov (United States)

    Vigdor-Alboim, S; Rothman, C; Braiman, L; Bak, A; Langzam, L; Yosef, O; Sterengarz, B B; Nawrath, H; Brodie, C; Sampson, S R

    1999-05-01

    We investigated the effects of nerve growth factor (NGF) on expression of K+ channels in cultured skeletal muscle. The channels studied were (1) charybdotoxin (ChTx)-sensitive channels by using a polyclonal antibody raised in rabbits against ChTx, (2) Kv1.5 voltage-sensitive channels, and (3) apamin-sensitive (afterhyperpolarization) channels. Crude homogenates were prepared from cultures made from limb muscles of 1-2-day-old rat pups for identification of ChTx-sensitive and Kv1.5 channels by Western blotting techniques. Apamin-sensitive K+ channels were studied by measurement of specific [125I]-apamin binding by whole cell preparations. ChTx-sensitive channels display a fusion-related increase in expression, and NGF downregulates these channels in both myoblasts and myotubes. Voltage-dependent Kv1.5 channel expression is low in myoblasts and increases dramatically with fusion; NGF induces early expression of these channels and causes expression after fusion to increase even further. NGF downregulates apamin-sensitive channels. NGF increases the rate of fall of the action potential recorded intracellularly from single myotubes with intracellular microelectrodes. The results confirm and extend those of previous studies in showing a functional role for NGF in the regulation of membrane properties of skeletal muscle. Moreover, the findings demonstrate that the different K+ channels in this preparation are regulated in a discoordinate manner. The divergent effects of NGF on expression of different K+ channels, however, do not appear sufficient to explain the NGF-induced increase in the rate of fall of the action potential. The changes during the falling phase may rather be due to increases in channel properties or may result from an increased driving force on the membrane potential secondary to the NGF-induced hyperpolarization.

  6. Selective regulation of nerve growth factor expression in developing cutaneous tissue by early sensory innervation

    Directory of Open Access Journals (Sweden)

    Vizard Tom N

    2011-04-01

    Full Text Available Abstract Background In the developing vertebrate peripheral nervous system, the survival of sympathetic neurons and the majority of sensory neurons depends on a supply of nerve growth factor (NGF from tissues they innervate. Although neurotrophic theory presupposes, and the available evidence suggests, that the level of NGF expression is completely independent of innervation, the possibility that innervation may regulate the timing or level of NGF expression has not been rigorously investigated in a sufficiently well-characterized developing system. Results To address this important question, we studied the influence of innervation on the regulation of NGF mRNA expression in the embryonic mouse maxillary process in vitro and in vivo. The maxillary process receives its innervation from predominantly NGF-dependent sensory neurons of the trigeminal ganglion and is the most densely innervated cutaneous territory with the highest levels of NGF in the embryo. When early, uninnervated maxillary processes were cultured alone, the level of NGF mRNA rose more slowly than in maxillary processes cultured with attached trigeminal ganglia. In contrast to the positive influence of early innervation on NGF mRNA expression, the levels of brain-derived neurotrophic factor (BDNF mRNA and neurotrophin-3 (NT3 mRNA rose to the same extent in early maxillary processes grown with and without trigeminal ganglia. The level of NGF mRNA, but not BDNF mRNA or NT3 mRNA, was also significantly lower in the maxillary processes of erbB3-/- mice, which have substantially fewer trigeminal neurons than wild-type mice. Conclusions This selective effect of initial innervation on target field NGF mRNA expression provokes a re-evaluation of a key assertion of neurotrophic theory that the level of NGF expression is independent of innervation.

  7. Density-dependent nerve growth factor regulation of Gs-alpha RNA in pheochromocytoma 12 cells.

    Science.gov (United States)

    Tjaden, G; Aguanno, A; Kumar, R; Benincasa, D; Gubits, R M; Yu, H; Dolan, K P

    1990-01-01

    Nerve growth factor (NGF) affects levels of the alpha subunit of the stimulatory G protein (Gs-alpha) in pheochromocytoma 12 cells in a bidirectional, density-dependent manner. Cells grown at high density responded to NGF treatment with increased levels of Gs-alpha mRNA and protein. Conversely, in cells grown in low-density cultures, levels of this mRNA were lowered by NGF treatment. Images PMID:2160599

  8. Atlastin regulates store-operated calcium entry for nerve growth factor-induced neurite outgrowth

    Science.gov (United States)

    Li, Jing; Yan, Bing; Si, Hongjiang; Peng, Xu; Zhang, Shenyuan L.; Hu, Junjie

    2017-01-01

    Homotypic membrane fusion of the endoplasmic reticulum (ER) is mediated by a class of dynamin-like GTPases known as atlastin (ATL). Depletion of or mutations in ATL cause an unbranched ER morphology and hereditary spastic paraplegia (HSP), a neurodegenerative disease characterized by axon shortening in corticospinal motor neurons and progressive spasticity of the lower limbs. How ER shaping is linked to neuronal defects is poorly understood. Here, we show that dominant-negative mutants of ATL1 in PC-12 cells inhibit nerve growth factor (NGF)-induced neurite outgrowth. Overexpression of wild-type or mutant ATL1 or depletion of ATLs alters ER morphology and affects store-operated calcium entry (SOCE) by decreasing STIM1 puncta formation near the plasma membrane upon calcium depletion of the ER. In addition, blockage of the STIM1-Orai pathway effectively abolishes neurite outgrowth of PC-12 cells stimulated by NGF. These results suggest that SOCE plays an important role in neuronal regeneration, and mutations in ATL1 may cause HSP, partly by undermining SOCE. PMID:28240257

  9. Down-regulation of nerve growth factor expression in the bladder by antisense oligonucleotides as new treatment for overactive bladder.

    Science.gov (United States)

    Kashyap, Mahendra; Kawamorita, Naoki; Tyagi, Vikas; Sugino, Yoshio; Chancellor, Michael; Yoshimura, Naoki; Tyagi, Pradeep

    2013-08-01

    Nerve growth factor over expression in the bladder has a role in overactive bladder symptoms via the mediation of functional changes in bladder afferent pathways. We studied whether blocking nerve growth factor over expression in bladder urothelium by a sequence specific gene silencing mechanism would suppress bladder overactivity and chemokine expression induced by acetic acid. Female Sprague-Dawley® rats anesthetized with isoflurane were instilled with 0.5 ml saline, scrambled or TYE™ 563 labeled antisense oligonucleotide targeting nerve growth factor (12 μM) alone or complexed with cationic liposomes for 30 minutes. The efficacy of nerve growth factor antisense treatments for acetic acid induced bladder overactivity was assessed by cystometry. Bladder nerve growth factor expression levels and cellular distribution were quantified by immunofluorescence staining and enzyme-linked immunosorbent assay. Effects on bladder chemokine expression were measured by Luminex® xMAP® analysis. Liposomes were needed for bladder uptake of oligonucleotide, as seen by the absence of bright red TYE 563 fluorescence in rats instilled with oligonucleotide alone. At 24 hours after liposome-oligonucleotide treatment baseline bladder activity during saline infusion was indistinct in the sham and antisense treated groups with a mean ± SEM intercontraction interval of 348 ± 55 and 390 ± 120 seconds, respectively. Acetic acid induced bladder overactivity was shown by a decrease in the intercontraction interval to a mean of 33.2% ± 4.0% of baseline in sham treated rats. However, the reduction was blunted to a mean of 75.8% ± 3.4% of baseline in rats treated with liposomal antisense oligonucleotide (p antisense treatment, as shown by enzyme-linked immunosorbent assay and reduced nerve growth factor immunoreactivity in the urothelium. Increased nerve growth factor in bladder tissue was associated with sICAM-1, sE-selectin, CXCL-10 and 1, leptin, MCP-1 and vascular endothelial

  10. KANK1 inhibits cell growth by inducing apoptosis though regulating CXXC5 in human malignant peripheral nerve sheath tumors

    Science.gov (United States)

    Cui, Zhibin; Shen, Yingjia; Chen, Kenny H.; Mittal, Suresh K.; Yang, Jer-Yen; Zhang, GuangJun

    2017-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are a type of rare sarcomas with a poor prognosis due to its highly invasive nature and limited treatment options. Currently there is no targeted-cancer therapy for this type of malignancy. Thus, it is important to identify more cancer driver genes that may serve as targets of cancer therapy. Through comparative oncogenomics, we have found that KANK1 was a candidate tumor suppressor gene (TSG) for human MPNSTs. Although KANK1 is known as a cytoskeleton regulator, its tumorigenic function in MPNSTs remains largely unknown. In this study, we report that restoration of KANK1 in human MPNST cells inhibits cell growth both in human cell culture and xenograft mice by increasing apoptosis. Consistently, knockdown of KANK1 in neurofibroma cells promoted cell growth. Using RNA-seq analysis, we identified CXXC5 and other apoptosis-related genes, and demonstrated that CXXC5 is regulated by KANK1. Knockdown of CXXC5 was found to diminish KANK1-induced apoptosis in MPNST cells. Thus, KANK1 inhibits MPNST cell growth though CXXC5 mediated apoptosis. Our results suggest that KANK1 may function as a tumor suppressor in human MPNSTs, and thus it may be useful for targeted therapy. PMID:28067315

  11. Cholinergic Abnormalities, Endosomal Alterations and Up-Regulation of Nerve Growth Factor Signaling in Niemann-Pick Type C Disease

    Directory of Open Access Journals (Sweden)

    Cabeza Carolina

    2012-03-01

    Full Text Available Abstract Background Neurotrophins and their receptors regulate several aspects of the developing and mature nervous system, including neuronal morphology and survival. Neurotrophin receptors are active in signaling endosomes, which are organelles that propagate neurotrophin signaling along neuronal processes. Defects in the Npc1 gene are associated with the accumulation of cholesterol and lipids in late endosomes and lysosomes, leading to neurodegeneration and Niemann-Pick type C (NPC disease. The aim of this work was to assess whether the endosomal and lysosomal alterations observed in NPC disease disrupt neurotrophin signaling. As models, we used i NPC1-deficient mice to evaluate the central cholinergic septo-hippocampal pathway and its response to nerve growth factor (NGF after axotomy and ii PC12 cells treated with U18666A, a pharmacological cellular model of NPC, stimulated with NGF. Results NPC1-deficient cholinergic cells respond to NGF after axotomy and exhibit increased levels of choline acetyl transferase (ChAT, whose gene is under the control of NGF signaling, compared to wild type cholinergic neurons. This finding was correlated with increased ChAT and phosphorylated Akt in basal forebrain homogenates. In addition, we found that cholinergic neurons from NPC1-deficient mice had disrupted neuronal morphology, suggesting early signs of neurodegeneration. Consistently, PC12 cells treated with U18666A presented a clear NPC cellular phenotype with a prominent endocytic dysfunction that includes an increased size of TrkA-containing endosomes and reduced recycling of the receptor. This result correlates with increased sensitivity to NGF, and, in particular, with up-regulation of the Akt and PLC-γ signaling pathways, increased neurite extension, increased phosphorylation of tau protein and cell death when PC12 cells are differentiated and treated with U18666A. Conclusions Our results suggest that the NPC cellular phenotype causes neuronal

  12. Nerve growth factor and injured peripheral nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Endong Shi; Bingchen Wang; Qingshan Sun

    2008-01-01

    Nerve growth factor (NGF) exhibits many biological activities, such as supply of nutrients, neuroprotection, and the generation and rehabilitation of injured nerves. The neuroprotective and neurotrophic qualities of NGF are generally recognized. NGF may enhance axonal regeneration and myelination of peripheral nerves, as well as cooperatively promote functional recovery of injured nerves and limbs. The clinical efficacy of NGF and its therapeutic potentials are reviewed here. This paper also reviews the latest NGF research developments for repairing injured peripheral nerve, thereby providing scientific evidence for the appropriate clinical application of NGF.

  13. Nerve growth factor-mediated regulation of pain signalling and proposed new intervention strategies in clinical pain management.

    Science.gov (United States)

    McKelvey, Laura; Shorten, George D; O'Keeffe, Gerard W

    2013-02-01

    Nerve growth factor (NGF) is the founding member of the neurotrophins family of proteins. It was discovered more than half a century ago through its ability to promote sensory and sympathetic neuronal survival and axonal growth during the development of the peripheral nervous system, and is the paradigmatic target-derived neurotrophic factor on which the neurotrophic hypothesis is based. Since that time, NGF has also been shown to play a key role in the generation of acute and chronic pain and in hyperalgesia in diverse pain states. NGF is expressed at high levels in damaged or inflamed tissues and facilitates pain transmission by nociceptive neurons through a variety of mechanisms. Genetic mutations in NGF or its tyrosine kinase receptor TrkA, lead to a congenital insensitivity or a decreased ability of humans to perceive pain. The hereditary sensory autonomic neuropathies (HSANs) encompass a spectrum of neuropathies that affect one's ability to perceive sensation. HSAN type IV and HSAN type V are caused by mutations in TrkA and NGF respectively. This review will focus firstly on the biology of NGF and its role in pain modulation. We will review neuropathies and clinical presentations that result from the disruption of NGF signalling in HSAN type IV and HSAN type V and review current advances in developing anti-NGF therapy for the clinical management of pain.

  14. Nerve growth factor blocks the glucose-induced down-regulation of caveolin-1 expression in Schwann cells via p75 neurotrophin receptor signaling.

    Science.gov (United States)

    Tan, Wenbin; Rouen, Shefali; Barkus, Kristin M; Dremina, Yelena S; Hui, Dongwei; Christianson, Julie A; Wright, Douglas E; Yoon, Sung Ok; Dobrowsky, Rick T

    2003-06-20

    Altered neurotrophism in diabetic peripheral neuropathy (DPN) is associated in part with substantial degenerative changes in Schwann cells (SCs) and an increased expression of the p75 neurotrophin receptor (p75NTR). Caveolin-1 (Cav-1) is highly expressed in adult SCs, and changes in its expression can regulate signaling through Erb B2, a co-receptor that mediates the effects of neuregulins in promoting SC growth and differentiation. We examined the hypothesis that hyperglycemia-induced changes in Cav-1 expression and p75NTR signaling may contribute to altered neurotrophism in DPN by modulating SC responses to neuregulins. In an animal model of type 1 diabetes, hyperglycemia induced a progressive decrease of Cav-1 in SCs of sciatic nerve that was reversed by insulin therapy. Treatment of primary neonatal SCs with 20-30 mm d-glucose, but not l-glucose, was sufficient to inhibit transcription from the Cav-1 promoter and decrease Cav-1 mRNA and protein expression. Hyperglycemia prolonged the kinetics of Erb B2 phosphorylation and significantly enhanced the mitogenic response of SCs to neuregulin1-beta1, and this effect was mimicked by the forced down-regulation of Cav-1. Intriguingly, nerve growth factor antagonized the enhanced mitogenic response of SCs to neuregulin1-beta1 and inhibited the glucose-induced down-regulation of Cav-1 transcription, mRNA, and protein expression through p75NTR-dependent activation of JNK. Our data suggest that Cav-1 down-regulation may contribute to altered neurotrophism in DPN by enhancing the response of SCs to neuregulins and that p75NTR-mediated JNK activation may provide a mechanism for the neurotrophic modulation of hyperglycemic stress.

  15. VAGUS NERVE STIMULATION REGULATES HEMOSTASIS IN SWINE

    OpenAIRE

    Czura, Christopher J.; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M.; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J.

    2010-01-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses pro-inflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and aft...

  16. Vagus nerve stimulation regulates hemostasis in swine.

    Science.gov (United States)

    Czura, Christopher J; Schultz, Arthur; Kaipel, Martin; Khadem, Anna; Huston, Jared M; Pavlov, Valentin A; Redl, Heinz; Tracey, Kevin J

    2010-06-01

    The central nervous system regulates peripheral immune responses via the vagus nerve, the primary neural component of the cholinergic anti-inflammatory pathway. Electrical stimulation of the vagus nerve suppresses proinflammatory cytokine release in response to endotoxin, I/R injury, and hypovolemic shock and protects against lethal hypotension. To determine the effect of vagus nerve stimulation on coagulation pathways, anesthetized pigs were subjected to partial ear resection before and after electrical vagus nerve stimulation. We observed that electrical vagus nerve stimulation significantly decreased bleeding time (pre-electrical vagus nerve stimulation = 1033 +/- 210 s versus post-electrical vagus nerve stimulation = 585 +/- 111 s; P vagus nerve stimulation = 48.4 +/- 6.8 mL versus post-electrical vagus nerve stimulation = 26.3 +/- 6.7 mL; P vagus nerve stimulation was independent of changes in heart rate or blood pressure and correlated with increased thrombin/antithrombin III complex generation in shed blood. These data indicate that electrical stimulation of the vagus nerve attenuates peripheral hemorrhage in a porcine model of soft tissue injury and that this protective effect is associated with increased coagulation factor activity.

  17. Let-7 microRNAs regenerate peripheral nerve regeneration by targeting nerve growth factor.

    Science.gov (United States)

    Li, Shiying; Wang, Xinghui; Gu, Yun; Chen, Chu; Wang, Yaxian; Liu, Jie; Hu, Wen; Yu, Bin; Wang, Yongjun; Ding, Fei; Liu, Yan; Gu, Xiaosong

    2015-03-01

    Peripheral nerve injury is a common clinical problem. Nerve growth factor (NGF) promotes peripheral nerve regeneration, but its clinical applications are limited by several constraints. In this study, we found that the time-dependent expression profiles of eight let-7 family members in the injured nerve after sciatic nerve injury were roughly similar to each other. Let-7 microRNAs (miRNAs) significantly reduced cell proliferation and migration of primary Schwann cells (SCs) by directly targeting NGF and suppressing its protein translation. Following sciatic nerve injury, the temporal change in let-7 miRNA expression was negatively correlated with that in NGF expression. Inhibition of let-7 miRNAs increased NGF secretion by primary cultured SCs and enhanced axonal outgrowth from a coculture of primary SCs and dorsal root gangalion neurons. In vivo tests indicated that let-7 inhibition promoted SCs migration and axon outgrowth within a regenerative microenvironment. In addition, the inhibitory effect of let-7 miRNAs on SCs apoptosis might serve as an early stress response to nerve injury, but this effect seemed to be not mediated through a NGF-dependent pathway. Collectively, our results provide a new insight into let-7 miRNA regulation of peripheral nerve regeneration and suggest a potential therapy for repair of peripheral nerve injury.

  18. Nerve growth factor facilitates perivascular innervation in neovasculatures of mice

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Goda

    2016-08-01

    Full Text Available It is well known that blood vessels including arterioles have a perivascular innervation. It is also widely accepted that perivascular nerves maintain vascular tone and regulate blood flow. Although there are currently prevailing opinions, unified views on the innervation of microcirculation in any organs have not been established. The present study was designed to investigate whether there are perivascular nerves innervated in microvessels and neovessels. Furthermore, we examined whether nerve growth factor (NGF can exert a promotional effect on perivascular nerve innervation in neovessels of Matrigel plugs. A Matrigel was subcutaneously implanted in mouse. The presence of perivascular nerves in Matrigel on Day 7–21 after the implantation was immunohistochemically studied. NGF or saline was subcutaneously administered by an osmotic mini-pump for a period of 3–14 days. The immunostaining of neovasculatures in Matrigel showed the presence of perivascular nerves on Day 21 after Matrigel injection. Perivascular nerve innervation of neovessels within Matrigel implanted in NGF-treated mice was observed in Day 17 after Matrigel implantation. However, NGF treatment did not increase numbers of neovessels in Matrigel. These results suggest that perivascular nerves innervate neovessels as neovasculatures mature and that NGF accelerates the innervation of perivascular nerves in neovessels.

  19. Chitosan conduits combined with nerve growth factor microspheres repair facial nerve defects

    Institute of Scientific and Technical Information of China (English)

    Huawei Liu; Weisheng Wen; Min Hu; Wenting Bi; Lijie Chen; Sanxia Liu; Peng Chen; Xinying Tan

    2013-01-01

    Microspheres containing nerve growth factor for sustained release were prepared by a compound method, and implanted into chitosan conduits to repair 10-mm defects on the right buccal branches of the facial nerve in rabbits. In addition, chitosan conduits combined with nerve growth factor or normal saline, as wel as autologous nerve, were used as controls. At 90 days post-surgery, the muscular atrophy on the right upper lip was more evident in the nerve growth factor and normal sa-line groups than in the nerve growth factor-microspheres and autologous nerve groups. Electro-physiological analysis revealed that the nerve conduction velocity and amplitude were significantly higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. Moreover, histological observation il ustrated that the di-ameter, number, alignment and myelin sheath thickness of myelinated nerves derived from rabbits were higher in the nerve growth factor-microspheres and autologous nerve groups than in the nerve growth factor and normal saline groups. These findings indicate that chitosan nerve conduits com-bined with microspheres for sustained release of nerve growth factor can significantly improve facial nerve defect repair in rabbits.

  20. Peripheral Nerve Regeneration Strategies: Electrically Stimulating Polymer Based Nerve Growth Conduits

    Science.gov (United States)

    Anderson, Matthew; Shelke, Namdev B.; Manoukian, Ohan S.; Yu, Xiaojun; McCullough, Louise D.; Kumbar, Sangamesh G.

    2017-01-01

    Treatment of large peripheral nerve damages ranges from the use of an autologous nerve graft to a synthetic nerve growth conduit. Biological grafts, in spite of many merits, show several limitations in terms of availability and donor site morbidity, and outcomes are suboptimal due to fascicle mismatch, scarring, and fibrosis. Tissue engineered nerve graft substitutes utilize polymeric conduits in conjunction with cues both chemical and physical, cells alone and or in combination. The chemical and physical cues delivered through polymeric conduits play an important role and drive tissue regeneration. Electrical stimulation (ES) has been applied toward the repair and regeneration of various tissues such as muscle, tendon, nerve, and articular tissue both in laboratory and clinical settings. The underlying mechanisms that regulate cellular activities such as cell adhesion, proliferation, cell migration, protein production, and tissue regeneration following ES is not fully understood. Polymeric constructs that can carry the electrical stimulation along the length of the scaffold have been developed and characterized for possible nerve regeneration applications. We discuss the use of electrically conductive polymers and associated cell interaction, biocompatibility, tissue regeneration, and recent basic research for nerve regeneration. In conclusion, a multifunctional combinatorial device comprised of biomaterial, structural, functional, cellular, and molecular aspects may be the best way forward for effective peripheral nerve regeneration. PMID:27278739

  1. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration.

  2. Nerve growth factor enhances sleep in rabbits.

    Science.gov (United States)

    Takahashi, S; Krueger, J M

    1999-04-02

    Nerve growth factor (NGF) elicits rapid-eye-movement sleep (REMS) in cats. Removal of NGF receptor-positive cholinergic basal forebrain neurons inhibits REMS in rats. The aim of the present study was to determine the effects of NGF on sleep and brain temperature (Tbr) in rabbits. Male rabbits were implanted with electroencephalograph (EEG) electrodes, a brain thermistor and an intraventricular (i.c.v.) guide cannula. Rabbits received human beta-NGF i.c.v. (0.01, 0.1, 1.0 or 10 microg] and on a separate day, 25 microl pyrogen-free saline i.c.v. as control. EEG and Tbr were recorded for 23 h after injections. The highest two doses of NGF increased both non-REMS and REMS across the 23-h recording period. REMS was enhanced dose-dependently. Tbr was not affected by any dose of NGF. These results suggest that NGF is involved in both REMS and non-REMS regulation.

  3. Nerve Growth Factor Decreases in Sympathetic and Sensory Nerves of Rats with Chronic Heart Failure

    Science.gov (United States)

    Lu, Jian

    2014-01-01

    Nerve growth factor (NGF) plays a critical role in the maintenance and survival of both sympathetic and sensory nerves. Also, NGF can regulate receptor expression and neuronal activity in the sympathetic and sensory neurons. Abnormalities in NGF regulation are observed in patients and animals with heart failure (HF). Nevertheless, the effects of chronic HF on the levels of NGF within the sympathetic and sensory nerves are not known. Thus, the ELISA method was used to assess the levels of NGF in the stellate ganglion (SG) and dorsal root ganglion (DRG) neurons of control rats and rats with chronic HF induced by myocardial infarction. Our data show for the first time that the levels of NGF were significantly decreased (P < 0.05) in the SG and DRG neurons 6–20 weeks after ligation of the coronary artery. In addition, a close relation was observed between the NGF levels and the left ventricular function. In conclusion, chronic HF impairs the expression of NGF in the sympathetic and sensory nerves. Given that sensory afferent nerves are engaged in the sympathetic nervous responses to somatic stimulation (i.e. muscle activity during exercise) via a reflex mechanism, our data indicate that NGF is likely responsible for the development of muscle reflex-mediated abnormal sympathetic responsiveness observed in chronic HF. PMID:24913185

  4. Exposure to nerve growth factor worsens nephrotoxic effect induced by Cyclosporine A in HK-2 cells.

    Directory of Open Access Journals (Sweden)

    Donatella Vizza

    Full Text Available Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkA(NTR and p75(NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 (NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75(NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A.

  5. Exposure to Nerve Growth Factor Worsens Nephrotoxic Effect Induced by Cyclosporine A in HK-2 Cells

    Science.gov (United States)

    Lofaro, Danilo; Toteda, Giuseppina; Lupinacci, Simona; Leone, Francesca; Gigliotti, Paolo; Papalia, Teresa; Bonofiglio, Renzo

    2013-01-01

    Nerve growth factor is a neurotrophin that promotes cell growth, differentiation, survival and death through two different receptors: TrkANTR and p75NTR. Nerve growth factor serum concentrations increase during many inflammatory and autoimmune diseases, glomerulonephritis, chronic kidney disease, end-stage renal disease and, particularly, in renal transplant. Considering that nerve growth factor exerts beneficial effects in the treatment of major central and peripheral neurodegenerative diseases, skin and corneal ulcers, we asked whether nerve growth factor could also exert a role in Cyclosporine A-induced graft nephrotoxicity. Our hypothesis was raised from basic evidence indicating that Cyclosporine A-inhibition of calcineurin-NFAT pathway increases nerve growth factor expression levels. Therefore, we investigated the involvement of nerve growth factor and its receptors in the damage exerted by Cyclosporine A in tubular renal cells, HK-2. Our results showed that in HK-2 cells combined treatment with Cyclosporine A + nerve growth factor induced a significant reduction in cell vitality concomitant with a down-regulation of Cyclin D1 and up-regulation of p21 levels respect to cells treated with Cyclosporine A alone. Moreover functional experiments showed that the co-treatment significantly up-regulated human p21promoter activity by involvement of the Sp1 transcription factor, whose nuclear content was negatively regulated by activated NFATc1. In addition we observed that the combined exposure to Cyclosporine A + nerve growth factor promoted an up-regulation of p75 NTR and its target genes, p53 and BAD leading to the activation of intrinsic apoptosis. Finally, the chemical inhibition of p75NTR down-regulated the intrinsic apoptotic signal. We describe two new mechanisms by which nerve growth factor promotes growth arrest and apoptosis in tubular renal cells exposed to Cyclosporine A. PMID:24244623

  6. Regulation of N- and L-type Ca2+ channels in adult frog sympathetic ganglion B cells by nerve growth factor in vitro and in vivo.

    Science.gov (United States)

    Lei, S; Dryden, W F; Smith, P A

    1997-12-01

    To examine mechanisms responsible for the long-term regulation of Ca2+-channels in an adult neuron, changes in whole cell Ba2+ current (IBa) were examined in adult bullfrog sympathetic ganglion B cells in vitro. Cells were cultured at low density in defined, serum free medium. After 15 days, total IBa was similar to the initial value, whereas IBa density was reduced by approximately 36%, presumably due to an increase in neuronal surface area. By contrast, IBa density remained constant after 6-15 days in the presence of murine beta-NGF (200 ng/ml), and total IBa was almost doubled. Inclusion of cytosine arabinoside (Ara-C; 10 microM) to inhibit proliferation of nonneuronal cells, did not affect the survival of neurons in the absence of nerve growth factor (NGF) nor did it attenuate IBa. Ara-C did not prevent the effect of NGF on IBa. There were three independent components to the action of NGF; during 6-9 days, it increased omega-conotoxin-GVIA-sensitive N-type IBa (IBa,N); increased nifedipine-sensitive L-type IBa (IBa,L) and decreased inactivation of the total Ba2+ conductance (gBa). The latter effect involved a selective decrease in the amplitude of one of the four kinetic components that describe the inactivation process. Total IBa was also 55.8% larger than control in the somata of B cells acutely dissociated from leopard frogs that had received prior subcutaneous injections of NGF. By contrast, injection of NGF antiserum decreased total IBa by 29.4%. There was less inactivation of gBa in B cells from NGF-injected animals than in cells from animals injected with NGF antiserum (P < 0.001). These data suggest that NGF-like molecule(s) play(s) a role in the maintenance of IBa in an adult amphibian sympathetic neuron; the presence of NGF may allow the neuron to maintain a constant relationship between cell size and current density. They also show that IBa inactivation in an adult neuron can be modulated in a physiologically relevant way by an extracellular ligand.

  7. Nerve Growth Factor, Brain-derived Neurotrophic Factor and Osteocalcin gene relationship in energy regulation, bone homeostasis and reproductive organs analyzed by mRNA quantitative evaluation and linear correlation analysis

    OpenAIRE

    Claudia Camerino; Elena Conte; Maria Cannone; Roberta Caloiero; Adriano Fonzino; Domenico Tricarico

    2016-01-01

    Nerve Growth Factor (NGF) / Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2 and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. B...

  8. Nerve growth factor improves ligament healing.

    Science.gov (United States)

    Mammoto, Takeo; Seerattan, Ruth A; Paulson, Kent D; Leonard, Catherine A; Bray, Robert C; Salo, Paul T

    2008-07-01

    Previous work has shown that innervation participates in normal ligament healing. The present study was performed to determine if exogenous nerve growth factor (NGF) would improve the healing of injured ligament by promoting reinnervation, blood flow, and angiogenesis. Two groups of 30 Sprague-Dawley rats underwent unilateral medial collateral ligament transection (MCL). One group was given 10 microg NGF and the other was given PBS via osmotic pump over 7 days after injury. After 7, 14, and 42 days, in vivo blood flow was measured using laser speckle perfusion imaging (LSPI). Morphologic assessments of nerve density, vascularity, and angiogenesis inhibitor production were done in three animals at each time point by immunohistochemical staining for the pan-neuronal marker PGP9.5, the endothelial marker vWF, and the angiogenesis inhibitor thrombospondin-2 (TSP-2). Ligament scar material and structural mechanical properties were assessed in seven rats at each time point. Increased nerve density was promoted by NGF at both 14 and 42 days. Exposure to NGF also led to increased ligament vascularity, as measured by histologic assessment of vWF immunohistochemistry, although LSPI-measured blood flow was not significantly different from controls. NGF treatment also led to decreased expression of TSP-2 at 14 days. Mechanical testing revealed that exposure to NGF increased failure load by 40%, ultimate tensile strength by 55%, and stiffness by 30% at 42 days. There were no detectable differences between groups in creep properties. The results suggest that local application of NGF can improve ligament healing by promoting both reinnervation and angiogenesis, and results in scars with enhanced mechanical properties.

  9. Plant Growth Regulators.

    Science.gov (United States)

    Nickell, Louis G.

    1978-01-01

    Describes the effect of "plant growth regulators" on plants, such as controlling the flowering, fruit development, plant size, and increasing crop yields. Provides a list of plant growth regulators which includes their chemical, common, and trade names, as well as their different use(s). (GA)

  10. Nerve growth factor interactions with mast cells.

    Science.gov (United States)

    Kritas, S K; Caraffa, A; Antinolfi, P; Saggini, A; Pantalone, A; Rosati, M; Tei, M; Speziali, A; Saggini, R; Pandolfi, F; Cerulli, G; Conti, P

    2014-01-01

    Neuropeptides are involved in neurogenic inflammation where there is vasodilation and plasma protein extravasion in response to this stimulus. Nerve growth factor (NGF), identified by Rita Levi Montalcini, is a neurotrophin family compound which is important for survival of nociceptive neurons during their development. Therefore, NGF is an important neuropeptide which mediates the development and functions of the central and peripheral nervous system. It also exerts its proinflammatory action, not only on mast cells but also in B and T cells, neutrophils and eosinophils. Human mast cells can be activated by neuropeptides to release potent mediators of inflammation, and they are found throughout the body, especially near blood vessels, epithelial tissue and nerves. Mast cells generate and release NGF after degranulation and they are involved in iperalgesia, neuroimmune interactions and tissue inflammation. NGF is also a potent degranulation factor for mast cells in vitro and in vivo, promoting differentiation and maturation of these cells and their precursor, acting as a co-factor with interleukin-3. In conclusion, these studies are focused on cross-talk between neuropeptide NGF and inflammatory mast cells.

  11. Growth cone neurotransmitter receptor activation modulates electric field-guided nerve growth.

    Science.gov (United States)

    Erskine, L; McCaig, C D

    1995-10-01

    We have studied the interactions between two nerve guidance cues, which alone induce substantial growth cone turning: endogenous neurotransmitters and small dc electric fields. d-tubocurarine, a nicotinic AChR (acetylcholine receptor) antagonist, inhibited field-induced cathodal orientation of cultured neurites, whereas atropine, a muscarinic AChR blocker, and suramin, a P2-purinoceptor antagonist, markedly enhanced the guidance properties of the applied field. These experiments implicate the activation of growth cone nicotinic AChRs by self-released acetylcholine in the mechanism underpinning electric field-induced neurite orientation and raise the possibility that growth cones release neurotransmitter prior to target interaction in order to assist their own pathfinding. Additionally, they provide the first evidence that coactivation of several neurotransmitter receptors may interact to regulate directed nerve growth. Such interaction in vivo, where guidance signals coexist, would add further levels of control to neurite guidance.

  12. Mechanical tension promotes skin nerve regeneration by upregulating nerve growth factor expression

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao; Dechang Wang; Ran Huo; Yibing Wang; Yongqiang Feng; Qiang Li

    2013-01-01

    This study aimed to explore the role of mechanical tension in hypertrophic scars and the change in nerve density using hematoxylin-eosin staining and S100 immunohistochemistry, and to observe the expression of nerve growth factor by western blot analysis. The results demonstrated that mechanical tension contributed to the formation of a hyperplastic scar in the back skin of rats, in conjunction with increases in both nerve density and nerve growth factor expression in the scar tissue. These experimental findings indicate that the cutaneous nervous system plays a role in hypertrophic scar formation caused by mechanical tension.

  13. Two thyroid hormone regulated genes, the beta-subunits of nerve growth factor (NGFB) and thyroid stimulating hormone (TSHB), are located less than 310 kb apart in both human and mouse genomes.

    Science.gov (United States)

    Dracopoli, N C; Rose, E; Whitfield, G K; Guidon, P T; Bale, S J; Chance, P A; Kourides, I A; Housman, D E

    1988-08-01

    Two thyroid hormone regulated genes, the beta-subunits of nerve growth factor (NGFB) and thyroid stimulating hormone (TSHB), have been assigned to mouse chromosome 3 and human chromosome 1p22. We have used the techniques of linkage analysis and pulsed field gel electrophoresis to determine the proximity of these two antithetically regulated genes in this conserved linkage group. Four novel restriction fragment length polymorphisms were identified at the human TSHB gene. Two-point linkage analysis between TSHB and NGFB in 46 families, including the Centre d'Etude du Polymorphisme Humain (CEPH) reference panel, demonstrated no recombination (theta = 0.00, Z = 42.8). Analysis of this region by pulsed field gel electrophoresis showed that the genes for TSHB and NGFB are located less than 310 kb apart in man and 220 kb in the mouse.

  14. Nerve growth factor (NGF)-mediated regulation of p75(NTR) expression contributes to chemotherapeutic resistance in triple negative breast cancer cells.

    Science.gov (United States)

    Chakravarthy, Reka; Mnich, Katarzyna; Gorman, Adrienne M

    2016-09-30

    Triple negative breast cancer [TNBC] cells are reported to secrete the neurotrophin nerve growth factor [NGF] and express its receptors, p75 neurotrophin receptor [p75(NTR)] and TrkA, leading to NGF-activated pro-survival autocrine signaling. This provides a rationale for NGF as a potential therapeutic target for TNBC. Here we show that exposure of TNBC cells to NGF leads to increased levels of p75(NTR), which was diminished by NGF-neutralizing antibody or NGF inhibitors [Ro 08-2750 and Y1086]. NGF-mediated increase in p75(NTR) levels were partly due to increased transcription and partly due to inhibition of proteolytic processing of p75(NTR). In contrast, proNGF caused a decrease in p75(NTR) levels. Functionally, NGF-induced increase in p75(NTR) caused a decrease in the sensitivity of TNBC cells to apoptosis induction. In contrast, knock-down of p75(NTR) using shRNA or small molecule inhibition of NGF-p75(NTR) interaction [using Ro 08-2750] sensitized TNBC cells to drug-induced apoptosis. In patient samples, the expression of NGF and NGFR [the p75(NTR) gene] mRNA are positively correlated in several subtypes of breast cancer, including basal-like breast cancer. Together these data suggest a positive feedback loop through which NGF-mediated upregulation of p75(NTR) can contribute to the chemo-resistance of TNBC cells.

  15. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    OpenAIRE

    Hong-fei Li; Yi-ru Wang; Hui-ping Huo; Yue-xiang Wang; Jie Tang

    2015-01-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for g...

  16. Vascular endothelial growth factor promotes peripheral nerve regeneration after sciatic nerve transection in rat

    Directory of Open Access Journals (Sweden)

    Mohammadi Rahim

    2013-12-01

    Full Text Available 【Abstract】Objective: To evaluate the local effect of vascular endothelial growth factor (VEGF on transected sciatic nerve regeneration. Methods: Sixty male white Wistar rats were divided into four experimental groups randomly (n=15. In transected group the left sciatic nerve was transected and the stump was fixed to adjacent muscle. In treatment group the defect was bridged using a silicone graft filled with 10 µL VEGF. In silicone group the graft was filled with phosphate-buffered saline. In sham-operated group the sciatic nerve was ex- posed and manipulated. Each group was subdivided into three subgroups with five animals in each and nerve fibers were studied 4, 8 and 12 weeks after operation. Results: Behavioral test, functional study of sciatic nerve, gastrocnemius muscle mass and morphometric indi- ces confirmed a faster recovery of regenerated axons in VEGF group than in silicone group (P<0.05. In immunohistochemi- cal assessment, reactions to S-100 in VEGF group were more positive than that in silicone group. Conclusion: Local administration of VEGF will im- prove functional recovery and morphometric indices of sci- atic nerve. Key words: Peripheral nerves; Nerve regeneration; Sciatic nerve; Vascular endothelial growth factor

  17. Expression of nerve growth factor and its receptor in distracted tibial nerve after limb lengthening.

    Science.gov (United States)

    Shao, Heng; Shu, Hengsheng; Wang, Chunmei; Yuan, Wu; Li, Yunsheng

    2013-02-01

    Despite many experimental and clinical studies conducted on distraction osteogenesis (DO) in the past decade, changes in the surrounding tissues that occur after the procedure remains poorly understood. To study the biochemical changes of recovery in nerve tissues upon DO-induced nerve injury, we prepared a rabbit model of tibia lengthening to observe the expression pattern of nerve growth factor (NGF) and low-affinity NGF receptor (p75NGFR) in the distracted tibial nerve. The distracted tibial nerve was harvested at various time points during the consolidation period of new bone formation and immunohistochemical staining was performed to detect the expression of NGF and p75NGFR. The expression levels of NGF and p75NGFR were found to be different at various times after DO. The changes in expression of these two cellular factors show similar tendencies with significantly elevated expression in Schwann cells at 7 and 14 days after distraction, but low or undetectable levels of expression at 0, 28, and 56 days. These results suggest that NGF and p75NGFR may play important roles in the adaptive process of the distracted nerve. NGF and p75NGFR are autocrine growth factors present in the distracted nerve during the early consolidation period. NGF interacts with p75NGFR to promote damage repair and reconstruction of nerves. Together, this study furthers the understanding of the relative mechanisms of nerve repair, as well as provides a further basis for the clinical application of neurotrophins.

  18. The glucuronyltransferase GlcAT-P is required for stretch growth of peripheral nerves in Drosophila.

    Directory of Open Access Journals (Sweden)

    Rahul Pandey

    Full Text Available During development, the growth of the animal body is accompanied by a concomitant elongation of the peripheral nerves, which requires the elongation of integrated nerve fibers and the axons projecting therein. Although this process is of fundamental importance to almost all organisms of the animal kingdom, very little is known about the mechanisms regulating this process. Here, we describe the identification and characterization of novel mutant alleles of GlcAT-P, the Drosophila ortholog of the mammalian glucuronyltransferase b3gat1. GlcAT-P mutants reveal shorter larval peripheral nerves and an elongated ventral nerve cord (VNC. We show that GlcAT-P is expressed in a subset of neurons in the central brain hemispheres, in some motoneurons of the ventral nerve cord as well as in central and peripheral nerve glia. We demonstrate that in GlcAT-P mutants the VNC is under tension of shorter peripheral nerves suggesting that the VNC elongates as a consequence of tension imparted by retarded peripheral nerve growth during larval development. We also provide evidence that for growth of peripheral nerve fibers GlcAT-P is critically required in hemocytes; however, glial cells are also important in this process. The glial specific repo gene acts as a modifier of GlcAT-P and loss or reduction of repo function in a GlcAT-P mutant background enhances VNC elongation. We propose a model in which hemocytes are required for aspects of glial cell biology which in turn affects the elongation of peripheral nerves during larval development. Our data also identifies GlcAT-P as a first candidate gene involved in growth of integrated peripheral nerves and therefore establishes Drosophila as an amenable in-vivo model system to study this process at the cellular and molecular level in more detail.

  19. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration

    OpenAIRE

    Mahmoud, Ahmed I.; O’Meara, Caitlin C.; Gemberling, Matthew; Zhao, Long; Bryant, Donald M.; Zheng, Ruimao; Gannon, Joseph B.; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F.; Burns, Caroline E.; Burns, C. Geoffrey; MacRae, Calum A.; Poss, Kenneth D.; Lee, Richard T.

    2015-01-01

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte...

  20. Dynamic regulation of Schwann cell enhancers after peripheral nerve injury.

    Science.gov (United States)

    Hung, Holly A; Sun, Guannan; Keles, Sunduz; Svaren, John

    2015-03-13

    Myelination of the peripheral nervous system is required for axonal function and long term stability. After peripheral nerve injury, Schwann cells transition from axon myelination to a demyelinated state that supports neuronal survival and ultimately remyelination of axons. Reprogramming of gene expression patterns during development and injury responses is shaped by the actions of distal regulatory elements that integrate the actions of multiple transcription factors. We used ChIP-seq to measure changes in histone H3K27 acetylation, a mark of active enhancers, to identify enhancers in myelinating rat peripheral nerve and their dynamics after demyelinating nerve injury. Analysis of injury-induced enhancers identified enriched motifs for c-Jun, a transcription factor required for Schwann cells to support nerve regeneration. We identify a c-Jun-bound enhancer in the gene for Runx2, a transcription factor induced after nerve injury, and we show that Runx2 is required for activation of other induced genes. In contrast, enhancers that lose H3K27ac after nerve injury are enriched for binding sites of the Sox10 and early growth response 2 (Egr2/Krox20) transcription factors, which are critical determinants of Schwann cell differentiation. Egr2 expression is lost after nerve injury, and many Egr2-binding sites lose H3K27ac after nerve injury. However, the majority of Egr2-bound enhancers retain H3K27ac, indicating that other transcription factors maintain active enhancer status after nerve injury. The global epigenomic changes in H3K27ac deposition pinpoint dynamic changes in enhancers that mediate the effects of transcription factors that control Schwann cell myelination and peripheral nervous system responses to nerve injury.

  1. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury

    Directory of Open Access Journals (Sweden)

    Hong-fei Li

    2015-01-01

    Full Text Available Nerve growth factor (NGF plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  2. Neuroprotective effects of ultrasound-guided nerve growth factor injections after sciatic nerve injury.

    Science.gov (United States)

    Li, Hong-Fei; Wang, Yi-Ru; Huo, Hui-Ping; Wang, Yue-Xiang; Tang, Jie

    2015-11-01

    Nerve growth factor (NGF) plays an important role in promoting neuroregeneration after peripheral nerve injury. However, its effects are limited by its short half-life; it is therefore important to identify an effective mode of administration. High-frequency ultrasound (HFU) is increasingly used in the clinic for high-resolution visualization of tissues, and has been proposed as a method for identifying and evaluating peripheral nerve damage after injury. In addition, HFU is widely used for guiding needle placement when administering drugs to a specific site. We hypothesized that HFU guiding would optimize the neuroprotective effects of NGF on sciatic nerve injury in the rabbit. We performed behavioral, ultrasound, electrophysiological, histological, and immunohistochemical evaluation of HFU-guided NGF injections administered immediately after injury, or 14 days later, and compared this mode of administration with intramuscular NGF injections. Across all assessments, HFU-guided NGF injections gave consistently better outcomes than intramuscular NGF injections administered immediately or 14 days after injury, with immediate treatment also yielding better structural and functional results than when the treatment was delayed by 14 days. Our findings indicate that NGF should be administered as early as possible after peripheral nerve injury, and highlight the striking neuroprotective effects of HFU-guided NGF injections on peripheral nerve injury compared with intramuscular administration.

  3. Cardiac fibroblasts regulate sympathetic nerve sprouting and neurocardiac synapse stability.

    Directory of Open Access Journals (Sweden)

    Céline Mias

    Full Text Available Sympathetic nervous system (SNS plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of

  4. Cardiac Fibroblasts Regulate Sympathetic Nerve Sprouting and Neurocardiac Synapse Stability

    Science.gov (United States)

    Mias, Céline; Coatrieux, Christelle; Denis, Colette; Genet, Gaël; Seguelas, Marie-Hélène; Laplace, Nathalie; Rouzaud-Laborde, Charlotte; Calise, Denis; Parini, Angelo; Cussac, Daniel; Pathak, Atul; Sénard, Jean-Michel; Galés, Céline

    2013-01-01

    Sympathetic nervous system (SNS) plays a key role in cardiac homeostasis and its deregulations always associate with bad clinical outcomes. To date, little is known about molecular mechanisms regulating cardiac sympathetic innervation. The aim of the study was to determine the role of fibroblasts in heart sympathetic innervation. RT-qPCR and western-blots analysis performed in cardiomyocytes and fibroblasts isolated from healthy adult rat hearts revealed that Pro-Nerve growth factor (NGF) and pro-differentiating mature NGF were the most abundant neurotrophins expressed in cardiac fibroblasts while barely detectable in cardiomyocytes. When cultured with cardiac fibroblasts or fibroblast-conditioned medium, PC12 cells differentiated into/sympathetic-like neurons expressing axonal marker Tau-1 at neurites in contact with cardiomyocytes. This was prevented by anti-NGF blocking antibodies suggesting a paracrine action of NGF secreted by fibroblasts. When co-cultured with cardiomyocytes to mimic neurocardiac synapse, differentiated PC12 cells exhibited enhanced norepinephrine secretion as quantified by HPLC compared to PC12 cultured alone while co-culture with fibroblasts had no effect. However, when supplemented to PC12-cardiomyocytes co-culture, fibroblasts allowed long-term survival of the neurocardiac synapse. Activated fibroblasts (myofibroblasts) isolated from myocardial infarction rat hearts exhibited significantly higher mature NGF expression than normal fibroblasts and also promoted PC12 cells differentiation. Within the ischemic area lacking cardiomyocytes and neurocardiac synapses, tyrosine hydroxylase immunoreactivity was increased and associated with local anarchical and immature sympathetic hyperinnervation but tissue norepinephrine content was similar to that of normal cardiac tissue, suggesting depressed sympathetic function. Collectively, these findings demonstrate for the first time that fibroblasts are essential for the setting of cardiac sympathetic

  5. ATF3 increases the intrinsic growth state of DRG neurons to enhance peripheral nerve regeneration.

    Science.gov (United States)

    Seijffers, Rhona; Mills, Charles D; Woolf, Clifford J

    2007-07-25

    Peripheral axons of dorsal root ganglion (DRG) neurons, but not their central axons in the dorsal columns, regenerate after injury. However, if the neurons are conditioned by a peripheral nerve injury into an actively growing state, the rate of peripheral axonal growth is accelerated and the injured central axons begin to regenerate. The growth-promoting effects of conditioning injuries have two components, increased axonal growth and a reduced response to inhibitory myelin cues. We have examined which transcription factors activated by peripheral axonal injury may mediate the conditioning effect by regulating expression of effectors that increase the intrinsic growth state of the neurons. Activating transcription factor 3 (ATF3) is a prime candidate because it is induced in all injured DRG neurons after peripheral, but not central, axonal damage. To investigate if ATF3 promotes regeneration, we generated transgenic mice that constitutively express this transcription factor in non-injured adult DRG neurons. The rate of peripheral nerve regeneration was enhanced in the transgenic mice to an extent comparable to that produced by a preconditioning nerve injury. The expression of some growth-associated genes, such as SPRR1A, but not others like GAP-43, was increased in the non-injured neurons. ATF3 increased DRG neurite elongation when cultured on permissive substrates but did not overcome the inhibitory effects of myelin or promote central axonal regeneration in the spinal cord in vivo. We conclude that ATF3 contributes to nerve regeneration by increasing the intrinsic growth state of injured neurons.

  6. Nerve growth factor: a novel mediator in asthma

    NARCIS (Netherlands)

    Vries, Annick de

    2001-01-01

    Nerve growth factor (NGF) is known for years for its properties to induce neurite outgrowth. Its role in inflammation has recently been discovered. In this thesis the role of NGF in allergic asthma is shown. In chapter 2 we showed that NGF can induce airway hyperresponsiveness in guinea pigs. Sim

  7. Nerve growth factor loaded heparin/chitosan scaffolds for accelerating peripheral nerve regeneration.

    Science.gov (United States)

    Li, Guicai; Xiao, Qinzhi; Zhang, Luzhong; Zhao, Yahong; Yang, Yumin

    2017-09-01

    Artificial chitosan scaffolds have been widely investigated for peripheral nerve regeneration. However, the effect was not as good as that of autologous grafts and therefore could not meet the clinical requirement. In the present study, the nerve growth factor (NGF) loaded heparin/chitosan scaffolds were fabricated via electrostatic interaction for further improving nerve regeneration. The physicochemical properties including morphology, wettability and composition were measured. The heparin immobilization, NGF loading and release were quantitatively and qualitatively characterized, respectively. The effect of NGF loaded heparin/chitosan scaffolds on nerve regeneration was evaluated by Schwann cells culture for different periods. The results showed that the heparin immobilization and NGF loading did not cause the change of bulk properties of chitosan scaffolds except for morphology and wettability. The pre-immobilization of heparin in chitosan scaffolds could enhance the stability of subsequently loaded NGF. The NGF loaded heparin/chitosan scaffolds could obviously improve the attachment and proliferation of Schwann cells in vitro. More importantly, the NGF loaded heparin/chitosan scaffolds could effectively promote the morphology development of Schwann cells. The study may provide a useful experimental basis to design and develop artificial implants for peripheral nerve regeneration and other tissue regeneration. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Nerve Growth Factor, Brain-derived Neurotrophic Factor and Osteocalcin gene relationship in energy regulation, bone homeostasis and reproductive organs analyzed by mRNA quantitative evaluation and linear correlation analysis

    Directory of Open Access Journals (Sweden)

    Claudia Camerino

    2016-10-01

    Full Text Available Nerve Growth Factor (NGF / Brain-derived Neurotrophic Factor (BDNF and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2 and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt and its receptor(Oxtr was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf/p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300%, 100% and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf/p75NTR in BAT is

  9. Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Osteocalcin Gene Relationship in Energy Regulation, Bone Homeostasis and Reproductive Organs Analyzed by mRNA Quantitative Evaluation and Linear Correlation Analysis

    Science.gov (United States)

    Camerino, Claudia; Conte, Elena; Cannone, Maria; Caloiero, Roberta; Fonzino, Adriano; Tricarico, Domenico

    2016-01-01

    Nerve Growth Factor (NGF)/Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF, and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2, and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt) and its receptor(Oxtr) was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf /p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300, 100, and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf, or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf /p75NTR in BAT is consistent

  10. Nerve Growth Factor, Brain-Derived Neurotrophic Factor and Osteocalcin Gene Relationship in Energy Regulation, Bone Homeostasis and Reproductive Organs Analyzed by mRNA Quantitative Evaluation and Linear Correlation Analysis.

    Science.gov (United States)

    Camerino, Claudia; Conte, Elena; Cannone, Maria; Caloiero, Roberta; Fonzino, Adriano; Tricarico, Domenico

    2016-01-01

    Nerve Growth Factor (NGF)/Brain-derived Neurotrophic Factor (BDNF) and osteocalcin share common effects regulating energy, bone mass, reproduction and neuronal functions. To investigate on the gene-relationship between NGF, BDNF, and Osteocalcin we compared by RT-PCR the transcript levels of Ngf, Bdnf and Osteocalcin as well as of their receptors p75NTR/NTRK1, NTRK2, and Gprc6a in brain, bone, white/brown adipose tissue (WAT/BAT) and reproductive organs of 3 months old female and male mice. Brain and bone were used as positive controls for NGF/BDNF and Osteocalcin respectively. The role of oxitocin(Oxt) and its receptor(Oxtr) was also investigated. Ngf expression shows an opposite trend compared to Bdnf. Ngf /p75NTR expression is 50% higher in BAT than brain, in both genders, but lower in bone. In contrast, Bdnf expression in bone is higher than in brain, but low in BAT/WAT. We found Osteocalcin gene expressed in brain in both genders, but Gprc6a expression is low in brain and BAT/WAT. As expected, Gprc6a gene is expressed in bone. Oxt gene was markedly expressed in brain, Oxtr in the ovaries and in fat and bone in both genders. Ngf is highly expressed in reproductive tissues and p75NTR mRNA levels are respectively 300, 100, and 50% higher in testis/ovaries/uterus than in brain. In contrast, BDNF genes are not expressed in reproductive tissues. As expected, Gprc6a is expressed in testis but not in the ovaries/uterus. A significant correlation was found between the expression levels of the gene ligands and their receptors in brain, BAT and testis suggesting a common pathway of different genes in these tissues in either male and female. Changes in the expression levels of osteocalcin, Ngf, or Bdnf genes may mutually affect the expression levels of the others. Moreover, it may be possible that different ligands may operate through different receptor subtypes. Oxt and Oxtr failed to show significant correlation. The up-regulation of Ngf /p75NTR in BAT is consistent

  11. Nerve Growth Factor: A Focus on Neuroscience and Therapy

    Science.gov (United States)

    Aloe, Luigi; Rocco, Maria Luisa; Omar Balzamino, Bijorn; Micera, Alessandra

    2015-01-01

    Nerve growth factor (NGF) is the firstly discovered and best characterized neurotrophic factor, known to play a critical protective role in the development and survival of sympathetic, sensory and forebrain cholinergic neurons. NGF promotes neuritis outgrowth both in vivo and in vitro and nerve cell recovery after ischemic, surgical or chemical injuries. Recently, the therapeutic property of NGF has been demonstrated on human cutaneous and corneal ulcers, pressure ulcer, glaucoma, maculopathy and retinitis pigmentosa. NGF eye drops administration is well tolerated, with no detectable clinical evidence of systemic or local adverse effects. The aim of this review is to summarize these biological properties and the potential clinical development of NGF. PMID:26411962

  12. Nerve growth factor and receptor expression in rheumatoid arthritis and spondyloarthritis

    NARCIS (Netherlands)

    Barthel, C.; Yeremenko, N.; Jacobs, R.; Schmidt, R.E.; Bernateck, M.; Zeidler, H.; Tak, P.P.; Baeten, D.; Rihl, M.

    2009-01-01

    Introduction We previously described the presence of nerve growth factor receptors in the inflamed synovial compartment. Here we investigated the presence of the corresponding nerve growth factors, with special focus on nerve growth factor (NGF). Methods mRNA expression levels of four ligands (NGF,

  13. AGROCHEMICALS GROWTH REGULATORS ON ALFALFA

    Directory of Open Access Journals (Sweden)

    Buldykova I. A.

    2015-04-01

    Full Text Available One of the methods of increasing the productivity of alfalfa is the use of growth regulators, and the use of polymeric compositions of growth regulators, binders with synthesized growth regulators of sim-triazine series is promising with the possibility of creating environmentally friendly technologies for growing alfalfa. Studies have shown that the application of the test on alfalfa growth regulators has a positive effect on growth, physiological and morphogenetic processes, plant resistance to adverse environmental conditions. Intensity impact on plant growth regulators depends on the type of plant growth regulators, concentration and method of application. Processing alfalfa seed growth regulators on germination increases energy 3,0-14,0 % germination on 8,0-17,0 %. Processing plant growth regulators to enhance the growth of plants in height (on the 7th day – 2,6-11,9 % , on the 14th 41,9-48,0 % , the growth of aboveground biomass , expands on the number of productive branches of the 1st ( 24,1-41,3 % and 2nd order (21,7-55,0 %. Pre-sowing seed treatment and plant growth regulators alfalfa sim- triazine series contributed to the increase in seed yield of 15,5 %. On average, the yield of green mass increased by 0,8-2,4 t /ha or 5,2-15,5 % and seed yield at 0,19-0,42 h/ha or 8,7-19, 3 %. Growth regulators of sim-triazine series increase the protein content of the vegetative mass of alfalfa at 3,2-4,6 %

  14. ENDOCANNABINOIDS INHIBIT RELEASE OF NERVE GROWTH FACTOR BY INFLAMMATION-ACTIVATED MAST CELLS

    OpenAIRE

    2011-01-01

    Abstract Nerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic ce...

  15. Neuronal changes resulting in up-regulation of alpha-1 adrenoceptors after peripheral nerve injury

    Institute of Scientific and Technical Information of China (English)

    Peter D.Drummond

    2014-01-01

    Under normal conditions, the sympathetic neurotransmitter noradrenaline inhibits the pro-duction and release of pro-inlfammatory cytokines. However, after peripheral nerve and tissue injury, pro-inflammatory cytokines appear to induce the expression of the alpha1A-adreno-ceptor subtype on immune cells and perhaps also on other cells in the injured tissue. In turn, noradrenaline may act on up-regulated alpha1-adrenoceptors to increase the production of the pro-inflammatory cytokine interleukin-6. In addition, the release of inflammatory mediators and nerve growth factor from keratinocytes and other cells may augment the expression of al-pha1-adrenoceptors on peripheral nerve ifbers. Consequently, nociceptive afferents acquire an abnormal excitability to adrenergic agents, and inlfammatory processes build. These mechanisms could contribute to the development of sympathetically maintained pain in conditions such as post-herpetic neuralgia, cutaneous neuromas, amputation stump pain and complex regional pain syndrome.

  16. Chance, creativity, and the discovery of the nerve growth factor.

    Science.gov (United States)

    de Romo, Ana Cecilia Rodríguez

    2007-01-01

    This essay analyzes the history of the Nerve Growth Factor (NGF) discovery, relating some of the principles of the theory of scientific creativity to the cognitive and personal qualities of the scientists that participated in the discovery, particularly Rita Levi-Montalcini and Viktor Hamburger. The discovery of NGF is especially attractive for the history of science as it involves chance, luck, creativity, and some extraordinary scientists.

  17. Comparison of rabbit facial nerve regeneration in nerve growth factor-containing silicone tubes to that in autologous neural grafts.

    Science.gov (United States)

    Spector, J G; Lee, P; Derby, A; Roufa, D G

    1995-11-01

    Previous reports suggest that nerve growth factor (NGF) enhanced nerve regeneration in rabbit facial nerves. We compared rabbit facial nerve regeneration in 10-mm silicone tubes prefilled with NGF or cytochrome C (Cyt C), bridging an 8-mm nerve gap, to regeneration of 8-mm autologous nerve grafts. Three weeks following implantation, NGF-treated regenerates exhibited a more mature fascicular organization and more extensive neovascularization than Cyt C-treated controls. Morphometric analysis at the middle of the tube of 3- and 5-week regenerates revealed no significant difference in the mean number of myelinated or unmyelinated axons between NGF- and Cyt C-treated implants. However, when the numbers of myelinated fibers in 5-week regenerates were compared to those in their respective preoperative controls, NGF-treated regenerates had recovered a significantly greater percentage of myelinated axons than Cyt C-treated implants (46% versus 18%, respectively). The number of regenerating myelinated axons in the autologous nerve grafts at 5 weeks was significantly greater than the number of myelinated axons in the silicone tubes. However, in the nerve grafts the majority of the axons were found in the extrafascicular connective tissue (66%). The majority of these myelinated fibers did not find their way into the distal nerve stump. Thus, although the number of regenerating myelinated axons within the nerve grafts is greater than that of axons within silicone tube implants, functional recovery of autologous nerve graft repairs may not be superior to that of intubational repairs.

  18. Nutritional regulation of fetal growth.

    Science.gov (United States)

    Bloomfield, Frank H; Jaquiery, Anne L; Oliver, Mark H

    2013-01-01

    Fetal growth is largely regulated by nutritional supply. The placenta is responsible for fetal nutrient supply for much of pregnancy, but in early pregnancy nutrition is histiotrophic. Both placental size and efficiency, and fetal growth, may be affected by maternal nutritional state before and during very early pregnancy. In contrast, manipulating maternal nutrition during later stages of pregnancy has a smaller than expected effect on fetal growth. Maternal nutrition before and during early pregnancy also has a greater effect on gestation length than maternal nutrition later in pregnancy, suggesting that nutritional status may regulate both fetal growth trajectory and gestation length and that these two outcomes may be linked. Thus, determination of the nutritional factors regulating fetal growth, and potentially postnatal growth and body phenotype, may lie with the maternal nutritional status even before conception.

  19. Efficacy of glial growth factor and nerve growth factor on the recovery of traumatic facial paralysis.

    Science.gov (United States)

    Yildiz, Mucahit; Karlidag, Turgut; Yalcin, Sinasi; Ozogul, Candan; Keles, Erol; Alpay, Hayrettin Cengiz; Yanilmaz, Muhammed

    2011-08-01

    The aim of this study was to assess the effects of Glial growth factor (GGF) and nerve growth factor (NGF) on nerve regeneration in facial nerve anastomosis. In this study, approximately a 1-mm segment was resected from the facial nerve and the free ends were anastomosed. All animals underwent the same surgical procedure and 30 rabbits were grouped randomly in three groups. Control group, the group without any medications; NGF group, the group receiving 250 ng/0.1 ml NGF in the epineurium at the site of anastomosis; GBF group, the group receiving 500 ng/0.1 ml GGF in the epineurium at the site of anastomosis. Medications were given at the time of surgery, and at 24 and 48 h postoperatively. After 2 months, the sites of anastomosis were excised and examined using the electron microscope. It was found that the best regeneration was in the group receiving GGF as compared to the control group in terms of nerve regeneration. Schwann cell and glial cell proliferation were found to be significantly higher in the group receiving GGF as compared to the group receiving NGF. Besides, the number of myelin debris, an indicator of degeneration, was significantly lower in the group with GGF as compared to NGF and control groups (p NGF in order to increase regeneration after nerve anastomosis in experimental traumatic facial nerve paralysis may be a hopeful alternative treatment option in the future. However, further studies on human studies are required to support these results.

  20. Molecular cloning of a human gene that is a member of the nerve growth factor family

    Energy Technology Data Exchange (ETDEWEB)

    Jones, K.R.; Reichardt, L.F. (Howard Hughes Medical Institute, San Francisco, CA (USA))

    1990-10-01

    Cell death within the developing vertebrate nervous system is regulated in part by interactions between neurons and their innervation targets that are mediated by neurotrophic factors. These factors also appear to have a role in the maintenance of the adult nervous system. Two neurotrophic factors, nerve growth factor and brain-derived neurotrophic factor, share substantial amino acid sequence identity. The authors have used a screen that combines polymerase chain reaction amplification of genomic DNA and low-stringency hybridization with degenerate oligonucleotides to isolate human BDNF and a human gene, neurotrophin-3, that is closely related to both nerve growth factor and brain-derived neurotrophic factor. mRNA products of the brain-derived neurotrophic factor and neurotrophin-3 genes were detected in the adult human brain, suggesting that these proteins are involved in the maintenance of the adult nervous system. Neurotrophin-3 is also expected to function in embryonic neural development.

  1. RAPID COMMUNICATION: Nerve growth factor influences cleavage rate and embryo development in sheep.

    Science.gov (United States)

    Crispo, M; Dos Santos-Neto, P C; Vilariño, M; Mulet, A P; de León, A; Barbeito, L; Menchaca, A

    2016-10-01

    Recent information about Nerve growth factor (NGF), a protein traditionally associated to the nervous system that regulates survival and maturation of developing neurons, suggests that it may exert action also on different levels in the reproductive system. The aim of this study was to evaluate the effect of NGF added during in vitro oocyte maturation, fertilization or in vitro embryo development in sheep. Nerve growth factor was supplemented to the culture medium at 0, 100, or 1,000 ng/mL, during either in vitro maturation (Exp. 1), in vitro fertilization (Exp. 2), or in vitro culture (Exp. 3). In addition, NGF mRNA expression was determined in cumulus cells and oocytes. Nerve growth factor induced early cleavage when added during oocyte maturation or fertilization, improved embryo development when added during fertilization, and had no significant effect when added during embryo culture. In general, the effect was more evident with 100 rather than 1,000 ng/mL (P development in sheep. We suggest a possible effect of this growth factor on oocyte maturation and mainly on the fertilization process.

  2. The Role of Nerve Growth Factor in Ginsenoside Rg1-Induced Regeneration of Injured Rat Sciatic Nerve.

    Science.gov (United States)

    Huo, Dong-Sheng; Zhang, Ming; Cai, Zhi-Ping; Dong, Chao-Xuan; Wang, He; Yang, Zhan-Jun

    2015-01-01

    Sciatic nerve injury is commonly seen in clinical practice predominantly associated with trauma or sports injuries. Recent studies indicated that ginsenoside Rg1 (Gs Rg1), extracted from Chinese herbs, was found to promote regeneration of injured rat sciatic nerve and that nerve growth factor (NGF) may be involved in this process. The aim of this study was to examine the role that NGF may play in ginsenoside Rg1-induced regeneration of rat sciatic nerve following injury. Animals following surgical right sciatic nerve injury were subsequently administered intraperitoneally either saline (sham control) or different doses of 2, 4, 8, or 12 mg/kg daily GsRg1 for 2 to 8 wk. In addition, 100 μg/kg mecobalamin, a drug utilized to treat nerve injuries, was employed as a positive control. After 2, 4, or 8 wk, sciatic functional index (SFI) and mean nerve conduction velocity (MNCV), markers of sciatic nerve function, were assessed to determine whether recovery of injured sciatic nerve occurred. In addition, immunohistochemistry and Western blot methods were used to examine NGF protein expression changes. Results showed that all doses of GsRg1 significantly increased SFI and MNCV in injured sciatic-nerve-damaged rats in a manner similar to that noted with mecobalamin. It is of interest that the intermediate 4- and 8-mg/kg doses were more effective in restoring nerve functions. Immunohistochemistry and Western blot results also demonstrated a similar pattern with enhanced NGF protein expression at all doses, but greater effects were noted at 4 and 8 mg/kg GsRg1. Data suggest that GsRg1 promotes recovery of injured sciatic nerve functions within a specific dose range and that NGF may be involved in this physiological process.

  3. Nerve growth factor combined with an epineural conduit for bridging a short nerve gap (10 mm). A study in rabbits.

    Science.gov (United States)

    Barmpitsioti, Antonia; Konofaos, Petros; Ignatiadis, Ioannis; Papalois, Apostolos; Zoubos, Aristides B; Soucacos, Panagiotis N

    2011-10-01

    The purpose of this study was to evaluate the effect of direct administration of nerve growth factor (NGF) into an epineural conduit across a short nerve gap (10 mm) in a rabbit sciatic nerve model. The animals were divided into two groups. In group 1, n = 6, a 10-mm defect was created in the sciatic nerve and bridged with an epineural flap. A dose of 1 μg of NGF was locally administered daily for the first 21 days. NGF administration was made inside the epineural flap using a silicone reservoir connected to a silicone tube. In group 2, n = 6, the 10-mm defect was bridged with a nerve graft. This group did not receive any further treatment. At 13 weeks, all animals, before euthanasia, underwent electromyography (EMG) studies and then specimen sent for histology morphometric analysis. NGF administration ensured a significantly increased average number of myelinated axons per μm(2) (P = 0.028) and promoted fiber maturation (P = 0.031) and better EMG results (P = 0.046 for latency P = 0.048 for amplitude), compared with the control group. Although nerve grafts remain the gold standard for peripheral nerve repair, NGF-treated epineural conduits represent a good alternative, particularly when an unfavorable environment for nerve grafts is present.

  4. A Review of Bioactive Release from Nerve Conduits as a Neurotherapeutic Strategy for Neuronal Growth in Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Poornima Ramburrun

    2014-01-01

    Full Text Available Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors.

  5. A review of bioactive release from nerve conduits as a neurotherapeutic strategy for neuronal growth in peripheral nerve injury.

    Science.gov (United States)

    Ramburrun, Poornima; Kumar, Pradeep; Choonara, Yahya E; Bijukumar, Divya; du Toit, Lisa C; Pillay, Viness

    2014-01-01

    Peripheral nerve regeneration strategies employ the use of polymeric engineered nerve conduits encompassed with components of a delivery system. This allows for the controlled and sustained release of neurotrophic growth factors for the enhancement of the innate regenerative capacity of the injured nerves. This review article focuses on the delivery of neurotrophic factors (NTFs) and the importance of the parameters that control release kinetics in the delivery of optimal quantities of NTFs for improved therapeutic effect and prevention of dose dumping. Studies utilizing various controlled-release strategies, in attempt to obtain ideal release kinetics, have been reviewed in this paper. Release strategies discussed include affinity-based models, crosslinking techniques, and layer-by-layer technologies. Currently available synthetic hollow nerve conduits, an alternative to the nerve autografts, have proven to be successful in the bridging and regeneration of primarily the short transected nerve gaps in several patient cases. However, current research emphasizes on the development of more advanced nerve conduits able to simulate the effectiveness of the autograft which includes, in particular, the ability to deliver growth factors.

  6. [Antifibrillatory activity of dipeptide antagonist of nerve growth factor].

    Science.gov (United States)

    Kryzhanovskiĭ, S A; Stoliarchuk, V N; Vititnova, M B; Tsorin, I B; Pekel'dina, E S; Gudasheva, T A

    2012-01-01

    In experiments on anesthetized rats were assessed antifibrillatoty action of dipeptide GK-1. This compound is the fragment of fourth loop of nerve growth factor (NGF) and manifests antagonistic activity in respect to TrkA receptor, that specified for NGF. It is shown that this compound is able to significantly increase the threshold of electrical fibrillation of the heart and its effectiveness is not inferior to the reference antiarrhythmics I and III class on Vaughan Williams classification. However, unlike the latter, antifibrillatory action of dipeptide GK-1 was delayed and realized within 40-60 minutes after its administration. It is discussed possible mechanisms underlying antifibrillatory action of dipeptide GK-1, that, to some extent, may be associated with its ability to change the reactivity of beta-adrenergic structures of the heart.

  7. Nerve growth factor, sphingomyelins, and sensitization in sensory neurons

    Institute of Scientific and Technical Information of China (English)

    Grant D. Nicol

    2008-01-01

    @@ Because nerve growth factor (NGF) is elevated during inflammation, plays a causal role in the initiation of hyperalgesia, and is known to activate the sphingomyelin signalling pathway, we examined whether NGF and its putative second messenger, ceramide, could modulate the excitability of capsaicin-sensitive adult sensory neurons.Using the whole-cell patch-clamp recording technique,exposure of isolated sensory neurons to either 100 ng/mL NGF or 1 mmol/L N-acetyl sphingosine (C2-ceramide) produced a 3-4 fold increase in the number of action po-tentials (APs) evoked by a ramp of depolarizing current in a time-dependent manner. Intracellular perfusion with bac- terial sphingomyelinase (SMase) also increased the num- ber of APs suggesting that the release of native ceramide enhanced neuronal excitability.

  8. Functionality of the baroreceptor nerves in heart rate regulation

    DEFF Research Database (Denmark)

    Ottesen, Johnny T.; Olufsen, Mette

    2011-01-01

    Two models describing the afferent baroreceptor firing are analyzed, a basic model predicting firing using a single nonlinear differential equation, and an extended model, coupling K nonlinear responses. Both models respond to the the rate (derivative) and the rate history of the carotid sinus...... are a consequence of the memory encapsulated by the models, and the nonlinearity gives rise to sigmoidal response curves. The nonlinear afferent baroreceptor models are coupled with an effector model, and the coupled model has been used to predict baroreceptor feedback regulation of heart rate during postural...... change from sitting to standing and during head-up tilt. The efferent model couples the afferent nerve paths to the sympathetic and parasympathetic outflow, and subsequently predicts the build up of an action potential at the sinus knot of the heart. In this paper, we analyze the nonlinear afferent model...

  9. Norepinephrine-induced nerve growth factor depletion causes cardiac sympathetic denervation in severe heart failure.

    Science.gov (United States)

    Kimura, Kensuke; Kanazawa, Hideaki; Ieda, Masaki; Kawaguchi-Manabe, Haruko; Miyake, Yoshiko; Yagi, Takashi; Arai, Takahide; Sano, Motoaki; Fukuda, Keiichi

    2010-08-25

    In severe congestive heart failure (CHF), sympathetic overactivity correlates with the exacerbation of cardiac performance. To test the hypothesis that the cardiac sympathetic nerve density dramatically changes with the acceleration of circulating norepinephrine (NE) concentration, we investigated the temporal association of nerve growth factor (NGF) expression in the heart and cardiac sympathetic nerve density during the development of CHF in the continuous NE-infused rats. The animals were analyzed at 0-, 1-, 3-, 7-, 14-, and 28-day after implantation of osmotic pump at a rate of 0.05 mg/kg/hr. The cardiac performance was temporally facilitated in NE-exposed rats at 3-day in accordance with the sympathetic hyper-innervation induced by the augmentation of NGF mRNA expression in the heart. In NE-treated rats, left ventricular end-diastolic pressure was significantly increased after 7-day and marked left ventricular hypertrophy and systemic fluid retention were observed at 28-day. CHF-induced sympathetic overactivity further increased plasma NE concentration in NE-treated rats and finally reached to 16.1+/-5.6 ng/ml at 28-day (control level was 0.39+/-0.1 ng/ml, pcardiac performance. The cardiac sympathetic fiber loss was also confirmed in NE-exposed DBH (dopamine beta-hydroxylase)-Cre/Floxed-EGFP (enhanced green fluorescent protein) mice with severe CHF, in which sympathetic nerve could be traced by EGFP. Our results suggest that the cardiac sympathetic nerve density is strictly regulated by the NGF expression in the heart and long-exposure of high plasma NE concentration caused myocardial NGF reduction, following sympathetic fiber loss in severe CHF animals.

  10. Effect of nerve growth factor on changes of myelin basic protein and functional repair of peripheral nerve following sciatic nerve injury in rats

    Institute of Scientific and Technical Information of China (English)

    邵阳; 马海涵; 伍亚民; 陈恒胜; 曾琳; 李民; 龙在云; 李应玉; 杨恒文

    2002-01-01

    To investigate the therapeutic effect of nerve growth factor ( NGF ) on changes of myelin basic protein (MBP) and functional repair of sensory and motor nerve following sciatic nerve injury. Methods: The sciatic nerves of rats were injured by sectioning with shaver, and divided into 3 groups: NGF group ( Group A ), group of normal saline solution ( Group B), untreated group (Group C). The time point of observation was at the 4th week after operation. Sensory evoked potential (SEP) and motor evoked potential (MEP) were detected by Model WD-4000 nerve potential working diagnosis system. Immunohistochemical analysis was used for identification of MBP. Results: The latency of SEP in the Group A at the 4th week after operation was shorter than that in the Group B ( P < 0.05). The MEP was elicited in 76 % of the Group A and was higher than that in the Group B. Results of immunohistochemistry showed that there were less MBP-positive cells in the Group A than in the Group B in one and four weeks respectively. Conclusions: NGF can improve the conductive function of injured peripheral nerve and facilitate regeneration of nerve.

  11. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews.

    Science.gov (United States)

    Xiong, Liu-Lin; Chen, Zhi-Wei; Wang, Ting-Hua

    2016-04-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  12. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Institute of Scientific and Technical Information of China (English)

    Liu-lin Xiong; Zhi-wei Chen; Ting-hua Wang

    2016-01-01

    Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promotein vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 μg/L) to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, lfuorescence mi-croscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These ifndings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  13. Nerve growth factor signaling in prostate health and disease.

    Science.gov (United States)

    Arrighi, Nicola; Bodei, Serena; Zani, Danilo; Simeone, Claudio; Cunico, Sergio Cosciani; Missale, Cristina; Spano, Pierfranco; Sigala, Sandra

    2010-06-01

    The prostate is one of the most abundant sources of nerve growth factor (NGF) in different species, including humans. NGF and its receptors are implicated in the control of prostate cell proliferation and apoptosis and it can either support or suppress cell growth. The co-expression of both NGF receptors, p75(NGFR) and tropomyosin-related kinase A (trkA), represents a crucial condition for the antiproliferative effect of NGF; indeed, p75(NGFR) is progressively lost during prostate tumorigenesis and its disappearance represents a malignancy marker of prostate adenocarcinoma (PCa). Interestingly, a dysregulation of NGF signal transduction was found in a number of human tumors. This review summarizes the current knowledge on the role of NGF and its receptors in prostate and in PCa. Conclusions bring to the hypothesis that the NGF network could be a candidate for future pharmacological manipulation in the PCa therapy: in particular the re-expression of p75(NTR) and/or the negative modulation of trkA could represent a target to induce apoptosis and to reduce proliferation and invasiveness of PCa.

  14. Potential mechanisms for hypoalgesia induced by anti-nerve growth factor immunoglobulin are identified using autoimmune nerve growth factor deprivation

    Science.gov (United States)

    Hoffman, E. Matthew; Zhang, Zijia; Anderson, Michael B.; Schechter, Ruben; Miller, Kenneth E.

    2011-01-01

    Nerve growth factor (NGF) antagonism has long been proposed as a chronic pain treatment. In 2010, the FDA suspended clinical trials using tanezumab, a humanized monoclonal anti-NGF antibody, to treat osteoarthritis due to worsening joint damage in 16 patients. Increased physical activity in the absence of acute pain which normally prevents self harm was purported as a potential cause. Such an adverse effect is consistent with an extension of tanezumab's primary mechanism of action by decreasing pain sensitivity below baseline levels. In animal inflammatory pain models, NGF antagonism decreases intraepidermal nerve fiber (IENF) density and attenuates increases in expression of nociception related proteins, such as calcitonin gene-related peptide (CGRP) and substance P (SP). Little is known of the effects of NGF antagonism in noninflamed animals and the hypoalgesia that ensues. In the current study, we immunized rats with NGF or cytochrome C (cytC) and examined 1) nocifensive behaviors with thermal latencies, mechanical thresholds, the hot plate test, and the tail flick test, 2) IENF density, and 3) expression of CGRP, SP, voltage-gated sodium channel 1.8 (Nav1.8), and glutaminase in subpopulations of dorsal root ganglion (DRG) neurons separated by size and isolectin B4 (IB4) labeling. Rats with high anti-NGF titers had delayed responses on the hot plate test but no other behavioral abnormalities. Delayed hot plate responses correlated with lower IENF density. CGRP and SP expression was decreased principally in medium (400-800 μm2) and small neurons (<400 μm2), respectively, regardless of IB4 labeling. Expression of Nav1.8 was only decreased in small and medium IB4 negative neurons. NGF immunization appears to result in a more profound antagonism of NGF than tanezumab therapy, but we hypothesize that decreases in IENF density and nociception related protein expression are potential mechanisms for tanezumab induced hypoalgesia. PMID:21802499

  15. Herpesvirus-mediated systemic delivery of nerve growth factor.

    Science.gov (United States)

    Wolfe, D; Goins, W F; Kaplan, T J; Capuano, S V; Fradette, J; Murphey-Corb, M; Robbins, P D; Cohen, J B; Glorioso, J C

    2001-01-01

    Sustained systemic dissemination of therapeutic proteins from peripheral sites is an attractive prospect for gene therapy applications. Replication-defective genomic herpes simplex virus type 1 (HSV-1) vectors were evaluated for their ability to express nerve growth factor (NGF) as a model gene product both locally and systemically. Intra-articular inoculation of NGF expression vectors in rabbits resulted in significant increases in joint lavage and blood plasma NGF that persisted for 1 year. A rhesus macaque injected intra-articularly displayed a comparable increase in plasma NGF for at least 6 months, at which time the serum NGF levels of this animal were sufficient to cause differentiation of PC12 cells in culture, but not to increase footpad epidermis innervation. Long-term reporter transgene expression was observed primarily in ligaments, a finding confirmed by direct inoculation of patellar ligament. Patellar ligament inoculation with a NGF vector resulted in elevated levels of circulating NGF similar to those observed following intra-articular vector delivery. These results represent the first demonstration of sustained systemic release of a transgene product using HSV vectors, raising the prospect of new applications for HSV-1 vectors in the treatment of systemic disease.

  16. Nerve growth factor involvement in liver cirrhosis and hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    AIM: To define NGF (nerve growth factor) and its highaffinity receptor trkANGF presence and distribution in fibrotic liver and in HCC, and to verify if NGF might have a role in fibrosis and HCC.METHODS: Intracellular distribution of NGF and trkANGF were assessed by immunohistochemistry and immunoelectron microscopy in liver specimens from HCC,cirrhosis or both. ELISA was used to measure circulating NGF levels.RESULTS: NGF and trkANGF were highly expressed in HCC tissue, mainly localized in hepatocytes, endothelial and some Kupffer cells. In the cirrhotic part of the liver they were also markedly expressed in bile ducts epithelial and spindle-shaped cells. Surprisingly, in cirrhotic tissue from patients without HCC, both NGF and trkANGF were negative. NGF serum levels in cirrhotic and/or HCC patient were up to 25-fold higher than in controls.CONCLUSION: NGF was only detected in liver tissue with HCC present. Intracellular distribution suggests paracrine and autocrine mechanisms of action. Better definition of mechanisms may allow for therapeutic and diagnostic/prognostic use of NGF.

  17. Choline Acetyltransferase Activity in Striatum of Neonatal Rats Increased by Nerve Growth Factor

    Science.gov (United States)

    Mobley, William C.; Rutkowski, J. Lynn; Tennekoon, Gihan I.; Buchanan, Karen; Johnston, Michael V.

    1985-07-01

    Some neurodegenerative disorders may be caused by abnormal synthesis or utilization of trophic molecules required to support neuronal survival. A test of this hypothesis requires that trophic agents specific for the affected neurons be identified. Cholinergic neurons in the corpus striatum of neonatal rats were found to respond to intracerebroventricular administration of nerve growth factor with prominent, dose-dependent, selective increases in choline acetyltransferase activity. Cholinergic neurons in the basal forebrain also respond to nerve growth factor in this way. These actions of nerve growth factor may indicate its involvement in the normal function of forebrain cholinergic neurons as well as in neurodegenerative disorders involving such cells.

  18. Reciprocal regulation of nuclear factor kappa B and its inhibitor ZAS3 after peripheral nerve injury

    Directory of Open Access Journals (Sweden)

    Madiai Francesca

    2006-01-01

    Full Text Available Abstract Background NF-κB binds to the κB motif to regulate transcription of genes involved in growth, immunity and inflammation, and plays a pivotal role in the production of pro-inflammatory cytokines after nerve injuries. The zinc finger protein ZAS3 also binds to the κB or similar motif. In addition to competition for common DNA sites, in vitro experiments have shown that ZAS3 can inhibit NF-κB via the association with TRAF2 to inhibit the nuclear translocation of NF-κB. However, the physiological significance of the ZAS3-mediated inhibition of NF-κB has not been demonstrated. The purpose of this study is to characterize ZAS3 proteins in nervous tissues and to use spinal nerve ligation, a neuropathic pain model, to demonstrate a functional relationship between ZAS3 and NF-κB. Results Immunohistochemical experiments show that ZAS3 is expressed in specific regions of the central and peripheral nervous system. Abundant ZAS3 expression is found in the trigeminal ganglion, hippocampal formation, dorsal root ganglia, and motoneurons. Low levels of ZAS3 expressions are also found in the cerebral cortex and in the grey matter of the spinal cord. In those nervous tissues, ZAS3 is expressed mainly in the cell bodies of neurons and astrocytes. Together with results of Western blot analyses, the data suggest that ZAS3 protein isoforms with differential cellular distribution are produced in a cell-specific manner. Further, neuropathic pain confirmed by persistent mechanical allodynia was manifested in rats seven days after L5 and L6 lumbar spinal nerve ligation. Changes in gene expression, including a decrease in ZAS3 and an increase in the p65 subunit of NF-κB were observed in dorsal root ganglion ipsilateral to the ligation when compared to the contralateral side. Conclusion ZAS3 is expressed in nervous tissues involved in cognitive function and pain modulation. The down-regulation of ZAS3 after peripheral nerve injury may lead to activation of

  19. Nerve growth factor in human semen: Effect of nerve growth factor on the normozoospermic men during cryopreservation process

    Science.gov (United States)

    Saeednia, Sara; Bahadoran, Hosein; Amidi, Fardin; Asadi, Mohammad Hosein; Naji, Mohammad; Fallahi, Parvin; Nejad, Nahid Ataie

    2015-01-01

    Objective(s): Although routinely applied in assisted reproductive technology, human sperm cryopreservation is not a completely successful procedure. Adverse effects of cryopreservation on the fertilization capacity, motility, morphology, and viability of spermatozoa have been proven; cryopreservation has also shown a role in sperm DNA fragmentation and infertility. The post-thaw survival of spermatozoa improved after addition of supplementation of antioxidant molecules to freezing media. Nerve growth factor (NGF) as one of the prosurvival substances has gained great attention in recent years. The aim of this study was the usage of NGF as prosurvival factor after cryopreservation process of human semen samples to assess the motility and viability of sperm, nitric oxide (NO) concentration, and DNA fragmentation in normozoospermic men. Materials and Methods: Semen samples were collected from 25 normozoospermic men and were divided into fresh semen samples as control group, frozen–thawed semen samples without addition of exogenous NGF, and three groups of semen samples cryopreserved with addition of exogenous NGF (0.5, 1, and 5 ng/ml) in freezing medium. Viability was assessed by eosin-negrosin staining technique. Motility was evaluated with inverted microscope. NO concentration and apoptosis content were measured with flow cytometry. Results: Results showed that exogenous NGF at 0.5 ng/ml could significantly (P-value <0.05) influence viability, motility, nitric oxide, and DNA fragmentation content. Conclusion: Exogenous NGF as cryoprotectant improved sperm viability and motility, increased intracellular NO concentration, and decreased apoptosis content in normal human spermatozoa. PMID:25945243

  20. Expression of nerve growth factor precursor, mature nerve growth factor and their receptors during cerebral ischemia-reperfusion injury

    Institute of Scientific and Technical Information of China (English)

    Guoqian He; Jian Guo; Jiachuan Duan; Wenming Xu; Ning Chen; Hongxia Li; Li He

    2011-01-01

    We investigated nerve growth factor precursor (proNGF) and mature NGF expression in ischemic and non-ischemic cortices after cerebral ischemia-reperfusion injury.In both ischemic and non-ischemic cortices, proNGF was found to be present in the extracellular space and cytoplasm.In addition, mature NGF was expressed in extracellular space, but with a very low signal.In ischemic cortex only, proNGF was significantly decreased, reaching a minimal level at 1 day.Mature NGF was increased at 4 hours, then reached a minimal level at 3 days.The p75 neurotrophin receptor (p75NTR) was significantly decreased after ischemia, and increased at 3 days after ischemia.These results confirmed that proNGF was the predominant form of NGF during the pathological process of cerebral ischemia-reperfusion injury.In addition, our findings suggest that ischemic injury may influence the conversion of proNGF to mature NGF, and that proNGF/p75NTR may be involved in reperfusion injury.

  1. Activity-dependent release of precursor nerve growth factor, conversion to mature nerve growth factor, and its degradation by a protease cascade.

    Science.gov (United States)

    Bruno, Martin A; Cuello, A Claudio

    2006-04-25

    In this report, we provide direct demonstration that the neurotrophin nerve growth factor (NGF) is released in the extracellular space in an activity-dependent manner in its precursor form (proNGF) and that it is in this compartment that its maturation and degradation takes place because of the coordinated release and the action of proenzymes and enzyme regulators. This converting protease cascade and its endogenous regulators (including tissue plasminogen activator, plasminogen, neuroserpin, precursor matrix metalloproteinase 9, and tissue inhibitor metalloproteinase 1) are colocalized in neurons of the cerebral cortex and released upon neuronal stimulation. We also provide evidence that this mechanism operates in in vivo conditions, as the CNS application of inhibitors of converting and degrading enzymes lead to dramatic alterations in the tissue levels of either precursor NGF or mature NGF. Pathological alterations of this cascade in the CNS might cause or contribute to a lack of proper neuronal trophic support in conditions such as cerebral ischemia, seizure and Alzheimer's disease or, conversely, to excessive local production of neurotrophins as reported in inflammatory arthritis pain.

  2. Can amino-functionalized carbon nanotubes carry functional nerve growth factor?

    Institute of Scientific and Technical Information of China (English)

    Wen Chen; Qing Xiong; Quanxia Ren; Yake Guo; Gao Li

    2014-01-01

    Carbon nanotubes can carry protein into cells to induce biological effects. Amino-functionalized carbon nanotubes are soluble and biocompatible, have high reactivity and low toxicity, and can help promote nerve cell growth. In this study, amino-functionalized ethylenediamine-treated multi-walled carbon nanotubes were used to prepare carbon nanotubes-nerve growth factor complexes by non-covalent grafting. The physicochemical properties, cytotoxicity to PC12 and chick embryo dorsal root ganglion, and biological activity of the carbon nanotubes-nerve growth factor complexes were investigated. The results showed that amino functionalization improved carbon nanotubes-nerve growth factor complex dispersibility, reduced their toxicity to PC12 cells, and promoted PC12 cell differentiation and chick embryo dorsal root ganglion.

  3. Beta-nerve growth factor levels in newborn cord sera.

    Science.gov (United States)

    Haddad, J; Vilge, V; Juif, J G; Maitre, M; Donato, L; Messer, J; Mark, J

    1994-06-01

    This study was designed to examine beta-nerve growth factor (NGF) levels in human cord blood by a two-site enzyme immunoassay using MAb 27/21 to mouse NGF and to determine whether beta-NGF levels show developmental changes. Blood was collected at delivery from 61 newborns, 55 neonates appropriate for gestational age (46 term infants and 9 premature infants), 5 neonates small for gestational age, and 1 neonate with congenital hydrocephalus. In addition, samples were collected from 2 microcephalic children (microcephaly vera) aged 15 and 18 mo, 2 control children, and 4 healthy adults. Mean levels of NGF in preterm infants (n = 9; 13.7 +/- 8 pg/mL) were significantly lower than levels in term infants (n = 47; 21.2 +/- 8.8 pg/mL; p = 0.034 by Mann-Whitney U test). There was no correlation between birth weight, length, head circumference, and beta-NGF levels. In microcephalic children, NGF levels were low (8 pg/mL) compared with control infants' values (22 pg/mL). In adults, beta-NGF levels were higher and ranged between 238 and 292 pg/mL. Our study demonstrates that beta-NGF levels can be assessed in human newborn sera using a two-site enzyme immunoassay with MAb 27/21 to mouse beta-NGF, that beta-NGF levels are extremely low in newborns compared with adults, that beta-NGF levels seems to show developmental changes, and that beta-NGF levels may be used to assess NGF utilization under normal and pathologic conditions such as cerebral malformations.

  4. Nerve growth factor receptor molecules in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Taniuchi, M.; Schweitzer, J.B.; Johnson, E.M. Jr.

    1986-03-01

    The authors have developed a method to immunoprecipitate rat nerve growth factor (NGF) receptor proteins and have applied the method to detect NGF receptor molecules in the rat brain. Crosslinking /sup 125/I-labeled NGF to either PC12 cells or cultured rat sympathetic neurons yielded two radiolabeled molecules (90 kDa and 220 kDa) that were immunoprecipitated by monoclonal antibody 192-IgG. Further, 192-IgG precipitated two radiolabeled proteins, with the expected sizes (80 kDa and 210 kDa) of noncrosslinked NGF receptor components, from among numerous surface-iodinated PC12 cell proteins. These results demonstrate the specific immunoprecipitation of NGF receptor molecules by 192-IgG. They applied the /sup 125/I-NGF crosslinking and 192-IgG-mediated immunoprecipitation procedures to plasma membrane preparations of rat brain: NGF receptor molecules of the same molecular masses as the peripheral receptor components were consistently detected in all regions and in preparations from whole brains. Removal of the peripheral sympathetic innervation of the brain did not eliminate these NGF receptor proteins, indicating that the receptor is endogenous to central nervous system tissues. They also observed retrograde transport of /sup 125/I-labeled 192-IgG from the parietal cortex to the nucleus basalis and from the hippocampus to the nucleus of the diagonal band of Broca and the medial septal nucleus. These findings demonstrate the presence in brain of NGF receptor molecules indistinguishable from those of the peripheral nervous system.

  5. Mental disorders, functional impairment, and nerve growth factor

    Science.gov (United States)

    Salles, Fanny Helena Martins; Soares, Pedro San Martin; Wiener, Carolina David; Mondin, Thaise Campos; da Silva, Paula Moraes; Jansen, Karen; de Mattos Souza, Luciano Dias; da Silva, Ricardo Azevedo; Oses, Jean Pierre

    2017-01-01

    Nerve growth factor (NGF) is an important member of the neurotrophin family and its alteration has been associated with psychiatric disorders. Functionality consists of the activities that an individual can perform, as well as their social participation, which is an important factor in analyzing the carrier living conditions of subjects with psychiatric suffering. Several studies have evaluated functionality in bipolar disorder; however, no studies have evaluated the functionality in other mental disorders. There are also few studies investigating the association between functionality and the biological bases of mental disorders. This study aimed to evaluate the serum NGF levels in psychiatric patients and to verify a possible association between the serum neurotrophic levels and functionality. This was a cross-sectional study with a convenient sample obtained from the Public Mental Health Service from the south of Brazil. The final sample was composed of 286 patients enrolled from July 2013 to October 2014. Data was collected using a sociodemographic questionnaire, and the diagnosis was confirmed using the Mini International Neuropsychiatric Interview (M.I.N.I) and a Functioning Assessment Short Test. The serum NGF levels were determined using the enzyme-linked immunosorbent assay method. Statistical analyses were performed using IBM SPSS Statistic 21.0 software. NGF serum levels were increased significantly in patients with obsessive–compulsive disorder compared with patients with no obsessive–compulsive disorder (P=0.015). An increase in serum NGF levels in generalized anxiety disorder patients was observed compared with patients with no generalized anxiety disorder (P=0.047). NGF was negatively associated with autonomy (P=0.024, r=−0.136), work (P=0.040, r=−0.124), and cognition (P=0.024, r=−0.137), thereby showing that changes in serum levels of NGF are associated with functionality in mental disorders. PMID:28053561

  6. Rapamycin promotes Schwann cell migration and nerve growth factor secretion

    OpenAIRE

    Liu, Fang; Zhang, Haiwei; Zhang, Kaiming; Wang, Xinyu; Li, Shipu; Yin, Yixia

    2014-01-01

    Rapamycin, similar to FK506, can promote neural regeneration in vitro. We assumed that the mechanisms of action of rapamycin and FK506 in promoting peripheral nerve regeneration were similar. This study compared the effects of different concentrations of rapamycin and FK506 on Schwann cells and investigated effects and mechanisms of rapamycin on improving peripheral nerve regeneration. Results demonstrated that the lowest rapamycin concentration (1.53 nmol/L) more significantly promoted Schwa...

  7. [Plant hormones, plant growth regulators].

    Science.gov (United States)

    Végvári, György; Vidéki, Edina

    2014-06-29

    Plants seem to be rather defenceless, they are unable to do motion, have no nervous system or immune system unlike animals. Besides this, plants do have hormones, though these substances are produced not in glands. In view of their complexity they lagged behind animals, however, plant organisms show large scale integration in their structure and function. In higher plants, such as in animals, the intercellular communication is fulfilled through chemical messengers. These specific compounds in plants are called phytohormones, or in a wide sense, bioregulators. Even a small quantity of these endogenous organic compounds are able to regulate the operation, growth and development of higher plants, and keep the connection between cells, tissues and synergy between organs. Since they do not have nervous and immume systems, phytohormones play essential role in plants' life.

  8. Effect of Human Cytomegalovirus Infection on Nerve Growth Factor Expression in Human Glioma U251 Cells

    Institute of Scientific and Technical Information of China (English)

    HAI-TAO WANG; BIN WANG; ZHI-JUN LIU; ZHI-QIANG BAI; LING LI; HAI-YAN LIU; DONG-MENG QIAN; ZHI-YONG YAN; XU-XIA SONG

    2009-01-01

    Objectives To explore the change of endogenic nerve growth factor (NGF) expression in human glioma cells infected with human cytomegalovirus (HCMV). Methods U251 cells were cultured in RPMI 1640 culture medium and infected with HCMV AD169 strain in vitro to establish a cell model of viral infection. Morphologic changes of U251 cells were observed under inverted microscope before and after infection with HCMV. Expression of NGF gene and protein of cells was detected by RT-PCR and Western blotting before and after infection with HCMV. Results The cytopathic effects of HCMV-infected cells appeared on day 5 after infection. However, differential NGF expression was evident on day 7. NGF expression was decreased significantly in U251 cells on day 7 after infection in comparison with control group (P<0.05). Conclusion HCMV can down-regulate endogenous NGF levels in human glioma cell line U251.

  9. Increased axonal regeneration through a biodegradable amnionic tube nerve conduit: effect of local delivery and incorporation of nerve growth factor/hyaluronic acid media.

    Science.gov (United States)

    Mohammad, J A; Warnke, P H; Pan, Y C; Shenaq, S

    2000-01-01

    The authors emphasize the possible pharmacological enhancement of axonal regeneration using a specific growth factor/ extracellular media incorporated in a biodegradable nonneural nerve conduit material. They investigated the early effects on nerve regeneration of continuous local delivery of nerve growth factor (NGF) and the local incorporation of hyaluronic acid (HA) inside a newly manufactured nerve conduit material from fresh human amnionic membrane. Human amnionic membrane contains important biochemical factors that play a major neurotrophic role in the nerve regeneration process. The process of manufacturing a nerve conduit from fresh human amnionic membrane is described. This nerve conduit system was used in rabbits to bridge a 25-mm nerve gap over 3 months. NGF was released locally, over 28 days, at the distal end of the tube via a system of slow release, and HA was incorporated inside the lumen of the tube at the time of surgery. NGF/HA treatment promoted axonal regeneration across the amnionic tube nerve conduit (8,962 +/- 383 myelinated axons) 45% better than the nontreated amnionic tube group (6,180 +/- 353 myelinated axons). The authors demonstrate that NGF/HA media enhances additional axonal regeneration in the amnionic tube nerve conduit. This result is secondary to the effect of the amnion promoting biochemical factors, in combination with the NGF/HA effect on facilitating early events in the nerve regeneration process.

  10. The statistical mechanics of complex signaling networks: nerve growth factor signaling.

    Science.gov (United States)

    Brown, K S; Hill, C C; Calero, G A; Myers, C R; Lee, K H; Sethna, J P; Cerione, R A

    2004-12-01

    The inherent complexity of cellular signaling networks and their importance to a wide range of cellular functions necessitates the development of modeling methods that can be applied toward making predictions and highlighting the appropriate experiments to test our understanding of how these systems are designed and function. We use methods of statistical mechanics to extract useful predictions for complex cellular signaling networks. A key difficulty with signaling models is that, while significant effort is being made to experimentally measure the rate constants for individual steps in these networks, many of the parameters required to describe their behavior remain unknown or at best represent estimates. To establish the usefulness of our approach, we have applied our methods toward modeling the nerve growth factor (NGF)-induced differentiation of neuronal cells. In particular, we study the actions of NGF and mitogenic epidermal growth factor (EGF) in rat pheochromocytoma (PC12) cells. Through a network of intermediate signaling proteins, each of these growth factors stimulates extracellular regulated kinase (Erk) phosphorylation with distinct dynamical profiles. Using our modeling approach, we are able to predict the influence of specific signaling modules in determining the integrated cellular response to the two growth factors. Our methods also raise some interesting insights into the design and possible evolution of cellular systems, highlighting an inherent property of these systems that we call 'sloppiness.'

  11. Effects of nerve growth factor delivery via a gel to inferior alveolar nerve in mandibular distraction osteogenesis.

    Science.gov (United States)

    Wang, Lei; Cao, Jian; Lei, De-lin; Cheng, Xiao-bing; Yang, Yao-wu; Hou, Rui; Zhao, Ying-hua; Cui, Fu-zhai

    2009-11-01

    Inferior alveolar nerve (IAN) injury is a concern in mandible distraction osteogenesis (DO). We have previously demonstrated that repeated local injections of human nerve growth factor beta (NGF-beta) have significantly enhanced the histologic recovery of the IAN in a rabbit model of DO. This study was to further test the effect of a single injection of human NGF-beta delivered via a collagen/nanohydroxyapatite/kappa-carrageenan gel to the recovery of the IAN in DO. Rabbits underwent mandibular DO at a rate of 0.75 mm/12 h for 6 days. At the end of the distraction period, injections were performed near the IAN percutaneously as follows: group 1, human NGF-beta in the gel; group 2, human NGF-beta in saline; group 3, the gel alone; and group 4, saline alone. At 14 days after the end of distraction, IAN histologic findings and histomorphometric parameters were evaluated. Histologically, there were less myelin debris and more abundant regenerating nerve fibers in group 1 than the other groups. Both the myelinated fiber density and the myelinated axon area in group 1 were significantly higher than groups 3 and 4 (P NGF-beta in the gel leads to a better acceleration of the IAN injury recovery over the saline delivery. It provides a possible way to enhance the recovery of nerve injuries in craniofacial DO clinically.

  12. Balanced levels of nerve growth factor are required for normal pregnancy progression.

    Science.gov (United States)

    Frank, Pierre; Barrientos, Gabriela; Tirado-González, Irene; Cohen, Marie; Moschansky, Petra; Peters, Eva M; Klapp, Burghard F; Rose, Matthias; Tometten, Mareike; Blois, Sandra M

    2014-08-01

    Nerve growth factor (NGF), the first identified member of the family of neurotrophins, is thought to play a critical role in the initiation of the decidual response in stress-challenged pregnant mice. However, the contribution of this pathway to physiological events during the establishment and maintenance of pregnancy remains largely elusive. Using NGF depletion and supplementation strategies alternatively, in this study, we demonstrated that a successful pregnancy is sensitive to disturbances in NGF levels in mice. Treatment with NGF further boosted fetal loss rates in the high-abortion rate CBA/J x DBA/2J mouse model by amplifying a local inflammatory response through recruitment of NGF-expressing immune cells, increased decidual innervation with substance P(+) nerve fibres and a Th1 cytokine shift. Similarly, treatment with a NGF-neutralising antibody in BALB/c-mated CBA/J mice, a normal-pregnancy model, also induced abortions associated with increased infiltration of tropomyosin kinase receptor A-expressing NK cells to the decidua. Importantly, in neither of the models, pregnancy loss was associated with defective ovarian function, angiogenesis or placental development. We further demonstrated that spontaneous abortion in humans is associated with up-regulated synthesis and an aberrant distribution of NGF in placental tissue. Thus, a local threshold of NGF expression seems to be necessary to ensure maternal tolerance in healthy pregnancies, but when surpassed may result in fetal rejection due to exacerbated inflammation.

  13. The nerve growth factor and its receptors in airway inflammatory diseases.

    Science.gov (United States)

    Freund-Michel, V; Frossard, N

    2008-01-01

    The nerve growth factor (NGF) belongs to the neurotrophin family and induces its effects through activation of 2 distinct receptor types: the tropomyosin-related kinase A (TrkA) receptor, carrying an intrinsic tyrosine kinase activity in its intracellular domain, and the receptor p75 for neurotrophins (p75NTR), belonging to the death receptor family. Through activation of its TrkA receptor, NGF activates signalling pathways, including phospholipase Cgamma (PLCgamma), phosphatidyl-inositol 3-kinase (PI3K), the small G protein Ras, and mitogen-activated protein kinases (MAPK). Through its p75NTR receptor, NGF activates proapoptotic signalling pathways including the MAPK c-Jun N-terminal kinase (JNK), ceramides, and the small G protein Rac, but also activates pathways promoting cell survival through the transcription factor nuclear factor-kappaB (NF-kappaB). NGF was first described by Rita Levi-Montalcini and collaborators as an important factor involved in nerve differentiation and survival. Another role for NGF has since been established in inflammation, in particular of the airways, with increased NGF levels in chronic inflammatory diseases. In this review, we will first describe NGF structure and synthesis and NGF receptors and their signalling pathways. We will then provide information about NGF in the airways, describing its expression and regulation, as well as pointing out its potential role in inflammation, hyperresponsiveness, and remodelling process observed in airway inflammatory diseases, in particular in asthma.

  14. Nerve growth factor contribution via transient receptor potential vanilloid 1 to ectopic orofacial pain.

    Science.gov (United States)

    Shinoda, Masamichi; Asano, Masatake; Omagari, Daisuke; Honda, Kuniya; Hitomi, Suzuro; Katagiri, Ayano; Iwata, Koichi

    2011-05-11

    It is well known that oral inflammation causes tenderness in temporomandibular joints or masseter muscles. The exact mechanism of such an orofacial ectopic hyperalgesia remains unclear. Here, we investigated the functional significance of interaction of nerve growth factor (NGF) and transient receptor potential vanilloid 1 (TRPV1) in relation to heat hyperalgesia in the whisker pad skin caused by complete Freund's adjuvant (CFA) injection into the lower lip. CFA injection induced heat hyperalgesia of the ipsilateral whisker pad skin. Moreover, it leads to enhancement of spontaneous activity and heat responses in trigeminal ganglion (TG) neurons that was elicited by heat stimulation of the whisker pad skin. The heat hyperalgesia was dose-dependently reversed by intraperitoneal TRPV1 antagonist administration, also diminished by neutralizing anti-NGF antibody administration into the lower lip and intraganglionic administration of K252a, a tyrosine kinase receptor inhibitor. Nerve fibers in bundle of mandibular nerve and TG neurons that innervates the whisker pad skin and lower lip both expressed labeled NGF, which was administrated into the lower lip. Moreover, the NGF concentrations in ophthalmic-maxillary and mandibular divisions of the TG increased after CFA injection into the lower lip. The number of TRPV1-positive neurons that innervates the whisker pad skin and lower lip was increased after CFA injection into the lower lip, and this increase was annulled by anti-NGF administration. The present findings suggest that inflammation in the lower lip induces release of NGF that regulates TRPV1 expression in TG neurons. This TRPV1 overexpression may underlie ectopic heat hyperalgesia in the whisker pad skin.

  15. Beta-nerve growth factor promotes neurogenesis and angiogenesis during the repair of bone defects

    Institute of Scientific and Technical Information of China (English)

    Wei-hui Chen; Chuan-qing Mao; Li-li Zhuo; Joo L Ong

    2015-01-01

    We previously showed that the repair of bone defects is regulated by neural and vascular signals. In the present study, we examined the effect of topically appliedβ-nerve growth factor (β-NGF) on neurogenesis and angiogenesis in critical-sized bone defects iflled with collagen bone substi-tute. We created two symmetrical defects, 2.5 mm in diameter, on either side of the parietal bone of the skull, and filled them with bone substitute. Subcutaneously implanted osmotic pumps were used to infuse 10 μgβ-NGF in PBS (β-NGF + PBS) into the right-hand side defect, and PBS into the left (control) defect, over the 7 days following surgery. Immunohistochemical staining and hematoxylin-eosin staining were carried out at 3, 7, 14, 21 and 28 days postoperatively. On day 7, expression of β III-tubulin was lower on theβ-NGF + PBS side than on the control side, and that of neuroiflament 160 was greater. On day 14,β III-tubulin and protein gene product 9.5 were greater on theβ-NGF + PBS side than on the control side. Vascular endothelial growth factor expression was greater on the experimental side than the control side at 7 days, and vascular endothelial growth factor receptor 2 expression was elevated on days 14 and 21, but lower than control levels on day 28. However, no difference in the number of blood vessels was observed between sides. Our results indicate that topical application ofβ-NGF promoted neu-rogenesis, and may modulate angiogenesis by promoting nerve regeneration in collagen bone substitute-iflled defects.

  16. Heparin/collagen encapsulating nerve growth factor multilayers coated aligned PLLA nanofibrous scaffolds for nerve tissue engineering.

    Science.gov (United States)

    Zhang, Kuihua; Huang, Dianwu; Yan, Zhiyong; Wang, Chunyang

    2017-07-01

    Biomimicing topological structure of natural nerve tissue to direct axon growth and controlling sustained release of moderate neurotrophic factors are extremely propitious to the functional recovery of damaged nervous systems. In this study, the heparin/collagen encapsulating nerve growth factor (NGF) multilayers were coated onto the aligned poly-L-lactide (PLLA) nanofibrous scaffolds via a layer-by-layer (LbL) self-assembly technique to combine biomolecular signals, and physical guidance cues for peripheral nerve regeneration. Scanning electronic microscopy (SEM) revealed that the surface of aligned PLLA nanofibrous scaffolds coated with heparin/collagen multilayers became rougher and appeared some net-like filaments and protuberances in comparison with PLLA nanofibrous scaffolds. The heparin/collagen multilayers did not destroy the alignment of nanofibers. X-ray photoelectron spectroscopy and water contact angles displayed that heparin and collagen were successfully coated onto the aligned PLLA nanofibrous scaffolds and improved its hydrophilicity. Three-dimensional (3 D) confocal microscopy images further demonstrated that collagen, heparin, and NGF were not only coated onto the surface of aligned PLLA nanofibrous scaffolds but also permeated into the inner of scaffolds. Moreover, NGF presented a sustained release for 2 weeks from aligned nanofibrous scaffolds coated with 5.5 bilayers or above and remained good bioactivity. The heparin/collagen encapsulating NGF multilayers coated aligned nanofibrous scaffolds, in particular 5.5 bilayers or above, was more beneficial to Schwann cells (SCs) proliferation and PC12 cells differentiation as well as the SC cytoskeleton and neurite growth along the direction of nanofibrous alignment compared to the aligned PLLA nanofibrous scaffolds. This novel scaffolds combining sustained release of bioactive NGF and aligned nanofibrous topography presented an excellent potential in peripheral nerve regeneration. © 2016 Wiley

  17. Mental disorders, functional impairment, and nerve growth factor

    Directory of Open Access Journals (Sweden)

    Salles FHM

    2016-12-01

    Full Text Available Fanny Helena Martins Salles,1 Pedro San Martin Soares,1 Carolina David Wiener,1 Thaise Campos Mondin,1 Paula Moraes da Silva,1 Karen Jansen,1–3 Luciano Dias de Mattos Souza,1 Ricardo Azevedo da Silva,1 Jean Pierre Oses1–3 1Translational Science on Brain Disorders, Department of Health and Behavior, Catholic University of Pelotas, Pelotas, Rio Grande do Sul, Brazil; 2Translational Psychiatry Program, 3Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston (UTHealth Medical School, Houston, TX, USA Abstract: Nerve growth factor (NGF is an important member of the neurotrophin family and its alteration has been associated with psychiatric disorders. Functionality consists of the activities that an individual can perform, as well as their social participation, which is an important factor in analyzing the carrier living conditions of subjects with psychiatric suffering. Several studies have evaluated functionality in bipolar disorder; however, no studies have evaluated the functionality in other mental disorders. There are also few studies investigating the association between functionality and the biological bases of mental disorders. This study aimed to evaluate the serum NGF levels in psychiatric patients and to verify a possible association between the serum neurotrophic levels and functionality. This was a cross-sectional study with a convenient sample obtained from the Public Mental Health Service from the south of Brazil. The final sample was composed of 286 patients enrolled from July 2013 to October 2014. Data was collected using a sociodemographic questionnaire, and the diagnosis was confirmed using the Mini International Neuropsychiatric Interview (M.I.N.I and a Functioning Assessment Short Test. The serum NGF levels were determined using the enzyme-linked immunosorbent assay method. Statistical analyses were performed using IBM SPSS Statistic

  18. Intranasal nerve growth factor bypasses the blood-brain barrier and affects spinal cord neurons in spinal cord injur y

    Institute of Scientific and Technical Information of China (English)

    Luigi Aloe; Patrizia Bianchi; Alberto De Bellis; Marzia Soligo; Maria Luisa Rocco

    2014-01-01

    The purpose of this work was to investigate whether, by intranasal administration, the nerve growth factor bypasses the blood-brain barrier and turns over the spinal cord neurons and if such therapeutic approach could be of value in the treatment of spinal cord injury. Adult Sprague-Dawley rats with intact and injured spinal cord received daily intranasal nerve growth factor administration in both nostrils for 1 day or for 3 consecutive weeks. We found an in-creased content of nerve growth factor and enhanced expression of nerve growth factor receptor in the spinal cord 24 hours after a single intranasal administration of nerve growth factor in healthy rats, while daily treatment for 3 weeks in a model of spinal cord injury improved the deifcits in locomotor behaviour and increased spinal content of both nerve growth factor and nerve growth factor receptors. These outcomes suggest that the intranasal nerve growth factor bypasses blood-brain barrier and affects spinal cord neurons in spinal cord injury. They also suggest exploiting the possible therapeutic role of intranasally delivered nerve growth factor for the neuroprotection of damaged spinal nerve cells.

  19. Integrin antagonists affect growth and pathfinding of ventral motor nerves in the trunk of embryonic zebrafish.

    Science.gov (United States)

    Becker, Thomas; McLane, Mary Ann; Becker, Catherina G

    2003-05-01

    Integrins are thought to be important receptors for extracellular matrix (ECM) components on growing axons. Ventral motor axons in the trunk of embryonic zebrafish grow in a midsegmental pathway through an environment rich in ECM components. To test the role of integrins in this process, integrin antagonists (the disintegrin echistatin in native and recombinant form, as well as the Arg-Gly-Asp-Ser peptide) were injected into embryos just prior to axon outgrowth at 14-16 h postfertilization (hpf). All integrin antagonists affected growth of ventral motor nerves in a similar way and native echistatin was most effective. At 24 hpf, when only the three primary motor axons per trunk hemisegment had grown out, 80% (16 of 20) of the embryos analyzed had abnormal motor nerves after injection of native echistatin, corresponding to 19% (91 of 480) of all nerves. At 33 hpf, when secondary motor axons were present in the pathway, 100% of the embryos were affected (24 of 24), with 20% of all nerves analyzed (196 of 960) being abnormal. Phenotypes comprised abnormal branching (64% of all abnormal nerves) and truncations (36% of all abnormal nerves) of ventral motor nerves at 24 hpf and mostly branching of the nerves at 33 hpf (94% of all abnormal nerves). Caudal branches were at least twice as frequent as rostral branches. Surrounding trunk tissue and a number of other axon fascicles were apparently not affected by the injections. Thus integrin function contributes to both growth and pathfinding of axons in ventral motor nerves in the trunk of zebrafish in vivo.

  20. Efficacy of nerve growth factor on the treatment of optic nerve contusion Evaluation with visual evoked potential

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    BACKGROUND: Pattern- visual evoked potential (PVEP) can reflect the functional status of retinal ganglial cells (RGC) and visual cortex, and is an objective examination for visual pathway function. It is a unique method for objectively examining the optic nerve function of optic ganglion cells.OBJECTIVE: To observe the effects of nerve growth factor (NGF) on PVEF in the treatment of optic nerve contusion, evaluate the clinical efficacy of NGF, and make an efficacy comparison with vitamin B12.DESIGN: A randomly grouping, controlled observation.SETTING: Department of Ophthalmology, Tangshan Gongren Hospital Affiliated to Hebei Medical University.PARTICIPANTS: Forty patients with optic nerve contusion caused by eye trauma, who received the treatment in the Tangshan Worker Hospital Affiliated to Hebei Medical University between January 2006 and June 2007, were recruited in this study. The involved 40 patients, including 34 males and 6 females,were aged 14 - 59 years. They were confirmed to have optic nerve contusion by ophthalmologic consultation combined with history of disease and orbital CT examination. Informed consents of treatments and detected items were obtained from all the patients. The patients were randomly divided into 2 groups with 20 in each:NGF group and vitamin B12 group.METHODS: Conservative treatment was used in the two groups. In addition, patients in the NGF group were intramuscularly injected with NGF solution 18 μg/time, once a day. Those in the vitamin B12 group were injected by the same method with common vitamin B12 of 500 μg combined with vitamin B1 of 100 mg, once a day.MAIN OUTCOME MEASURES: PVEP examination was conducted in all the patients before, one and two weeks after treatment, and latency and amplitude at P100 were detected.RESULTS: Forty patients with optic nerve contusion participated in the final analysis. Before treatment,significant differences in the latency and amplitude at P100 were not found in patients between two groups

  1. Nerve growth factor facilitates redistribution of adrenergic and non-adrenergic non-cholinergic perivascular nerves injured by phenol in rat mesenteric resistance arteries.

    Science.gov (United States)

    Yokomizo, Ayako; Takatori, Shingo; Hashikawa-Hobara, Narumi; Goda, Mitsuhiro; Kawasaki, Hiromu

    2016-01-05

    We previously reported that nerve growth factor (NGF) facilitated perivascular sympathetic neuropeptide Y (NPY)- and calcitonin gene-related peptide (CGRP)-containing nerves injured by the topical application of phenol in the rat mesenteric artery. We also demonstrated that mesenteric arterial nerves were distributed into tyrosine hydroxylase (TH)-, substance P (SP)-, and neuronal nitric oxide synthase (nNOS)-containing nerves, which had axo-axonal interactions. In the present study, we examined the effects of NGF on phenol-injured perivascular nerves, including TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves, in rat mesenteric arteries in more detail. Wistar rats underwent the in vivo topical application of 10% phenol to the superior mesenteric artery, proximal to the abdominal aorta, under pentobarbital-Na anesthesia. The distribution of perivascular nerves in the mesenteric arteries of the 2nd to 3rd-order branches isolated from 8-week-old Wistar rats was investigated immunohistochemically using antibodies against TH-, NPY-, nNOS-, CGRP-, and SP-containing nerves. The topical phenol treatment markedly reduced the density of all nerves in these arteries. The administration of NGF at a dose of 20µg/kg/day with an osmotic pump for 7 days significantly increased the density of all perivascular nerves over that of sham control levels. These results suggest that NGF facilitates the reinnervation of all perivascular nerves injured by phenol in small resistance arteries.

  2. Expression and Purification of Active Recombinant Human Nerve Growth Factor from Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Introduction Nerve growth factor (NGF) was first discovered and purified by Rita Levi-Montalcini and Stanley Cohen in the 1950s[1,2]. It represents the first cellular growth factor ever discovered and involved in the growth, survival, and differentiation of specific nerve cell populations[3]. Although animal tests and phase-Ⅱ clinical trials indicate that rhNGF could be an effective treatment for diabetic[4] and HIV-related neuropathies[5] , a large-scale phase-Ⅲ clinical trial has failed to give similar result[6].

  3. Nerve Growth Factor from Cobra Venom Inhibits the Growth of Ehrlich Tumor in Mice

    Directory of Open Access Journals (Sweden)

    Alexey V. Osipov

    2014-02-01

    Full Text Available The effects of nerve growth factor (NGF from cobra venom (cvNGF on growth of Ehrlich ascites carcinoma (EAC cells inoculated subcutaneously in mice have been studied. The carcinoma growth slows down, but does not stop, during a course of cvNGF injections and restores after the course has been discontinued. The maximal anti-tumor effect has been observed at a dose of 8 nmoles cvNGF/kg body weight. cvNGF does not impact on lifespan of mice with grafted EAC cells. K252a, a tyrosine kinase inhibitor, attenuates the anti-tumor effect of cvNGF indicating the involvement of TrkA receptors in the process. cvNGF has induced also increase in body weight of the experimental animals. In overall, cvNGF shows the anti-tumor and weight-increasing effects which are opposite to those described for mammalian NGF (mNGF. However in experiments on breast cancer cell line MCF-7 cvNGF showed the same proliferative effects as mNGF and had no cytotoxic action on tumor cells in vitro. These data suggest that cvNGF slows down EAC growth via an indirect mechanism in which TrkA receptors are involved.

  4. Nerve growth factor from cobra venom inhibits the growth of Ehrlich tumor in mice.

    Science.gov (United States)

    Osipov, Alexey V; Terpinskaya, Tatiana I; Kryukova, Elena V; Ulaschik, Vladimir S; Paulovets, Lubov V; Petrova, Elena A; Blagun, Ekaterina V; Starkov, Vladislav G; Utkin, Yuri N

    2014-02-26

    The effects of nerve growth factor (NGF) from cobra venom (cvNGF) on growth of Ehrlich ascites carcinoma (EAC) cells inoculated subcutaneously in mice have been studied. The carcinoma growth slows down, but does not stop, during a course of cvNGF injections and restores after the course has been discontinued. The maximal anti-tumor effect has been observed at a dose of 8 nmoles cvNGF/kg body weight. cvNGF does not impact on lifespan of mice with grafted EAC cells. K252a, a tyrosine kinase inhibitor, attenuates the anti-tumor effect of cvNGF indicating the involvement of TrkA receptors in the process. cvNGF has induced also increase in body weight of the experimental animals. In overall, cvNGF shows the anti-tumor and weight-increasing effects which are opposite to those described for mammalian NGF (mNGF). However in experiments on breast cancer cell line MCF-7 cvNGF showed the same proliferative effects as mNGF and had no cytotoxic action on tumor cells in vitro. These data suggest that cvNGF slows down EAC growth via an indirect mechanism in which TrkA receptors are involved.

  5. Memory-enhancing effect of Mori Fructus via induction of nerve growth factor.

    Science.gov (United States)

    Kim, Hyo Geun; Oh, Myung Sook

    2013-07-14

    Fruits rich in phytochemicals have been shown to improve memory by protecting or enhancing neuronal functions mediated by neurotrophic factors, such as nerve growth factor (NGF), in the hippocampus. Mori Fructus (Morus alba L., Moraceae), also called mulberry, is used as a food, dietary supplement and an anti-ageing agent in traditional Oriental medicine. It is also known to contain abundant flavonoid compounds and to exhibit various pharmacological effects. The present study was performed to evaluate the memory-enhancing effect of Mori Fructus extract (ME) in mice, with a focus on NGF regulation. ME (20, 100 and 500 mg/kg per d for 7 d, per os) dose-dependently promoted NGF release in the mouse hippocampus, leading to phosphorylation of extracellular signal-regulated kinases and cyclic AMP response element-binding protein. ME significantly increased pre- and post-synapse formation, acetylcholine synthesisation, neuronal cell differentiation, neurite outgrowth and neuronal cell proliferation in the mouse hippocampus. Furthermore, ME significantly increased latency time in the passive avoidance task (Pimprovements in learning and memory. Taken together, these data suggest that ME exhibits a memory-enhancing effect via up-regulation of NGF.

  6. Nerve growth factor, clinical applications and production of the recombinant protei

    Directory of Open Access Journals (Sweden)

    M. Zangi

    2017-01-01

    Full Text Available The mammalian neurotrophin family proteins, nerve growth factor (NGF, brain-derived neurotrophic factor (BDNF, neurotrophin-3 (NT-3 and neurotrophin-4/5 (NT-4/5 are known as neuronal survival factors. NGF, one of the most important cytokines, is composed of 118 amino acids. NGF is involved in the growth and differentiation of neural cells of the vertebrate peripheral sympathetic nerve as well as basal forebrain cholinergic neurons which degenerate in Alzheimer’s disease. In addition, it is implicated in the regulation of synaptic transmission and synaptogenesis in the central nervous system. NGF is produced by a variety of immune cells, including B cells, T cells, monocytes and mast cells as well as nervous system and binds through two distinct receptors, TrkA and p75NTR which signaling through them leads to the neuronal differentiation and cell death respectively. Considering the importance of this protein as a drug, NGF has been proposed for the treatment of neuron degenerative diseases such as Alzheimer's, Parkinson's and multiple sclerosis. To produce enough protein for research and clinical applications, genetic engineering techniques are used to produce recombinant forms. To date, there are no reports about the systems for production of the recombinant human NGF in an effective, low cost, with industrial production. Plants as a safe host generally offer major advantages such as free of animal pathogens, low costs, the ability to produce a protein similar to natural protein, and industrial production in large scale. Then they are suitable for the production of recombinant human NGF.

  7. Nerve growth factor promotes in vitro proliferation of neural stem cells from tree shrews

    Directory of Open Access Journals (Sweden)

    Liu-lin Xiong

    2016-01-01

    Full Text Available Neural stem cells promote neuronal regeneration and repair of brain tissue after injury, but have limited resources and proliferative ability in vivo. We hypothesized that nerve growth factor would promote in vitro proliferation of neural stem cells derived from the tree shrews, a primate-like mammal that has been proposed as an alternative to primates in biomedical translational research. We cultured neural stem cells from the hippocampus of tree shrews at embryonic day 38, and added nerve growth factor (100 µg/L to the culture medium. Neural stem cells from the hippocampus of tree shrews cultured without nerve growth factor were used as controls. After 3 days, fluorescence microscopy after DAPI and nestin staining revealed that the number of neurospheres and DAPI/nestin-positive cells was markedly greater in the nerve growth factor-treated cells than in control cells. These findings demonstrate that nerve growth factor promotes the proliferation of neural stem cells derived from tree shrews.

  8. [Construction of recombinant human nerve growth factor (rh-β-NGF) eukaryotic vector and its expression in HEK293 cells].

    Science.gov (United States)

    Li, Jingchuan; Xue, Bofu; Yuan, Yuan; Ma, Mo; Zhu, Lin; Milburn, Rebecca; Le, Li; Hu, Peizhen; Ye, Jing

    2015-03-01

    Human nerve growth factor (NGF) is a nerve cell growth regulation factor, which can provide nutrition for the neurons and promote the neurites outgrowth. In order to produce large-scale recombinant human nerve growth factor (rh-beta-NGF), we constructed a plasmid vector, which can stably express the rh-beta-NGF in the HEK293 cell lines. First, the plasmid of pCMV-beta-NGF-IRES-dhfr was constructed and transformed into HEK293 cells. Then MTX pressurized filter and limiting dilution methods were used to obtain monoclonal HEK293 cell lines. After stepwise reducing serum in culture media, the cells eventually adapted to serum-free medium and secreted rh-beta-NGF. SDS-PAGE analysis revealed that the expression product owned a molecular weight of about 13 kDa and a purity of more than 50%. The peptide mapping sequencing analysis demonstrated the sequences of rh-beta-NGF matched with the theoretical ones. Later we purified this protein by ion exchange and molecular sieve chromatograph. Finally, our experimental results exhibited that the recombinant cell lines can stably express rh-beta-NGF with a high efficiency of more than 20 pg/cell x day. In addition, this protein could successfully induce differentiation of PC12 cells. In summary, our recombinant HEK293 cells can express bio-active rh-beta-NGF with great efficiency and stability, which supply a valid basis to large-scale production of rh-beta-NGF.

  9. Regulation of the renal sympathetic nerves in heart failure

    Directory of Open Access Journals (Sweden)

    Rohit eRamchandra

    2015-08-01

    Full Text Available Heart failure (HF is a serious debilitating condition with poor survival rates and an increasing level of prevalence. Heart failure is associated with an increase in renal norepinephrine spillover, which is an independent predictor of mortality in HF patients. The excessive sympatho-excitation that is a hallmark of heart failure has long-term effects that contribute to disease progression. An increase in directly recorded renal sympathetic nerve activity has also been recorded in animal models of heart failure. This review will focus on the mechanisms controlling sympathetic nerve activity to the kidney during normal conditions and alterations in these mechanisms during heart failure. In particular the roles of afferent reflexes and central mechanisms will be discussed.

  10. Money, Regulation and Growth: Financing New Growth in Europe

    OpenAIRE

    Bruni, Franco; Ganchev, Gancho; Tsenkov, Vladimir; Stravrova, Elena; Bastidon, Cécile; Cukierman, Alex; Kane, Edward J.; Quagliariello, Mario; Lopes, Samuel Da Rocha; Burke, Javier Villar; Scopelliti, Alessandro

    2014-01-01

    On June 4-5, 2014, SUERF and Baffi Finlawmetrics jointly organised a Colloquium/Conference “Money, Regulation and Growth: Financing New Growth in Europe” at Bocconi University, Milan. The present SUERF Study includes a selection of papers based on the authors’ contributions to the Milan event. The overall themes at the conference were the implications for economic growth of monetary policy, financial regulation and structural changes in European financial institutions and markets.

  11. Sustained Growth Factor Delivery Promotes Axonal Regeneration in Long Gap Peripheral Nerve Repair

    Science.gov (United States)

    Kokai, Lauren E.; Bourbeau, Dennis; Weber, Douglas; McAtee, Jedidiah

    2011-01-01

    The aim of this study was to evaluate the long-term effect of localized growth factor delivery on sciatic nerve regeneration in a critical-size (>1 cm) peripheral nerve defect. Previous work has demonstrated that bioactive proteins can be encapsulated within double-walled, poly(lactic-co-glycolic acid)/poly(lactide) microspheres and embedded within walls of biodegradable polymer nerve guides composed of poly(caprolactone). Within this study, nerve guides containing glial cell line-derived neurotrophic factor (GDNF) were used to bridge a 1.5-cm defect in the male Lewis rat for a 16-week period. Nerve repair was evaluated through functional assessment of joint angle range of motion using video gait kinematics, gastrocnemius twitch force, and gastrocnemius wet weight. Histological evaluation of nerve repair included assessment of Schwann cell and neurofilament location with immunohistochemistry, evaluation of tissue integration and organization throughout the lumen of the regenerated nerve with Masson's trichrome stain, and quantification of axon fiber density and g-ratio. Results from this study showed that the measured gastrocnemius twitch force in animals treated with GDNF was significantly higher than negative controls and was not significantly different from the isograft-positive control group. Histological assessment of explanted conduits after 16 weeks showed improved tissue integration within GDNF releasing nerve guides compared to negative controls. Nerve fibers were present across the entire length of GDNF releasing guides, whereas nerve fibers were not detectable beyond the middle region of negative control guides. Therefore, our results support the use of GDNF for improved functional recovery above negative controls following large axonal defects in the peripheral nervous system. PMID:21189072

  12. Stringency of environmental regulation and aquaculture growth

    DEFF Research Database (Denmark)

    Gedefaw Abate, Tenaw; Nielsen, Rasmus; Tveterås, Ragnar

    2016-01-01

    During the last three decades, aquaculture has been the fastest growing animal-food-producing sector in the world, accounting for half of the present seafood supply. However, there is a significant growth disparity among aquaculture-producing countries. The reasons why some countries have achieved...... remarkable growth in aquaculture while others have stagnated or even declined have not been determined. In this article, we investigate whether environmental regulations have an impact on aquaculture growth. Using a cross-country regression analysis, we show that stringent environmental regulations...... are negatively related to aquaculture growth, whereas GDP growth has a positive effect. Countries often face a difficult balancing act between growth and environmental considerations when devising regulations. Our empirical results suggest that stricter environmental regulations in developed countries have...

  13. Effect of FK506 on Expression of Hepatocyte Growth Factor in Murine Spinal Cord Following Peripheral Nerve Injury

    Institute of Scientific and Technical Information of China (English)

    Feng PAN; Anmin CHEN; Fengjing GUO; Chenliang ZHU; Fenghua TAO

    2008-01-01

    This study is to investigate the effect of FK506 on expression of hepatocyte growth factor (HGF) in rats' spinal cord following peripheral nerve injury and to elucidate the mechanisms for neuroprotective property of FKS06. Fifty male rats were randomly divided into normal group, injury group and treatment group. Models of peripheral nerve injury were established by bilateral transection of sciatic nerve 0.5 cm distal to piriform muscle. Then the treatment group received subcutaneons injection of FK506 (1 mg/kg) at the back of neck, while the injury group was given 0.9% saline. The L4-6 spinal cords were harvested at various time points after the surgery. Western blotting and immunofluorescent staining were used to detect the level and position of HGF in spinal cord. Lm munofluorescent staining showed that HGF-positive neurons were located in anterior horn, interme- diate zone and posterior horn of gray matter in normal spinal cord. Western blotting revealed that there was no significant difference in the expressions of HGF between the injury group and the normal group, while the expression of HGF was significantly higher in the treatment group than in the injury group 7 and 14 days after surgery. It is suggested that peripheral nerve injury does not result in up-regulation of the expression of HGF in spinal cord, while FK506 may induce high expression of endogenous HGF after injury thereby protecting neurons and promoting axonal outgrowth.

  14. A meta-analysis of peripheral blood nerve growth factor levels in patients with schizophrenia.

    Science.gov (United States)

    Qin, X-Y; Wu, H-T; Cao, C; Loh, Y P; Cheng, Y

    2017-01-10

    Neurotrophins particularly brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are crucial modulators in the neurodevelopment and maintenance of central and peripheral nervous systems. Neurotrophin hypothesis of schizophrenia (SCZ) postulated that the changes in the brains of SCZ patients are the result of disturbances of developing processes involving neurotrophic factors. This hypothesis was mainly supported by the abnormal regulation of BDNF in SCZ, especially the decreased peripheral blood BDNF levels in SCZ patients validated by several meta-analyses. However, the regulation of NGF in SCZ remains unclear because of the inconsistent findings from the clinical studies. Therefore, we undertook, to the best of our knowledge, the first systematic review with a meta-analysis to quantitatively summarize the peripheral blood NGF data in SCZ patients compared with healthy control (HC) subjects. A systematic search of Pubmed, PsycINFO and Web of Science identified 13 articles encompassing a sample of 1693 individuals for the meta-analysis. Random-effects meta-analysis showed that patients with SCZ had significantly decreased peripheral blood levels of NGF when compared with the HC subjects (Hedges's g=-0.633, 95% confidence interval (CI)=-0.948 to -0.318, PMolecular Psychiatry advance online publication, 10 January 2017; doi:10.1038/mp.2016.235.

  15. Growth-promoting activity of Hominis Placenta extract on regenerating sciatic nerve

    Institute of Scientific and Technical Information of China (English)

    Tae-beom SEO; Dong-hee KIM; Seung-kiel PARK; Deok-chun YANG; Uk NAMGUNG; In-sun HAN; Jin-hwan YOON; In-chan SEOL; Yun-sik KIM; Hyun-kyung JO; Joung-jo AN; Kwon-eui HONG; Young-bae SEO

    2006-01-01

    Aim: Extract of Hominis Placenta (HP) has been used in oriental medicine as an agent for improving physiological function. The present study was conducted to investigate whether HP treatment in an experimental sciatic nerve injury animal model produces growth-promoting effects on regenerating peripheral nerve fibers after injury. Methods: After HP was injected into a sciatic nerve injury site, changes in protein levels were analyzed in the regenerating nerve area by Western blotting and immunofluorescence staining analyses. For quantitative assessment of axonal regeneration, a retrograde tracing technique was used to identify the neuronal cell bodies corresponding to regenerating axons, and the extent of neurite outgrowth in cultured dorsal root ganglia (DRG) sensory neurons prepared from animals that had experienced a sciatic nerve crush injury 7 d before neuron collection was analyzed. Results: Induction levels of axonal growth-associated protein (GAP-43) in the injured sciatic nerves were elevated by HP treatment. HP treatment also upregulated cell division cycle 2 (Cdc2) protein levels in the distal stump of the injured sciatic nerve. Induced Cdc2 protein was detected in Schwann cells, suggesting that Cdc2 kinase activity may be involved in the growth-promoting activity of regenerating axons via Schwann cell proliferation. Cell body measurement by retrograde tracing indicated that HP treatment produced significant increases in regenerating motor axons. Finally, HP treatment of cultured DRG sensory neurons significantly increased neurite arborization and elongation.Conclusion: HP promotes the regeneration of injured sciatic axons by upregulating the synthesis of regeneration-related protein factors such as GAP-43 and Cdc2.

  16. [The inflammatory reflex: the role of the vagus nerve in regulation of immune functions].

    Science.gov (United States)

    Mravec, B

    2011-01-01

    Experimental studies published in past years have shown an important role of the vagus nerve in regulating immune functions. Afferent pathways of this cranial nerve transmit signals related to tissue damage and immune reactions to the brain stem. After central processing of these signals, activated efferent vagal pathways modulate inflammatory reactions through inhibiting the synthesis and secretion of pro-inflammatory cytokines by immune cells. Therefore, pathways localized in the vagus nerve constitute the afferent and efferent arms of the so-called "inflammatory reflex" that participates in negative feedback regulation of inflammation in peripheral tissues. Activation of efferent pathways of the vagus nerve significantly reduces tissue damage in several models of diseases in experimental animals. Clinical studies also indicate the importance of the vagus nerve in regulating inflammatory reactions in humans. It is suggested that alteration of the inflammatory reflex underlies the etiopathogenesis of diseases characterized by exaggerated production of pro-inflammatory mediators. Therefore, research into the inflammatory reflex may create the basis for developing new approaches in the treatment of diseases with inflammatory components.

  17. The Vagus Nerve in Appetite Regulation, Mood, and Intestinal Inflammation.

    Science.gov (United States)

    Browning, Kirsteen N; Verheijden, Simon; Boeckxstaens, Guy E

    2017-03-01

    Although the gastrointestinal tract contains intrinsic neural plexuses that allow a significant degree of independent control over gastrointestinal functions, the central nervous system provides extrinsic neural inputs that modulate, regulate, and integrate these functions. In particular, the vagus nerve provides the parasympathetic innervation to the gastrointestinal tract, coordinating the complex interactions between central and peripheral neural control mechanisms. This review discusses the physiological roles of the afferent (sensory) and motor (efferent) vagus in regulation of appetite, mood, and the immune system, as well as the pathophysiological outcomes of vagus nerve dysfunction resulting in obesity, mood disorders, and inflammation. The therapeutic potential of vagus nerve modulation to attenuate or reverse these pathophysiological outcomes and restore autonomic homeostasis is also discussed. Copyright © 2017 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Soft Graphene Nanofibers Designed for the Acceleration of Nerve Growth and Development.

    Science.gov (United States)

    Feng, Zhang-Qi; Wang, Ting; Zhao, Bin; Li, Jiacheng; Jin, Lin

    2015-11-01

    Soft graphene nanofibers with recoverable electrical conductivity and excellent physicochemical stability are prepared by a controlled assembly technique. By using the soft graphene nanofibers for cellular electrical stimulation, the common inhibitory effect of long-term electrical stimulation on nerve growth and development is avoided, which usually happens with traditional 2D conductive materials.

  19. Growth Factor and Laminin Effect with Muscular Fiber Sheath on Repairing of the Sciatica Nerve

    Directory of Open Access Journals (Sweden)

    S Torabi

    2014-01-01

    Background & aim: Peripheral nerve injuries which can lead to a physical disability. If the defect is very low, direct suture without tension on both ends of the cut nerve regeneration is considered as a standard procedure. Otherwise, to reconstruct the axons, the gap must be filled by graft material in order to the guidance. Due to the similarity of the matrix tubular skeletal muscle and nerve muscles graft was used to repair in this study. Methods: In the present experimental study, 42 female Wistar rats were divided into three groups and underwent surgery. In the first group a narrow strip of muscle was prepared by freezing – thawing, and later sutured between the distal and proximal sciatic nerve. In the second group, the gap caused by muscle graft was regenerated and the nerve growth factor and laminin was injected into the graft. In the control group, the two ends of the cut nerve were hidden beneath the adjacent muscles. Next, a group of rats with sciatic functional index was investigated for the behavioral. On the other group were examined for histological studies after two months. Results: Sciatic functional index and Mean counts of myelinated fibers in two graft groups compared with the control group was significant p<0.05. Statistical analysis was performed using ANOVA test. Conclusion: co-axially aligned muscle grafts were an appropriate alternative substitute for repairing. It seems that the nerve growth factor and laminin have a positive role in axonal regeneration and functional recovery acceleration. Key words: Sciatic Functional Index, muscle graft, NGF, Laminin

  20. Regulation of muscle growth in neonates

    Science.gov (United States)

    This review reports recent findings on the multiple factors that regulate skeletal muscle growth in neonates. Skeletal muscle is the fastest growing protein mass in neonates. The high rate of neonatal muscle growth is due to accelerated rates of protein synthesis accompanied by the rapid accumulatio...

  1. Effects of Continuous Sciatic Nerve Block by Tetrodotoxin on Growth Associated Protein-43 Expression in Dorsal Root Ganglions of Normal and Sciatic Nerve Injury Rats

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; Yong-fa Zhang; Xiao-yu Huang

    2007-01-01

    @@ Growth associated protein-43 (GAP-43) is considered to be one of the most useful molecular markers for the neural development, nerve regeneration, and neuroplasticity. In most mature neurons, the expression of GAP-43 is at very low or negative level; its expression is triggered in response to the interruption of axonal transport. The purpose of this study was to examine whether continuous sciatic nerve block by tetrodotoxin (TTX) affects GAP-43 expression in the dorsal root ganglion (DRG) of normal and sciatic nerve injury rats.

  2. The interactions between nerve growth factor and gonadotrophins in bovine oviduct.

    Science.gov (United States)

    Li, Chunjin; Ma, Yonghe; Yi, Kangle; Wang, Chunqiang; Li, Wanhong; Liu, Zhuo; Sun, Lina; Chen, Shuxiong; Yu, Jiaxin; Li, Hongjiao; Chen, Lu; Zhou, Xu

    2014-10-01

    Nerve growth factor promotes the survival and differentiation of nervous cells and is thought to play an important role in the development of reproductive tissues. The aims of this work were to detect the presence of NGF and its receptor NTRK1 in bovine oviduct samples, and to investigate the regulatory interactions between NGF/NTRK1 and gonadotrophins in bovine oviduct epithelial cells. Both transcripts and proteins of NGF and NTRK1 were detected by RT-PCR and Western blotting, and the corresponding proteins were specifically immunolocalized in oviduct epithelial cells. In addition, real-time PCR experiments revealed that the levels of NGF and NTRK1 mRNA in oviduct epithelial cells treated with exogenous FSH or LH were greater than those in negative control cells (PNGF significantly increased the expression of FSHR and LHR in oviduct epithelial cells via its effects on NTRK1 (PNGF/NTRK1 may have a role in regulating the function of bovine oviducts via its interactions with gonadotrophins.

  3. Thyroid hormone promotes transient nerve growth factor synthesis in rat cerebellar neuroblasts.

    Science.gov (United States)

    Charrasse, S; Jehan, F; Confort, C; Brachet, P; Clos, J

    1992-01-01

    Primary cultures of cerebellum from 5-day-old rats indicated that proliferating neuroblasts synthesize and release nerve growth factor (NGF). Since NGF promotes DNA synthesis in these cells, our findings demonstrate that the early developing cerebellum is a suitable physiological model for studying the autocrine mitogenic action of NGF. Thyroid deficiency led to a greater reduction in the NGF content of the cerebellum than of the olfactory bulbs or hippocampus. Cerebellar NGF mRNA was also very sensitive to hormone deprivation. Physiological amounts of thyroid hormone stimulated both the mitotic activity and NGF production of cultured cerebellar neuroblasts. A lack of thyroid hormone is known to markedly alter cell formation in the cerebellum where postnatal neurogenesis is highly significant, in contrast to the olfactory bulbs and hippocampus. Taken together, these results suggest that the hormonal control of cell formation in the cerebellum is, at least partly, mediated by the autocrine mitogenic action of NGF. The thyroid hormone could temporally regulate the transient NGF synthesis by cerebellar neuroblasts directly and/or through its ontogenetic action, and hence all the NGF-dependent trophic effects.

  4. Targeted mesenchymal stem cell and vascular endothelial growth factor strategies for repair of nerve defects with nerve tissue implanted autogenous vein graft conduits.

    Science.gov (United States)

    Eren, Fıkret; Öksüz, Sınan; Küçükodaci, Zafer; Kendırlı, Mustafa Tansel; Cesur, Ceyhun; Alarçın, Emıne; Irem Bektaş, Ezgı; Karagöz, Hüseyın; Kerımoğlu, Oya; Köse, Gamze Torun; Ülkür, Ersın; Gorantla, Vijay

    2016-10-01

    Peripheral nerve gaps exceeding 1 cm require a bridging repair strategy. Clinical feasibility of autogenous nerve grafting is limited by donor site comorbidity. In this study we investigated neuroregenerative efficacy of autogenous vein grafts implanted with tissue fragments from distal nerve in combination with vascular endothelial growth factor (VEGF) or mesenchymal stem cells (MSCs) in repair of rat peripheral nerve defects. Six-groups of Sprague-Dawley rats (n = 8 each) were evaluated in the autogenous setting using a 1.6 cm long peroneal nerve defect: Empty vein graft (group 1), Nerve graft (group 2), Vein graft and nerve fragments (group 3), Vein graft and nerve fragments and blank microspheres (group 4), Vein graft and nerve fragments and VEGF microspheres (group 5), Vein graft and nerve fragments and MSCs (group 6). Nerve fragments were derived from distal segment. Walking track analysis, electrophysiology and nerve histomorphometry were performed for assessment. Peroneal function indices (PFI), electrophysiology (amplitude) and axon count results for group 2 were -9.12 ± 3.07, 12.81 ± 2.46 mV, and 1697.88 ± 166.18, whereas the results for group 5 were -9.35 ± 2.55, 12.68 ± 1.78, and 1566 ± 131.44, respectively. The assessment results did not reveal statistical difference between groups 2 and 5 (P > 0.05). The best outcomes were seen in group 2 and 5 followed by group 6. Compared to other groups, poorest outcomes were seen in group 1 (P ≤ 0.05). PFI, electrophysiology (amplitude) and axon count results for group 1 were -208.82 ± 110.69, 0.86 ± 0.52, and 444.50 ± 274.03, respectively. Vein conduits implanted with distal nerve-derived nerve fragments improved axonal regeneration. VEGF was superior to MSCs in facilitating nerve regeneration. © 2015 Wiley Periodicals, Inc. Microsurgery 36:578-585, 2016. © 2015 Wiley Periodicals, Inc.

  5. Negative regulation of gamma-aminobutyric acid type A receptor on free calcium ion levels following facial nerve injury

    Institute of Scientific and Technical Information of China (English)

    Fugao Zhu; Dawei Sun; Yanqing Wang; Rui Zhou; Junfeng Wen; Xiuming Wan; Yanjun Wang; Banghua Liu

    2010-01-01

    Previous studies have demonstrated that muscarinic, and nicotinic receptors increase free Ca2+ levels in the facial nerve nucleus via various channels following facial nerve injury. However, intracellular Ca2+ overload can trigger either necrotic or apoptotic cell death. Gamma-aminobutyric acid (GABA), an important inhibitory neurotransmitter in the central nervous system, exists in the facial nerve nucleus. It is assumed that GABA negatively regulates free Ca2+ levels in the facial nerve nucleus. The present study investigated GABA type A (GABAA) receptor expression in the facial nerve nucleus in a rat model of facial nerve injury using immunohistochemistry and laser confocal microscopy, as well as the regulatory effects of GABAA receptor on nicotinic receptor response following facial nerve injury. Subunits α1, α3, α5, β1, β2, δ, and γ3 of GABAA receptors were expressed in the facial nerve nucleus following facial nerve injury. In addition, GABAA receptor expression significantly inhibited the increase in nicotinic receptor-mediated free Ca2+ levels in the facial nerve nucleus following facial nerve injury in a concentration-dependent fashion. These results suggest that GABAA receptors exhibit negative effects on nicotinic receptor responses following facial nerve injury.

  6. Effects of Nerve Growth Factor and Basic Fibroblast Growth Factor Promote Human Dental Pulp Stem Cells to Neural Differentiation.

    Science.gov (United States)

    Zhang, Jinlong; Lian, Min; Cao, Peipei; Bao, Guofeng; Xu, Guanhua; Sun, Yuyu; Wang, Lingling; Chen, Jiajia; Wang, Yi; Feng, Guijuan; Cui, Zhiming

    2017-04-01

    Dental pulp stem cells (DPSCs) were the most widely used seed cells in the field of neural regeneration and bone tissue engineering, due to their easily isolation, lack of ethical controversy, low immunogenicity and low rates of transplantation rejection. The purpose of this study was to investigate the role of basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) on neural differentiation of DPSCs in vitro. DPSCs were cultured in neural differentiation medium containing NGF and bFGF alone or combination for 7 days. Then neural genes and protein markers were analyzed using western blot and RT-PCR. Our study revealed that bFGF and NGF increased neural differentiation of DPSCs synergistically, compared with bFGF and NGF alone. The levels of Nestin, MAP-2, βIII-tubulin and GFAP were the most highest in the DPSCs + bFGF + NGF group. Our results suggested that bFGF and NGF signifiantly up-regulated the levels of Sirt1. After treatment with Sirt1 inhibitor, western blot, RT-PCR and immunofluorescence staining showed that neural genes and protein markers had markedly decreased. Additionally, the ERK and AKT signaling pathway played a key role in the neural differentiation of DPSCs stimulated with bFGF + NGF. These results suggested that manipulation of the ERK and AKT signaling pathway may be associated with the differentiation of bFGF and NGF treated DPSCs. Our date provided theoretical basis for DPSCs to treat neurological diseases and repair neuronal damage.

  7. Rita Levi-Montalcini: the discovery of nerve growth factor and modern neurobiology.

    Science.gov (United States)

    Aloe, Luigi

    2004-07-01

    The remarkable accomplishments in developmental neurobiology within the past 60 years have depended on two things: (i) a succession of original histochemical and immunohistochemical methodologies for identifying pathways in the nervous system with increasing precision and sensitivity, and (ii) the discovery of growth factors for neurons. Growth factors are naturally occurring, essential biological mediators that promote cell growth, differentiation, survival and function in specific nerve cell populations. The discovery of nerve growth factor (NGF) by Rita Levi-Montalcini in the 1950s represents an important milestone in the processes that led to modern cell biology. NGF was the first growth factor identified, for its action on the morphological differentiation of neural-crest-derived nerve cells. Later, its effect on neuronal cells of the peripheral and central nervous systems, and on several non-neuronal cells was also determined. Thus, Levi-Montalcini's work on NGF represents, as acknowledged by the Nobel Prize Assembly in its press release of 13 October 1986, "a fascinating example of how a skilled observer can create a concept out of apparent chaos".

  8. Nav2 is necessary for cranial nerve development and blood pressure regulation

    Directory of Open Access Journals (Sweden)

    Moechars Dieder

    2010-02-01

    Full Text Available Abstract Background All-trans retinoic acid (atRA is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2 was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1, and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo. Results Nav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal and X (vagus. Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls. Conclusions Nav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.

  9. Effect of mouse nerve growth factor combined with mecobalamine on treatment of diabetic peripheral neuropathy

    Institute of Scientific and Technical Information of China (English)

    De-Rong Hu

    2016-01-01

    Objective:To observe the clinical effect of mouse nerve growth fact (NGF) combined with mecobalamine on treatment of diabetic peripheral n-europathy (DPN).Methods:A total of 84 cases of patients with DPN treated in ourhospital between April 2012 and June 2015 were selected, and divided into study group and control group randomly (n=42); Control group was only given mecobalamine treatment, while study group was given mouse nerve growth factor combined with mecobalamine treatment for 4 weeks. TThe motor nerve conduction velocity median nerve (MNCV), sensory nerve conduction velocity (SNCV), serum high sensitivity c-reactive protein (hs-CRP) and Toronto clinical scoring system (TCSS) changes of median nerve and nervus peroneus communis before and after treatment were compared. Results:There were no significant differences in MNCV, SNCV of mediannerve and nervus peroneus communis before treatment. MNCV and SNCV of both groups after treatment were significantly increased. MNCV, SNCV of mediannerve and nervus peroneus communis in study group was significantly higher than that in control group. hs-CRP and TCSS scoring of both groups before treatment showed no statistic significant difference. hs-CRP scoring of both groups after treatment showed no significant difference. TCSS scoring was significantly lower than that in control group. Adverse reaction total occurrence rate after given drug in study group was 16.67% (7/42), compared with 7.14% (3/42) in control group, difference was significant.Conclusions:Mouse NGF combined with mecobalamine could achieve good curative effect. It is of higher safety in the treatment of patients with DPN, and deserves popularization and application.

  10. Mesenchymal stem cells modified with nerve growth factor improve recovery of the inferior alveolar nerve after mandibular distraction osteogenesis in rabbits.

    Science.gov (United States)

    Wang, L; Zhao, Y; Cao, J; Yang, X; Lei, D

    2015-03-01

    Distraction osteogenesis is widely used in the treatment of bony deformities and defects. However, injury to the inferior alveolar nerve is a concern. Our aim was to investigate the feasibility of using lentiviral-mediated human nerve growth factor beta (hNGFβ) of the inferior alveolar nerve in mandibular distraction osteogenesis in rabbits. To achieve this, mesenchymal stem cells (MSC) from the bone marrow of rabbit mandibles were isolated and genetically engineered using recombinant lentiviral vector containing hNGFβ. Twenty New Zealand white rabbits underwent mandibular distraction osteogenesis, and 5 million MSC transduced with hNGFβ-vector or control vector were transplanted around the nerve in the gap where the bone had been fractured during the operation (n=10 in each group). After gradual distraction, samples of the nerve were harvested for histological and histomorphometric analysis. We found that the genetically engineered MSC transduced by the lentiviral vector were able to secrete hNGFβ at physiologically relevant concentrations as measured by ELISA. Histological examination of the nerve showed more regenerating nerve fibres and less myelin debris in the group in which hNGFβ-modified MSC had been implanted than in the control group. Histomorphometric analysis of the nerve showed increased density of myelinated fibres in the group in which hNGFβ-modified MSC had been implanted than in the control group. The data suggest that implantation of hNGFβ-modified MSC can accelerate the morphological recovery of the inferior alveolar nerve during mandibular distraction osteogenesis in rabbits. The use of lentiviral-mediated gene treatment to deliver hNGFβ through MSC may be a promising way of minimising injury to the nerve.

  11. NERVE REGENERATION THROUGH A 2-PLY BIODEGRADABLE NERVE GUIDE IN THE RAT AND THE INFLUENCE OF ACTH4-9 NERVE GROWTH-FACTOR

    NARCIS (Netherlands)

    ROBINSON, PH; VANDERLEI, B; HOPPEN, HJ; LEENSLAG, JW; PENNINGS, AJ; NIEUWENHUIS, P

    1991-01-01

    Biodegradable polyurethane-based (PU) nerve guides, instilled with or without ACTH4-9 analog (a melanocortin) were used for bridging an 8 mm gap in the rat sciatic nerve and were evaluated for function and histological appearance after 16 weeks of implantation. Autologous nerve grafts functioned as

  12. Mechanisms of nerve growth factor signaling in bone nociceptors and in an animal model of inflammatory bone pain.

    Science.gov (United States)

    Nencini, Sara; Ringuet, Mitchell; Kim, Dong-Hyun; Chen, Yu-Jen; Greenhill, Claire; Ivanusic, Jason J

    2017-01-01

    Sequestration of nerve growth factor has been used successfully in the management of pain in animal models of bone disease and in human osteoarthritis. However, the mechanisms of nerve growth factor-induced bone pain and its role in modulating inflammatory bone pain remain to be determined. In this study, we show that nerve growth factor receptors (TrkA and p75) and some other nerve growth factor-signaling molecules (TRPV1 and Nav1.8, but not Nav1.9) are expressed in substantial proportions of rat bone nociceptors. We demonstrate that nerve growth factor injected directly into rat tibia rapidly activates and sensitizes bone nociceptors and produces acute behavioral responses with a similar time course. The nerve growth factor-induced changes in the activity and sensitivity of bone nociceptors we report are dependent on signaling through the TrkA receptor, but are not affected by mast cell stabilization. We failed to show evidence for longer term changes in expression of TrkA, TRPV1, Nav1.8 or Nav1.9 in the soma of bone nociceptors in a rat model of inflammatory bone pain. Thus, retrograde transport of NGF/TrkA and increased expression of some of the common nerve growth factor signaling molecules do not appear to be important for the maintenance of inflammatory bone pain. The findings are relevant to understand the basis of nerve growth factor sequestration and other therapies directed at nerve growth factor signaling, in managing pain in bone disease.

  13. Blockade of spinal nerves inhibits expression of neural growth factor in the myocardium at an early stage of acute myocardial infarction in rats.

    Science.gov (United States)

    Yue, W; Guo, Z

    2012-09-01

    Neural growth factor (NGF) is required for healing and sprouting of cardiac sympathetic and sensory nerves and plays important roles in cardiac protection, sustaining cardiac function and regeneration in ischaemic heart disease. The overexpression or lack of the NGF could be harmful to the heart. In this study, we examined the role of spinal nerves in the modulation of expression of the NGF in the myocardium at risk of ischaemia soon after acute myocardial infarction in rats. Coronary artery occlusion (CAO) was carried out in anaesthetized rats with and without preconditioning of blockade of the spinal nerves. The expression of the NGF protein and mRNA in the myocardium at risk of ischaemia was examined using immunohistochemical assay, enzyme-linked immunosorbent assay, and real-time quantitative reverse transcription polymerase chain reaction assay. In the left ventricle, immunoreactive cells and fibre-like structures were mainly located in the myocardium and in the epicardium. The NGF protein expression was increased by two-fold in the myocardium at risk of ischaemia during the 60 min of CAO, while the NGF mRNA was up-regulated three-fold, at 360 min after acute myocardial infarction. The blockade of the spinal nerves completely abolished the up-regulation of the NGF in the myocardium (Pmyocardial infarction, an effect which can be inhibited by the blockade of these nerves.

  14. FGF signalling regulates bone growth through autophagy.

    Science.gov (United States)

    Cinque, Laura; Forrester, Alison; Bartolomeo, Rosa; Svelto, Maria; Venditti, Rossella; Montefusco, Sandro; Polishchuk, Elena; Nusco, Edoardo; Rossi, Antonio; Medina, Diego L; Polishchuk, Roman; De Matteis, Maria Antonietta; Settembre, Carmine

    2015-12-10

    Skeletal growth relies on both biosynthetic and catabolic processes. While the role of the former is clearly established, how the latter contributes to growth-promoting pathways is less understood. Macroautophagy, hereafter referred to as autophagy, is a catabolic process that plays a fundamental part in tissue homeostasis. We investigated the role of autophagy during bone growth, which is mediated by chondrocyte rate of proliferation, hypertrophic differentiation and extracellular matrix (ECM) deposition in growth plates. Here we show that autophagy is induced in growth-plate chondrocytes during post-natal development and regulates the secretion of type II collagen (Col2), the major component of cartilage ECM. Mice lacking the autophagy related gene 7 (Atg7) in chondrocytes experience endoplasmic reticulum storage of type II procollagen (PC2) and defective formation of the Col2 fibrillary network in the ECM. Surprisingly, post-natal induction of chondrocyte autophagy is mediated by the growth factor FGF18 through FGFR4 and JNK-dependent activation of the autophagy initiation complex VPS34-beclin-1. Autophagy is completely suppressed in growth plates from Fgf18(-/-) embryos, while Fgf18(+/-) heterozygous and Fgfr4(-/-) mice fail to induce autophagy during post-natal development and show decreased Col2 levels in the growth plate. Strikingly, the Fgf18(+/-) and Fgfr4(-/-) phenotypes can be rescued in vivo by pharmacological activation of autophagy, pointing to autophagy as a novel effector of FGF signalling in bone. These data demonstrate that autophagy is a developmentally regulated process necessary for bone growth, and identify FGF signalling as a crucial regulator of autophagy in chondrocytes.

  15. Effect of mouse nerve growth factor on brain development in premature infants

    Institute of Scientific and Technical Information of China (English)

    Yi Ban; Zhong-He Wan

    2016-01-01

    Objective:To analyze the effect of application of mouse nerve growth factor in neonatal period on brain development in premature infants.Methods:A total of 37 cases of premature infants given birth in our hospital from 1st January, 2015 to 30th December, 2015 were selected as research subjects and divided into observation group (n=18) and control group (n=19) according to different ways of intervention. Control group didn’t receive exogenous drugs, observation group received mouse nerve growth factor (NGF) treatment in neonatal period, and then differences in results of brain magnetic resonance imaging, electroencephalogram, brainstem auditory evoked potential, scores of Gesell developmental scale, levels of NSE, S-100β, 8-OHdG and 8-I-PGF2α and levels of TLR-4, TNF-α, IL-18 and so on of two groups after intervention were compared.Results:Proportions of normal MRI, EEG and BAEP of observation group were higher than those of control group, and proportions of severely abnormal were significantly lower than those of control group; scores of Gesell developmental scale motor, adaptive behavior, language and social skills of observation group in 3 months and 6 months of corrected gestational age were higher than those of control group; serum NSE, S-100β, 8-OHdG and 8-I-PGF2α levels of observation group after 3 months and 6 months of corrected gestational age were lower than those of control group ; serum TLR-4, TNF-α, IL-18, NF-κB and MMP-9 levels of observation group after 6 months of corrected gestational age were lower than those of control group, and levels of EGF and SOD were higher than those of control group.Conclusion: Application of mouse nerve growth factor in neonatal period of premature infants helps to promote nerve cell growth and development and optimize brain function of premature infants, and it has active clinical significance.

  16. Correlation between Nerve Growth Factor (NGF) with Brain Derived Neurotropic Factor (BDNF) in Ischemic Stroke Patient

    OpenAIRE

    Islam, Andi Asadul

    2016-01-01

    - The neurotrophins nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient's onset...

  17. Expression of B-nerve growth factor in rabbit male tract and seminal plasma

    OpenAIRE

    García García, R. M.; Masdeu, M.; A. Sánchez Rodríguez; Bautista, J. M.; Arias Álvarez, María; LORENZO, P. L.; Garcia Rebollar, Pilar

    2015-01-01

    Nerve growth factor (NGF) has been recently identified as an ovulation inductor factor (OIF) in the seminal plasma (SP) (Ratto et al. PNAS 2012; 109:15042-7). The presence of OIF in rabbit has been suggested but this protein has not yet been identified. Our aim was to study the mRNA expression in the rabbit male reproductive tract and to identify the protein β-NGF in the SP.

  18. The choroid as a sclera growth regulator.

    Science.gov (United States)

    Summers, Jody A

    2013-09-01

    Emmetropization is a vision dependent mechanism that attempts to minimize refractive error through coordinated growth of the cornea, lens and sclera such that the axial length matches the focal length of the eye. It is generally accepted that this visually guided eye growth is controlled via a cascade of locally generated chemical events that are initiated in the retina and ultimately cause changes in scleral extracellular matrix (ECM) remodeling which lead to changes in eye size and refraction. Of much interest, therefore, are the molecular mechanisms that underpin emmetropization and visually guided ocular growth. The choroid, a highly vascularized layer located between the retina and the sclera is uniquely situated to relay retina-derived signals to the sclera to effect changes in ECM synthesis and ocular size. Studies initiated by Josh Wallman clearly demonstrate that the choroid plays an active role in emmetropization, both by modulation of its thickness to adjust the retina to the focal plane of the eye (choroidal accommodation), and well as through the release of growth factors that have the potential to regulate scleral extracellular matrix remodeling. His discoveries prompted numerous investigations on the molecular composition of the choroid and changes in gene expression associated with visually guided ocular growth. This article will review molecular and functional studies of the choroid to provide support for the hypothesis that the choroid is a source of sclera growth regulators that effect changes in ocular growth in response to visual stimuli. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of Heavy Ion Brain Radiation on Nerve-immune System Regulation Mechanism in Rat

    Institute of Scientific and Technical Information of China (English)

    YU; Ying-qi; WANG; Xiao; KONG; Fu-quan; SUI; Li; LEI; Run-hong; MA; Hong; DENG; Yu-lin; LI; Qiang

    2013-01-01

    High-dose ionizing irradiation can cause extensive injuries in susceptible tissues.Blood,nervous and immune systems are highly radiation-sensitive.While the nerve-immune system regulation of radiationdamage in the relevant research is rare.So the brain injury model that rats were subjected to 15 Gy of head irradiation was built.By detecting hypothalamic-pituitary-adrenal axis(HPA axis)changes,the

  20. Human Adenomyosis Endometrium Stromal Cells Secreting More Nerve Growth Factor: Impact and Effect.

    Science.gov (United States)

    Li, Yan; Zou, Shien; Xia, Xian; Zhang, Shaofen

    2015-09-01

    Abnormal expression of nerve growth factor (NGF) was found in adenomyosis (AM). We collected AM foci from patients and eutopic endometrium from non-AM controls. Endometrium stromal cells (ESCs) were cultured. Different levels of 17β-estradiol, tumor necrosis factor (TNF), CoCl2, and H2O2 were added to the culture system separately, then the expression level of NGF in ESCs was detected. After adding different levels of NGF, the proliferation and apoptosis of ESCs and aromatase expression were detected. We found that 17β-estradiol promoted NGF production in AM ESCs but not in control ESCs; TNF promoted NGF production in both AM and control ESCs; and CoCl2 inhibited NGF production in control ESCs, but had no effect in AM ESCs. Nerve growth factor promoted the proliferation and synthesis of aromatase in AM ESCs. In conclusion, locally increased estrogen levels and inflammation may cause increased NGF production in the uterus of patients with AM. Nerve growth factor stimulated the proliferation and increased aromatase expression of ESCs from AM foci, suggesting NGF might contribute to the pathology and etiology of AM.

  1. Novel protein controls growth regulators in rice

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ A recent study by CAS researchers could add new dimensions to the understanding of downstream signaling mechanism of Brassinosteroids(BRs), a group of plant growth regulators, in rice. Their work was published by the August 21 issue of the Proceedings of National Academy of Sciences (PNAS).

  2. Limited efficacy of COX-2 inhibitors on nerve growth factor and metalloproteinases expressions in human synovial fibroblasts.

    Science.gov (United States)

    Yorifuji, Makiko; Sawaji, Yasunobu; Endo, Kenji; Kosaka, Taiichi; Yamamoto, Kengo

    2016-05-01

    Nerve growth factor (NGF) is associated with arthritic pain and metalloproteinases are implicated in collagen and aggrecan degradation. Although selective COX-2 inhibitors are recommended for the treatment of arthritic diseases, their effects on NGF and metalloproteinases remain unclear. This study investigated the regulations of NGF and metalloproteinases by selective COX-2 inhibitors in isolated human synovial cells. The isolated human synovial cells were stimulated with IL-1β in the presence of selective COX-2 inhibitors (NS-398 or celecoxib) with or without exogenous PGE2 or its receptor (EP1-4) agonists. The expressions of NGF, MMP-1, -3, -13, ADAMTS-4, and -5 were quantified by real-time PCR and their proteins were determined by Western blotting. The amount of PGE2 released was measured by enzyme-linked immunosorbent assay (ELISA). The IL-1β inductions of NGF and MMP-1 and MMP-13 were augmented by the COX-2 inhibitors, whereas the inductions of ADAMTS-4 and ADAMTS-5 were inhibited. These actions were reversed by supplementing PGE2 or the EP4 agonist exogenously. Our comprehensive analysis revealed that COX-2 inhibitors may be beneficial for suppressing aggrecan degradation and for reducing inflammatory pain by inhibiting PGE2 release, although they may have limited efficacy in suppressing collagen degradation and nerve growth. This study suggests the feedback roles of PGE2 in the negative regulation of NGF and MMP-1 and MMP-13 and the positive regulation of ADAMTS-4 and ADAMTS-5. Copyright © 2016 The Japanese Orthopaedic Association. Published by Elsevier B.V. All rights reserved.

  3. Immunity to nerve growth factor and the effect on motor unit reinnervation in the rabbit.

    Science.gov (United States)

    Finkelstein, D I; Luff, A R; Schuijers, J A

    1992-05-01

    The trophic effects of nerve growth factor (NGF) on sympathetic, peripheral afferent, and other neural crest-derived cells have been intensively investigated. More recently, NGF has been shown to have an influence on motoneurons. This study was undertaken to investigate whether NGF had any influence on the mechanical or histological properties of reinnervated motor units. Three groups of rabbits were used: normal rabbits, rabbits in which the nerve to medial gastrocnemius (MG) was cut and allowed to reinnervate for 56 days, and rabbits in which the MG nerve reinnervated in the presence of immunity to NGF. Immunity to NGF did not affect the ability of motor axons to reinnervate a muscle, nor were the contractile characteristics of the motor units altered. The size of horseradish peroxidase-labeled motoneurons was not influenced by immunization against NGF; however, the distribution of afferent neuron sizes was altered. Conduction velocity of motor axons proximal to the neuroma was significantly faster after immunization against NGF. Transection and subsequent reinnervation by a peripheral nerve normally causes an increase in myelin thickness proximal to the neuroma. However, immunization against NGF appeared to decrease the magnitude of myelin thickening. It was concluded that immunization against NGF affects motor axonal conduction velocity via an influence on the neural crest-derived Schwann cells.

  4. Endocannabinoids inhibit release of nerve growth factor by inflammation-activated mast cells.

    Science.gov (United States)

    Cantarella, Giuseppina; Scollo, Mimmo; Lempereur, Laurence; Saccani-Jotti, Gloria; Basile, Francesco; Bernardini, Renato

    2011-08-15

    Nerve growth factor (NGF) is a pleiotropic member of the neurotrophin family. Beside its neuronal effects, NGF plays a role in various processes, including angiogenesis. Mast cells release NGF and are among elements contributing to angiogenesis, a process regulated by arrays of factors, including the inhibitory cannabinoids. The possible inhibitory role of cannabinoids on mast cell-related NGF mitogenic effect on endothelial cells was then investigated. Human mastocytic cells HMC-1, challenged with PMA to yield release of NGF, were preincubated with the endocannabinoid PEA. Then, conditioned media were added to HUVEC cultures. PMA-activated HMC-1 cells released substantial amounts of NGF, whereas PEA inhibited PMA-induced NGF release. HUVEC proliferation increased after treatment with media from activated HMC-1 cells, while was reduced with media from HMC-1 cells treated with PEA. To characterize receptors mediating such effects of PEA, RT-PCR and western blot analysis were performed on HMC-1 cells. None of the two cannabinoid CB1 and CB2 receptors was expressed by HMC-1 cells, which on the other hand expressed the orphan receptor GPR55. PEA was ineffective in inhibiting NGF release from HMC-1 cells treated with PMA and transfected with positive GPR55 RNAi, whereas it induced significant reduction of NGF in cells transfected with the corresponding negative control RNAi. Results indicate that NGF released from inflammatory mast cells induces angiogenesis. Cannabinoids attenuate such pro-angiogenic effects of NGF. Finally, cannabinoids could be considered for antiangiogenic treatment in disorders characterized by prominent inflammation.

  5. Effects of locally applied nerve growth factor to the inferior alveolar nerve histology in a rabbit model of mandibular distraction osteogenesis.

    Science.gov (United States)

    Wang, L; Zhao, Y; Cheng, X; Yang, Y; Liu, G; Ma, Q; Shang, H; Tian, L; Lei, D

    2009-01-01

    Distraction osteogenesis (DO) is widely used in deformities and defects of the craniofacial bone. Accelerating inferior alveolar nerve (IAN) recovery would aid the process. Nerve growth factor (NGF) plays a vital role in peripheral nerve regeneration. In this study, the ability of locally applied human NGF beta (hNGFbeta) to enhance the morphological recovery of the IAN in a rabbit model of mandibular DO was studied. Rabbits underwent bilateral DO with a rate of 0.5mm per 12h. Two doses of 40 microg hNGFbeta in buffer were injected into callus at the beginning the of consolidation time. The contralateral side received injections of placebo. Rabbits were killed at 14 and 28 days. IAN specimens were subjected to histological and histomorphometric analysis. In both 14 and 28 days consolidation experiments, nerve histological analysis showed less degeneration and more regeneration in nerve fibers on the hNGFbeta treated side than the control side. Histomorphometric analysis showed that the myelinated fiber density on the hNGFbeta treated side was significantly higher than on the control side (p<0.01). The data indicate that locally applied hNGFbeta can accelerate the morphological recovery of the IAN and may play a role in reducing nerve injury in mandibular DO clinically.

  6. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    Science.gov (United States)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  7. Secretion of Growth Hormone in Response to Muscle Sensory Nerve Stimulation

    Science.gov (United States)

    Grindeland, Richard E.; Roy, R. R.; Edgerton, V. R.; Gosselink, K. L.; Grossman, E. J.; Sawchenko, P. E.; Wade, Charles E. (Technical Monitor)

    1994-01-01

    Growth hormone (GH) secretion is stimulated by aerobic and resistive exercise and inhibited by exposure to actual or simulated (bedrest, hindlimb suspension) microgravity. Moreover, hypothalamic growth hormone-releasing factor (GRF) and preproGRF mRNA are markedly decreased in spaceflight rats. These observations suggest that reduced sensory input from inactive muscles may contribute to the reduced secretion of GH seen in "0 G". Thus, the aim of this study was to determine the effect of muscle sensory nerve stimulation on secretion of GH. Fed male Wistar rats (304 +/- 23 g) were anesthetized (pentobarbital) and the right peroneal (Pe), tibial (T), and sural (S) nerves were cut. Electrical stimulation of the distal (D) or proximal (P) ends of the nerves was implemented for 15 min. to mimic the EMG activity patterns of ankle extensor muscles of a rat walking 1.5 mph. The rats were bled by cardiac puncture and their anterior pituitaries collected. Pituitary and plasma bioactive (BGH) and immunoactive (IGH) GH were measured by bioassay and RIA.

  8. Sympathetic nerve-derived ATP regulates renal medullary blood flow via vasa recta pericytes

    Directory of Open Access Journals (Sweden)

    Scott S Wildman

    2013-10-01

    Full Text Available Pericyte cells are now known to be a novel locus of blood flow control, being able to regulate capillary diameter via their unique morphology and expression of contractile proteins. We have previously shown that exogenous ATP causes constriction of vasa recta via renal pericytes, acting at a variety of membrane bound P2 receptors on descending vasa recta, and therefore may be able to regulate medullary blood flow (MBF. Regulation of MBF is essential for appropriate urine concentration and providing essential oxygen and nutrients to this region of high, and variable, metabolic demand. Various sources of endogenous ATP have been proposed, including from epithelial, endothelial and red blood cells in response to stimuli such as mechanical stimulation, local acidosis, hypoxia, and exposure to various hormones. Extensive sympathetic innervation of the nephron has previously been shown, however the innervation reported has focused around the proximal and distal tubules, and ascending loop of Henle. We hypothesise that sympathetic nerves are an additional source of ATP acting at renal pericytes and therefore regulate MBF. Using a rat live kidney slice model in combination with video imaging and confocal microscopy techniques we firstly show sympathetic nerves in close proximity to vasa recta pericytes in both the outer and inner medulla. Secondly, we demonstrate pharmacological stimulation of sympathetic nerves in situ (by tyramine evokes pericyte-mediated vasoconstriction of vasa recta capillaries; inhibited by the application of the P2 receptor antagonist suramin. Lastly, tyramine-evoked vasoconstriction of vasa recta by pericytes is significantly less than ATP-evoked vasoconstriction. Sympathetic innervation may provide an additional level of functional regulation in the renal medulla that is highly localized. It now needs to be determined under which physiological/pathophysiological circumstances that sympathetic innervation of renal pericytes is

  9. Effect of SIRT1 regulating cholesterol synthesis in repairing retinal ganglion cells after optic nerve injury in rats

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2014-10-01

    Full Text Available AIM: To investigate the repair mechanism associated with cholesterol synthesis regulated by silent information regulator 1(SIRT1in rat model of optic nerve damage. METHODS: Preparation of optic nerve damage in 70 rats was randomly divided into normal group(10 rats, resveratrol treatment group(experimental group 30 ratsand PBS buffer control group(30 rats. The experimental group and control group was further divided into 3 subgroups(each group 10 rats, respectively. After 7, 14, 21d injected resveratrol or PBS, optic nerve injury were observed, then the rats were sacrificed. Retina was segregated; the surviving retinal ganglion cell(RGCswas counted. Dissection of optic nerve, cholesterol content of them were tested; RT-PCR was used to detect mRNA expression of SIRT1, SREBP2 and HMGCR; Western blot assay was used to test the protein expression levels of SIRT1, cholesterol regulatory element binding protein 2(SREBP2and HMGCR. RESULTS: The numbers of RGCs and cholesterol levels of rat model with optic nerve injury decreased significantly(PPPPCONCLUSION: Up-regulating the expression of SIRT1, SREBP2 and down-regulating HMGCR by resveratrol could repair the injury of optic nerve through promoting the synthesis of cholesterol in neurons and retinal ganglion cells in the repair process. SIRT1 may be as a promising new target for treatment on optic nerve damage.

  10. Inhibitory Activity of Yokukansankachimpihange against Nerve Growth Factor-Induced Neurite Growth in Cultured Rat Dorsal Root Ganglion Neurons

    Directory of Open Access Journals (Sweden)

    Chiaki Murayama

    2015-08-01

    Full Text Available Chronic pruritus is a major and distressing symptom of many cutaneous diseases, however, the treatment remains a challenge in the clinic. The traditional Chinese-Japanese medicine (Kampo medicine is a conservative and increasingly popular approach to treat chronic pruritus for both patients and medical providers. Yokukansankachimpihange (YKH, a Kampo formula has been demonstrated to be effective in the treatment of itching of atopic dermatitis in Japan although its pharmacological mechanism is unknown clearly. In an attempt to clarify its pharmacological actions, in this study, we focused on the inhibitory activity of YKH against neurite growth induced with nerve growth factor (NGF in cultured rat dorsal root ganglion (DRG neurons because epidermal hyperinnervation is deeply related to itch sensitization. YKH showed approximately 200-fold inhibitory activity against NGF-induced neurite growth than that of neurotropin (positive control, a drug used clinically for treatment of chronic pruritus. Moreover, it also found that Uncaria hook, Bupleurum root and their chemical constituents rhynchophylline, hirsutine, and saikosaponin a, d showed inhibitory activities against NGF-induced neurite growth, suggesting they should mainly contribute to the inhibitory activity of YKH. Further study on the effects of YKH against epidermal nerve density in “itch-scratch” animal models is under investigation.

  11. Expression of nerve growth factor is upregulated in the rat thymic epithelial cells during thymus regeneration following acute thymic involution.

    Science.gov (United States)

    Lee, Hee-Woo; Kim, Sung-Min; Shim, Na-Ri; Bae, Soo-Kyung; Jung, Il-Gun; Kwak, Jong-Young; Kim, Bong-Seon; Kim, Jae-Bong; Moon, Jeon-Ok; Chung, Joo-Seop; Yoon, Sik

    2007-06-07

    Neuroimmune networks in the thymic microenvironment are thought to be involved in the regulation of T cell development. Nerve growth factor (NGF) is increasingly recognized as a potent immunomodulator, promoting "cross-talk" between various types of immune system cells. The present study describes the expression of NGF during thymus regeneration following acute involution induced by cyclophosphamide in the rat. Immunohistochemical stain demonstrated not only the presence of NGF but also its upregulated expression mainly in the subcapsular, paraseptal, and perivascular epithelial cells, and medullary epithelial cells including Hassall's corpuscles in both the normal and regenerating thymus. Biochemical data obtained using Western blot and RT-PCR supported these results and showed that thymic extracts contain NGF protein and mRNA, at higher levels during thymus regeneration. Thus, our results suggest that NGF expressed in these thymic epithelial cells plays a role in the T lymphopoiesis associated with thymus regeneration during recovery from acute thymic involution.

  12. Modeling Performance of Plant Growth Regulators

    Directory of Open Access Journals (Sweden)

    W. C. Kreuser

    2017-03-01

    Full Text Available Growing degree day (GDD models can predict the performance of plant growth regulators (PGRs applied to creeping bentgrass ( L.. The goal of this letter is to describe experimental design strategies and modeling approaches to create PGR models for different PGRs, application rates, and turf species. Results from testing the models indicate that clipping yield should be measured until the growth response has diminished. This is in contrast to reapplication of a PGR at preselected intervals. During modeling, inclusion of an amplitude-dampening coefficient in the sinewave model allows the PGR effect to dissipate with time.

  13. Primary neuron culture for nerve growth and axon guidance studies in zebrafish (Danio rerio.

    Directory of Open Access Journals (Sweden)

    Zheyan Chen

    Full Text Available Zebrafish (Danio rerio is a widely used model organism in genetics and developmental biology research. Genetic screens have proven useful for studying embryonic development of the nervous system in vivo, but in vitro studies utilizing zebrafish have been limited. Here, we introduce a robust zebrafish primary neuron culture system for functional nerve growth and guidance assays. Distinct classes of central nervous system neurons from the spinal cord, hindbrain, forebrain, and retina from wild type zebrafish, and fluorescent motor neurons from transgenic reporter zebrafish lines, were dissociated and plated onto various biological and synthetic substrates to optimize conditions for axon outgrowth. Time-lapse microscopy revealed dynamically moving growth cones at the tips of extending axons. The mean rate of axon extension in vitro was 21.4±1.2 µm hr(-1 s.e.m. for spinal cord neurons, which corresponds to the typical ∼0.5 mm day(-1 growth rate of nerves in vivo. Fluorescence labeling and confocal microscopy demonstrated that bundled microtubules project along axons to the growth cone central domain, with filamentous actin enriched in the growth cone peripheral domain. Importantly, the growth cone surface membrane expresses receptors for chemotropic factors, as detected by immunofluorescence microscopy. Live-cell functional assays of axon extension and directional guidance demonstrated mammalian brain-derived neurotrophic factor (BDNF-dependent stimulation of outgrowth and growth cone chemoattraction, whereas mammalian myelin-associated glycoprotein inhibited outgrowth. High-resolution live-cell Ca(2+-imaging revealed local elevation of cytoplasmic Ca(2+ concentration in the growth cone induced by BDNF application. Moreover, BDNF-induced axon outgrowth, but not basal outgrowth, was blocked by treatments to suppress cytoplasmic Ca(2+ signals. Thus, this primary neuron culture model system may be useful for studies of neuronal development

  14. Incorporation of chitosan microspheres into collagen-chitosan scaffolds for the controlled release of nerve growth factor.

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    Full Text Available Artifical nerve scaffold can be used as a promising alternative to autologous nerve grafts to enhance the repair of peripheral nerve defects. However, current nerve scaffolds lack efficient microstructure and neurotrophic support.Microsphere-Scaffold composite was developed by incorporating chitosan microspheres loaded with nerve growth factor (NGF-CMSs into collagen-chitosan scaffolds (CCH with longitudinally oriented microchannels (NGF-CMSs/CCH. The morphological characterizations, in vitro release kinetics study, neurite outgrowth assay, and bioactivity assay were evaluated. After that, a 15-mm-long sciatic nerve gap in rats was bridged by the NGF-CMSs/CCH, CCH physically absorbed NGF (NGF/CCH, CCH or nerve autograft. 16 weeks after implantation, electrophysiology, fluoro-gold retrograde tracing, and nerve morphometry were performed.The NGF-CMSs were evenly distributed throughout the longitudinally oriented microchannels of the scaffold. The NGF-CMSs/CCH was capable of sustained release of bioactive NGF within 28 days as compared with others in vitro. In vivo animal study demonstrated that the outcomes of NGF-CMSs/CCH were better than those of NGF/CCH or CCH.Our findings suggest that incorporation of NGF-CMSs into the CCH may be a promising tool in the repair of peripheral nerve defects.

  15. Combinatorial therapy with tamoxifen and trifluoperazine effectively inhibits malignant peripheral nerve sheath tumor growth by targeting complementary signaling cascades.

    Science.gov (United States)

    Brosius, Stephanie N; Turk, Amy N; Byer, Stephanie J; Longo, Jody Fromm; Kappes, John C; Roth, Kevin A; Carroll, Steven L

    2014-11-01

    Chemotherapeutic agents effective against malignant peripheral nerve sheath tumors (MPNSTs) are urgently needed. We recently found that tamoxifen potently impedes xenograft growth. In vitro, tamoxifen inhibits MPNST proliferation and survival in an estrogen receptor-independent manner; these effects are phenocopied by the calmodulin inhibitor trifluoperazine. The present study was performed to establish the mechanism of action of tamoxifen in vivo and optimize its therapeutic effectiveness. To determine if tamoxifen has estrogen receptor-dependent effects in vivo, we grafted MPNST cells in castrated and ovariectomized mice; xenograft growth was unaffected by reductions in sex hormones. To establish whether tamoxifen and trifluoperazine additively or synergistically impede MPNST growth, mice xenografted with neurofibromatosis type 1-associated or sporadic MPNST cells were treated with tamoxifen, trifluoperazine, or both drugs for 30 days. Both monotherapies inhibited graft growth by 50%, whereas combinatorial treatment maximally reduced graft mass by 90% and enhanced decreases in proliferation and survival. Kinomic analyses showed that tamoxifen and trifluoperazine have both shared and distinct targets in MPNSTs. In addition, trifluoperazine prevented tamoxifen-induced increases in serum/glucocorticoid regulated kinase 1, a protein linked to tamoxifen resistance. These findings suggest that combinatorial therapy with tamoxifen and trifluoperazine is effective against MPNSTs because these agents target complementary pathways that are essential for MPNST pathogenesis.

  16. Development of rat tibia innervation: colocalization of autonomic nerve fiber markers with growth-associated protein 43.

    Science.gov (United States)

    Gajda, Mariusz; Litwin, Jan A; Tabarowski, Zbigniew; Zagólski, Olaf; Cichocki, Tadeusz; Timmermans, Jean-Pierre; Adriaensen, Dirk

    2010-01-01

    Development of autonomic innervation of the tibia was investigated in rat fetuses on gestational days (GD) 17-21 and in juvenile animals on postnatal days (PD) 1-28. Double immunofluorescence combined with confocal microscopy was applied to study colocalization of neuronal growth- associated protein 43 (GAP-43) and panneuronal marker protein gene product 9.5 (PGP) with markers of the autonomic nervous system: neuropeptide Y (NPY) and dopamine beta-hydroxylase (DbetaH) for adrenergic, as well as vasoactive intestinal polypeptide (VIP) and vesicular acetylcholine transporter (VAChT) for cholinergic fibers. The first GAP-43-immunoreactive (GAP-IR) nerve fibers were seen on GD17 in the perichondrium of the proximal epiphysis. Further GAP- and PGP-IR innervation appeared in the perichondrium/periosteum of the diaphysis and in the distal epiphysis (GD19), then in the bone marrow and in the intercondylar eminence (GD21). On PD1, NPY-IR and DbetaH-IR fibers appeared within the diaphyseal periosteum and on PD4 within the bone marrow. From PD14, GAP-43 immunoreactivity of NPY-positive fibers decreased. From PD7 on, NPY-IR fibers were observed in cartilage canals of both epiphyses and in the intercondylar eminence. In secondary ossification centers, NPY-IR fibers were seen from PD10, and in the bone marrow of the epiphyses from PD14. First VIP-IR and VAChT-IR fibers were observed on PD4 within the periosteum, bone marrow and patellar ligament. From PD10 on, VIP-positive fibers were seen in the intercondylar eminence, and from PD14 in secondary ossification centers. GAP-43 proved to be superior to PGP 9.5 as marker of growing nerve fibers, mostly due to its earlier appearance. The presence of specific nerve fibers may suggest possible involvement of autonomic innervation in regulation of bone development.

  17. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  18. Substance P and Calcitonin Gene Related Peptide Mediate Pain in Chronic Pancreatitis and Their Expression is Driven by Nerve Growth Factor

    Science.gov (United States)

    Liu, LianSheng; Shenoy, Mohan; Pasricha, Pankaj Jay

    2014-01-01

    Context Calcitonin gene-related peptide (CGRP), substance P and nerve growth factor play an important role in inflammatory pain in various somatic pain models but their role in chronic pancreatitis has not been well studied. Objectives The aim of this study was to investigate the effects of intrathecal administration of calcitonin gene-related peptide antagonist and substance P receptor antagonist on pain behavior in a rat model of chronic pancreatitis and to determine whether nerve growth factor drives the up-regulation of expression of these neuropeptides in sensory neurons. Methods Pancreatitis was induced by retrograde infusion of trinitobenzene sulfonic acid into the pancreatic duct of adult rats. Three weeks post infusion continuous intrathecal infusion of the calcitonin gene-related peptide antagonist alpha CGRP8-37 or neurokinin-1 receptor antagonist CP-96345 or its inactive enantiomer CP-96344 was administered for seven days. The effects of treatment on pancreatic hyperalgesia were assessed by sensitivity of the abdominal wall to von Frey filament probing as well as by the nocifensive response to electrical stimulation of the pancreas. In a separate experiment chronic pancreatitis was induced and pancreas specific dorsal root ganglion neurons labeled with DiI were assessed for calcitonin gene-related peptide and substance P immunoreactivity. Results Intrathecal infusion of calcitonin gene-related peptide and neurokinin-1 receptor antagonists significantly attenuated behavioral pain responses in rats with chronic pancreatitis. Further, treatment of chronic pancreatitis rats with nerve growth factor antibody significantly reduced pancreas specific neurons expressing calcitonin gene-related peptide and substance P in thoracic dorsal root ganglion. Conclusions Calcitonin gene-related peptide and substance P mediate pancreatic hyperalgesia in chronic pancreatitis and nerve growth factor in turn sustains the up-regulation of these neuropeptides in pancreatic

  19. A study on peripheral nerve regeneration via biomimetic conduits loaded with Schwann cells and nerve growth factor

    Institute of Scientific and Technical Information of China (English)

    ZHAO Fengyi; ZHOU Peilan; WANG Ruilin; YANG Mingfu; ZHAO Weisheng; WEI Dian; ZHANG Tieliang; YAO Kangde; CUI Yuanlu

    2001-01-01

    @@ Guided tissue regeneration is a new approach in the reconstructive surgery of peripheral nerves. Biomimetic conducts were construct from the expanded vein onwhose inner surface composited with amnion filaments (cf. Fig 1).

  20. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Directory of Open Access Journals (Sweden)

    Louise A. Mesentier-Louro

    2017-01-01

    Full Text Available Nerve growth factor (NGF is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC degenerate following optic-nerve crush (ONC, even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration.

  1. Time-Dependent Nerve Growth Factor Signaling Changes in the Rat Retina During Optic Nerve Crush-Induced Degeneration of Retinal Ganglion Cells

    Science.gov (United States)

    Mesentier-Louro, Louise A.; De Nicolò, Sara; Rosso, Pamela; De Vitis, Luigi A.; Castoldi, Valerio; Leocani, Letizia; Mendez-Otero, Rosalia; Santiago, Marcelo F.; Tirassa, Paola; Rama, Paolo; Lambiase, Alessandro

    2017-01-01

    Nerve growth factor (NGF) is suggested to be neuroprotective after nerve injury; however, retinal ganglion cells (RGC) degenerate following optic-nerve crush (ONC), even in the presence of increased levels of endogenous NGF. To further investigate this apparently paradoxical condition, a time-course study was performed to evaluate the effects of unilateral ONC on NGF expression and signaling in the adult retina. Visually evoked potential and immunofluorescence staining were used to assess axonal damage and RGC loss. The levels of NGF, proNGF, p75NTR, TrkA and GFAP and the activation of several intracellular pathways were analyzed at 1, 3, 7 and 14 days after crush (dac) by ELISA/Western Blot and PathScan intracellular signaling array. The progressive RGC loss and nerve impairment featured an early and sustained activation of apoptotic pathways; and GFAP and p75NTR enhancement. In contrast, ONC-induced reduction of TrkA, and increased proNGF were observed only at 7 and 14 dac. We propose that proNGF and p75NTR contribute to exacerbate retinal degeneration by further stimulating apoptosis during the second week after injury, and thus hamper the neuroprotective effect of the endogenous NGF. These findings might aid in identifying effective treatment windows for NGF-based strategies to counteract retinal and/or optic-nerve degeneration. PMID:28067793

  2. Effect of white adipose tissue flap and insulin-like growth factor-1 on nerve regeneration in rats.

    Science.gov (United States)

    Kilic, Ayhan; Ojo, Bukola; Rajfer, Rebecca A; Konopka, Geoffrey; Hagg, Daniel; Jang, Eugene; Akelina, Yelena; Mao, Jeremy J; Rosenwasser, Melvin P; Tang, Peter

    2013-07-01

    Adipose tissue-derived stem cells and insulin-like growth factor-1 (IGF-1) have shown potential to enhance peripheral nerve regeneration. The purpose of this study was to investigate the effect of an in vivo biologic scaffold, consisting of white adipose tissue flap (WATF) and/or IGF-1 on nerve regeneration in a crush injury model. Forty rats all underwent a sciatic nerve crush injury and then received: a pedicled WATF, a controlled local release of IGF-1, both treatments, or no treatment at the injury site. Outcomes were the normalized maximum isometric tetanic force (ITF) of the tibialis anterior muscle and histomorphometric measurements. At 4 weeks, groups with WATF had a statistically significant improvement in maximum ITF recovery, as compared to those without (P nerve regeneration in this model. Utilizing the WATF may have a beneficial therapeutic role in peripheral nerve injuries. Copyright © 2013 Wiley Periodicals, Inc.

  3. Cerebrolysin as a nerve growth factor for treatment of acquired peripheral nervous system diseases

    Institute of Scientific and Technical Information of China (English)

    Sherifa Ahmad Hamed

    2011-01-01

    Cerebrolysin is a drug consisting of low-molecular-weight neurotrophic peptides and free amino acids. Cerebrolysin has been shown to ameliorate the effects of oxidative stress, reduce apoptosis, and promote neuronal growth in several degenerative and acquired central nervous system insults, including dementias, stroke, and traumatic injuries. Little is known about its therapeutic efficacy in peripheral nervous system diseases. In this study, we clinically evaluated the effects of cerebrolysin on peripheral nervous system lesions. We evaluated the clinical efficacy of cerebrolysin in six patients with the following conditions who failed to respond to conventional therapies: (1) atonic bladder due to inflammatory radiculitis; (2) paraplegia due to inflammatory radiculoneuropathy; (3) post-traumatic brachial plexopathy; (4) compressive radial nerve injury; (5) post-traumatic facial nerve paralysis; and (6) diabetic ophthalmoplegia. Our results showed that cerebrolysin was more associated with rapid neurological recovery after various peripheral nerve lesions than other therapies including steroids and supportive therapies such as vitamins and antioxidants. The present results support the therapeutic efficacy of cerebrolysin in the treatment of acquired peripheral nervous system diseases.

  4. Changes in behaviors of rats with sciatic nerve injury and expression of growth associated protein-43 in dorsal root ganglion

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; Yongfa Zhang

    2006-01-01

    BACKGROUND: Neuropathic pain is closely related to neuroplasticity, and growth associated protein-43 (GAP 43) is a molecular marker for neuronal development and neuroplasticity. The expression of GAP-43 during the development of neuropathic pain should have its own characters.OBJECTIVE: To observe the changes in behaviors of rats with sciatic nerve injury and GAP-43 expression in dorsal root ganglion(DRG) affected ascribing to developing nerve transection and nerve crush, two types of neuropathic pain models.DESIGN: Randomized controlled animal experiment.SETTING: Department of Anesthesiology in Second Hospital of Xiamen City and Second Affiliated Hospital of Shantou University Medical College.MATERIALS: Totally 250 adult Wistar rats of either gender, weighing 180 to 250 g, were involved in the study. The rats were randomized into 3 groups: nerve transection group (n =120), nerve crush group (n =120), and normal control group (n =10). The rats in the nerve transection group and nerve crush group were subdivided separately into 6 groups,and were allowed to survive for 3, 7, 14, 21, 30 and 60 days after nerve injury (n =20). Mouse anti-GAP-43 monoclonal antibody (Sigma Co.,Ltd.), Supervision TM anti-mouse reagent (HRP, Changdao antibody diagnosis reagent Co.,Ltd., Shanghai), DAB/H2O2 (Boster Co.Ltd, Wuhan), and HMIAS-100 image analysis system (Qianping Image engineering Company, Tongji Medical University) were employed in this study.METHODS: This experiment was carried out in the Surgical Department and Pathological Laboratory, the Second Hospital Affiliated to Shantou Medical College during April 2004 to April 2005. ① Grouping intervention: Animals were anesthetized and the sciatic nerve of the right side was exposed at thigh around ischial tuberosity. Sciatic nerves of rats in nerve transection group were transected at 1 cm below infrapiriform foramen, and those in nerve crush group were exposed as well as the nerve transection group, and crushed at 0.5 cm below

  5. Lower Levels of Urinary Nerve Growth Factor Might Predict Recurrent Urinary Tract Infections in Women

    OpenAIRE

    2016-01-01

    Purpose: To investigate the changes in urinary nerve growth factor (uNGF) levels after acute urinary tract infection (UTI) and to assess the role of uNGF in predicting UTI recurrence in women. Methods: Women with uncomplicated, symptomatic UTIs were enrolled. Cephalexin 500 mg (every 6 hours) was administered for 7–14 days to treat acute UTIs. Subsequently, the patients were randomized to receive either sulfamethoxazole/trimethoprim 800 mg/160 mg daily at bedtime, or celecoxib 200 mg daily fo...

  6. The Effects of Nerve Growth Factor on Skin Healing and Blood Recovery in Irradiated Mice

    Institute of Scientific and Technical Information of China (English)

    史春梦; 程天民; 屈纪富

    2002-01-01

    @@ It is known that radiation could cause bone marrow aplasia and delay wound healing.To promote cellular proliferation and blood recovery are 2 major goals in the treatment of radiation injury.We have observed that the expression of nerve growth factor (NGF) gene decreased greatly in the wound tissue of irradiated animals by immunohistochemistry and in situ hybridization methods.This study was designed to elucidate the effects of NGF on the skin wound healing and blood recovery in mice after total body irradiation.

  7. Induction of ovulation in rabbit does using purified nerve growth factor and camel seminal plasma

    OpenAIRE

    Masdeu, M.; García García, R. M.; Cardinali, R.; Millán, P.; Arias Álvarez, M.; C. Castellini; LORENZO, P. L.; Garcia Rebollar, Pilar

    2015-01-01

    The presence of an ovulation-inducing factor (OIF) in the seminal plasma (SP) of several species with spontaneous and induced ovulation, including the rabbit, has been documented. Recent studies have demonstrated that the OIF in the SP of camels (SPCAM) is a nerve growth factor (β-NGF). The aim of this study was to determine if purified β-NGF from mouse submandibular glands or SPCAM could provoke ovulation induction in the rabbit doe. A total of 35 females were synchronized with 25 IU of equi...

  8. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    OpenAIRE

    Gudat, F; Laubscher, A.; Otten, U; Pletscher, A

    1981-01-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas ...

  9. Regulation of Axolotl (Ambystoma mexicanum Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

    Directory of Open Access Journals (Sweden)

    Jeffrey Lehrberg

    Full Text Available We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.

  10. Regulation of Axolotl (Ambystoma mexicanum) Limb Blastema Cell Proliferation by Nerves and BMP2 in Organotypic Slice Culture.

    Science.gov (United States)

    Lehrberg, Jeffrey; Gardiner, David M

    2015-01-01

    We have modified and optimized the technique of organotypic slice culture in order to study the mechanisms regulating growth and pattern formation in regenerating axolotl limb blastemas. Blastema cells maintain many of the behaviors that are characteristic of blastemas in vivo when cultured as slices in vitro, including rates of proliferation that are comparable to what has been reported in vivo. Because the blastema slices can be cultured in basal medium without fetal bovine serum, it was possible to test the response of blastema cells to signaling molecules present in serum, as well as those produced by nerves. We also were able to investigate the response of blastema cells to experimentally regulated changes in BMP signaling. Blastema cells responded to all of these signals by increasing the rate of proliferation and the level of expression of the blastema marker gene, Prrx-1. The organotypic slice culture model provides the opportunity to identify and characterize the spatial and temporal co-regulation of pathways in order to induce and enhance a regenerative response.

  11. Effects of nerve growth factor on the expression of caspase-12 of nerve cells in cerebral ischemia/reperfusion area

    Institute of Scientific and Technical Information of China (English)

    Jiping Yang; Huaijun Liu; Ying Li; Yan Liu; Haiqing Yang

    2006-01-01

    BACKGROUND: Researches suggest that cascade reaction of cysteine protease mediated by caspase-12 can cause apoptosis after cerebral ischemia/reperfusion injury;however, nerve growth factor (NGF) can reduce apoptosis through inhibiting activation of that reaction.OBJECTTVE: To observe the effect of NGF on the expression of caspase-12 in brain tissue of rabbits with cerebral ischemia/reperfusion injury, and elucidate the protective mechanism of NGF on neural apoptosis induced by cerebral ischemia/reperfusion injury.DESIGN: Randomized controlled animal study.SETTING: Department of Image, Second Hospital, Hebei Medical University.MATERIALS: A total of 26 healthy New Zealand rabbits, of clean grade, aged 4.5-5 months, weighing (2.6±0.2) kg, were selected in this study. Reagents: NGF (Xiamen Beida Zhilu Biotechnology Co., Ltd.);caspase-12 (Santa Cruz Biotechnology Company, USA, clone number: SC-12395); caspase-3 (Santa Cruz Biotechnology Company, USA, clone number: SC-7272); biotin-antibody Ⅱ and ABC compound (Wuhan Boster Company); in situ end-labeling (ISEL, Beijing Zhongshan Company).METHODS: The experiment was carried out in the Laboratories of Nerve Molecule Image Science and Neurology of the Second Hospital of Hebei Medical University from May to August 2005. ① All animals were randomly divided into three groups. Ischemia/reperfusion (I/R) group (n=10): Left middle cerebral artery (MCA) was blocked for 2 hours and then blooded for 2 hours in order to establish focal cerebral ischemia/reperfusion models. Sham operation group (n=6): Cork was inserted with 3 cm in depth, and then pulled to common carotid artery. Other procedures were as the same as those in ischemia/reperfusion group.Treatment group (n=10): After modeling, 400 AU (16 μg/L) NGF was inserted into cerebral infarction focus sham operation group and at 3 days after reperfusion in other two groups. In addition, contents of caspase-12 and caspase-3 were measured with immunohistochemical technique; mean

  12. Hypertrophy of neurons within cardiac ganglia in human, canine, and rat heart failure: the potential role of nerve growth factor.

    Science.gov (United States)

    Singh, Sanjay; Sayers, Scott; Walter, James S; Thomas, Donald; Dieter, Robert S; Nee, Lisa M; Wurster, Robert D

    2013-08-19

    Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm(2); Phypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia.

  13. Effect of nerve growth factor on neuronal apoptosis after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    曹晓建; 汤长华; 罗永湘

    2002-01-01

    To explore the molecular mechanism of the protective effect of nerve growth factor (NGF) on injured spinal cord. Methods: The posterior T8 (the 8th thoracic segment) spinal cords of 60 Wistar rats were injured by impacts caused by objects (weighing 10 g) falling from a height of 2.5 cm with Allens way. Solution with nerve growth factors (NGF) was given to 30 rats (the NGF group) through a microtubule inserted into the subarachnoid cavity immediately, and at 2, 4, 8, 12 and 24 hours after spinal cord injury (SCI) respectively. Normal saline (NS) with same volume was given to the other 30 rats (the NS group) with the same method. And 5 normal rats were taken as the normal controls. The expression of bcl-2 and bax proteins in spinal cord was detected with immunohistochemistry. The apoptotic neurons in spinal cord were measured with terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling of DNA fragments (TUNEL) staining. Results: The positive expression of bcl-2 protein was strong in the normal controls, but decreased in the NS group, and increased significantly in the NGF group as compared with that of the NS group (P<0.01). The positive expression of bax protein was also strong in the normal controls, but increased in the NS group, and decreased significantly in the NGF group as compared with that of the NS group (P<0.01). Apoptotic neurons were found in the NS group, and they decreased significantly in the NGF group as compared with that of the NS group (P<0.01). Conclusions: NGF can protect the injured nerve tissues through stimulating the expression of bcl-2 protein, inhibiting the expression of bax protein and inhibiting the neuronal apoptosis after SCI.

  14. Correlation between Polyamines and Growth Regulators

    DEFF Research Database (Denmark)

    Gemici, Meliha; Unal, D.; Azeri, N.;

    2007-01-01

    Compounds of polyamines, considering to be essential for life, are found in prokaryotes and eukaryotes. Although their exact functions have not yet been identified, it is clear that the polyamines play important specific roles in a number of cellular processes such as replication and translation......, embryonic development, cell cycle, programmed cell death and cancer. In addition, the metabolic pathway of these compounds is lighten in recent years, the relationship between polyamines and hormones still remains unclear. In this study, we suggest that cytokinin and auxin, a plant growth hormone...... and regulating cell cycle progression, could be correlated with polyamines....

  15. Nerve growth factor-immobilized polypyrrole: Bioactive electrically conducting polymer for enhanced neurite extension

    Science.gov (United States)

    Gomez, Natalia; Schmidt, Christine E.

    2010-01-01

    Biomaterials that present multiple stimuli are attractive for a number of biomedical applications. In particular, electrical and biological cues are important factors to include in interfaces with neurons for applications such as nerve conduits and neural probes. Here, we report the combination of these two stimuli, by immobilizing nerve growth factor (NGF) on the surface of the electrically conducting polymer polypyrrole (PPy). NGF was immobilized using an intermediate linker provided by a layer of polyallylamine conjugated to an arylazido functional group. Upon exposure to UV light and activation of the azido groups, NGF was fixed to the substrate. Three different surface concentrations were obtained (0.21–0.98 ng/mm2) and similar levels of neurite extension were observed on immobilized NGF as with soluble NGF. Additionally, electrical stimulation experiments were conducted with the modified polymer and revealed a 50% increase in neurite outgrowth in PC12 cells compared to experiments without electrical stimulation. This novel modification of PPy provides both electrical and biological stimulation, by presenting tethered growth factors and only producing a small decrease in the material's properties (conductivity ~10 S cm−1) when compared to other modification techniques (conductivity ~10−3–10−6 S cm−1. PMID:17111407

  16. The Role of Nerve Growth Factor (NGF and Its Precursor Forms in Oral Wound Healing

    Directory of Open Access Journals (Sweden)

    Karl Schenck

    2017-02-01

    Full Text Available Nerve growth factor (NGF and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA and p75 neurotrophin receptor (p75NTR are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.

  17. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing.

    Science.gov (United States)

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-02-11

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75(NTR)) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds.

  18. Recombinant expression of human nerve growth factor beta in rabbit bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Fan, Bo-Sheng; Lou, Ji-Yu

    2010-12-01

    Nerve growth factor (NGF) is required for the differentiation and maintenance of sympathetic and sensory neurons. In the present study, the recombinant expression of human nerve growth factor beta (hNGF-β) gene in rabbit bone marrow mesenchymal stem cells (rMSCs) was undertaken. Recombinant vector containing hNGF-β was constructed and transferred into rMSCs, the expressions of the exogenous in rMSCs were determined by reverse transcriptase PCR (RT-PCR), ELISA and Western blot, whereas the biological activity of recombinant hNGF-β was confirmed using PC12 cells and cultures of dorsal root ganglion neurons from chicken embryos. The results showed that the hNGF-β gene expressed successfully in the rMSCs, a polypeptide with a molecular weight of 13.2 kDa was detected. The maximal expression level of recombinant hNGF-β in rMSCs reached 126.8012 pg/10(6) cells, the mean concentration was 96.4473 pg/10(6) cells. The recombinant hNGF-β in the rMSCs showed full biological activity when compared to commercial recombinant hNGF-β.

  19. The Role of Nerve Growth Factor (NGF) and Its Precursor Forms in Oral Wound Healing

    Science.gov (United States)

    Schenck, Karl; Schreurs, Olav; Hayashi, Katsuhiko; Helgeland, Kristen

    2017-01-01

    Nerve growth factor (NGF) and its different precursor forms are secreted into human saliva by salivary glands and are also produced by an array of cells in the tissues of the oral cavity. The major forms of NGF in human saliva are forms of pro-nerve growth factor (pro-NGF) and not mature NGF. The NGF receptors tropomyosin-related kinase A (TrkA) and p75 neurotrophin receptor (p75NTR) are widely expressed on cells in the soft tissues of the human oral cavity, including keratinocytes, endothelial cells, fibroblasts and leukocytes, and in ductal and acinar cells of all types of salivary glands. In vitro models show that NGF can contribute at most stages in the oral wound healing process: restitution, cell survival, apoptosis, cellular proliferation, inflammation, angiogenesis and tissue remodeling. NGF may therefore take part in the effective wound healing in the oral cavity that occurs with little scarring. As pro-NGF forms appear to be the major form of NGF in human saliva, efforts should be made to study its function, specifically in the process of wound healing. In addition, animal and clinical studies should be initiated to examine if topical application of pro-NGF or NGF can be a therapy for chronic oral ulcerations and wounds. PMID:28208669

  20. Gelatin-based hydrogel for vascular endothelial growth factor release in peripheral nerve tissue engineering.

    Science.gov (United States)

    Gnavi, S; di Blasio, L; Tonda-Turo, C; Mancardi, A; Primo, L; Ciardelli, G; Gambarotta, G; Geuna, S; Perroteau, I

    2017-02-01

    Hydrogels are promising materials in regenerative medicine applications, due to their hydrophilicity, biocompatibility and capacity to release drugs and growth factors in a controlled manner. In this study, biocompatible and biodegradable hydrogels based on blends of natural polymers were used in in vitro and ex vivo experiments as a tool for VEGF-controlled release to accelerate the nerve regeneration process. Among different candidates, the angiogenic factor VEGF was selected, since angiogenesis has been long recognized as an important and necessary step during tissue repair. Recent studies have pointed out that VEGF has a beneficial effect on motor neuron survival and Schwann cell vitality and proliferation. Moreover, VEGF administration can sustain and enhance the growth of regenerating peripheral nerve fibres. The hydrogel preparation process was optimized to allow functional incorporation of VEGF, while preventing its degradation and denaturation. VEGF release was quantified through ELISA assay, whereas released VEGF bioactivity was validated in human umbilical vein endothelial cells (HUVECs) and in a Schwann cell line (RT4-D6P2T) by assessing VEGFR-2 and downstream effectors Akt and Erk1/2 phosphorylation. Moreover, dorsal root ganglia explants cultured on VEGF-releasing hydrogels displayed increased neurite outgrowth, providing confirmation that released VEGF maintained its effect, as also confirmed in a tubulogenesis assay. In conclusion, a gelatin-based hydrogel system for bioactive VEGF delivery was developed and characterized for its applicability in neural tissue engineering. Copyright © 2014 John Wiley & Sons, Ltd. Copyright © 2014 John Wiley & Sons, Ltd.

  1. Rita Levi-Montalcini and the discovery of NGF, the first nerve cell growth factor.

    Science.gov (United States)

    Aloe, Luigi

    2011-06-01

    The nerve growth factor (NGF) is a signaling protein, discovered by Rita Levi-Montalcini in the early 1950's for its effect on growth and differentiation of specific populations of neurons of the peripheral nervous system. Originally identified as neurite outgrowth-stimulating factor, later studies revealed that the purified molecule has a number of target cells in the central nervous system and on nonneuronal cells. Moreover, recent studies showed the potential therapeutic properties of NGF in neuropathies of the central and peripheral nervous system and diseases of the eye and skin. Here I briefly describe the discovery of NGF, the early studies of Rita LeviMontalcini, a pioneer in modern neuroscience, and my scientific and human experience working in her laboratory for over 40 years.

  2. Emotional stress induced by parachute jumping enhances blood nerve growth factor levels and the distribution of nerve growth factor receptors in lymphocytes.

    Science.gov (United States)

    Aloe, L; Bracci-Laudiero, L; Alleva, E; Lambiase, A; Micera, A; Tirassa, P

    1994-10-25

    We examined the plasma nerve growth factor (NGF) level and the distribution of NGF receptors in peripheral lymphocytes of young soldiers (mean age, 20-24 yr) experiencing the thrill of a novice about to make their first parachute jumps. Blood was collected from soldiers who knew they were selected to jump (n = 26), as well as from soldiers who knew they were not selected (n = 17, controls). The former group was sampled the evening before the jump and 20 min after landing. Compared with controls, NGF levels increased 84% in prejump and 107% in postjump sampling. Our studies also showed that the increase of NGF levels preceded the increase of plasma cortisol and adrenocorticotropic hormone. No changes in the baseline levels of circulating interleukin 1 beta or tumor necrosis factor were found, suggesting that the increased levels of NGF were not correlated with change in these cytokines. Moreover, immunofluorescence analysis demonstrated that parachuting stress enhances the distribution of low-affinity p75LNGFR and high-affinity p140trkA NGF receptors in circulating peripheral blood mononuclear cells. These observations suggest that the release of NGF might be involved in the activation of cells of the immune system and is most probably associated with homeostatic adaptive mechanisms, as previously shown for stressed rodents.

  3. Effects of continuous peripheral nerve block by tetrodotoxin on growth associated protein-43 expression during neuropathic pain development

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; Xiaoyu Huang

    2007-01-01

    BACKGROUND: Peripheral nerve injury may lead to neuropathic pain and cause a markedly increase expression of growth associated protein-43 (GAP-43) in the spinal cord and dorsal root ganglion, local anesthetics blocking electrical impulse propagation of nerve fibers may also affect the expression of GAP-43 in the spinal cord and dorsal root ganglion.OBJECTIVE: To determine the effects of continuous peripheral nerve block by tetrodotoxin before and after nerve injury on GAP-43 expression in the dorsal root ganglion during the development of neuropathic pain.DESIGN: A randomized controlled animal experiment.SETTINGS: Department of Anesthesiology, the Second Hospital of Xiamen City; Department of Anesthesiology, the Second Affiliated Hospital of Shantou University Medical College. MATERIALS: Thirty-five Sprague Dawley (SD) rats, weighing 200 - 250 g, were randomly divided into four groups: control group (n =5), simple sciatic nerve transection group (n =10), peripheral nerve block before and after sciatic nerve transection groups (n =10). All the sciatic nerve transection groups were divided into two subgroups according to the different postoperative survival periods: 3 and 7 days (n =5) respectively. Mouse anti-GAP-43 monoclonal antibody (Sigma Co., Ltd.), supervision TM anti-mouse reagent (HRP, Changdao antibody diagnosis reagent Co., Ltd., Shanghai), and HMIAS-100 image analysis system (Qianping Image Engineering Company, Tongji Medical University) were employed in this study. METHODS: This experiment was carried out hi the Department of Surgery and Pathological Laboratory, the Second Affiliated Hospital of Shantou University Medical College from April 2005 to April 2006.①The animals were anesthetized and the right sciatic nerve was exposed and transected at 1 cm distal to sciatic notch.②Tetrodotoxin 10 μg/kg was injected percutaneously between the greater trochanter and the posterior superior iliac spine of right hind limb to block the sciatic nerve proximally

  4. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  5. Skeletal muscle afferent regulation of bioassayable growth hormone in the rat pituitary

    Science.gov (United States)

    Gosselink, K. L.; Grindeland, R. E.; Roy, R. R.; Zhong, H.; Bigbee, A. J.; Grossman, E. J.; Edgerton, V. R.

    1998-01-01

    There are forms of growth hormone (GH) in the plasma and pituitary of the rat and in the plasma of humans that are undetected by presently available immunoassays (iGH) but can be measured by bioassay (bGH). Although the regulation of iGH release is well documented, the mechanism(s) of bGH release is unclear. On the basis of changes in bGH and iGH secretion in rats that had been exposed to microgravity conditions, we hypothesized that neural afferents play a role in regulating the release of these hormones. To examine whether bGH secretion can be modulated by afferent input from skeletal muscle, the proximal or distal ends of severed hindlimb fast muscle nerves were stimulated ( approximately 2 times threshold) in anesthetized rats. Plasma bGH increased approximately 250%, and pituitary bGH decreased approximately 60% after proximal nerve trunk stimulation. The bGH response was independent of muscle mass or whether the muscles were flexors or extensors. Distal nerve stimulation had little or no effect on plasma or pituitary bGH. Plasma iGH concentrations were unchanged after proximal nerve stimulation. Although there may be multiple regulatory mechanisms of bGH, the present results demonstrate that the activation of low-threshold afferents from fast skeletal muscles can play a regulatory role in the release of bGH, but not iGH, from the pituitary in anesthetized rats.

  6. Nerve growth factor injected systemically improves the recovery of the inferior alveolar nerve in a rabbit model of mandibular distraction osteogenesis.

    Science.gov (United States)

    Du, Zhao-jie; Wang, Lei; Lei, De-lin; Liu, Bao-lin; Cao, Jian; Zhang, Pu; Ma, Qin

    2011-10-01

    Our aim was to find out if nerve growth factor (NGF) injected systemically could improve the recovery of the inferior alveolar nerve in a rabbit model of mandibular distraction osteogenesis. We used 48 New Zealand white rabbits that were treated with bilateral distraction osteogenesis at a rate of 0.5mm/12h for 10 days. Immediately postoperatively, NGF or sodium chloride 0.6 μg/day was injected intramuscularly for 20 days. At the end of distraction and after consolidation times of 1, 2, and 4 weeks, the inferior alveolar nerves were evaluated histologically and histomorphometrically. Histologically, at 2 and 4 weeks there was less myelin debris, and more regenerating axons were present, in the NGF than the control groups. The density of myelinated axons was significantly greater in groups with NGF than controls at 2 and 4 weeks (pNGF given systemically can accelerate the recovery of the inferior alveolar nerve in rabbits after mandibular distraction osteogenesis, and is a promising treatment option for neurological complications of mandibular distraction osteogenesis.

  7. Regulation of dorso‐ventral polarity by the nerve cord during annelid regeneration: A review of experimental evidence

    Science.gov (United States)

    Boilly‐Marer, Yolande; Bely, Alexandra E.

    2017-01-01

    Abstract An important goal for understanding regeneration is determining how polarity is conferred to the regenerate. Here we review findings in two groups of polychaete annelids that implicate the ventral nerve cord in assigning dorso‐ventral polarity, and specifically ventral identity, to the regenerate. In nereids, surgical manipulations indicate that parapodia develop where dorsal and ventral body wall territories contact. Without a nerve cord at the wound site, the regenerate differentiates no evident polarity (with no parapodia) and only dorsal identity, while with two nerve cords the regenerate develops a twinned dorso‐ventral axis (with four parapodia per segment instead of the normal two). In sabellids, a striking natural dorso‐ventral inversion in parapodial morphology occurs along the body axis and this inversion is morphologically correlated with the position of the nerve cord. Parapodial inversion also occurs in segments in which the nerve cord has been removed, even without any segment amputation. Together, these data strongly support a role for the nerve cord in annelid dorso‐ventral pattern regulation, with the nerve cord conferring ventral identity. PMID:28616245

  8. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  9. [Effect of embryonic anlage allografts of the rat spinal cord on growth of regenerating fibers of the recipient nerve].

    Science.gov (United States)

    Petrova, E S; Isaeva, E N

    2014-01-01

    A comparative study of the effect of tissue and suspension allografts of an embryonic spinal cord on regeneration of nerve fibers of impaired (by application of a ligature) sciatic nerve in rats was conducted. It was demonstrated that unlike tissue grafts that reach a large volume 21 and 60 days after transplantation, suspension grafts do not inhibit the growth of axons of the recipient to the periphery. It was established that introduction of a suspension of dissociated cells of the spinal cord embryonic anlages (but not fragments of these anlages) into the impaired sciatic nerve in rats results in an increase in the amount of myelinated regenerating nerve fibers of the recipient 60 days after the operation.

  10. Levodopa methyl ester increases nerve growth factor expression in visual cortex area 17 in a feline model of strabismic amblyopia

    Institute of Scientific and Technical Information of China (English)

    Yongwen Li; Xing Lin; Shijun Zhang; Rong Li; Weizhe Jiang; Renbin Huang

    2011-01-01

    In the present study, a feline model of strabismic amblyopia was established during a sensitive developmental period, and the influence of levodopa methyl ester and levodopa on nerve growth factor expression in the visual cortex (area 17) was compared. Pattern visual-evoked potential and immunohistochemistry results showed that levodopa methyl ester and levodopa treatment shortened P100 wave latency, increased P100 amplitude, and increased the number of endogenous nerve growth factor-positive cells in visual cortex levels. In particular, the effects of levodopa methyl ester were superior to levodopa treatment.

  11. Maslinic Acid Protected PC12 Cells Differentiated by Nerve Growth Factor against β-Amyloid-Induced Apoptosis.

    Science.gov (United States)

    Yang, Yu-wan; Tsai, Chia-wen; Mong, Mei-chin; Yin, Mei-chin

    2015-12-01

    β-Amyloid peptide (Abeta) was used to induce apoptosis in PC12 cells differentiated by nerve growth factor, and the protective activities of maslinic acid (MA) at 2-16 μM were examined. Abeta treatment lowered Bcl-2 expression, raised Bax expression, and decreased cell viability. MA pretreatments decreased Bax expression, raised the Bcl-2/Bax ratio, and increased cell viability. MA pretreatments retained glutathione content and decreased subsequent Abeta-induced release of reactive oxygen species, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Abeta treatment up-regulated protein expression of p47(phox), gp91(phox), mitogen-activated protein kinase, advanced glycation end product receptor (RAGE), and nuclear factor-κ B (NF-κB). MA pretreatments at 2-16 μM suppressed the expression of proteins including gp91(phox), p47(phox), p-p38, and NF-κB p65, at 4-16 μM down-regulated RAGE and NF-κB p50 expression, and at 8 and 16 μM reduced p-ERK1/2 expression. These novel findings suggest that maslinic acid is a potent compound against Abeta-induced cytotoxicity.

  12. Kv3 voltage-gated potassium channels regulate neurotransmitter release from mouse motor nerve terminals.

    Science.gov (United States)

    Brooke, Ruth E; Moores, Thomas S; Morris, Neil P; Parson, Simon H; Deuchars, Jim

    2004-12-01

    Voltage-gated potassium (Kv) channels are critical to regulation of neurotransmitter release throughout the nervous system but the roles and identity of the subtypes involved remain unclear. Here we show that Kv3 channels regulate transmitter release at the mouse neuromuscular junction (NMJ). Light- and electron-microscopic immunohistochemistry revealed Kv3.3 and Kv3.4 subunits within all motor nerve terminals of muscles examined [transversus abdominus, lumbrical and flexor digitorum brevis (FDB)]. To determine the roles of these Kv3 subunits, intracellular recordings were made of end-plate potentials (EPPs) in FDB muscle fibres evoked by electrical stimulation of tibial nerve. Tetraethylammonium (TEA) applied at low concentrations (0.05-0.5 mM), which blocks only a few known potassium channels including Kv3 channels, did not affect muscle fibre resting potential but significantly increased the amplitude of all EPPs tested. Significantly, this effect of TEA was still observed in the presence of the large-conductance calcium-activated potassium channel blockers iberiotoxin (25-150 nM) and Penitrem A (100 nM), suggesting a selective action on Kv3 subunits. Consistent with this, 15-microM 4-aminopyridine, which blocks Kv3 but not large-conductance calcium-activated potassium channels, enhanced evoked EPP amplitude. Unexpectedly, blood-depressing substance-I, a toxin selective for Kv3.4 subunits, had no effect at 0.05-1 microM. The combined presynaptic localization of Kv3 subunits and pharmacological enhancement of EPP amplitude indicate that Kv3 channels regulate neurotransmitter release from presynaptic terminals at the NMJ.

  13. Bilateral choroidal neovascularization associated with optic nerve head drusen treated by antivascular endothelial growth factor therapy

    Directory of Open Access Journals (Sweden)

    Carreras A

    2012-02-01

    Full Text Available Barbara Delas, Lorena Almudí, Anabel Carreras, Mouafk AsaadOphthalmology Service, Hospital de Terrassa, Barcelona, SpainObjective: To report a good clinical outcome in a patient with bilateral choroidal neovascularization (CNV associated with optic nerve head drusen (ONHD treated with intravitreal ranibizumab injection.Methods: A 12-year-old girl was referred for loss of right eye vision detected in a routine check-up. Best-corrected visual acuity (BCVA was hand movements in the right eye and 0.9 in the left eye. Funduscopy revealed the presence of superficial and buried bilateral ONHD, which was confirmed by ultrasonography and computed tomography, and the study was completed with perimetry. The presence of bilateral CNV, active in the right eye, was observed and subsequently confirmed using fluorescein angiography and optical coherence tomography.Results: Treatment with two consecutive injections of intravitreal ranibizumab resulted in inactivation of the neovascular membrane with subretinal fluid reabsorption and improved right eye BCVA. After 12 months’ follow-up, this was 20/60 and stable.Conclusion: Although there are no published studies of safety in children, antiangiogenic therapy for CNV secondary to ONHD may be useful and safe. A search of the literature produced only one previously reported case of ONHD-associated CNV treated with antivascular endothelial growth factor alone.Keywords: optic nerve head drusen, anti-vegf, children, neovascularisation

  14. A Cell Line Producing Recombinant Nerve Growth Factor Evokes Growth Responses in Intrinsic and Grafted Central Cholinergic Neurons

    Science.gov (United States)

    Ernfors, Patrik; Ebendal, Ted; Olson, Lars; Mouton, Peter; Stromberg, Ingrid; Persson, Hakan

    1989-06-01

    The rat β nerve growth factor (NGF) gene was inserted into a mammalian expression vector and cotransfected with a plasmid conferring resistance to neomycin into mouse 3T3 fibroblasts. From this transfection a stable cell line was selected that contains several hundred copies of the rat NGF gene and produces excess levels of recombinant NGF. Such genetically modified cells were implanted into the rat brain as a probe for in vivo effects of NGF on central nervous system neurons. In a model of the cortical cholinergic deficits in Alzheimer disease, we demonstrate a marked increase in the survival of, and fiber outgrowth from, grafts of fetal basal forebrain cholinergic neurons, as well as stimulation of fiber formation by intact adult intrinsic cholinergic circuits in the cerebral cortex. Adult cholinergic interneurons in intact striatum also sprout vigorously toward implanted fibroblasts. Our results suggest that this model has implications for future treatment of neurodegenerative diseases.

  15. Schwann cell mitochondria as key regulators in the development and maintenance of peripheral nerve axons.

    Science.gov (United States)

    Ino, Daisuke; Iino, Masamitsu

    2017-03-01

    Formation of myelin sheaths by Schwann cells (SCs) enables rapid and efficient transmission of action potentials in peripheral axons, and disruption of myelination results in disorders that involve decreased sensory and motor functions. Given that construction of SC myelin requires high levels of lipid and protein synthesis, mitochondria, which are pivotal in cellular metabolism, may be potential regulators of the formation and maintenance of SC myelin. Supporting this notion, abnormal mitochondria are found in SCs of neuropathic peripheral nerves in both human patients and the relevant animal models. However, evidence for the importance of SC mitochondria in myelination has been limited, until recently. Several studies have recently used genetic approaches that allow SC-specific ablation of mitochondrial metabolic activity in living animals to show the critical roles of SC mitochondria in the development and maintenance of peripheral nerve axons. Here, we review current knowledge about the involvement of SC mitochondria in the formation and dysfunction of myelinated axons in the peripheral nervous system.

  16. Correlation between nerve growth factor and tissue expression of IL-17 in leprosy.

    Science.gov (United States)

    Aarão, Tinara Leila de Sousa; de Sousa, Jorge Rodrigues; Botelho, Beatriz Santos; Fuzii, Hellen Thais; Quaresma, Juarez Antonio Simões

    2016-01-01

    Leprosy is a serious public health problem in peripheral and developing countries. Leprosy is a chronic infectious-contagious disease caused by the intracellular, bacillus Mycobacterium leprae, which causes tissue damage and demyelination of peripheral nerves. Recent studies have demonstrated the participation of new subtype's cytokines profile in the inflammatory response of leprosy. Since nerve functions are affected by inflammatory response during the course of leprosy, changes in the production of NGF and its receptor (NGF R) may be directly associated with disability and sensory loss. Skin biopsies were collected and submitted to immunohistochemistry using specific antibodies to IL-17, NGF and NGF R. Quantitative analysis of NGF, NGFR and IL-17 immunostaining showed a significant difference between the clinical forms, with higher expression of NGF and NGFR in lepromatous leprosy and IL-17 in tuberculoid leprosy. The present study showed that IL-17, in addition to stimulating an inflammatory response, negatively regulates the action of NGF and NGF R in the polar forms of the disease.

  17. Monoclonal Antibodies to Plant Growth Regulators

    Science.gov (United States)

    Eberle, Joachim; Arnscheidt, Angelika; Klix, Dieter; Weiler, Elmar W.

    1986-01-01

    Four high affinity monoclonal antibodies, which recognize two plant growth regulators from the cytokinin group, namely trans-zeatin riboside and dihydrozeatin riboside and their derivatives are reported. Six hybridomas were produced from three independent fusions of Balb/c spleen cells with P3-NS1-Ag 4-1 (abbreviated NS1) or X63-Ag 8.653 (X63) myeloma cells. The mice had been hyperimmunized with zeatin riboside-bovine serum albumin conjugate or dihydrozeatin riboside-bovine serum albumin conjugate for 3 months. The hybridomas secrete antibodies of the IgG 1 or IgG 2b subclass and allow the detection of femtomole amounts of the free cytokinins, their ribosides, and ribotides in plant extracts. The use of these monoclonals in radio- and enzyme-linked immunosorbent assay is also discussed. PMID:16664848

  18. Trigeminal nerve injury-induced thrombospondin-4 up-regulation contributes to orofacial neuropathic pain states in a rat model.

    Science.gov (United States)

    Li, K-W; Kim, D-S; Zaucke, F; Luo, Z D

    2014-04-01

    Injury to the trigeminal nerve often results in the development of chronic pain states including tactile allodynia, or hypersensitivity to light touch, in orofacial area, but its underlying mechanisms are poorly understood. Peripheral nerve injury has been shown to cause up-regulation of thrombospondin-4 (TSP4) in dorsal spinal cord that correlates with neuropathic pain development. In this study, we examined whether injury-induced TSP4 is critical in mediating orofacial pain development in a rat model of chronic constriction injury to the infraorbital nerve. Orofacial sensitivity to mechanical stimulation was examined in a unilateral infraorbital nerve ligation rat model. The levels of TSP4 in trigeminal ganglia and associated spinal subnucleus caudalis and C1/C2 spinal cord (Vc/C2) from injured rats were examined at time points correlating with the initiation and peak orofacial hypersensitivity. TSP4 antisense and mismatch oligodeoxynucleotides were intrathecally injected into injured rats to see if antisense oligodeoxynucleotide treatment could reverse injury-induced TSP4 up-regulation and orofacial behavioural hypersensitivity. Our data indicated that trigeminal nerve injury induced TSP4 up-regulation in Vc/C2 at a time point correlated with orofacial tactile allodynia. In addition, intrathecal treatment with TSP4 antisense, but not mismatch, oligodeoxynucleotides blocked both injury-induced TSP4 up-regulation in Vc/C2 and behavioural hypersensitivity. Our data support that infraorbital nerve injury leads to TSP4 up-regulation in trigeminal spinal complex that contributes to orofacial neuropathic pain states. Blocking this pathway may provide an alternative approach in management of orofacial neuropathic pain states. © 2013 European Pain Federation - EFIC®

  19. The Pleiotropism of Nerve Growth Factor Sensorial Pathway: Supplemental Growth Stimuli Could be Required During Danger Signalization Like a Surviving “Proclaim”

    Directory of Open Access Journals (Sweden)

    Ervin Ç. Mingomataj

    2008-05-01

    Full Text Available Nerve growth factor (NGF is the founder-member of neurotrophins family that provides growth and surviving effect not only for neuronal tissue but also for various non-neuronal cellular populations. It effectuates its physiologic or pathologic functions in sensorial neuronal system and some certain tissues through NGF-receptors such as tyrosinkinase A and p75, involving also transient receptor potential vanilloid 1, substance P and its receptor NK1 (members of NGF-pathways - NGFP. In different situations, such as stress-related or inflammatory pathologies (including allergy, asthma, depression, multiple chemical sensivity, stressful or dangerous events, etc, are reported elevated local and serologic concentrations of these mediators. Reflecting on the pleiotropic effects of mentioned substances, it could be suggested that over-regulation of NGFP mediators is generally required during identification of somatic or psycho-emotional integrity threatening like a surviving proclaim. In this context, the identification of a danger may induce NGFP-mediated growth stimuli to assure better surviving possibilities for the organism, maybe as a compensatory effect. Experiments in knockout animals with regards to genes of NGFP mediators could be helpful for the verification of its role as leader of information in the mentioned processes. Some investigations in such animals have demonstrated their abnormal passivity to fight for vital demands, whereas the behavior of subjects with down-regulation of aforementioned factors is associated with sensory or cognitive disorders such as congenital insensivity for pain with anhidrosis, schizophrenia, diabetes, or self-mutilatory behaviors. The last mentioned facts manifest the inability to recognize the situation of bodily and mental integrity during the NGFP insufficiency, leading to the necessity for further pharmacologic investigations with regards to NGFP mediators in the related pathologies.

  20. EFFECTS OF NERVE GROWTH FACTOR ON ENDOTHELIN AFTER SPINAL CORD INJURY IN RATS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Objective To investigate the protective mechanisms of nerve growth factor (NGF) on spinal cord injury.Methods The spinal cord injury (SCI) of Wistar rats was performed by a 10g×2.5cm impact on the posterior T12 spinal cord.The experimental animals received NGF liquid by subarachnoid space tube.The radioimmunological techniques were applied to examine the level of endothelin.Results The level of endothelin was significantly increased after the injury as compared with that in control group(P<0.01).The level of endothelin in NGF group as obviously lowered as compared with that in normal saline group 4 h after injury (P<0.01).Conclusion NGF can protect spinal cord against injury in vivo.One of the mechanisms is that NGF could inhibit endothelin-induced vicious circle.

  1. Cortical peroxynitration of nerve growth factor in aged and cognitively impaired rats.

    Science.gov (United States)

    Bruno, Martin A; Cuello, A Claudio

    2012-09-01

    Basal forebrain cholinergic neurons (BFCN), a system involved in learning and memory processes, are highly dependent on a continuous supply of biologically active nerve growth factor (NGF). Age-related cholinergic atrophy and cell loss in normal brains is apparently not complemented by reductions in the levels of NGF as could be expected. In the present work, cortical proNGF/NGF were immunoprecipitated from cortical brain homogenates from young and aged and behaviorally characterized rats and resolved with antinitrotyrosine antibodies to reveal nitration of tyrosine residues in proteins. Cortical proNGF in aged and cognitively impaired rats was found to be a target for peroxynitrite-mediated oxidative damage with correlative impact on decrease in choline acetyltransferase activity. These studies provide evidence for oxidative stress damage of NGF molecules in the cerebral cortex of cognitively impaired aged rats as previously shown in AD human brains. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Sprouty2 down-regulation promotes axon growth by adult sensory neurons.

    Science.gov (United States)

    Hausott, Barbara; Vallant, Natalie; Auer, Maria; Yang, Lin; Dai, Fangping; Brand-Saberi, Beate; Klimaschewski, Lars

    2009-12-01

    Fibroblast growth factors (FGFs) play a prominent role in axonal growth during development and repair. Treatment with FGF-2 or overexpression of FGF receptors promotes peripheral axon regeneration mainly by activation of extracellular signal-regulated kinase (ERK). The Ras/Raf/ERK pathway is under the control of Sprouty proteins acting as negative feedback inhibitors. We investigated the expression of Sprouty isoforms in adult sensory neurons of dorsal root ganglia (DRG) as well as the effects of Sprouty inhibition on axon growth by small interfering RNAs (siRNAs). Sprouty2 revealed the highest expression level in DRG neurons. Down-regulation of Sprouty2 promoted elongative axon growth by adult sensory neurons accompanied by enhanced FGF-2-induced activation of ERK and Ras, whereas Sprouty2 overexpression inhibited axon growth. Sprouty2 was not regulated in vivo in response to a sciatic nerve lesion. Together, our results imply that Sprouty2 is highly expressed in adult peripheral neurons and its down-regulation strongly promotes elongative axon growth by activation of the Ras/Raf/ERK pathway.

  3. Axonal regeneration and remyelination evaluation of chitosan/gelatin-based nerve guide combined with transforming growth factor-β1 and Schwann cells.

    Science.gov (United States)

    Nie, Xin; Deng, Manjing; Yang, Maojin; Liu, Luchuan; Zhang, Yongjie; Wen, Xiujie

    2014-01-01

    Despite efforts in peripheral nerve injury and regeneration, it is difficult to achieve a functional recovery following extended peripheral nerve lesions. Even if artificial nerve conduit, cell components and growth factors can enhance nerve regeneration, integration in peripheral nerve repair and regeneration remains yet to be explored. For this study, we used chitosan/gelatin nerve graft constructed with collagenous matrices as a vehicle for Schwann cells and transforming growth factor-β1 to bridge a 10-mm gap of the sciatic nerve and explored the feasibility of improving regeneration and reinnervation in rats. The nerve regeneration was assessed with functional recovery, electrophysiological test, retrograde labeling, and immunohistochemistry analysis during the post-operative period of 16 weeks. The results showed that the internal sides of the conduits were compact enough to prevent the connective tissues from ingrowth. Nerve conduction velocity, average regenerated myelin area, and myelinated axon count were similar to those treated with autograft (p > 0.05) but significantly higher than those bridged with chitosan/gelatin nerve graft alone (p regeneration and remyelination. A designed graft incorporating all of the tissue-engineering strategies for peripheral nerve regeneration may provide great progress in tissue engineering for nerve repair.

  4. BNIP3 regulates AT101 [(--gossypol] induced death in malignant peripheral nerve sheath tumor cells.

    Directory of Open Access Journals (Sweden)

    Niroop Kaza

    Full Text Available Malignant peripheral nerve sheath tumors (MPNSTs are aggressive Schwann cell-derived sarcomas and are the leading cause of mortality in patients with neurofibromatosis type 1 (NF1. Current treatment modalities have been largely ineffective, resulting in a high rate of MPNST recurrence and poor five-year patient survival. This necessitates the exploration of alternative chemotherapeutic options for MPNST patients. This study sought to assess the cytotoxic effect of the BH3-mimetic AT101 [(--gossypol] on MPNST cells in vitro and to identify key regulators of AT101-induced MPNST cell death. We found that AT101 caused caspase-independent, non-apoptotic MPNST cell death, which was accompanied by autophagy and was mediated through HIF-1α induced expression of the atypical BH3-only protein BNIP3. These effects were mediated by intracellular iron chelation, a previously unreported mechanism of AT101 cytotoxicity.

  5. BNIP3 regulates AT101 [(-)-gossypol] induced death in malignant peripheral nerve sheath tumor cells.

    Science.gov (United States)

    Kaza, Niroop; Kohli, Latika; Graham, Christopher D; Klocke, Barbara J; Carroll, Steven L; Roth, Kevin A

    2014-01-01

    Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived sarcomas and are the leading cause of mortality in patients with neurofibromatosis type 1 (NF1). Current treatment modalities have been largely ineffective, resulting in a high rate of MPNST recurrence and poor five-year patient survival. This necessitates the exploration of alternative chemotherapeutic options for MPNST patients. This study sought to assess the cytotoxic effect of the BH3-mimetic AT101 [(-)-gossypol] on MPNST cells in vitro and to identify key regulators of AT101-induced MPNST cell death. We found that AT101 caused caspase-independent, non-apoptotic MPNST cell death, which was accompanied by autophagy and was mediated through HIF-1α induced expression of the atypical BH3-only protein BNIP3. These effects were mediated by intracellular iron chelation, a previously unreported mechanism of AT101 cytotoxicity.

  6. Enhanced bioavailability of nerve growth factor with phytantriol lipid-based crystalline nanoparticles in cochlea

    Directory of Open Access Journals (Sweden)

    Bu M

    2015-11-01

    Full Text Available Meng Bu,1,2 Jingling Tang,3 Yinghui Wei,4 Yanhui Sun,1 Xinyu Wang,1 Linhua Wu,2 Hongzhuo Liu1 1School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, People’s Republic of China; 2Department of Pharmacy, the Second Affiliated Hospital, 3School of Pharmacy, Harbin Medical University, Harbin, People’s Republic of China; 4College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China Purpose: Supplementation of exogenous nerve growth factor (NGF into the cochlea of deafened animals rescues spiral ganglion cells from degeneration. However, a safe and potent delivery of therapeutic proteins, such as NGF, to spiral ganglion cells remains one of the greatest challenges. This study presents the development of self-assembled cubic lipid-based crystalline nanoparticles to enhance inner ear bioavailability of bioactive NGF via a round window membrane route.Methods: A novel nanocarrier-entrapped NGF was developed based on phytantriol by a liquid precursor dilution, with Pluronic® F127 and propylene glycol as the surfactant and solubilizer, respectively. Upon dilution of the liquid lipid precursors, monodispersed submicron-sized particles with a slight negative charge formed spontaneously.Results: Biological activity of entrapped NGF was assessed using pheochromocytoma cells with NGF-loaded reservoirs to induce significant neuronal outgrowth, similar to that seen in free NGF-treated controls. Finally, a 3.28-fold increase in inner ear bioavailability was observed after administration of phytantriol lipid-based crystalline nanoparticles as compared to free drug, contributing to an enhanced drug permeability of the round window membrane. Conclusion: Data presented here demonstrate the potential of lipid-based crystalline nanoparticles to improve the outcomes of patients bearing cochlear implants. Keywords: nerve growth factor, lipid-based crystalline nanoparticles, PC12 cells, inner ear drug

  7. A Systems-Level Analysis of the Peripheral Nerve Intrinsic Axonal Growth Program

    Science.gov (United States)

    Chandran, Vijayendran; Coppola, Giovanni; Nawabi, Homaira; Omura, Takao; Versano, Revital; Huebner, Eric A.; Zhang, Alice; Costigan, Michael; Yekkirala, Ajay; Barrett, Lee; Blesch, Armin; Michaelevski, Izhak; Davis-Turak, Jeremy; Gao, Fuying; Langfelder, Peter; Horvath, Steve; He, Zhigang; Benowitz, Larry; Fainzilber, Mike; Tuszynski, Mark; Woolf, Clifford J.; Geschwind, Daniel H.

    2016-01-01

    SUMMARY The regenerative capacity of the injured CNS in adult mammals is severely limited, yet axons in the peripheral nervous system (PNS) regrow, albeit to a limited extent, after injury. We reasoned that coordinate regulation of gene expression in injured neurons involving multiple pathways was central to PNS regenerative capacity. To provide a framework for revealing pathways involved in PNS axon regrowth after injury, we applied a comprehensive systems biology approach, starting with gene expression profiling of dorsal root ganglia (DRGs) combined with multi-level bioinformatic analyses and experimental validation of network predictions. We used this rubric to identify a drug that accelerates DRG neurite outgrowth in vitro and optic nerve outgrowth in vivo by inducing elements of the identified network. The work provides a functional genomics foundation for understanding neural repair and proof of the power of such approaches in tackling complex problems in nervous system biology. PMID:26898779

  8. NERVE GROWTH-FACTOR RECEPTOR EXPRESSION IN PERIPHERAL AND CENTRAL NEUROECTODERMAL TUMORS, OTHER PEDIATRIC BRAIN-TUMORS, AND DURING DEVELOPMENT OF THE ADRENAL-GLAND

    NARCIS (Netherlands)

    BAKER, DL; Molenaar, Ineke; TROJANOWSKI, JQ; EVANS, AE; ROSS, AH; RORKE, LB; PACKER, RJ; LEE, VMY; PLEASURE, D; Molenaar, Ineke

    1991-01-01

    Nerve growth factor (NGF) is important to the survival, development, and differentiation of neurons. Its action is mediated by a specific cell surface transmembrane glycoprotein, nerve growth factor receptor (NGFR). In this study, NGFR expression by human fetal and adult adrenal medullary tissue, pe

  9. Nerve growth factor partially recovers inflamed skin from stress-induced worsening in allergic inflammation.

    Science.gov (United States)

    Peters, Eva M J; Liezmann, Christiane; Spatz, Katharina; Daniltchenko, Maria; Joachim, Ricarda; Gimenez-Rivera, Andrey; Hendrix, Sven; Botchkarev, Vladimir A; Brandner, Johanna M; Klapp, Burghard F

    2011-03-01

    Neuroimmune dysregulation characterizes atopic disease, but its nature and clinical impact remain ill-defined. Induced by stress, the neurotrophin nerve growth factor (NGF) may worsen cutaneous inflammation. We therefore studied the role of NGF in the cutaneous stress response in a mouse model for atopic dermatitis-like allergic dermatitis (AlD). Combining several methods, we found that stress increased cutaneous but not serum or hypothalamic NGF in telogen mice. Microarray analysis showed increased mRNAs of inflammatory and growth factors associated with NGF in the skin. In stress-worsened AlD, NGF-neutralizing antibodies markedly reduced epidermal thickening together with NGF, neurotrophin receptor (tyrosine kinase A and p75 neurotrophin receptor), and transforming growth factor-β expression by keratinocytes but did not alter transepidermal water loss. Moreover, NGF expression by mast cells was reduced; this corresponded to reduced cutaneous tumor necrosis factor-α (TNF-α) mRNA levels but not to changes in mast cell degranulation or in the T helper type 1 (Th1)/Th2 cytokine balance. Also, eosinophils expressed TNF receptor type 2, and we observed reduced eosinophil infiltration after treatment with NGF-neutralizing antibodies. We thus conclude that NGF acts as a local stress mediator in perceived stress and allergy and that increased NGF message contributes to worsening of cutaneous inflammation mainly by enhancing epidermal hyperplasia, pro-allergic cytokine induction, and allergy-characteristic cellular infiltration.

  10. Efficacy and safety of nerve growth factor for the treatment of neurological diseases:a meta-analysis of 64 randomized controlled trials involving 6,297 patients

    Institute of Scientific and Technical Information of China (English)

    Meng Zhao; Xiao-yan Li; Chun-ying Xu; Li-ping Zou

    2015-01-01

    OBJECTIVE:China is the only country where nerve growth factor is approved for large-scale use as a clinical medicine. More than 10 years ago, in 2003, nerve growth factor injection was listed as a national drug. The goal of this article is to evaluate comprehensively the efifcacy and safety of nerve growth factor for the treatment of neurological diseases. DATA RETRIEVAL:A computer-based retrieval was performed from six databases, including the Cochrane Library, PubMed, EMBASE, Sino Med, CNKI, and the VIP database, searching from the clinical establishment of nerve growth factor for treatment until December 31, 2013. The key words for the searches were “nerve growth factor, randomized controlled trials” in Chinese and in English. DATA SELECTION:Inclusion criteria: any study published in English or Chinese referring to randomized controlled trials of nerve growth factor; patients with neurological diseases such as peripheral nerve injury, central nerve injury, cranial neuropathy, and nervous system infections;patients older than 7 years; similar research methods and outcomes assessing symptoms; and measurement of nerve conduction velocities. The meta-analysis was conducted using Review Manager 5.2.3 software. MAIN OUTCOME MEASURES:The total effective rate, the incidence of adverse effects, and the nerve conduction velocity were recorded for each study. RESULTS:Sixty-four studies involving 6,297 patients with neurological diseases were included. The total effective rate in the group treated with nerve growth factor was significantly higher than that in the control group (P < 0.0001,RR: 1.35, 95%CI: 1.30–1.40). The average nerve conduction velocity in the nerve growth factor group was signiifcantly higher than that in the control group (P < 0.00001,MD: 4.59 m/s, 95%CI: 4.12–5.06). The incidence of pain or sclero-ma at the injection site in the nerve growth factor group was also higher than that in the control group (P < 0.00001,RR: 6.30, 95%CI: 3.53–11

  11. Expression of nerve growth factor and its receptors in the uterus of rabbits: functional involvement in prostaglandin synthesis.

    Science.gov (United States)

    Maranesi, M; Parillo, F; Leonardi, L; Rebollar, P G; Alonso, B; Petrucci, L; Gobbetti, A; Boiti, C; Arruda-Alencar, J; Moura, A; Zerani, M

    2016-07-01

    The aim of the present study was to evaluate: (1) the presence of nerve growth factor (NGF), neurotrophic tyrosine kinase receptor 1 (NTRK1), and nerve growth factor receptor (NGFR) in the rabbit uterus; and (2) the in vitro effects of NGF on PGF2α and PGE2 synthesis and on the PGE2-9-ketoreductase (PGE2-9-K) activity by the rabbit uterus. Nerve growth factor, NTRK1, and NGFR were immunolocalized in the luminal and glandular epithelium and stroma cells of the endometrium. reverse transcriptase polymerase chain reaction indicated the presence of messenger RNA for NGF, NTRK1, and NGFR in the uterus. Nerve growth factor increased (P NGF plus cyclooxygenase inhibitor. However, addition of NGFR inhibitor reduced (P NGF/NTRK1 and NGFR systems and their effects on prostaglandin synthesis in the rabbit uterus. NGF/NTRK1 increases PGF2α and PGE2 productions by upregulating NOS and PGE2-9-K activities, whereas NGF/NGFR augments only PGF2α secretion, through an intracellular mechanism that is still unknown.

  12. Long-term delivery of nerve growth factor by encapsulated cell biodelivery in the Göttingen minipig basal forebrain

    DEFF Research Database (Denmark)

    Fjord-Larsen, L; Kusk, P; Tornøe, Jens

    2010-01-01

    Nerve growth factor (NGF) prevents cholinergic degeneration in Alzheimer's disease (AD) and improves memory in AD animal models. In humans, the safe delivery of therapeutic doses of NGF is challenging. For clinical use, we have therefore developed an encapsulated cell (EC) biodelivery device...

  13. Fibroblast growth factor signaling in metabolic regulation

    Directory of Open Access Journals (Sweden)

    Vera eNies

    2016-01-01

    Full Text Available The prevalence of obesity is a growing health problem. Obesity is strongly associated with several comorbidities, such as non-alcoholic fatty liver disease, certain cancers, insulin resistance and type 2 diabetes, which all reduce life expectancy and life quality. Several drugs have been put forward in order to treat these diseases, but many of them have detrimental side effects. The unexpected role of the family of fibroblast growth factors in the regulation of energy metabolism provides new approaches to the treatment of metabolic diseases, and offers a valuable tool to gain more insight into metabolic regulation. The known beneficial effects of FGF19 and FGF21 on metabolism, together with recently discovered similar effects of FGF1 suggest that FGFs and their derivatives carry great potential as novel therapeutics to treat metabolic conditions. To facilitate the development of new therapies with improved targeting and minimal side effects, a better understanding of the molecular mechanism of action of FGFs is needed.In this review we will discuss what is currently known about the physiological roles of FGF signaling in tissues important for metabolic homeostasis. In addition, we will discuss current concepts regarding their pharmacological properties and effector tissues in the context of metabolic disease. Also the recent progress in the development of FGF variants will be reviewed. Our goal is to provide a comprehensive overview of the current concepts and consensuses regarding FGF signaling in metabolic health and disease, and to provide starting points for the development of FGF-based therapies against metabolic conditions.

  14. Pituitary adenylyl cyclase-activating polypeptide and nerve growth factor use the proteasome to rescue nerve growth factor-deprived sympathetic neurons cultured from chick embryos.

    Science.gov (United States)

    Przywara, D A; Kulkarni, J S; Wakade, T D; Leontiev, D V; Wakade, A R

    1998-11-01

    Removal of nerve growth factor (NGF) from sympathetic neurons initiates a neuronal death program and apoptosis. We show that pituitary adenylyl cyclase-activating polypeptide (PACAP) prevents apoptosis in NGF-deprived sympathetic neurons. PACAP (100 nM) added to culture medium at the time of plating failed to support neuronal survival. However, in neurons grown for 2 days with NGF and then deprived of NGF, PACAP prevented cell death for the next 24-48 h. Uptake of [3H]norepinephrine ([3H]NE) was used as an index of survival and decreased >50% in NGF-deprived cultures within 24 h. PACAP (1-100 nM) restored [3H]NE uptake to 92 +/- 8% of that of NGF-supported controls. Depolarization-induced [3H]NE release in neurons rescued by PACAP was the same as that in NGF-supported neurons. PACAP rescue was not mimicked by forskolin or 8-bromo-cyclic AMP and was not blocked by the protein kinase A inhibitor Rp-adenosine 3',5'-cyclic monophosphothioate. Mobilization of phosphatidylinositol by muscarine failed to support NGF-deprived neurons. Thus, PACAP may use novel signaling to promote survival of sympathetic neurons. The apoptosis-associated caspase CPP32 activity increased approximately fourfold during 6 h of NGF withdrawal (145 +/- 40 versus 38 +/- 17 nmol of substrate cleaved/min/mg of protein) and returned to even below the control level in NGF-deprived, PACAP-rescued cultures (14 +/- 7 nmol/min/mg of protein). Readdition of NGF or PACAP to NGF-deprived cultures reversed CPP32 activation, and this was blocked by lactacystin, a potent and specific inhibitor of the 20S proteasome, suggesting that NGF and PACAP target CPP32 for destruction by the proteasome. As PACAP is a preganglionic neurotransmitter in autonomic ganglia, we propose a novel function for this transmitter as an apoptotic rescuer of sympathetic neurons when the supply of NGF is compromised.

  15. Expression of nerve growth factor and neurotrophin-3 mRNAs in hippocampal interneurons: morphological characterization, levels of expression, and colocalization of nerve growth factor and neurotrophin-3.

    Science.gov (United States)

    Pascual, M; Rocamora, N; Acsády, L; Freund, T F; Soriano, E

    1998-05-25

    We have investigated the distribution and morphology of hippocampal interneurons that express the neurotrophins nerve growth factor (NGF) and neurotrophin-3 (NT-3) in the rat. For this study, we combined in situ hybridization for the detection of NGF and NT-3 mRNAs and immunocytochemistry against the calcium-binding proteins parvalbumin (PARV), calretinin (CALR), and calbindin (CALB). Whereas the majority of PARV+ interneurons expressed NGF mRNA, only subsets of CALR- and CALB-immunoreactive interneurons (23% and 24%, respectively) displayed NGF hybridization. Most CALB/NGF+ cells were located in the stratum oriens/alveus of the CA3-CA1 regions, suggesting that they may include the population of CALB+, hippocamposeptal, nonpyramidal neurons. Most of the nonspiny CALR/NGF+ neurons were located within or in the vicinity of the pyramidal layer and had faint CALR immunostaining and stellate, thin dendrites. Regarding the spiny CALR-immunoreactive cells, we found that most of these neurons in the hilus were NGF+, whereas only 59% of displayed NGF hybridization in the stratum lucidum of the CA3 region. A small subset of PARV- and CALR-immunoreactive cells expressed NT-3 mRNA (16% and 13%, respectively). NT-3 message was not found in the large basket cells of the dentate gyrus, whereas the distribution and morphology of CALR/NT-3+ cells were similar to those of nonspiny CALR/NGF+ cells. In fact, double in situ hybridization analysis confirmed that most NT-3+ neurons also expressed NGF mRNA, indicating coexpression of both neurotrophins in subpopulations of PARV+ and CALR+ neurons. Moreover, the level of NGF mRNA expression was higher in PARV+ neurons than in CALR- and CALB-immunoreactive interneurons, whereas NT-3 message was expressed similarly in PARV+ and CALR+ neurons. The present findings show a differential expression of NGF and NT-3 mRNAs in subsets of hippocampal interneurons and suggest that the expression of these transcripts depends on factors intrinsic to

  16. Peripheral nerve extract effects on mesenchymal cells.

    OpenAIRE

    Dietz, F. R.; Mukhopadhyay, B.; Becker, G.; Daniels, K.; Solursh, M

    1996-01-01

    Several common congenital limb disorders are characterized by normal tissue differentiation but abnormal somatic growth. These include: idiopathic clubfoot, idiopathic leg length discrepancy, hemi-atrophy and hemi-hypertrophy. Both clinical and research studies have suggested that peripheral nerves may be important in regulating somatic growth of limb tissues. To investigate the hypothesis that peripheral nerves convey trophic substances to mesenchymal tissues that are involved in the regulat...

  17. Vascular and neuronal protection induced by the ocular administration of nerve growth factor in diabetic-induced rat encephalopathy.

    Science.gov (United States)

    Tirassa, Paola; Maccarone, Mattia; Florenzano, Fulvio; Cartolano, Sara; De Nicolò, Sara

    2013-05-01

    Based on our previous findings on the efficacy of ocular applied nerve growth factor as eye drops (oNGF) to act in brain and counteract neuronal damage, we hypothesized that oNGF treatment might revert neuronal atrophy occurring in diabetic brain also by controlling neurotrophin system changes. The major NGF brain target areas, such as the septum and the hippocampus, were used as an experimental paradigma to test this hypothesis. Bilateral oNGF treatment was performed twice a day for 2 weeks in full-blown streptozotocin-treated adult male rats. The forebrain distribution of cholinergic and endothelial cell markers and NGF receptors were studied by confocal microscopy. The septo-hippocampal content of NGF mature and precursor form and NGF receptors expression were also analyzed by Elisa and Western blot. oNGF treatment recovers the morphological alterations and the neuronal atrophy in septum and normalized the expression of mature and pro-NGF, as well as NGF receptors in the septum and hippocampus of diabetic rats. In addition, oNGF stimulated brain vascularization and up-regulated the TRKA receptor in vessel endothelium. Our findings confirm that reduced availability of mature NGF and NGF signaling impairment favors vascular and neuronal alterations in diabetic septo-hippocampal areas and corroborate the ability of oNGF to act as a neuroprotective agent in brain. © 2013 Blackwell Publishing Ltd.

  18. Exploring Serum Levels of Brain Derived Neurotrophic Factor and Nerve Growth Factor Across Glaucoma Stages

    Science.gov (United States)

    Busanello, Anna; Bonini, Stefano; Quaranta, Luciano; Agnifili, Luca; Manni, Gianluca

    2017-01-01

    Purpose To investigate the serum levels of Brain Derived Neurotrophic Factor (BDNF) and Nerve Growth Factor (NGF) in patients affected by primary open angle glaucoma with a wide spectrum of disease severity compared to healthy controls and to explore their relationship with morphological and functional glaucoma parameters. Materials and Methods 45 patients affected by glaucoma at different stages and 15 age-matched healthy control subjects underwent visual field testing, peripapillary retinal nerve fibre layer thickness measurement using Spectral Domain Optical Coherence Tomography and blood collection for both neurotrophins detection by Enzyme-Linked Immunosorbent Assay. Statistical analysis and association between biostrumental and biochemical data were investigated. Results Serum levels of BDNF in glaucoma patients were significantly lower than those measured in healthy controls (261.2±75.0 pg/ml vs 313.6±79.6 pg/ml, p = 0.03). Subgroups analysis showed that serum levels of BDNF were significantly lower in early (253.8±40.7 pg/ml, p = 0.019) and moderate glaucoma (231.3±54.3 pg/ml, p = 0.04) but not in advanced glaucoma (296.2±103.1 pg/ml, p = 0.06) compared to healthy controls. Serum levels of NGF in glaucoma patients were significantly lower than those measured in the healthy controls (4.1±1 pg/mL vs 5.5±1.2 pg/mL, p = 0.01). Subgroups analysis showed that serum levels of NGF were significantly lower in early (3.5±0.9 pg/mL, p = 0.0008) and moderate glaucoma (3.8±0.7 pg/ml, p<0.0001) but not in advanced glaucoma (5.0±0.7 pg/ml, p = 0.32) compared to healthy controls. BDNF serum levels were not related to age, visual field mean deviation or retinal nerve fibre layer thickness either in glaucoma or in controls while NGF levels were significantly related to visual field mean deviation in the glaucoma group (r2 = 0.26, p = 0.004). Conclusions BDNF and NGF serum levels are reduced in the early and moderate glaucoma stages, suggesting the possibility that

  19. Regulation of Pollen Tube Growth by Transglutaminase

    Directory of Open Access Journals (Sweden)

    Giampiero Cai

    2013-03-01

    Full Text Available In pollen tubes, cytoskeleton proteins are involved in many aspects of pollen germination and growth, from the transport of sperm cells to the asymmetrical distribution of organelles to the deposition of cell wall material. These activities are based on the dynamics of the cytoskeleton. Changes to both actin filaments and microtubules are triggered by specific proteins, resulting in different organization levels suitable for the different functions of the cytoskeleton. Transglutaminases are enzymes ubiquitous in all plant organs and cell compartments. They catalyze the post-translational conjugation of polyamines to different protein targets, such as the cytoskeleton. Transglutaminases are suggested to have a general role in the interaction between pollen tubes and the extracellular matrix during fertilization and a specific role during the self-incompatibility response. In such processes, the activity of transglutaminases is enhanced, leading to the formation of cross-linked products (including aggregates of tubulin and actin. Consequently, transglutaminases are suggested to act as regulators of cytoskeleton dynamics. The distribution of transglutaminases in pollen tubes is affected by both membrane dynamics and the cytoskeleton. Transglutaminases are also secreted in the extracellular matrix, where they may take part in the assembly and/or strengthening of the pollen tube cell wall.

  20. Shape changes induced by biologically active peptides and nerve growth factor in blood platelets of rabbits.

    Science.gov (United States)

    Gudat, F; Laubscher, A; Otten, U; Pletscher, A

    1981-11-01

    1 Nerve growth factor (NGF), substance P (SP) and thymopoietin all caused shape change reactions of rapid onset in rabbit platelets. NGF had the highest maximal effect, and SP the lowest EC50 (concentration causing half maximal shape change). The action of SP was reversible within 5 min, whereas that of NGF lasted for at least 1 h. A series of other peptides were inactive. 2 After preincubation of platelets with SP, a second application of SP no longer caused a shape change reaction, whereas the effect of NGF was not influenced. 3 An oxidized NGF-derivative without biological activity did not cause a shape change reaction, neither did epidermal growth factor. 4 Prostaglandin E1 (PGE1) and pretreatment of the platelets with 3% butanol, which counteract the shape changes caused by 5-hydroxytryptamine (5-HT) and adenosine 3',5'-diphosphate, also antagonized those induced by NGF and SP. Neither heparin nor methysergide, an antagonist of 5-HT-receptors, influenced the shape change induced by NGF or SP. The action of NGF was also antagonized by a specific antibody to NGF. 5 Thymopoietin, like the basic polypeptide polyornithine (mol. wt. 40,000) was not antagonized by PGE1 and butanol. Heparin, which counteracted the effect of polyornithine, did not influence that of thymopoietin. 6 In conclusion, different modes of action are involved in the shape change of blood platelets induced by polypeptides and proteins. SP and NGF may act by stimulating specific membrane receptors.

  1. Nerve growth factor modulate proliferation of cultured rabbit corneal endothelial cells and epithelial cells.

    Science.gov (United States)

    Li, Xinyu; Li, Zhongguo; Qiu, Liangxiu; Zhao, Changsong; Hu, Zhulin

    2005-01-01

    In order to investigate the effect of nerve growth factor (NGF) on the proliferation of rabbit corneal endothelial cells and epithelial cells, the in vitro cultured rabbit corneal endothelial cells and epithelial cells were treated with different concentrations of NGF. MTT assay was used to examine the clonal growth and proliferation of the cells by determining the absorbency values at 570 nm. The results showed that NGF with three concentrations ranging from 5 U/mL to 500 U/mL enhanced the proliferation of rabbit corneal endothelial cells in a concentration-dependent manner. 50 U/mL and 500 U/mL NGF got more increase of proliferation than that of 5 U/mL NGF did. Meanwhile, 50 U/mL and 500 U/mL NGF could promote the proliferation of the rabbit corneal epithelial cells significantly in a concentration-dependent manner. However, 5 U/mL NGF did not enhance the proliferation of epithelial cells. It was suggested that exogenous NGF can stimulate the proliferation of both rabbit corneal endothelial and epithelial cells, but the extent of modulation is different.

  2. Cobra Venom Factor and Ketoprofen Abolish the Antitumor Effect of Nerve Growth Factor from Cobra Venom.

    Science.gov (United States)

    Osipov, Alexey V; Terpinskaya, Tatiana I; Kuznetsova, Tatiana E; Ryzhkovskaya, Elena L; Lukashevich, Vladimir S; Rudnichenko, Julia A; Ulashchyk, Vladimir S; Starkov, Vladislav G; Utkin, Yuri N

    2017-09-06

    We showed recently that nerve growth factor (NGF) from cobra venom inhibited the growth of Ehrlich ascites carcinoma (EAC) inoculated subcutaneously in mice. Here, we studied the influence of anti-complementary cobra venom factor (CVF) and the non-steroidal anti-inflammatory drug ketoprofen on the antitumor NGF effect, as well as on NGF-induced changes in EAC histological patterns, the activity of lactate and succinate dehydrogenases in tumor cells and the serum level of some cytokines. NGF, CVF and ketoprofen reduced the tumor volume by approximately 72%, 68% and 30%, respectively. The antitumor effect of NGF was accompanied by an increase in the lymphocytic infiltration of the tumor tissue, the level of interleukin 1β and tumor necrosis factor α in the serum, as well as the activity of lactate and succinate dehydrogenases in tumor cells. Simultaneous administration of NGF with either CVF or ketoprofen abolished the antitumor effect and reduced all other effects of NGF, whereas NGF itself significantly decreased the antitumor action of both CVF and ketoprofen. Thus, the antitumor effect of NGF critically depended on the status of the immune system and was abolished by the disturbance of the complement system; the disturbance of the inflammatory response canceled the antitumor effect as well.

  3. Nerve growth factor, brain-derived neurotrophic factor, and the chronobiology of mood: a new insight into the "neurotrophic hypothesis"

    Directory of Open Access Journals (Sweden)

    Tirassa P

    2015-10-01

    Full Text Available Paola Tirassa,1 Adele Quartini,2 Angela Iannitelli2–4 1National Research Council (CNR, Institute of Cell Biology and Neurobiology (IBCN, 2Department of Medical-Surgical Sciences and Biotechnologies, Faculty of Pharmacy and Medicine – "Sapienza" University of Rome, 3Italian Psychoanalytical Society (SPI, Rome, Italy; 4International Psychoanalytical Association (IPA, London, UKAbstract: The light information pathways and their relationship with the body rhythms have generated a new insight into the neurobiology and the neurobehavioral sciences, as well as into the clinical approaches to human diseases associated with disruption of circadian cycles. Light-based strategies and/or drugs acting on the circadian rhythms have widely been used in psychiatric patients characterized by mood-related disorders, but the timing and dosage use of the various treatments, although based on international guidelines, are mainly dependent on the psychiatric experiences. Further, many efforts have been made to identify biomarkers able to disclose the circadian-related aspect of diseases, and therefore serve as diagnostic, prognostic, and therapeutic tools in clinic to assess the different mood-related symptoms, including pain, fatigue, sleep disturbance, loss of interest or pleasure, appetite, psychomotor changes, and cognitive impairments. Among the endogenous factors suggested to be involved in mood regulation, the neurotrophins, nerve growth factor, and brain-derived neurotrophic factor show anatomical and functional link with the circadian system and mediate some of light-induced effects in brain. In addition, in humans, both nerve growth factor and brain-derived neurotrophic factor have showed a daily rhythm, which correlate with the morningness–eveningness dimensions, and are influenced by light, suggesting their potential role as biomarkers for chronotypes and/or chronotherapy. The evidences of the relationship between the diverse mood-related disorders

  4. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.

  5. Muscle sympathetic nerve activity and volume regulating factors in healthy pregnant and non-pregnant women.

    Science.gov (United States)

    Charkoudian, Nisha; Usselman, Charlotte W; Skow, Rachel J; Staab, Jeffery S; Julian, Colleen Glyde; Stickland, Michael K; Chari, Radha S; Khurana, Rshmi; Davidge, Sandra T; Davenport, Margie H; Steinback, Craig D

    2017-07-21

    Healthy, normotensive human pregnancies are associated with striking increases in both plasma volume and vascular sympathetic nerve activity (SNA). In non-pregnant humans, volume regulatory factors including plasma osmolality, vasopressin and the renin-angiotensin-aldosterone system have important modulatory effects on control of sympathetic outflow. We hypothesized that pregnancy would be associated with changes in the relationships between SNA (measured as muscle SNA) and volume regulating factors, including plasma osmolality, plasma renin activity and arginine vasopressin (AVP). We studied 46 healthy, normotensive young women (23 pregnant and 23 non-pregnant). We measured SNA, arterial pressure, plasma osmolality, plasma renin activity, AVP and other volume regulatory factors in resting, semi-recumbent posture. Pregnant women had significantly higher resting SNA (38 ± 12 vs. non-pregnant: 23 ± 6 bursts/minute), lower osmolality and higher plasma renin activity and aldosterone (all P pregnant] vs. 5.17 ± 2.03 [pregnant], P > 0.05). However, regression analysis detected a significant relationship between individual values for SNA and AVP in pregnant (r = 0.71, P pregnant women (r = 0.04). No relationships were found for other variables. These data suggest that the link between AVP release and resting SNA becomes stronger in pregnancy, which may contribute importantly to blood pressure regulation in healthy women during pregnancy. Copyright © 2017, American Journal of Physiology-Heart and Circulatory Physiology.

  6. Sema3A chemorepellant regulates the timing and patterning of dental nerves during development of incisor tooth germ.

    Science.gov (United States)

    Shrestha, Anjana; Moe, Kyaw; Luukko, Keijo; Taniguchi, Masahiko; Kettunen, Paivi

    2014-07-01

    Semaphorin 3A (Sema3A) axon repellant serves multiple developmental functions. Sema3A mRNAs are expressed in epithelial and mesenchymal components of the developing incisor in a dynamic manner. Here, we investigate the functions of Sema3A during development of incisors using Sema3A-deficient mice. We analyze histomorphogenesis and innervation of mandibular incisors using immunohistochemistry as well as computed tomography and thick tissue confocal imaging. Whereas no apparent disturbances in histomorphogenesis or hard tissue formation of Sema3A (-/-) incisors were observed, nerve fibers were prematurely seen in the presumptive dental mesenchyme of the bud stage Sema3A (-/-) tooth germ. Later, nerves were ectopically present in the Sema3A (-/-) dental papilla mesenchyme during the cap and bell stages, whereas in the Sema3A (+/+) mice the first nerve fibers were seen in the pulp after the onset of dental hard tissue formation. However, no apparent topographic differences in innervation pattern or nerve fasciculation were seen inside the pulp between postnatal and adult Sema3A (+/+) or Sema3A (-/-) incisors. In contrast, an abnormally large number of nerves and arborizations were observed in the Sema3A (-/-) developing dental follicle target field and periodontium and, unlike in the wild-type mice, nerve fibers were abundant in the labial periodontium. Of note, the observed defects appeared to be mostly corrected in the adult incisors. The expressions of Ngf and Gdnf neurotrophins and their receptors were not altered in the Sema3A (-/-) postnatal incisor or trigeminal ganglion, respectively. Thus, Sema3A is an essential, locally produced chemorepellant, which by creating mesenchymal exclusion areas, regulates the timing and patterning of the dental nerves during the development of incisor tooth germ.

  7. Up-regulation of P2X7 receptors mediating proliferation of Schwann cells after sciatic nerve injury.

    Science.gov (United States)

    Song, Xian-min; Xu, Xiao-hui; Zhu, Jiao; Guo, Zhili; Li, Jian; He, Cheng; Burnstock, Geoffrey; Yuan, Hongbin; Xiang, Zhenghua

    2015-06-01

    Peripheral nerve injury (PNI) is a common disease, which results in a partial or total loss of motor, sensory and autonomic functions, leading to a decrease in quality of life. Schwann cells play a vital role in maintaining the peripheral nervous system and in injury and repair. Using immunohistochemistry, Western blot, calcium assay and bromodeoxyuridine (BrdU) proliferation assay, the present study clearly demonstrated that P2X7 receptors (R) were expressed in myelinating and non-myelinating Schwann cells in longitudinal sections of sciatic nerves. After sciatic nerve injury (SNI), P2X7R expression in Schwann cells of injured sciatic nerves was significantly up-regulated during the early days of SNI. Double immunofluorescence of proliferating cell nuclear antigen (PCNA) and P2X7R implied that P2X7R may be involved in proliferation of Schwann cells. Further experiments on primary cultures of Schwann cells showed that P2X7R are functionally expressed in Schwann cells of rat sciatic nerves; ATP via P2X7R can promote Schwann cell proliferation, possibly via the MAPK/ERK intracellular signalling pathway. Other possible roles of P2X7R on Schwann cells are discussed.

  8. Osteopontin is induced by TGF-β2 and regulates metabolic cell activity in cultured human optic nerve head astrocytes.

    Directory of Open Access Journals (Sweden)

    Carolin Neumann

    Full Text Available The aqueous humor (AH component transforming growth factor (TGF-β2 is strongly correlated to primary open-angle glaucoma (POAG, and was shown to up-regulate glaucoma-associated extracellular matrix (ECM components, members of the ECM degradation system and heat shock proteins (HSP in primary ocular cells. Here we present osteopontin (OPN as a new TGF-β2 responsive factor in cultured human optic nerve head (ONH astrocytes. Activation was initially demonstrated by Oligo GEArray microarray and confirmed by semiquantitative (sq RT-PCR, realtime RT-PCR and western blot. Expressions of most prevalent OPN receptors CD44 and integrin receptor subunits αV, α4, α 5, α6, α9, β1, β3 and β5 by ONH astrocytes were shown by sqRT-PCR and immunofluorescence labeling. TGF-β2 treatment did not affect their expression levels. OPN did not regulate gene expression of described TGF-β2 targets shown by sqRT-PCR. In MTS-assays, OPN had a time- and dose-dependent stimulating effect on the metabolic activity of ONH astrocytes, whereas TGF-β2 significantly reduced metabolism. OPN signaling via CD44 mediated a repressive outcome on metabolic activity, whereas signaling via integrin receptors resulted in a pro-metabolic effect. In summary, our findings characterize OPN as a TGF-β2 responsive factor that is not involved in TGF-β2 mediated ECM and HSP modulation, but affects the metabolic activity of astrocytes. A potential involvement in a protective response to TGF-β2 triggered damage is indicated, but requires further investigation.

  9. Nerve growth factor stimulates interaction of Cayman ataxia protein BNIP-H/Caytaxin with peptidyl-prolyl isomerase Pin1 in differentiating neurons.

    Directory of Open Access Journals (Sweden)

    Jan Paul Buschdorf

    Full Text Available Mutations in ATCAY that encodes the brain-specific protein BNIP-H (or Caytaxin lead to Cayman cerebellar ataxia. BNIP-H binds to glutaminase, a neurotransmitter-producing enzyme, and affects its activity and intracellular localization. Here we describe the identification and characterization of the binding between BNIP-H and Pin1, a peptidyl-prolyl cis/trans isomerase. BNIP-H interacted with Pin1 after nerve growth factor-stimulation and they co-localized in the neurites and cytosol of differentiating pheochromocytoma PC12 cells and the embryonic carcinoma P19 cells. Deletional mutagenesis revealed two cryptic binding sites within the C-terminus of BNIP-H such that single point mutants affecting the WW domain of Pin1 completely abolished their binding. Although these two sites do not contain any of the canonical Pin1-binding motifs they showed differential binding profiles to Pin1 WW domain mutants S16E, S16A and W34A, and the catalytically inert C113A of its isomerase domain. Furthermore, their direct interaction would occur only upon disrupting the ability of BNIP-H to form an intramolecular interaction by two similar regions. Furthermore, expression of Pin1 disrupted the BNIP-H/glutaminase complex formation in PC12 cells under nerve growth factor-stimulation. These results indicate that nerve growth factor may stimulate the interaction of BNIP-H with Pin1 by releasing its intramolecular inhibition. Such a mechanism could provide a post-translational regulation on the cellular activity of BNIP-H during neuronal differentiation.

  10. A subtractive cDNA library from an identified regenerating neuron is enriched in sequences up-regulated during nerve regeneration.

    Science.gov (United States)

    Korneev, S; Fedorov, A; Collins, R; Blackshaw, S E; Davies, J A

    1997-01-01

    We have constructed a subtractive cDNA library from regenerating Retzius cells of the leech, Hirudo medicinalis. It is highly enriched in sequences up-regulated during nerve regeneration. Sequence analysis of selected recombinants has identified both novel sequences and sequences homologous to molecules characterised in other species. Homologies include alpha-tubulin, a calmodulin-like protein, CAAT/enhancer-binding protein (C/EBP), protein 4.1 and synapsin. These types of proteins are exactly those predicted to be associated with axonal growth and their identification confirms the quality of the library. Most interesting, however, is the isolation of 5 previously uncharacterised cDNAs which appear to be up-regulated during regeneration. Their analysis is likely to provide new information on the molecular mechanisms of neuronal regeneration.

  11. Endocrine Regulation of Compensatory Growth in Fish

    Directory of Open Access Journals (Sweden)

    Eugene T. Won

    2013-07-01

    Full Text Available Compensatory growth (CG is a period of accelerated growth that occurs following the alleviation of growth-stunting conditions during which an organism can make up for lost growth opportunity and potentially catch-up in size with non-stunted cohorts. Fish show a particularly robust capacity for the response and have been the focus of numerous studies that demonstrate their ability to compensate for periods of fasting once food is made available again. Compensatory growth is characterized by an elevated growth rate resulting from enhanced feed intake, mitogen production and feed conversion efficiency. Because little is known about the underlying mechanisms that drive the response, this review describes the sequential endocrine adaptations that lead to CG; namely during the precedent catabolic phase (fasting that taps endogenous energy reserves, and the following hyperanabolic phase (refeeding when accelerated growth occurs. In order to elicit a CG response, endogenous energy reserves must first be moderately depleted, which alters endocrine profiles that enhance appetite and growth potential. During this catabolic phase, elevated ghrelin and growth hormone (GH production increase appetite and protein-sparing lipolysis, while insulin-like growth factors (IGFs are suppressed, primarily due to hepatic GH resistance. During refeeding, temporal hyperphagia provides an influx of energy and metabolic substrates that are then allocated to somatic growth by resumed IGF signaling. Under the right conditions, refeeding results in hyperanabolism and a steepened growth trajectory relative to constantly fed controls. The response wanes as energy reserves are re-accumulated and homeostasis is restored. We ascribe possible roles for select appetite and growth-regulatory hormones in the context of these catabolic and hyperanabolic phases of the CG response in teleosts, with emphasis on GH, IGFs, cortisol, somatostatin, neuropeptide Y, ghrelin and leptin.

  12. Nerve Growth Factor mRNA Expression in the Regenerating Antler Tip of Red Deer (Cervus elaphus)

    Science.gov (United States)

    Li, Chunyi; Stanton, Jo-Ann L.; Robertson, Tracy M.; Suttie, James M.; Sheard, Philip W.; John Harris, A.; Clark, Dawn E.

    2007-01-01

    Deer antlers are the only mammalian organs that can fully regenerate each year. During their growth phase, antlers of red deer extend at a rate of approximately 10 mm/day, a growth rate matched by the antler nerves. It was demonstrated in a previous study that extracts from deer velvet antler can promote neurite outgrowth from neural explants, suggesting a possible role for Nerve Growth Factor (NGF) in antler innervation. Here we showed using the techniques of Northern blot analysis, denervation, immunohistochemistry and in situ hybridization that NGF mRNA was expressed in the regenerating antler, principally in the smooth muscle of the arteries and arterioles of the growing antler tip. Regenerating axons followed the route of the major blood vessels, located at the interface between the dermis and the reserve mesenchyme of the antler. Denervation experiments suggested a causal relationship exists between NGF mRNA expression in arterial smooth muscle and sensory axons in the antler tip. We hypothesize that NGF expressed in the smooth muscle of the arteries and arterioles promotes and maintains antler angiogenesis and this role positions NGF ahead of axons during antler growth. As a result, NGF can serve a second role, attracting sensory axons into the antler, and thus it can provide a guidance cue to define the nerve track. This would explain the phenomenon whereby re-innervation of the regenerating antler follows vascular ingrowth. The annual growth of deer antler presents a unique opportunity to better understand the factors involved in rapid nerve regeneration. PMID:17215957

  13. Nerve growth factor (NGF)-conjugated electrospun nanostructures with topographical cues for neuronal differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Cho, Young Il; Choi, Ji Suk; Jeong, Seo Young; Yoo, Hyuk Sang

    2010-12-01

    Mesenchymal stem cells (MSCs) were cultivated on the surface of nerve growth factor (NGF)-conjugated aligned nanofibrous meshes for neuronal differentiation. Amine-terminated poly(ethylene glycol) was conjugated to poly(ε-caprolactone) to prepare amine-functionalized block copolymers. The synthesized polymer was electrospun in a rotating drum to prepare aligned nanofibrous meshes. A nerve growth factor was chemically immobilized on the surface-exposed amine groups of the electrospun nanofibrous meshes in the aqueous phase. In vitro release profiles of the nerve growth factor were investigated for NGF-immobilized nanofibrous meshes. The conjugated nerve growth factor was not released for 7 days, while the growth factor physically adsorbed on the nanofibrous meshes showed an initial burst release. MSCs were cultivated on the NGF-conjugated nanofibrous meshes for 5 days, and total RNA was extracted from the cultivated cells. mRNA was extracted from cells for measuring expression levels of neuronal differentiation markers, including nestin, tubulin βIII and map2, in the cultivated stem cells. The conjugation of NGF significantly increased the expression levels of the marker proteins for neuron cells while physically adsorbed NGFs on nanofibrous meshes showed low expression of these marker genes. Furthermore, alignments of nanofibrous meshes clearly increased the expression levels of neuronal makers while the nanofibrous mesh without the topographical cue did not affect neuronal differentiation of the cultivated stem cells. Confocal microscopy revealed that the stem cells on the NGF-conjugated aligned nanofibrous meshes showed intense staining with antibodies against neuronal makers as well as elongated morphology compared to other groups. Thus, the NGF-conjugated nanofibrous meshes with topographical cues significantly increased the neuronal differentiation of mesenchymal stem cells in comparison to NGF-adsorbed nanofibrous meshes.

  14. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy.

    Science.gov (United States)

    Ripken, D; van der Wielen, N; van der Meulen, J; Schuurman, T; Witkamp, R F; Hendriks, H F J; Koopmans, S J

    2015-02-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to further explore the relative contribution of the abdominal vagal nerve in mediating the satiating effects of endogenous CCK and GLP-1. Total subdiaphragmatic vagotomy or sham operation was combined with administration of CCK1 and GLP-1 receptor antagonists devazepide and exendin (9-39) in 12 pigs, applying an unbalanced Latin Square within-subject design. Furthermore, effects of vagotomy on preprandial and postprandial acetaminophen absorption, glucose, insulin, GLP-1 and CCK plasma concentrations were investigated. Ad libitum liquid meal intake (mean±SEM) was similar in sham and vagotomized pigs (4180±435 and 3760±810 g/meal). Intake increased by about 20% after blockade of CCK1 receptors, independently of the abdominal vagal nerve. Food intake did not increase after blockade of GLP-1 receptors. Blockade of CCK1 and GLP-1 receptors increased circulating CCK and GLP-1 concentrations in sham pigs only, suggesting the existence of a vagal reflex mechanism in the regulation of plasma CCK1 and GLP-1 concentrations. Vagotomy decreased acetaminophen absorption and changed glucose, insulin, CCK and GLP-1 concentrations indicating a delay in gastric emptying. Our data show that at liquid feeding, satiation is decreased effectively by pharmacological blockade of CCK1 receptors. We conclude that regulation of liquid meal intake appears to be primarily regulated by CCK1 receptors not located on abdominal vagal nerve endings.

  15. Growth regulation of mandibular condylar cartilage in-vitro.

    NARCIS (Netherlands)

    Copray, Joseph Christofoor Vincentius Maria

    1984-01-01

    The significance of the mandibular condylar cartilage in the development of the orofacial complex, and particulary in the growth of the mandible has led to a considarable number of studies regarding its growth regulation. Especially clinicians concerned with craniofacial growth and development and t

  16. Elevated nerve growth factor and neurotrophin-3 levels in cerebrospinal fluid of children with hydrocephalus

    Science.gov (United States)

    Hochhaus, Frederike; Koehne, Petra; Schäper, Christoph; Butenandt, Otfrid; Felderhoff-Mueser, Ursula; Ring-Mrozik, Elfride; Obladen, Michael; Bührer, Christoph

    2001-01-01

    Background Elevated intracranial pressure (ICP) resulting from impaired drainage of cerebrospinal fluid (CSF) causes hydrocephalus with damage to the central nervous system. Clinical symptoms of elevated intracranial pressure (ICP) in infants may be difficult to diagnose, leading to delayed treatment by shunt placement. Until now, no biochemical marker of elevated ICP has been available for clinical diagnosis and monitoring. In experimental animal models, nerve growth factor (NGF) and neurotrophin-3 (NT-3) have been shown to be produced by glial cells as an adaptive response to hypoxia. We investigated whether concentrations of NGF and NT-3 are increased in the CSF of children with hydrocephalus. Methods NGF was determined in CSF samples collected from 42 hydrocephalic children on 65 occasions (taps or shunt placement surgery). CSF samples obtained by lumbar puncture from 22 children with suspected, but unconfirmed bacterial infection served as controls. Analysis was performed using ELISA techniques. Results NGF concentrations in hydrocephalic children were over 50-fold increased compared to controls (median 225 vs 4 pg/mL, p 1 pg/mL) in 14/31 hydrocephalus samples at 2–51 pg/mL but in none of 11 control samples (p = 0.007). Conclusion NGF and NT-3 concentrations are increased in children with hydrocephalus. This may represent an adaptive response of the brain to elevated ICP. PMID:11580868

  17. Elevated nerve growth factor and neurotrophin-3 levels in cerebrospinal fluid of children with hydrocephalus

    Directory of Open Access Journals (Sweden)

    Felderhoff-Mueser Ursula

    2001-08-01

    Full Text Available Abstract Background Elevated intracranial pressure (ICP resulting from impaired drainage of cerebrospinal fluid (CSF causes hydrocephalus with damage to the central nervous system. Clinical symptoms of elevated intracranial pressure (ICP in infants may be difficult to diagnose, leading to delayed treatment by shunt placement. Until now, no biochemical marker of elevated ICP has been available for clinical diagnosis and monitoring. In experimental animal models, nerve growth factor (NGF and neurotrophin-3 (NT-3 have been shown to be produced by glial cells as an adaptive response to hypoxia. We investigated whether concentrations of NGF and NT-3 are increased in the CSF of children with hydrocephalus. Methods NGF was determined in CSF samples collected from 42 hydrocephalic children on 65 occasions (taps or shunt placement surgery. CSF samples obtained by lumbar puncture from 22 children with suspected, but unconfirmed bacterial infection served as controls. Analysis was performed using ELISA techniques. Results NGF concentrations in hydrocephalic children were over 50-fold increased compared to controls (median 225 vs 4 pg/mL, p 1 pg/mL in 14/31 hydrocephalus samples at 2–51 pg/mL but in none of 11 control samples (p = 0.007. Conclusion NGF and NT-3 concentrations are increased in children with hydrocephalus. This may represent an adaptive response of the brain to elevated ICP.

  18. Flavonoid glycosides from Hosta longipes, their inhibition on NO production, and nerve growth factor inductive effects

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chung Sub; Lee, Kang Ro, E-mail: krlee@skku.edu [Natural Products Laboratory, School of Pharmacy, Sungkyunkwan University (Korea, Republic of); Kwon, Oh Wook [Graduate School of East-West Medical Science, Kyung Hee University Global Campus (Korea, Republic of); Kim, Sun Yeou [College of Pharmacy, Gachon University (Korea, Republic of)

    2014-05-15

    An extended phytochemical investigation of the leaves of Hosta longipes identified the new flavonoid glycoside, kaempferol-3-O-β-D-glucopyranosyl-(1→2)- [6{sup '}-O-acetyl-β-D-glucopyranoside]-7-O-β-D-glucopyranoside and five known flavonoid derivatives. The structures of two compounds were revealed by extensive NMR methods ({sup 1}H and {sup 13}C NMR, {sup 1}H-{sup 1}H COSY, HMQC and HMBC) and chemical hydrolysis. NMR data of one of them are published for the first time. Bioactivities of six compounds revealed that five strongly inhibited the production of nitric oxide (NO) with IC{sub 50} values of 11.56-15.97 μm in lipopolysaccharide (LPS)-stimulated BV-2 cells without cell toxicity. Two compounds showed moderate induction of secretion of nerve growth factor (NGF) in C6 glioma cells (124.70 ± 7.71% and 117.02 ± 3.60%, respectively). (author)

  19. Nerve Growth Factor is Primarily Produced by GABAergic Neurons of the Rat Neocortex

    Directory of Open Access Journals (Sweden)

    Jeremy eBiane

    2014-08-01

    Full Text Available Within the cortex, nerve growth factor (NGF mediates the innervation of cholinergic neurons during development, maintains cholinergic corticopetal projections during adulthood and modulates cholinergic function through phenotypic control of the cholinergic gene locus. Recent studies suggest NGF may also play an important role in cortical plasticity in adulthood. Previously, NGF-producing cells have been shown to colocalize with GABAergic cell markers within the hippocampus, striatum, and basal forebrain. Classification of cells producing NGF in the cortex is lacking, however, and cholinergic corticopetal projections have been shown to innervate both pyramidal and GABAergic neurons in the cortex. In order to clarify potential trophic interactions between cortical neurons and cholinergic projections, we used double-fluorescent immunohistochemistry to classify NGF-expressing cells in several cortical regions, including the prefrontal cortex, primary motor cortex, parietal cortex and temporal cortex. Our results show that NGF colocalizes extensively with GABAergic cell markers in all cortical regions examined, with >91% of NGF-labeled cells coexpressing GAD65/67. Conversely, NGF-labeled cells exhibit very little co-localization with the excitatory cell marker CaMKIIα (less than 5% of cells expressing NGF. NGF expression was present in 56% of GAD-labeled cells, suggesting that production is confined to a specific subset of GABAergic neurons. These findings demonstrate that GABAergic cells are the primary source of NGF production in the cortex, and likely support the maintenance and function of basal forebrain cholinergic projections in adulthood.

  20. Quantitative analysis of nerve growth factor in the amniotic fluid during chick embryonic development.

    Science.gov (United States)

    Mashayekhi, Farhad; Dianati, Elham; Moghadam, Lotfali Masomi

    2011-04-01

    Nerve growth factor (NGF) and most neurotrophic factors support the proliferation and survival of particular types of neurons. Besidesthe pivotal role of NGF in the development of neuronal cells, it also has important functions on non-neuronal cells. The amnion surrounds the embryo, providing an aqueous environment for the embryo. A wide range of proteins has been identified in human amniotic fluid (AF). In this study, total protein concentration (TPC) and NGF level in AF samples from chick embryos were measured using a Bio-Rad protein assay, enzyme linked immunosorbent assay (ELISA) and Western blot. TPC increased from days E10 to day E18. There was a rapid increase in AF TPC on day E15 when compared to day E16. No significant changes in NGF levels have been seen from day E10 to day E14. There was a rapid increase in NGF content on days E15 and E16, and thereafter the levels decreased from day E16 to day E18. Since, NGF is important in brain development and changes in AF NGF levels have been seen in some CNS malformations, changes in the TPC and NGF levels in AF during chick embryonic development may be correlated with cerebral cortical development. It is also concluded that NGF is a constant component of the AF during chick embryogenesis.

  1. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation.

    Science.gov (United States)

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3-6 different antioxidants at concentrations 5-60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects.

  2. Expression of nerve growth factor in spinal dorsal horn following crushed spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    AIM: The aim of this study was to explore the expression of nerve growth factor(NGF) in spinal dorsal horn following crushed spinal cord injury. METHODS: The adult Srague-Dawley rat model of crushed spinal cord injury was established by the method in our laboratory, and intact spinal cord was used as control. The rats were sacrificed respectively after 24 hours, 7 days, and 21 days of operation, and the L3 spinal segments were removed out and fixed in 4% polyformaldehyde. The segments were sectioned into sections of 20 μm in thickness. The sections were stained with anti-NGF antibody by ABC method of immunohistochemistry technique. The immunoreactive intensity of NGF and the number of positive neurons as well as glial cells in dorsal horn were observed and counted under light microscope. RESULTS: The number of positive cells and immunoreactive intensity of NGF increased gradually in the dorsal horn at 24 hours, 7 days and 21 days following crushed spinal cord injury compared with control group (P<0.01). CONCLUSION: These results indicated that NGF plays an important role in the postoperative reaction during the early period of the crushed spinal cord injury.

  3. Neuroprotective Role of Nerve Growth Factor in Hypoxic-Ischemic Brain Injury

    Directory of Open Access Journals (Sweden)

    Antonio Chiaretti

    2013-06-01

    Full Text Available Hypoxic-ischemic brain injuries (HIBI in childhood are frequently associated with poor clinical and neurological outcome. Unfortunately, there is currently no effective therapy to restore neuronal loss and to determine substantial clinical improvement. Several neurotrophins, such as Nerve Growth Factor (NGF, Brain-Derived Neurotrophic Factor (BDNF, and Glial Derived Neurotrophic Factor (GDNF, play a key role in the development, differentiation, and survival of the neurons of the peripheral and central nervous system. Experimental animal studies demonstrated their neuroprotective role in HIBI, while only a few studies examined the neuroprotective mechanisms in patients with severe HIBI. We report two cases of children with HIBI and prolonged comatose state who showed a significant improvement after intraventricular NGF administration characterized by amelioration of electroencephalogram (EEG and cerebral perfusion at single-photon emission computed tomography (SPECT. The improvement in motor and cognitive functions of these children could be related to the neuroprotective role exerted by NGF in residual viable cholinergic neurons, leading to the restoration of neuronal networks in the damaged brain.

  4. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome.

    Science.gov (United States)

    Iulita, M Florencia; Cuello, A Claudio

    2014-07-01

    Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Amyloid beta-induced nerve growth factor dysmetabolism in Alzheimer disease.

    Science.gov (United States)

    Bruno, Martin A; Leon, Wanda C; Fragoso, Gabriela; Mushynski, Walter E; Almazan, Guillermina; Cuello, A Claudio

    2009-08-01

    We previously reported that the precursor form of nerve growth factor (pro-NGF) and not mature NGF is liberated in the CNS in an activity-dependent manner, and that its maturation and degradation occur in the extracellular space by the coordinated action of proteases.Here, we present evidence of diminished conversion of pro-NGF to its mature form and of greater NGF degradation in Alzheimer disease (AD) brain samples compared with controls. These alterations of the NGF metabolic pathway likely resulted in the increased pro-NGF levels. The pro-NGF was largely in a peroxynitrited form in the AD samples. Intrahippocampal injection of amyloid-beta oligomers provoked similar upregulation of pro-NGF in naive rats that was accompanied by evidence of microglial activation (CD40), increased levels of inducible nitric oxide synthase, and increased activity of the NGF-degrading enzyme matrix metalloproteinase 9. The elevated inducible nitric oxide synthase provoked the generation of biologically inactive, peroxynitrite-modified pro-NGF in amyloid-beta oligomer-injected rats. These parameters were corrected by minocycline treatment. Minocycline also diminished altered matrix metalloproteinase 9, inducible nitric oxide synthase, and microglial activation (CD40); improved cognitive behavior; and normalized pro-NGF levels in a transgenic mouse AD model. The effects of amyloid-beta amyloid CNS burden on NGF metabolism may explain the paradoxical upregulation of pro-NGF in AD accompanied by atrophy of forebrain cholinergic neurons.

  6. Nerve growth factor induced hyperalgesia in the rat hind paw is dependent on circulating neutrophils.

    Science.gov (United States)

    Bennett, G; al-Rashed, S; Hoult, J R; Brain, S D

    1998-09-01

    The mechanisms by which nerve growth factor (NGF) induces thermal hyperalgesia and neutrophil accumulation have been investigated in the rat. Thermal nociceptive thresholds in rat hind paw were measured as the time taken for paw withdrawal from a heat source and neutrophil accumulation was measured in hind paw and dorsal skin samples using a myeloperoxidase assay. NGF (23-80 pmol intraplantar (i.pl.) injection) induced a significant (P NGF (40 pmol). In dorsal skin, where multiple samples can be assessed, intradermal (i.d.) NGF was 10-30 times less potent than interleukin-1beta in inducing neutrophil accumulation. The 5-lipoxygenase inhibitor ZM230487 (10 nmol co-injected with NGF) significantly attenuated neutrophil accumulation and hyperalgesia induced by NGF; unlike the histamine and 5-hydroxytryptamine antagonists (mepyramine and methysergide) which were without effect at the times measured. Furthermore, depletion of circulating neutrophils (using a rabbit anti-rat neutrophil antibody) abolished NGF induced hyperalgesia. These results indicate that neutrophils, which accumulate in response to a 5-lipoxygenase product, play a crucial role in NGF-induced hyperalgesia.

  7. Solubilization of nerve growth factor receptors of rabbit superior cervical ganglia.

    Science.gov (United States)

    Banerjee, S P; Cuatrecasas, P; Snyder, S H

    1976-09-25

    Nerve growth factor (NGF) receptors of rabbit superior cervical ganglia can be solubilized by treatment with detergents and readily assayed in the soluble state. Triton X-100 and deoxycholate reduce specific binding of NGF to ganglia membranes. In membranes treated with Triton X-100 (0.5 to 2.0%) the reduction in NGF binding by membranes is accompanied by a corresponding increase in binding in the supernatant fluid. NGF binding in soluble preparations can be rapidly assayed by precipitating NGF bound to receptors with polyethylene glycol under conditions in which unbound NGF is not precipitated. NGF binding to soluble preparations is saturable whether evaluated by the binding of 125I-NGF or by diluting 125I-NGF with native NGF. Using both techniques, the dissociation constant for NGF binding to soluble receptors is about 0.2 nM, the same as its dissociation constant from receptor sites in intact membranes. NGF binding to soluble receptors displays a high degree of peptide specificity, similar to receptor sites in intact membranes of superior cervical ganglia. A method of labeling NGF with 125I-3(4-hydroxyphenyl) propionic acid N-hydroxysuccinimide ester is described which leads to binding properties that are superior to those obtained with previously described 125I-NGF preparations.

  8. Locally applied nerve growth factor enhances bone consolidation in a rabbit model of mandibular distraction osteogenesis.

    Science.gov (United States)

    Wang, Lei; Zhou, Shuxia; Liu, Baolin; Lei, Delin; Zhao, Yinghua; Lu, Chao; Tan, Aixing

    2006-12-01

    Distraction osteogenesis is widely used in treating deformities, defects, and fractures of both long bones and craniofacial bones. Demands for acceleration of bone consolidation are increased in distraction osteogenesis. Nerve growth factor (NGF) can enhance innervation and bone regeneration in a fracture model and stimulate differentiation of osteoblastic cells. In this study, we tested the ability of locally applied NGF to enhance bone regeneration in a rabbit model of mandibular distraction osteogenesis. Twenty rabbits underwent bilateral distraction osteogenesis with a rate of 0.5 mm per 12 h. Two times 0.04 mg human NGFbeta (hNGFbeta) in buffer was injected into the callus after distraction. The contralateral side received placebo injections. Rabbits were euthanized at consolidation times of 14 and 28 days. Specimens were subjected to radiography, callus dimensions measurement, mechanical testing, and bone histological and histomorphometric analysis. The maximum load, bone volume/total volume, mineral apposition rate of the 1st to 11th day, and mineralized bone percentage were significantly higher in the hNGFbeta side at 14 and 28 days (p<0.05). The data indicate that locally applied hNGFbeta can accelerate callus maturation and may be an option to shorten the consolidation period in distraction osteogenesis.

  9. Nerve growth factor receptor from rabbit sympathetic ganglia membranes. Relationship between subforms.

    Science.gov (United States)

    Kouchalakos, R N; Bradshaw, R A

    1986-12-05

    The receptor for nerve growth factor (NGF) was purified from Triton X-100 extracts of sympathetic ganglia membranes by affinity chromatography on NGF-Sepharose. Elution of purified receptor was accomplished at pH 5 in the presence of 1 M NaCl. Sodium dodecyl sulfate gel electrophoresis of the purified iodinated receptor showed three major bands at Mr = 126,000, Mr = 105,000, and Mr = 81,000. Affinity labeling of the purified receptor using 125I-NGF and the photoreactive agent N-hydroxysuccinimidyl-p-azidobenzoate resulted in two major cross-linked complexes corresponding to Mr = 135,000 and Mr = 110,000. This labeling pattern is similar to that observed with sympathetic ganglia membranes (Massague, J., Guillette, B. J., Czech, M. P., Morgan, C. J., and Bradshaw, R. A. (1981) J. Biol. Chem. 256, 9419-9424) and indicates that these two forms do not arise from the cross-linking procedure. Reaction of the photoaffinity labeled NGF receptors with increasing amounts of trypsin resulted in a progressive decrease in the high molecular weight complex with a concomitant increase in the low molecular weight form. When the larger complex was isolated by electroelution from a sodium dodecyl sulfate gel and treated with trypsin, a species corresponding to Mr = 100,000 was generated. These observations are best explained by a precursor-product relationship for the two NGF receptor species of sympathetic neurons.

  10. Effect of nerve growth factor (NGF) on the development of preimplantation rabbit embryos in vitro.

    Science.gov (United States)

    Pei, Yijin

    2010-01-01

    This study aimed to investigate the effect of nerve growth factor (NGF) on the development of preimplantation rabbit embryos in vitro. Zygotes were collected from superovulated New Zealand rabbits 19 h after injection of hCG and immediately mating and cultured in TCM-199 plus fatty-acid free BSA with different concentrations of NGF. Zygotes not treated with NGF served as control. At 24 h, 48 h, 72 h and 96 h of the culture, the numbers of the early cleavage stage, morulae, blastocysts and hatching blastocysts were determined. The intrazonal diameter of the blastocyst and the total cell numbers per blastocyst were measured after 96 h of culture. The results showed: (1) NGF at 100 ng/mL and 1000 ng/mL could improve the numbers of the hatching blastocysts which developed compared to the control treatment (p NGF increased the total cell numbers in the blastocysts compared to the control treatment (p NGF had no significant effect on the blastocyst intrazonal diameter of the blastocysts at 96 h of culture (p = 0.493); (4) The proportion in the early cleavage stage at 24 h of culture (p = 0.635), of morulae at 48 h of culture (p = 0.812) and of blastocysts at 72 h of culture (p = 0.812) in all treatments were not significantly different.

  11. Increased Nerve Growth Factor Signaling in Sensory Neurons of Early Diabetic Rats Is Corrected by Electroacupuncture

    Directory of Open Access Journals (Sweden)

    Stefania Lucia Nori

    2013-01-01

    Full Text Available Diabetic polyneuropathy (DPN, characterized by early hyperalgesia and increased nerve growth factor (NGF, evolves in late irreversible neuropathic symptoms with reduced NGF support to sensory neurons. Electroacupuncture (EA modulates NGF in the peripheral nervous system, being effective for the treatment of DPN symptoms. We hypothesize that NGF plays an important pathogenic role in DPN development, while EA could be useful in the therapy of DPN by modulating NGF expression/activity. Diabetes was induced in rats by streptozotocin (STZ injection. One week after STZ, EA was started and continued for three weeks. NGF system and hyperalgesia-related mediators were analyzed in the dorsal root ganglia (DRG and in their spinal cord and skin innervation territories. Our results show that four weeks long diabetes increased NGF and NGF receptors and deregulated intracellular signaling mediators of DRG neurons hypersensitization; EA in diabetic rats decreased NGF and NGF receptors, normalized c-Jun N-terminal and p38 kinases activation, decreased transient receptor potential vanilloid-1 ion channel, and possibly activated the nuclear factor kappa-light-chain-enhancer of activated B cells (Nf-κB. In conclusion, NGF signaling deregulation might play an important role in the development of DPN. EA represents a supportive tool to control DPN development by modulating NGF signaling in diabetes-targeted neurons.

  12. Effects of nerve growth factor on neuronal nitric oxide production after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    汤长华; 曹晓建; 王道新

    2002-01-01

    To explore the protective effects of nerve growth factor (NGF) on injured spinal cord. Methods: The spinal cord injury (SCI) model of Wistar rats was established by a 10 g×2.5 cm impact force on the T8 spinal cord. NGF (60 μg/20 μl) was given to the rats of the treatment group immediately and at 2, 4, 8, 12, 24 hours after SCI. The level of neuronal constitutive nitric oxide synthase (ncNOS) and the expression of ncNOS mRNA in the spinal cord were detected by the immunohistochemistry assay and in situ hybridization method. Results: Abnormal expression of ncNOS was detected in the spinal ventral horn motorneuron in injured rats. The levels of ncNOS protein in the NGF group were significantly lower than those in the normal saline group (P<0.05 ). The ncNOS mRNA expression was found in the spinal ventral horn motorneuron in injured rats and the expression in the NGF group was significantly decreased compared with that in the normal saline group (P<0.01). Conclusions: NGF can protect the injured tissue of the spinal cord by prohibiting abnormal expression of nitric oxide synthase and the neurotoxicity of nitric oxide.

  13. Effects of Nerve Growth Factor on Bcl-2 Protein after Spinal Cord Injury in Rats

    Institute of Scientific and Technical Information of China (English)

    汤长华; 曹晓建; 王道新

    2002-01-01

    Objective To explore the protective mechanisms of nerve growth factor( NGF) ou spinal cord injury(SCI) and provide theoretical basis for its clinical application. MethodsThe SCI of Wistar rats was done by Allens weight dropping way by a 10 g × 2.5 cm impact on theposterior of spinal cord T8 NGF ( 3 g/L, 20d) or normal saline was injected to treatment group ratsthrough catheter into subarachnoid space at 0,2,4,8,12 and 24 h after SCI. The expression of bcl-2 protein levels in rat spinal cord was detected by immunohistoclemistry. Results The strong expres-sion sequence of bcl-2 protein was found in spinal cord of normal rat group. The levels of bcl-2 pro-tein after SCI in NGF treatment group increased more significantly than those in normal saline treatmentgroup (P<0. 01). Conclusion NGF could protect injured spinal cord by stimulating bcl-2 pro-tein expression and suppressing apoptosis after SCI.

  14. Differential activation of dendritic cells by nerve growth factor and brain-derived neurotrophic factor.

    Science.gov (United States)

    Noga, O; Peiser, M; Altenähr, M; Knieling, H; Wanner, R; Hanf, G; Grosse, R; Suttorp, N

    2007-11-01

    Neurotrophins are involved in inflammatory reactions influencing several cells in health and disease including allergy and asthma. Dendritic cells (DCs) play a major role in the induction of inflammatory processes with an increasing role in allergic diseases as well. The aim of this study was to investigate the influence of neurotrophins on DC function. Monocyte-derived dendritic cells were generated from allergic and non-allergic donors. Neurotrophin receptors were demonstrated by western blotting, flow cytometry and fluorescence microscopy. Activation of small GTPases was evaluated by pull-down assays. DCs were incubated with nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) and supernatants were collected for measurement of IL-4, IL-6, IL-10, IL-12p70, TNF-alpha and TGF-beta. Receptor proteins were detectable by western blot, fluorescence activated cell sorting analysis and fluorescence microscopy. Signalling after neurotrophin stimulation occurred in a ligand-specific pattern. NGF led to decreased RhoA and increased Rac activation, while BDNF affected RhoA and Rac activity in a reciprocal fashion. Cells of allergics released a significantly increased amount of IL-6, while for healthy subjects a significantly higher amount of IL-10 was found. These data indicate that DCs are activated by the neurotrophins NGF and BDNF by different pathways in a receptor-dependant manner. These cells then may initiate inflammatory responses based on allergic sensitization releasing preferred cytokines inducing tolerance or a T-helper type 2 response.

  15. Nerve growth factor protects against palmitic acid-induced injury in retinal ganglion cells

    Institute of Scientific and Technical Information of China (English)

    Pan-shi Yan; Shu Tang; Hai-feng Zhang; Yuan-yuan Guo; Zhi-wen Zeng; Qiang Wen

    2016-01-01

    Accumulating evidence supports an important role for nerve growth factor (NGF) in diabetic retinopathy. We hypothesized that NGF has a protective effect on rat retinal ganglion RGC-5 cells injured by palmitic acid (PA), a metabolic factor implicated in the development of dia-betes and its complications. Our results show that PA exposure caused apoptosis of RGC-5 cells, while NGF protected against PA insult in a concentration-dependent manner. Additionally, NGF signiifcantly attenuated the levels of reactive oxygen species (ROS) and malondialde-hyde (MDA) in RGC-5 cells. Pathway inhibitor tests showed that the protective effect of NGF was completely reversed by LY294002 (PI3K inhibitor), Akt VIII inhibitor, and PD98059 (ERK1/2 inhibitor). Western blot analysis revealed that NGF induced the phosphorylation of Akt/FoxO1 and ERK1/2 and reversed the PA-evoked reduction in the levels of these proteins. These results indicate that NGF protects RGC-5 cells against PA-induced injury through anti-oxidation and inhibition of apoptosis by modulation of the PI3K/Akt and ERK1/2 sig-naling pathways.

  16. Effects of different kinds of acute stress on nerve growth factor content in rat brain.

    Science.gov (United States)

    von Richthofen, Sita; Lang, Undine E; Hellweg, Rainer

    2003-10-17

    Nerve growth factor (NGF) has several effects on the central nervous system; on the one hand NGF fosters survival and function of cholinergic neurons of the basal forebrain, on the other hand this protein is implicated in the stress response of the hypothalamic-pituitary-adrenocortical axis (HPAA). In this study we tested the influence of threatening and painful stress treatments in three different intensities as well as forced motoric activity on NGF content in different brain areas in adult rats. We found that threatening treatment with or without painful stimuli was followed by a significant decrease of NGF concentration in the amygdala (44.5%; P=0.03) and the frontal cortex (-45.5%; P=0.02). We also observed that after stress of forced motoric activity NGF content in the frontal cortex (-32%; P=0.01) and the hippocampus (-32%; P=0.006) was significantly reduced. Thus, NGF content in distinct brain regions is decreased, following different forms of acute stress. This might be relevant for the pathophysiological understanding of psychiatric diseases, such as depression, which are associated with stress.

  17. The expression of nerve growth factor in mice lung following low-level toluene exposure.

    Science.gov (United States)

    Fujimaki, Hidekazu; Tin-Tin-Win-Shwe; Yamamoto, Shoji; Nakajima, Daisuke; Goto, Sumio

    2009-12-15

    To clarify the effect of indoor air pollutants on nerve growth factor (NGF) production in lung, male C3H/HeN mice were exposed to filtered air (control) or toluene at levels of 0.9 ppm, 9 ppm, or 90 ppm for 30 min via nose-only inhalation on days 0, 1, 2, 7, 14, 21, 28, 35, 42, 49 and 56. As an allergic mouse model, some mice (n=24) were immunized with ovalbumin. Lungs from each mouse were collected to determine NGF and related receptor expressions using real-time reverse transcription polymerase chain reaction (RT-PCR) analysis. NGF and TrkA mRNAs were increased in the lungs of the immunized mice following exposure to 9 ppm toluene (n=6) (Ptoluene-exposed, immunized mice. To determine NGF mediating signaling, we also examined mRNA expression of neurotrophin receptor p75 (p75(NTR)) and oxidative stress marker, heme oxygenase (HO)-1 in the lung. There is no difference in the expressions of p75(NTR) and HO-1 between toluene-exposed and control mice. The expression of CCL2 and CCL3 mRNAs was significantly elevated in 9 ppm toluene-exposed, immunized mice. These findings suggest that the exposure with volatile organic compounds enhanced NGF expression and airway inflammation stronger in allergic individuals than in healthy individuals.

  18. The multiple life of nerve growth factor: tribute to rita levi-montalcini (1909-2012).

    Science.gov (United States)

    Aloe, Luigi; Chaldakov, George N

    2013-03-01

    At the end of the 19(th) century, it was envisaged by Santiago Ramon y Cajal, but not, proven, that life at the neuronal level requires trophic support. The proof was obtained in the early 1950's by work initiated by Rita Levi-Montalcini (RLM) discovering the nerve growth factor (NGF). Today, NGF and its relatives, collectively designated neurotrophins, are well recognized as mediators of multiple biological phenomena in health and disease, ranging from the neurotrophic through immunotrophic and epitheliotrophic to metabotrophic effects. Consequently, NGF and other neurotrophins are implicated in the pathogenesis of a large spectrum of neuronal and non-neuronal diseases, from Alzheimer's and other neurodegenerative diseases to atherosclerosis and other cardiometabolic diseases. Recent studies demonstrated the therapeutic potentials of NGF in these diseases, including ocular and cutaneous diseases. Furthermore, NGF TrkA receptor antagonists emerged as novel drugs for pain, prostate and breast cancer, melanoma, and urinary bladder syndromes. Altogether, NGF's multiple potential in health and disease is briefly described here.

  19. Viktor Hamburger and Rita Levi-Montalcini: the path to the discovery of nerve growth factor.

    Science.gov (United States)

    Cowan, W M

    2001-01-01

    The announcement in October 1986 that the Nobel Prize for physiology or medicine was to be awarded to Rita Levi-Montalcini and Stanley Cohen for the discoveries of NGF and EGF, respectively, caused many to wonder why Viktor Hamburger (in whose laboratory the initial work was done) had not been included in the award. Now that the dust has settled, the time seems opportune to reconsider the antecedent studies on the relation of the developing nervous system to the peripheral structures it innervates. The studies undertaken primarily to investigate this issue culminated in the late 1950s in the discovery that certain tissues produce a nerve growth-promoting factor that is essential for the survival and maintenance of spinal (sensory) ganglion cells and sympathetic neurons. In this review, the many contributions that Viktor and Rita made to this problem, both independently and jointly, are reexamined by considering chronologically each of the relevant research publications together with some of the retrospective memoirs they have published in the years since the discovery of NGF was first reported.

  20. Brain changes in Alzheimer's disease patients with implanted encapsulated cells releasing nerve growth factor.

    Science.gov (United States)

    Ferreira, Daniel; Westman, Eric; Eyjolfsdottir, Helga; Almqvist, Per; Lind, Göran; Linderoth, Bengt; Seiger, Ake; Blennow, Kaj; Karami, Azadeh; Darreh-Shori, Taher; Wiberg, Maria; Simmons, Andrew; Wahlund, Lars-Olof; Wahlberg, Lars; Eriksdotter, Maria

    2015-01-01

    New therapies with disease-modifying effects are urgently needed for treating Alzheimer's disease (AD). Nerve growth factor (NGF) protein has demonstrated regenerative and neuroprotective effects on basal forebrain cholinergic neurons in animal studies. In addition, AD patients treated with NGF have previously shown improved cognition, EEG activity, nicotinic binding, and glucose metabolism. However, no study to date has analyzed brain atrophy in patients treated with NGF producing cells. In this study we present MRI results of the first clinical trial in patients with AD using encapsulated NGF biodelivery to the basal forebrain. Six AD patients received the treatment during twelve months. Patients were grouped as responders and non-responders according to their twelve-months change in MMSE. Normative values were created from 131 AD patients from ADNI, selecting 36 age- and MMSE-matched patients for interpreting the longitudinal changes in MMSE and brain atrophy. Results at baseline indicated that responders showed better clinical status and less pathological levels of cerebrospinal fluid (CSF) Aβ1-42. However, they showed more brain atrophy, and neuronal degeneration as evidenced by higher CSF levels of T-tau and neurofilaments. At follow-up, responders showed less brain shrinkage and better progression in the clinical variables and CSF biomarkers. Noteworthy, two responders showed less brain shrinkage than the normative ADNI group. These results together with previous evidence supports the idea that encapsulated biodelivery of NGF might have the potential to become a new treatment strategy for AD with both symptomatic and disease-modifying effects.

  1. [Clinical efficacy of mouse nerve growth factor in the treatment of sudden deafness].

    Science.gov (United States)

    Xu, Ting; Xiao, Dajiang; Wu, Sihai; Yuan, Yuan

    2014-05-01

    To study the clinical efficacy of mouse nerve growth factor (NGF) in the treatment of sudden deafness. A retrospective analysis was performed on 115 cases of hospitalized patients who were suffered from sudden deafness. Patients were divided into two groups according to treatment medicine. Control group: patients were treated with intravenous vasodilators, energy mixture, steroid pulse therapy, and methylcobalamin neurotrophic therapy. NGF group: intramuscular NGF treatment was added on the basis of conventional therapy mentioned above. Both treatments lasted 14 days, the total efficiency were compared. Patients were further divided into sub-groups according to age, duration and the level of pre-treatment PTA, and the treatment efficiency was further compared. By SPSS 11.0 statistical analysis, a P 60 dBHL, the efficiency of NGF therapy was not superior to the traditional treatment. NGF can significantly improve the symptom of patients with short duration or low PTA. For this kind of patients, NGF adjuvant therapy should be recommended. For the patients with longer duration and higher level of PTA, NGF therapy is not advocated. NGF treatment should not be in consideration of the age.

  2. Changes of Nerve Growth Factor in Amniotic Fluid and Correlation with Ventriculomegaly

    Institute of Scientific and Technical Information of China (English)

    Xiao-yan Xia; Xing-hua Huang; Yi-xin Xia; Wei-hua Zhang

    2011-01-01

    Objective To detect the change of nerve growth iactor (NGF) level in human amniotic fluid during gestation, and to explore the relationship between this change and fetal ventriculomegaly (VM). Methods The studied subjects (collected from 2004 to 2007) were divided into four groups, including the second-trimester pregnancy group (n=113), third-trimester pregnancy group (n= 110), fetal cerebral VM group (n= 12), and health), control group (n= 12) which matched with the VM group in gestational weeks. The amniotic fluid specimens were obtained during amniocentesis or cesarean section. The NGF levels in amniotic fluid were detected with enzyme-linked immunosorbent assay.Results A significantly negative correlation was found between gestational age and the NGF level in amniotic fluid (r=-0.6149, P<0.0001). The NGF level in patients with fetal VM was significantly lower than that in healthy controls (33.95+29.24 pg/mL vs. 64.73+ 16.21 pg/mL, P=0.024). Conclusion NGF levels in amniotic fluid may be a sensitive marker for fetal VM.

  3. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation

    Science.gov (United States)

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3–6 different antioxidants at concentrations 5–60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects. PMID:26236423

  4. Cross-regulation between colocalized nicotinic acetylcholine and 5-HT3 serotonin receptors on presynaptic nerve terminals

    Institute of Scientific and Technical Information of China (English)

    John J DOUGHERTY; Robert A NICHOLS

    2009-01-01

    Aim: Substantial colocalization of functionally independent a4 nicotinic acetylcholine receptors and 5-HT3 serotonin receptors on presynaptic terminals has been observed in brain. The present study was aimed at addressing whether nicotinic acetylcholine receptors and 5-HT3 serotonin receptors interact on the same presynaptic terminal, suggesting a convergence of cholinergic and serotonergic regulation.Methods: Ca2+ responses in individual, isolated nerve endings purified from rat striatum were measured using confocal imaging.Results: Application of 500 nmol/L nicotine following sustained stimulation with the highly selective 5-HT3 receptor agonist m-chlorophenylbiguanide at 100 nmol/L resulted in markedly reduced Ca2* responses (28% of control) in only those striatal nerve endings that originally responded to m-chlorophenylbiguanide. The cross-regulation developed over several minutes. Presynaptic nerve endings that had not responded to m-chlorophenylbiguanide, indicating that 5-HT3 receptors were not present, displayed typical responses to nicotine. Application of m-chlorophenylbiguanide following sustained stimulation with nicotine resulted in partially attenuated Ca2* responses (49% of control). Application of m-chlorophenylbiguanide following sustained stimulation with m-chlorophenylbiguanide also resulted in a strong attenuation of Ca2+ responses (12% of control), whereas nicotine-induced Ca2t responses following sustained stimulation with nicotine were not significantly different from control.Conclusion: These results indicate that the presynaptic Ca2+ increases evoked by either 5-HT, receptor or nicotinic acetylcholine receptor activation regulate subsequent responses to 5-HT3 receptor activation, but that only 5-HT3 receptors cross-regulate subsequent nicotinic acetylcholine receptor-mediated responses. The findings suggest a specific interaction between the two receptor systems in the same striatal nerve terminal, likely involving Ca2+-dependent

  5. Nerve Growth Factor Promotes Corneal Epithelial Migration by Enhancing Expression of Matrix Metalloprotease-9

    Science.gov (United States)

    Blanco-Mezquita, Tomas; Martinez-Garcia, Carmen; Proença, Rui; Zieske, James D.; Bonini, Stefano; Lambiase, Alessandro; Merayo-Lloves, Jesus

    2013-01-01

    Purpose. Nerve growth factor (NGF) is a neuropeptide essential for the development, survival, growth, and differentiation of corneal cells. Its effects are mediated by both TrkA and p75 receptors. Clinically relevant use of NGF was introduced to treat neurotrophic ulcerations in patients. Herein, we examine the mechanisms by which NGF enhances epithelial wound healing both in vivo and in vitro. Methods. An animal model using adult hens was implemented for the in vivo experiments. Laser ablation keratectomy was performed and animals were observed for up to 7 days. Epithelial healing was measured with fluorescein. In addition, proliferation was measured using BrdU incorporation and both TrkA and matrix metalloprotease-9 (MMP-9) expression were measured by immunohistochemistry (IHC) and Western blot (WB). In vitro experiments were carried out with telomerase-immortalized human corneal epithelial cells (HCLE). The rate of proliferation was measured using a colorimetric assay and BrdU incorporation. Real-time migration was evaluated with an inverted microscope. MMP-9 expression was evaluated by immunocytochemistry (ICC), WB, zymography, and RT-PCR. Finally, beta-4 integrin (β4) expression was assessed by ICC and WB. Results. Faster epithelial healing was observed in NGF-treated corneas compared with controls (P < 0.01). These corneas showed increased proliferation, TrkA upregulation, and enhanced MMP-9 presence (P < 0.01). In vitro, faster spreading and migration were observed in response to NGF (P < 0.01). Enhanced proliferation, as well as enhanced TrkA and MMP-9 expression, and decreased β4 levels were observed after adding NGF (P < 0.01). Conclusions. NGF plays a major role during the epithelial healing process by promoting migration, a process that is accelerated by cell spreading. This effect is mediated by both the upregulation of MMP-9 and cleavage of β4 integrin. PMID:23640040

  6. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex

    Directory of Open Access Journals (Sweden)

    Yan-he Ju

    2016-01-01

    Full Text Available Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  7. Electrical stimulation of dog pudendal nerve regulates the excitatory pudendal-to-bladder reflex.

    Science.gov (United States)

    Ju, Yan-He; Liao, Li-Min

    2016-04-01

    Pudendal nerve plays an important role in urine storage and voiding. Our hypothesis is that a neuroprosthetic device placed in the pudendal nerve trunk can modulate bladder function after suprasacral spinal cord injury. We had confirmed the inhibitory pudendal-to-bladder reflex by stimulating either the branch or the trunk of the pudendal nerve. This study explored the excitatory pudendal-to-bladder reflex in beagle dogs, with intact or injured spinal cord, by electrical stimulation of the pudendal nerve trunk. The optimal stimulation frequency was approximately 15-25 Hz. This excitatory effect was dependent to some extent on the bladder volume. We conclude that stimulation of the pudendal nerve trunk is a promising method to modulate bladder function.

  8. Analysis of the role of nerve growth factor in promoting cell survival during endoplasmic reticulum stress in PC12 cells.

    Science.gov (United States)

    Shimoke, Koji; Sasaya, Harue; Ikeuchi, Toshihiko

    2011-01-01

    Nerve growth factor (NGF) was first described by Rita Levi-Montalcini in the early 1960s from her studies of peripheral neurons. It has since been reported that NGF has the potential to elongate neurites or to prevent apoptosis via specific intracellular mechanisms. It has further been reported that as a component of these mechanisms, NGF binds to a specific receptor, TrkA, and thereby contributes to peripheral nerve cell functions or neuronal functions. It is noteworthy in this regard that pheochromocytoma 12 (PC12) cells express TrkA and respond to neurite outgrowth or anti-apoptotic signals by binding to NGF. Hence, PC12 cells have been used as an in vitro model system for the study of neuronal functions. It has been reported that endoplasmic reticulum (ER) stress is involved in neurodegenerative disorders, including Alzheimer's, Parkinson's, and Huntington's disease. The common link with regard to ER stress is that the neuronal cells die in these pathologies via specific intracellular mechanisms. This type of cell death, if it is apoptotic in nature, is termed ER stress-mediated apoptosis. In the process of ER stress-mediated apoptosis, the cleavage of pro-caspase-12 residing on the ER and the expression of glucose-regulated protein 78 (GRP78) can be observed. The expression of GRP78 protein is a characteristic of an unfolded protein response (UPR) via specific signal transduction pathways mediated by the unfolded protein response element (UPRE) in the upstream region of the grp78 gene so on. In ER stress-mediated apoptosis, a caspase cascade is also observed. To further clarify the mechanisms underlying ER stress-mediated apoptosis, a better understanding of the UPR is therefore important. In our current study, we describe a method for detecting gene induction via the UPR, focusing on GRP78 and caspase activities as the measurement end-points. The information generated by our method will accelerate our understanding of the pathophysiological processes leading

  9. Increased expression of nerve growth factor correlates with visceral hypersensitivity and impaired gut barrier function in diarrhoea-predominant irritable bowel syndrome: a preliminary explorative study.

    Science.gov (United States)

    Xu, X J; Zhang, Y L; Liu, L; Pan, L; Yao, S K

    2017-01-01

    Neural-immune-endocrine network mechanism has attracted increased attention in diarrhoea-predominant irritable bowel syndrome (IBS-D). Pre-clinical evidence indicates that nerve growth factor (NGF) mediates visceral hypersensitivity and gut barrier dysfunction, via interactions with mast cells and sensory nerve fibres. To explore the role of nerve growth factor, as well as mast cell-nerve growth factor-nerve interaction in IBS-D pathophysiology. In this cross-sectional study, IBS-D patients and healthy controls first underwent clinical and psychological assessments. Visceral sensitivity to rectal distension was tested. As gut barrier function markers, serum diamine oxidase and d-lactate were detected. Rectosigmoid biopsies were taken for the analyses of nerve growth factor expression, mast cell count and activation, and sensory nerve fibres expressing transient receptor potential vanilloid 1 and calcitonin gene-related peptide. Correlations between these parameters were examined in patients. Thirty-eight IBS-D patients (28 males, 10 females; average age 30.2 years) and 20 healthy controls (12 males, 8 females; average age 26.8 years) participated in the study. The patients presented increased psychological symptoms, visceral hypersensitivity and impaired gut barrier function. NGF gene expression, mast cell count and sensory nerve fibres were significantly increased in the patients (P sensitivity thresholds were negatively associated with NGF expression (Bonferroni corrected P function in IBS-D. © 2016 John Wiley & Sons Ltd.

  10. Nerve growth factor injected into the gastric ulcer base incorporates into endothelial, neuronal, glial and epithelial cells: implications for angiogenesis, mucosal regeneration and ulcer healing.

    Science.gov (United States)

    Tanigawa, T; Ahluwalia, A; Watanabe, T; Arakawa, T; Tarnawski, A S

    2015-08-01

    A previous study has demonstrated that locally administered growth factors such as epidermal growth factor, basic fibroblast growth factor and hepatocyte growth factor can accelerate healing of experimental gastric ulcers in rats. That study indicates that locally administered growth factors can exert potent biological effects resulting in enhanced gastric ulcers healing. However, the fate of injected growth factors, their retention and localization to specific cellular compartments have not been examined. In our preliminary study, we demonstrated that local injection of nerve growth factor to the base of experimental gastric ulcers dramatically accelerates ulcer healing, increases angiogenesis - new blood vessel formation, and improves the quality of vascular and epithelial regeneration. Before embarking on larger, definitive and time sequence studies, we wished to determine whether locally injected nerve growth factor is retained in gastric ulcer's tissues and taken up by specific cells during gastric ulcer healing. Gastric ulcers were induced in anesthetized rats by local application of acetic acid using standard methods; and, 60 min later fluorescein isothiocyanate-labeled nerve growth factor was injected locally to the ulcer base. Rats were euthanized 2, 5 and 10 days later. Gastric specimens were obtained and processed for histology. Unstained paraffin sections were examined under a fluorescence microscope, and the incorporation of fluorescein isothiocyanate-labeled nerve growth factor into various gastric tissue cells was determined and quantified. In addition, we performed immunostaining for S100β protein that is expressed in neural components. Five and ten days after ulcer induction labeled nerve growth factor (injected to the gastric ulcer base) was incorporated into endothelial cells of blood vessels, neuronal, glial and epithelial cells, myofibroblasts and muscle cells. This study demonstrates for the first time that during gastric ulcer healing

  11. Hepatocyte growth factor gene transfer effects on the femoral and intramuscular nerve in a canine model of lower limb ischemia

    Institute of Scientific and Technical Information of China (English)

    Xiaoqin Ha; Bin Liu; Zhen Qian; Tongde Lü; Ling Hui; Guanxian He; Qiang Yin; Tingxian Niu

    2008-01-01

    BACKGROUND: Recent advancements in gene therapy have provided new methodology for treating ischemia in lower extremities. Gene transfer of angiogenic factors to ischemic tissues may promote local proliferation of new vessels and form collateral circulation. OBJECTIVE: To observe histopathological changes in the femoral and intramuscular nerve three months after intramuscular injection of hepatocyte growth factor (HGF) into the peripheral skeletal muscle in a canine model of lower limb ischemia. DESIGN: Randomized occlusion modelled and verification animal study. SETTING: Experimental Center, Lanzhou General Hospital of Lanzhou Military Area Command of Chinese PLA. MATERIALS: This study was performed at Animal Experimental Center, Lanzhou General Hospital of Lanzhou Military Area Command of Chinese PLA from September to November 2006. A total of eight male mongrel dogs, weighing 12-15 kg and 1.5-3 years of age, were selected for this study. This experimental study was in accordance with local ethics standards. Recombinant plasmid carrying HGF (pUDKH) and occlusion model plasmid (pUDK) were provided by the Third Laboratory of Radiation Medical Institute, Academy of Military Medical Sciences of PLA. METHODS: Grouping and model establishment: under anesthesia, complete vascular occlusion models were established on the left lower extremities. The experimental dogs were randomly divided into a model group and a pUDKH treatment group, with four dogs in each group. Dogs in the pUDKH group were injected with 0.15 mg/kg pUDKH. Ten minutes later, intramuscular injections were performed at three spots into the peripheral skeletal muscle of the left hind limb, as well as lateral injections at two spots. The injection volume at each spot was 0.2 mL. Dogs in the model group were injected with pUDK, and dosage and injection method were identical to the treatment group.MAIN OUTCOME MEASURES: Histopathological changes in the femoral nerve, as well as internal and external

  12. Mechanochemical regulation of growth cone motility

    Directory of Open Access Journals (Sweden)

    Patrick C Kerstein

    2015-07-01

    Full Text Available Neuronal growth cones are exquisite sensory-motor machines capable of transducing features contacted in their local extracellular environment into guided process extension during development. Extensive research has shown that chemical ligands activate cell surface receptors on growth cones leading to intracellular signals that direct cytoskeletal changes. However, the environment also provides mechanical support for growth cone adhesion and traction forces that stabilize leading edge protrusions. Interestingly, recent work suggests that both the mechanical properties of the environment and mechanical forces generated within growth cones influence axon guidance. In this review we discuss novel molecular mechanisms involved in growth cone force production and detection, and speculate how these processes may be necessary for the development of proper neuronal morphogenesis.

  13. Effect of various growth regulators on growth of yam (Dioscorea ...

    African Journals Online (AJOL)

    SAM

    2014-04-09

    Apr 9, 2014 ... In this work, we observed the effect of hormonal content of four culture media on the growth of. Dioscorea ... gene bank is the traditional ex situ method for conserving ... stress tolerance, and senescence throughout the plant.

  14. Effect of the Nerve Growth Factor Mimetic GK-2 on Brain Structural and Functional State in the Early Postresuscitation Period

    Directory of Open Access Journals (Sweden)

    M. Sh. Avrushchenko

    2012-01-01

    Full Text Available Objective: to evaluate the efficacy of the nerve growth factor mimetic GK-2 used to improve the structural and functional state of the brain in the early postresuscitation period. Material and methods. Cardiac arrest was induced in mature male albino rats for 12 minutes, followed by resuscitation. The neurological state of the resuscitated animals was assessed by a scoring scale. On postresuscitation day 7, the density and composition of neuronal populations of Purkinje cells in the lateral cerebellar region and pyramidal neurons in the hippocampal CA1 sector were determined by a differential morphometric analysis. The results were statistically processed using the ANOVA method. Results. The use of GK-2 was found to accelerate neurological recovery in the resuscitated animals. On day 7 after 12-minute cardiac arrest, the resuscitated animals showed neuronal dystrophic changes and death in the neuronal populations highly susceptible to ischemia. It was shown that the systemic administration of the nerve growth factor mimetic GK-2 contributed to a reduction in the magnitude and depth of postresuscitation changes in the cerebellar Purkinje cells and prevented dystrophic changes in the pyramidal cells of the hippocampal CA1 sector. The findings suggest that GK-2 has a neuroprotective effect in the recovery period after total body ischemia. Conclusion. The results of this study indicate the efficiency of the systemic administration of the nerve growth factor mimetic GK-2 in improving the brain structural and functional state in the early postresuscitation period. This determines perspectives for the use of GK-2 to prevent and correct posthypoxic encephalopathies. Key words: the nerve growth factor mimetic GK-2, postresuscitation period, neuronal dystrophic changes and death, neurological status.

  15. Intracerebroventricular Administration of Nerve Growth Factor Induces Gliogenesis in Sensory Ganglia, Dorsal Root, and within the Dorsal Root Entry Zone

    OpenAIRE

    Schlachetzki, Johannes C.M.; Pizzo, Donald P.; Debbi A. Morrissette; Jürgen Winkler

    2015-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia...

  16. Nerve growth factor activates calcium-insensitive protein kinase C-epsilon in PC-12 rat pheochromocytoma cells.

    OpenAIRE

    Ohmichi, M; Zhu, G.; Saltiel, A R

    1993-01-01

    Protein kinase C (PKC) family members were examined in PC-12 rat pheochromocytoma cells to evaluate their role in the action of nerve growth factor (NGF). Immunoblot analysis of whole cell lysates using antibodies against various PKC isoforms revealed that PC-12 cells contained PKC-alpha, -delta, -epsilon and zeta. Assay of the protein kinase activity in these different anti-PKC immunoprecipitates demonstrated that NGF stimulated the kinase activity of PKC-epsilon, but not PKC-alpha, -delta a...

  17. Effects of nerve growth factor on the action potential duration and repolarizing currents in a rabbit model of myocardial infarction

    OpenAIRE

    Lan, Yun-Feng; Zhang, Jian-Cheng; Gao, Jin-Lao; Wang, Xue-Ping; Fang, Zhou; Fu, Yi-Cheng; Chen, Mei-Yan; Lin, Min; Xue, Qiao; Li, Yang

    2013-01-01

    Objectives To investigate the effect of nerve growth factor (NGF) on the action potential and potassium currents of non-infarcted myocardium in the myocardial infarcted rabbit model. Methods Rabbits with occlusion of the left anterior descending coronary artery were prepared and allowed to recover for eight weeks (healed myocardial infarction, HMI). During ligation surgery of the left coronary artery, a polyethylene tube was placed near the left stellate ganglion in the subcutis of the neck f...

  18. The role of hair follicle nestin-expressing stem cells during whisker sensory-nerve growth in long-term 3D culture.

    Science.gov (United States)

    Mii, Sumiyuki; Duong, Jennifer; Tome, Yasunori; Uchugonova, Aisada; Liu, Fang; Amoh, Yasuyuki; Saito, Norimitsu; Katsuoka, Kensei; Hoffman, Robert M

    2013-07-01

    We have previously reported that nestin-expressing hair follicle stem cells can differentiate into neurons, Schwann cells, and other cell types. In the present study, vibrissa hair follicles, including their sensory nerve stump, were excised from transgenic mice in which the nestin promoter drives green fluorescent protein (ND-GFP mice), and were placed in 3D histoculture supported by Gelfoam®. β-III tubulin-positive fibers, consisting of ND-GFP-expressing cells, extended up to 500 µm from the whisker nerve stump in histoculture. The growing fibers had growth cones on their tips expressing F-actin. These findings indicate that β-III tubulin-positive fibers elongating from the whisker follicle sensory nerve stump were growing axons. The growing whisker sensory nerve was highly enriched in ND-GFP cells which appeared to play a major role in its elongation and interaction with other nerves in 3D culture, including the sciatic nerve, the trigeminal nerve, and the trigeminal nerve ganglion. The results of the present report suggest a major function of the nestin-expressing stem cells in the hair follicle is for growth of the follicle sensory nerve. Copyright © 2013 Wiley Periodicals, Inc.

  19. The regulation of plant growth by the circadian clock.

    Science.gov (United States)

    Farré, E M

    2012-05-01

    Circadian regulated changes in growth rates have been observed in numerous plants as well as in unicellular and multicellular algae. The circadian clock regulates a multitude of factors that affect growth in plants, such as water and carbon availability and light and hormone signalling pathways. The combination of high-resolution growth rate analyses with mutant and biochemical analysis is helping us elucidate the time-dependent interactions between these factors and discover the molecular mechanisms involved. At the molecular level, growth in plants is modulated through a complex regulatory network, in which the circadian clock acts at multiple levels. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  20. Nerve growth factor receptor gene is at human chromosome region 17q12-17q22, distal to the chromosome 17 breakpoint in acute leukemias

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, K.; Isobe, M.; Chao, M.; Bothwell, M.; Ross, A.H.; Finan, J.; Hoxie, J.A.; Sehgal, A.; Buck, C.R.; Lanahan, A.

    1986-03-01

    Genomic and cDNA clones for the human nerve growth factor receptor have been used in conjunction with somatic cell hybrid analysis and in situ hybridization to localize the nerve growth factor receptor locus to human chromosome region 17q12-q22. Additionally, part, if not all, of the nerve growth factor receptor locus is present on the translocated portion of 17q (17q21-qter) from a poorly differential acute leukemia in which the chromosome 17 breakpoint was indistinguishable cytogenetically from the 17 breakpoint observed in the t(15;17)(q22;q21) translocation associated with acute promyelocytic leukemia. Thus the nerve growth factor receptor locus may be closely distal to the acute promyelocytic leukemia-associated chromosome 17 breakpoint at 17q21.

  1. Insulin-like growth factors act synergistically with basic fibroblast growth factor and nerve growth factor to promote chromaffin cell proliferation

    DEFF Research Database (Denmark)

    Frödin, M; Gammeltoft, S

    1994-01-01

    We have investigated the effects of insulin-like growth factors (IGFs), basic fibroblast growth factor (bFGF), and nerve growth factor (NGF) on DNA synthesis in cultured chromaffin cells from fetal, neonatal, and adult rats by using 5-bromo-2'-deoxyuridine (BrdUrd) pulse labeling for 24 or 48 h......% of fetal, 20% of neonatal, and 2% of adult chromaffin cells. The ED50 value of IGF-I- and IGF-II-stimulated BrdUrd labeling in neonatal chromaffin cells was 0.3 nM and 0.8 nM, respectively. In neonatal and adult chromaffin cells, addition of 1 nM bFGF or 2 nM NGF stimulated nuclear BrdUrd incorporation...... to approximately the same level as 10 nM IGF-I or IGF-II. However, the response to bFGF or NGF in combination with either IGF-I or IGF-II was more than additive, indicating that the combined effect of the IGFs and bFGF or NGF is synergistic. The degree of synergism was 2- to 4-fold in neonatal chromaffin cells...

  2. Triennial Growth Symposium: Dietary regulation of growth development

    Science.gov (United States)

    The 2010 Triennial Growth Symposium was held immediately before the Joint Annual Meeting of the American Dairy Science Association, Poultry Science Association, Asociación Mexicana de Producción Animal, Canadian Society of Animal Science, Western Section American Society of Animal Science, and Ameri...

  3. Genetic polymorphisms of nerve growth factor receptor (NGFR and the risk of Alzheimer's disease

    Directory of Open Access Journals (Sweden)

    Cheng Hui-Chi

    2012-01-01

    Full Text Available Abstract Background Loss of basal forebrain cholinergic neurons is attributable to the proapoptotic signaling induced by nerve growth factor receptor (NGFR and may link to Alzheimer's disease (AD risk. Only one study has investigated the association between NGFR polymorphisms and the risk of AD in an Italian population. Type 2 diabetes mellitus (DM may modify this association based on previous animal and epidemiologic studies. Methods This was a case-control study in a Chinese population. A total of 264 AD patients were recruited from three teaching hospitals between 2007 to 2010; 389 controls were recruited from elderly health checkup and volunteers of the hospital during the same period of time. Five common (frequency≥5% haplotype-tagging single nucleotide polymorphisms (htSNPs were selected from NGFR to test the association between NGFR htSNPs and the risk of AD. Results Variant NGFR rs734194 was significantly associated with a decreased risk of AD [GG vs. TT copies: adjusted odds ratio (OR = 0.43, 95% confidence interval (CI = 0.20-0.95]. Seven common haplotypes were identified. Minor haplotype GCGCG was significantly associated with a decreased risk of AD (2 vs. 0 copies: adjusted OR = 0.39, 95% CI = 0.17-0.91. Type 2 DM significantly modified the association between rs2072446, rs741072, and haplotype GCTTG and GTTCG on the risk of AD among ApoE ε4 non-carriers (Pinteraction Conclusion Inherited polymorphisms of NGFR were associated with the risk of AD; results were not significant after correction for multiple tests. This association was further modified by the status of type 2 DM.

  4. Lower Levels of Urinary Nerve Growth Factor Might Predict Recurrent Urinary Tract Infections in Women

    Science.gov (United States)

    2016-01-01

    Purpose: To investigate the changes in urinary nerve growth factor (uNGF) levels after acute urinary tract infection (UTI) and to assess the role of uNGF in predicting UTI recurrence in women. Methods: Women with uncomplicated, symptomatic UTIs were enrolled. Cephalexin 500 mg (every 6 hours) was administered for 7–14 days to treat acute UTIs. Subsequently, the patients were randomized to receive either sulfamethoxazole/trimethoprim 800 mg/160 mg daily at bedtime, or celecoxib 200 mg daily for 3 months and were monitored for up to 12 months. NGF levels in the urine were determined at baseline, 1, 4, and 12 weeks after the initiation of prophylactic therapy, and were compared between women with first-time UTIs and recurrent UTIs, sulfamethoxazole/trimethoprim and celecoxib-treated women, and no UTI recurrence and UTI recurrence that occurred during the follow-up period. Twenty women free of UTIs served as controls. Results: A total of 139 women with UTI and 20 controls were enrolled in the study, which included 50 women with a first-time UTI and 89 women with recurrent UTIs. Thirty-seven women completed the study. Women with recurrent UTIs (n=23) had a trend of lower uNGF levels than women with first-time UTIs (n=14). During follow-up, 9 women had UTI recurrence. The serial uNGF levels in women with UTI recurrence were significantly lower than those in women who did not have UTI recurrence during the follow-up period. Conclusions: The lower levels of uNGF in women with recurrent UTI and the incidence of UTI recurrence during follow-up suggest that lower uNGF might reflect the defective innate immunity in women with recurrent UTI. PMID:27032555

  5. Correlation between Nerve Growth Factor (NGF with Brain Derived Neurotropic Factor (BDNF in Ischemic Stroke Patient

    Directory of Open Access Journals (Sweden)

    Joko Widodo

    2016-05-01

    Full Text Available Background: The neurotrophins nerve growth factor (NGF and brain-derived neurotrophic factor (BDNF is a family of polypeptides that play critical role during neuronal development, appear to mediate protective role on neurorepair in ischemic stroke. Naturally in adult brain neurorepair process consist of: angiogenesis, neurogenesis, and neuronal plasticity, it can also be stimulated by endogenous neurorepair. In this study we observed correlation between NGF and BDNF ischemic stroke patient’s onset: 7-30 and over 30 days. Methods: This is cross sectional study on 46 subjects aged 38 – 74 years old with ischemic stroke from The Indonesian Central Hospital of Army Gatot Subroto Jakarta. Diagnosis of ischemic stroke was made using clinical examination and magnetic resonance imaging (MRI by neurologist. Subjects were divided into 2 groups based on stroke onset: 7 – 30 days (Group A: 19 subjects and > 30 days (Group B: 27 Subjects. Serum NGF levels were measured with ELISA method and BDNF levels were measured using multiplex method with Luminex Magpix. Results: Levels of NGF and BDNF were significantly different between onset group A and B (NGF p= 0.022, and BDNF p=0.008, with mean levels NGF in group A higher than group B, indicating that BDNF levels is lower in group A than group B. There was no significant correlation between NGF and BDNF levels in all groups. Conclusion: The variations in neurotrophic factor levels reflect an endogenous attempt at neuroprotection against biochemical and molecular changes after ischemic stroke. NGF represents an early marker of brain injury while BDNF recovery is most prominent during the first 14 days after onsite but continuous for more than 30 days. There is no significant correlation between NGF and BDNF in each group.  

  6. Nerve growth factor alters the sensitivity of rat masseter muscle mechanoreceptors to NMDA receptor activation.

    Science.gov (United States)

    Wong, Hayes; Dong, Xu-Dong; Cairns, Brian E

    2014-11-01

    Intramuscular injection of nerve growth factor (NGF) into rat masseter muscle induces a local mechanical sensitization that is greater in female than in male rats. The duration of NGF-induced sensitization in male and female rats was associated with an increase in peripheral N-methyl-d-aspartate (NMDA) receptor expression by masseter muscle afferent fibers that began 3 days postinjection. Here, we investigated the functional consequences of increased NMDA expression on the response properties of masseter muscle mechanoreceptors. In vivo extracellular single-unit electrophysiological recordings of trigeminal ganglion neurons innervating the masseter muscle were performed in anesthetized rats 3 days after NGF injection (25 μg/ml, 10 μl) into the masseter muscle. Mechanical activation threshold was assessed before and after intramuscular injection of NMDA. NMDA injection induced mechanical sensitization in both sexes that was increased significantly following NGF injection in the male rats but not in the female rats. However, in female but not male rats, further examination found that preadministration of NGF induced a greater sensitization in slow Aδ-fibers (2-7 m/s) than fast Aδ-fibers (7-12 m/s). This suggests that preadministration of NGF had a different effect on slowly conducting mechanoreceptors in the female rats compared with the male rats. Although previous studies have found an association between estrogenic tone and NMDA activity, no correlation was observed between NMDA-evoked mechanical sensitization and plasma estrogen level. This study suggests NGF alters NMDA-induced mechanical sensitization in the peripheral endings of masseter mechanoreceptors in a sexually dimorphic manner.

  7. Internalization of nerve growth factor by pheochromocytoma PC12 cells: absence of transfer to the nucleus.

    Science.gov (United States)

    Rohrer, H; Schäfer, T; Korsching, S; Thoenen, H

    1982-06-01

    The intracellular distribution of 125I-labeled nerve growth factor (NGF) in rat pheochromocytoma PC12 cells was studied by quantitative electron microscopic (EM) autoradiography and by subcellular fractionation. PC12 cells were grown as monolayer cultures in medium supplemented with serum in the presence of 125I-NGF. EM autoradiography showed that 125I-NGF was localized at the plasma membrane and cytoplasmic compartments but did not accumulate in the nuclear chromatin or in the nuclear membrane compartment of cells analyzed after 1 hr and 1, 2, and 8 d of incubation with 125I-NGF. 125I-NGF also was not detected in nuclear subcellular fractions prepared from cells grown in serum-supplemented medium either in suspension for 1 d or in monolayer cultures for 1 to 8 d. In contrast, and in confirmation of the results of Yankner and Shooter (Yankner, B. A., and E. M. Shooter (1979) Pro. Natl. Acad. Sci. U. S. A. 76: 1269-1273), about 60% of the cell-bound 125I-NGF was found in the nuclear pellet after cell fractionation if the cells had been kept previously in suspension for 1 d in phosphate-buffered saline supplemented with 0.2% glucose, 0.1% bovine serum albumin, and 125I-NGF. The ultrastructure of PC12 cells grown under such conditions, however, revealed signs of varying degrees of damage. Autoradiography of the nuclear pellet from these cells showed the grains to be located mainly over damaged nuclei or over cell debris between nuclei. It is concluded that NGF, after binding to specific receptors at the plasma membrane, is transferred to membrane-confined cytoplasmic compartments but does not have to be transferred further to the nuclear membrane or to the nuclear chromatin as a prerequisite for its physiological action.

  8. Single cycle structure-based humanization of an anti-nerve growth factor therapeutic antibody.

    Directory of Open Access Journals (Sweden)

    Sonia Covaceuszach

    Full Text Available Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates.In this respect, the rat anti-NGF αD11 monoclonal antibody (mAb is a potent antagonist, able to effectively antagonize rodent and human NGF in a variety of in vitro and in vivo systems. Here we show that mAb αD11 displays a significant analgesic effect in two different models of persistent pain in mice, with a remarkable long-lasting activity. In order to advance αD11 mAb towards its clinical application in man, anti-NGF αD11 mAb was humanized by applying a novel single cycle strategy based on the a priori experimental determination of the crystal and molecular structure of the parental Fragment antigen-binding (Fab. The humanized antibody (hum-αD11 was tested in vitro and in vivo, showing that the binding mode and the NGF neutralizing biological activities of the parental antibody are fully preserved, with even a significant affinity improvement. The results firmly establish hum-αD11 as a lead candidate for clinical applications in a therapeutic area with a severe unmet medical need. More generally, the single-cycle structure-based humanization method represents a considerable improvement over the standard humanization methods, which are intrinsically empirical and require several refinement cycles.

  9. Single Cycle Structure-Based Humanization of an Anti-Nerve Growth Factor Therapeutic Antibody

    Science.gov (United States)

    Covaceuszach, Sonia; Marinelli, Sara; Krastanova, Ivet; Ugolini, Gabriele; Pavone, Flaminia; Lamba, Doriano; Cattaneo, Antonino

    2012-01-01

    Most forms of chronic pain are inadequately treated by present therapeutic options. Compelling evidence has accumulated, demonstrating that Nerve Growth Factor (NGF) is a key modulator of inflammatory and nociceptive responses, and is a promising target for the treatment of human pathologies linked to chronic and inflammatory pain. There is therefore a growing interest in the development of therapeutic molecules antagonising the NGF pathway and its nociceptor sensitization actions, among which function-blocking anti-NGF antibodies are particularly relevant candidates. In this respect, the rat anti-NGF αD11 monoclonal antibody (mAb) is a potent antagonist, able to effectively antagonize rodent and human NGF in a variety of in vitro and in vivo systems. Here we show that mAb αD11 displays a significant analgesic effect in two different models of persistent pain in mice, with a remarkable long-lasting activity. In order to advance αD11 mAb towards its clinical application in man, anti-NGF αD11 mAb was humanized by applying a novel single cycle strategy based on the a priori experimental determination of the crystal and molecular structure of the parental Fragment antigen-binding (Fab). The humanized antibody (hum-αD11) was tested in vitro and in vivo, showing that the binding mode and the NGF neutralizing biological activities of the parental antibody are fully preserved, with even a significant affinity improvement. The results firmly establish hum-αD11 as a lead candidate for clinical applications in a therapeutic area with a severe unmet medical need. More generally, the single-cycle structure-based humanization method represents a considerable improvement over the standard humanization methods, which are intrinsically empirical and require several refinement cycles. PMID:22403636

  10. Nerve Growth Factor gene ovarian expression, polymorphism identification, and association with litter size in goats.

    Science.gov (United States)

    Naicy, T; Venkatachalapathy, R T; Aravindakshan, T V; Radhika, G; Raghavan, K C; Mini, M; Shyama, K

    2016-12-01

    The Nerve Growth Factor (NGF) plays an important role in reproduction by augmenting folliculogenesis. In this study, the coding regions of caprine NGF gene were analyzed to detect single-nucleotide polymorphisms (SNPs), their association with litter size, and the relative ovarian expression of NGF gene in the two indigenous goat breeds of South India viz., the prolific Malabari and less-prolific Attappady Black. The sequence analysis of the third exon containing the entire open reading frame of NGF gene was observed to be of 808 bp with one nonsynonymous mutation at 217th position. Later, polymerase chain reaction (PCR) was performed to amplify a region of 188 bp covering the region carrying the detected mutation. The genomic DNAs from the goats under study (n = 277) were subjected to PCR and single strand conformation polymorphism (SSCP). On analysis, four diplotypes viz., AA, AB, AC, and AD were observed with respective frequencies of 0.50, 0.22, 0.27, and 0.01. Sequencing of the representative samples revealed an additional synonymous mutation, i.e., g.291C>A. Statistical analysis indicated that NGF diplotypes and the SNP g.217G>A were associated with litter size in goats (P NGF gene was significantly higher in the ovaries of goats with history of multiple than single births (P NGF gene on litter size in goats and identified SNPs would benefit the selection of prolific animals in future marker-assisted breeding programs. The two novel PCR-restriction fragment length polymorphisms designed, based on the detected SNPs, would help in the rapid screening of large number of animals in a breeding population for identifying individual animals with desired genetic characteristics.

  11. Neurosteroid dehydroepiandrosterone interacts with nerve growth factor (NGF receptors, preventing neuronal apoptosis.

    Directory of Open Access Journals (Sweden)

    Iakovos Lazaridis

    2011-04-01

    Full Text Available The neurosteroid dehydroepiandrosterone (DHEA, produced by neurons and glia, affects multiple processes in the brain, including neuronal survival and neurogenesis during development and in aging. We provide evidence that DHEA interacts with pro-survival TrkA and pro-death p75(NTR membrane receptors of neurotrophin nerve growth factor (NGF, acting as a neurotrophic factor: (1 the anti-apoptotic effects of DHEA were reversed by siRNA against TrkA or by a specific TrkA inhibitor; (2 [(3H]-DHEA binding assays showed that it bound to membranes isolated from HEK293 cells transfected with the cDNAs of TrkA and p75(NTR receptors (K(D: 7.4 ± 1.75 nM and 5.6 ± 0.55 nM, respectively; (3 immobilized DHEA pulled down recombinant and naturally expressed TrkA and p75(NTR receptors; (4 DHEA induced TrkA phosphorylation and NGF receptor-mediated signaling; Shc, Akt, and ERK1/2 kinases down-stream to TrkA receptors and TRAF6, RIP2, and RhoGDI interactors of p75(NTR receptors; and (5 DHEA rescued from apoptosis TrkA receptor positive sensory neurons of dorsal root ganglia in NGF null embryos and compensated NGF in rescuing from apoptosis NGF receptor positive sympathetic neurons of embryonic superior cervical ganglia. Phylogenetic findings on the evolution of neurotrophins, their receptors, and CYP17, the enzyme responsible for DHEA biosynthesis, combined with our data support the hypothesis that DHEA served as a phylogenetically ancient neurotrophic factor.

  12. Nerve Growth Factor for the Treatment of Spinocerebellar Ataxia Type 3: An Open-label Study

    Institute of Scientific and Technical Information of China (English)

    Song Tan; Rui-Hao Wang; Hui-Xia Niu; Chang-He Shi; Cheng-Yuan Mao; Rui Zhang; Bo Song

    2015-01-01

    Background:Spinocerebellar ataxia type 3 (SCA3) is the most common subtype of SCA worldwide,and runs a slowly progressive and unremitting disease course.There is currently no curable treatment available.Growing evidence has suggested that nerve growth factor (NGF) may have therapeutic effects in neurodegenerative diseases,and possibly also in SCA3.The objective of this study was to test the efficacy of NGF in SCA3 patients.Methods:We performed an open-label prospective study in genetically confirmed adult (>18 years old) SCA3 patients.NGF was administered by intramuscular injection (18 μg once daily) for 28 days consecutively.All the patients were evaluated at baseline and 2 and 4 weeks after treatment using the Chinese version of the scale for assessment and rating of ataxia (SARA).Results:Twenty-one SCA3 patients (10 men and 11 women,mean age 39.14 ± 7.81 years,mean disease duration 4.14 ± 1.90 years,mean CAG repeats number 77.57 ± 2.27) were enrolled.After 28 days of NGF treatment,the mean total SARA score decreased significantly from a baseline of 8.48 ± 2.40 to 6.30 ± 1.87 (P < 0.001).Subsections SARA scores also showed significant improvements in stance (P =0.003),speech (P =0.023),finger chase (P =0.015),fast alternating hand movements (P =0.009),and heel-shin slide (P =0.001).Conclusions:Our preliminary data suggest that NGF may be effective in treating patients with SCA3.

  13. INTRANASAL DELIVERY OF NERVE GROWTH FACTOR TO PROTECT THE CENTRAL NERVOUS SYSTEM AGAINST ACUTE CEREBRAL INFARCTION

    Institute of Scientific and Technical Information of China (English)

    Hong-mei Zhao; Xin-feng Liu; Xiao-wei Mao; Chun-fu Chen

    2004-01-01

    Objective To confirmed reliability and feasibility of intranasal nerve growth factor (NGF) bypassing the blood-brain barrier and its potential neuroprotective effects on acute cerebral ischemia.Methods (1) To assay NGF concentrations in different brain regions after middle cerebral artery occlusion (MCAO).Rats were randomly divided into intranasal (IN) NGF, intravenous (Ⅳ) NGF, and untreated group (n =4). The concentrations of NGF of different brain regions in the three groups after MCAO were measured by ELISA. (2) To observe neuroprotective action of NGF on focal cerebral ischemic damage. Rats were randomly assigned to 4 groups: IN vehicle, IN NGF,Ⅳ vehicle, Ⅳ NGF (n = 8). Treatment was initiated 30 minutes after onset of MCAO and given again 24 hours later. Three neurologic behavioral tests were performed 24 and 48 hours following onset of MCAO. Corrected infarct volumes were determined 48 hours after onset of MCAO.Results The olfactory bulb in IN NGF group obtained the highest concentration (3252 pg/g) of NGF among all regions, followed by the hippocumpus. The NGF concentrations in the olfactory bulb and hippocampus in IN NGF group were markedly higher than that in Ⅳ NGF and control groups. The infarct volume in IN NGF group was markedly reduced by 38.8% compared with IN vehicle group. IN NGF group vestibulum function markedly improved compared with IN vehicle group at 24 and 48 hours after onset of MCAO (P24h = 0.02 and P48h = 0.04, respectively).Conclusion Intranasal NGF could pass through the blood-brain barrier, reach the central nervous system, reduce infarct volume, and improve neurologic function in rats following MCAO. Intranasal delivery of NGF may be a promising treatment for stroke.

  14. Dwarfing effects of plant growth regulators on narcissi

    Institute of Scientific and Technical Information of China (English)

    RENXu-qin; LIANGHong-wei; CHENBo-qing; JIMei-yun

    2003-01-01

    The effects of four kinds of plant growth regulators with different concentrations on narcissi were studied in 2001.The results showed that the regulators could inhibit the growths of height and leaves of narcissi. Of the four regulators, the dwarfing effects of paclobatrazol (PP333) and uniconazole (S3307) on narcissi were better than those of chlorocholine (CCC) and dimethyl amino-sussinamic acid (B9). All of the regulators did not have significant effect on the root length. Moreover, the time of flowering was later for the narcissi treated with regulators than that of the control to a certain extent, and the range delayed was from 2 days to 19 days. The correlation analysis results showed that there was a significant correlation between the time of flowering and the concentrations of regulators. The ornament value of narcissi was obviously improved by using the regulators.

  15. Increased Efferent Cardiac Sympathetic Nerve Activity and Defective Intrinsic Heart Rate Regulation in Type 2 Diabetes.

    Science.gov (United States)

    Thaung, H P Aye; Baldi, J Chris; Wang, Heng-Yu; Hughes, Gillian; Cook, Rosalind F; Bussey, Carol T; Sheard, Phil W; Bahn, Andrew; Jones, Peter P; Schwenke, Daryl O; Lamberts, Regis R

    2015-08-01

    Elevated sympathetic nerve activity (SNA) coupled with dysregulated β-adrenoceptor (β-AR) signaling is postulated as a major driving force for cardiac dysfunction in patients with type 2 diabetes; however, cardiac SNA has never been assessed directly in diabetes. Our aim was to measure the sympathetic input to and the β-AR responsiveness of the heart in the type 2 diabetic heart. In vivo recording of SNA of the left efferent cardiac sympathetic branch of the stellate ganglion in Zucker diabetic fatty rats revealed an elevated resting cardiac SNA and doubled firing rate compared with nondiabetic rats. Ex vivo, in isolated denervated hearts, the intrinsic heart rate was markedly reduced. Contractile and relaxation responses to β-AR stimulation with dobutamine were compromised in externally paced diabetic hearts, but not in diabetic hearts allowed to regulate their own heart rate. Protein levels of left ventricular β1-AR and Gs (guanine nucleotide binding protein stimulatory) were reduced, whereas left ventricular and right atrial β2-AR and Gi (guanine nucleotide binding protein inhibitory regulatory) levels were increased. The elevated resting cardiac SNA in type 2 diabetes, combined with the reduced cardiac β-AR responsiveness, suggests that the maintenance of normal cardiovascular function requires elevated cardiac sympathetic input to compensate for changes in the intrinsic properties of the diabetic heart. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  16. Cardiac arrest during gamete release in chum salmon regulated by the parasympathetic nerve system.

    Directory of Open Access Journals (Sweden)

    Yuya Makiguchi

    Full Text Available Cardiac arrest caused by startling stimuli, such as visual and vibration stimuli, has been reported in some animals and could be considered as an extraordinary case of bradycardia and defined as reversible missed heart beats. Variability of the heart rate is established as a balance between an autonomic system, namely cholinergic vagus inhibition, and excitatory adrenergic stimulation of neural and hormonal action in teleost. However, the cardiac arrest and its regulating nervous mechanism remain poorly understood. We show, by using electrocardiogram (ECG data loggers, that cardiac arrest occurs in chum salmon (Oncorhynchus keta at the moment of gamete release for 7.39+/-1.61 s in females and for 5.20+/-0.97 s in males. The increase in heart rate during spawning behavior relative to the background rate during the resting period suggests that cardiac arrest is a characteristic physiological phenomenon of the extraordinarily high heart rate during spawning behavior. The ECG morphological analysis showed a peaked and tall T-wave adjacent to the cardiac arrest, indicating an increase in potassium permeability in cardiac muscle cells, which would function to retard the cardiac action potential. Pharmacological studies showed that the cardiac arrest was abolished by injection of atropine, a muscarinic receptor antagonist, revealing that the cardiac arrest is a reflex response of the parasympathetic nerve system, although injection of sotalol, a beta-adrenergic antagonist, did not affect the cardiac arrest. We conclude that cardiac arrest during gamete release in spawning release in spawning chum salmon is a physiological reflex response controlled by the parasympathetic nervous system. This cardiac arrest represents a response to the gaping behavior that occurs at the moment of gamete release.

  17. Tamoxifen inhibits malignant peripheral nerve sheath tumor growth in an estrogen receptor–independent manner

    OpenAIRE

    Byer, Stephanie J.; Eckert, Jenell M.; Brossier, Nicole M.; CLODFELDER-MILLER, BUFFIE J.; Turk, Amy N.; Carroll, Andrew J.; John C Kappes; Zinn, Kurt R; Prasain, Jeevan K.; CARROLL, STEVEN L.

    2010-01-01

    Few therapeutic options are available for malignant peripheral nerve sheath tumors (MPNSTs), the most common malignancy associated with neurofibromatosis type 1 (NF1). Guided by clinical observations suggesting that some NF1-associated nerve sheath tumors are hormonally responsive, we hypothesized that the selective estrogen receptor (ER) modulator tamoxifen would inhibit MPNST tumorigenesis in vitro and in vivo. To test this hypothesis, we examined tamoxifen effects on MPNST cell proliferati...

  18. Effect of plant growth regulators and nitrogenous compounds on ...

    African Journals Online (AJOL)

    PROF HORSFALL

    One of the problems that farmers face is the germination of ... which is used in modern medicine as a circulatory stimulant ... growth regulators and biostimulants solutions can .... enzymes involved in gluconeogenesis, and the process of seed ...

  19. A silk sericin/silicone nerve guidance conduit promotes regeneration of a transected sciatic nerve.

    Science.gov (United States)

    Xie, Hongjian; Yang, Wen; Chen, Jianghai; Zhang, Jinxiang; Lu, Xiaochen; Zhao, Xiaobo; Huang, Kun; Li, Huili; Chang, Panpan; Wang, Zheng; Wang, Lin

    2015-10-28

    Peripheral nerve gap defects lead to significant loss of sensory or motor function. Tissue engineering has become an important alternative to nerve repair. Sericin, a major component of silk, is a natural protein whose value in tissue engineering has just begun to be explored. Here, the first time use of sericin in vivo is reported as a long-term implant for peripheral nerve regeneration. A sericin nerve guidance conduit is designed and fabricated. This conduit is highly porous with mechanical strength matching peripheral nerve tissue. It supports Schwann cell proliferation and is capable of up-regulating the transcription of glial cell derived neurotrophic factor and nerve growth factor in Schwann cells. The sericin conduit wrapped with a silicone conduit (sericin/silicone double conduits) is used for bridging repair of a 5 mm gap in a rat sciatic nerve transection model. The sericin/silicone double conduits achieve functional recovery comparable to that of autologous nerve grafting as evidenced by drastically improved nerve function and morphology. Importantly, this improvement is mainly attributed to the sericin conduit as the silicone conduit alone only produces marginal functional recovery. This sericin/silicone-double-conduit strategy offers an efficient and valuable alternative to autologous nerve grafting for repairing damaged peripheral nerve. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Chronic nerve growth factor exposure increases apoptosis in a model of in vitro induced conjunctival myofibroblasts.

    Directory of Open Access Journals (Sweden)

    Alessandra Micera

    Full Text Available In the conjunctiva, repeated or prolonged exposure to injury leads to tissue remodeling and fibrosis associated with dryness, lost of corneal transparency and defect of ocular function. At the site of injury, fibroblasts (FB migrate and differentiate into myofibroblasts (myoFB, contributing to the healing process together with other cell types, cytokines and growth factors. While the physiological deletion of MyoFB is necessary to successfully end the healing process, myoFB prolonged survival characterizes the pathological process of fibrosis. The reason for myoFB persistence is poorly understood. Nerve Growth Factor (NGF, often increased in inflamed stromal conjunctiva, may represent an important molecule both in many inflammatory processes characterized by tissue remodeling and in promoting wound-healing and well-balanced repair in humans. NGF effects are mediated by the specific expression of the NGF neurotrophic tyrosine kinase receptor type 1 (trkA(NGFR and/or the pan-neurotrophin glycoprotein receptor (p75(NTR. Therefore, a conjunctival myoFB model (TGFβ1-induced myoFB was developed and characterized for cell viability/proliferation as well as αSMA, p75(NTR and trkA(NGFR expression. MyoFB were exposed to acute and chronic NGF treatment and examined for their p75(NTR/trkA(NGFR, αSMA/TGFβ1 expression, and apoptosis. Both NGF treatments significantly increased the expression of p75(NTR, associated with a deregulation of both αSMA/TGFβ1 genes. Acute and chronic NGF exposures induced apoptosis in p75(NTR expressing myoFB, an effect counteracted by the specific trkA(NGFR and/or p75(NTR inhibitors. Focused single p75(NTR and double trkA(NGFR/p75(NTR knocking-down experiments highlighted the role of p75(NTR in NGF-induced apoptosis. Our current data indicate that NGF is able to trigger in vitro myoFB apoptosis, mainly via p75(NTR. The trkA(NGFR/p75(NTR ratio in favor of p75(NTR characterizes this process. Due to the lack of effective

  1. [Protective properties of avermectine complex and plant growth regulators].

    Science.gov (United States)

    Iamborko, N A; Pindrus, A A

    2009-01-01

    Antimutagen properties of avermectine complex of Avercom synthesized by Streptomyces avermitilis UCM Ac-2161, and growth regulators of plants (GRP) of bioagrostim-extra, ivin and emistim-C have been revealed in experiments with test-cultures of Salmonella typhimurium TA 100, TA 98. Avercom and plant growth regulators neutralize by toxication 27-48% and mutagen action of pesticides on soil microbial associations by 19.0-30.0%.

  2. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation

    DEFF Research Database (Denmark)

    Shebelut, Conrad W.; Jensen, Rasmus Bugge; Gitai, Zemer

    2009-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation...... determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated....

  3. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation▿ †

    OpenAIRE

    Shebelut, Conrad W.; Jensen, Rasmus B.; Gitai, Zemer

    2008-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated.

  4. Growth conditions regulate the requirements for Caulobacter chromosome segregation.

    Science.gov (United States)

    Shebelut, Conrad W; Jensen, Rasmus B; Gitai, Zemer

    2009-02-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated.

  5. The Role of Lumbar Sympathetic Nerves in Regulation of Blood Flow to Skeletal Muscle during Anaphylactic Hypotension in Anesthetized Rats.

    Directory of Open Access Journals (Sweden)

    Jie Song

    Full Text Available During hypovolemic shock, skeletal muscle blood flow could be redistributed to vital organs via vasoconstriction in part evoked by activation of the innervating sympathetic nerve activity. However, it is not well known whether this mechanism operates during anaphylactic shock. We determined the femoral artery blood flow (FBF and lumbar sympathetic nerve activity (LSNA mainly regulating the hindquater muscle blood flow during anaphylactic hypotension in anesthetized rats. Anesthetized Sprague-Dawley rats were randomly allocated to the following groups (n = 7/group: (1 non-sensitized, (2 anaphylaxis, (3 anaphylaxis-lumbar sympathectomy (LS and (4 anaphylaxis-sinoaortic denervation (SAD groups. Anaphylaxis was induced by an intravenous injection of the ovalbumin antigen to the sensitized rats. The systemic arterial pressure (SAP, heart rate (HR, central venous pressure (CVP, FBF and LSNA were continuously measured. In the anaphylaxis group, LSNA and HR increased, while SAP and FBF decreased after antigen injection. In the anaphylaxis-SAD group, LSNA did not significantly change during the early phase, but the responses of SAP and FBF were similar to those in the anaphylaxis group. In the anaphylaxis-LS group, both FBF and SAP decreased similarly to the anaphylaxis group during anaphylactic hypotension. These results indicated that LSNA increased via baroreceptor reflex, but this sympathoexcitation or LS did not affect antigen-induced decreases in FBF or SAP. Lumbar sympathetic nerves are not involved in regulation of the blood flow to the hindlimb or systemic blood pressure during anaphylactic hypotension in anesthetized rats.

  6. Verticillin A Inhibits Leiomyosarcoma and Malignant Peripheral Nerve Sheath Tumor Growth via Induction of Apoptosis

    Science.gov (United States)

    Zewdu, A; Lopez, G; Braggio, D; Kenny, C; Constantino, D; Bid, HK; Batte, K; Iwenofu, OH; Oberlies, NH; Pearce, CJ; Strohecker, AM; Lev, D; Pollock, RE

    2017-01-01

    Objective The heterogeneity of soft tissue sarcoma (STS) represents a major challenge for the development of effective therapeutics. Comprised of over 50 different histology subtypes of various etiologies, STS subsets are further characterized as either karyotypically simple or complex. Due to the number of genetic anomalies associated with genetically complex STS, development of therapies demonstrating potency against this STS cluster is especially challenging and yet greatly needed. Verticillin A is a small molecule natural product with demonstrated anticancer activity; however, the efficacy of this agent has never been evaluated in STS. Therefore, the goal of this study was to explore verticillin A as a potential STS therapeutic. Methods We performed survival (MTS) and clonogenic analyses to measure the impact of this agent on the viability and colony formation capability of karyotypically complex STS cell lines: malignant peripheral nerve sheath tumor (MPNST) and leiomyosarcoma (LMS). The in vitro effects of verticillin A on apoptosis were investigated through annexin V/PI flow cytometry analysis and by measuring fluorescently-labeled cleaved caspase 3/7 activity. The impact on cell cycle progression was assessed via cytometric measurement of propidium iodide intercalation. In vivo studies were performed using MPNST xenograft models. Tumors were processed and analyzed using immunohistochemistry (IHC) for verticillin A effects on growth (Ki67) and apoptosis (cleaved caspase 3). Results Treatment with verticillin A resulted in decreased STS growth and an increase in apoptotic levels after 24 h. 100 nM verticillin A induced significant cellular growth abrogation after 24 h (96.7, 88.7, 72.7, 57, and 39.7% reduction in LMS1, S462, ST88, SKLMS1, and MPNST724, respectively). We observed no arrest in cell cycle, elevated annexin, and a nearly two-fold increase in cleaved caspase 3/7 activity in all MPNST and LMS cell lines. Control normal human Schwann (HSC) and

  7. Growth Regulator Herbicides Prevent Invasive Annual Grass Seed Production

    Science.gov (United States)

    Auxinic herbicides, such as 2,4-D and dicamba, that act as plant growth regulators are commonly used for broadleaf weed control in cereal crops (e.g. wheat, barley), grasslands, and non-croplands. If applied at later growth stages, while cereals are developing reproductive parts, the herbicides can...

  8. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  9. Vascular endothelial growth factor gene therapy improves nerve regeneration in a model of obstetric brachial plexus palsy.

    Science.gov (United States)

    Hillenbrand, Matthias; Holzbach, Thomas; Matiasek, Kaspar; Schlegel, Jürgen; Giunta, Riccardo E

    2015-03-01

    The treatment of obstetric brachial plexus palsy has been limited to conservative therapies and surgical reconstruction of peripheral nerves. In addition to the damage of the brachial plexus itself, it also leads to a loss of the corresponding motoneurons in the spinal cord, which raises the need for supportive strategies that take the participation of the central nervous system into account. Based on the protective and regenerative effects of VEGF on neural tissue, our aim was to analyse the effect on nerve regeneration by adenoviral gene transfer of vascular endothelial growth factor (VEGF) in postpartum nerve injury of the brachial plexus in rats. In the present study, we induced a selective crush injury to the left spinal roots C5 and C6 in 18 rats within 24 hours after birth and examined the effect of VEGF-gene therapy on nerve regeneration. For gene transduction an adenoviral vector encoding for VEGF165 (AdCMV.VEGF165) was used. In a period of 11 weeks, starting 3 weeks post-operatively, functional regeneration was assessed weekly by behavioural analysis and force measurement of the upper limb. Morphometric evaluation was carried out 8 months post-operatively and consisted of a histological examination of the deltoid muscle and the brachial plexus according to defined criteria of degeneration. In addition, atrophy of the deltoid muscle was evaluated by weight determination comparing the left with the right side. VEGF expression in the brachial plexus was quantified by an enzyme-linked immunosorbent assay (ELISA). Furthermore the motoneurons of the spinal cord segment C5 were counted comparing the left with the right side. On the functional level, VEGF-treated animals showed faster nerve regeneration. It was found less degeneration and smaller mass reduction of the deltoid muscle in VEGF-treated animals. We observed significantly less degeneration of the brachial plexus and a greater number of surviving motoneurons (P regeneration and survival of nerve cells

  10. Cerebrolysin modulates pronerve growth factor/nerve growth factor ratio and ameliorates the cholinergic deficit in a transgenic model of Alzheimer's disease.

    Science.gov (United States)

    Ubhi, Kiren; Rockenstein, Edward; Vazquez-Roque, Ruben; Mante, Michael; Inglis, Chandra; Patrick, Christina; Adame, Anthony; Fahnestock, Margaret; Doppler, Edith; Novak, Philip; Moessler, Herbert; Masliah, Eliezer

    2013-02-01

    Alzheimer's disease (AD) is characterized by degeneration of neocortex, limbic system, and basal forebrain, accompanied by accumulation of amyloid-β and tangle formation. Cerebrolysin (CBL), a peptide mixture with neurotrophic-like effects, is reported to improve cognition and activities of daily living in patients with AD. Likewise, CBL reduces synaptic and behavioral deficits in transgenic (tg) mice overexpressing the human amyloid precursor protein (hAPP). The neuroprotective effects of CBL may involve multiple mechanisms, including signaling regulation, control of APP metabolism, and expression of neurotrophic factors. We investigate the effects of CBL in the hAPP tg model of AD on levels of neurotrophic factors, including pro-nerve growth factor (NGF), NGF, brain-derived neurotrophic factor (BDNF), neurotropin (NT)-3, NT4, and ciliary neurotrophic factor (CNTF). Immunoblot analysis demonstrated that levels of pro-NGF were increased in saline-treated hAPP tg mice. In contrast, CBL-treated hAPP tg mice showed levels of pro-NGF comparable to control and increased levels of mature NGF. Consistently with these results, immunohistochemical analysis demonstrated increased NGF immunoreactivity in the hippocampus of CBL-treated hAPP tg mice. Protein levels of other neurotrophic factors, including BDNF, NT3, NT4, and CNTF, were unchanged. mRNA levels of NGF and other neurotrophins were also unchanged. Analysis of neurotrophin receptors showed preservation of the levels of TrKA and p75(NTR) immunoreactivity per cell in the nucleus basalis. Cholinergic cells in the nucleus basalis were reduced in the saline-treated hAPP tg mice, and treatment with CBL reduced these cholinergic deficits. These results suggest that the neurotrophic effects of CBL might involve modulation of the pro-NGF/NGF balance and a concomitant protection of cholinergic neurons.

  11. Effect of helium/neon laser irradiation on nerve growth factor synthesis and secretion in skeletal muscle cultures.

    Science.gov (United States)

    Schwartz, Fidi; Brodie, Chaya; Appel, Elana; Kazimirsky, Gila; Shainberg, Asher

    2002-04-01

    Low energy laser irradiation therapy in medicine is widespread but the mechanisms are not fully understood. The aim of the present study was to elucidate the mechanism by which the light might induce therapeutic effects. Skeletal muscle cultures were chosen as a target for light irradiation and nerve growth factor (NGF) was the biochemical marker for analysis. It was found that there is a transient elevation of intracellular calcium in the myotubes immediately after irradiation (Phelium/neon irradiation (633 nm) with an energy of 3 J/cm(2). In addition, helium/neon irradiation augmented the level of NGF mRNA fivefold and increased NGF release to the medium of the myotubes. Thus, it is speculated that transient changes in calcium caused by light can modulate NGF release from the myotubes and also affect the nerves innervating the muscle. The NGF is probably responsible for the beneficial effects of low-level light.

  12. Nerve growth factor eye drops improve visual acuity and electrofunctional activity in age-related macular degeneration: a case report

    Directory of Open Access Journals (Sweden)

    Alessandro Lambiase

    2009-12-01

    Full Text Available Age-related macular degeneration (ARMD is a severe disease affecting visual function in the elderly. Currently available surgical and medical options do not guarantee a significant impact on the outcome of the disease. We describe the effects of nerve growth factor eye drop treatment in a 94 years old female with ARMD, whose visual acuity was progressively worsening in spite of previous surgical and medical treatments. NGF eye drops improved visual acuity and electrofunctional parameters as early as 3 months after initiation of treatment. These results are in line with previous reports on a neuroprotective effect of NGF on retinal cells and on NGF eye drops bioavailability in the retina and optic nerve. No side effects were observed after five years of follow-up, suggesting that topical NGF treatment may be a safe and effective therapy for ARMD.

  13. Peripheral Nerve Discharge Elicited by Manual Acupuncture at Zusanli (ST 36) Regulates Blood Pressure in Anesthetized Rats

    Institute of Scientific and Technical Information of China (English)

    李为民; 陈颖渡; 王智君

    2008-01-01

    Objective: To investigate target organ response by recording mean arterial blood pressure (MAP) fluctuation corresponding to nerve-tract discharges from the nerve innervating acupoint of Zusanli (ST 36) in the hind limb evoked by MA in anesthetized rats. Methods: Male SD rats anesthetized with chloral hydrate were randomly divided into 3 groups which were treated with manual acupuncture (MA), injection of lidocaine followed by MA and injection of normal saline (NS) followed by MA, respectively. The right carotid artery was canulated for persistent measurement of the blood pressure and meanwhile nerve discharges from the nerve-tract were recorded for analysis with amplitude spike counts for every 5 s. Results: The results showed that there were significant nerve discharges recorded from the nerve-tract when applying MA at Zusanli (ST 36) and simultaneous decrease in the MAP, while there was no response when inserting a needle into the Zusanli (ST 36) without manipulation (P<0.05). Furthermore, the reduction of MAP during MA could be completely abolished after blockade of peripheral nerve discharges with an injection of lidocaine into the tissue around Zusanli (ST 36) but not with that of normal saline (NS). Conclusion: These results indicate that MA at Zusanli (ST 36) can elicit the peripheral nerve discharges from the nerve innervating the acupoint; such kind of nerve discharges may contain acupuncture signal regulating blood pressure via somato-cardiovascular reflex.%目的:麻醉状态下观察手针大鼠后肢足三里穴位引起的支配该穴区的特异性神经束放电以及由此诱发的相应靶器官血压波动效应.方法:将水合氯醛麻醉处理的雄性大鼠随机分为针刺组、利多卡因注射后针刺组(穴位邻近区域肌肉注射2%利多卡因后进行足三里手针刺激)并设生理盐水注射后针刺组(穴位邻近区域肌肉注射生理盐水后进行足三里手针刺激)作为对照.持续记录足三里针刺过程中

  14. Neutralizing IL-6 reduces heart injury by decreasing nerve growth factor precursor in the heart and hypothalamus during rat cardiopulmonary bypass.

    Science.gov (United States)

    Cheng, Chi; Xu, Jun-Mei; Yu, Tian

    2017-06-01

    To investigate whether the expression of nerve growth factor precursor (proNGF) changes during cardiopulmonary bypass (CPB) and whether neutralizing interleukin-6 (IL-6) during CPB has cardiac benefits. Thirty patients undergoing CPB were recruited and their serum proNGF and troponin-I (TNI) were detected. In addition, rats were divided into three groups: CPB group, CPB with cardiac ischemia-reperfusion (IR) group, and a control group. The pre-CPB standard deviation of N-N intervals (SDNN) and post-CPB SDNN were compared. At the end of CPB, nerve peptide Y (NPY), acetylcholinesterase, cell apoptosis, and proNGF protein expression were measured in the heart and hypothalamus. Another rat cohort undergoing CPB was divided into two groups: an anti-IL-6 group with IL-6 antibody and a control group with phosphate buffer solution. At the end of CPB, serum hs-troponin-T and cardiac caspases 3 and 9 were detected. NPY and proNGF in the heart and hypothalamus were detected. In patients, serum proNGF increased during CPB, and the concentration was positively correlated with TNI. In rats, cardiac autonomic nervous function was disturbed during CPB. More apoptotic cells and higher levels of proNGF were found in the heart and hypothalamus in the CPB groups than in the control groups. Neutralizing IL-6 was beneficial to lower cardiac injury by decreasing proNGF and apoptosis. CPB induced changes in proNGF in the heart and hypothalamus. Suppressing inflammation attenuated myocardial apoptosis and autonomic nerve function disturbance in CPB rats, likely due in part to regulation of proNGF in the heart and hypothalamus. Copyright © 2017. Published by Elsevier Inc.

  15. CRMP1 Interacted with Spy1 During the Collapse of Growth Cones Induced by Sema3A and Acted on Regeneration After Sciatic Nerve Crush.

    Science.gov (United States)

    Yao, Li; Liu, Yong-hua; Li, Xiaohong; Ji, Yu-hong; Yang, Xiao-jing; Hang, Xian-ting; Ding, Zong-mei; Liu, Fang; Wang, You-hua; Shen, Ai-guo

    2016-03-01

    CRMP1, a member of the collapsin response mediator protein family (CRMPs), was reported to regulate axon outgrowth in Sema3A signaling pathways via interactions with its co-receptor protein neuropilin-1 and plexin-As through the Fyn-cyclin-dependent kinase 5 (CDK5) cascade and the sequential phosphorylation of CRMP1 by lycogen synthase kinase-3β (GSK-3β). Using yeast two-hybrid, we identified a new molecule, Speedy A1 (Spy1), a member of the Speedy/RINGO family, with an interaction with CRMP1. Besides, for the first time, we observed the association of CRMP1 with actin. Based on this, we wondered the association of them and their function in Sema3A-induced growth cones collapse and regeneration process after SNC. During our study, we constructed overexpression plasmid and short hairpin RNA (shRNA) to question the relationship of CRMP1/Spy1 and CRMP1/actin. We observed the interactions of CRMP1/Spy1 and CRMP1/actin. Besides, we found that Spy1 could affect CRMP1 phosphorylation actived by CDK5 and that enhanced CRMP1 phosphorylation might disturb the combination of CRMP1 and actin, which would contribute to abnormal of Sema3A-induced growth cones collapse and finally lead to influent regeneration process after rat sciatic nerve crush. Through rat walk footprint test, we also observed the variance during regeneration progress, respectively. We speculated that CRMP1 interacted with Spy1 which would disturb the association of CRMP1 with actin and was involved in the collapse of growth cones induced by Sema3A and regeneration after sciatic nerve crush.

  16. Axon growth and guidance: receptor regulation and signal transduction.

    Science.gov (United States)

    O'Donnell, Michael; Chance, Rebecca K; Bashaw, Greg J

    2009-01-01

    The development of precise connectivity patterns during the establishment of the nervous system depends on the regulated action of diverse, conserved families of guidance cues and their neuronal receptors. Determining how these signaling pathways function to regulate axon growth and guidance is fundamentally important to understanding wiring specificity in the nervous system and will undoubtedly shed light on many neural developmental disorders. Considerable progress has been made in defining the mechanisms that regulate the correct spatial and temporal distribution of guidance receptors and how these receptors in turn signal to the growth cone cytoskeleton to control steering decisions. This review focuses on recent advances in our understanding of the mechanisms mediating growth cone guidance with a particular emphasis on the control of guidance receptor regulation and signaling.

  17. Enhancement of musculocutaneous nerve reinnervation after vascular endothelial growth factor (VEGF gene therapy

    Directory of Open Access Journals (Sweden)

    Haninec Pavel

    2012-06-01

    Full Text Available Abstract Background Vascular endothelial growth factor (VEGF is not only a potent angiogenic factor but it also promotes axonal outgrowth and proliferation of Schwann cells. The aim of the present study was to quantitatively assess reinnervation of musculocutaneous nerve (MCN stumps using motor and primary sensory neurons after plasmid phVEGF transfection and end-to-end (ETE or end-to-side (ETS neurorrhaphy. The distal stump of rat transected MCN, was transfected with plasmid phVEGF, plasmid alone or treated with vehiculum and reinnervated following ETE or ETS neurorrhaphy for 2 months. The number of motor and dorsal root ganglia neurons reinnervating the MCN stump was estimated following their retrograde labeling with Fluoro-Ruby and Fluoro-Emerald. Reinnervation of the MCN stumps was assessed based on density, diameter and myelin sheath thickness of regenerated axons, grooming test and the wet weight index of the biceps brachii muscles. Results Immunohistochemical detection under the same conditions revealed increased VEGF in the Schwann cells of the MCN stumps transfected with the plasmid phVEGF, as opposed to control stumps transfected with only the plasmid or treated with vehiculum. The MCN stumps transfected with the plasmid phVEGF were reinnervated by moderately higher numbers of motor and sensory neurons after ETE neurorrhaphy compared with control stumps. However, morphometric quality of myelinated axons, grooming test and the wet weight index were significantly better in the MCN plasmid phVEGF transfected stumps. The ETS neurorrhaphy of the MCN plasmid phVEGF transfected stumps in comparison with control stumps resulted in significant elevation of motor and sensory neurons that reinnervated the MCN. Especially noteworthy was the increased numbers of neurons that sent out collateral sprouts into the MCN stumps. Similarly to ETE neurorrhaphy, phVEGF transfection resulted in significantly higher morphometric quality of myelinated axons

  18. Nerve growth factor expression in astrocytoma and cerebrospinal fluid: a new biomarker for prognosis of astrocytoma

    Institute of Scientific and Technical Information of China (English)

    LI Qiao-yu; FENG Yun; XU Wen-lin; YANG Yong; ZHANG Yan; ZHANG Zhi-jian; GONG Ai-hua; YUAN Zhi-cheng; LU Pei-song; ZHAN Li-ping; WANG Peng

    2011-01-01

    Background Recent studies have discovered that nuclear translocation of nerve growth factor (NGF) and its receptor fragments function differently from the traditional model. This study aimed to uncover the nuclear expression of NGF in astrocytoma and its biological significance.Methods Ninety-four paraffin-embedded astrocytoma specimens were subjected to immunohistochemical (IHC) and hemotoxylin & eosin (HE) staining. Preoperative cerebrospinal fluid (CSF) specimens and intraoperative snap-frozen astrocytoma tissues were assayed for NGF expression by ELISA and Western blotting. The outcome of patients who contributed samples was tracked. Each ten tissue samples from patients with traumatic brain injury who had received decompression surgery and CSF samples from patients undergoing spinal anesthesia but with no history of nervous system disease were taken as control.Results NGF-positive immunoreactive products were distributed in both the cytoplasm and nucleus of astrocytoma, but were only located in the cytoplasm of traumatic brain injury (TBI) tissue. NGF nuclear-positive rate (NPR) of grades Ⅲ-Ⅳ astrocytomas (70.0%) was higher than that of grades Ⅰ-Ⅱ astrocytoma (28.6%, P<0.05). NGF-NP expression positively correlated with the NGF concentration in cerebrospinal fluid (CSF) (r=0.755, P<0.01). Kaplan-Meier survival analysis indicated that the median survival time was 25 months for NGF-NP astrocytoma grade Ⅰ-Ⅱ patients and 42 months in NGF nuclear negative (NGF-NN) astrocytoma grade Ⅰ-Ⅱ patients (P<0.05). In astrocytoma Ⅲ-Ⅳ patients, the median survival was 7 months for NGF-NP patients and 24 months for NGF-NN patients (P<0.01). Two types of NGF with molecular weights of 13 and 36 kDa were present in astrocytoma, but only the 36 kDa NGF was found in the CSF. NGF expression elevated as the malignancy increased.Conclusions NGF-NP expression and NGF level in CSF were significant prognostic factors in astrocytoma patients.Because of the easy

  19. Characterization of antibodies to synthetic nerve growth factor (NGF) and proNGF peptides.

    Science.gov (United States)

    Ebendal, T; Persson, H; Larhammar, D; Lundströmer, K; Olson, L

    1989-03-01

    Sequence data for the mature nerve growth factor (NGF) protein and its precursor are available from molecular cloning of the NGF gene in several species, including mice, humans, rats, and chickens. Hydrophilicity analysis of the predicted rat and chicken prepro-NGF was carried out to locate putative antigenic determinants. Eight peptides were selected and synthesized based on hydrophilicity profiles. Two peptides represent sequences in the rat (and mouse) pro-NGF, one peptide (our peptide P3) represents a highly conserved region of the mature NGF protein (identical in humans, mice, rats, and chickens), two peptides are specific for the mature chicken NGF, and the remaining three peptides are specific for the mature rat NGF (each with only one amino acid substitution compared with corresponding segments of the mouse NGF). For immunization, the peptides were conjugated to keyhold limpet hemocyanin and used to produce antisera in rabbits. After bleeding, peptide-specific antibodies were purified on affinity columns prepared by coupling each of the synthetic peptides. The different peptide antisera and affinity-purified antibodies then were characterized by enzyme-linked immunoassay (ELISA) and immunohistochemistry of the male mouse submandibular gland, a rich exocrine source of NGF. ELISA analysis showed that all peptide antisera bound two to four orders of magnitude better than normal rabbit serum to a coat of their proper peptide. The higher binding was retained by the purified peptide antibodies compared with normal rabbit immunoglobulin. Specific tests, in which one peptide antiserum was checked against different peptide coats in the ELISA, also showed two to four orders of magnitude higher binding of antibodies to the proper synthetic peptide. The peptide antibodies also were tested for their ability to bind to native mouse beta NGF coated to the immunoplates. Only antibodies raised to the conserved P3 peptide recognized native NGF to an extent similar to that

  20. Nicotine stimulates nerve growth factor in lung fibroblasts through an NFκB-dependent mechanism.

    Directory of Open Access Journals (Sweden)

    Cherry Wongtrakool

    Full Text Available Airway hyperresponsiveness (AHR is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF secretion into the environment.Primary lung fibroblasts isolated from wild type and α7 nicotinic acetylcholine receptor (α7 nAChR deficient mice were treated with nicotine (50 µg/ml in vitro for 72 hours. NGF levels were measured in culture media and in bronchoalveolar lavage (BAL fluid from asthmatic, smoking and non-smoking subjects by ELISA. The role of the NFκB pathway in nicotine-induced NGF expression was investigated by measuring NFκB nuclear translocation, transcriptional activity, chromatin immunoprecipitation assays, and si-p65 NFκB knockdown. The ability of nicotine to stimulate a fibroblast-mediated, contractile ASM cell phenotype was confirmed by examining expression of contractile proteins in ASM cells cultured with fibroblast-conditioned media or BAL fluid.NGF levels were elevated in the bronchoalveolar lavage fluid of nicotine-exposed mice, current smokers, and asthmatic children. Nicotine increased NGF secretion in lung fibroblasts in vitro in a dose-dependent manner and stimulated NFκB nuclear translocation, p65 binding to the NGF promoter, and NFκB transcriptional activity. These responses were attenuated in α7 nAChR deficient fibroblasts and in wild type fibroblasts following NFκB inhibition. Nicotine-treated, fibroblast-conditioned media increased expression of contractile proteins in ASM cells.Nicotine stimulates NGF release by lung fibroblasts through α7 nAChR and NFκB dependent pathways. These novel findings

  1. The effects of functional magnetic nanotubes with incorporated nerve growth factor in neuronal differentiation of PC12 cells

    Energy Technology Data Exchange (ETDEWEB)

    Xie Jining; Chen Linfeng; Varadan, Vijay K [Nanomaterials and Nanotubes Research Laboratory, College of Engineering, University of Arkansas, Fayetteville, AR 72701 (United States); Yancey, Justin; Srivatsan, Malathi [Department of Biological Sciences, Arkansas State University, State University, AR 72467 (United States)], E-mail: jxie@uark.edu, E-mail: msrivatsan@astate.edu

    2008-03-12

    In this in vitro study the efficiency of magnetic nanotubes to bind with nerve growth factor (NGF) and the ability of NGF-incorporated magnetic nanotubes to release the bound NGF are investigated using rat pheochromocytoma cells (PC12 cells). It is found that functional magnetic nanotubes with NGF incorporation enabled the differentiation of PC12 cells into neurons exhibiting growth cones and neurite outgrowth. Microscope observations show that filopodia extending from neuron growth cones were in close proximity to the NGF-incorporated magnetic nanotubes, at times appearing to extend towards or into them. These results show that magnetic nanotubes can be used as a delivery vehicle for NGF and thus may be exploited in attempts to treat neurodegenerative disorders such as Parkinson's disease with neurotrophins. Further neurite outgrowth can be controlled by manipulating magnetic nanotubes with external magnetic fields, thus helping in directed regeneration.

  2. Light-regulated plant growth and development.

    Science.gov (United States)

    Kami, Chitose; Lorrain, Séverine; Hornitschek, Patricia; Fankhauser, Christian

    2010-01-01

    Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).

  3. Expression of nerve growth factor (NGF, TrkA and p75NTR in developing human foetal teeth

    Directory of Open Access Journals (Sweden)

    Thimios A. Mitsiadis

    2016-08-01

    Full Text Available Nerve growth factor (NGF is important for the development and the differentiation of neuronal and non-neuronal cells. NGF binds to specific low- and high-affinity cell surface receptors, respectively p75NTR and TrkA. In the present study, we examined by immunohistochemistry the expression patterns of the NGF, p75NTR and TrkA proteins during human foetal tooth development, in order to better understand the mode of NGF signalling action in dental tissues. The results obtained show that these molecules are expressed in a wide range of dental cells of both epithelial and mesenchymal origin during early stages of odontogenesis, as well as in nerve fibres that surround the developing tooth germs. At more advanced developmental stages, NGF and TrkA are localised in differentiated cells with secretory capacities such as preameloblasts/ameloblasts secreting enamel matrix and odontoblasts secreting dentine matrix. In contrast, p75NTR expression is absent from these secretory cells and restricted in proliferating cells of the dental epithelium. The temporospatial distribution of NGF and p75NTR in foetal human teeth is similar, but not identical, with that observed previously in the developing rodent teeth, thus indicating that the genetic information is well conserved during evolution. The expression patterns of NGF, p75NTR and TrkA during odontogenesis suggest regulatory roles for NGF signalling in proliferation and differentiation of epithelial and mesenchymal cells, as well as in attraction and sprouting of nerve fibres within dental tissues.

  4. Expression of Nerve Growth Factor (NGF), TrkA, and p75NTR in Developing Human Fetal Teeth

    Science.gov (United States)

    Mitsiadis, Thimios A.; Pagella, Pierfrancesco

    2016-01-01

    Nerve growth factor (NGF) is important for the development and the differentiation of neuronal and non-neuronal cells. NGF binds to specific low- and high-affinity cell surface receptors, respectively, p75NTR and TrkA. In the present study, we examined by immunohistochemistry the expression patterns of the NGF, p75NTR, and TrkA proteins during human fetal tooth development, in order to better understand the mode of NGF signaling action in dental tissues. The results obtained show that these molecules are expressed in a wide range of dental cells of both epithelial and mesenchymal origin during early stages of odontogenesis, as well as in nerve fibers that surround the developing tooth germs. At more advanced developmental stages, NGF and TrkA are localized in differentiated cells with secretory capacities such as preameloblasts/ameloblasts secreting enamel matrix and odontoblasts secreting dentine matrix. In contrast, p75NTR expression is absent from these secretory cells and restricted in proliferating cells of the dental epithelium. The temporospatial distribution of NGF and p75NTR in fetal human teeth is similar, but not identical, with that observed previously in the developing rodent teeth, thus indicating that the genetic information is well-conserved during evolution. The expression patterns of NGF, p75NTR, and TrkA during odontogenesis suggest regulatory roles for NGF signaling in proliferation and differentiation of epithelial and mesenchymal cells, as well as in attraction and sprouting of nerve fibers within dental tissues. PMID:27536251

  5. Methamphetamine-induced dopaminergic neurotoxicity and production of peroxynitrite are potentiated in nerve growth factor differentiated pheochromocytoma 12 cells.

    Science.gov (United States)

    Imam, Syed Z; Newport, Glenn D; Duhart, Helen M; Islam, Fakhrul; Slikker, William; Ali, Syed F

    2002-06-01

    Methamphetamine (METH) is a widely abused psychomotor stimulant known to cause dopaminergic neurotoxicity in rodents, nonhuman primates, and humans. METH administration selectively damages the dopaminergic nerve terminals, which is hypothesized to be due to release of dopamine from synaptic vesicles within the terminals. This process is believed to be mediated by the production of free radicals. The current study evaluates METH-induced dopaminergic toxicity in pheochromocytoma 12 (PC12) cells cultured in the presence or absence of nerve growth factor (NGF). Dopaminergic changes and the formation of 3-nitrotyrosine (3-NT), a marker for peroxynitrite production, were studied in PC12 cell cultures grown in the presence or absence of NGF after different doses of METH (100-1,000 microM). METH exposure did not cause significant alterations in cell viability and did not produce significant dopaminergic changes or 3-NT production in PC12 cells grown in NGF-negative media after 24 hours. However, cell viability of PC12 cells grown in NGF-positive media was decreased by 45%, and significant dose-dependent dopaminergic alteration and 3-NT production were observed 24 hours after exposure to METH. The current study supports the hypothesis that METH acts at the dopaminergic nerve terminals and produces dopaminergic damage by the production of free radical peroxynitrite.

  6. Effects of nerve growth factor and basic fibroblast growth factor dual gene modification on rat bone marrow mesenchymal stem cell differentiation into neuron-like cells in vitro.

    Science.gov (United States)

    Hu, Yang; Zhang, Yan; Tian, Kang; Xun, Chong; Wang, Shouyu; Lv, Decheng

    2016-01-01

    Recent studies regarding regenerative medicine have focused on bone marrow mesenchymal stem cells (BMSCs), which have the potential to undergo neural differentiation, and may be transfected with specific genes. BMSCs can differentiate into neuron‑like cells in certain neurotropic circumstances in vitro. Basic fibroblast growth factor (bFGF) and nerve growth factor (NGF) are often used to induce neural differentiation in BMSCs in vitro. However, previous studies regarding their combined actions are insufficient. The present study is the first, to the best of our knowledge, to thoroughly assess the enhancement of neural differentiation of BMSCs following transfection with bFGF and NGF. Sprague‑Dawley (SD) rat BMSCs were separated through whole bone marrow adherence, and were then passaged to the third generation. The cells were subsequently divided into five groups: The control group, which consisted of untransfected BMSCs; the plv‑blank‑transfected BMSCs group; the plv‑bFGF‑transfected BMSCs group; the plv‑NGF‑transfected BMSCs group; and the plv‑NGF‑bFGF co‑transfected BMSCs group. Cell neural differentiation was characterized in terms of stem cell molecular expression, and the neuronal morphology and expression of neural‑like molecules was detected in each of the groups. A total of 72 h post‑transfection, the expression levels of neuron‑specific enolase, glial fibrillary acidic protein, and nestin protein, were higher in the co‑transfected group, as compared with the other groups, the expression levels of β‑tubulin III were also increased in the co‑transfected cells, thus suggesting the maturation of differentiated neuron‑like cells. Furthermore, higher neuronal proliferation was observed in the co‑transfected group, as compared with the other groups at passages 2, 4, 6 and 8. Western blotting demonstrated that the transfected groups exhibited a simultaneous increase in phosphorylation of the AKT and extracellular signal‑regulated

  7. Use of Natural Neural Scaffolds Consisting of Engineered Vascular Endothelial Growth Factor Immobilized on Ordered Collagen Fibers Filled in a Collagen Tube for Peripheral Nerve Regeneration in Rats

    Directory of Open Access Journals (Sweden)

    Fukai Ma

    2014-10-01

    Full Text Available The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.

  8. Use of natural neural scaffolds consisting of engineered vascular endothelial growth factor immobilized on ordered collagen fibers filled in a collagen tube for peripheral nerve regeneration in rats.

    Science.gov (United States)

    Ma, Fukai; Xiao, Zhifeng; Meng, Danqing; Hou, Xianglin; Zhu, Jianhong; Dai, Jianwu; Xu, Ruxiang

    2014-10-15

    The search for effective strategies for peripheral nerve regeneration has attracted much attention in recent years. In this study, ordered collagen fibers were used as intraluminal fibers after nerve injury in rats. Vascular endothelial growth factor (VEGF) plays an important role in nerve regeneration, but its very fast initial burst of activity within a short time has largely limited its clinical use. For the stable binding of VEGF to ordered collagen fibers, we fused a collagen-binding domain (CBD) to VEGF through recombinant DNA technology. Then, we filled the ordered collagen fibers-CBD-VEGF targeting delivery system in a collagen tube to construct natural neural scaffolds, which were then used to bridge transected nerve stumps in a rat sciatic nerve transection model. After transplantation, the natural neural scaffolds showed minimal foreign body reactions and good integration into the host tissue. Oriented collagen fibers in the collagen tube could guide regenerating axons in an oriented manner to the distal, degenerating nerve segment, maximizing the chance of target reinnervation. Functional and histological analyses indicated that the recovery of nerve function in the natural neural scaffolds-treated group was superior to the other grafted groups. The guiding of oriented axonal regeneration and effective delivery systems surmounting the otherwise rapid and short-lived diffusion of growth factors in body fluids are two important strategies in promoting peripheral nerve regeneration. The natural neural scaffolds described take advantage of these two aspects and may produce synergistic effects. These properties qualified the artificial nerve conduits as a putative candidate system for the fabrication of peripheral nerve reconstruction devices.

  9. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Bryant, Susan V; Gardiner, David M

    2012-06-15

    The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration.

  10. The role of cAMP in nerve growth factor-promoted neurite outgrowth in PC12 cells

    OpenAIRE

    1986-01-01

    Nerve growth factor (NGF)-mediated neurite outgrowth in rat pheochromocytoma PC12 cells has been described to be synergistically potentiated by the simultaneous addition of dibutyryl cAMP. To elucidate further the role of cAMP in NGF-induced neurite outgrowth we have used the adenylate cyclase activator forskolin, cAMP, and a set of chemically modified cAMP analogues, including the adenosine cyclic 3',5'-phosphorothioates (cAMPS) (Rp)-cAMPS and (Sp)-cAMPS. These diastereomers have differentia...

  11. Green Tea Polyphenols Potentiate the Action of Nerve Growth Factor to Induce Neuritogenesis: Possible Role of Reactive Oxygen Species

    OpenAIRE

    Gundimeda, Usha; McNeill, Thomas H.; Schiffman, Jason E.; Hinton, David R.; Gopalakrishna, Rayudu

    2010-01-01

    Exogenously administered nerve growth factor (NGF) repairs injured axons, but it does not cross the blood-brain barrier. Thus, agents that could potentiate the neuritogenic ability of endogenous NGF would be of great utility in treating neurological injuries. Using the PC12 cell model, here we show that unfractionated green tea polyphenols (GTPP) at low concentrations (0.1 μg/ml) potentiate the ability of low concentrations of NGF (2 ng/ml) to induce neuritogenesis at a level comparable to th...

  12. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors

    OpenAIRE

    Fang Zeng; Zicong Li; Qingchun Zhu; Rui Dong; Chengcheng Zhao; Guoling Li; Guo Li; Wenchao Gao; Gelong Jiang; Enqin Zheng; Gengyuan Cai; Stefan Moisyadi; Johann Urschitz; Huaqiang Yang; Dewu Liu

    2017-01-01

    The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μ...

  13. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer

    DEFF Research Database (Denmark)

    Fjord-Larsen, L; Kusk, Poul Henrik; Emerich, D F

    2012-01-01

    Nerve growth factor (NGF) is a potential therapeutic agent for Alzheimer's disease (AD) as it has positive effects on the basal forebrain cholinergic neurons whose degeneration correlates with the cognitive decline in AD. We have previously described an encapsulated cell biodelivery device, NsG0202......, capable of local delivery of NGF by a genetically modified human cell line, NGC-0295. The NsG0202 devices have shown promising safety and therapeutic results in a small phase 1b clinical study. However, results also show that the NGF dose could advantageously be increased. We have used the sleeping beauty...

  14. The neglected role of insulin-like growth factors in the maternal circulation regulating fetal growth.

    Science.gov (United States)

    Sferruzzi-Perri, A N; Owens, J A; Pringle, K G; Roberts, C T

    2011-01-01

    Maternal insulin-like growth factors (IGFs) play a pivotal role in modulating fetal growth via their actions on both the mother and the placenta. Circulating IGFs influence maternal tissue growth and metabolism, thereby regulating nutrient availability for the growth of the conceptus. Maternal IGFs also regulate placental morphogenesis, substrate transport and hormone secretion, all of which influence fetal growth either via indirect effects on maternal substrate availability, or through direct effects on the placenta and its capacity to supply nutrients to the fetus. The extent to which IGFs influence the mother and/or placenta are dependent on the species and maternal factors, including age and nutrition. As altered fetal growth is associated with increased perinatal morbidity and mortality and a greater risk of developing degenerative diseases in adult life, understanding the role of maternal IGFs during pregnancy is essential in order to identify mechanisms underlying altered fetal growth and offspring programming.

  15. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    Directory of Open Access Journals (Sweden)

    Lu Li

    Full Text Available Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM. We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  16. Catecholamines promote Actinobacillus pleuropneumoniae growth by regulating iron metabolism.

    Science.gov (United States)

    Li, Lu; Chen, Zhaohui; Bei, Weicheng; Su, Zhipeng; Huang, Qi; Zhang, Liang; Chen, Huanchun; Zhou, Rui

    2015-01-01

    Catecholamines are host stress hormones that can induce the growth of many bacteria by facilitating iron utilization and/or regulate the expression of virulence genes through specific hormone receptors. Whether these two responsive pathways are interconnected is unknown. In our previous study, it was found that catecholamines can regulate the expression of a great number of genes of Actinobacillus pleuropneumoniae, an important swine respiratory pathogen. However, bacterial growth was not affected by catecholamines in rich medium. In this study, it was discovered that catecholamines affected A. pleuropneumoniae growth in chemically defined medium (CDM). We found that serum inhibited A. pleuropneumoniae growth in CDM, while epinephrine, norepinephrine and dopamine promoted A. pleuropneumoniae growth in the CDM containing serum. The known bacterial hormone receptor QseC didn't play roles in this process. Ion-supplementation and transcriptome analysis indicated that serum addition resulted in iron-restricted conditions which were alleviated by the addition of catecholamines. Transferrin, one of the components in serum, inhibited the growth of A. pleuropneumoniae in CDM, an effect reversed by addition of catecholamines in a TonB2-dependent manner. Our data demonstrate that catecholamines promote A. pleuropneumoniae growth by regulating iron-acquisition and metabolism, which is independent of the adrenergic receptor QseC.

  17. Regulation of Intracellular Structural Tension by Talin in the Axon Growth and Regeneration.

    Science.gov (United States)

    Dingyu, Wang; Fanjie, Meng; Zhengzheng, Ding; Baosheng, Huang; Chao, Yang; Yi, Pan; Huiwen, Wu; Jun, Guo; Gang, Hu

    2016-09-01

    Intracellular tension is the most important characteristic of neuron polarization as well as the growth and regeneration of axons, which can be generated by motor proteins and conducted along the cytoskeleton. To better understand this process, we created Förster resonance energy transfer (FRET)-based tension probes that can be incorporated into microfilaments to provide a real-time measurement of forces in neuron cytoskeletons. We found that our probe could be used to assess the structural tension of neuron polarity. Nerve growth factor (NGF) upregulated structural forces, whereas the glial-scar inhibitors chondroitin sulfate proteoglycan (CSPG) and aggrecan weakened such forces. Notably, the tension across axons was distributed uniformly and remarkably stronger than that in the cell body in NGF-stimulated neurons. The mechanosensors talin/vinculin could antagonize the effect of glial-scar inhibitors via structural forces. However, E-cadherin was closely associated with glial-scar inhibitor-induced downregulation of structural forces. Talin/vinculin was involved in the negative regulation of E-cadherin transcription through the nuclear factor-kappa B pathway. Collectively, this study clarified the mechanism underlying intracellular tension in the growth and regeneration of axons which, conversely, can be regulated by talin and E-cadherin.

  18. Effects of New Plant Growth Regulators on Growth and Quality in Potato

    Directory of Open Access Journals (Sweden)

    Chen Weiyan

    2015-04-01

    Full Text Available This experiment aimed to explore the effects of new plant growth regulators on the growth and quality of potato, we conduct potato tubers with different concentrations of the regulators and cultivated in the seedling pot, with water as the control treatment. The results showed that sorbic amide (5%, sorbic amide quaternary ammonium salt (5%, Cinnamamide (5%, betaine Cinnamamide (5%, naphthalene dicarboxamide (5%, betaine naphthalenedicarboxamide (5% these 6 new regulators have good activity in improving and enhancing the content of chlorophyll, soluble protein, soluble sugar and free amino acids with 400 times dilution and 800 times dilution on potato seedling. At the same time, we compared the changes of the physiological indexes in different periods. As can be seen from the experiment, these 6 compounds have a strong role in promoting growth and improving the quality of the potato so that they can be called plant growth regulators.

  19. Expression profiling and Ingenuity biological function analyses of interleukin-6- versus nerve growth factor-stimulated PC12 cells

    Directory of Open Access Journals (Sweden)

    Dimitriades-Schmutz Beatrice

    2009-02-01

    Full Text Available Abstract Background The major goal of the study was to compare the genetic programs utilized by the neuropoietic cytokine Interleukin-6 (IL-6 and the neurotrophin (NT Nerve Growth Factor (NGF for neuronal differentiation. Results The designer cytokine Hyper-IL-6 in which IL-6 is covalently linked to its soluble receptor s-IL-6R as well as NGF were used to stimulate PC12 cells for 24 hours. Changes in gene expression levels were monitored using Affymetrix GeneChip technology. We found different expression for 130 genes in IL-6- and 102 genes in NGF-treated PC12 cells as compared to unstimulated controls. The gene set shared by both stimuli comprises only 16 genes. A key step is upregulation of growth factors and functionally related external molecules known to play important roles in neuronal differentiation. In particular, IL-6 enhances gene expression of regenerating islet-derived 3 alpha (REG3A; 1084-fold, regenerating islet-derived 3 beta (REG3B/PAPI; 672-fold, growth differentiation factor 15 (GDF15; 80-fold, platelet-derived growth factor alpha (PDGFA; 69-fold, growth hormone releasing hormone (GHRH; 30-fold, adenylate cyclase activating polypeptide (PACAP; 20-fold and hepatocyte growth factor (HGF; 5-fold. NGF recruits GDF15 (131-fold, transforming growth factor beta 1 (TGFB1; 101-fold and brain-derived neurotrophic factor (BDNF; 89-fold. Both stimuli activate growth-associated protein 43 (GAP-43 indicating that PC12 cells undergo substantial neuronal differentiation. Moreover, IL-6 activates the transcription factors retinoic acid receptor alpha (RARA; 20-fold and early growth response 1 (Egr1/Zif268; 3-fold known to play key roles in neuronal differentiation. Ingenuity biological function analysis revealed that completely different repertoires of molecules are recruited to exert the same biological functions in neuronal differentiation. Major sub-categories include cellular growth and differentiation, cell migration, chemotaxis, cell

  20. Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies.

    OpenAIRE

    Schwartz, M; Spirman, N

    1982-01-01

    The involvement of gangliosides in processes related to nerve regeneration and sprouting has been demonstrated recently. The type of interaction by which gangliosides may influence neuronal sprouting was investigated in the present work. Affinity-purified rabbit anti-GM1 antibodies were found to block the sprouting from dorsal root ganglia (DRG) of chicken embryo induced by nerve growth factor (NGF). Only a moderately inhibitory effect was produced by antibodies directed to GM2, suggesting a ...

  1. Nerve Growth Factor Increases mRNA Levels for the Prion Protein and the β -amyloid Protein Precursor in Developing Hamster Brain

    Science.gov (United States)

    Mobley, William C.; Neve, Rachael L.; Prusiner, Stanley B.; McKinley, Michael P.

    1988-12-01

    Deposition of amyloid filaments serves as a pathologic hallmark for some neurodegenerative disorders. The prion protein (PrP) is found in amyloid of animals with scrapie and humans with Creutzfeldt-Jakob disease; the β protein is present in amyloid deposits in Alzheimer disease and Down syndrome patients. These two proteins are derived from precursors that in the brain are expressed primarily in neurons and are membrane bound. We found that gene expression for PrP and the β -protein precursor (β -PP) is regulated in developing hamster brain. Specific brain regions showed distinct patterns of ontogenesis for PrP and β -PP mRNAs. The increases in PrP and β -PP mRNAs in developing basal forebrain coincided with an increase in choline acetyltransferase activity, raising the possibility that these markers might be coordinately controlled in cholinergic neurons and regulated by nerve growth factor (NGF). Injections of NGF into the brains of neonatal hamsters increased both PrP and β -PP mRNA levels. Increased PrP and β -PP mRNA levels induced by NGF were confined to regions that contain NGF-responsive cholinergic neurons and were accompanied by elevations in choline acetyltransferase. It remains to be established whether or not exogenous NGF acts to increase PrP and β -PP gene expression selectively in forebrain cholinergic neurons in the developing hamster and endogenous NGF regulates expression of these genes.

  2. The Growth Hormone Secretagogue Receptor: Its Intracellular Signaling and Regulation

    Directory of Open Access Journals (Sweden)

    Yue Yin

    2014-03-01

    Full Text Available The growth hormone secretagogue receptor (GHSR, also known as the ghrelin receptor, is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase of food intake and body weight, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function. Dependent on the tissues and cells, activation of GHSR may trigger a diversity of signaling mechanisms and subsequent distinct physiological responses. Distinct regulation of GHSR occurs at levels of transcription, receptor interaction and internalization. Here we review the current understanding on the intracellular signaling pathways of GHSR and its modulation. An overview of the molecular structure of GHSR is presented first, followed by the discussion on its signaling mechanisms. Finally, potential mechanisms regulating GHSR are reviewed.

  3. Beclin 1 regulates growth factor receptor signaling in breast cancer.

    Science.gov (United States)

    Rohatgi, R A; Janusis, J; Leonard, D; Bellvé, K D; Fogarty, K E; Baehrecke, E H; Corvera, S; Shaw, L M

    2015-10-16

    Beclin 1 is a haploinsufficient tumor suppressor that is decreased in many human tumors. The function of beclin 1 in cancer has been attributed primarily to its role in the degradative process of macroautophagy. However, beclin 1 is a core component of the vacuolar protein sorting 34 (Vps34)/class III phosphatidylinositoI-3 kinase (PI3KC3) and Vps15/p150 complex that regulates multiple membrane-trafficking events. In the current study, we describe an alternative mechanism of action for beclin 1 in breast cancer involving its control of growth factor receptor signaling. We identify a specific stage of early endosome maturation that is regulated by beclin 1, the transition of APPL1-containing phosphatidyIinositol 3-phosphate-negative (PI3P(-)) endosomes to PI3P(+) endosomes. Beclin 1 regulates PI3P production in response to growth factor stimulation to control the residency time of growth factor receptors in the PI3P(-)/APPL(+)-signaling-competent compartment. As a result, suppression of BECN1 sustains growth factor-stimulated AKT and ERK activation resulting in increased breast carcinoma cell invasion. In human breast tumors, beclin 1 expression is inversely correlated with AKT and ERK phosphorylation. Our data identify a novel role for beclin 1 in regulating growth factor signaling and reveal a mechanism by which loss of beclin 1 expression would enhance breast cancer progression.

  4. Exogenous nerve growth factor supplementation elevates myocardial immunoreactivity and attenuates cardiac remodeling in pressure-overload rats

    Institute of Scientific and Technical Information of China (English)

    Bing He; and Yuming Li; Fan Ye; Xin Zhou; He Li; Xiaoqing Xun; Xiaoqing Ma; Xudong Liu; Zhihong Wang; Pengxiao Xu

    2012-01-01

    It is postulated that supplementation of exogenous nerve growth factor (NGF) might mediate improvement of the cardiac sympathetic nerve function in heart failure (HF).Local intramuscular injection of NGF near the cardiac sympathetic ganglia could influence the innervation pattern,norepinephrine transporter (NET) gene expression,and improve the cardiac remodeling in experimental HF animals.In this study,we injected NGF into the scalenus medius muscles of Sprague-Dawley rats with abdominal aortic constriction (AC).The nerve innervated pattern,left ventricular morphology,and function following injection in rats with AC were investigated respectively by immunohistochemistry and echocardiography.Levels of mRNA expression of NET,growth associated protein 43 (GAP 43),NGF and its receptors TrkA and p75NTR,and brain natriuretic peptide (BNP) were measured by realtime polymerase chain reaction.The results showed that myocardial NGF mRNA levels were comparable in rats with AC.Short-term supplementation of exogenous NGF raised the myocardial NGF immunoreactivity,but did not cause hyperinnervation and NET mRNA upregulation in the AC rats.Furthermore,myocardial TrkA mRNA was found to be remarkably decreased and p75NTR mRNA was increased.Myocardial TrkA downregulation may play a beneficial effect for avoiding the hyperinnervation,and it is reasonable to postulate that p75NTR can function as an NGF receptor in the absence of TrkA.Interestingly,local NGF administration into the neck muscles near the ganglia could attenuate cardiac remodeling and downregulate BNP mRNA.These results suggest that exogenous NGF can reach the target tissue along the axons anterogradely,and improve the cardiac remodeling.

  5. Effects of neonatal exposure to anti-nerve growth factor on the number and size distribution of trigeminal neurones projecting to the molar dental pulp in rats.

    Science.gov (United States)

    Qian, X B; Naftel, J P

    1996-04-01

    The first aim of the present study was to determine whether depletion of endogenous nerve growth factor (NGF) during early postnatal development results in a long-term deficit in the number of trigeminal ganglion cells and axons projecting to the molar pulp. The second aim was to identify selectivity of the effects of NGF deprivation for any specific size group among pulp neurones. Newborn Sprague-Dawley rats were given subcutaneous injections of either rabbit anti-mouse-NGF serum or non-immune (control) rabbit serum for a period of 1 month. At age 4 months, Fluoro-gold (FG) was applied to the pulp chamber of the right maxillary first molar. One week later the animals were perfusion-fixed, and the trigeminal ganglia were removed and serially sectioned with a cryostat. Labelled neurones were seen only in the trigeminal ganglia ipsilateral to the injected teeth. The area of every labelled cell profile was measured, and from these data, estimates of the true number and size distribution of FG-labelled cells were obtained by recursive translation. Ganglia of control animals had a mean of 197 labelled neurones, all in the maxillary division, and most of the somas were of medium or large diameter. NGF-deprived animals had significantly fewer (mean = 145) FG-labelled cells in the trigeminal ganglion ipsilateral to the injected tooth. Neurones with somas of less than 30 microns dia were most strikingly subnormal in anti-NGF treated animals (64% of controls). In accordance with the greater susceptibility of small neurones to anti-NGF exposure, deficits in apical nerve fibres of the mandibular first molar were greater in degree and duration for unmyelinated axons than for myelinated axons. It is concluded that NGF is an important mediator in regulation of postnatal development of the sensory innervation of the dental pulp. The results also indicate that postnatal development of at least one class of larger pulpal afferent neurones is regulated by factors other than NGF.

  6. Effect on peripheral nerve regeneration by transgene in vivo with human insulin-like growth factor-1

    Institute of Scientific and Technical Information of China (English)

    Jiaxiang Gu; Yufa Wang; Shanhe Dai

    2006-01-01

    BACKGROUND: Human insulin-like growth factor (hIGF-1) has been successful in treating peripheral nerve injury, but it is still unclear whether hlGF-1 after transgene in vivo has the effect on promoting the regeneration of peripheral nerve. OBJECTIVE: To observe the effect of hlGF-1 on the regeneration of peripheral nerve by transgene in vivo with electrophysiology, histological morphology and ultromicro morphology. DESIGN: A univariate design. SETTINGS: Jilin Institute of Surgery, China-Japan Friendship Hospital Affiliated to Jilin University; School of Basic Medical Sciences, Jilin University. MATERIALS: Thirty male adult Wistar rats of grade Ⅱ, weighing 200-250 g, were provided by the Animal Experimental Center of Jilin University [certification number: SCXK-(Ji)20030001]. The rats were raised in the environment at the temperature of 25 ℃ and humidity of 70%. All the rats were randomly divided into hlGF-1-treated group, treatment control group and blank control group, 10 rats in each group. Positive liposomes (mass concentration of 2 g/L) and pcDNA3.1 (mass concentration of 1 g/L) were purchased from Beijing Yuanpinghao Company; pcDNAhlGF-1 (mass concentration of 1 g/L) was provided by Dr. Shen from the School of Public Health of Jilin University. The liposomes were mixed with plasmids with the mass ratio of 1.5 to 10.Operative microscope was made by Jiangsu Zhenjiang Microsurgical Instrument Factory; EMB-5304K electromyogram (EMG) evoked potential meter by Nihon Kohden Corporation. HPIAS-1 000 high-acuity color pathological imaging analytical system (Japan) and JEM-1200EX transmission electron microscope (Japan) were also used. METHODS: The experiments were carried out in Jilin Institute of Surgery from April to June in 2004. ① All the rats were anesthetized, and the right sciatic nerve was exposed, and it was clipped with a clip at 5 mm below the piriform muscle for 3 times, 10 s for each time. The pressed width was 3 mm, and formed as membrane under

  7. Effect of Shensong Yangxin on the Progression of Paroxysmal Atrial Fibrillation is Correlated with Regulation of Autonomic Nerve Activity

    Science.gov (United States)

    Zhao, Hong-Yi; Zhang, Shu-Di; Zhang, Kai; Wang, Xi; Zhao, Qing-Yan; Zhang, Shu-Juan; Dai, Zi-Xuan; Qian, Yong-Sheng; Zhang, You-Jing; Wei, Hao-Tian; Tang, Yan-Hong; Huang, Cong-Xin

    2017-01-01

    Background: Shensong Yangxin (SSYX), a traditional Chinese herbal medicine, has long been used clinically to treat arrhythmias in China. However, the mechanism of SSYX on atrial fibrillation (AF) is unknown. In this study, we tested the hypothesis that the effect of SSYX on the progression of paroxysmal AF is correlated with the regulation of autonomic nerve activity. Methods: Eighteen mongrel dogs were randomly divided into control group (n = 6), pacing group (n = 6), and pacing + SSYX group (n = 6). The control group was implanted with pacemakers without pacing; the pacing group was implanted with pacemakers with long-term intermittent atrial pacing; the pacing + SSYX group underwent long-term intermittent atrial pacing and SSYX oral administration. Results: Compared to the pacing group, the parameters of heart rate variability were lower after 8 weeks in the pacing + SSYX group (low-frequency [LF] component: 20.85 ± 3.14 vs. 15.3 ± 1.89 ms2, P = 0.004; LF component/high-frequency component: 1.34 ± 0.33 vs. 0.77 ± 0.15, P dogs in the pacing group had more episodes and longer durations of AF than that in the pacing + SSYX group. SSYX markedly inhibited the increase in sympathetic nerves and upregulation of tumor necrosis factor-alpha and interleukin-6 expression in the pacing + SSYX group. Furthermore, SSYX suppressed the decrease of acetylcholine and α7 nicotinic acetylcholine receptor protein induced by long-term intermittent atrial pacing. Conclusions: SSYX substantially prevents atrial electrical remodeling and the progression of AF. These effects of SSYX may have association with regulating the imbalance of autonomic nerve activity and the cholinergic anti-inflammatory pathway. PMID:28091409

  8. The roles of mechanical compression and chemical irritation in regulating spinal neuronal signaling in painful cervical nerve root injury.

    Science.gov (United States)

    Zhang, Sijia; Nicholson, Kristen J; Smith, Jenell R; Gilliland, Taylor M; Syré, Peter P; Winkelstein, Beth A

    2013-11-01

    Both traumatic and slow-onset disc herniation can directly compress and/or chemically irritate cervical nerve roots, and both types of root injury elicit pain in animal models of radiculopathy. This study investigated the relative contributions of mechanical compression and chemical irritation of the nerve root to spinal regulation of neuronal activity using several outcomes. Modifications of two proteins known to regulate neurotransmission in the spinal cord, the neuropeptide calcitonin gene-related peptide (CGRP) and glutamate transporter 1 (GLT-1), were assessed in a rat model after painful cervical nerve root injuries using a mechanical compression, chemical irritation or their combination of injury. Only injuries with compression induced sustained behavioral hypersensitivity (p≤0.05) for two weeks and significant decreases (p<0.037) in CGRP and GLT-1 immunoreactivity to nearly half that of sham levels in the superficial dorsal horn. Because modification of spinal CGRP and GLT-1 is associated with enhanced excitatory signaling in the spinal cord, a second study evaluated the electrophysiological properties of neurons in the superficial and deeper dorsal horn at day 7 after a painful root compression. The evoked firing rate was significantly increased (p=0.045) after compression and only in the deeper lamina. The painful compression also induced a significant (p=0.002) shift in the percentage of neurons in the superficial lamina classified as low- threshold mechanoreceptive (sham 38%; compression 10%) to those classified as wide dynamic range neurons (sham 43%; compression 74%). Together, these studies highlight mechanical compression as a key modulator of spinal neuronal signaling in the context of radicular injury and pain.

  9. Development of functional analysis system for nerve growth factor of gene using {gamma}-ray induced fish mutants

    Energy Technology Data Exchange (ETDEWEB)

    Araki, Kazuo; Nagoya, Hiroyuki; Okamoto, Hiroyuki [National Research Inst. of Agriculture, Mie (Japan)

    2000-02-01

    Development of an effective method to produce {gamma}-ray induced mutants was attempted using medaka, a killifish of which development has been analyzed in detail. An experimental system to make functional analysis for the gene of nerve growth factor was constructed using {gamma} ray -induced mutants and the mechanism to induce its morphogenesis and the nerve growth common to invertebrates was investigated. Some mutants with abnormalities in the chorda dorsalis formation were constructed by exposure to {gamma} ray. Thus, the expression of HNF3{beta} gene which is likely to be involved in the formation of chorda dorsalis was investigated and it was demonstrated that this gene is not expressed in the end region of chorda dorsalis and its succeeding mesoderm. Moreover, the genes expressed at the end region of wild type killifish was isolated by differential hybridization for DNA library that was constructed based on cDNA for the mRNA produced in the range. Twenty genes homologous to the previously reported genes and 51 not homologous ones were isolated. These genes would be utilized for the investigation of their expression. (M.N.)

  10. Decreased expression of β-nerve growth factor correlated with histological changes in a cryptorchidism rat model

    Institute of Scientific and Technical Information of China (English)

    XIAN Hua; HUANG Jian-fei; XIAN Yun; JIANG Chun-yi; NIE Xiao; WANG Xu-dong; CHENG Hong-xia; HE Jiang-hong; WANG Yong-jun; ZHOU Yan

    2012-01-01

    Background Nerve growth factor (NGF) is well-known for its important role in the development and maintenance of the nervous system.Along with its neurotrophic role,NGF has been detected in the testis of mouse,rat and human,suggesting an additional non-neurotrophic effect in the male reproductive system.The expression of β-NGF in the undescended testes (cryptorchidism) has not been detected at present.The aim of this study was to evaluate the expression of β-nerve growth factor mRNA and protein in experimental cryptorchidism.Methods A unilateral mechanical cryptorchidism model in the Sprague-Dawley rat was established and the expression of β-NGF with histologic changes in experimental cryptorchidism were investigated using one step quantitative real-time reverse transcription-polymerase chain reaction,in situ hybridization histochemistry,immunofluorescence and hematoxylin-eosin staining.Results The expression of β-NGF mRNA and protein were both significantly decreased in the development of unmarred testis and cryptorchidism-induced testis,and the decrease of β-NGF in cryptorchidism-induced testis was far greater than that in uninjured testis.Conclusion From this investigation,we confirmed a lower expression of β-NGF in undescended testes than in the development of testis.

  11. Salvianolic Acid A Protects the Peripheral Nerve Function in Diabetic Rats through Regulation of the AMPK-PGC1α-Sirt3 Axis

    Directory of Open Access Journals (Sweden)

    Guanhua Du

    2012-09-01

    Full Text Available Salvianolic acid A (SalA is one of the main efficacious, water-soluble constituents of Salvia miltiorrhiza Bunge. This study investigated the protective effects of SalA on peripheral nerve in diabetic rats. Administration of SalA (0.3, 1 and 3 mg/kg, ig was started from the 5th week after strepotozotocin (STZ60 mg/kg intraperitoneal injection and continued for 8 weeks. Paw withdrawal mechanical threshold (PWMT and motor nerve conduction velocity (MNCV were used to assess peripheral nerve function. The western blot methods were employed to test the expression levels of serine-threonine liver kinase B1 (LKB1, AMP-activated protein kinase (AMPK, peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1α, silent information regulator protein3 (sirtuin 3/Sirt3 and neuronal nitric oxide synthase (nNOS in sciatic nerve. Results showed that SalA administration could increase PWMT and MNCV in diabetic rats; reduce the deterioration of sciatic nerve pathology; increase AMPK phosphorylation level, up-regulate PGC-1α, Sirt3 and nNOS expression, but had no influence on LKB1. These results suggest that SalA has protective effects against diabetic neuropathy. The beneficial effects of SalA on peripheral nerve function in diabetic rats might be attributed to improvements in glucose metabolism through regulation of the AMPK-PGC1α-Sirt3 axis.

  12. Plasma Levels of Monocyte Chemotactic Protein 3 and Beta-Nerve Growth Factor Increase with Amnestic Mild Cognitive Impairment

    Institute of Scientific and Technical Information of China (English)

    Kang Soo Lee; Ji Hyung Chung; Kyung Hye Lee; Min-Jeong Shin; Byoung Hoon Oh; Soo Hyung Lee; Chang Hyung Hong

    2009-01-01

    A number of studies have investigated peripheral inflammatory indices, including plasma cytokines and related molecules according to subtypes of dementia, but not in mild cognitive impairment (MCI). In this study, we used multiplex cytokine assay to assess the plasma levels of 22 cytokines in patients with MCI subtyped as amnestic and non-amnestic, according to cognitive features. When comparing the levels of plasma growth factors, chemokines and cytokines, plasma levels of monocyte chemotactic protein 3 (MCP-3), and beta-nerve growth factor (β-NGF) in these two groups, they were found to be significantly higher in amnestic MCI patients than in non-amnestic MCI patients, after adjusting for age and gender. This suggests that plasma MCP-3 and β-NGF may be useful in differentiating subtypes of MCI. Cellular & Molecular Immunology.

  13. Substrate and nutrient limitation regulating microbial growth in soil

    Science.gov (United States)

    Bååth, Erland

    2015-04-01

    Microbial activity and growth in soil is regulated by several abiotic factors, including temperature, moisture and pH as the most important ones. At the same time nutrient conditions and substrate availability will also determine microbial growth. Amount of substrate will not only affect overall microbial growth, but also affect the balance of fungal and bacterial growth. The type of substrate will also affect the latter. Furthermore, according to Liebig law of limiting factors, we would expect one nutrient to be the main limiting one for microbial growth in soil. When this nutrient is added, the initial second liming factor will become the main one, adding complexity to the microbial response after adding different substrates. I will initially describe different ways of determining limiting factors for bacterial growth in soil, especially a rapid method estimating bacterial growth, using the leucine incorporation technique, after adding C (as glucose), N (as ammonium nitrate) and P (as phosphate). Scenarios of different limitations will be covered, with the bacterial growth response compared with fungal growth and total activity (respiration). The "degree of limitation", as well as the main limiting nutrient, can be altered by adding substrate of different stoichiometric composition. However, the organism group responding after alleviating the nutrient limitation can differ depending on the type of substrate added. There will also be situations, where fungi and bacteria appear to be limited by different nutrients. Finally, I will describe interactions between abiotic factors and the response of the soil microbiota to alleviation of limiting factors.

  14. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  15. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-06-03

    Jun 3, 2009 ... Effect of plant growth regulators on callus induction and plant ... MS media supplemented with different levels of BA and TDZ were employed for shoot ... acre many times that of any grain crop (Burton, 1969) and are used in a ... plant regeneration from explants require the presence of .... light green. 2.50 ± ...

  16. Effects of plant growth regulators on survival and recovery growth following cryopreservation.

    Science.gov (United States)

    Turner, S R; Touchell, D H; Senaratna, T; Bunn, E; Tan, B; Dixon, K W

    2001-01-01

    Studies on the effects of plant growth regulators (PGRs) on survival, recovery and post-recovery growth of shoot apices following cryopreservation are limited. In this study, the effects of plant growth regulators in both the culture phase and the recovery phase of cryostorage were examined for the rare plant species, Anigozanthos viridis ssp terraspectans Hopper. Survival of shoot apices was not correlated to cytokinin or auxin treatments administered in culture media prior to cryostorage. In recovery media, the plant growth regulators, kinetin, zeatin (cytokinins), IAA, (auxin) and GA3 were examined for their effect following cryopreservation. It was found that the application of a combination of cytokinin and 0.5 microM GA3 from day zero was the most appropriate for obtaining vigorously growing plantlets following LN immersion. This combination proved to be more effective than basal medium, zeatin or kinetin treatments.

  17. Novel mechanisms of growth hormone regulation: growth hormone-releasing peptides and ghrelin

    Directory of Open Access Journals (Sweden)

    A.-M.J. Lengyel

    2006-08-01

    Full Text Available Growth hormone secretion is classically modulated by two hypothalamic hormones, growth hormone-releasing hormone and somatostatin. A third pathway was proposed in the last decade, which involves the growth hormone secretagogues. Ghrelin is a novel acylated peptide which is produced mainly by the stomach. It is also synthesized in the hypothalamus and is present in several other tissues. This endogenous growth hormone secretagogue was discovered by reverse pharmacology when a group of synthetic growth hormone-releasing compounds was initially produced, leading to the isolation of an orphan receptor and, finally, to its endogenous ligand. Ghrelin binds to an active receptor to increase growth hormone release and food intake. It is still not known how hypothalamic and circulating ghrelin is involved in the control of growth hormone release. Endogenous ghrelin might act to amplify the basic pattern of growth hormone secretion, optimizing somatotroph responsiveness to growth hormone-releasing hormone. It may activate multiple interdependent intracellular pathways at the somatotroph, involving protein kinase C, protein kinase A and extracellular calcium systems. However, since ghrelin has a greater ability to release growth hormone in vivo, its main site of action is the hypothalamus. In the current review we summarize the available data on the: a discovery of this peptide, b mechanisms of action of growth hormone secretagogues and ghrelin and possible physiological role on growth hormone modulation, and c regulation of growth hormone release in man after intravenous administration of these peptides.

  18. Effects of plant growth regulators on the growth and lipid accumulation of Nannochloropsis oculata (droop) Hibberd

    Science.gov (United States)

    Trinh, Cam Tu; Tran, Thanh Huong; Bui, Trang Viet

    2017-09-01

    Nannochloropsis oculata cells were grown in f/2 modified medium of Chiu et al. (2009) supplemented with the plant growth regulators in different concentrations. Lipid accumulation of N. oculata cells was evaluated by using Nile Red dye and Fiji Image J with Analyze Particles. Indole-3-acetic acid (IAA) stimulated the increase of cell density in rapid growth phase (day 6) at high concentration (0.75 mg/L) and in slow growth phase (day 10) at lower concentration (0.50 mg/L). IAA, gibberellic acid (GA3) and zeatin increased content of chlorophyll a, in particular, in f/2 modified medium supplemented with 0.5 mg/L zeatin at the 10th day of culture. Roles of plant growth regulators in growth and lipid accumulation of N. oculata were discussed.

  19. Effects of the plant growth regulator, chlormequat, on mammalian fertility.

    Science.gov (United States)

    Sørensen, Martin T; Danielsen, Viggo

    2006-02-01

    This paper summarizes the consequences of exposure to chlormequat, a plant growth regulator, on reproduction in mammals. Plant growth regulators are chemicals used to manipulate plant growth, flowering and fruit yield. In grain crops, plant growth regulators are applied to promote sturdier growth and reduce the risk of lodging. Chlormequat is the most common plant growth regulator. Maximum residue limits of chlormequat in food products are 10 mg/kg in oat and pear, 3 mg/kg in wheat and rye, and 0.5 mg/kg in milk. In Denmark, results from experiments with pigs in the late 1980s showed sows that display impaired reproduction, mainly impaired oestrus, when fed grain from crop treated with chlormequat. Subsequently, the advisory body to the Danish pig industry recommended limiting the use of grain (maximum 30% of diet energy) from crop treated with chlormequat given to breeding stock due to the risk of reproduction problems. More recently, experiments have been conducted to evaluate the influence of chlormequat-treated wheat crop on reproductive function in male and female mice. These experiments showed that epididymal spermatozoa from mice on feed or water containing chlormequat had compromised fertilizing competence in vitro, while reproduction in female mice was not compromised. The estimated intake of chlormequat in the pig (0.0023 mg/kg bw/day) and the mouse (0.024 mg/kg bw/day) experiments was below the acceptable daily intake of 0.05 mg/kg bw/day. Reports from the industry do not show any effects at these low levels.

  20. Regulation of nerve-evoked contractions of rabbit vas deferens by acetylcholine.

    Science.gov (United States)

    Wallace, Audrey; Gabriel, Deborah; McHale, Noel G; Hollywood, Mark A; Thornbury, Keith D; Sergeant, Gerard P

    2015-09-01

    Stimulation of intramural nerves in the vas deferens of many species yields a classical biphasic contraction comprised of an initial fast component, mediated by P2X receptors and a second slower component, mediated by α1-adrenoceptors. It is also recognized that sympathetic nerve-mediated contractions of the vas deferens can be modulated by acetylcholine (Ach), however there is considerable disagreement in the literature regarding the precise contribution of cholinergic nerves to contraction of the vas deferens. In this study we examined the effect of cholinergic modulators on electric field stimulation (EFS)-evoked contractions of rabbit vas deferens and on cytosolic Ca(2+) levels in isolated vas deferens smooth muscle cells (VDSMC). The sustained component of EFS-evoked contractions was inhibited by atropine and by the selective M3R antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP). EFS-evoked contractions were potentiated by Ach, carbachol (Cch), and neostigmine. The sustained phase of the EFS-evoked contraction was inhibited by prazosin, an α1-adrenoceptor antagonist and guanethidine, an inhibitor of noradrenaline release, even in the continued presence of Ach, Cch or neostigmine. The soluble guanylate cyclase (sGC) inhibitor, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one enhanced the amplitude of EFS-evoked contractions and reduced the inhibitory effects of 4-DAMP. Isolated VDSMC displayed spontaneous Ca(2+) oscillations, but did not respond to Cch. However, the α1-adrenoceptor agonist, phenylephrine, evoked a Ca(2+) transient and contracted the cells. These data suggest that EFS-evoked contractions of the rabbit vas deferens are potentiated by activation of M3 receptors and reduced by activation of a sGC-dependent inhibitory pathway.

  1. A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity

    Science.gov (United States)

    Hilzendeger, Aline M.; Morgan, Donald A.; Brooks, Leonard; Dellsperger, David; Liu, Xuebo; Grobe, Justin L.; Rahmouni, Kamal; Sigmund, Curt D.

    2012-01-01

    The sympathetic nervous system, leptin, and renin-angiotensin system (RAS) have been implicated in obesity-associated hypertension. There is increasing evidence for the presence of both leptin and angiotensin II receptors in several key brain cardiovascular and metabolic control regions. We tested the hypothesis that the brain RAS plays a facilitatory role in the sympathetic nerve responses to leptin. In rats, intracerebroventricular (ICV) administration of losartan (5 μg) selectively inhibited increases in renal and brown adipose tissue (BAT) sympathetic nerve activity (SNA) produced by leptin (10 μg ICV) but did not reduce the SNA responses to corticotrophin-releasing factor (CRF) or the melanocortin receptor agonist MTII. In mice with deletion of angiotensin II type-1a receptors (AT1aR−/−), increases in renal and BAT SNA induced by leptin (2 μg ICV) were impaired whereas SNA responses to MTII were preserved. Decreases in food intake and body weight with ICV leptin did not differ in AT1aR−/− vs. AT1aR+/+ mice. ICV leptin in rats increased AT1aR and angiotensin-converting enzyme (ACE) mRNA in the subfornical organ and AT1aR mRNA in the arcuate nucleus, suggesting leptin-induced upregulation of the brain RAS in specific brain regions. To evaluate the role of de novo production of brain angiotensin II in SNA responses to leptin, we treated rats with captopril (12.5 μg ICV). Captopril attenuated leptin effects on renal and BAT SNA. In conclusion, these studies provide evidence that the brain RAS selectively facilitates renal and BAT sympathetic nerve responses to leptin while sparing effects on food intake. PMID:22610169

  2. Regulation of bile duct motility by vagus and sympathetic nerves in the pigeon.

    Directory of Open Access Journals (Sweden)

    Neya,Toshiaki

    1990-04-01

    Full Text Available Effects of stimulation of the vagus and sympathetic nerves on bile duct peristalses were studied in pigeons anesthetized with urethane. Vagus stimulation increased the frequency of peristalses. Atropine, hexamethonium and tetrodotoxin abolished this excitatory effect. After atropine, inhibition of peristalses sensitive to tetrodotoxin was produced. Stimulation of sympathetic area in the spinal cord inhibited peristalses. Propranolol converted this effect into an excitatory one, which was abolished by phentolamine. The results suggest that vagal and sympathetic innervations of the bile duct in pigeons are similar to those of the sphincter of Oddi in mammalian species.

  3. Bone marrow cells produce nerve growth factor and promote angiogenesis around transplanted islets

    Institute of Scientific and Technical Information of China (English)

    Naoaki; Sakata; Nathaniel; K; Chan; John; Chrisler; Andre; Obenaus; Eba; Hathout

    2010-01-01

    AIM:To clarify the mechanism by which bone marrow cells promote angiogenesis around transplanted islets.METHODS: Streptozotocin induced diabetic BALB/ c mice were transplanted syngeneically under the kidney capsule with the following: (1) 200 islets (islet group: n=12), (2) 1-5×106 bone marrow cells (bone marrow group: n=11), (3) 200 islets and 1-5×106 bone marrow cells (islet + bone marrow group: n= 13), or (4) no cells (sham group:n=5). All mice were evaluated for blood glucose, serum insulin, serum nerve...

  4. Effect of peripheral nerve on the neurite growth from retinal explants in culture

    Institute of Scientific and Technical Information of China (English)

    LiuLi; SoKwokfai

    1990-01-01

    The effect of peripheral nerve (PN) on neurite outgrowth from retinal explants of adult hamsters was examined.Cultures of retinal explants,and co-cultures of retinal explants and PN were performed using chick retinal basement memebrane (BM) as substrate.The presence of PN increases the number and length of neurite outgrowth.In addition,a high proportion of neurites situated close to PN tend to grow towards it.Since there was no contact between retinal explants and PN,we suggest that PN might secete diffusible substances to attract the neurites to grow towards it.

  5. The urokinase plasminogen activator receptor (UPAR) is preferentially induced by nerve growth factor in PC12 pheochromocytoma cells and is required for NGF-driven differentiation.

    Science.gov (United States)

    Farias-Eisner, R; Vician, L; Silver, A; Reddy, S; Rabbani, S A; Herschman, H R

    2000-01-01

    Nerve growth factor (NGF)-driven differentiation of PC12 pheochromocytoma cells is a well studied model used both to identify molecular, biochemical, and physiological correlates of neurotrophin-driven neuronal differentiation and to determine the causal nature of specific events in this differentiation process. Although epidermal growth factor (EGF) elicits many of the same early biochemical and molecular changes in PC12 cells observed in response to NGF, EGF does not induce molecular or morphological differentiation of PC12 cells. The identification of genes whose expression is differentially regulated by NGF versus EGF in PC12 cells has, therefore, been considered a source of potential insight into the molecular specificity of neurotrophin-driven neuronal differentiation. A "second generation" representational difference analysis procedure now identifies the urokinase plasminogen activator receptor (UPAR) as a gene that is much more extensively induced by NGF than by EGF in PC12 cells. Both an antisense oligonucleotide for the UPAR mRNA and an antibody directed against UPAR protein block NGF-induced morphological and biochemical differentiation of PC12 cells; NGF-induced UPAR expression is required for subsequent NGF-driven differentiation.

  6. Upregulated TLR3 Promotes Neuropathic Pain by Regulating Autophagy in Rat With L5 Spinal Nerve Ligation Model.

    Science.gov (United States)

    Chen, Weijia; Lu, Zhijun

    2016-12-21

    Microglia, rapidly activated following peripheral nerve injury (PNI), accumulate within the spinal cord and adopt inflammation that contributes to development and maintenance of neuropathic pain. Microglia express functional Toll-like receptors (TLRs), which play pivotal roles in regulating inflammatory processes. However, little is known about the role of TLR3 in regulating neuropathic pain after PNI. Here TLR3 expression and autophagy activation was assayed in dorsal root ganglions and in microglia following PNI by using realtime PCR, western blot and immunohistochemistry. The role of TLR3/autophagy signaling in regulating tactile allodynia was evaluated by assaying paw mechanical withdrawal threshold and cold allodynia after intrathecal administration of Poly (I:C) and 3-methyladenine (3-MA). We found that L5 spinal nerve ligation (SNL) induces the expression of TLR3 in dorsal root ganglions and in primary rat microglia at the mRNA and protein level. Meanwhile, L5 SNL results in an increased activation of autophagy, which contributes to microglial activation and subsequent inflammatory response. Intrathecal administration of Poly (I:C), a TLR3 agonist, significantly increases the activation of microglial autophagy, whereas TLR3 knockdown markedly inhibits L5 SNL-induced microglial autophagy. Poly (I:C) treatment promotes the expression of proinflammatory mediators, whereas 3-MA (a specific inhibitor of autophagy) suppresses Poly (I:C)-induced secretion of proinflammatory cytokines. Autophagy inhibition further inhibits TLR3-mediated mechanical and cold hypersensitivity following SNL. These results suggest that inhibition of TLR3/autophagy signaling contributes to alleviate neurophathic pain triggered by SNL.

  7. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  8. Regulation of intestinal mucosal growth by amino acids.

    Science.gov (United States)

    Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the

  9. A Link Between Nerve Growth Factor Metabolic Deregulation and Amyloid-β-Driven Inflammation in Down Syndrome.

    Science.gov (United States)

    Iulita, Maria Florencia; Caraci, Filippo; Cuello, Augusto Claudio

    2016-01-01

    In Alzheimer's disease and Down syndrome, cholinergic neurons of the basal forebrain progressively degenerate. This neurotransmitter system is the main source of acetylcholine to the cortex and hippocampus. In the mature and fully differentiated central nervous system, the phenotype of forebrain cholinergic neurons and their nerve terminals in cortex and hippocampus depend on the continuous endogenous supply of nerve growth factor (NGF). It has been recently demonstrated that NGF is secreted from cortical neurons in an activity-dependent manner as a precursor molecule, proNGF. Individuals with Alzheimer's disease and Down syndrome exhibit proNGF accumulation in cortex, yet cholinergic neurons become atrophic in both diseases, despite the apparent abundance of the NGF precursor. This review illustrates the recent evidence that NGF metabolism is affected both in Alzheimer's disease and in Down syndrome brains and also discusses a role for amyloid-β peptides and central nervous system inflammation in unleashing such deficits. It further considers the potential of the NGF metabolic pathway as a new pharmacological target to slow down the neurodegenerative process both in Alzheimer's disease and in individuals with Down syndrome.

  10. Redox-dependent regulation of epidermal growth factor receptor signaling

    Directory of Open Access Journals (Sweden)

    David E. Heppner

    2016-08-01

    Full Text Available Tyrosine phosphorylation-dependent cell signaling represents a unique feature of multicellular organisms, and is important in regulation of cell differentiation and specialized cell functions. Multicellular organisms also contain a diverse family of NADPH oxidases (NOXs that have been closely linked with tyrosine kinase-based cell signaling and regulate tyrosine phosphorylation via reversible oxidation of cysteine residues that are highly conserved within many proteins involved in this signaling pathway. An example of redox-regulated tyrosine kinase signaling involves the epidermal growth factor receptor (EGFR, a widely studied receptor system with diverse functions in normal cell biology as well as pathologies associated with oxidative stress such as cancer. The purpose of this Graphical Redox Review is to highlight recently emerged concepts with respect to NOX-dependent regulation of this important signaling pathway.

  11. Thyroid hormones regulate fibroblast growth factor receptor signaling during chondrogenesis.

    Science.gov (United States)

    Barnard, Joanna C; Williams, Allan J; Rabier, Bénédicte; Chassande, Olivier; Samarut, Jacques; Cheng, Sheue-Yann; Bassett, J H Duncan; Williams, Graham R

    2005-12-01

    Childhood hypothyroidism causes growth arrest with delayed ossification and growth-plate dysgenesis, whereas thyrotoxicosis accelerates ossification and growth. Thyroid hormone (T(3)) regulates chondrocyte proliferation and is essential for hypertrophic differentiation. Fibroblast growth factors (FGFs) are also important regulators of chondrocyte proliferation and differentiation, and activating mutations of FGF receptor-3 (FGFR3) cause achondroplasia. We investigated the hypothesis that T(3) regulates chondrogenesis via FGFR3 in ATDC5 cells, which undergo a defined program of chondrogenesis. ATDC5 cells expressed two FGFR1, four FGFR2, and one FGFR3 mRNA splice variants throughout chondrogenesis, and expression of each isoform was stimulated by T(3) during the first 6-12 d of culture, when T(3) inhibited proliferation by 50%. FGFR3 expression was also increased in cells treated with T(3) for 21 d, when T(3) induced an earlier onset of hypertrophic differentiation and collagen X expression. FGFR3 expression was reduced in growth plates from T(3) receptor alpha-null mice, which exhibit skeletal hypothyroidism, but was increased in T(3) receptor beta(PV/PV) mice, which display skeletal thyrotoxicosis. These findings indicate that FGFR3 is a T(3)-target gene in chondrocytes. In further experiments, T(3) enhanced FGF2 and FGF18 activation of the MAPK-signaling pathway but inhibited their activation of signal transducer and activator of transcription-1. FGF9 did not activate MAPK or signal transducer and activator of transcription-1 pathways in the absence or presence of T(3). Thus, T(3) exerted differing effects on FGFR activation during chondrogenesis depending on which FGF ligand stimulated the FGFR and which downstream signaling pathway was activated. These studies identify novel interactions between T(3) and FGFs that regulate chondrocyte proliferation and differentiation during chondrogenesis.

  12. Bacterial gene regulation in diauxic and non-diauxic growth.

    Science.gov (United States)

    Narang, Atul; Pilyugin, Sergei S

    2007-01-21

    When bacteria are grown in a batch culture containing a mixture of two growth-limiting substrates, they exhibit a rich spectrum of substrate consumption patterns including diauxic growth, simultaneous consumption, and bistable growth. In previous work, we showed that a minimal model accounting only for enzyme induction and dilution captures all the substrate consumption patterns [Narang, A., 1998a. The dynamical analogy between microbial growth on mixtures of substrates and population growth of competing species. Biotechnol. Bioeng. 59, 116-121, Narang, A., 2006. Comparitive analysis of some models of gene regulation in mixed-substrate microbial growth, J. Theor. Biol. 242, 489-501]. In this work, we construct the bifurcation diagram of the minimal model, which shows the substrate consumption pattern at any given set of parameter values. The bifurcation diagram explains several general properties of mixed-substrate growth. (1) In almost all the cases of diauxic growth, the "preferred" substrate is the one that, by itself, supports a higher specific growth rate. In the literature, this property is often attributed to the optimality of regulatory mechanisms. Here, we show that the minimal model, which accounts for induction and growth only, displays the property under fairly general conditions. This suggests that the higher growth rate of the preferred substrate is an intrinsic property of the induction and dilution kinetics. It can be explained mechanistically without appealing to optimality principles. (2) The model explains the phenotypes of various mutants containing lesions in the regions encoding for the operator, repressor, and peripheral enzymes. A particularly striking phenotype is the "reversal of the diauxie" in which the wild-type and mutant strains consume the very same two substrates in opposite order. This phenotype is difficult to explain in terms of molecular mechanisms, such as inducer exclusion or CAP activation, but it turns out to be a natural

  13. Plant growth regulators enhance gold uptake in Brassica juncea.

    Science.gov (United States)

    Kulkarni, Manoj G; Stirk, Wendy A; Southway, Colin; Papenfus, Heino B; Swart, Pierre A; Lux, Alexander; Vaculík, Marek; Martinka, Michal; Van Staden, Johannes

    2013-01-01

    The use of plant growth regulators is well established and they are used in many fields of plant science for enhancing growth. Brassica juncea plants were treated with 2.5, 5.0 and 7.5 microM auxin indole-3-butyric acid (IBA), which promotes rooting. The IBA-treated plants were also sprayed with 100 microM gibberellic acid (GA3) and kinetin (Kin) to increase leaf-foliage. Gold (I) chloride (AuCl) was added to the growth medium of plants to achieve required gold concentration. The solubilizing agent ammonium thiocyanate (1 g kg(-1)) (commonly used in mining industries to solubilize gold) was added to the nutrient solution after six weeks of growth and, two weeks later, plants were harvested. Plant growth regulators improved shoot and root dry biomass of B. juncea plants. Inductively Coupled Plasma Optical Emission Spectrometry analysis showed the highest Au uptake for plants treated with 5.0 microM IBA. The average recovery of Au with this treatment was significantly greater than the control treatment by 45.8 mg kg(-1) (155.7%). The other IBA concentrations (2.5 and 7.5 microM) also showed a significant increase in Au uptake compared to the control plants by 14.7 mg kg(-1) (50%) and 42.5 mg kg(-1) (144.5%) respectively. A similar trend of Au accumulation was recorded in the roots of B. juncea plants. This study conducted in solution culture suggests that plant growth regulators can play a significant role in improving phytoextraction of Au.

  14. How does cell size regulation affect population growth?

    CERN Document Server

    Lin, Jie

    2016-01-01

    The proliferation of a growing microbial colony is well characterized by the population growth rate. However, at the single-cell level, isogenic cells often exhibit different cell-cycle durations. For evolutionary dynamics, it is thus important to establish the connection between the population growth rate and the heterogeneous single-cell generation time. Existing theories often make the assumption that the generation times of mother and daughter cells are independent. However, it has been shown that to maintain a bounded cell size distribution, cells that grow exponentially at the single-cell level need to adopt cell size regulation, leading to a negative correlation of mother-daughter generation time. In this work, we construct a general framework to describe the population growth in the presence of size regulation. We derive a formula for the population growth rate, which only depends on the variability of single-cell growth rate, independent of other sources of noises. Our work shows that a population ca...

  15. Suppression of colorectal tumor growth by regulated survivin targeting.

    Science.gov (United States)

    Li, Binghua; Fan, Junkai; Liu, Xinran; Qi, Rong; Bo, Linan; Gu, Jinfa; Qian, Cheng; Liu, Xinyuan

    2006-12-01

    A major goal in cancer gene therapy is to develop efficient gene transfer protocols that allow tissue-specific and tightly regulated expression of therapeutic genes. The ideal vector should efficiently transduce cancer cells with minimal toxicity on normal tissues and persistently express foreign genes. One of the most promising regulatory systems is the mifepristone/RU486-regulated system, which has much lower basal transcriptional activity and high inducibility. In this work, we modified this system by incorporating a cancer-specific promoter, the human telomerase reverse transcriptase (hTERT) promoter. By utilizing hTERT promoter to control the regulator, RU486 could specifically induce the expression of foreign genes in cancer cells but not in normal cells. In the context of this system, a dominant negative mutant of survivin (surDN) was controllably expressed in colorectal tumor cells. The surDN expression induced by RU486 showed a dosage- and time-dependent pattern. Regulated expression of surDN caused caspase-dependent apoptosis in colorectal tumor cells but had little effect on normal cells. Analysis of cell viability showed that RU486-induced expression of surDN suppressed colorectal tumor cell growth and had synergic effect in combination with chemotherapeutic agents. The potential of this system in cancer therapy was evaluated in experimental animals. Tumor xenograft models were established in nude mice with colorectal tumor cells, and RU486 was intraperitoneally administered. The results showed that conditional expression of surDN efficiently inhibited tumor growth in vivo and prolonged the life of tumor-burdened mice. Synergized with the chemotherapeutic drug cisplatin, regulated surDN expression completely suppressed tumor growth. These results indicated that this modified RU486-regulated system could be useful in cancer-targeting therapy.

  16. Nerve growth factor with fibrin glue in end-to-side nerve repair in rats Fator de crescimento nervoso em cola de fibrina no reparo término-lateral de nervos em ratos

    Directory of Open Access Journals (Sweden)

    Daniel Nunes e Silva

    2012-04-01

    Full Text Available PURPOSE: To determine the effects of end-to-side nerve repair performed only with fibrin glue containing nerve growth in rats. METHODS: Seventy two Wistar rats were divided into six equal groups: group A was not submitted to nerve section; group B was submitted to nerve fibular section only. The others groups had the nerve fibular sectioned and then repaired in the lateral surface of an intact tibial nerve, with different procedures: group C: ETS with sutures; group D: ETS with sutures and NGF; group E: ETS with FG only; group F: ETS with FG containing NGF. The motor function was accompanied and the tibial muscle mass, the number and diameter of muscular fibers and regenerated axons were measured. RESULTS: All the analyzed variables did not show any differences among the four operated groups (p>0.05, which were statistically superior to group B (p0.05. CONCLUSION: The end-to-side nerve repair presented the same recovery pattern, independent from the repair used, showing that the addition of nerve growth factor in fibrin glue was not enough for the results potentiating.OBJETIVO: Determinar os efeitos do reparo nervoso término-lateral realizado apenas com cola de fibrina contendo fator de crescimento nervoso em ratos. MÉTODOS: Setenta e dois ratos Wistar foram distribuídos em seis grupos: A - não submetido à secção nervosa; B - secção do nervo fibular (sem reparo; Os outros grupos tiveram o nervo fibular seccionado e então reparado na superfície lateral do nervo tibial intacto, com diferentes procedimentos: C - RNTL com suturas; D - RNTL com suturas e FCN; E - RNTL apenas com CF; F - RNTL com CF contendo FCN. A função motora foi acompanhada e a massa do músculo tibial, o número e o diâmetro das fibras musculares e axônios regenerados foram medidos. RESULTADOS: Não houve diferença entre as variáveis avaliadas nos quatro grupos operados (p>0,05, os quais foram superiores ao grupo B (p0,05. CONCLUSÕES: O reparo nervoso t

  17. Ubiquitination-dependent mechanisms regulate synaptic growth and function.

    Science.gov (United States)

    DiAntonio, A; Haghighi, A P; Portman, S L; Lee, J D; Amaranto, A M; Goodman, C S

    2001-07-26

    The covalent attachment of ubiquitin to cellular proteins is a powerful mechanism for controlling protein activity and localization. Ubiquitination is a reversible modification promoted by ubiquitin ligases and antagonized by deubiquitinating proteases. Ubiquitin-dependent mechanisms regulate many important processes including cell-cycle progression, apoptosis and transcriptional regulation. Here we show that ubiquitin-dependent mechanisms regulate synaptic development at the Drosophila neuromuscular junction (NMJ). Neuronal overexpression of the deubiquitinating protease fat facets leads to a profound disruption of synaptic growth control; there is a large increase in the number of synaptic boutons, an elaboration of the synaptic branching pattern, and a disruption of synaptic function. Antagonizing the ubiquitination pathway in neurons by expression of the yeast deubiquitinating protease UBP2 (ref. 5) also produces synaptic overgrowth and dysfunction. Genetic interactions between fat facets and highwire, a negative regulator of synaptic growth that has structural homology to a family of ubiquitin ligases, suggest that synaptic development may be controlled by the balance between positive and negative regulators of ubiquitination.

  18. Effects of LNG-IUS on nerve growth factor and its receptors expression in patients with adenomyosis.

    Science.gov (United States)

    Choi, Young Sik; Cho, Sihyun; Lim, Kyung Jin; Jeon, Young Eun; Yang, Hyo In; Lee, Kyung Eun; Heena, Kamdar; Seo, Seok Kyo; Kim, Hye Yeon; Lee, Byung Seok

    2010-12-01

    The levonorgestrel-releasing intrauterine system (LNG-IUS) is effective in the treatment of dysmenorrhea associated with adenomyosis. However, the mechanism of pain relief of LNG-IUS in patients with adenomyosis is unclear. We aimed to investigate the effects of LNG-IUS on the expression of nerve growth factor (NGF) and its receptors, NGFR p75 and TrkA in patients with adenomyosis. Endometrial and myometrial tissues were prepared from 17 LNG-IUS-treated patients and 15 hormonally untreated patients who had undergone hysterectomies for adenomyosis. Immunohistochemistry with antibodies against NGF, NGFR p75, and TrkA, was performed. The expression of NGF, NGFR p75, and TrkA in endometrium and myometrium of LNG-IUS-treated patients was significantly decreased compared to those of hormonally untreated patients. Our findings may indicate that the suppression of NGF and its receptors by LNG-IUS is another possible mechanism of relieving pain in patients with adenomyosis.

  19. Codonopsis pilosula (Franch) Nannftotal alkaloids potentiate neurite outgrowth induced by nerve growth factor in PC12 cells

    Institute of Scientific and Technical Information of China (English)

    LIUJian-Hui; BAOYong-Ming; SONGJi-Jun; ANLi-Jia

    2003-01-01

    AIM:To explore the effect of Codonopsis pilosula (Franch) Nannf total alkaloids (DSA) on differentiation inducedby nerve growth factor (NGF) in PC12 cells. METHODS: After culturing PC12 cells with DSA in the presence orabsence of NGF, neurite outgrowth in PC12 cells and correlated protein kinases were assayed. RESULTS: DSAalone did not exhibit neuritogenic activity, but caused a significant enhancement of NGF (2 μg/L)-induced neuriteoutgrowth in PC12 cells, and increased the phosphorylation of mitogen-activated protein kinase (MAPK).Furthermore, this enhancing effect was completely blocked by a specific MAPK kinase inhibitor, PD98059.CONCLUSION: DSA enhanced the NGF-induced neurite outgrowth in PC12 cells by amplifying an up-streamstep of the MAPK-dependent signaling pathway.

  20. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Valerio; Spalletta, Gianfranco; Pomponi, Massimiliano; Tonioni, Federico; Caltagirone, Carlo; Bria, Pietro

    2008-12-01

    Chronic cannabis use produces effects within the central nervous system (CNS) which include deficits in learning and attention tasks and decreased brain volume. Neurotrophins, in particular nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), are proteins that serve as survival factors for CNS neurons. Deficits in the production and utilization of these proteins can lead to CNS dysfunctions including those associated with cannabis abuse. In this study we measured by enzyme-linked immunosorbent assay (ELISA) the NGF and BDNF serum levels in two groups of subjects: cannabis-dependent patients and healthy subjects. We found that NGF serum levels were significantly reduced in cannabis abusers as compared to healthy subjects. These findings indicate that NGF may have a role in the central action of cannabis and potentially in the neurotoxicity induced by this drug. These data also suggest that chronic cannabis consumption may be a risk factor for developing psychosis among drug users.

  1. Regulation of Schwann cell proliferation in cultured segments of the adult rat sciatic nerve

    DEFF Research Database (Denmark)

    Svenningsen, Åsa Fex; Kanje, M

    1998-01-01

    Schwann cell proliferation was studied in cultured segments of the rat sciatic nerve by measurement of [3H] thymidine incorporation or through bromodeoxyuridine-(BrdU)-labelling and immunocytochemistry. The aim was to delineate mechanisms involved in the injury-induced proliferative response...... of Schwann cells. Removal of extracellular Ca2+ by addition of EGTA to the culture medium suppressed [3H] thymidine incorporation as did the calmodulin inhibitor 48/80. The Ca2+ ionophore A23187 increased incorporation. Staurosporin, an inhibitor of protein kinase C (PKC), suppressed [3H] thymidine...... together with morphological evaluation of myelin association showed that proliferation occurred in Schwann cells. The results are consistent with a model in which Schwann cell proliferation is enhanced by Ca2+ through activation of calmodulin-dependent and/or PKCdependent mechanisms. Inhibition is achieved...

  2. Electrical nerve stimulation and the relief of chronic pain through regulation of the accumulation of synaptic Arc protein.

    Science.gov (United States)

    Liu, Yue-peng; Liu, Su

    2013-08-01

    Electrical nerve stimulation (ENS) is used in clinical settings for the treatment of chronic pain, but the mechanism underlying its effects remains unknown. ENS has been found to mimic neural activity, inducing the accumulation of Arc in synapses. Activity-dependent synaptic accumulation of Arc protein has been shown to reduce synaptic strength by promoting endocytosis of the AMPA receptors in the synaptic membrane. These receptors play a decisive role in central sensitization, which is one of the main mechanisms underlying chronic pain. It is here hypothesized that ENS induces Arc expression in synapses, where Arc promotes endocytosis of membrane AMPARs that are up-regulated during chronic pain. High frequency and high intensity are characteristics of ENS, which may be effective in the treatment of chronic pain. Stimulation-site of ENS may also influence the outcome of ENS.

  3. Homer regulates calcium signalling in growth cone turning

    Directory of Open Access Journals (Sweden)

    Thompson Michael JW

    2009-08-01

    Full Text Available Abstract Background Homer proteins are post-synaptic density proteins with known functions in receptor trafficking and calcium homeostasis. While they are key mediators of synaptic plasticity, they are also known to function in axon guidance, albeit by mechanisms that are yet to be elucidated. Homer proteins couple extracellular receptors – such as metabotropic glutamate receptors and the transient receptor potential canonical family of cation channels – to intracellular receptors such as inositol triphosphate and ryanodine receptors on intracellular calcium stores and, therefore, are well placed to regulate calcium dynamics within the neural growth cone. Here we used growth cones from dorsal root ganglia, a well established model in the field of axon guidance, and a growth cone turning assay to examine Homer1 function in axon guidance. Results Homer1 knockdown reversed growth cone turning from attraction to repulsion in response to the calcium-dependent guidance cues brain derived neurotrophic factor and netrin-1. Conversely, Homer1 knockdown had no effect on repulsion to the calcium-independent guidance cue Semaphorin-3A. This reversal of attractive turning suggested a requirement for Homer1 in a molecular switch. Pharmacological experiments confirmed that the operational state of a calcium-calmodulin dependent protein kinase II/calcineurin phosphatase molecular switch was dependent on Homer1 expression. Calcium imaging of motile growth cones revealed that Homer1 is required for guidance-cue-induced rise of cytosolic calcium and the attenuation of spontaneous cytosolic calcium transients. Homer1 knockdown-induced calcium transients and turning were inhibited by antagonists of store-operated channels. In addition, immunocytochemistry revealed the close association of Homer1 with the store-operated proteins TRPC1 and STIM1 within dorsal root ganglia growth cones. Conclusion These experiments provide evidence that Homer1 is an essential

  4. [Morphological study on development of nerve growth factor-positive neurons in the cerebellum of human fetus].

    Science.gov (United States)

    Zheng, Lan-Rong; Shao, Jin-Gui

    2012-02-01

    To investigate the growth and development of nerve growth factor (NGF)-positive neurons in the cerebellum of midanaphase human fetus. The expression of the NGF-positive neurons in the cerebrum of human fetus was observed by immunohistochemical methods, and the integral absorbance (IA) was detected. By the 3rd to 4th month of gestation, neurons was seen in the ependymal, central, and marginal plate of cerebellum; the nucleus was oval and the neurons had short and small processes. By the 5th to 7th month of gestation, the number of NGF-positive neurons increased, the expressions enhanced, the nucleus was round-, oval-, or fusiform-shaped, the neurons grew larger in size, and the Purkinje cells showed NGF-positive expression. By the 8th to 10th month of gestation, the NGF-positive expression was enhanced with deeper dying, the body of Purkinje cells grew larger gradually, and the number of NGF-positive neurons in the granular cell layer and molecular layer increased. IA of the cerebellar cortical neurons of the 3rd, 4th, 5th, 6th, 7th, and 8th month of gestation showed an increasing trend, and significant difference was observed (P positive neurons in the cerebellum play an important role for differentiation, proliferation, migration, and growth of neurons in the cerebellum.

  5. Changes in nerve microcirculation following peripheral nerve compression

    Institute of Scientific and Technical Information of China (English)

    Yueming Gao; Changshui Weng; Xinglin Wang

    2013-01-01

    Following peripheral nerve compression, peripheral nerve microcirculation plays important roles in regulating the nerve microenvironment and neurotrophic substances, supplying blood and oxygen and maintaining neural conduction and axonal transport. This paper has retrospectively analyzed the articles published in the past 10 years that addressed the relationship between peripheral nerve compression and changes in intraneural microcirculation. In addition, we describe changes in different peripheral nerves, with the aim of providing help for further studies in peripheral nerve microcirculation and understanding its protective mechanism, and exploring new clinical methods for treating peripheral nerve compression from the perspective of neural microcirculation.

  6. Aromatic fluorine compounds. VIII. Plant growth regulators and intermediates

    Science.gov (United States)

    Finger, G.C.; Gortatowski, M.J.; Shiley, R.H.; White, R.H.

    1959-01-01

    The preparation and properties of 41 fluorophenoxyacetic acids, 4 fluorophenoxypropionic acids, 2 fluorobenzoic acids, several indole derivatives, and a number of miscellaneous compounds are described. Data are given for many intermediates such as new fluorinated phenols, anisoles, anilines and nitrobenzenes. Most of the subject compounds are related to a number of well-known herbicides or plant growth regulators such as 2,4-D, 2,4,5-T and others.

  7. Dose-dependent effects of procyanidin on nerve growth factor expression following cerebral ischemia/ reperfusion injury in rats

    Institute of Scientific and Technical Information of China (English)

    Feng Li; Hai Xie; Ying Gao; Tongxia Zhan

    2008-01-01

    BACKGROUND: Recently, grape seed procyanidin (GSP) has been shown to be exhibit antioxidant effects, effectively reducing ischemia/reperfusion injury and inhibiting brain cell apoptosis.OBJECTIVE: To study the effects of GSP on nerve growth factor (NGF) expression and neurological function following cerebral ischemia/reperfusion injury in rats.DESIGN: Randomized controlled study based on SD rats.SETTING: Weifang Municipal People's Hospital. MATERIALS: Forty-eight healthy adult SD rats weighing 280-330 g and irrespective of gender were provided by the Experimental Animal Center of Shandong University. GSP derived from grape seed was a new high-effective antioxidant provided by Tianjin Jianfeng Natural Product Researching Company (batch number: 20060107). Rabbit-anti-rat NGF monoclonal antibody was provided by Beijing Zhongshan Biotechnology Co., Ltd., and SABC immunohistochemical staining kit by Wuhan Boster Bioengineering Co., Ltd. METHODS: The present study was performed in the Functional Laboratory of Weifang Medical College from April 2006 to January 2007. Forty-eight SD rats were randomly divided into the sham operation group, ischemia/reperfusion group, high-dose GSP (40 mg/kg) group, or low-dose GSP (10 mg/kg) group (n = 12 per group). Ischemia/reperfusion injury was established using the threading embolism method of the middle cerebral artery. Rats in the ischemia/reperfusion model group were given saline injection (2 mL/kg i.p.) once daily for seven days pre-ischemia/reperfusion, and once more at 15 minutes before reperfusion. Rats in the high-dose and low-dose GSP groups were injected with GSP (20 or 5 mg/mL i.p., respectively, 2 mL/kg) with the same regime as the ischemia/reperfusion model group. The surgical procedures in the sham operation group were as the same as those in the ischemia/reperfusion model group, but the thread was approximately 10 mm long, thus, the middle cerebral artery was not blocked. MAIN OUTCOME MEASURES: NGF expression in the

  8. Expression of nerve growth factor mRNA in splenic lymphocytes of bronchial asthma rats and its influencing actors

    Institute of Scientific and Technical Information of China (English)

    Jihong Dai; Yonghong Wang; Haixia He

    2008-01-01

    BACKGROUND: Previous research has proved that nerve growth factor (NGF) participates in the onset of asthma by the induction of neurogenic inflammation.OBJECTIVE: To investigate the effect of interleukin-13 (IL-13) and interferon-γ(IFN-γ) on the expression of NGF mRNA in the splenic lymphocytes of bronchial asthma rats.DESIGN, TIME AND SETTING: The experiment, a completely randomized study based on cellular immunology, was performed in the Laboratory of Neurology in Chongqing Medical University and the Department of Clinical Pharmacy in College of Clinical Medicine, Chongqing Medical University (Chongqing, China) from January 2006 to April 2007.MATERIALS: Four adult male Wistar rats were used in this study. Rat IL-13, IFN-γprobe and the total RNA extraction kit were produced by Shanghai Sangon Biological Technology & Services Co., Ltd (China). The NGF ELISA kit was a product of Wuhan Boster Bioengineering Co., Ltd (China). A Du-70 automatic UV spectrophotometer was produced by Beckman Company (USA).METHODS: Rats were subjected to 1-mL intraperitoneal injections each containing 100 mg of ovalbumin, and were sensitized by using antigen solution, which was sensitized with 5×109 Bacillus pertussis and 100 mg aluminum hydroxide powder. Four rats were challenged with 1% ovalbumin using an ultrasonic nebulizer for 60 minutes to establish an asthmatic model. After rats were anesthetized, splenic lymphocytes were isolated and cultured in medium, which was supplemented with IL-13 or IFN-γ, for 0, 12, 24 or 48 hours. A parallel study was conducted with cultured splenic lymphocytes, which were divided into a control group, an IL-13 group and an IFN-γ group. Culture medium was added with different concentrations of IL-13 (10, 50, 100 μg/L) and IFN-γ (1, 10, 50 μg/L); 24 hours later, all samples were harvested.MAIN OUTCOME MEASURES: The expression levels of NGF mRNA were detected by reverse transcription-polymerase chain reaction.RESULTS: In the control group, the

  9. DOSE-DEPENDENT INCREASE IN THE PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM-INDUCED ALLERGIC ASTHMA MODEL

    Science.gov (United States)

    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthma as well as in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated ...

  10. INCREASED PRODUCTION OF NERVE GROWTH FACTOR, NEUROTROPHIN-3, AND NEUROTROPHIN-4 IN A PENICILLIUM CHRYSOGENUM -INDUCED ALLERGIC ASTHMA MODEL IN MICE

    Science.gov (United States)

    Increased levels of neurotrophins (nerve growth factor [NGF], brain-derived neurotrophic factor [BDNF], neurotrophin [NT]-3, and/or NT-4) have been associated with asthmatics and in animal models of allergic asthma. In our mouse model for fungal allergic asthma, repeated pulmona...

  11. Productivity growth and price regulation of Slovenian water distribution utilities

    Directory of Open Access Journals (Sweden)

    Jelena Zorić

    2010-06-01

    Full Text Available This paper aims to analyse the price regulation method and performance of thewater industry in Slovenia. A stochastic cost frontier model is employed to estimate and decompose the total factor productivity (TFP growth of water distribution utilities in the 1997-2003 period. The main goal is to find out whether the lack of proper incentives to improve performance has resulted in the low TFP growth of Slovenian water distribution utilities. The evidence suggests that cost inefficiencies are present in water utilities, which indicates considerable cost saving potential in the analysed industry. Technical change is found to have positively affected the TFP growth over time, while cost inefficiency levels remained essentially unchanged. Overall, the average annual TFP growth in the analysed period is estimated to be only slightly above zero, which is a relatively poor result. This can largely be contributed to the present institutional and regulatory setting that does not stimulate utilities to improve productivity. Therefore, the introduction of an independent regulatory agency and an incentive-based price regulation scheme should be seriously considered in order to enhance the performance of Slovenian water distribution utilities.

  12. Activation of Growth-associated Protein by Intragastric Brazilein in Motor Neuron of Spinal Cord Connected with Injured Sciatic Nerve in Mice

    Institute of Scientific and Technical Information of China (English)

    CAO Jian; LI Li-sen; LIU Biao; LIU Hao-yu; ZHANG Hui; ZHAO Ming-ming; YIN Wei-tian

    2011-01-01

    The purpose of this study is to explore the expression of growth-associated protein(GAP-43) in spinal cord segments connected with injured sciatic nerve by the treatment with brazilein in mice. Unilateral sciatic nerve interruption and anastomosis were performed. Physiological saline(blank group), high dose, middle dose and low dose of brazilein were administrated intragastrically to healthy adult BALB/c mice in separate groups. L4-6 spinal segments connected with the sciatic nerve were harvested. Real-time PCR(Polymerase chain reaction) and Western blot analysis were performed to detect the expression of GAP-43 in spinal segments. Histological staining on myelin and the electrophysiology were performed to examine the sciatic nerve recovery. GAP-43 was activated in spinal cord L4-6 connected with injured sciatic nerve. In the survival time of 12 h, 24 h, 3 d, 5 d, 7 d and 14 d, GAP-43 expression in the motor neurons of spinal cord of the high dose group and that in the middle dose group were significantly higher than those on the low dose and blank groups. Myelin in the high dose group and that in the middle dose group were more mature and the potential amplitude and MNCV(motor nerve conduction velocity) in the high and middle dose groups were obviously higher than those in the low dose group and blank group. Brazilein facilitates the expression of GAP-43 in neurons in spinal cord L4-6 segments connected with injured sciatic nerve, which promotes nerve regeneration.

  13. The failed attribution of the Nobel Prize for Medicine or Physiology to Viktor Hamburger for the discovery of Nerve Growth Factor.

    Science.gov (United States)

    Ribatti, Domenico

    2016-06-01

    The announcement in October 1986 that the Nobel Prize for Physiology or Medicine was to awarded to Rita Levi Montalcini and Stanley Cohen for the discovery of nerve growth factor (NGF) and epidermal growth factor, respectively, caused many to wonder why Viktor Hamburger in whose laboratory the initial work was done had not been included in the award. This article try to reconstruct the history of the discovery of NGF with the aim to re-establish a correct dynamic of the events.

  14. Disruption of spinal cord white matter and sciatic nerve geometry inhibits axonal growth in vitro in the absence of glial scarring

    Directory of Open Access Journals (Sweden)

    Crutcher Keith A

    2001-05-01

    Full Text Available Abstract Background Axons within the mature mammalian central nervous system fail to regenerate following injury, usually resulting in long-lasting motor and sensory deficits. Studies involving transplantation of adult neurons into white matter implicate glial scar-associated factors in regeneration failure. However, these studies cannot distinguish between the effects of these factors and disruption of the spatial organization of cells and molecular factors (disrupted geometry. Since white matter can support or inhibit neurite growth depending on the geometry of the fiber tract, the present study sought to determine whether disrupted geometry is sufficient to inhibit neurite growth. Results Embryonic chick sympathetic neurons were cultured on unfixed longitudinal cryostat sections of mature rat spinal cord or sciatic nerve that had been crushed with forceps ex vivo then immediately frozen to prevent glial scarring. Neurite growth on uncrushed portions of spinal cord white matter or sciatic nerve was extensive and highly parallel with the longitudinal axis of the fiber tract but did not extend onto crushed portions. Moreover, neurite growth from neurons attached directly to crushed white matter or nerve tissue was shorter and less parallel compared with neurite growth on uncrushed tissue. In contrast, neurite growth appeared to be unaffected by crushed spinal cord gray matter. Conclusions These observations suggest that glial scar-associated factors are not necessary to block axonal growth at sites of injury. Disruption of fiber tract geometry, perhaps involving myelin-associated neurite-growth inhibitors, may be sufficient to pose a barrier to regenerating axons in spinal cord white matter and peripheral nerves.

  15. Influence of growth regulators on plant growth, yield, and skin color of specialty potatoes

    Science.gov (United States)

    2,4-D has been used since the 1950’s to enhance color in red-skinned potatoes, but there is little research on the potential use of other plant growth regulators to improve tuber skin color in the wide range of specialty potatoes now available on the market. Field trials conducted at Parma, ID in 20...

  16. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons: the incipit of the Alzheimer′s disease story?

    Directory of Open Access Journals (Sweden)

    Viviana Triaca

    2016-01-01

    Full Text Available The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneration and neuronal apoptosis. This could be also true in the case of nerve growth factor (NGF alterations in sporadic Alzheimer′s disease (AD, an age-related pathology characterized by cholinergic loss, amyloid plaques and neurofibrillary tangles. In fact, the pathway activated by NGF, a key neurotrophin for the metabolism of basal forebrain cholinergic neurons (BFCN, is one of the first homeostatic systems affected in prodromal AD. NGF signaling dysfunctions have been thought for decades to occur in AD late stages, as a mere consequence of amyloid-driven disruption of the retrograde axonal transport of neurotrophins to BFCN. Nowadays, a wealth of knowledge is potentially opening a new scenario: NGF signaling impairment occurs at the onset of AD and correlates better than amyloid load with cognitive decline. The recent acceleration in the characterization of anatomical, functional and molecular profiles of early AD is aimed at maximizing the efficacy of existing treatments and setting novel therapies. Accordingly, the elucidation of the molecular events underlying APP metabolism regulation by the NGF pathway in the septo-hippocampal system is crucial for the identification of new target molecules to slow and eventually halt mild cognitive impairment (MCI and its progression toward AD.

  17. Effects of increased nerve growth factor plasma levels on the expression of TrkA and p75 in rat testicles.

    Science.gov (United States)

    Levanti, M B; Germanà, A; de Carlos, F; Ciriaco, E; Vega, J A; Germanà, G

    2006-03-01

    In addition to their well-known roles within the nervous system, the neurotrophins and their receptors regulate some functions in the reproductive system. In this study we used combined morphological and immunohistochemical techniques to investigate the presence and cellular localization in the rat testicle of the two receptors of nerve growth factor (NGF), i.e. TrkA and p75(NTR). Furthermore, to evaluate whether increased plasma levels of NGF affect the ageing process, 4-methylcathechol (4-MC), an inductor of NGF synthesis, was administered. Both TrkA and p75(NTR) were expressed in rat testicles, but the pattern and intensity of immunoreaction were marginally different between them. In adult rats TrkA was expressed in spermatozoa and spermatids, and p75 was expressed in spermatogonia. In newborn rats TrkA immunoreactivity was found in the Leydig cells, whereas p75 was detected in a cellular layer that surrounds the seminiferous tubules. In adult treated animals the immunoreaction for TrkA and p75(NTR) was also localized in the spermatocytes, whereas in newborn treated rats no changes in the pattern of immunoreaction was observed. The present findings suggest a role of the NGF/TrkA/p75 system in the physiology of reproduction, but the practical relevance of this remains to be established.

  18. Impairment of the nerve growth factor pathway driving amyloid accumulation in cholinergic neurons:the incipit of the Alzheimer’s disease story?

    Institute of Scientific and Technical Information of China (English)

    Viviana Triaca; Pietro Calissano

    2016-01-01

    The current idea behind brain pathology is that disease is initiated by mild disturbances of common physiological processes. Overtime, the disruption of the neuronal homeostasis will determine irreversible degeneration and neuronal apoptosis. hTis could be also true in the case of nerve growth factor (NGF) al-terations in sporadic Alzheimer’s disease (AD), an age-related pathology characterized by cholinergic loss, amyloid plaques and neurofibrillary tangles. In fact, the pathway activated by NGF, a key neurotrophin for the metabolism of basal forebrain cholinergic neurons (BFCN), is one of the ifrst homeostatic systems affected in prodromal AD. NGF signaling dysfunctions have been thought for decades to occur in AD late stages, as a mere consequence of amyloid-driven disruption of the retrograde axonal transport of neuro-trophins to BFCN. Nowadays, a wealth of knowledge is potentially opening a new scenario: NGF signaling impairment occurs at the onset of AD and correlates better than amyloid load with cognitive decline. hTe recent acceleration in the characterization of anatomical, functional and molecular proifles of early AD is aimed at maximizing the efficacy of existing treatments and setting novel therapies. Accordingly, the elucidation of the molecular events underlying APP metabolism regulation by the NGF pathway in the sep-to-hippocampal system is crucial for the identiifcation of new target molecules to slow and eventually halt mild cognitive impairment (MCI) and its progression toward AD.

  19. Expression of Nerve Growth Factor (NGF and Its Receptors TrkA and p75 in the Reproductive Organs of Laying Hens

    Directory of Open Access Journals (Sweden)

    PU Shaoxia

    2016-03-01

    Full Text Available Abstract In order to investigate the expression levels of nerve growth factor (NGF and its receptors (TrkA and p75 in prehierarchical follicles and oviducts of hens, five 130-day-old laying hens were examined by immunohistochemistry and RT-PCR analysis. NGF and its receptors were expressed in theca cells and granulosa cells of prehierarchical follicles, and they were also expressed in the epithelial cells of oviducts. The expression of the genes NGF, TrkA and p75 were significantly different in prehierarchical follicles (p<0.05 or p<0.01, and NGF and TrkA gene expression was significantly different in different parts of oviduct (p<0.05 or p<0.01. The expression of NGF and p75 mRNA levels was highest in large white follicle (LWF, as well as the expression of TrkA in small yellow follicle (SYF. In the oviduct, the expression of NGF was the highest in infundibulum, and lowest in isthmus. These results suggest that NGF may play an important role in the regulation of hen reproduction.

  20. Recombinant human nerve growth factor is biologically active and labels novel high-affinity binding sites in rat brain

    Energy Technology Data Exchange (ETDEWEB)

    Altar, C.A.; Burton, L.E.; Bennett, G.L.; Dugich-Djordjevic, M. (Genentech, Inc., South San Francisco, CA (USA))

    1991-01-01

    Iodinated recombinant human nerve growth factor (125I-rhNGF) stimulated neurite formation in PC12 cell cultures with a half-maximal potency of 35-49 pg/ml, compared with 39-52 pg/ml for rhNGF. In quantitative ligand autoradiography, the in vitro equilibrium binding of 125I-rhNGF to brain sections showed a 10-fold regional variation in density and was saturable, reversible, and specifically displaced by up to 74% with rhNGF or murine NGF (muNGF). At equilibrium, 125I-rhNGF bound to these sites with high affinity and low capacity (Bmax less than or equal to 13.2 fmol/mg of protein). Calculation of 125I-rhNGF binding affinity by kinetic methods gave average Kd values of 24 and 31 pM. Computer-generated maps revealed binding in brain regions not identified previously with 125I-muNGF, including hippocampus; dentate gyrus; amygdala; paraventricular thalamus; frontal, parietal, occipital, and cingulate cortices; nucleus accumbens; olfactory tubercle; subiculum; pineal gland; and medial geniculate nucleus. NGF binding sites were distributed in a 2-fold increasing medial-lateral gradient in the caudate-putamen and a 2-fold lateral-medial gradient in the nucleus accumbens. 125I-rhNGF binding sites were also found in most areas labeled by 125I-muNGF, including the interpedunucular nucleus, cerebellum, forebrain cholinergic nuclei, caudoventral caudate-putamen, and trigeminal nerve nucleus. 125I-rhNGF binding sites were absent from areas replete with low-affinity NGF binding sites, including circumventricular organs, myelinated fiber bundles, and choroid plexus. The present analysis provides an anatomical differentiation of high-affinity 125I-rhNGF binding sites and greatly expands the number of brain structures that may respond to endogenous NGF or exogenously administered rhNGF.

  1. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    Science.gov (United States)

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases.

  2. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors

    Science.gov (United States)

    Zeng, Fang; Li, Zicong; Zhu, Qingchun; Dong, Rui; Zhao, Chengcheng; Li, Guoling; Li, Guo; Gao, Wenchao; Jiang, Gelong; Zheng, Enqin; Cai, Gengyuan; Moisyadi, Stefan; Urschitz, Johann; Yang, Huaqiang; Liu, Dewu; Wu, Zhenfang

    2017-01-01

    The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins. PMID:28117418

  3. Expression of nerve growth factor (NGF) isoforms in the rat uterus during pregnancy: accumulation of precursor proNGF.

    Science.gov (United States)

    Lobos, Edgar; Gebhardt, Claudia; Kluge, Annett; Spanel-Borowski, Katharina

    2005-04-01

    The mechanisms that promote the transient degenerative changes in the uterus innervation during pregnancy remain incompletely understood. Signaling by the nerve growth factor (NGF)-beta is important for maintaining the density of peripheral sympathetic innervation. Here, we analyzed the spatial and temporal expression of NGF isoforms in the rat uterus using RT-PCR, immunoblot analysis, and immunohistochemistry during pregnancy (d 7, 14, and 21), and postpartum (d 1, 8, and 22). Western blot analysis using antibodies to mature NGF-beta and to proNGF domain demonstrated a significant decrease in mature NGF-beta at gestational d 14 and 21 (term pregnancy) and 1 d postpartum, which paralleled a remarkable accumulation of the 26-28-, 32-, and 60-kDa proNGF forms. There were diminished ratios of mature NGF-beta to proNGF independent of uterus growth on the same gestational days. Immunohistochemistry revealed a progressive NGF-beta decline throughout pregnancy in the myometrium and a near absence at term pregnancy, which contrasted with increased NGF immunostaining in the intermyometrial connective tissue layers. More importantly, proNGF-specific antibodies identified the increased NGF immunoreactivity in the intermyometrial layers at term pregnancy as proNGF and not mature NGF-beta. Alterations in the processing of NGF and accumulation of proNGF in the intermyometrial layers, where axonal degeneration occurs, may contribute significantly to the pregnancy-related uterine denervation and to the control of myometrial activity.

  4. Production of functional human nerve growth factor from the saliva of transgenic mice by using salivary glands as bioreactors.

    Science.gov (United States)

    Zeng, Fang; Li, Zicong; Zhu, Qingchun; Dong, Rui; Zhao, Chengcheng; Li, Guoling; Li, Guo; Gao, Wenchao; Jiang, Gelong; Zheng, Enqin; Cai, Gengyuan; Moisyadi, Stefan; Urschitz, Johann; Yang, Huaqiang; Liu, Dewu; Wu, Zhenfang

    2017-01-24

    The salivary glands of animals have great potential to act as powerful bioreactors to produce human therapeutic proteins. Human nerve growth factor (hNGF) is an important pharmaceutical protein that is clinically effective in the treatment of many human neuronal and non-neuronal diseases. In this study, we generated 18 transgenic (TG) founder mice each carrying a salivary gland specific promoter-driven hNGF transgene. A TG mouse line secreting high levels of hNGF protein in its saliva (1.36 μg/mL) was selected. hNGF protein was successfully purified from the saliva of these TG mice and its identity was verified. The purified hNGF was highly functional as it displayed the ability to induce neuronal differentiation of PC12 cells. Furthermore, it strongly promoted proliferation of TF1 cells, above the levels observed with mouse NGF. Additionally, saliva collected from TG mice and containing unpurified hNGF was able to significantly enhance the growth of TF1 cells. This study not only provides a new and efficient approach for the synthesis of therapeutic hNGF but also supports the concept that salivary gland from TG animals is an efficient system for production of valuable foreign proteins.

  5. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    Science.gov (United States)

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  6. Transcutaneous electrical nerve stimulation (TENS improves the diabetic cytopathy (DCP via up-regulation of CGRP and cAMP.

    Directory of Open Access Journals (Sweden)

    Liucheng Ding

    Full Text Available The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS on the diabetic cytopathy (DCP in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM/TENS group (n=15, DM group (n=15 and control group (n=15. The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  7. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    LENUS (Irish Health Repository)

    Costello, Richard W

    2011-05-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  8. Mechanism of sphingosine 1-phosphate- and lysophosphatidic Acid-induced up-regulation of adhesion molecules and eosinophil chemoattractant in nerve cells.

    LENUS (Irish Health Repository)

    Costello, Richard W

    2012-02-01

    The lysophospholipids sphingosine 1-phosphate (S1P) and lysophosphatidic acid (LPA) act via G-protein coupled receptors S1P(1-5) and LPA(1-3) respectively, and are implicated in allergy. Eosinophils accumulate at innervating cholinergic nerves in asthma and adhere to nerve cells via intercellular adhesion molecule-1 (ICAM-1). IMR-32 neuroblastoma cells were used as an in vitro cholinergic nerve cell model. The G(i) coupled receptors S1P(1), S1P(3), LPA(1), LPA(2) and LPA(3) were expressed on IMR-32 cells. Both S1P and LPA induced ERK phosphorylation and ERK- and G(i)-dependent up-regulation of ICAM-1 expression, with differing time courses. LPA also induced ERK- and G(i)-dependent up-regulation of the eosinophil chemoattractant, CCL-26. The eosinophil granule protein eosinophil peroxidase (EPO) induced ERK-dependent up-regulation of transcription of S1P(1), LPA(1), LPA(2) and LPA(3), providing the situation whereby eosinophil granule proteins may enhance S1P- and\\/or LPA- induced eosinophil accumulation at nerve cells in allergic conditions.

  9. Low-level transcutaneous electrical stimulation of the auricular branch of vagus nerve ameliorates left ventricular remodeling and dysfunction by downregulation of matrix metalloproteinase 9 and transforming growth factor β1.

    Science.gov (United States)

    Wang, Zhuo; Yu, Lilei; Huang, Bing; Wang, Songyun; Liao, Kai; Saren, Gaowa; Zhou, Xiaoya; Jiang, Hong

    2015-04-01

    Vagus nerve stimulation improves left ventricular (LV) remodeling by downregulation of matrix metalloproteinase 9 (MMP-9) and transforming growth factor β1 (TGF-β1). Our previous study found that low-level transcutaneous electrical stimulation of the auricular branch of the vagus nerve (LL-TS) could be substituted for vagus nerve stimulation to reverse cardiac remodeling. So, we hypothesize that LL-TS could ameliorate LV remodeling by regulation of MMP-9 and TGF-β1 after myocardial infarction (MI). Twenty-two beagle dogs were randomly divided into a control group (MI was induced by permanent ligation of the left coronary artery, n = 8), an LL-TS group (MI with long-term intermittent LL-TS, n = 8), and a normal group (sham ligation without stimulation, n = 6). At the end of 6 weeks follow-up, LL-TS significantly reduced LV end-systolic and end-diastolic dimensions, improved ejection fraction and ratio of early (E) to late (A) peak mitral inflow velocity. LL-TS attenuated interstitial fibrosis and collagen degradation in the noninfarcted myocardium compared with the control group. Elevated level of MMP-9 and TGF-β1 in LV tissue and peripheral plasma were diminished in the LL-TS treated dogs. LL-TS improves cardiac function and prevents cardiac remodeling in the late stages after MI by downregulation of MMP-9 and TGF-β1 expression.

  10. Structural and Functional Substitution of Deleted Primary Sensory Neurons by New Growth from Intrinsic Spinal Cord Nerve Cells: An Alternative Concept in Reconstruction of Spinal Cord Circuits

    Directory of Open Access Journals (Sweden)

    Nicholas D. James

    2017-07-01

    Full Text Available In a recent clinical report, return of the tendon stretch reflex was demonstrated after spinal cord surgery in a case of total traumatic brachial plexus avulsion injury. Peripheral nerve grafts had been implanted into the spinal cord to reconnect to the peripheral nerves for motor and sensory function. The dorsal root ganglia (DRG containing the primary sensory nerve cells had been surgically removed in order for secondary or spinal cord sensory neurons to extend into the periphery and replace the deleted DRG neurons. The present experimental study uses a rat injury model first to corroborate the clinical finding of a re-established spinal reflex arch, and second, to elucidate some of the potential mechanisms underlying these findings by means of morphological, immunohistochemical, and electrophysiological assessments. Our findings indicate that, after spinal cord surgery, the central nervous system sensory system could replace the traumatically detached original peripheral sensory connections through new neurite growth from dendrites.

  11. Distribution and localization of fibroblast growth factor-8 in rat brain and nerve cells during neural stem/progenitor cell differentiation

    Institute of Scientific and Technical Information of China (English)

    Jiang Lu; Dongsheng Li; Kehuan Lu

    2012-01-01

    The present study explored the distribution and localization of fibroblast growth factor-8 and its potential receptor,fibroblast growth factor receptor-3,in adult rat brain in vivo and in nerve cells during differentiation of neural stem/progenitor cells in vitro.Immunohistochemistry was used to examine the distribution of fibroblast growth factor-8 in adult rat brain in vivo.Localization of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in cells during neural stem/progenitor cell differentiation in vitro was detected by immunofluorescence.Flow cytometry and immunofluorescence were used to evaluate the effect of an anti-fibroblast growth factor-8 antibody on neural stem/progenitor cell differentiation and expansion in vitro.Results from this study confirmed that fibroblast growth factor-8 was mainly distributed in adult midbrain,namely the substantia nigra,compact part,dorsal tier,substantia nigra and reticular part,but was not detected in the forebrain comprising the caudate putamen and striatum.Unusual results were obtained in retrosplenial locations of adult rat brain.We found that fibroblast growth factor-8 and fibroblast growth factor receptor-3 were distributed on the cell membrane and in the cytoplasm of nerve cells using immunohistochemistry and immunofluorescence analyses.We considered that the distribution of fibroblast growth factor-8 and fibroblast growth factor receptor-3 in neural cells corresponded to the characteristics of fibroblast growth factor-8,a secretory factor.Addition of an anti-fibroblast growth factor-8 antibody to cultures significantly affected the rate of expansion and differentiation of neural stem/progenitor cells.In contrast,addition of recombinant fibroblast growth factor-8 to differentiation medium promoted neural stem/progenitor cell differentiation and increased the final yields of dopaminergic neurons and total neurons.Our study may help delineate the important roles of fibroblast growth factor-8 in brain

  12. MHC class II molecules regulate growth in human T cells

    DEFF Research Database (Denmark)

    Nielsen, M; Odum, Niels; Bendtzen, K;

    1994-01-01

    lines tested. Only one of three CD4+, CD45RAhigh, ROhigh T cells responded to class II costimulation. There was no correlation between T cell responsiveness to class II and the cytokine production profile of the T cell in question. Thus, T cell lines producing interferon (IFN)-gamma but not IL-4 (TH1......MHC-class-II-positive T cells are found in tissues involved in autoimmune disorders. Stimulation of class II molecules by monoclonal antibodies (mAbs) or bacterial superantigens induces protein tyrosine phosphorylation through activation of protein tyrosine kinases in T cells, and class II signals...... modulate several T cell responses. Here, we studied further the role of class II molecules in the regulation of T cell growth. Costimulation of class II molecules by immobilized HLA-DR mAb significantly enhanced interleukin (IL)-2-supported T cell growth of the majority of CD4+, CD45RAlow, ROhigh T cell...

  13. Role of Estrogen in Thyroid Function and Growth Regulation

    Directory of Open Access Journals (Sweden)

    Ana Paula Santin

    2011-01-01

    Full Text Available Thyroid diseases are more prevalent in women, particularly between puberty and menopause. It is wellknown that estrogen (E has indirect effects on the thyroid economy. Direct effects of this steroid hormone on thyroid cells have been described more recently; so, the aim of the present paper was to review the evidences of these effects on thyroid function and growth regulation, and its mechanisms. The expression and ratios of the two E receptors, α and β, that mediate the genomic effects of E on normal and abnormal thyroid tissue were also reviewed, as well as nongenomic, distinct molecular pathways. Several evidences support the hypothesis that E has a direct role in thyroid follicular cells; understanding its influence on the growth and function of the thyroid in normal and abnormal conditions can potentially provide new targets for the treatment of thyroid diseases.

  14. Effect of growth regulators on growth of hybrids of east hellebore (Helleborus orientalis Lam.

    Directory of Open Access Journals (Sweden)

    Monika Henschke

    2014-12-01

    Full Text Available The aim of the study was to determine the effect of growth regulators in foliar or soil applications on the growth of Helleborus orientalis ‘Red Hybrids’. Used benzyladenine, gibberellic acid and flurprimidol varying concentrations depending on the method of application. Plant growth was assessed on the basis of plant height, number of resume buds and the number of leaves. Type of growth regulator and method of application had a significant impact on the features. It has been found that the use of BA or BA+GA3, regardless of the application method, will increase the number of resume buds and leaves and decrease the plant height. Flurprimidol in­hibits plant growth, and does not increase the number of resume buds and leaves. In the cultivation of Helleborus orientalis it is recommended to water the plants twice with a mixture of solutions of BA 500 mg·dm-3 + GA3 150 mg·dm-3 at a dose of 50 cm3 per 1 dm3 of medium.

  15. Differential regulation of GS-GOGAT gene expression by plant growth regulators in Arabidopsis seedlings

    Directory of Open Access Journals (Sweden)

    Dragićević Milan

    2016-01-01

    Full Text Available Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5, one nuclear gene for chloroplastic GS2 isoform (GLN2, two Fd-GOGAT genes (GLU1 and GLU2 and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN, abscisic acid (ABA, gibberellic acid (GA3 and 2,4-dichlorophenoxyacetic acid (2,4-D, on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes. [Projekat Ministarstva nauke Republike Srbije, br. ON173024

  16. Effects of cyclooxygenase 2 inhibitor on growth-associated protein 43 and nerve growth factor expression in dorsal root ganglion during neuropathic pain development

    Institute of Scientific and Technical Information of China (English)

    Chen Wang; Zhenwei Zheng

    2009-01-01

    BACKGROUND:Inflammatory responses in injured nerves have been recognized as important factors for initially sensitizing nociceptive neurons.Cyclooxygenase (COX) is the rate-limiting enzyme in prostaglandin synthesis,and COX-2 inhibitor is involved in mechanisms of analgesia and anti-inflammation.OBJECTIVE:To investigate the effects of COX-2 inhibitor on thermal and mechanical hyperalgesia,as well as expression of growth associated protein 43 (GAP-43) and nerve growth factor (NGF) in dorsal root ganglion,in a rat model of neuropathic pain due to chronic constriction injury.DESIGN,TIME AND SETTING:A randomized,controlled,comparison study that was performed at the Surgical Department and Pathological Laboratory,Second Affiliated Hospital of Shantou University Medical College from September 2006 to September 2007.MATERIALS:COX-2 inhibitor,Iomoxicam,was purchased from Nycomed Pharmaceutical (Austria);rabbit anti-GAP-43,and rabbit anti-NGF polyclonal antibodies were purchased from Boster,Wuhan,China.METHODS:A total of 50 adult,Wistar rats were randomly assigned to four groups:normal control (n=5),model (n=15),normal saline control (n=15),and lornoxicam treatment (n=15).With exception of the control group,the sciatic nerve of all rats was loosely ligated to establish a model of chronic constriction injury.The model rats were divided into three subgroups according to varying post-operative survival periods:3,7 and 14 days (n=5),respectively.Rats in the Iornoxicam treatment group were intraperitoneally injected with 1.3 mg/kg Iornoxicam every 12 hours throughout the entire experimental procedure.Rats in the normal saline control group were intraperitoneally injected with 1.3 mL/kg saline.MAIN OUTCOME MEASURES:Immunohistochemistry revealed expression of GAP-43 and NGF in the L5 dorsal root ganglions.Mechanical withdrawal threshold and thermal withdrawal latency were used to observe neurological behavioral changes in rats.RESULTS:The relative gray values of GAP-43-and NGF

  17. [ROLE OF CAPSAICIN-SENSITIVE NERVES IN THE REGULATION OF DEHYDROEPIANDROSTERONE SULFATE BLOOD CONTENT UNDER NORMAL AND FRUCTOSE-INDUCED METABOLIC SYNDROME].

    Science.gov (United States)

    Spiridonov, V K; Tolochko, Z S; Ovcjukova, M V; Kostina, N E; Obut, T A

    2015-08-01

    The effects of the stimulation of capsaicin-sensitive nerves (capsaicin, 1 mg/kg, s/c) and their eafferentation (capsaicin, 150 mg/kg, s/c) on the blood content of dehydroepiandrosterone sulfate (DHEAS) was investigated in normal rats and rats with fructose-induced metabolic syndrome (12.5% fructose solution, 10 weeks). An increase in blood of tryglyceride, lipid peroxidation, glucose (fasting and after loading glucose, 2 mg/kg, i/p) was considered as symptoms of metabolic syndrome. It was shown that in normal rats drinking tap water the stimulation of capsaicin-sensitive nerves resulted in the increase of DHEAS content while their deafferentation reduced the concentration of this hormone in the blood. The fructose diet caused the decrease in content of DHEAS, triglyceridemia, lipid peroxidation, impaired tolerance glucose. In rats with the metabolic syndrome the stimulation capsaicin-sensitive nerves prevented the fructose-induced decrease of DHEAS content as well as decreased the symptoms of metabolic syndrome. In fructose fed rats the stimulation-induced effects were prevented by the deafferentation of capsaicin-sensitive nerves. It is suggested that capsaicin-sensitive nerves contribute both to the regulation of blood content of DHEAS under normal and fructose-induced metabolic syndrome.

  18. Transforming growth factor-beta induces nerve growth factor expression in pancreatic stellate cells by activation of the ALK-5 pathway.

    Science.gov (United States)

    Haas, Stephan L; Fitzner, Brit; Jaster, Robert; Wiercinska, Eliza; Gaitantzi, Haristi; Jesnowski, Ralf; Jesenowski, Ralf; Löhr, J-Matthias; Singer, Manfred V; Dooley, Steven; Breitkopf, Katja

    2009-10-01

    Nerve growth factor (NGF), a survival factor for neurons enforces pain by sensitizing nociceptors. Also in the pancreas, NGF was associated with pain and it can stimulate the proliferation of pancreatic cancer cells. Hepatic stellate cells (HSC) respond to NGF with apoptosis. Transforming growth factor (TGF)-beta, one of the strongest pro-fibrogenic activators of pancreatic stellate cells (PSC) induced NGF and its two receptors in an immortalized human cell line (ihPSC) and primary rat PSC (prPSC) as determined by RT-PCR, western blot, and immunofluorescence. In contrast to HSC, PSC expressed both NGF receptors, although p75(NTR) expression was weak in prPSC. In contrast to ihPSC TGF-beta activated both Smad signaling cascades in prPSC. NGF secretion was diminished by the activin-like kinase (ALK)-5 inhibitor SB431542, indicating the predominant role of ALK5 in activating the NGF system in PSC. While NGF did not affect proliferation or survival of PSC it induced expression of Inhibitor of Differentiation-1. We conclude that under conditions of upregulated TGF-beta, like fibrosis, NGF levels will also increase in PSC which might contribute to pancreatic wound healing responses.

  19. 骨癌痛大鼠DRG神经元GRK2和β-arrestin2表达以及NGF调节作用的研究%Expression of GRK2 and β-arrestin2 in the dorsal root ganglion neurons and the regulated effect by nerve growth factor in rats with bone cancer pain

    Institute of Scientific and Technical Information of China (English)

    姚鹏; 王志彬; 蒋晶晶; 张锦; 孟凌新

    2011-01-01

    目的:观察大鼠骨癌痛时脊髓背根神经节(DRG)G蛋白偶联受体激酶2(GRK2)和β-arrestin2的变化,探讨鞘内注射抗神经生长因子抗体(anti-NGF)对其表达及疼痛行为学的影响.方法:60只雌性SD大鼠随机分为假手术组、骨癌痛组及骨癌痛+anti-NGF组,13 d后鞘内置管,16 d开始鞘内注入生理盐水或anti-NGF不同时点观察疼痛行为学变化;21 d取同侧L4、L5 DRG,检测β-arrestin2、GRK2蛋白及mRNA表达变化.结果:与假手术组比较,骨癌痛组大鼠体质量减轻[(219±4.8)vs(243±8.1)],自发缩足次数增多[(24.1±3.6)vs(2.9±0.4)],热辐射潜伏期(PWL)缩短[(3.8±0.5)vs(10.9±1.3)],机械痛阈(PWT)降低[(3.2±1.1)vs(12.3±1.3)];与骨癌痛组比较,骨癌痛+anti-NGF组大鼠缩足次数减少(6.7±1.2),PWL延长(9.7±1.2),PWT增高(9.7±1.5).骨癌痛组大鼠β-arrestin2、GRK2表达均高于假手术组,而骨癌痛+anti-NGF组则明显低于骨癌痛组.骨癌痛组大鼠DRG神经元β-arrestin2与GRK2 mRNA的表达均高于假手术组,而骨癌痛+anti-NGF组则均低于骨癌痛组.结论:大鼠骨癌痛时DRG神经元GRK2和β-arrestin2的表达增加,anti-NGF可明显缓解骨癌痛,并对GRK2和β-arrestin2具有调制作用.%OBJECTIVE: To observe the expression of β-arrestin2 and G protein-coupled receptor kinases 2 (GRK2) in the dorsal root ganglion(DRG) neurons, and further investigate the regulated effects by intrathecal application of anti-NGF on the expression and pain-related behavior in rats with bone cancer pain.METHODS: Sixty female rats were divided into sham, cancer and cancer+ anti-NGF group.Bone cancer pain rats were induced by implantation of Walker 256 breast carcinosarcoma cells into the tibia.Each rat was surgically fitted with an intrathecal catheter at days 13, Sodium chloride (groups sham and cancer) or anti-NGF(group eancer+anti-NGF) 10 μL was injected by intrathecal catheter from 16 to 21 days, pain-related behavior were assessed.Western blotting

  20. MEPE is a novel regulator of growth plate cartilage mineralization.

    Science.gov (United States)

    Staines, K A; Mackenzie, N C W; Clarkin, C E; Zelenchuk, L; Rowe, P S; MacRae, V E; Farquharson, C

    2012-09-01

    Matrix extracellular phosphoglycoprotein (MEPE) belongs to the SIBLING protein family which play key roles in biomineralization. Although the growth plates of MEPE-overexpressing mice display severe morphological disruption, the expression and function of MEPE in growth plate matrix mineralization remains largely undefined. Here we show MEPE and its cleavage product, the acidic serine aspartate-rich MEPE-associated motif (ASARM) peptide, to be localised to the hypertrophic zone of the growth plate. We also demonstrate that the phosphorylated (p)ASARM peptide inhibits ATDC5 chondrocyte matrix mineralization. Stable MEPE-overexpressing ATDC5 cells also had significantly reduced matrix mineralization in comparison to the control cells. Interestingly, we show that the addition of the non-phosphorylated (np)ASARM peptide promoted mineralization in the ATDC5 cells. The peptides and the overexpression of MEPE did not affect the differentiation of the ATDC5 cells. For a more physiologically relevant model, we utilized the metatarsal organ culture model. We show the pASARM peptide to inhibit mineralization at two stages of development, as shown by histological and μCT analysis. Like in the ATDC5 cells, the peptides did not affect the differentiation of the metatarsals indicating that the effects seen on mineralization are direct, as is additionally confirmed by no change in alkaline phosphatase activity or mRNA expression. In the metatarsal organ cultures, the pASARM peptide also reduced endothelial cell markers and vascular endothelial growth factor mRNA expression. Taken together these results show MEPE to be an important regulator of growth plate chondrocyte matrix mineralization through its cleavage to an ASARM peptide.

  1. Nerve biopsy

    Science.gov (United States)

    Biopsy - nerve ... A nerve biopsy is most often done on a nerve in the ankle, forearm, or along a rib. The health care ... feel a prick and a mild sting. The biopsy site may be sore for a few days ...

  2. Early application of nerve growth factor affects serum inflammatory cytokine levels in neonatal hypoxic ischemic encephalopathy

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    -6 and interleukin-18 at 1, 3 and 7 days after birth.RESULTS: All the 60 HIE neonates and 30 normal neonates were involved in the final analysis of results.① Serum level of interleukin-6: The serum levels of interlenkin-6 at 1, 3 and 7 days after birth in the HIE group were all lower than those in the control group (P < 0.05), and gradually recovered to the normal level as time prolonged. The serum levels of interleukin-6 at 1, 3 and 7 days after birth in the NGF-treated group were higher than those in the HIE group (P < 0.05). ②Serum level of interleukin-18: The serum levels of interleukin-18 at 1, 3 and 7 days after birth in the HIE group were all higher than those in the control group (P < 0.05), especially that at 3 days. The serum levels of interleukin-18 at 1, 3 and 7 days after birth in the NGF-treated group were lower than those in the HIE group (P < 0.05).CONCLUSION: After hypoxic ischemia, the level of interleukin-6 was decreased and that of interleukin-18 was increased in peripheral serum in HIE neonates, while NGF could balance the levels of interleukin-6 and interleukin-18, adjust the immunological function, and protect the nerve cells.

  3. Economic growth and energy regulation in the environmental Kuznets curve.

    Science.gov (United States)

    Lorente, Daniel Balsalobre; Álvarez-Herranz, Agustín

    2016-08-01

    This study establishes the existence of a pattern of behavior, between economic growth and environmental degradation, consistent with the environmental Kuznets curve (EKC) hypothesis for 17 Organization for Economic Cooperation and Development (OECD) countries between 1990 and 2012. Based on this EKC pattern, it shows that energy regulation measures help reduce per capita greenhouse gas (GHG) emissions. To validate this hypothesis, we also add the explanatory variables: renewable energy promotion, energy innovation processes, and the suppression effect of income level on the contribution of renewable energy sources to total energy consumption. It aims to be a tool for decision-making regarding energy policy. This paper provides a two-stage econometric analysis of instrumental variables with the aim of correcting the existence of endogeneity in the variable GDP per capita, verifying that the instrumental variables used in this research are appropriate for our aim. To this end, it first makes a methodological contribution before incorporating additional variables associated with environmental air pollution into the EKC hypothesis and showing how they positively affect the explanation of the correction in the GHG emission levels. This study concludes that air pollution will not disappear on its own as economic growth increases. Therefore, it is necessary to promote energy regulation measures to reduce environmental pollution.

  4. Cloning of the Eukaryotic Expression Vector with Nerve Growth Factor in Rats and Its Effects on Proliferation and Differentiation of Mesencephal Neural Stem Cells of Fetal Rats

    Institute of Scientific and Technical Information of China (English)

    Minhua LIN; Lin YANG; Rong FU; Hongyang ZHAO

    2008-01-01

    Summary: The eukaryotic expression vector containing full-length cDNA sequence of rate nerve growth factor (NGF) β subunit was constructed and its effects on proliferation and differentiation of neural stem cells were observed. By using PCR, full-length cDNA sequence of NGF β subunit in rats was cloned and ligated into the eukaryotic expression vector pEGFP-N1-NGE The recombinant plasmid pEGFP-N1-NGF was transfected into the mesencephal neural stem cells of embryonic rats by Lipofectamin and transiently expressed. MTT method was used to determine the effects of NGF on proliferation of neural stem cells, and under phase-contrast microscopy, the effects of NGF on growth of nervous processes following differentiation of neural stem cells were observed. Sequence analysis indicated that the cloned full-length cDNA sequence of rat NGF β was identical to that of published sequence encoding NGF in gene GeneBank. The transfection of recombinant plasmid pEGFP-N1-NGF into mesencephal neural stem cells of embryonic rats could obviously promote proliferation of neural stem cells and faciliate the growth of neural stem cells-derived nerve cells. It was suggested that neural stem cells could be used as a vehicle of gene transfer, and the expression of NGF β subunit in the neural stem cells could promote the growth of nerve cells derived from neural stem cells.

  5. Signaling molecules regulating phenotypic conversions of astrocytes and glial scar formation in damaged nerve tissues.

    Science.gov (United States)

    Koyama, Yutaka

    2014-12-01

    Phenotypic conversion of astrocytes from resting to reactive (i.e., astrocytic activation) occurs in numerous brain disorders. Astrocytic activation in severely damaged brain regions often leads to glial scar formation. Because astrocytic activation and glial scar largely affect the vulnerability and tissue repair of damaged brain, numerous studies have been made to clarify mechanisms regulating the astrocytic phenotype. The phenotypic conversion is accompanied by the increased expression of intermediate filament proteins and the induction of hypertrophy in reactive astrocytes. Severe brain damage results in proliferation and migration of reactive astrocytes, which lead to glial scar formations at the injured areas. Gliogenesis from neural progenitors in the adult brain is also involved in astrocytic activation and glial scar formation. Recent studies have shown that increased expression of connexin 43, aquaporin 4, matrix metalloproteinase 9, and integrins alter the function of astrocytes. The transcription factors: STAT3, OLIG2, SMAD, NF-κB, and Sp1 have been suggested to play regulatory roles in astrocytic activation and glial scar formation. In this review, I discuss the roles of these key molecules regulating the pathophysiological functions of reactive astrocytes.

  6. Age-Related Yield of Adipose-Derived Stem Cells Bearing the Low-Affinity Nerve Growth Factor Receptor

    Directory of Open Access Journals (Sweden)

    Raquel Cuevas-Diaz Duran

    2013-01-01

    Full Text Available Adipose-derived stem cells (ADSCs are a heterogeneous cell population that may be enriched by positive selection with antibodies against the low-affinity nerve growth factor receptor (LNGFR or CD271, yielding a selective cell universe with higher proliferation and differentiation potential. This paper addresses the need for determining the quantity of ADSCs positive for the CD271 receptor and its correlation with donor's age. Mononuclear cells were harvested from the lower backs of 35 female donors and purified using magnetic beads. Multipotency capacity was tested by the expression of stemness genes and through differentiation into preosteoblasts and adipocytes. A significant statistical difference was found in CD271+ concentrations between defined age intervals. The highest yield was found within women on the 30–40-year-old age range. CD271+ ADSCs from all age groups showed differentiation capabilities as well as expression of typical multipotent stem cell genes. Our data suggest that the amount of CD271+ cells correlates inversely with age. However, the ability to obtain these cells was maintained through all age ranges with a yield higher than what has been reported from bone marrow. Our findings propose CD271+ ADSCs as the primary choice for tissue regeneration and autologous stem cell therapies in older subjects.

  7. Vitamin A increases nerve growth factor and retinoic acid receptor beta and improves diabetic neuropathy in rats.

    Science.gov (United States)

    Hernández-Pedro, Norma; Granados-Soto, Vinicio; Ordoñez, Graciela; Pineda, Benjamin; Rangel-López, Edgar; Salazar-Ramiro, Aleli; Arrieta, Oscar; Sotelo, Julio

    2014-09-01

    All-trans retinoic acid (ATRA) promotes the endogenous expression of both nerve growth factor (NGF) and retinoic acid receptor beta (RAR-β). We have previously shown that the administration of ATRA partly reverts the damage induced by diabetic neuropathy (DN). In this investigation, we evaluated the effects of vitamin A, a commercial, inexpensive compound of retinoic acid, on the therapy of DN. A total of 70 rats were randomized into 4 groups. Group A was the control, and groups B, C, and D received a total dose of 60 mg/kg streptozotocin intraperitoneally. When signs of DN developed, groups C and D were treated either with vitamin A (20,000 IU) or with ATRA 25 mg/kg for 60 days. Plasma glucose, contents of NGF, thermal and nociceptive tests, and RAR-β expression were evaluated. All diabetic rats developed neuropathy. The treatment with vitamin A and ATRA reverted similarly the sensorial disturbances, which was associated with increased contents of NGF and RAR-β expression. Our results indicate that the administration of vitamin A has the same therapeutic effect as ATRA on peripheral neuropathy and suggest its potential therapeutic use in patients with diabetes.

  8. Differential role of entorhinal and hippocampal nerve growth factor in short- and long-term memory modulation.

    Science.gov (United States)

    Walz, R; Roesler, R; Reinke, A; Martins, M R; Quevedo, J; Izquierdo, I

    2005-01-01

    We studied the effects of infusion of nerve growth factor (NGF) into the hippocampus and entorhinal cortex of male Wistar rats (250-300 g, N = 11-13 per group) on inhibitory avoidance retention. In order to evaluate the modulation of entorhinal and hippocampal NGF in short- and long-term memory, animals were implanted with cannulae in the CA1 area of the dorsal hippocampus or entorhinal cortex and trained in one-trial step-down inhibitory avoidance (foot shock, 0.4 mA). Retention tests were carried out 1.5 h or 24 h after training to measure short- and long-term memory, respectively. Immediately after training, rats received 5 microl NGF (0.05, 0.5 or 5.0 ng) or saline per side into the CA1 area and entorhinal cortex. The correct position of the cannulae was confirmed by histological analysis. The highest dose of NGF (5.0 ng) into the hippocampus blocked short-term memory (P long-term memory. NGF administration into the entorhinal cortex improved long-term memory at the dose of 5.0 ng (P short-term memory. Taken as a whole, our results suggest a differential modulation by entorhinal and hippocampal NGF of short- and long-term memory.

  9. Nerve growth factor and diarrhea-predominant irritable bowel syndrome (IBS-D): a potential therapeutic target?

    Science.gov (United States)

    Xu, Xiao-juan; Liu, Liang; Yao, Shu-kun

    2016-01-01

    Irritable bowel syndrome (IBS) is a common functional gastrointestinal disorder characterized by recurrent abdominal pain or discomfort associated with abnormal bowel habits. Diarrhea-predominant IBS (IBS-D) is a major subtype of IBS, the predominant manifestations of which are abdominal pain and diarrhea. The pathogenesis of IBS-D remained unknown until recently. The effects of psychosocial stress, central hypervigilance, neuroendocrine abnormality, disturbed gastrointestinal motility, mucosal immune activation, intestinal barrier dysfunction, visceral hypersensitivity (VH), altered gut flora, and genetic susceptibility may be involved in its development. Recently, increased attention has been placed on the neural-immune-endocrine network mechanism in IBS-D, especially the role of various neuroendocrine mediators. As a member of the neurotrophin family, nerve growth factor (NGF) has diverse biological effects, and participates in the pathogenesis of many diseases. Basic studies have demonstrated that NGF is associated with inflammatory- and stress-related VH, as well as stress-related intestinal barrier dysfunction. The aim of this study is to summarize recent literature and discuss the role of NGF in the pathophysiology of IBS-D, especially in VH and intestinal barrier dysfunction, as well as its potential as a therapeutic target in IBS-D.

  10. Neuroprotection elicited by nerve growth factor and brain-derived neurotrophic factor released from astrocytes in response to methylmercury.

    Science.gov (United States)

    Takemoto, Takuya; Ishihara, Yasuhiro; Ishida, Atsuhiko; Yamazaki, Takeshi

    2015-07-01

    The protective roles of astrocytes in neurotoxicity induced by environmental chemicals, such as methylmercury (MeHg), are largely unknown. We found that conditioned medium of MeHg-treated astrocytes (MCM) attenuated neuronal cell death induced by MeHg, suggesting that astrocytes-released factors can protect neuronal cells. The increased expression of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was observed in MeHg-treated astrocytes. NGF and BDNF were detected in culture media as homodimers, which are able to bind specific tyrosine kinase receptors, tropomyosin related kinase (Trk) A and TrkB, respectively. The TrkA antagonist and TrkB antagonist abolished the protective effects of MCM in neuronal cell death induced by MeHg. Taken together, astrocytes synthesize and release NGF and BDNF in response to MeHg to protect neurons from MeHg toxicity. This study is considered to show a novel defense mechanism against MeHg-induced neurotoxicity.

  11. A combination of gangliosides and nerve growth factor alleviates lipopolysaccharide-induced neuronal cells damage and its mechanism

    Directory of Open Access Journals (Sweden)

    Song Ying

    2017-01-01

    Full Text Available Objective: To evaluate the effect of gangliosides (GM1 in combination with nerve growth factor (NGF against neuronal cells damage evoked by lipopolysaccharide (LPS, and tries to uncover its probable mechanism. Methods: (1 Cell viability was measured using Methyl thiazolyl tetrazolium (MTT method, which was also determined the optimum concentration of LPS for the damage models; meanwhile, cell morphology was observed by microscope. (2 The expression level of NF-κB was detected by RT-PCR. (3 Finally, NF-κB inhibitor pyrollidine dithiocarbamate (PDTC was treated for the research of NF-κB pathway. Results: (1 MTT results shown that the LPS injury was dose-dependent, and 100nmol/L was selected as the optimum damage concentration. (2 Through the morphological observation, MTT and RT-PCR analysis, we found that GM1 and NGF both can protect cells against LPS injury; interestingly, combination of GM1 and NGF had a slighter LPS injury than GM1 administration alone. Moreover, the expression of NF-κB in combination group was lower than that in GM1 group, indicated that blockage of NF-κB pathway was better for cells living. Conclusion: Combination of GM1 and NGF has a better protective act on LPS injury than GM1 alone. The mechanism may have some connections with NF-κB pathways.

  12. Intracerebroventricular administration of nerve growth factor induces gliogenesis in sensory ganglia, dorsal root, and within the dorsal root entry zone.

    Science.gov (United States)

    Schlachetzki, Johannes C M; Pizzo, Donald P; Morrissette, Debbi A; Winkler, Jürgen

    2014-01-01

    Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF) leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG) of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU) to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  13. Intracerebroventricular Administration of Nerve Growth Factor Induces Gliogenesis in Sensory Ganglia, Dorsal Root, and within the Dorsal Root Entry Zone

    Directory of Open Access Journals (Sweden)

    Johannes C. M. Schlachetzki

    2014-01-01

    Full Text Available Previous studies indicated that intracerebroventricular administration of nerve growth factor (NGF leads to massive Schwann cell hyperplasia surrounding the medulla oblongata and spinal cord. This study was designed to characterize the proliferation of peripheral glial cells, that is, Schwann and satellite cells, in the trigeminal ganglia and dorsal root ganglia (DRG of adult rats during two weeks of NGF infusion using bromodeoxyuridine (BrdU to label dividing cells. The trigeminal ganglia as well as the cervical and lumbar DRG were analyzed. Along the entire neuraxis a small number of dividing cells were observed within these regions under physiological condition. NGF infusion has dramatically increased the generation of new cells in the neuronal soma and axonal compartments of sensory ganglia and along the dorsal root and the dorsal root entry zone. Quantification of BrdU positive cells within sensory ganglia revealed a 2.3- to 3-fold increase in glial cells compared to controls with a similar response to NGF for the different peripheral ganglia examined. Immunofluorescent labeling with S100β revealed that Schwann and satellite cells underwent mitosis after NGF administration. These data indicate that intracerebroventricular NGF infusion significantly induces gliogenesis in trigeminal ganglia and the spinal sensory ganglia and along the dorsal root entry zone as well as the dorsal root.

  14. Intranasal "painless" human Nerve Growth Factor [corrected] slows amyloid neurodegeneration and prevents memory deficits in App X PS1 mice.

    Directory of Open Access Journals (Sweden)

    Simona Capsoni

    Full Text Available Nerve Growth Factor (NGF is being considered as a therapeutic candidate for Alzheimer's disease (AD treatment but the clinical application is hindered by its potent pro-nociceptive activity. Thus, to reduce systemic exposure that would induce pain, in recent clinical studies NGF was administered through an invasive intracerebral gene-therapy approach. Our group demonstrated the feasibility of a non-invasive intranasal delivery of NGF in a mouse model of neurodegeneration. NGF therapeutic window could be further increased if its nociceptive effects could be avoided altogether. In this study we exploit forms of NGF, mutated at residue R100, inspired by the human genetic disease HSAN V (Hereditary Sensory Autonomic Neuropathy Type V, which would allow increasing the dose of NGF without triggering pain. We show that "painless" hNGF displays full neurotrophic and anti-amyloidogenic activities in neuronal cultures, and a reduced nociceptive activity in vivo. When administered intranasally to APPxPS1 mice ( n = 8, hNGFP61S/R100E prevents the progress of neurodegeneration and of behavioral deficits. These results demonstrate the in vivo neuroprotective and anti-amyloidogenic properties of hNGFR100 mutants and provide a rational basis for the development of "painless" hNGF variants as a new generation of therapeutics for neurodegenerative diseases.

  15. Continuous intrathecal fluid infusions elevate nerve growth factor levels and prevent functional deficits after spinal cord ischemia.

    Science.gov (United States)

    Bowes, M; Tuszynski, M H; Conner, J; Zivin, J A

    2000-11-17

    Continuous intracerebroventricular or intrathecal infusions of neurotrophic factors have been reported to prevent neuronal degeneration, stimulate axonal sprouting and ameliorate behavioral deficits in various models of CNS injury and aging. In the present study, the ability of intrathecal infusions of recombinant human nerve growth factor (NGF) to reduce functional deficits following spinal cord ischemia was investigated. Adult rabbits underwent intrathecal cannulation and continuous infusions of either 300 microg/ml recombinant human NGF or artificial CSF (vehicle) at a rate of 143 microl/day for 7 days prior to induction of spinal cord ischemia. Continuous infusions were maintained after induction of ischemia. Four days later, both NGF-treated and vehicle-infused subjects showed a significant amelioration of functional motor deficits compared to lesioned, non-infused subjects (PNGF-infused subjects (mean+/-S.E.M.). Significantly elevated NGF protein levels were attained within the spinal cords of both NGF-treated subjects and artificial CSF-infused subjects, although levels were substantially higher in NGF-treated subjects (9.8+/-3.8 ng/g in NGF-infused vs. 2.0+/-0.4 ng/g in vehicle-infused and only 0.4+/-0.2 ng/g in lesioned, non-infused animals). These findings indicate that the process of intrathecal cannulation and fluid infusion elicits alterations in the spinal cord environment that are neuroprotective, including spontaneous elevations in NGF levels.

  16. Nerve growth factor antibody stimulates reactivation of ocular herpes simplex virus type 1 in latently infected rabbits.

    Science.gov (United States)

    Hill, J M; Garza, H H; Helmy, M F; Cook, S D; Osborne, P A; Johnson, E M; Thompson, H W; Green, L C; O'Callaghan, R J; Gebhardt, B M

    1997-06-01

    Anti-nerve growth factor (anti-NGF) antibody has been shown to induce reactivation of latent herpes simplex virus type 1 (HSV-1) in vitro. We found that systemically administered anti-NGF induces ocular shedding of HSV-1 in vivo in rabbits harboring latent virus. Rabbits in which HSV-1 latency had been established were given intravenous injections of goat anti-NGF serum daily for 10 days beginning 42 days after primary viral infection. Tears were assayed for virus for 12 days beginning on the day of the first injection. All eight rabbits given high titer anti-NGF had infectious virus in their tears at least once during the 12-day period. Fifteen of 16 eyes were positive and the average duration of viral shedding for these eyes was 4.0 days. Latently infected rabbits receiving daily injections of nonimmune goat serum or saline for 10 consecutive days were controls. Only six of the 16 (38%) eyes from rabbits receiving nonimmune goat serum shed virus. Only one of 12 eyes from untreated rabbits shed virus. Sera from control rabbits had no detectable anti-NGF activity; titers in anti-NGF-treated rabbits ranged between 1:1000 and 1:10,000. NGF deprivation may act as a neuronal stressor and may share a common second messenger pathway with heat- or cold-stress induced reactivation of latent HSV-1.

  17. Effects of nerve growth factor on N-methyI-D-asparate receptor 1 after spinal cord injury in rats

    Institute of Scientific and Technical Information of China (English)

    曹晓建; 汤长华; 罗永湘

    2002-01-01

    To explore the effects of the nerve growth factor ( NGF ) on N-methyI-D-asparate receptor 1(NMDAR 1 ) after spinal cord injury. Methods: Spinal cord injury of Wistar rats was performed with Allen's method by a 10 g x 2.5 cm impact on the posterior T8 spinal cord. NGF was given to the rats of the treatment group via subarachnoid space tube at once,2, 4, 8, 12 and 24 hours after spinal cord injury,respectively. The expression of NMDAR1 mRNA in spinal cord was detected by in situ hybridization. Results: Rare expression sequence of NMDAR1 mRNA was found in rat spinal cord of the normal group. A strong expression sequence of NMDAR1 mRNA was found in rat spinal cord of the normal saline group. The expression of NMDAR1 mRNA in the NGF group was significantly decreased as compared with that in the normal saline group ( P = 0.01 ). Conclusions: NGF can relieve damage of injured spinal cord by prohibiting the expression of NMDAR1 mRNA.

  18. Effects of Co-grafts Mesenchymal Stem Cells and Nerve Growth Factor Suspension in the Repair of Spinal Cord Injury

    Institute of Scientific and Technical Information of China (English)

    FANG Huang; WANG Junfang; CHEN Anmin

    2006-01-01

    To investigate effect of the transplantation of mesenchymal stem cells (MSCs) in combination with nerve growth factor (NGF) on the repair of spinal cord injury (SCI) in adult rats, spinal cord of adult rats (n= 32) was injured by using the modified Allen' s method. One week after the injury, the injured cords were injected with Dubecco-modified Eagles medium (DMEM , Group Ⅰ), MSCs (Group Ⅱ), NGF (Group Ⅲ), and MSCs plus NGF (Group Ⅳ). One month and two months after the injury, rats were sacrificed and their injured cord tissues were sectioned for the identification of the transplanted cells. The axonal regeneration and the differentiation of MSCs were examined by immunocytochemical staining. At the same time, rats were subjected to behavioral tests by using the open-field BBB scoring system. Immunocytochemical staining showed that axonal regeneration and the transplanted cells partially expressed neuron-specific nuclear protein (NeuN) and glial fibrillary acidic protein (GFAP). At the same time, significant improvement in BBB locomotor rating scale (P<0.05) were observed in the treatment group. More importantly, further functional improvement were noted in the combined treatment group. MSCs could differentiate into neurons and astrocytes. MSCs and NGF can promote axonal regeneration and improve functional recovery. There might exist a synergistic effect between MSCs and NGF.

  19. The role of nerve growth factor inducible protein B in the pathogenesis of levodopa-induced dyskinesias

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study the role of the expression of nerve growth factor inducible protein B gene (NGFI-B) in striatum in the pathogenesis of levodopa-induced dyskinesias (LID). Methods: The rat model of LID was treated with SCH 23390( 1 mg/kg ip,a dopamine D1 antagonist) and haloperidol (1 mg/kg ip, a dopamine D2 antagonist) respectively. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to measure the expression of NGFI-B mRNA in striatum and the behavior changes were observed. Results: After treatment with SCH23390, abnormal involuntary movement (AIM) in LID rats was decreased ( P <0.05) and the expression of NGFI-B mRNA in striatum did not change significantly. After treatment with haloperidol, the changes of AIM in LID rats were not significant and the expression of NGFI-B mRNA was increased significantly( P < 0.01). Conclusion: LID is associated with over-expression of NGFI-B in striatum. Abnormal activity in the direct pathway and the basal ganglia circuit could be involved in the occurrence of LID.

  20. Increased encapsulated cell biodelivery of nerve growth factor in the brain by transposon-mediated gene transfer.

    Science.gov (United States)

    Fjord-Larsen, L; Kusk, P; Emerich, D F; Thanos, C; Torp, M; Bintz, B; Tornøe, J; Johnsen, A H; Wahlberg, L U

    2012-10-01

    Nerve growth factor (NGF) is a potential therapeutic agent for Alzheimer's disease (AD) as it has positive effects on the basal forebrain cholinergic neurons whose degeneration correlates with the cognitive decline in AD. We have previously described an encapsulated cell biodelivery device, NsG0202, capable of local delivery of NGF by a genetically modified human cell line, NGC-0295. The NsG0202 devices have shown promising safety and therapeutic results in a small phase 1b clinical study. However, results also show that the NGF dose could advantageously be increased. We have used the sleeping beauty transposon expression technology to establish a new clinical grade cell line, NGC0211, with at least 10 times higher NGF production than that of NGC-0295. To test whether encapsulation of this cell line provides a relevant dose escalation step in delivering NGF for treatment of the cognitive decline in AD patients, we have validated the bioactivity of devices with NGC0211 and NGC-0295 cells in normal rat striatum as well as in the quinolinic acid striatal lesion model. These preclinical animal studies show that implantation of devices with NGC0211 cells lead to significantly higher NGF output, which in both cases correlate with highly improved potency.

  1. Maternal corticosterone regulates nutrient allocation to fetal growth in mice.

    Science.gov (United States)

    Vaughan, Owen R; Sferruzzi-Perri, Amanda N; Fowden, Abigail L

    2012-11-01

    Stresses during pregnancy that increase maternal glucocorticoids reduce birth weight in several species. However, the role of natural glucocorticoids in the mother in fetal acquisition of nutrients for growth remains unknown. This study aimed to determine whether fetal growth was reduced as a consequence of altered amino acid supply when mice were given corticosterone in their drinking water for 5 day periods in mid to late pregnancy (day, D, 11-16 or D14-19). Compared to controls drinking tap water, fetal weight was always reduced by corticosterone. At D16, corticosterone had no effect on materno-fetal transfer of [(14)C]methylaminoisobutyric acid (MeAIB), although placental MeAIB accumulation and expression of the Slc38a1 and Slc38a2 transporters were increased. However, at D19, 3 days after treatment ended, materno-fetal transfer of MeAIB was increased by 37% (P < 0.04). During treatment at D19, placental accumulation and materno-fetal transfer of MeAIB were reduced by 40% (P < 0.01), although expression of Slc38a1 was again elevated. Permanent reductions in placental vascularity occurred during the earlier but not the later period of treatment. Placental Hsd11b2 expression, which regulates feto-placental glucocorticoid bioavailability, was also affected by treatment at D19 only. Maternal corticosterone concentrations inversely correlated with materno-fetal MeAIB clearance and fetal weight at D19 but not D16. On D19, weight gain of the maternal carcass was normal during corticosterone treatment but reduced in those mice treated from D11 to D16, in which corticosterone levels were lowest. Maternal corticosterone is, therefore, a physiological regulator of the amino acid supply for fetal growth via actions on placental phenotype.

  2. Growth analysis of soybean plants treated with plant growth regulators Marcelo Ferraz de Campos

    Directory of Open Access Journals (Sweden)

    João Domingos Rodrigues

    2008-09-01

    Full Text Available This work aimed to verify the effect of plant growth regulators on soybean plant growth and chlorophyll content. In an experiment carried out in a greenhouse, soybean plants were cultivated (Glycine max (L. Merrill cv. BRS-184 in 10-liter pots containing soil from the arable layer, corrected and fertilized according to the soil analysis. The treatments used were: control; GA3 100mg.L-1; BAP 100mg.L-1; IBA 100mg.L-1; Stimulate® (IBA, GA3 and kinetin 20mL.L-1; mepiquat chloride 100mg.L-1 and mepiquat chloride 100mg.L-1 + BAP 100mg.L-1 + IBA 100mg.L-1. Treatments were applied three times at 30-day intervals. Six samplings were taken at 13-day intervals. The results indicated that the highest total dry weight value resulted from the application of IBA and Stimulate®, and that the application of mepiquat chloride in association with IBA and BAP reduced total dry matter production. The leaf area was smaller than the control in most treatments. The chlorophyll content and growth rate were slightly influenced by the treatments. The cytokinin treatment alone or in association with other plant growth regulators retained the chlorophyll content. RGR and NAR decreased from 99 days after sowing with the application of mepiquat chloride.

  3. The Self-Regulated Growth of Supermassive Black Holes

    CERN Document Server

    Younger, Joshua D; Cox, T J; Herquist, Lars

    2008-01-01

    We present a series of simulations of the self-regulated growth of supermassive black holes (SMBHs) in galaxies via three different fueling mechanisms: major mergers, minor mergers, and disk instabilities. The SMBHs in all three scenarios follow the same black hole fundamental plane (BHFP) and correlation with bulge binding energy seen in simulations of major mergers, and observed locally. Furthermore, provided that the total gas supply is significantly larger than the mass of the SMBH, its limiting mass is not influenced by the amount of gas available or the efficiency of black hole growth. This supports the assertion that SMBHs accrete until they reach a critical mass at which feedback is sufficient to unbind the gas locally, terminating the inflow and stalling further growth. At the same time, while minor and major mergers follow the same projected correlations (e.g., the $M_{BH}-\\sigma$ and Magorrian relations), SMBHs grown via disk instabilities do not, owing to structural differences between the host bu...

  4. Systemic down-regulation of delta-9 desaturase promotes muscle oxidative metabolism and accelerates muscle function recovery following nerve injury.

    Directory of Open Access Journals (Sweden)

    Ghulam Hussain

    Full Text Available The progressive deterioration of the neuromuscular axis is typically observed in degenerative conditions of the lower motor neurons, such as amyotrophic lateral sclerosis (ALS. Neurodegeneration in this disease is associated with systemic metabolic perturbations, including hypermetabolism and dyslipidemia. Our previous gene profiling studies on ALS muscle revealed down-regulation of delta-9 desaturase, or SCD1, which is the rate-limiting enzyme in the synthesis of monounsaturated fatty acids. Interestingly, knocking out SCD1 gene is known to induce hypermetabolism and stimulate fatty acid beta-oxidation. Here we investigated whether SCD1 deficiency can affect muscle function and its restoration in response to injury. The genetic ablation of SCD1 was not detrimental per se to muscle function. On the contrary, muscles in SCD1 knockout mice shifted toward a more oxidative metabolism, and enhanced the expression of synaptic genes. Repressing SCD1 expression or reducing SCD-dependent enzymatic activity accelerated the recovery of muscle function after inducing sciatic nerve crush. Overall, these findings provide evidence for a new role of SCD1 in modulating the restorative potential of skeletal muscles.

  5. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Meulen, J. van der; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to furthe

  6. Cholecystokinin regulates satiation independently of the abdominal vagal nerve in a pig model of total subdiaphragmatic vagotomy

    NARCIS (Netherlands)

    Ripken, D.; Wielen, N. van der; Meulen, J. van der; Schuurman, T.; Witkamp, R.F.; Hendriks, H.F.J.; Koopmans, S.J.

    2015-01-01

    The vagal nerve and gut hormones CCK and GLP-1 play important roles in the control of food intake. However, it is not clear to what extent CCK and GLP-1 increase satiation by stimulating receptors located on abdominal vagal nerve endings or via receptors located elsewhere. This study aimed to furthe

  7. The Evaluation of Nerve Growth Factor Over Expression on Neural Lineage Specific Genes in Human Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Mortazavi Yousef

    2016-07-01

    Full Text Available Objective Treatment and repair of neurodegenerative diseases such as brain tumors, spinal cord injuries, and functional disorders, including Alzheimer’s disease, are challenging problems. A common treatment approach for such disorders involves the use of mesenchymal stem cells (MSCs as an alternative cell source to replace injured cells. However, use of these cells in hosts may potentially cause adverse outcomes such as tumorigenesis and uncontrolled differentiation. In attempt to generate mesenchymal derived neural cells, we have infected MSCs with recombinant lentiviruses that expressed nerve growth factor (NGF and assessed their neural lineage genes. Materials and Methods In this experimental study, we cloned the NGF gene sequence into a helper dependent lentiviral vector that contained the green fluorescent protein (GFP gene. The recombinant vector was amplified in DH5 bacterial cells. Recombinant viruses were generated in the human embryonic kidney 293 (HEK-293 packaging cell line with the helper vectors and analyzed under fluorescent microscopy. Bone marrow mesenchymal cells were infected by recombinant viruses for three days followed by assessment of neural differentiation. We evaluated expression of NGF through measurement of the NGF protein in culture medium by ELISA; neural specific genes were quantified by real-time polymerase chain reaction (PCR. Results We observed neural morphological changes after three days. Quantitative PCR showed that expressions of NESTIN, glial derived neurotrophic factor (GDNF, glial fibrillary acidic protein (GFAP and Microtubule-associated protein 2 (MAP2 genes increased following induction of NGF overexpression, whereas expressions of endogenous NGF and brain derived neural growth factor (BDNF genes reduced. Conclusion Ectopic expression of NGF can induce neurogenesis in MSCs. Direct injection of MSCs may cause tumorigenesis and an undesirable outcome. Therefore an alternative choice to overcome this

  8. Fibroblast Growth Factor 21 Mediates Glycemic Regulation by Hepatic JNK

    Directory of Open Access Journals (Sweden)

    Santiago Vernia

    2016-03-01

    Full Text Available The cJun NH2-terminal kinase (JNK-signaling pathway is implicated in metabolic syndrome, including dysregulated blood glucose concentration and insulin resistance. Fibroblast growth factor 21 (FGF21 is a target of the hepatic JNK-signaling pathway and may contribute to the regulation of glycemia. To test the role of FGF21, we established mice with selective ablation of the Fgf21 gene in hepatocytes. FGF21 deficiency in the liver caused marked loss of FGF21 protein circulating in the blood. Moreover, the protective effects of hepatic JNK deficiency to suppress metabolic syndrome in high-fat diet-fed mice were not observed in mice with hepatocyte-specific FGF21 deficiency, including reduced blood glucose concentration and reduced intolerance to glucose and insulin. Furthermore, we show that JNK contributes to the regulation of hepatic FGF21 expression during fasting/feeding cycles. These data demonstrate that the hepatokine FGF21 is a key mediator of JNK-regulated metabolic syndrome.

  9. Contribution of presynaptic calcium-activated potassium currents to transmitter release regulation in cultured Xenopus nerve-muscle synapses.

    Science.gov (United States)

    Pattillo, J M; Yazejian, B; DiGregorio, D A; Vergara, J L; Grinnell, A D; Meriney, S D

    2001-01-01

    Using Xenopus nerve-muscle co-cultures, we have examined the contribution of calcium-activated potassium (K(Ca)) channels to the regulation of transmitter release evoked by single action potentials. The presynaptic varicosities that form on muscle cells in these cultures were studied directly using patch-clamp recording techniques. In these developing synapses, blockade of K(Ca) channels with iberiotoxin or charybdotoxin decreased transmitter release by an average of 35%. This effect would be expected to be caused by changes in the late phases of action potential repolarization. We hypothesize that these changes are due to a reduction in the driving force for calcium that is normally enhanced by the local hyperpolarization at the active zone caused by potassium current through the K(Ca) channels that co-localize with calcium channels. In support of this hypothesis, we have shown that when action potential waveforms were used as voltage-clamp commands to elicit calcium current in varicosities, peak calcium current was reduced only when these waveforms were broadened beginning when action potential repolarization was 20% complete. In contrast to peak calcium current, total calcium influx was consistently increased following action potential broadening. A model, based on previously reported properties of ion channels, faithfully reproduced predicted effects on action potential repolarization and calcium currents. From these data, we suggest that the large-conductance K(Ca) channels expressed at presynaptic varicosities regulate transmitter release magnitude during single action potentials by altering the rate of action potential repolarization, and thus the magnitude of peak calcium current.

  10. Perivascular nerve fiber α-synuclein regulates contractility of mouse aorta: a link to autonomic dysfunction in Parkinson's disease.

    Science.gov (United States)

    Marrachelli, Vannina G; Miranda, Francisco J; Alabadí, José A; Milán, Miguel; Cano-Jaimez, Marifé; Kirstein, Martina; Alborch, Enrique; Fariñas, Isabel; Pérez-Sánchez, Francisco

    2010-07-01

    Parkinson's disease and other neurodegenerative disorders associated to changes in alpha-synuclein often result in autonomic dysfunction, most of the time accompanied by abundant expression of this synaptic protein in peripheral autonomic neurons. Given that expression of alpha-synuclein in vascular elements has been previously reported, the present study was undertaken to determine whether alpha-synuclein directly participates in the regulation of vascular responsiveness. We detected by immunohistochemistry perivascular nerve fibers containing alpha-synuclein in the aorta of mice while aortic endothelial cells and muscular fibers themselves did not exhibit detectable levels of this protein. To assess the effect of alpha-synuclein on vascular reactivity, aortic ring preparations obtained from alpha-synuclein-deficient knockout mice and from transgenic mice overexpressing human wild-type alpha-synuclein under the control of the tyrosine hydroxylase-promoter were mounted and equilibrated in organ baths for isometric tension recording. Lack of alpha-synuclein did not modify the relaxant responses to the endothelium-dependent (acetylcholine) and -independent (sodium nitroprusside) vasodilators, but resulted in a greater than normal norepinephrine-induced vasoconstriction along with a lowered response to dopamine, suggesting potential presynaptic changes in dopamine and norepinephrine releases in knockout mice. Overexpression of alpha-synuclein in TH-positive fibers resulted in complex abnormal responses, characterized by lowered acetylcholine-induced relaxation and lowered norepinephrin-induced contraction. Taken together, our data show for the first time that alpha-synuclein is present in sympathetic fibers supplying the murine aorta and provide evidence that changes in alpha-synuclein levels in perivascular fibers play a physiological role in the regulation of vascular function.

  11. Corticotrigeminal Projections from the Insular Cortex to the Trigeminal Caudal Subnucleus Regulate Orofacial Pain after Nerve Injury via Extracellular Signal-Regulated Kinase Activation in Insular Cortex Neurons.

    Science.gov (United States)

    Wang, Jian; Li, Zhi-Hua; Feng, Ban; Zhang, Ting; Zhang, Han; Li, Hui; Chen, Tao; Cui, Jing; Zang, Wei-Dong; Li, Yun-Qing

    2015-01-01

    Cortical neuroplasticity alterations are implicated in the pathophysiology of chronic orofacial pain. However, the relationship between critical cortex excitability and orofacial pain maintenance has not been fully elucidated. We recently demonstrated a top-down corticospinal descending pain modulation pathway from the anterior cingulate cortex (ACC) to the spinal dorsal horn that could directly regulate nociceptive transmission. Thus, we aimed to investigate possible corticotrigeminal connections that directly influence orofacial nociception in rats. Infraorbital nerve chronic constriction injury (IoN-CCI) induced significant orofacial nociceptive behaviors as well as pain-related negative emotions such as anxiety/depression in rats. By combining retrograde and anterograde tract tracing, we found powerful evidence that the trigeminal caudal subnucleus (Vc), especially the superficial laminae (I/II), received direct descending projections from granular and dysgranular parts of the insular cortex (IC). Extracellular signal-regulated kinase (ERK), an important signaling molecule involved in neuroplasticity, was significantly activated in the IC following IoN-CCI. Moreover, in IC slices from IoN-CCI rats, U0126, an inhibitor of ERK activation, decreased both the amplitude and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) and reduced the paired-pulse ratio (PPR) of Vc-projecting neurons. Additionally, U0126 also reduced the number of action potentials in the Vc-projecting neurons. Finally, intra-IC infusion of U0126 obviously decreased Fos expression in the Vc, accompanied by the alleviation of both nociceptive behavior and negative emotions. Thus, the corticotrigeminal descending pathway from the IC to the Vc could directly regulate orofacial pain, and ERK deactivation in the IC could effectively alleviate neuropathic pain as well as pain-related negative emotions in IoN-CCI rats, probably through this top-down pathway. These findings may help

  12. Juvenile hormone regulates extreme mandible growth in male stag beetles.

    Directory of Open Access Journals (Sweden)

    Hiroki Gotoh

    Full Text Available The morphological diversity of insects is one of the most striking phenomena in biology. Evolutionary modifications to the relative sizes of body parts, including the evolution of traits with exaggerated proportions, are responsible for a vast range of body forms. Remarkable examples of an insect trait with exaggerated proportions are the mandibular weapons of stag beetles. Male stag beetles possess extremely enlarged mandibles which they use in combat with rival males over females. As with other sexually selected traits, stag beetle mandibles vary widely in size among males, and this variable growth results from differential larval nutrition. However, the mechanisms responsible for coupling nutrition with growth of stag beetle mandibles (or indeed any insect structure remain largely unknown. Here, we demonstrate that during the development of male stag beetles (Cyclommatus metallifer, juvenile hormone (JH titers are correlated with the extreme growth of an exaggerated weapon of sexual selection. We then investigate the putative role of JH in the development of the nutritionally-dependent, phenotypically plastic mandibles, by increasing hemolymph titers of JH with application of the JH analog fenoxycarb during larval and prepupal developmental periods. Increased JH signaling during the early prepupal period increased the proportional size of body parts, and this was especially pronounced in male mandibles, enhancing the exaggerated size of this trait. The direction of this response is consistent with the measured JH titers during this same period. Combined, our results support a role for JH in the nutrition-dependent regulation of extreme mandible growth in this species. In addition, they illuminate mechanisms underlying the evolution of trait proportion, the most salient feature of the evolutionary diversification of the insects.

  13. The effect of plant growth regulators on height control in potted Arundina graminifolia orchids (Growth regulators in Arundina graminifolia

    Directory of Open Access Journals (Sweden)

    Christina da Silva Wanderley

    2014-08-01

    Full Text Available Orchids have become an important portion of the international floriculture market.  Arundina graminifolia is a terrestrial orchid that produces attractive flowers, and, although the species could be a potential candidate for the floriculture market, its considerable height makes it difficult to transport and commercialize.  A number of plant growth regulators have been utilized to control plant height in ornamentals and other species.  Thus, the aim of this study was to evaluate the efficiency of growth regulators, paclobutrazol and chlormequat chloride on the vegetative development of containerized A. graminifolia orchid aiming at height control.  Paclobutrazol (Cultar was applied at 0, 5, 10, and 20 mg L-1, and CCC (Cycocel was applied at 0, 2000, 4000, and 6000 mg L-1. The plants were assessed monthly for the plant height and number of shoots per container. CCC had no effect on the final height of plants at the concentrations applied. In contrast, paclobutrazol was effective in controlling plant height at a concentration of 5 mg L-1, but higher concentrations (10 and 20 mg L-1 proved to be toxic to the plants, causing death to the new shoots. Paclobutrazol at lower concentrations offers a viable means for height control in A. graminifolia.

  14. Neuronal cell death, nerve growth factor and neurotrophic models: 50 years on.

    Science.gov (United States)

    Bennet, M R; Gibson, W G; Lemon, G

    2002-01-10

    Viktor Hamburger has just died at the age of 100. It is 50 years since he and Rita Levi-Montalcini laid the foundations for the study of naturally occurring cell death and of neurotrophic factors in the nervous system. In a period of less than 10 years, from 1949 to 1958, Hamburger and Levi-Montalcini made the following seminal discoveries: that neuron cell death occurs in dorsal root ganglia, sympathetic ganglia and the cervical column of motoneurons; that the predictions arising from this observation, namely that survival is dependent on the supply of a trophic factor, could be substantiated by studying the effects of a sarcoma on the proliferation of ganglionic processes both in vivo and in vitro; and that the proliferation of these processes could be used as an assay system to isolate the factor. This work provides a short review mostly of the early history of this subject in the context of the Hamburger/Levi-Montalcini paradigm. This acts as an introduction to a consideration of models that have been proposed to account for how the different sources of growth factors provide for the survival of neurons during development. It is suggested that what has been called the 'social-control' model provides the most parsimonious quantitative description of the contribution of trophic factors to neuronal survival, a concept for which we are in debt to Viktor Hamburger and Rita Levi-Montalcini.

  15. Regulation of stearoyl-CoA desaturase-1 after central and peripheral nerve lesions

    Directory of Open Access Journals (Sweden)

    Heussen Nicole

    2004-04-01

    Full Text Available Abstract Background Interruption of mature axons activates a cascade of events in neuronal cell bodies which leads to various outcomes from functional regeneration in the PNS to the failure of any significant regeneration in the CNS. One factor which seems to play an important role in the molecular programs after axotomy is the stearoyl Coenzyme A-desaturase-1 (SCD-1. This enzyme is needed for the conversion of stearate into oleate. Beside its role in membrane synthesis, oleate could act as a neurotrophic factor, involved in signal transduction pathways via activation of protein kinases C. Results In situ hybridization and immunohistochemistry demonstrated a strong up-regulation of SCD at mRNA and protein level in regenerating neurons of the rat facial nucleus whereas non-regenerating Clarke's and Red nucleus neurons did not show an induction of this gene. Conclusion This differential expression points to a functionally significant role for the SCD-1 in the process of regeneration.

  16. Pathways involved in gut mucosal barrier dysfunction induced in adult rats by maternal deprivation: corticotrophin-releasing factor and nerve growth factor interplay

    OpenAIRE

    2007-01-01

    Neonatal maternal deprivation (NMD) increases gut paracellular permeability (GPP) through mast cells and nerve growth factor (NGF), and modifies corticotrophin-releasing factor (CRF) and corticosterone levels. CRF, corticosterone and mast cells are involved in stress-induced mucosal barrier impairment. Consequently, this study aimed to specify whether corticosteronaemia and colonic expression of both preproCRF and CRF are modified by NMD, and to determine if altered expression may participate...

  17. Distribution of nitric oxide synthase, nerve growth factor receptor and interstitial cells of Cajal in hirschsprung s disease and its significance

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Objective To investigate the distribution of nitric oxide synthase (NOS), nerve growth factor receptor (NGFR) and interstitial cells of Cajal (ICCs) in Hirschsprung's disease (HD). Methods The distribution of NOS, NGFR and ICCs was studied by using NADPH diaphorase histochemistry, immunohistochemistry with a monoclonal antibody to human NGFR and the specific polyclonal antibody against c-kit in 8 normal controls and 10 cases of HD. Results NOS and NGFR were abundantly present in the myenteric plexus and in ...

  18. Regulated growth of diatom cells on self-assembled monolayers

    Directory of Open Access Journals (Sweden)

    Kobayashi Koichi

    2007-03-01

    Full Text Available Abstract We succeeded in regulating the growth of diatom cells on chemically modified glass surfaces. Glass surfaces were functionalized with -CF3, -CH3, -COOH, and -NH2 groups using the technique of self-assembled monolayers (SAM, and diatom cells were subsequently cultured on these surfaces. When the samples were rinsed after the adhesion of the diatom cells on the modified surfaces, the diatoms formed two dimensional arrays; this was not possible without the rinsing treatment. Furthermore, we examined the number of cells that grew and their motility by time-lapse imaging in order to clarify the interaction between the cells and SAMs. We hope that our results will be a basis for developing biodevices using living photosynthetic diatom cells.

  19. Nerve Growth Factor Promotes Angiogenesis and Skeletal Muscle Fiber Remodeling in a Murine Model of Hindlimb Ischemia

    Institute of Scientific and Technical Information of China (English)

    Yong-Peng Diao; Feng-Kui Cui; Sheng Yan; Zuo-Guan Chen; Li-Shan Lian; Li-Long Guo; Yong-Jun Li

    2016-01-01

    Background: Therapeutic angiogenesis has been shown to promote blood vessel growth and improve tissue perfusion.Nerve growth factor (NGF) has been reported to play an important role in both physiological and pathological angiogenesis.This study aimed to investigate the effects of NGF on angiogenesis and skeletal muscle fiber remodeling in a murine model of hindlimb ischemia and study the relationship between NGF and vascular endothelial growth factor (VEGF) in angiogenesis.Methods: Twenty-four mice were randomly allocated to normal control group (n =6), blank control group (n =6), VEGF gene transfection group (n =6), and NGF gene transfection group (n =6).The model of left hindlimb ischemia model was established by ligating the femoral artery.VEGF165 plasmid (125 μg) and NGF plasmid (125 μg) was injected into the ischemic gastrocnemius of mice from VEGF group and NGF group, respectively.Left hindlimb function and ischemic damage were assessed with terminal points at 21th day postischemia induction.The gastrocnemius of four groups was tested by hematoxylin-eosin staining, proliferating cell nuclear antigen and CD34 immunohistochemistry staining, and myosin ATPase staining.NGF and VEGF protein expression was detected by enzyme-linked immunosorbent assay.Results: On the 21th day after surgery, the functional assessment score and skeletal muscle atrophy degree of VEGF group and NGF group were significantly lower than those of normal control group and blank control group.The endothelial cell proliferation index and the capillary density of VEGF group and NGF group were significantly increased compared with normal control group and blank control group (P < 0.05).The NGF and VEGF protein expression of NGF group showed a significant rise when compared with blank control group (P < 0.05).Similarly, the VEGF protein expression of VEGF group was significantly higher than that of blank control group (P < 0.05), but there was no significant difference of the NGF protein

  20. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  1. Effect of siRNA interference on nerve growth factor in intervertebral disc inflammation rats

    Institute of Scientific and Technical Information of China (English)

    Ming-Lei Lang; Ai-Lin Qin; Jian-Min Li; Peng Fu

    2014-01-01

    Objective:To investigate the inhibition effect of siRNA interference onNGF induced by inflammatory factorIL-6, andIL-1 so as to provide novel targets for clinical treatment of discogenic low back pain.Methods:The intervertebral disc nucleus and annulus fibrosus cells of rats were separated .The cells were co-cultured with different concentrations(10 nmol/L,20 nmol/L,50 nmol/L,100 nmol/L) ofIL-6 andIL-1β.TheNGF- siRNA was leaded into the co-cultured cells with its import ability assessed by flow cytometry instrument tests,before and after which theNGF mRNA expression was detected by real-timeQ-PCR and theNGF content was detected byELISA.Results:Flow cytometry instrument test results showed that theNGF-siRNA cell conversion rate was99.8%.Real-timeQ-PCR detection results showed that compared with negative control group, theNGF mRNA expression of co-cultured cells treated by10 nmol/L,20 nmol/L,50 nmol/L,100 nmol/LIL-6 andIL-1β were respectively raised3.4,3.7,4.7, 3.7 times which were all significantly down-regulated after the import ofNGF- siRNA.EILSA detection results showed that compared with negative control group, theNGF content of co-cultured medium treated by10 nmol/L,20 nmol/L,50 nmol/L,100 nmol/LI-L6 andIL-1β were respectively raised2.9,3.3,4.5,7.4 times which were all significantly decreased after the import ofNGF- siRNA.Conclusions:These molecular biologi