WorldWideScience

Sample records for regulates leaf initiation

  1. Paralogous SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes differentially regulate leaf initiation and reproductive phase change in petunia.

    Science.gov (United States)

    Preston, Jill C; Jorgensen, Stacy A; Orozco, Rebecca; Hileman, Lena C

    2016-02-01

    Duplicated petunia clade-VI SPL genes differentially promote the timing of inflorescence and flower development, and leaf initiation rate. The timing of plant reproduction relative to favorable environmental conditions is a critical component of plant fitness, and is often associated with variation in plant architecture and habit. Recent studies have shown that overexpression of the microRNA miR156 in distantly related annual species results in plants with perennial characteristics, including late flowering, weak apical dominance, and abundant leaf production. These phenotypes are largely mediated through the negative regulation of a subset of genes belonging to the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) family of transcription factors. In order to determine how and to what extent paralogous SPL genes have partitioned their roles in plant growth and development, we functionally characterized petunia clade-VI SPL genes under different environmental conditions. Our results demonstrate that PhSBP1and PhSBP2 differentially promote discrete stages of the reproductive transition, and that PhSBP1, and possibly PhCNR, accelerates leaf initiation rate. In contrast to the closest homologs in annual Arabidopsis thaliana and Mimulus guttatus, PhSBP1 and PhSBP2 transcription is not mediated by the gibberellic acid pathway, but is positively correlated with photoperiod and developmental age. The developmental functions of clade-VI SPL genes have, thus, evolved following both gene duplication and speciation within the core eudicots, likely through differential regulation and incomplete sub-functionalization.

  2. Effect of Plant Growth Regulators on Leaf Number, Leaf Area and Leaf Dry Matter in Grape

    Directory of Open Access Journals (Sweden)

    Zahoor Ahmad BHAT

    2011-03-01

    Full Text Available Influence of phenylureas (CPPU and brassinosteriod (BR along with GA (gibberellic acid were studied on seedless grape vegetative characteristics like leaf number, leaf area and leaf dry matter. Growth regulators were sprayed on the vines either once (7 days after fruit set or 15 days after fruit set or twice (7+15 days after fruit set. CPPU 2 ppm+BR 0.4 ppm+GA 25 ppm produced maximum number of leaves (18.78 while as untreated vines produced least leaf number (16.22 per shoot. Maximum leaf area (129.70 cm2 and dry matter content (26.51% was obtained with higher CPPU (3 ppm and BR (0.4 ppm combination along with GA 25 ppm. Plant growth regulators whether naturally derived or synthetic are used to improve the productivity and quality of grapes. The relatively high value of grapes justifies more expensive inputs. A relatively small improvement in yield or fruit quality can justify the field application of a very costly product. Application of new generation growth regulators like brassinosteroids and phenylureas like CPPU have been reported to increase the leaf number as well as leaf area and dry matter thereby indirectly influencing the fruit yield and quality in grapes.

  3. Leaf habit and woodiness regulate different leaf economy traits at a given nutrient supply.

    Science.gov (United States)

    Ordoñez, Jenny C; van Bodegom, Peter M; Witte, Jan-Philip M; Bartholomeus, Ruud P; van Dobben, Han F; Aerts, Rien

    2010-11-01

    The large variation in the relationships between environmental factors and plant traits observed in natural communities exemplifies the alternative solutions that plants have developed in response to the same environmental limitations. Qualitative attributes, such as growth form, woodiness, and leaf habit can be used to approximate these alternative solutions. Here, we quantified the extent to which these attributes affect leaf trait values at a given resource supply level, using measured plant traits from 105 different species (254 observations) distributed across 50 sites in mesic to wet plant communities in The Netherlands. For each site, soil total N, soil total P, and water supply estimates were obtained by field measurements and modeling. Effects of growth forms, woodiness, and leaf habit on relations between leaf traits (SLA, specific leaf area; LNC, leaf nitrogen concentration; and LPC, leaf phosphorus concentration) vs. nutrient and water supply were quantified using maximum-likelihood methods and Bonferroni post hoc tests. The qualitative attributes explained 8-23% of the variance within sites in leaf traits vs. soil fertility relationships, and therefore they can potentially be used to make better predictions of global patterns of leaf traits in relation to nutrient supply. However, at a given soil fertility, the strength of the effect of each qualitative attribute was not the same for all leaf traits. These differences may imply a differential regulation of the leaf economy traits at a given nutrient supply, in which SLA and LPC seem to be regulated in accordance to changes in plant size and architecture while LNC seems to be primarily regulated at the leaf level by factors related to leaf longevity.

  4. Disc size regulation in the brood cell building behavior of leaf-cutter bee, Megachile tsurugensis.

    Science.gov (United States)

    Kim, Jong-yoon

    2007-12-01

    The leaf-cutter bee, Megachile tsurugensis, builds a brood cell in a preexisting tunnel with leaf discs that she cuts in decreasing sizes and assembles them like a Russian matryoshka doll. By experimentally manipulating the brood cell, it was investigated how she regulates the size of leaf discs that fit in the brood cell's internal volume. When the internal volume was artificially increased by removing a bulk of leaf discs, she decreased the leaf disc size, although increasing it would have made the leaf disc more fitting in the increased internal volume. As a reverse manipulation, when the internal volume was decreased by inserting a group of inner layers of preassembled leaf discs to a brood cell, she decreased the leaf disc size, so that the leaf disc could fit in the decreased internal volume. These results suggest that she uses at least two different mechanisms to regulate the disc size: the use of some internal memory about the degree of building work accomplished in the first and of sensory feedback of dimensional information at the construction site in the second manipulation, respectively. It was concluded that a stigmergic mechanism, an immediate sensory feedback from the brood cell changed by the building work, alone cannot explain the details of the bee's behavior particularly with respect to her initial response to the first manipulation. For a more complete explanation of the behavior exhibited by the solitary bee, two additional behavioral elements, reinforcement of building activity and processing of dimensional information, were discussed along with stigmergy.

  5. Strigolactone Regulates Leaf Senescence in Concert with Ethylene in Arabidopsis.

    Science.gov (United States)

    Ueda, Hiroaki; Kusaba, Makoto

    2015-09-01

    Leaf senescence is not a passive degenerative process; it represents a process of nutrient relocation, in which materials are salvaged for growth at a later stage or to produce the next generation. Leaf senescence is regulated by various factors, such as darkness, stress, aging, and phytohormones. Strigolactone is a recently identified phytohormone, and it has multiple functions in plant development, including repression of branching. Although strigolactone is implicated in the regulation of leaf senescence, little is known about its molecular mechanism of action. In this study, strigolactone biosynthesis mutant strains of Arabidopsis (Arabidopsis thaliana) showed a delayed senescence phenotype during dark incubation. The strigolactone biosynthesis genes MORE AXIALLY GROWTH3 (MAX3) and MAX4 were drastically induced during dark incubation and treatment with the senescence-promoting phytohormone ethylene, suggesting that strigolactone is synthesized in the leaf during leaf senescence. This hypothesis was confirmed by a grafting experiment using max4 as the stock and Columbia-0 as the scion, in which the leaves from the Columbia-0 scion senesced earlier than max4 stock leaves. Dark incubation induced the synthesis of ethylene independent of strigolactone. Strigolactone biosynthesis mutants showed a delayed senescence phenotype during ethylene treatment in the light. Furthermore, leaf senescence was strongly accelerated by the application of strigolactone in the presence of ethylene and not by strigolactone alone. These observations suggest that strigolactone promotes leaf senescence by enhancing the action of ethylene. Thus, dark-induced senescence is regulated by a two-step mechanism: induction of ethylene synthesis and consequent induction of strigolactone synthesis in the leaf. © 2015 American Society of Plant Biologists. All Rights Reserved.

  6. Light-regulated leaf expansion in two Populus species: dependence on developmentally controlled ion transport.

    Science.gov (United States)

    Stiles, Kari A; Van Volkenburgh, Elizabeth

    2002-07-01

    Leaf growth responses to light have been compared in two species of Populus, P. deltoides and P. trichocarpa. These species differ markedly in morphology, anatomy, and dependence on light during leaf expansion. Light stimulates the growth rate and acidification of cell walls in P. trichocarpa but not in P. deltoides, whereas leaves of P. deltoides maintain growth in the dark. Light-induced growth is promoted in P. deltoides when cells are provided 50-100 mM KCl. In both species, light initially depolarizes, then hyperpolarizes mesophyll plasma membranes. However, in the dark, the resting E(m) of mesophyll cells in P. deltoides, but not in P. trichocarpa, is relatively insensitive to decade changes in external [K+]. Results suggest that light-stimulated leaf growth depends on developmentally regulated cellular mechanisms controlling ion fluxes across the plasma membrane. These developmental differences underlie species-level differences in growth and physiological responses to the photoenvironment.

  7. Proteomic Analysis Reveals the Leaf Color Regulation Mechanism in Chimera Hosta "Gold Standard" Leaves.

    Science.gov (United States)

    Yu, Juanjuan; Zhang, Jinzheng; Zhao, Qi; Liu, Yuelu; Chen, Sixue; Guo, Hongliang; Shi, Lei; Dai, Shaojun

    2016-03-08

    Leaf color change of variegated leaves from chimera species is regulated by fine-tuned molecular mechanisms. Hosta "Gold Standard" is a typical chimera Hosta species with golden-green variegated leaves, which is an ideal material to investigate the molecular mechanisms of leaf variegation. In this study, the margin and center regions of young and mature leaves from Hosta "Gold Standard", as well as the leaves from plants after excess nitrogen fertilization were studied using physiological and comparative proteomic approaches. We identified 31 differentially expressed proteins in various regions and development stages of variegated leaves. Some of them may be related to the leaf color regulation in Hosta "Gold Standard". For example, cytosolic glutamine synthetase (GS1), heat shock protein 70 (Hsp70), and chloroplastic elongation factor G (cpEF-G) were involved in pigment-related nitrogen synthesis as well as protein synthesis and processing. By integrating the proteomics data with physiological results, we revealed the metabolic patterns of nitrogen metabolism, photosynthesis, energy supply, as well as chloroplast protein synthesis, import and processing in various leaf regions at different development stages. Additionally, chloroplast-localized proteoforms involved in nitrogen metabolism, photosynthesis and protein processing implied that post-translational modifications were crucial for leaf color regulation. These results provide new clues toward understanding the mechanisms of leaf color regulation in variegated leaves.

  8. High Concentration of Melatonin Regulates Leaf Development by Suppressing Cell Proliferation and Endoreduplication in Arabidopsis.

    Science.gov (United States)

    Wang, Qiannan; An, Bang; Shi, Haitao; Luo, Hongli; He, Chaozu

    2017-05-05

    N -acetyl-5-methoxytryptamine (Melatonin), as a crucial messenger in plants, functions in adjusting biological rhythms, stress tolerance, plant growth and development. Several studies have shown the retardation effect of exogenous melatonin treatment on plant growth and development. However, the in vivo role of melatonin in regulating plant leaf growth and the underlying mechanism are still unclear. In this study, we found that high concentration of melatonin suppressed leaf growth in Arabidopsis by reducing both cell size and cell number. Further kinetic analysis of the fifth leaves showed that melatonin remarkably inhibited cell division rate. Additionally, flow cytometic analysis indicated that melatonin negatively regulated endoreduplication during leaf development. Consistently, the expression analysis revealed that melatonin regulated the transcriptional levels of key genes of cell cycle and ribosome. Taken together, this study suggests that high concentration of melatonin negatively regulated the leaf growth and development in Arabidopsis , through modulation of endoreduplication and the transcripts of cell cycle and ribosomal key genes.

  9. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Science.gov (United States)

    Mudgil, Yashwanti; Ghawana, Sanjay; Jones, Alan M

    2013-01-01

    N-MYC down-regulated-like (NDL) proteins interact with the Gβ subunit (AGB1) of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development. Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation) confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele) mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem. NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  10. N-MYC down-regulated-like proteins regulate meristem initiation by modulating auxin transport and MAX2 expression.

    Directory of Open Access Journals (Sweden)

    Yashwanti Mudgil

    Full Text Available N-MYC down-regulated-like (NDL proteins interact with the Gβ subunit (AGB1 of the heterotrimeric G protein complex and play an important role in AGB1-dependent regulation of lateral root formation by affecting root auxin transport, auxin gradients and the steady-state levels of mRNA encoding the PIN-FORMED 2 and AUXIN 1 auxin transport facilitators. Auxin transport in aerial tissue follows different paths and utilizes different transporters than in roots; therefore, in the present study, we analyzed whether NDL proteins play an important role in AGB1-dependent, auxin-mediated meristem development.Expression levels of NDL gene family members need to be tightly regulated, and altered expression (both over-expression and down-regulation confers ectopic growth. Over-expression of NDL1 disrupts vegetative and reproductive organ development. Reduced expression of the NDL gene family members results in asymmetric leaf emergence, twinning of rosette leaves, defects in leaf formation, and abnormal silique distribution. Reduced expression of the NDL genes in the agb1-2 (null allele mutant rescues some of the abnormal phenotypes, such as silique morphology, silique distribution, and peduncle angle, suggesting that proper levels of NDL proteins are maintained by AGB1. We found that all of these abnormal aerial phenotypes due to altered NDL expression were associated with increases in basipetal auxin transport, altered auxin maxima and altered MAX2 expression within the inflorescence stem.NDL proteins, together with AGB1, act as positive regulators of meristem initiation and branching. AGB1 and NDL1 positively regulate basipetal inflorescence auxin transport and modulate MAX2 expression in shoots, which in turn regulates organ and lateral meristem formation by the establishment and maintenance of auxin gradients.

  11. A unique approach to demonstrating that apical bud temperature specifically determines leaf initiation rate in the dicot Cucumis sativus

    NARCIS (Netherlands)

    Savvides, Andreas; Dieleman, Anja; Ieperen, van Wim; Marcelis, Leo F.M.

    2016-01-01

    Main conclusion: Leaf initiation rate is largely determined by the apical bud temperature even when apical bud temperature largely deviates from the temperature of other plant organs.We have long known that the rate of leaf initiation (LIR) is highly sensitive to temperature, but previous studies

  12. Maize YABBY genes drooping leaf1 and drooping leaf2 affect agronomic traits by regulating leaf architecture

    Science.gov (United States)

    Leaf architectural traits, such as length, width and angle, directly influence canopy structure and light penetration, photosynthate production and overall yield. We discovered and characterized a maize (Zea mays) mutant with aberrant leaf architecture we named drooping leaf1 (drl1), as leaf blades ...

  13. Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants

    DEFF Research Database (Denmark)

    Yek, Sze Huei; Nash, David Richard; Jensen, Annette Bruun

    2012-01-01

    significantly larger for ants challenged with virulent and mild pathogens/weeds than for controls and Escovopsis-challenged ants. We conclude that the MG defence system of leaf-cutting ants has characteristics reminiscent of an additional cuticular immune system, with specific and non-specific components......Ants have paired metapleural glands (MGs) to produce secretions for prophylactic hygiene. These exocrine glands are particularly well developed in leaf-cutting ants, but whether the ants can actively regulate MG secretion is unknown. In a set of controlled experiments using conidia of five fungi...

  14. The Use of RNA Sequencing and Correlation Network Analysis to Study Potential Regulators of Crabapple Leaf Color Transformation.

    Science.gov (United States)

    Yang, Tuo; Li, Keting; Hao, Suxiao; Zhang, Jie; Song, Tingting; Tian, Ji; Yao, Yuncong

    2018-05-01

    Anthocyanins are plant pigments that contribute to the color of leaves, flowers and fruits, and that are beneficial to human health in the form of dietary antioxidants. The study of a transformable crabapple cultivar, 'India magic', which has red buds and green mature leaves, using mRNA profiling of four leaf developmental stages, allowed us to characterize molecular mechanisms regulating red color formation in early leaf development and the subsequent rapid down-regulation of anthocyanin biosynthesis. This analysis of differential gene expression during leaf development revealed that ethylene signaling-responsive genes are up-regulated during leaf pigmentation. Genes in the ethylene response factor (ERF), SPL, NAC, WRKY and MADS-box transcription factor (TF) families were identified in two weighted gene co-expression network analysis (WGCNA) modules as having a close relationship to anthocyanin accumulation. Analyses of network hub genes indicated that SPL TFs are located in central positions within anthocyanin-related modules. Furthermore, cis-motif and yeast one-hybrid assays suggested that several anthocyanin biosynthetic or regulatory genes are potential targets of SPL8 and SPL13B. Transient silencing of these two genes confirmed that they play a role in co-ordinating anthocyanin biosynthesis and crabapple leaf development. We present a high-resolution method for identifying regulatory modules associated with leaf pigmentation, which provides a platform for functional genomic studies of anthocyanin biosynthesis.

  15. Rice PLASTOCHRON genes regulate leaf maturation downstream of the gibberellin signal transduction pathway.

    Science.gov (United States)

    Mimura, Manaki; Nagato, Yasuo; Itoh, Jun-Ichi

    2012-05-01

    Rice PLASTOCHRON 1 (PLA1) and PLA2 genes regulate leaf maturation and plastochron, and their loss-of-function mutants exhibit small organs and rapid leaf emergence. They encode a cytochrome P450 protein CYP78A11 and an RNA-binding protein, respectively. Their homologs in Arabidopsis and maize are also associated with plant development/organ size. Despite the importance of PLA genes in plant development, their molecular functions remain unknown. Here, we investigated how PLA1 and PLA2 genes are related to phytohormones. We found that gibberellin (GA) is the major phytohormone that promotes PLA1 and PLA2 expression. GA induced PLA1 and PLA2 expression, and conversely the GA-inhibitor uniconazole suppressed PLA1 and PLA2 expression. In pla1-4 and pla2-1 seedlings, expression levels of GA biosynthesis genes and the signal transduction gene were similar to those in wild-type seedlings. GA treatment slightly down-regulated the GA biosynthesis gene GA20ox2 and up-regulated the GA-catabolizing gene GA2ox4, whereas the GA biosynthesis inhibitor uniconazole up-regulated GA20ox2 and down-regulated GA2ox4 both in wild-type and pla mutants, suggesting that the GA feedback mechanism is not impaired in pla1 and pla2. To reveal how GA signal transduction affects the expression of PLA1 and PLA2, PLA expression in GA-signaling mutants was examined. In GA-insensitive mutant, gid1 and less-sensitive mutant, Slr1-d1, PLA1 and PLA2 expression was down-regulated. On the other hand, the expression levels of PLA1 and PLA2 were highly enhanced in a GA-constitutive-active mutant, slr1-1, causing ectopic overexpression. These results indicate that both PLA1 and PLA2 act downstream of the GA signal transduction pathway to regulate leaf development.

  16. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    Science.gov (United States)

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  17. Suppressor of Overexpression of CO 1 Negatively Regulates Dark-Induced Leaf Degreening and Senescence by Directly Repressing Pheophytinase and Other Senescence-Associated Genes in Arabidopsis.

    Science.gov (United States)

    Chen, Junyi; Zhu, Xiaoyu; Ren, Jun; Qiu, Kai; Li, Zhongpeng; Xie, Zuokun; Gao, Jiong; Zhou, Xin; Kuai, Benke

    2017-03-01

    Although the biochemical pathway of chlorophyll (Chl) degradation has been largely elucidated, how Chl is rapidly yet coordinately degraded during leaf senescence remains elusive. Pheophytinase (PPH) is the enzyme for catalyzing the removal of the phytol group from pheophytin a , and PPH expression is significantly induced during leaf senescence. To elucidate the transcriptional regulation of PPH , we used a yeast ( Saccharomyces cerevisiae ) one-hybrid system to screen for its trans-regulators. SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1), a key flowering pathway integrator, was initially identified as one of the putative trans-regulators of PPH After dark treatment, leaves of an SOC1 knockdown mutant ( soc1-6 ) showed an accelerated yellowing phenotype, whereas those of SOC1 -overexpressing lines exhibited a partial stay-green phenotype. SOC1 and PPH expression showed a negative correlation during leaf senescence. Substantially, SOC1 protein could bind specifically to the CArG box of the PPH promoter in vitro and in vivo, and overexpression of SOC1 significantly inhibited the transcriptional activity of the PPH promoter in Arabidopsis ( Arabidopsis thaliana ) protoplasts. Importantly, soc1-6 pph-1 (a PPH knockout mutant) double mutant displayed a stay-green phenotype similar to that of pph-1 during dark treatment. These results demonstrated that SOC1 inhibits Chl degradation via negatively regulating PPH expression. In addition, measurement of the Chl content and the maximum photochemical efficiency of photosystem II of soc1-6 and SOC1-OE leaves after dark treatment suggested that SOC1 also negatively regulates the general senescence process. Seven SENESCENCE-ASSOCIATED GENES ( SAGs ) were thereafter identified as its potential target genes, and NONYELLOWING1 and SAG113 were experimentally confirmed. Together, we reveal that SOC1 represses dark-induced leaf Chl degradation and senescence in general in Arabidopsis. © 2017 American Society of Plant Biologists. All

  18. Ontogeny of axillary buds and shoots in roses: Leaf initiation and pith development.

    NARCIS (Netherlands)

    Marcelis-van Acker, C.A.M.

    1994-01-01

    The ontogeny of an axillary bud (in the middle region of a shoot) from initiation up to flowering of the subsequent shoot was studied. The first secondary buds appeared in the axillary bud (primary bud) when the leaf subtending the primary bud unfolded. By that time, the primary bud contained seven

  19. Global transcriptome analysis of the maize (Zea mays L.) inbred line 08LF during leaf senescence initiated by pollination-prevention.

    Science.gov (United States)

    Wu, Liancheng; Li, Mingna; Tian, Lei; Wang, Shunxi; Wu, Liuji; Ku, Lixia; Zhang, Jun; Song, Xiaoheng; Liu, Haiping; Chen, Yanhui

    2017-01-01

    In maize (Zea mays), leaf senescence acts as a nutrient recycling process involved in proteins, lipids, and nucleic acids degradation and transport to the developing sink. However, the molecular mechanisms of pre-maturation associated with pollination-prevention remain unclear in maize. To explore global gene expression changes during the onset and progression of senescence in maize, the inbred line 08LF, with severe early senescence caused by pollination prevention, was selected. Phenotypic observation showed that the onset of leaf senescence of 08LF plants occurred approximately 14 days after silking (DAS) by pollination prevention. Transcriptional profiling analysis of the leaf at six developmental stages during induced senescence revealed that a total of 5,432 differentially expressed genes (DEGs) were identified, including 2314 up-regulated genes and 1925 down-regulated genes. Functional annotation showed that the up-regulated genes were mainly enriched in multi-organism process and nitrogen compound transport, whereas down-regulated genes were involved in photosynthesis. Expression patterns and pathway enrichment analyses of early-senescence related genes indicated that these DEGs are involved in complex regulatory networks, especially in the jasmonic acid pathway. In addition, transcription factors from several families were detected, particularly the CO-like, NAC, ERF, GRAS, WRKY and ZF-HD families, suggesting that these transcription factors might play important roles in driving leaf senescence in maize as a result of pollination-prevention.

  20. Converging Light, Energy and Hormonal Signaling Control Meristem Activity, Leaf Initiation, and Growth1[CC-BY

    Science.gov (United States)

    Mohammed, Binish; Bilooei, Sara Farahi; Grove, Elliot; Railo, Saana; Palme, Klaus

    2018-01-01

    The development of leaf primordia is subject to light control of meristematic activity. Light regulates the expression of thousands of genes with roles in cell proliferation, organ development, and differentiation of photosynthetic cells. Previous work has highlighted roles for hormone homeostasis and the energy-dependent Target of Rapamycin (TOR) kinase in meristematic activity, yet a picture of how these two regulatory mechanisms depend on light perception and interact with each other has yet to emerge. Their relevance beyond leaf initiation also is unclear. Here, we report the discovery that the dark-arrested meristematic region of Arabidopsis (Arabidopsis thaliana) experiences a local energy deprivation state and confirm previous findings that the PIN1 auxin transporter is diffusely localized in the dark. Light triggers a rapid removal of the starvation state and the establishment of PIN1 polar membrane localization consistent with auxin export, both preceding the induction of cell cycle- and cytoplasmic growth-associated genes. We demonstrate that shoot meristematic activity can occur in the dark through the manipulation of auxin and cytokinin activity as well as through the activation of energy signaling, both targets of photomorphogenesis action, but the organ developmental outcomes differ: while TOR-dependent energy signals alone stimulate cell proliferation, the development of a normal leaf lamina requires photomorphogenesis-like hormonal responses. We further show that energy signaling adjusts the extent of cell cycle activity and growth of young leaves non-cellautonomously to available photosynthates and leads to organs constituted of a greater number of cells developing under higher irradiance. This makes energy signaling perhaps the most important biomass growth determinant under natural, unstressed conditions. PMID:29284741

  1. Dynamics of leaf and spikelet primordia initiation in wheat as affected by Ppd-1a alleles under field conditions.

    Science.gov (United States)

    Ochagavía, Helga; Prieto, Paula; Savin, Roxana; Griffiths, Simon; Slafer, GustavoA

    2018-04-27

    Wheat adaptation is affected by Ppd genes, but the role of these alleles in the rates of leaf and spikelet initiation has not been properly analysed. Twelve near isogenic lines (NILs) combining Ppd-1a alleles from different donors introgressed in A, B, and/or D genomes were tested under field conditions during two growing seasons together with the wild type, Paragon. Leaf initiation rate was unaffected by Ppd-1a alleles so the final leaf number (FLN) was reduced in parallel with reductions in the duration of the vegetative phase. Spikelet primordia initiation was accelerated and consequently the effect on spikelets per spike was less than proportional to the effect on the duration of spikelet initiation. The magnitude of these effects on spikelet plastochron depended on the doses of Ppd-1 homoeoalleles and the specific insensitivity alleles carried. Double ridge was consistently later than floral initiation, but the difference between them was not affected by Ppd-1a alleles. These findings have potential for selecting the best combinations from the Ppd-1 homoeoallelic series for manipulating adaptation taking into consideration particular effects on spikelet number.

  2. Phytohormones and microRNAs as sensors and regulators of leaf senescence: assigning macro roles to small molecules.

    Science.gov (United States)

    Sarwat, Maryam; Naqvi, Afsar Raza; Ahmad, Parvaiz; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-12-01

    Ageing or senescence is an intricate and highly synchronized developmental phase in the life of plant parts including leaf. Senescence not only means death of a plant part, but during this process, different macromolecules undergo degradation and the resulting components are transported to other parts of the plant. During the period from when a leaf is young and green to the stage when it senesces, a multitude of factors such as hormones, environmental factors and senescence associated genes (SAGs) are involved. Plant hormones including salicylic acid, abscisic acid, jasmonic acid and ethylene advance leaf senescence, whereas others like cytokinins, gibberellins, and auxins delay this process. The environmental factors which generally affect plant development and growth, can hasten senescence, the examples being nutrient dearth, water stress, pathogen attack, radiations, high temperature and light intensity, waterlogging, and air, water or soil contamination. Other important influences include carbohydrate accumulation and high carbon/nitrogen level. To date, although several genes involved in this complex process have been identified, still not much information exists in the literature on the signalling mechanism of leaf senescence. Now, the Arabidopsis mutants have paved our way and opened new vistas to elucidate the signalling mechanism of leaf senescence for which various mutants are being utilized. Recent studies demonstrating the role of microRNAs in leaf senescence have reinforced our knowledge of this intricate process. This review provides a comprehensive and critical analysis of the information gained particularly on the roles of several plant growth regulators and microRNAs in regulation of leaf senescence. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Prediction of Spring Rate and Initial Failure Load due to Material Properties of Composite Leaf Spring

    International Nuclear Information System (INIS)

    Oh, Sung Ha; Choi, Bok Lok

    2014-01-01

    This paper presented analysis methods for adapting E-glass fiber/epoxy composite (GFRP) materials to an automotive leaf spring. It focused on the static behaviors of the leaf spring due to the material composition and its fiber orientation. The material properties of the GFRP composite were directly measured based on the ASTM standard test. A reverse implementation was performed to obtain the complete set of in-situ fiber and matrix properties from the ply test results. Next, the spring rates of the composite leaf spring were examined according to the variation of material parameters such as the fiber angles and resin contents of the composite material. Finally, progressive failure analysis was conducted to identify the initial failure load by means of an elastic stress analysis and specific damage criteria. As a result, it was found that damage first occurred along the edge of the leaf spring owing to the shear stresses

  4. Regulation and acclimation of leaf gas exchange in a piñon-juniper woodland exposed to three different precipitation regimes.

    Science.gov (United States)

    Limousin, Jean-Marc; Bickford, Christopher P; Dickman, Lee T; Pangle, Robert E; Hudson, Patrick J; Boutz, Amanda L; Gehres, Nathan; Osuna, Jessica L; Pockman, William T; McDowell, Nate G

    2013-10-01

    Leaf gas-exchange regulation plays a central role in the ability of trees to survive drought, but forecasting the future response of gas exchange to prolonged drought is hampered by our lack of knowledge regarding potential acclimation. To investigate whether leaf gas-exchange rates and sensitivity to drought acclimate to precipitation regimes, we measured the seasonal variations of leaf gas exchange in a mature piñon-juniper Pinus edulis-Juniperus monosperma woodland after 3 years of precipitation manipulation. We compared trees receiving ambient precipitation with those in an irrigated treatment (+30% of ambient precipitation) and a partial rainfall exclusion (-45%). Treatments significantly affected leaf water potential, stomatal conductance and photosynthesis for both isohydric piñon and anisohydric juniper. Leaf gas exchange acclimated to the precipitation regimes in both species. Maximum gas-exchange rates under well-watered conditions, leaf-specific hydraulic conductance and leaf water potential at zero photosynthetic assimilation all decreased with decreasing precipitation. Despite their distinct drought resistance and stomatal regulation strategies, both species experienced hydraulic limitation on leaf gas exchange when precipitation decreased, leading to an intraspecific trade-off between maximum photosynthetic assimilation and resistance of photosynthesis to drought. This response will be most detrimental to the carbon balance of piñon under predicted increases in aridity in the southwestern USA. © 2013 John Wiley & Sons Ltd.

  5. Initial state regulation of investor-owned utilities

    International Nuclear Information System (INIS)

    Savitski, D.W.

    2001-01-01

    This paper examines state initiation of public service (or utility) commission regulation of investor-owned utilities (IOUs) using an economic theory of regulation. The decision to regulate IOUs is assumed to have depended on the strength of competing interest groups, e.g. consumers and producers, and on institutional factors, e.g. whether commissioners were appointed or elected. Regulators, which then had jurisdiction over IOU rates, are assumed to have been optimizing agents. The potential benefits of regulation, in turn, translated into pressure to initiate regulation. To test this, a hazard model is applied to state-level data. On the demand side of the regulation market, the distribution of federal power and population density were unrelated, while a set of time dummies was positively related to the probability that a state initiated regulation. On the supply side, the fraction of the population that was urban and whether the governor was Republican or not were positively and negatively related to this probability

  6. Evaluation of optimization strategies and the effect of initial conditions on IMAT optimization using a leaf position optimization algorithm

    International Nuclear Information System (INIS)

    Oliver, Mike; Jensen, Michael; Chen, Jeff; Wong, Eugene

    2009-01-01

    Intensity-modulated arc therapy (IMAT) is a rotational variant of intensity-modulated radiation therapy (IMRT) that can be implemented with or without angular dose rate variation. The purpose of this study is to assess optimization strategies and initial conditions using a leaf position optimization (LPO) algorithm altered for variable dose rate IMAT. A concave planning target volume (PTV) with a central cylindrical organ at risk (OAR) was used in this study. The initial IMAT arcs were approximated by multiple static beams at 5 deg. angular increments where multi-leaf collimator (MLC) leaf positions were determined from the beam's eye view to irradiate the PTV but avoid the OAR. For the optimization strategy, two arcs with arc ranges of 280 deg. and 150 deg. were employed and plans were created using LPO alone, variable dose rate optimization (VDRO) alone, simultaneous LPO and VDRO and sequential combinations of these strategies. To assess the MLC initialization effect, three single 360 deg. arc plans with different initial MLC configurations were generated using the simultaneous LPO and VDRO. The effect of changing optimization degrees of freedom was investigated by employing 3 deg., 5 deg. and 10 deg. angular sampling intervals for the two 280 deg., two 150 deg. and single arc plans using LPO and VDRO. The objective function value, a conformity index, a dose homogeneity index, mean dose to OAR and normal tissues were computed and used to evaluate the treatment plans. This study shows that the best optimization strategy for a concave target is to use simultaneous MLC LPO and VDRO. We found that the optimization result is sensitive to the choice of initial MLC aperture shapes suggesting that an LPO-based IMAT plan may not be able to overcome local minima for this geometry. In conclusion, simultaneous MLC leaf position and VDRO are needed with the most appropriate initial conditions (MLC positions, arc ranges and number of arcs) for IMAT.

  7. Leaf-cutting ant attack in initial pine plantations and growth of defoliated plants

    Directory of Open Access Journals (Sweden)

    Mariane Aparecida Nickele

    2012-07-01

    Full Text Available The objective of this work was to evaluate the natural attack by Acromyrmex crassispinus in initial Pinus taeda plantations without control measures against ants, as well as the effect of defoliation in seedlings of P. taeda. Evaluations of the attack of leaf-cutting ants on P. taeda plantations were done monthly in the first six months, then 9 and 12 months after planting. The percentages of plants that were naturally attacked by ants were registered. The effect of defoliation was evaluated by artificial defoliation, simulating the natural patterns of attack by A. crassispinus on P. taeda seedlings. The natural attack of A. crassispinus was greater during the first months after planting, being more intense in the first 30 days. Artificial defoliation indicated that there were no significant losses in diameter and height in plants with less than 75% defoliation. However, there were significant losses in diameter and height in plants with 100% defoliation, independently of the cut of the apical meristem, and also plant death. The control of leaf-cutting ants in P. taeda plantings, in which A. crassispinus is the most frequent leaf-cutting ant, should be intense only at the beginning of planting, since the most severe attacks occur during this time.

  8. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    Science.gov (United States)

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  9. Effect of Plant Growth Regulators on a Shoot and Root Formation from the Leaf and Flower Culture of a Standard-type Chrysanthemum 'Jinba'

    International Nuclear Information System (INIS)

    Lee, J.S.; Lee, G.J.; Chung, S.J.; Kim, J.B.; Kim, D.S.; Kang, S.Y.

    2008-01-01

    In this study we investigated the conditions of a higher frequency for regenerated plants from different explants of a standard-type chrysanthemum 'Jinba'. In vitro culture was initiated on an MS medium containing 3% sucrose, 0.8% agar, and 5 μM benzyl adenine (BA) with naphthalene acetic acid (NAA) by using surface-sterilized leaf and flower tissues from greenhouse-grown plants. Direct shoot regeneration from the leaf and flower explants was obtained 21 to 28 days after the initial culture. Among the seven combinations of the growth regulators used for the culture, the most efficient condition for the shoot and root formation from the leaf tissue was obtained when the MS basic medium was supplemented with 0.5 mg L-¹ BA and 1.0 mg L-¹ NAA, and 0.1 mg L-¹ BA and 0.5 mg L-¹ NAA, while the culture using floret tissues was most efficient on the medium supplemented with 0.5 mg L-¹ BA and 0.5 mg L-¹ NAA, and 0.1 mg L-¹ BA and 1.0 mg L-¹ NAA. These results will provide valuable information to help set up an efficient system for a tissue culture of chrysanthemum cv. Jinba to improve one or some of its negative traits in combination with a radiation mutagenesis approach

  10. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    This study investigated the effects of repetitive applications of herbagreen (HG), humic acid (HA), combined foliar fertilizer (CFF) and HG+CFF performed in the Müsküle grape variety grafted on 5 BB rootstock on fresh or pickled leaf size and leaf raw cellulose content. HA application increased leaf area and leaf water ...

  11. GDP-D-mannose epimerase regulates male gametophyte development, plant growth and leaf senescence in Arabidopsis.

    Science.gov (United States)

    Qi, Tiancong; Liu, Zhipeng; Fan, Meng; Chen, Yan; Tian, Haixia; Wu, Dewei; Gao, Hua; Ren, Chunmei; Song, Susheng; Xie, Daoxin

    2017-09-04

    Plant GDP-D-mannose epimerase (GME) converts GDP-D-mannose to GDP-L-galactose, a precursor of both L-ascorbate (vitamin C) and cell wall polysaccharides. However, the genetic functions of GME in Arabidopsis are unclear. In this study, we found that mutations in Arabidopsis GME affect pollen germination, pollen tube elongation, and transmission and development of the male gametophyte through analysis of the heterozygous GME/gme plants and the homozygous gme plants. Arabidopsis gme mutants also exhibit severe growth defects and early leaf senescence. Surprisingly, the defects in male gametophyte in the gme plants are not restored by L-ascorbate, boric acid or GDP-L-galactose, though boric acid rescues the growth defects of the mutants, indicating that GME may regulate male gametophyte development independent of L-ascorbate and GDP-L-galactose. These results reveal key roles for Arabidopsis GME in reproductive development, vegetative growth and leaf senescence, and suggest that GME regulates plant growth and controls male gametophyte development in different manners.

  12. Soil fauna and leaf species, but not species diversity, affect initial soil erosion in a subtropical forest plantation

    Science.gov (United States)

    Seitz, Steffen; Goebes, Philipp; Assmann, Thorsten; Schuldt, Andreas; Scholten, Thomas

    2017-04-01

    In subtropical parts of China, high rainfall intensities cause continuous soil losses and thereby provoke severe harms to ecosystems. In woodlands, it is not the tree canopy, but mostly an intact forest floor that provides protection from soil erosion. Although the protective role of leaf litter covers against soil losses is known for a long time, little research has been conducted on the processes involved. For instance, the role of different leaf species and leaf species diversity has been widely disregarded. Furthermore, the impact of soil meso- and macrofauna within the litter layer on soil losses remains unclear. To investigate how leaf litter species and diversity as well as soil meso- and macrofauna affect sediment discharge in a subtropical forest ecosystem, a field experiment was carried out in Xingangshan, Jiangxi Province, PR China (BEF China). A full-factorial random design with 96 micro-scale runoff plots and seven domestic leaf species in three diversity levels and a bare ground feature were established. Erosion was initiated with a rainfall simulator. This study confirms that leaf litter cover generally protects forest soils from water erosion (-82 % sediment discharge on leaf covered plots compared to bare plots) and this protection is gradually removed as the litter layer decomposes. Different leaf species showed variable impacts on sediment discharge and thus erosion control. This effect can be related to different leaf habitus, leaf decomposition rates and food preferences of litter decomposing meso- and macrofauna. In our experiment, runoff plots with leaf litter from Machilus thunbergii in monoculture showed the highest sediment discharge (68.0 g m-2), whereas plots with Cyclobalanopsis glauca in monoculture showed the smallest rates (7.9 g m-2). At the same time, neither leaf species diversity, nor functional diversity showed any significant influence, only a negative trend could be observed. Nevertheless, the protective effect of the leaf

  13. McMYB10 regulates coloration via activating McF3'H and later structural genes in ever-red leaf crabapple.

    Science.gov (United States)

    Tian, Ji; Peng, Zhen; Zhang, Jie; Song, Tingting; Wan, Huihua; Zhang, Meiling; Yao, Yuncong

    2015-09-01

    The ever-red leaf trait, which is important for breeding ornamental and higher anthocyanin plants, rarely appears in Malus families, but little is known about the regulation of anthocyanin biosynthesis involved in the red leaves. In our study, HPLC analysis showed that the anthocyanin concentration in ever-red leaves, especially cyanidin, was significantly higher than that in evergreen leaves. The transcript level of McMYB10 was significantly correlated with anthocyanin synthesis between the 'Royalty' and evergreen leaf 'Flame' cultivars during leaf development. We also found the ever-red leaf colour cultivar 'Royalty' contained the known R6 : McMYB10 sequence, but was not in the evergreen leaf colour cultivar 'Flame', which have been reported in apple fruit. The distinction in promoter region maybe is the main reason why higher expression level of McMYB10 in red foliage crabapple cultivar. Furthermore, McMYB10 promoted anthocyanin biosynthesis in crabapple leaves and callus at low temperatures and during long-day treatments. Both heterologous expression in tobacco (Nicotiana tabacum) and Arabidopsis pap1 mutant, and homologous expression in crabapple and apple suggested that McMYB10 could promote anthocyanins synthesis and enhanced anthocyanin accumulation in plants. Interestingly, electrophoretic mobility shift assays, coupled with yeast one-hybrid analysis, revealed that McMYB10 positively regulates McF3'H via directly binding to AACCTAAC and TATCCAACC motifs in the promoter. To sum up, our results demonstrated that McMYB10 plays an important role in ever-red leaf coloration, by positively regulating McF3'H in crabapple. Therefore, our work provides new perspectives for ornamental fruit tree breeding. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. 7 CFR 30.2 - Leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf tobacco. 30.2 Section 30.2 Agriculture... Practices), DEPARTMENT OF AGRICULTURE COMMODITY STANDARDS AND STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.2 Leaf...

  15. 7 CFR 29.3035 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3035 Section 29.3035 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf structure. The cell development of a leaf as indicated by its porosity or solidity. (See Elements...

  16. 7 CFR 29.3526 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3526 Section 29.3526 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3526 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results from handling...

  17. 7 CFR 29.3034 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.3034 Section 29.3034 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Leaf scrap. A by-product of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and...

  18. 7 CFR 29.6022 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.6022 Section 29.6022 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6022 Leaf scrap. A byproduct of unstemmed tobacco Leaf scrap results...

  19. 7 CFR 29.6023 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.6023 Section 29.6023 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... INSPECTION Standards Definitions § 29.6023 Leaf structure. The cell development of a leaf as indicated by its...

  20. 7 CFR 29.1030 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.1030 Section 29.1030 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 92) § 29.1030 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  1. 7 CFR 29.3527 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.3527 Section 29.3527 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... Type 95) § 29.3527 Leaf structure. The cell development of a leaf as indicated by its porosity. (See...

  2. The qTSN positive effect on panicle and flag leaf size of rice is associated with an early down-regulation of tillering

    Directory of Open Access Journals (Sweden)

    Dewi Erika eAdriani

    2016-01-01

    Full Text Available The qTSN4 was identified as rice QTL (Quantitative Traits Locus increasing total spikelet number per panicle and flag leaf area but potentially reducing panicle number depending on the environment. So far, this trade-off was mainly observed at grain maturity and not specifically studied in details, limiting the apprehension of the agronomic interest of qTSN4. This study aimed to understand the effect of qTSN4 and of the environment on panicle sizing, its trade-off with panicle number and finally plant grain production. It compared two high yielding genotypes to their Near Isogenic Lines (NIL carrying either QTL qTSN4 or qTSN12, two distinct QTLs contributing to the enlarged panicle size, thereafter designated as qTSN. Traits describing C sink (organ appearance rate, size, biomass and source (leaf area, photosynthesis, sugar availability were dynamically characterized along plant and/or panicle development within two trials (greenhouse, field, each comparing two treatments contrasting for plant access to light (with or without shading, high or low planting densities. The positive effect of qTSN on panicle size and flag leaf area of the main tiller was confirmed. More precisely, it could be shown that qTSN increased leaf area and internode cross-section, and in some cases of the photosynthetic rate and starch reserves, of the top 3-4 phytomers of the main tiller. This was accompanied by an earlier tillering cessation, that coincided with the initiation of these phytomers, and an enhanced of panicle size on the main tiller. Plant leaf area at flowering was not affected by qTSN but fertile tiller number was reduced to an extent that depended on the environment. Accordingly, plant grain production was enhanced by qTSN only under shading in the greenhouse experiment, where panicle number was not affected and photosynthesis and starch storage in internodes was enhanced. The effect of qTSN on rice phenotype was thus expressed before panicle initiation

  3. WRKY54 and WRKY70 co-operate as negative regulators of leaf senescence in Arabidopsis thaliana

    OpenAIRE

    Besseau, Sébastien; Li, Jing; Palva, E. Tapio

    2012-01-01

    The plant-specific WRKY transcription factor (TF) family with 74 members in Arabidopsis thaliana appears to be involved in the regulation of various physiological processes including plant defence and senescence. WRKY53 and WRKY70 were previously implicated as positive and negative regulators of senescence, respectively. Here the putative function of other WRKY group III proteins in Arabidopsis leaf senescence has been explored and the results suggest the involvement of two additional WRKY TF...

  4. An oilseed rape WRKY-type transcription factor regulates ROS accumulation and leaf senescence in Nicotiana benthamiana and Arabidopsis through modulating transcription of RbohD and RbohF.

    Science.gov (United States)

    Yang, Liu; Ye, Chaofei; Zhao, Yuting; Cheng, Xiaolin; Wang, Yiqiao; Jiang, Yuan-Qing; Yang, Bo

    2018-06-01

    Overexpression of BnaWGR1 causes ROS accumulation and promotes leaf senescence. BnaWGR1 binds to promoters of RbohD and RbohF and regulates their expression. Manipulation of leaf senescence process affects agricultural traits of crop plants, including biomass, seed yield and stress resistance. Since delayed leaf senescence usually enhances tolerance to multiple stresses, we analyzed the function of specific MAPK-WRKY cascades in abiotic and biotic stress tolerance as well as leaf senescence in oilseed rape (Brassica napus L.), one of the important oil crops. In the present study, we showed that expression of one WRKY gene from oilseed rape, BnaWGR1, induced an accumulation of reactive oxygen species (ROS), cell death and precocious leaf senescence both in Nicotiana benthamiana and transgenic Arabidopsis (Arabidopsis thaliana). BnaWGR1 regulates the transcription of two genes encoding key enzymes implicated in production of ROS, that is, respiratory burst oxidase homolog (Rboh) D and RbohF. A dual-luciferase reporter assay confirmed the transcriptional regulation of RbohD and RbohF by BnaWGR1. In vitro electrophoresis mobility shift assay (EMSA) showed that BnaWGR1 could bind to W-box cis-elements within promoters of RbohD and RbohF. Moreover, RbohD and RbohF were significantly upregulated in transgenic Arabidopsis overexpressing BnaWGR1. In summary, these results suggest that BnaWGR1 could positively regulate leaf senescence through regulating the expression of RbohD and RbohF genes.

  5. 7 CFR 30.31 - Classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Classification of leaf tobacco. 30.31 Section 30.31... REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.31 Classification of leaf tobacco. For the purpose of this classification leaf tobacco shall...

  6. Relating Stomatal Conductance to Leaf Functional Traits.

    Science.gov (United States)

    Kröber, Wenzel; Plath, Isa; Heklau, Heike; Bruelheide, Helge

    2015-10-12

    Leaf functional traits are important because they reflect physiological functions, such as transpiration and carbon assimilation. In particular, morphological leaf traits have the potential to summarize plants strategies in terms of water use efficiency, growth pattern and nutrient use. The leaf economics spectrum (LES) is a recognized framework in functional plant ecology and reflects a gradient of increasing specific leaf area (SLA), leaf nitrogen, phosphorus and cation content, and decreasing leaf dry matter content (LDMC) and carbon nitrogen ratio (CN). The LES describes different strategies ranging from that of short-lived leaves with high photosynthetic capacity per leaf mass to long-lived leaves with low mass-based carbon assimilation rates. However, traits that are not included in the LES might provide additional information on the species' physiology, such as those related to stomatal control. Protocols are presented for a wide range of leaf functional traits, including traits of the LES, but also traits that are independent of the LES. In particular, a new method is introduced that relates the plants' regulatory behavior in stomatal conductance to vapor pressure deficit. The resulting parameters of stomatal regulation can then be compared to the LES and other plant functional traits. The results show that functional leaf traits of the LES were also valid predictors for the parameters of stomatal regulation. For example, leaf carbon concentration was positively related to the vapor pressure deficit (vpd) at the point of inflection and the maximum of the conductance-vpd curve. However, traits that are not included in the LES added information in explaining parameters of stomatal control: the vpd at the point of inflection of the conductance-vpd curve was lower for species with higher stomatal density and higher stomatal index. Overall, stomata and vein traits were more powerful predictors for explaining stomatal regulation than traits used in the LES.

  7. 7 CFR 29.2662 - Heavy Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Heavy Leaf (B Group). 29.2662 Section 29.2662 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2662 Heavy Leaf (B Group). This group consists of leaves...

  8. Global variability in leaf respiration in relation to climate and leaf traits

    Science.gov (United States)

    Atkin, Owen K.

    2015-04-01

    Leaf respiration plays a vital role in regulating ecosystem functioning and the Earth's climate. Because of this, it is imperative that that Earth-system, climate and ecosystem-level models be able to accurately predict variations in rates of leaf respiration. In the field of photosynthesis research, the F/vC/B model has enabled modellers to accurately predict variations in photosynthesis through time and space. By contrast, we lack an equivalent biochemical model to predict variations in leaf respiration. Consequently, we need to rely on phenomenological approaches to model variations in respiration across the Earth's surface. Such approaches require that we develop a thorough understanding of how rates of respiration vary among species and whether global environmental gradients play a role in determining variations in leaf respiration. Dealing with these issues requires that data sets be assembled on rates of leaf respiration in biomes across the Earth's surface. In this talk, I will use a newly-assembled global database on leaf respiration and associated traits (including photosynthesis) to highlight variation in leaf respiration (and the balance between respiration and photosynthesis) across global gradients in growth temperature and aridity.

  9. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf.

    Science.gov (United States)

    Chen, Linghua; Huang, Yining; Xu, Ming; Cheng, Zuxin; Zheng, Jingui

    2017-12-15

    Black rice ( Oryza sativa L.) is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ) MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3-10 days after flowering (DAF). The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%), signal transduction (16.7%) and developmental regulation and hormone-like proteins (12.5%). The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  10. Proteomic Analysis Reveals Coordinated Regulation of Anthocyanin Biosynthesis through Signal Transduction and Sugar Metabolism in Black Rice Leaf

    Directory of Open Access Journals (Sweden)

    Linghua Chen

    2017-12-01

    Full Text Available Black rice (Oryza sativa L. is considered to be a healthy food due to its high content of anthocyanins in the pericarp. The synthetic pathway of anthocyanins in black rice grains has been identified, however, the proteomic profile of leaves during grain development is still unclear. Here, isobaric Tags Relative and Absolute Quantification (iTRAQ MS/MS was carried out to identify statistically significant changes of leaf proteome in the black rice during grain development. Throughout three sequential developmental stages, a total of 3562 proteins were detected and 24 functional proteins were differentially expressed 3–10 days after flowering (DAF. The detected proteins are known to be involved in various biological processes and most of these proteins were related to gene expression regulatory (33.3%, signal transduction (16.7% and developmental regulation and hormone-like proteins (12.5%. The coordinated changes were consistent with changes in regulatory proteins playing a leading role in leaves during black rice grain development. This indicated that signal transduction between leaves and grains may have an important role in anthocyanin biosynthesis and accumulation during grain development of black rice. In addition, four identified up-regulated proteins associated with starch metabolism suggested that the remobilization of nutrients for starch synthesis plays a potential role in anthocyanin biosynthesis of grain. The mRNA transcription for eight selected proteins was validated with quantitative real-time PCR. Our results explored the proteomics of the coordination between leaf and grain in anthocyanins biosynthesis of grain, which might be regulated by signal transduction and sugar metabolism in black rice leaf.

  11. Identification and molecular characterization of a trans-acting small interfering RNA producing locus regulating leaf rust responsive gene expression in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Dutta, Summi; Kumar, Dhananjay; Jha, Shailendra; Prabhu, Kumble Vinod; Kumar, Manish; Mukhopadhyay, Kunal

    2017-11-01

    A novel leaf rust responsive ta-siRNA-producing locus was identified in wheat showing similarity to 28S rRNA and generated four differentially expressing ta-siRNAs by phasing which targeted stress responsive genes. Trans-acting-small interfering RNAs (Ta-siRNAs) are plant specific molecules generally involved in development and are also stress responsive. Ta-siRNAs identified in wheat till date are all responsive to abiotic stress only. Wheat cultivation is severely affected by rusts and leaf rust particularly affects grain filling. This study reports a novel ta-siRNA producing locus (TAS) in wheat which is a segment of 28S ribosomal RNA but shows differential expression during leaf rust infestation. Four small RNA libraries prepared from wheat Near Isogenic Lines were treated with leaf rust pathogen and compared with untreated controls. A TAS with the ability to generate four ta-siRNAs by phasing events was identified along with the microRNA TamiR16 as the phase initiator. The targets of the ta-siRNAs included α-gliadin, leucine rich repeat, trans-membrane proteins, glutathione-S-transferase, and fatty acid desaturase among others, which are either stress responsive genes or are essential for normal growth and development of plants. Expression of the TAS, its generated ta-siRNAs, and their target genes were profiled at five different time points after pathogen inoculation of susceptible and resistant wheat isolines and compared with mock-inoculated controls. Comparative analysis of expression unveiled differential and reciprocal relationship as well as discrete patterns between susceptible and resistant isolines. The expression profiles of the target genes of the identified ta-siRNAs advocate more towards effector triggered susceptibility favouring pathogenesis. The study helps in discerning the functions of wheat genes regulated by ta-siRNAs in response to leaf rust.

  12. 7 CFR 29.2277 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2277 Section 29.2277 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... scrap. A byproduct of unstemmed tobacco. Leaf scrap results from handling unstemmed tobacco and consists...

  13. 7 CFR 29.2278 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2278 Section 29.2278 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... structure. The cell development of a leaf as indicated by its porosity. (See chart, § 29.2351.) ...

  14. 7 CFR 29.2529 - Leaf scrap.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf scrap. 29.2529 Section 29.2529 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing... tobacco. Leaf scrap results from handling unstemmed tobacco and consists of loose and tangled whole or...

  15. CO2 and temperature effects on leaf area production in two annual plant species

    International Nuclear Information System (INIS)

    Ackerly, D.D.; Coleman, J.S.; Morse, S.R.; Bazzaz, F.A.

    1992-01-01

    The authors studied leaf area production in two annual plant species, Abutilon theophrasti and Amaranthus retroflexus, under three day/night temperature regimes and two concentrations of carbon dioxide. The production of whole-plant leaf area during the first 30 d of growth was analyzed in terms of the leaf initiation rate, leaf expansion, individual leaf area, and, in Amaranthus, production of branch leaves. Temperature and CO 2 influenced leaf area production through effects on the rate of development, determined by the production of nodes on the main stem, and through shifts in the relationship between whole-plant leaf area and the number of main stem nodes. In Abutilon, leaf initiation rate was highest at 38 degree, but area of individual leaves was greatest at 28 degree. Total leaf area was greatly reduced at 18 degree due to slow leaf initiation rates. Elevated CO 2 concentration increased leaf initiation rate at 28 degree, resulting in an increase in whole-part leaf area. In Amaranthus, leaf initiation rate increased with temperature, and was increased by elevated CO 2 at 28 degree. Individual leaf area was greatest at 28 degree, and was increased by elevated CO 2 at 28 degree but decreased at 38 degree. Branch leaf area displayed a similar response to CO 2 , butt was greater at 38 degree. Overall, wholeplant leaf area was slightly increased at 38 degree relative to 28 degree, and elevated CO 2 levels resulted in increased leaf area at 28 degree but decreased leaf area at 38 degree

  16. Mechanism of phytohormone involvement in feedback regulation of cotton leaf senescence induced by potassium deficiency.

    Science.gov (United States)

    Wang, Ye; Li, Bo; Du, Mingwei; Eneji, A Egrinya; Wang, Baomin; Duan, Liusheng; Li, Zhaohu; Tian, Xiaoli

    2012-10-01

    To elucidate the phytohormonal basis of the feedback regulation of leaf senescence induced by potassium (K) deficiency in cotton (Gossypium hirsutum L.), two cultivars contrasting in sensitivity to K deficiency were self- and reciprocally grafted hypocotyl-to-hypocotyl, using standard grafting (one scion grafted onto one rootstock), Y grafting (two scions grafted onto one rootstock), and inverted Y grafting (one scion grafted onto two rootstocks) at the seedling stage. K deficiency (0.03mM for standard and Y grafting, and 0.01mM for inverted Y grafting) increased the root abscisic acid (ABA) concentration by 1.6- to 3.1-fold and xylem ABA delivery rates by 1.8- to 4.6-fold. The K deficiency also decreased the delivery rates of xylem cytokinins [CKs; including the zeatin riboside (ZR) and isopentenyl adenosine (iPA) type] by 29-65% and leaf CK concentration by 16-57%. The leaf ABA concentration and xylem ABA deliveries were consistently greater in CCRI41 (more sensitive to K deficiency) than in SCRC22 (less sensitive to K deficiency) scions under K deficiency, and ZR- and iPA-type levels were consistently lower in the former than in the latter, irrespective of rootstock cultivar or grafting type, indicating that cotton shoot influences the levels of ABA and CKs in leaves and xylem sap. Because the scions had little influence on phytohormone levels in the roots (rootstocks) of all three types of grafts and rootstock xylem sap (collected below the graft union) of Y and inverted Y grafts, it appears that the site for basipetal feedback signal(s) involved in the regulation of xylem phytohormones is the hypocotyl of cotton seedlings. Also, the target of this feedback signal(s) is more likely to be the changes in xylem phytohormones within tissues of the hypocotyl rather than the export of phytohormones from the roots.

  17. 7 CFR 29.2530 - Leaf structure.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf structure. 29.2530 Section 29.2530 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards, Inspections, Marketing...-Cured Tobacco (u.s. Types 22, 23, and Foreign Type 96) § 29.2530 Leaf structure. The cell development of...

  18. Transcriptional analyses of natural leaf senescence in maize.

    Directory of Open Access Journals (Sweden)

    Wei Yang Zhang

    Full Text Available Leaf senescence is an important biological process that contributes to grain yield in crops. To study the molecular mechanisms underlying natural leaf senescence, we harvested three different developmental ear leaves of maize, mature leaves (ML, early senescent leaves (ESL, and later senescent leaves (LSL, and analyzed transcriptional changes using RNA-sequencing. Three sets of data, ESL vs. ML, LSL vs. ML, and LSL vs. ESL, were compared, respectively. In total, 4,552 genes were identified as differentially expressed. Functional classification placed these genes into 18 categories including protein metabolism, transporters, and signal transduction. At the early stage of leaf senescence, genes involved in aromatic amino acids (AAAs biosynthetic process and transport, cellular polysaccharide biosynthetic process, and the cell wall macromolecule catabolic process, were up-regulated. Whereas, genes involved in amino acid metabolism, transport, apoptosis, and response to stimulus were up-regulated at the late stage of leaf senescence. Further analyses reveals that the transport-related genes at the early stage of leaf senescence potentially take part in enzyme and amino acid transport and the genes upregulated at the late stage are involved in sugar transport, indicating nutrient recycling mainly takes place at the late stage of leaf senescence. Comparison between the data of natural leaf senescence in this study and previously reported data for Arabidopsis implies that the mechanisms of leaf senescence in maize are basically similar to those in Arabidopsis. A comparison of natural and induced leaf senescence in maize was performed. Athough many basic biological processes involved in senescence occur in both types of leaf senescence, 78.07% of differentially expressed genes in natural leaf senescence were not identifiable in induced leaf senescence, suggesting that differences in gene regulatory network may exist between these two leaf senescence

  19. Rapid regulation of leaf photosynthesis, carbohydrate status and leaf area expansion to maintain growth in irregular light environments

    DEFF Research Database (Denmark)

    Kjær, Katrine Heinsvig

    2012-01-01

    to maintain carbohydrate status and growth in unpredictable light environments. Our recent results show rapid regulation of photosynthesis and leaf carbohydrate status to maintain growth and light interception in dynamic light environments when campanula, rose and chrysanthemum were grown in a cost......-efficient light control system. Plant dry matter production was in all cases linear related to DLI, despite changes in daily light duration and light intensity of supplemental light suggesting that DLI is the main limiting factor for the prediction of production time in optimal temperature conditions. The results......Protected plant productions in northern latitudes rely heavily on supplemental light use to extend the number of light hours during the day. To conserve electricity and lower costs, a low-energy input system use supplemental lights preferable during less expensive off-peak hours and turn lighting...

  20. 76 FR 1180 - FDA Transparency Initiative: Improving Transparency to Regulated Industry

    Science.gov (United States)

    2011-01-07

    ...] FDA Transparency Initiative: Improving Transparency to Regulated Industry AGENCY: Food and Drug... the Transparency Initiative, the Food and Drug Administration (FDA) is announcing the availability of a report entitled ``FDA Transparency Initiative: Improving Transparency to Regulated Industry.'' The...

  1. Regulation of the development of the first leaf of oats (Avena sativa L.) : characterization and subcellular localization of proteases

    NARCIS (Netherlands)

    Valk, van der H.C.P.M.

    1987-01-01

    The loss of chlorophyll during the senescence of leaves is preceded by a decrease in protein content. Proteases responsible for the degradation of the proteins have been implicated in the regulation of the senescence process. The first leaf of the seedling of oats ( Avena

  2. Lace plant ethylene receptors, AmERS1a and AmERS1c, regulate ethylene-induced programmed cell death during leaf morphogenesis.

    Science.gov (United States)

    Rantong, Gaolathe; Evans, Rodger; Gunawardena, Arunika H L A N

    2015-10-01

    The lace plant, Aponogeton madagascariensis, is an aquatic monocot that forms perforations in its leaves as part of normal leaf development. Perforation formation occurs through developmentally regulated programmed cell death (PCD). The molecular basis of PCD regulation in the lace plant is unknown, however ethylene has been shown to play a significant role. In this study, we examined the role of ethylene receptors during perforation formation. We isolated three lace plant ethylene receptors AmERS1a, AmERS1b and AmERS1c. Using quantitative PCR, we examined their transcript levels at seven stages of leaf development. Through laser-capture microscopy, transcript levels were also determined in cells undergoing PCD and cells not undergoing PCD (NPCD cells). AmERS1a transcript levels were significantly lower in window stage leaves (in which perforation formation and PCD are occurring) as compared to all other leaf developmental stages. AmERS1a and AmERS1c (the most abundant among the three receptors) had the highest transcript levels in mature stage leaves, where PCD is not occurring. Their transcript levels decreased significantly during senescence-associated PCD. AmERS1c had significantly higher transcript levels in NPCD compared to PCD cells. Despite being significantly low in window stage leaves, AmERS1a transcripts were not differentially expressed between PCD and NPCD cells. The results suggested that ethylene receptors negatively regulate ethylene-controlled PCD in the lace plant. A combination of ethylene and receptor levels determines cell fate during perforation formation and leaf senescence. A new model for ethylene emission and receptor expression during lace plant perforation formation and senescence is proposed.

  3. Possible Roles of Strigolactones during Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Yusuke Yamada

    2015-09-01

    Full Text Available Leaf senescence is a complicated developmental process that involves degenerative changes and nutrient recycling. The progress of leaf senescence is controlled by various environmental cues and plant hormones, including ethylene, jasmonic acid, salicylic acid, abscisic acid, cytokinins, and strigolactones. The production of strigolactones is induced in response to nitrogen and phosphorous deficiency. Strigolactones also accelerate leaf senescence and regulate shoot branching and root architecture. Leaf senescence is actively promoted in a nutrient-poor soil environment, and nutrients are transported from old leaves to young tissues and seeds. Strigolactones might act as important signals in response to nutrient levels in the rhizosphere. In this review, we discuss the possible roles of strigolactones during leaf senescence.

  4. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China

    Science.gov (United States)

    Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-01

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35–209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change. PMID:29320458

  5. Community Characteristics and Leaf Stoichiometric Traits of Desert Ecosystems Regulated by Precipitation and Soil in an Arid Area of China.

    Science.gov (United States)

    Zhang, Xiaolong; Guan, Tianyu; Zhou, Jihua; Cai, Wentao; Gao, Nannan; Du, Hui; Jiang, Lianhe; Lai, Liming; Zheng, Yuanrun

    2018-01-10

    Precipitation is a key environmental factor determining plant community structure and function. Knowledge of how community characteristics and leaf stoichiometric traits respond to variation in precipitation is crucial for assessing the effects of global changes on terrestrial ecosystems. In this study, we measured community characteristics, leaf stoichiometric traits, and soil properties along a precipitation gradient (35-209 mm) in a desert ecosystem of Northwest China to explore the drivers of these factors. With increasing precipitation, species richness, aboveground biomass, community coverage, foliage projective cover (FPC), and leaf area index (LAI) all significantly increased, while community height decreased. The hyperarid desert plants were characterized by lower leaf carbon (C) and nitrogen/phosphorus (N/P) levels, and stable N and P, and these parameters did not change significantly with precipitation. The growth of desert plants was limited more by N than P. Soil properties, rather than precipitation, were the main drivers of desert plant leaf stoichiometric traits, whereas precipitation made the biggest contribution to vegetation structure and function. These results test the importance of precipitation in regulating plant community structure and composition together with soil properties, and provide further insights into the adaptive strategy of communities at regional scale in response to global climate change.

  6. Photosynthetic induction in a C4, Flaveria trinervia. I. Initial products of 14CO2 assimilation and levels of whole leaf C4 metabolites

    International Nuclear Information System (INIS)

    Moore, B.D.; Edwards, G.E.

    1986-01-01

    Labeling patterns from 14 CO 2 pulses to leaves and whole leaf metabolite contents were examined during photosynthetic induction in Flaveria trinervia, a C 4 dicot of the NADP-malic enzyme subgroup. During the first one to two minutes of illumination, malate was the primary initial product of 14 CO 2 assimilation (about 77% of total 14 C incorporated). After about 5 minutes of illumination, the proportion of initial label to aspartate increased from 16 to 66%, and then gradually declined during the following 7 to 10 minutes of illumination. Nutrition experiments showed that the increase in 14 CO 2 partitioning to aspartate was delayed about 2.5 minutes in plants grown with limiting N, and was highly dampened in plants previously treated 10 to 12 days with ammonia as the sole N source. Measurements of C 4 leaf metabolites revealed several transients in metabolite pools during the first few minutes of illumination, and subsequently, more gradual adjustments in pool sizes. These include a large initial decrease in malate (about 1.6 micromoles per milligram chlorophyll) and a small initial decrease in pyruvate. There was a transient increase in alanine levels after 1 minute of illumination, which was followed by a gradual, prolonged decrease during the remainder of the induction period. Total leaf aspartate decreased initially, but temporarily doubled in amount between 5 and 10 minutes of illumination (after its surge as a primary product). These results are discussed in terms of a plausible sequence of metabolic events which lead to the formation of the intercellular metabolite gradients required in C 4 photosynthesis

  7. Ontogeny of the sheathing leaf base in maize (Zea mays).

    Science.gov (United States)

    Johnston, Robyn; Leiboff, Samuel; Scanlon, Michael J

    2015-01-01

    Leaves develop from the shoot apical meristem (SAM) via recruitment of leaf founder cells. Unlike eudicots, most monocot leaves display parallel venation and sheathing bases wherein the margins overlap the stem. Here we utilized computed tomography (CT) imaging, localization of PIN-FORMED1 (PIN1) auxin transport proteins, and in situ hybridization of leaf developmental transcripts to analyze the ontogeny of monocot leaf morphology in maize (Zea mays). CT imaging of whole-mounted shoot apices illustrates the plastochron-specific stages during initiation of the basal sheath margins from the tubular disc of insertion (DOI). PIN1 localizations identify basipetal auxin transport in the SAM L1 layer at the site of leaf initiation, a process that continues reiteratively during later recruitment of lateral leaf domains. Refinement of these auxin transport domains results in multiple, parallel provascular strands within the initiating primordium. By contrast, auxin is transported from the L2 toward the L1 at the developing margins of the leaf sheath. Transcripts involved in organ boundary formation and dorsiventral patterning accumulate within the DOI, preceding the outgrowth of the overlapping margins of the sheathing leaf base. We suggest a model wherein sheathing bases and parallel veins are both patterned via the extended recruitment of lateral maize leaf domains from the SAM. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  8. Olive leaf down-regulates the oxidative stress and immune dysregulation in streptozotocin-induced diabetic mice.

    Science.gov (United States)

    Park, Jung-Hyun; Jung, Ji-Hye; Yang, Jin-Young; Kim, Hyun-Sook

    2013-11-01

    Type 1 diabetes is an endocrinologic disorder characterized by uncontrolled glucose regulation and oxidative stress. Olive leaves have been studied extensively for their antioxidant activity and capacity to improve immune function. We hypothesized that olive leaf powder supplementation will be effective in inhibiting the oxidative stress and immune dysregulation in streptozotocin (STZ)-induced diabetic mice. Mice were assigned to 1 of 5 groups: control (C), STZ-induced diabetes (D), and STZ-induced diabetes supplemented with very low dose (VLOL), low dose (LOL), or high dose of olive leaf powder (HOL). Blood glucose in the VLOL and LOL groups was lower than that in the D group (P LOL groups. Nitric oxide levels decreased in the VLOL and LOL groups, as compared with the D group. The messenger RNA expression levels of inducible nitric oxide synthase were significantly decreased in the VLOL and HOL groups, and interferon-γ levels were significantly decreased in the liver of the VLOL, LOL, and HOL groups compared with the levels in the D group. Interleukin-17 levels were significantly decreased in the VLOL and HOL groups. Th1 and Th17 cytokine levels were increased in the D group but decreased in all the experimental groups. Th2 cytokine levels were increased in all olive leaf-supplemented groups compared with those in the D group. These results indicate a reduction in the levels of proinflammatory cytokines, suggesting that olive leaves have the potential to provide therapeutic inhibition of diabetic complications. © 2013.

  9. Mechanisms and regulation of DNA replication initiation in eukaryotes.

    Science.gov (United States)

    Parker, Matthew W; Botchan, Michael R; Berger, James M

    2017-04-01

    Cellular DNA replication is initiated through the action of multiprotein complexes that recognize replication start sites in the chromosome (termed origins) and facilitate duplex DNA melting within these regions. In a typical cell cycle, initiation occurs only once per origin and each round of replication is tightly coupled to cell division. To avoid aberrant origin firing and re-replication, eukaryotes tightly regulate two events in the initiation process: loading of the replicative helicase, MCM2-7, onto chromatin by the origin recognition complex (ORC), and subsequent activation of the helicase by its incorporation into a complex known as the CMG. Recent work has begun to reveal the details of an orchestrated and sequential exchange of initiation factors on DNA that give rise to a replication-competent complex, the replisome. Here, we review the molecular mechanisms that underpin eukaryotic DNA replication initiation - from selecting replication start sites to replicative helicase loading and activation - and describe how these events are often distinctly regulated across different eukaryotic model organisms.

  10. 7 CFR 29.2438 - Thin Leaf (C Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Thin Leaf (C Group). 29.2438 Section 29.2438... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2438 Thin Leaf (C Group). This group consists of leaves... body than those of the B group, and show little or no ground injury. Choice- and fine-quality tobacco...

  11. 7 CFR 29.1163 - Smoking Leaf (H Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Smoking Leaf (H Group). 29.1163 Section 29.1163... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.1163 Smoking Leaf (H Group). This group consists of leaves normally grown at or above the midportion of the stalk. Leaves of the H group show a high degree...

  12. A new MCM modification cycle regulates DNA replication initiation.

    Science.gov (United States)

    Wei, Lei; Zhao, Xiaolan

    2016-03-01

    The MCM DNA helicase is a central regulatory target during genome replication. MCM is kept inactive during G1, and it initiates replication after being activated in S phase. During this transition, the only known chemical change to MCM is the gain of multisite phosphorylation that promotes cofactor recruitment. Because replication initiation is intimately linked to multiple biological cues, additional changes to MCM can provide further regulatory points. Here, we describe a yeast MCM SUMOylation cycle that regulates replication. MCM subunits undergo SUMOylation upon loading at origins in G1 before MCM phosphorylation. MCM SUMOylation levels then decline as MCM phosphorylation levels rise, thus suggesting an inhibitory role of MCM SUMOylation during replication. Indeed, increasing MCM SUMOylation impairs replication initiation, partly through promoting the recruitment of a phosphatase that decreases MCM phosphorylation and activation. We propose that MCM SUMOylation counterbalances kinase-based regulation, thus ensuring accurate control of replication initiation.

  13. 7 CFR 30.1 - Definitions of terms used in classification of leaf tobacco.

    Science.gov (United States)

    2010-01-01

    ... tobacco. 30.1 Section 30.1 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING... STANDARD CONTAINER REGULATIONS TOBACCO STOCKS AND STANDARDS Classification of Leaf Tobacco Covering Classes, Types and Groups of Grades § 30.1 Definitions of terms used in classification of leaf tobacco. For the...

  14. Ozone induced leaf loss and decreased leaf production of European Holly (Ilex aquifolium L.) over multiple seasons

    International Nuclear Information System (INIS)

    Ranford, Jonathan; Reiling, Kevin

    2007-01-01

    European Holly (Ilex aquifolium L.) was used to study the impact of one short (28 day) ozone fumigation episode on leaf production, leaf loss and stomatal conductance (g s ), in order to explore potential longer term effects over 3 growing seasons. Young I. aquifolium plants received an episode of either charcoal-filtered air or charcoal-filtered air with 70 nl l -1 O 3 added for 7 h d -1 over a 28 day period from June 15th 1996, then placed into ambient environment, Stoke-on-Trent, U.K. Data were collected per leaf cohort over the next three growing seasons. Ozone exposure significantly increased leaf loss and stomatal conductance and reduced leaf production over all subsequent seasons. Impact of the initial ozone stress was still detected in leaves that had no direct experimental ozone exposure. This study has shown the potential of ozone to introduce long-term phenological perturbations into ecosystems by influencing productivity over a number of seasons. - Ozone significantly alters Ilex aquifolium leaf production and loss over multiple seasons

  15. 7 CFR 29.2437 - Heavy Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Heavy Leaf (B Group). 29.2437 Section 29.2437... REGULATIONS TOBACCO INSPECTION Standards Grades § 29.2437 Heavy Leaf (B Group). This group consists of leaves..., are heavier in body than those of the X or C groups, and show no ground injury. Choice- and fine...

  16. TALE and Shape: How to Make a Leaf Different.

    Science.gov (United States)

    Di Giacomo, Elisabetta; Iannelli, Maria Adelaide; Frugis, Giovanna

    2013-05-06

    The Three Amino acid Loop Extension (TALE) proteins constitute an ancestral superclass of homeodomain transcription factors conserved in animals, plants and fungi. In plants they comprise two classes, KNOTTED1-LIKE homeobox (KNOX) and BEL1-like homeobox (BLH or BELL, hereafter referred to as BLH), which are involved in shoot apical meristem (SAM) function, as well as in the determination and morphological development of leaves, stems and inflorescences. Selective protein-protein interactions between KNOXs and BLHs affect heterodimer subcellular localization and target affinity. KNOXs exert their roles by maintaining a proper balance between undifferentiated and differentiated cell state through the modulation of multiple hormonal pathways. A pivotal function of KNOX in evolutionary diversification of leaf morphology has been assessed. In the SAM of both simple- and compound-leafed seed species, downregulation of most class 1 KNOX (KNOX1) genes marks the sites of leaf primordia initiation. However, KNOX1 expression is re-established during leaf primordia development of compound-leafed species to maintain transient indeterminacy and morphogenetic activity at the leaf margins. Despite the increasing knowledge available about KNOX1 protein function in plant development, a comprehensive view on their downstream effectors remains elusive. This review highlights the role of TALE proteins in leaf initiation and morphological plasticity with a focus on recent advances in the identification of downstream target genes and pathways.

  17. Regulation of protein translation initiation in response to ionizing radiation

    International Nuclear Information System (INIS)

    Trivigno, Donatella; Bornes, Laura; Huber, Stephan M; Rudner, Justine

    2013-01-01

    Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells

  18. Regulation of protein translation initiation in response to ionizing radiation

    Directory of Open Access Journals (Sweden)

    Trivigno Donatella

    2013-02-01

    Full Text Available Abstract Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.

  19. The fate of nitrogen mineralized from leaf litter — Initial evidence from 15N-labeled litter

    Science.gov (United States)

    Kathryn B. Piatek

    2011-01-01

    Decomposition of leaf litter includes microbial immobilization of nitrogen (N), followed by N mineralization. The fate of N mineralized from leaf litter is unknown. I hypothesized that N mineralized from leaf litter will be re-immobilized into other forms of organic matter, including downed wood. This mechanism may retain N in some forests. To test this hypothesis, oak...

  20. Nuclear regulations: current status and proposed initiatives

    International Nuclear Information System (INIS)

    Domondon, D.B.; Valdezco, E.M.; Mateo, A.J.; Parami, V.K.

    1996-01-01

    The science Act of 1958 created the Philippine Atomic Energy Commission, presently known as the Philippine Nuclear Research Institute (PNRI), under the Department of Science and Technology (DOST). The PNRI is tasked with the dual role of promotion and control of the peaceful applications of atomic energy. To carry its mandate of regulation and control on the use of raioisotopes in various fields, the PNRI had promulgated and issued specific regulations known as the Code of PNRI regulations. This paper summarizes the activities undertaken by PNRI in the continuing process of review and subsequent revisions of the Code of PNRI regulations and related guidance documents. It highlights proposed modifications in the present regulations in an attempt to adopt the new international basic safety standards, the practical problems and related issues attendant to the implementation of these new standards, among others. In line with the overall objective of PNRI to ensure the safe application of nuclear energy and radiation technology in various fields, the institute conducted a series of regulatory information conferences to provide an opportunity for members of the regulatory staff of the PNRI and licenses to discuss safety initiatives and regulatory issues. This paper will also provide an in-depth assessment of the lessons learned from these conferences which were conducted by sector or by specific applications for a more focused approach, e.g. radiopharmaceuticals, industrial radiography, research, among others. Licensees' feedback on the PNRI regulatory process are presented as part of the overall objective of enhancing the operational experiences of the licensing, review and evaluation group as well as that of inspection, enforcement and compliance. Several proposed initiatives for consideration of the PNRI to further strengthen its regulatory functions are also briefly outlined. (author)

  1. Callus induction of leaf explant Piper betle L. Var Nigra with combination of plant growth regulators indole-3-acetic acid (IAA), benzyl amino purin (BAP) and kinetin

    Science.gov (United States)

    Junairiah, Zuraidassanaaz, Nabilah Istighfari; Izdihar, Fairuz Nabil; Manuhara, Yosephine Sri Wulan

    2017-09-01

    The purpose of this research was to determine the combination of plant growth regulators IAA, BAP and kinetin towards callus induction and growth of leaf explants Piper betle L. VarNigra. Explants from leaf of Piper betle L. VarNigra was cultured on MS medium with 24 treatment combinations of plant growth regulators IAA and BAP and 24 treatment combinations of plant growth regulators IAA and kinetin with 0.0;0.5;1.0;1.5;2.0 mg/L concentration respectively, the observed variable were the length of time the formation of callus, callus morphology, fresh and dry weight of callus. The results of this research showed that the combination of growth regulators IAA with BAP and kinetin had effects on leaf growth of Piper betle L. VarNigra. During 8 weeks observation, it indicated that the combination of concentration IAA 0.5 mg/L and BAP 2.0 mg/L showed fastest callus formation at 8.5 days. Combination of concentration IAA 1.0 mg/L and BAP 1.5 mg/L showed the highest of fresh weight at 0.6596 grams, and the highest dry weight was obtained from the combination of concentration IAA 0.5 mg/L and BAP 0.5 mg/L at 0.0727 grams. Combination of concentration IAA 1.0 mg/L and kinetin 1.5 mg/L had the highest of fresh weight at 0.2972 grams and the highest dry weight at 0.1660 grams. Callus of Piper betle L. VarNigra had two textures, that were compact and friable, and also showed various kind of colors, like white, greenish white, yellowish white, tanned white, brown and black. Based on this research, that concentration IAA 1.0 mg/L and 1.5 mg/L kinetin was the best combination for induction of callus from leaf of Piper betle L. Var Nigra.

  2. [Relationships between decomposition rate of leaf litter and initial quality across the alpine timberline ecotone in Western Sichuan, China].

    Science.gov (United States)

    Yang, Lin; Deng, Chang-chun; Chen Ya-mei; He, Run-lian; Zhang, Jian; Liu, Yang

    2015-12-01

    The relationships between litter decomposition rate and their initial quality of 14 representative plants in the alpine forest ecotone of western Sichuan were investigated in this paper. The decomposition rate k of the litter ranged from 0.16 to 1.70. Woody leaf litter and moss litter decomposed much slower, and shrubby litter decomposed a little faster. Then, herbaceous litters decomposed fastest among all plant forms. There were significant linear regression relationships between the litter decomposition rate and the N content, lignin content, phenolics content, C/N, C/P and lignin/N. Lignin/N and hemicellulose content could explain 78.4% variation of the litter decomposition rate (k) by path analysis. The lignin/N could explain 69.5% variation of k alone, and the direct path coefficient of lignin/N on k was -0.913. Principal component analysis (PCA) showed that the contribution rate of the first sort axis to k and the decomposition time (t) reached 99.2%. Significant positive correlations existed between lignin/N, lignin content, C/N, C/P and the first sort axis, and the closest relationship existed between lignin/N and the first sort axis (r = 0.923). Lignin/N was the key quality factor affecting plant litter decomposition rate across the alpine timberline ecotone, with the higher the initial lignin/N, the lower the decomposition rate of leaf litter.

  3. Genome-wide evaluation of histone methylation changes associated with leaf senescence in Arabidopsis.

    Directory of Open Access Journals (Sweden)

    Judy A Brusslan

    Full Text Available Leaf senescence is the orderly dismantling of older tissue that allows recycling of nutrients to developing portions of the plant and is accompanied by major changes in gene expression. Histone modifications correlate to levels of gene expression, and this study utilizes ChIP-seq to classify activating H3K4me3 and silencing H3K27me3 marks on a genome-wide scale for soil-grown mature and naturally senescent Arabidopsis leaves. ChIPnorm was used to normalize data sets and identify genomic regions with significant differences in the two histone methylation patterns, and the differences were correlated to changes in gene expression. Genes that showed an increase in the H3K4me3 mark in older leaves were senescence up-regulated, while genes that showed a decrease in the H3K4me3 mark in the older leaves were senescence down-regulated. For the H3K27me3 modification, genes that lost the H3K27me3 mark in older tissue were senescence up-regulated. Only a small number of genes gained the H3K27me3 mark, and these were senescence down-regulated. Approximately 50% of senescence up-regulated genes lacked the H3K4me3 mark in both mature and senescent leaf tissue. Two of these genes, SAG12 and At1g73220, display strong senescence up-regulation without the activating H3K4me3 histone modification. This study provides an initial epigenetic framework for the developmental transition into senescence.

  4. Understanding of Leaf Development—the Science of Complexity

    Directory of Open Access Journals (Sweden)

    Robert Malinowski

    2013-06-01

    Full Text Available The leaf is the major organ involved in light perception and conversion of solar energy into organic carbon. In order to adapt to different natural habitats, plants have developed a variety of leaf forms, ranging from simple to compound, with various forms of dissection. Due to the enormous cellular complexity of leaves, understanding the mechanisms regulating development of these organs is difficult. In recent years there has been a dramatic increase in the use of technically advanced imaging techniques and computational modeling in studies of leaf development. Additionally, molecular tools for manipulation of morphogenesis were successfully used for in planta verification of developmental models. Results of these interdisciplinary studies show that global growth patterns influencing final leaf form are generated by cooperative action of genetic, biochemical, and biomechanical inputs. This review summarizes recent progress in integrative studies on leaf development and illustrates how intrinsic features of leaves (including their cellular complexity influence the choice of experimental approach.

  5. Membrane–initiated estradiol signaling regulating sexual receptivity

    Directory of Open Access Journals (Sweden)

    Paul E Micevych

    2011-09-01

    Full Text Available Estradiol has profound actions on the structure and function of the nervous system. In addition to nuclear actions that directly modulate gene expression, the idea that estradiol can rapidly activate cell signaling by binding to membrane estrogen receptors (mERs has emerged. Even the regulation of sexual receptivity, an action previously thought to be completely regulated by nuclear ERs, has been shown to have a membrane-initiated estradiol signaling (MIES component. This highlighted the question of the nature of mERs. Several candidates have been proposed, ERα, ERβ, ER-X, GPR30 (G protein coupled estrogen receptor; GPER, and a receptor activated by a diphenylacrylamide compound, STX. Although each of these receptors has been shown to be active in specific assays, we present evidence for and against their participation in sexual receptivity by acting in the lordosis-regulating circuit. The initial MIES that activates the circuit is in the arcuate nucleus of the hypothalamus (ARH. Using both activation of μ-opioid receptors (MOR in the medial preoptic nucleus and lordosis behavior, we document that both ERα and the STX receptor participate in the required MIES. ERα and the STX receptor activation of cell signaling are dependent on the transactivation of type 1 metabotropic glutamate receptors (mGluR1a that augment progesterone synthesis in astrocytes and protein kinase C (PKC in ARH neurons. While estradiol-induced sexual receptivity does not depend on neuroprogesterone, proceptive behaviors do. Moreover, the ERα and the STX receptor activation of medial preoptic MORs and augmentation of lordosis were sensitive to mGluR1a blockade. These observations suggest a common mechanism through which mERs are coupled to intracellular signaling cascades, not just in regulating reproduction, but in actions throughout the neuraxis including the cortex, hippocampus, striatum and DRGs.

  6. Membrane-Initiated Estradiol Signaling Regulating Sexual Receptivity

    Science.gov (United States)

    Micevych, Paul E.; Dewing, Phoebe

    2011-01-01

    Estradiol has profound actions on the structure and function of the nervous system. In addition to nuclear actions that directly modulate gene expression, the idea that estradiol can rapidly activate cell signaling by binding to membrane estrogen receptors (mERs) has emerged. Even the regulation of sexual receptivity, an action previously thought to be completely regulated by nuclear ERs, has been shown to have a membrane-initiated estradiol signaling (MIES) component. This highlighted the question of the nature of mERs. Several candidates have been proposed, ERα, ERβ, ER-X, GPR30 (G protein coupled estrogen receptor), and a receptor activated by a diphenylacrylamide compound, STX. Although each of these receptors has been shown to be active in specific assays, we present evidence for and against their participation in sexual receptivity by acting in the lordosis-regulating circuit. The initial MIES that activates the circuit is in the arcuate nucleus of the hypothalamus (ARH). Using both activation of μ-opioid receptors (MOR) in the medial preoptic nucleus and lordosis behavior, we document that both ERα and the STX-receptor participate in the required MIES. ERα and the STX-receptor activation of cell signaling are dependent on the transactivation of type 1 metabotropic glutamate receptors (mGluR1a) that augment progesterone synthesis in astrocytes and protein kinase C (PKC) in ARH neurons. While estradiol-induced sexual receptivity does not depend on neuroprogesterone, proceptive behaviors do. Moreover, the ERα and the STX-receptor activation of medial preoptic MORs and augmentation of lordosis were sensitive to mGluR1a blockade. These observations suggest a common mechanism through which mERs are coupled to intracellular signaling cascades, not just in regulating reproduction, but in actions throughout the neuraxis including the cortex, hippocampus, striatum, and dorsal root ganglias. PMID:22649369

  7. Seasonal patterns of leaf gas exchange and water relations in dry rain forest trees of contrasting leaf phenology.

    Science.gov (United States)

    Choat, Brendan; Ball, Marilyn C; Luly, Jon G; Donnelly, Christine F; Holtum, Joseph A M

    2006-05-01

    Diurnal and seasonal patterns of leaf gas exchange and water relations were examined in tree species of contrasting leaf phenology growing in a seasonally dry tropical rain forest in north-eastern Australia. Two drought-deciduous species, Brachychiton australis (Schott and Endl.) A. Terracc. and Cochlospermum gillivraei Benth., and two evergreen species, Alphitonia excelsa (Fenzal) Benth. and Austromyrtus bidwillii (Benth.) Burret. were studied. The deciduous species had higher specific leaf areas and maximum photosynthetic rates per leaf dry mass in the wet season than the evergreens. During the transition from wet season to dry season, total canopy area was reduced by 70-90% in the deciduous species and stomatal conductance (g(s)) and assimilation rate (A) were markedly lower in the remaining leaves. Deciduous species maintained daytime leaf water potentials (Psi(L)) at close to or above wet season values by a combination of stomatal regulation and reduction in leaf area. Thus, the timing of leaf drop in deciduous species was not associated with large negative values of daytime Psi(L) (greater than -1.6 MPa) or predawn Psi(L) (greater than -1.0 MPa). The deciduous species appeared sensitive to small perturbations in soil and leaf water status that signalled the onset of drought. The evergreen species were less sensitive to the onset of drought and g(s) values were not significantly lower during the transitional period. In the dry season, the evergreen species maintained their canopies despite increasing water-stress; however, unlike Eucalyptus species from northern Australian savannas, A and g(s) were significantly lower than wet season values.

  8. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.

    Science.gov (United States)

    Ji, Yingbin; Liu, Jian; Xing, Da

    2016-09-01

    In plants, extensive efforts have been devoted to understanding the crosstalk between salicylic acid (SA) and jasmonic acid (JA) signaling in pathogen defenses, but this crosstalk has scarcely been addressed during senescence. In this study, the effect of SA application on methyl jasmonate (MeJA)-induced leaf senescence was assessed. We found that low concentrations of SA (1-50 μM) played a delayed role against the senescence promoted by MeJA. Furthermore, low concentrations of SA enhanced plant antioxidant defenses and restricted reactive oxygen species (ROS) accumulation in MeJA-treated leaves. When applied simultaneously with MeJA, low concentrations of SA triggered a nitric oxide (NO) burst, and the elevated NO levels were linked to the nitric oxide associated 1 (NOA1)-dependent pathway via nitric oxide synthase (NOS) activity. The ability of SA to up-regulate plant antioxidant defenses, reduce ROS accumulation, and suppress leaf senescence was lost in NO-deficient Atnoa1 plants. In a converse manner, exogenous addition of NO donors increased the plant antioxidant capacity and lowered the ROS levels in MeJA-treated leaves. Taken together, the results indicate that SA at low concentrations counteracts MeJA-induced leaf senescence through NOA1-dependent NO signaling and strengthening of the antioxidant defense. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  9. DNA replication initiator Cdc6 also regulates ribosomal DNA transcription initiation.

    Science.gov (United States)

    Huang, Shijiao; Xu, Xiaowei; Wang, Guopeng; Lu, Guoliang; Xie, Wenbing; Tao, Wei; Zhang, Hongyin; Jiang, Qing; Zhang, Chuanmao

    2016-04-01

    RNA-polymerase-I-dependent ribosomal DNA (rDNA) transcription is fundamental to rRNA processing, ribosome assembly and protein synthesis. However, how this process is initiated during the cell cycle is not fully understood. By performing a proteomic analysis of transcription factors that bind RNA polymerase I during rDNA transcription initiation, we identified that the DNA replication initiator Cdc6 interacts with RNA polymerase I and its co-factors, and promotes rDNA transcription in G1 phase in an ATPase-activity-dependent manner. We further showed that Cdc6 is targeted to the nucleolus during late mitosis and G1 phase in a manner that is dependent on B23 (also known as nucleophosmin, NPM1), and preferentially binds to the rDNA promoter through its ATP-binding domain. Overexpression of Cdc6 increases rDNA transcription, whereas knockdown of Cdc6 results in a decreased association of both RNA polymerase I and the RNA polymerase I transcription factor RRN3 with rDNA, and a reduction of rDNA transcription. Furthermore, depletion of Cdc6 impairs the interaction between RRN3 and RNA polymerase I. Taken together, our data demonstrate that Cdc6 also serves as a regulator of rDNA transcription initiation, and indicate a mechanism by which initiation of rDNA transcription and DNA replication can be coordinated in cells. © 2016. Published by The Company of Biologists Ltd.

  10. Adsorption of malachite green dye from aqueous solution on the bamboo leaf ash

    Science.gov (United States)

    Kuntari, Priwidyanjati, Dessyntha Anggiani

    2017-12-01

    Bamboo leaf ash has been developed as an adsorbent material for removal malachite green from aqueous solution. Adsorption parameters have studied are contact time and initial pH. The effect of contact time and pH were examined in the batch adsorption processes. The physicochemical characters of bamboo leaf ash were investigated by using X-Ray Diffraction (XRD) and FT-IR spectroscopy. Malachite green concentration was determined by UV-Vis spectrophotometer. FT-IR spectrogram of bamboo leaf ash shows that typical fingerprint of adsorbent material with Si-O-Si or Al-O-Al group. The X-ray diffractograms of bamboo leaf ash show that adsorbent material has a highly amorphous nature. The percentage of adsorption was showed raised with increasing contact time. The optimum removal of malachite green when the initial dye concentration, initial pH, weight of adsorbent and contact time was 20 mg/L, 7, 0.25 g and 75 minutes respectively.

  11. Relationships of leaf dark respiration to leaf nitrogen, specific leaf area and leaf life-span: a test across biomes and functional groups.

    Science.gov (United States)

    Reich, Peter B; Walters, Michael B; Ellsworth, David S; Vose, James M; Volin, John C; Gresham, Charles; Bowman, William D

    1998-05-01

    Based on prior evidence of coordinated multiple leaf trait scaling, we hypothesized that variation among species in leaf dark respiration rate (R d ) should scale with variation in traits such as leaf nitrogen (N), leaf life-span, specific leaf area (SLA), and net photosynthetic capacity (A max ). However, it is not known whether such scaling, if it exists, is similar among disparate biomes and plant functional types. We tested this idea by examining the interspecific relationships between R d measured at a standard temperature and leaf life-span, N, SLA and A max for 69 species from four functional groups (forbs, broad-leafed trees and shrubs, and needle-leafed conifers) in six biomes traversing the Americas: alpine tundra/subalpine forest, Colorado; cold temperate forest/grassland, Wisconsin; cool temperate forest, North Carolina; desert/shrubland, New Mexico; subtropical forest, South Carolina; and tropical rain forest, Amazonas, Venezuela. Area-based R d was positively related to area-based leaf N within functional groups and for all species pooled, but not when comparing among species within any site. At all sites, mass-based R d (R d-mass ) decreased sharply with increasing leaf life-span and was positively related to SLA and mass-based A max and leaf N (leaf N mass ). These intra-biome relationships were similar in shape and slope among sites, where in each case we compared species belonging to different plant functional groups. Significant R d-mass -N mass relationships were observed in all functional groups (pooled across sites), but the relationships differed, with higher R d at any given leaf N in functional groups (such as forbs) with higher SLA and shorter leaf life-span. Regardless of biome or functional group, R d-mass was well predicted by all combinations of leaf life-span, N mass and/or SLA (r 2 ≥ 0.79, P morphological, chemical and metabolic traits.

  12. The Citrus ABA signalosome: identification and transcriptional regulation during sweet orange fruit ripening and leaf dehydration.

    Science.gov (United States)

    Romero, Paco; Lafuente, María T; Rodrigo, María J

    2012-08-01

    The abscisic acid (ABA) signalling core in plants include the cytosolic ABA receptors (PYR/PYL/RCARs), the clade-A type 2C protein phosphatases (PP2CAs), and the subclass III SNF1-related protein kinases 2 (SnRK2s). The aim of this work was to identify these ABA perception system components in sweet orange and to determine the influence of endogenous ABA on their transcriptional regulation during fruit development and ripening, taking advantage of the comparative analysis between a wild-type and a fruit-specific ABA-deficient mutant. Transcriptional changes in the ABA signalosome during leaf dehydration were also studied. Six PYR/PYL/RCAR, five PP2CA, and two subclass III SnRK2 genes, homologous to those of Arabidopsis, were identified in the Citrus genome. The high degree of homology and conserved motifs for protein folding and for functional activity suggested that these Citrus proteins are bona fide core elements of ABA perception in orange. Opposite expression patterns of CsPYL4 and CsPYL5 and ABA accumulation were found during ripening, although there were few differences between varieties. In contrast, changes in expression of CsPP2CA genes during ripening paralleled those of ABA content and agreeed with the relevant differences between wild-type and mutant fruit transcript accumulation. CsSnRK2 gene expression continuously decreased with ripening and no remarkable differences were found between cultivars. Overall, dehydration had a minor effect on CsPYR/PYL/RCAR and CsSnRK2 expression in vegetative tissue, whereas CsABI1, CsAHG1, and CsAHG3 were highly induced by water stress. The global results suggest that responsiveness to ABA changes during citrus fruit ripening, and leaf dehydration was higher in the CsPP2CA gene negative regulators than in the other ABA signalosome components.

  13. Leaf-IT: An Android application for measuring leaf area.

    Science.gov (United States)

    Schrader, Julian; Pillar, Giso; Kreft, Holger

    2017-11-01

    The use of plant functional traits has become increasingly popular in ecological studies because plant functional traits help to understand key ecological processes in plant species and communities. This also includes changes in diversity, inter- and intraspecific interactions, and relationships of species at different spatiotemporal scales. Leaf traits are among the most important traits as they describe key dimensions of a plant's life history strategy. Further, leaf area is a key parameter with relevance for other traits such as specific leaf area, which in turn correlates with leaf chemical composition, photosynthetic rate, leaf longevity, and carbon investment. Measuring leaf area usually involves the use of scanners and commercial software and can be difficult under field conditions. We present Leaf-IT, a new smartphone application for measuring leaf area and other trait-related areas. Leaf-IT is free, designed for scientific purposes, and runs on Android 4 or higher. We tested the precision and accuracy using objects with standardized area and compared the area measurements of real leaves with the well-established, commercial software WinFOLIA using the Altman-Bland method. Area measurements of standardized objects show that Leaf-IT measures area with high accuracy and precision. Area measurements with Leaf-IT of real leaves are comparable to those of WinFOLIA. Leaf-IT is an easy-to-use application running on a wide range of smartphones. That increases the portability and use of Leaf-IT and makes it possible to measure leaf area under field conditions typical for remote locations. Its high accuracy and precision are similar to WinFOLIA. Currently, its main limitation is margin detection of damaged leaves or complex leaf morphologies.

  14. The Effects of a Plant Growth Regulator, Leaf Removal, Bagging, and Harvest Time on the Lipoxygenase Activity and Fatty Acid Composition of Pinot Noir Grapevines

    International Nuclear Information System (INIS)

    Ju, Y.; Zeng, J.; Zhu, M.; Lv, X.; Wang, T.; Zhang, Z.; Li, H.; Fang, Y.

    2016-01-01

    Green leaf volatiles (GLVs) are an important source of grape aromas, and lipoxygenase is a key enzyme involved in the formation of green leaf volatile substances. In addition, fatty acids are the main substrates that compose GLVs and are the main precursor compound utilized in the formation of grape aromas, which are an important index of grape quality. We examined the effects of a plant growth regulator, leaf removal, bagging, and harvest time on the lipoxygenase (LOX) activity, and the fatty acid composition of grapevines were studied. The following four experimental treatments were conducted using Pinot Noir (Vitis vinifera L.) grapevines to study the following variables: treatment with a plant growth regulator, leaf removal, fruit bagging, and harvest time. We obtained the following results. (1) 16 types of fatty acids were detected in the grape skins. The unsaturated fatty acid content consisted mainly of linoleic acid, oleic acid and palmitoleic acid; however, no linolenic acid was detected. In addition, the saturated fatty acid content consisted primarily of palmitic acid, stearic acid, behenic acid and arachidic acid. (2) Abscisic acid (ABA), methyl jasmonate (MeJA), light intensity, and harvest time appeared to effect LOX activity. (3) According to a principal component analysis (PCA) of the four treatments and the fatty acid content of the skins, ABA (concentration of 1000 mg/L), MeJA (concentrations of 100 meu mol/L, 400 meu mol/L and 800 meu mol/L) and early harvest treatment were responsible for the changes in fatty acid content. These results could be helpful in vineyard management and in improving the quality of grapes. (author)

  15. Translational researches on leaf senescence for enhancing plant productivity and quality.

    Science.gov (United States)

    Guo, Yongfeng; Gan, Su-Sheng

    2014-07-01

    Leaf senescence is a very important trait that limits yield and biomass accumulation of agronomic crops and reduces post-harvest performance and the nutritional value of horticultural crops. Significant advance in physiological and molecular understanding of leaf senescence has made it possible to devise ways of manipulating leaf senescence for agricultural improvement. There are three major strategies in this regard: (i) plant hormone biology-based leaf senescence manipulation technology, the senescence-specific gene promoter-directed IPT system in particular; (ii) leaf senescence-specific transcription factor biology-based technology; and (iii) translation initiation factor biology-based technology. Among the first strategy, the P SAG12 -IPT autoregulatory senescence inhibition system has been widely explored and successfully used in a variety of plant species for manipulating senescence. The vast majority of the related research articles (more than 2000) showed that crops harbouring the autoregulatory system displayed a significant delay in leaf senescence without any abnormalities in growth and development, a marked increase in grain yield and biomass, dramatic improvement in horticultural performance, and/or enhanced tolerance to drought stress. This technology is approaching commercialization. The transcription factor biology-based and translation initiation factor biology-based technologies have also been shown to be very promising and have great potentials for manipulating leaf senescence in crops. Finally, it is speculated that technologies based on the molecular understanding of nutrient recycling during leaf senescence are highly desirable and are expected to be developed in future translational leaf senescence research. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. The Arabidopsis Mitochondrial Protease FtSH4 Is Involved in Leaf Senescence via Regulation of WRKY-Dependent Salicylic Acid Accumulation and Signaling.

    Science.gov (United States)

    Zhang, Shengchun; Li, Cui; Wang, Rui; Chen, Yaxue; Shu, Si; Huang, Ruihua; Zhang, Daowei; Li, Jian; Xiao, Shi; Yao, Nan; Yang, Chengwei

    2017-04-01

    Mitochondria and autophagy play important roles in the networks that regulate plant leaf senescence and cell death. However, the molecular mechanisms underlying the interactions between mitochondrial signaling and autophagy are currently not well understood. This study characterized the function of the Arabidopsis ( Arabidopsis thaliana ) mitochondrial AAA-protease gene FtSH4 in regulating autophagy and senescence, finding that FtSH4 mediates WRKY-dependent salicylic acid (SA) accumulation and signaling. Knockout of FtSH4 in the ftsh4-4 mutant resulted in severe leaf senescence, cell death, and high autophagy levels. The level of SA increased dramatically in the ftsh4-4 mutant. Expression of nahG in the ftsh4-4 mutant led to decreased SA levels and suppressed the leaf senescence and cell death phenotypes. The transcript levels of several SA synthesis and signaling genes, including SALICYLIC ACID INDUCTION DEFICIENT2 ( SID2 ), NON-RACE-SPECIFIC DISEASE RESISTANCE1 ( NDR1 ), and NONEXPRESSOR OF PATHOGENESIS-RELATED PROTEINS1 ( NPR1 ), increased significantly in the ftsh4-4 mutants compared with the wild type. Loss of function of SID2 , NDR1 , or NPR1 in the ftsh4-4 mutant reversed the ftsh4-4 senescence and autophagy phenotypes. Furthermore, ftsh4-4 mutants had elevated levels of transcripts of several WRKY genes, including WRKY40 , WRKY46 , WRKY51 , WRKY60 , WRKY63 , and WRKY75 ; all of these WRKY proteins can bind to the promoter of SID2 Loss of function of WRKY75 in the ftsh4-4 mutants decreased the levels of SA and reversed the senescence phenotype. Taken together, these results suggest that the mitochondrial ATP-dependent protease FtSH4 may regulate the expression of WRKY genes by modifying the level of reactive oxygen species and the WRKY transcription factors that control SA synthesis and signaling in autophagy and senescence. © 2017 American Society of Plant Biologists. All Rights Reserved.

  17. Characterization of a null allelic mutant of the rice NAL1 gene reveals its role in regulating cell division.

    Directory of Open Access Journals (Sweden)

    Dan Jiang

    Full Text Available Leaf morphology is closely associated with cell division. In rice, mutations in Narrow leaf 1 (NAL1 show narrow leaf phenotypes. Previous studies have shown that NAL1 plays a role in regulating vein patterning and increasing grain yield in indica cultivars, but its role in leaf growth and development remains unknown. In this report, we characterized two allelic mutants of NARROW LEAF1 (NAL1, nal1-2 and nal1-3, both of which showed a 50% reduction in leaf width and length, as well as a dwarf culm. Longitudinal and transverse histological analyses of leaves and internodes revealed that cell division was suppressed in the anticlinal orientation but enhanced in the periclinal orientation in the mutants, while cell size remained unaltered. In addition to defects in cell proliferation, the mutants showed abnormal midrib in leaves. Map-based cloning revealed that nal1-2 is a null allelic mutant of NAL1 since both the whole promoter and a 404-bp fragment in the first exon of NAL1 were deleted, and that a 6-bp fragment was deleted in the mutant nal1-3. We demonstrated that NAL1 functions in the regulation of cell division as early as during leaf primordia initiation. The altered transcript level of G1- and S-phase-specific genes suggested that NAL1 affects cell cycle regulation. Heterogeneous expression of NAL1 in fission yeast (Schizosaccharomyces pombe further supported that NAL1 affects cell division. These results suggest that NAL1 controls leaf width and plant height through its effects on cell division.

  18. Non-destructive measurement of soybean leaf thickness via X-ray computed tomography allows the study of diel leaf growth rhythms in the third dimension.

    Science.gov (United States)

    Pfeifer, Johannes; Mielewczik, Michael; Friedli, Michael; Kirchgessner, Norbert; Walter, Achim

    2018-01-01

    Present-day high-resolution leaf growth measurements provide exciting insights into diel (24-h) leaf growth rhythms and their control by the circadian clock, which match photosynthesis with oscillating environmental conditions. However, these methods are based on measurements of leaf area or elongation and neglect diel changes of leaf thickness. In contrast, the influence of various environmental stress factors to which leaves are exposed to during growth on the final leaf thickness has been studied extensively. Yet, these studies cannot elucidate how variation in leaf area and thickness are simultaneously regulated and influenced on smaller time scales. Only few methods are available to measure the thickness of young, growing leaves non-destructively. Therefore, we evaluated X-ray computed tomography to simultaneously and non-invasively record diel changes and growth of leaf thickness and area. Using conventional imaging and X-ray computed tomography leaf area, thickness and volume growth of young soybean leaves were simultaneously and non-destructively monitored at three cardinal time points during night and day for a period of 80 h under non-stressful growth conditions. Reference thickness measurements on paperboards were in good agreement to CT measurements. Comparison of CT with leaf mass data further proved the consistency of our method. Exploratory analysis showed that measurements were accurate enough for recording and analyzing relative diel changes of leaf thickness, which were considerably different to those of leaf area. Relative growth rates of leaf area were consistently positive and highest during 'nights', while diel changes in thickness fluctuated more and were temporarily negative, particularly during 'evenings'. The method is suitable for non-invasive, accurate monitoring of diel variation in leaf volume. Moreover, our results indicate that diel rhythms of leaf area and thickness show some similarity but are not tightly coupled. These

  19. Phyllotaxis involves auxin drainage through leaf primordia

    DEFF Research Database (Denmark)

    Deb, Yamini; Marti, Dominik; Frenz, Martin

    2015-01-01

    The spatial arrangement of leaves and flowers around the stem, known as phyllotaxis, is controlled by an auxin-dependent reiterative mechanism that leads to regular spacing of the organs and thereby to remarkably precise phyllotactic patterns. The mechanism is based on the active cellular transport...... of phyllotaxis invoke the accumulation of auxin at leaf initials and removal of auxin through their developing vascular strand, the midvein. We have developed a precise microsurgical tool to ablate the midvein at high spatial and temporal resolution in order to test its function in leaf formation and phyllotaxis...

  20. Final report on the safety assessment of AloeAndongensis Extract, Aloe Andongensis Leaf Juice,aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice,aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract.

    Science.gov (United States)

    2007-01-01

    Plant materials derived from the Aloe plant are used as cosmetic ingredients, including Aloe Andongensis Extract, Aloe Andongensis Leaf Juice, Aloe Arborescens Leaf Extract, Aloe Arborescens Leaf Juice, Aloe Arborescens Leaf Protoplasts, Aloe Barbadensis Flower Extract, Aloe Barbadensis Leaf, Aloe Barbadensis Leaf Extract, Aloe Barbadensis Leaf Juice, Aloe Barbadensis Leaf Polysaccharides, Aloe Barbadensis Leaf Water, Aloe Ferox Leaf Extract, Aloe Ferox Leaf Juice, and Aloe Ferox Leaf Juice Extract. These ingredients function primarily as skin-conditioning agents and are included in cosmetics only at low concentrations. The Aloe leaf consists of the pericyclic cells, found just below the plant's skin, and the inner central area of the leaf, i.e., the gel, which is used for cosmetic products. The pericyclic cells produce a bitter, yellow latex containing a number of anthraquinones, phototoxic compounds that are also gastrointestinal irritants responsible for cathartic effects. The gel contains polysaccharides, which can be acetylated, partially acetylated, or not acetylated. An industry established limit for anthraquinones in aloe-derived material for nonmedicinal use is 50 ppm or lower. Aloe-derived ingredients are used in a wide variety of cosmetic product types at concentrations of raw material that are 0.1% or less, although can be as high as 20%. The concentration of Aloe in the raw material also may vary from 100% to a low of 0.0005%. Oral administration of various anthraquinone components results in a rise in their blood concentrations, wide systemic distribution, accumulation in the liver and kidneys, and excretion in urine and feces; polysaccharide components are distributed systemically and metabolized into smaller molecules. aloe-derived material has fungicidal, antimicrobial, and antiviral activities, and has been effective in wound healing and infection treatment in animals. Aloe barbadensis (also known as Aloe vera)-derived ingredients were not toxic

  1. Leaf venation, as a resistor, to optimize a switchable IR absorber.

    Science.gov (United States)

    Alston, M E; Barber, R

    2016-08-24

    Leaf vascular patterns are the mechanisms and mechanical support for the transportation of fluidics for photosynthesis and leaf development properties. Vascular hierarchical networks in leaves have far-reaching functions in optimal transport efficiency of functional fluidics. Embedding leaf morphogenesis as a resistor network is significant in the optimization of a translucent thermally functional material. This will enable regulation through pressure equalization by diminishing flow pressure variation. This paper investigates nature's vasculature networks that exhibit hierarchical branching scaling applied to microfluidics. To enable optimum potential for pressure drop regulation by algorithm design. This code analysis of circuit conduit optimization for transport fluidic flow resistance is validated against CFD simulation, within a closed loop network. The paper will propose this self-optimization, characterization by resistance seeking targeting to determine a microfluidic network as a resistor. To advance a thermally function material as a switchable IR absorber.

  2. Drought-Induced Leaf Proteome Changes in Switchgrass Seedlings

    Directory of Open Access Journals (Sweden)

    Zhujia Ye

    2016-08-01

    Full Text Available Switchgrass (Panicum virgatum is a perennial crop producing deep roots and thus highly tolerant to soil water deficit conditions. However, seedling establishment in the field is very susceptible to prolonged and periodic drought stress. In this study, a “sandwich” system simulating a gradual water deletion process was developed. Switchgrass seedlings were subjected to a 20-day gradual drought treatment process when soil water tension was increased to 0.05 MPa (moderate drought stress and leaf physiological properties had expressed significant alteration. Drought-induced changes in leaf proteomes were identified using the isobaric tags for relative and absolute quantitation (iTRAQ labeling method followed by nano-scale liquid chromatography mass spectrometry (nano-LC-MS/MS analysis. Additionally, total leaf proteins were processed using a combinatorial library of peptide ligands to enrich for lower abundance proteins. Both total proteins and those enriched samples were analyzed to increase the coverage of the quantitative proteomics analysis. A total of 7006 leaf proteins were identified, and 257 (4% of the leaf proteome expressed a significant difference (p < 0.05, fold change <0.6 or >1.7 from the non-treated control to drought-treated conditions. These proteins are involved in the regulation of transcription and translation, cell division, cell wall modification, phyto-hormone metabolism and signaling transduction pathways, and metabolic pathways of carbohydrates, amino acids, and fatty acids. A scheme of abscisic acid (ABA-biosynthesis and ABA responsive signal transduction pathway was reconstructed using these drought-induced significant proteins, showing systemic regulation at protein level to deploy the respective mechanism. Results from this study, in addition to revealing molecular responses to drought stress, provide a large number of proteins (candidate genes that can be employed to improve switchgrass seedling growth and

  3. Abaxial growth and steric constraints guide leaf folding and shape in Acer pseudoplatanus.

    Science.gov (United States)

    Couturier, Etienne; Brunel, Nicole; Douady, Stéphane; Nakayama, Naomi

    2012-08-01

    How leaf shape is regulated is a long-standing question in botany. For diverse groups of dicotyledon species, lamina folding along the veins and geometry of the space available for the primordia can explain the palmate leaf morphology. Dubbed the kirigami theory, this hypothesis of fold-dependent leaf shape regulation has remained largely theoretical. Using Acer pseudoplatanus, we investigated the mechanisms behind the two key processes of kirigami leaf development. Cytological examination and quantitative analyses were used to examine the course of the vein-dependent lamina folding. Surgical ablation and tissue culturing were employed to test the effects of physical constraints on primordia growth. The final morphology of leaves growing without steric constraints were predicted mathematically. The cytological examination showed that the lamina's abaxial side along the veins grows substantially more than the adaxial side. The abaxial hypergrowth along the veins and the lamina extension correlated with the lamina folding. When a primordium was released from the physical constraints imposed by the other primordia, it rapidly grew into the newly available space, while maintaining the curvature inward. The morphology of such a leaf was predicted to lack symmetry in the lobe shapes. The enhanced growth on the abaxial side of the lamina along the veins is likely to drive lamina folding. The surgical ablation provided clear support for the space-filling nature of leaf growth; thus, steric constraints play a role in determination of the shapes of folded leaves and probably also of the final leaf morphology.

  4. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature.

    Science.gov (United States)

    Hasan, Yaser; Briggs, William; Matschegewski, Claudia; Ordon, Frank; Stützel, Hartmut; Zetzsche, Holger; Groen, Simon; Uptmoor, Ralf

    2016-07-01

    QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.

  5. Genetic and Developmental Basis for Increased Leaf Thickness in the Arabidopsis Cvi Ecotype

    Directory of Open Access Journals (Sweden)

    Viktoriya Coneva

    2018-03-01

    Full Text Available Leaf thickness is a quantitative trait that is associated with the ability of plants to occupy dry, high irradiance environments. Despite its importance, leaf thickness has been difficult to measure reproducibly, which has impeded progress in understanding its genetic basis, and the associated anatomical mechanisms that pattern it. Here, we used a custom-built dual confocal profilometer device to measure leaf thickness in the Arabidopsis Ler × Cvi recombinant inbred line population and found statistical support for four quantitative trait loci (QTL associated with this trait. We used publically available data for a suite of traits relating to flowering time and growth responses to light quality and show that three of the four leaf thickness QTL coincide with QTL for at least one of these traits. Using time course photography, we quantified the relative growth rate and the pace of rosette leaf initiation in the Ler and Cvi ecotypes. We found that Cvi rosettes grow slower than Ler, both in terms of the rate of leaf initiation and the overall rate of biomass accumulation. Collectively, these data suggest that leaf thickness is tightly linked with physiological status and may present a tradeoff between the ability to withstand stress and rapid vegetative growth. To understand the anatomical basis of leaf thickness, we compared cross-sections of Cvi and Ler leaves and show that Cvi palisade mesophyll cells elongate anisotropically contributing to leaf thickness. Flow cytometry of whole leaves show that endopolyploidy accompanies thicker leaves in Cvi. Overall, our data suggest that mechanistically, an altered schedule of cellular events affecting endopolyploidy and increasing palisade mesophyll cell length contribute to increase of leaf thickness in Cvi. Ultimately, knowledge of the genetic basis and developmental trajectory leaf thickness will inform the mechanisms by which natural selection acts to produce variation in this adaptive trait.

  6. Evolving Role of the Power Sector Regulator: A Clean Energy Regulators Initiative Report

    Energy Technology Data Exchange (ETDEWEB)

    Zinaman, O.; Miller, M.; Bazilian, M.

    2014-04-01

    This paper seeks to briefly characterize the evolving role of power sector regulation. Given current global dynamics, regulation of the power sector is undergoing dramatic changes. This transformation is being driven by various factors including technological advances and cost reductions in renewable energy, energy efficiency, and demand management; increasing air pollution and climate change concerns; and persistent pressure for ensuring sustainable economic development and increased access to energy services by the poor. These issues add to the already complex task of power sector regulation, of which the fundamental remit remains to objectively and transparently ensure least-cost service delivery at high quality. While no single regulatory task is trivial to undertake, it is the prioritization and harmonization of a multitude of objectives that exemplifies the essential challenge of power sector regulation. Evolving regulatory roles can be understood through the concept of existing objectives and an additional layer of emerging objectives. Following this categorization, we describe seven existing objectives of power sector regulators and nine emerging objectives, highlighting key challenges and outlining interdependencies. This essay serves as a preliminary installment in the Clean Energy Regulatory Initiative (CERI) series, and aims to lay the groundwork for subsequent reports and case studies that will explore these topics in more depth.

  7. Effects of some growth regulating applications on leaf yield, raw ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... covering the region of Hadim-Aladağ, 59% of the soil in the region was ... 11.00 g diet fiber, 6.3 g sugar, 9 mg sodium, 363.08 mg calcium, 2.63 g ... Inst. Inc., Canada), and leaf volume was determined by dipping the samples into ... prepared by applying the wet burning method and in these plant extracts, P ...

  8. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth.

    Science.gov (United States)

    Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia

    2018-02-01

    We develop Bayesian function-valued trait models that mathematically isolate genetic mechanisms underlying leaf growth trajectories by factoring out genotype-specific differences in photosynthesis. Remote sensing data can be used instead of leaf-level physiological measurements. Characterizing the genetic basis of traits that vary during ontogeny and affect plant performance is a major goal in evolutionary biology and agronomy. Describing genetic programs that specifically regulate morphological traits can be complicated by genotypic differences in physiological traits. We describe the growth trajectories of leaves using novel Bayesian function-valued trait (FVT) modeling approaches in Brassica rapa recombinant inbred lines raised in heterogeneous field settings. While frequentist approaches estimate parameter values by treating each experimental replicate discretely, Bayesian models can utilize information in the global dataset, potentially leading to more robust trait estimation. We illustrate this principle by estimating growth asymptotes in the face of missing data and comparing heritabilities of growth trajectory parameters estimated by Bayesian and frequentist approaches. Using pseudo-Bayes factors, we compare the performance of an initial Bayesian logistic growth model and a model that incorporates carbon assimilation (A max ) as a cofactor, thus statistically accounting for genotypic differences in carbon resources. We further evaluate two remotely sensed spectroradiometric indices, photochemical reflectance (pri2) and MERIS Terrestrial Chlorophyll Index (mtci) as covariates in lieu of A max , because these two indices were genetically correlated with A max across years and treatments yet allow much higher throughput compared to direct leaf-level gas-exchange measurements. For leaf lengths in uncrowded settings, including A max improves model fit over the initial model. The mtci and pri2 indices also outperform direct A max measurements. Of particular

  9. Soil and water warming accelerates phenology and down-regulation of leaf photosynthesis of rice plants grown under free-air CO2 enrichment (FACE).

    Science.gov (United States)

    Adachi, Minaco; Hasegawa, Toshihiro; Fukayama, Hiroshi; Tokida, Takeshi; Sakai, Hidemitsu; Matsunami, Toshinori; Nakamura, Hirofumi; Sameshima, Ryoji; Okada, Masumi

    2014-02-01

    To enable prediction of future rice production in a changing climate, we need to understand the interactive effects of temperature and elevated [CO2] (E[CO2]). We therefore examined if the effect of E[CO2] on the light-saturated leaf photosynthetic rate (Asat) was affected by soil and water temperature (NT, normal; ET, elevated) under open-field conditions at the rice free-air CO2 enrichment (FACE) facility in Shizukuishi, Japan, in 2007 and 2008. Season-long E[CO2] (+200 µmol mol(-1)) increased Asat by 26%, when averaged over two years, temperature regimes and growth stages. The effect of ET (+2°C) on Asat was not significant at active tillering and heading, but became negative and significant at mid-grain filling; Asat in E[CO2]-ET was higher than in ambient [CO2] (A[CO2])-NT by only 4%. Photosynthetic down-regulation at E[CO2] also became apparent at mid-grain filling; Asat compared at the same [CO2] in the leaf cuvette was significantly lower in plants grown in E[CO2] than in those grown in A[CO2]. The additive effects of E[CO2] and ET decreased Asat by 23% compared with that of A[CO2]-NT plants. Although total crop nitrogen (N) uptake was increased by ET, N allocation to the leaves and to Rubisco was reduced under ET and E[CO2] at mid-grain filling, which resulted in a significant decrease (32%) in the maximum rate of ribulose-1,5-bisphosphate carboxylation on a leaf area basis. Because the change in N allocation was associated with the accelerated phenology in E[CO2]-ET plants, we conclude that soil and water warming accelerates photosynthetic down-regulation at E[CO2].

  10. Exogenous melatonin suppresses dark-induced leaf senescence by activating the superoxide dismutase-catalase antioxidant pathway and down-regulating chlorophyll degradation in excised leaves of perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2016-10-01

    Full Text Available Leaf senescence is a typical symptom in plants exposed to dark and may be regulated by plant growth regulators. The objective of this study was to determine whether exogenous application of melatonin (N-acetyl-5-methoxytryptamine suppresses dark-induced leaf senescence and the effects of melatonin on reactive oxygen species (ROS scavenging system and chlorophyll degradation pathway in perennial grass species. Mature perennial ryegrass (Lolium perenne L. cv. ‘Pinnacle’ leaves were excised and incubated in 3 mM 2-(N-morpholino ethanesulfonic buffer (pH 5.8 supplemented with melatonin or water (control and exposed to dark treatment for 8 d. Leaves treated with melatonin maintained significantly higher endogenous melatonin level, chlorophyll content, photochemical efficiency, and cell membrane stability expressed by lower electrolyte leakage and malondialdehyde (MDA content compared to the control. Exogenous melatonin treatment also reduced the transcript level of chlorophyll degradation-associated genes and senescence marker genes (LpSAG12.1, Lph36, and Lpl69 during the dark treatment. The endogenous O2- production rate and H2O2 content were significantly lower in these excised leaves treated with melatonin compared to the water control. Exogenous melatonin treatment caused increases in enzymatic activity and transcript levels of superoxide dismutase and catalase but had no significant effects on ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monohydroascorbate reductase. The content of non-enzymatic antioxidants, such as ascorbate and dehydroascorbate, were decreased by melatonin treatment, while the content of glutathione and oxidized glutathione was not affected by melatonin. These results suggest that the suppression of dark-induced leaf senescence by exogenous melatonin may be associated with its roles in regulating ROS scavenging through activating the superoxide dismutase-catalase enzymatic antioxidant

  11. Computer aided FEA simulation of EN45A parabolic leaf spring

    Directory of Open Access Journals (Sweden)

    Krishan Kumar

    2013-04-01

    Full Text Available This paper describes computer aided finite element analysis of parabolic leaf spring. The present work is an improvement in design of EN45A parabolic leaf spring used by a light commercial automotive vehicle. Development of a leaf spring is a long process which requires lots of test to validate the design and manufacturing variables. A three-layer parabolic leaf spring of EN45A has been taken for this work. The thickness of leaves varies from center to the outer side following a parabolic pattern. These leaf springs are designed to become lighter, but also provide a much improved ride to the vehicle through a reduction on interleaf friction. The CAD modeling of parabolic leaf spring has been done in CATIA V5 and for analysis the model is imported in ANSYS-11 workbench. The finite element analysis (FEA of the leaf spring has been carried out by initially discretizing the model into finite number of elements and nodes and then applying the necessary boundary conditions. Maximum displacement, directional displacement, equivalent stress and weight of the assembly are the output targets of this analysis for comparison & validation of the work.

  12. Does initial spacing influence crown and hydraulic architecture of Eucalyptus marginata?

    Science.gov (United States)

    Grigg, A H; Macfarlane, C; Evangelista, C; Eamus, D; Adams, M A

    2008-05-01

    Long-term declines in rainfall in south-western Australia have resulted in increased interest in the hydraulic characteristics of jarrah (Eucalyptus marginata Donn ex Smith) forest established in the region's drinking water catchments on rehabilitated bauxite mining sites. We hypothesized that in jarrah forest established on rehabilitated mine sites: (1) leaf area index (L) is independent of initial tree spacing; and (2) more densely planted trees have less leaf area for the same leaf mass, or the same sapwood area, and have denser sapwood. Initial stand densities ranged from about 600 to 9000 stems ha(-1), and trees were 18 years old at the time of sampling. Leaf area index was unaffected by initial stand density, except in the most sparsely stocked stands where L was 1.2 compared with 2.0-2.5 in stands at other spacings. The ratio of leaf area to sapwood area (A(l):A(s)) was unaffected by tree spacing or tree size and was 0.2 at 1.3 m height and 0.25 at the crown base. There were small increases in sapwood density and decreases in leaf specific area with increased spacing. Tree diameter or basal area was a better predictor of leaf area than sapwood area. At the stand scale, basal area was a good predictor of L (r(2) = 0.98, n = 15) except in the densest stands. We conclude that the hydraulic attributes of this forest type are largely independent of initial tree spacing, thus simplifying parameterization of stand and catchment water balance models.

  13. Broadband ICT policies in Southern Africa: Initiatives and dynamic spectrum regulation

    CSIR Research Space (South Africa)

    Olwal, T

    2013-05-01

    Full Text Available regulatory agencies. These ICT regulatory agencies had been established with the aim of liberalizing the telecommunications sector to ensure that governments are not the direct providers of telecom services, but the regulators [1]. Moreover, due to out... goals demand liberal and dynamic spectrum regulation policies designed at a country level and more importantly across a majority of countries in the same region. This paper highlights various initiatives aimed at formulating the all...

  14. "Breath figures" on leaf surfaces-formation and effects of microscopic leaf wetness.

    Science.gov (United States)

    Burkhardt, Juergen; Hunsche, Mauricio

    2013-01-01

    "Microscopic leaf wetness" means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 μm, microscopic leaf wetness is about two orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the type and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g., ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  15. Regulation of Translation Initiation under Biotic and Abiotic Stresses

    Directory of Open Access Journals (Sweden)

    Ana B. Castro-Sanz

    2013-02-01

    Full Text Available Plants have developed versatile strategies to deal with the great variety of challenging conditions they are exposed to. Among them, the regulation of translation is a common target to finely modulate gene expression both under biotic and abiotic stress situations. Upon environmental challenges, translation is regulated to reduce the consumption of energy and to selectively synthesize proteins involved in the proper establishment of the tolerance response. In the case of viral infections, the situation is more complex, as viruses have evolved unconventional mechanisms to regulate translation in order to ensure the production of the viral encoded proteins using the plant machinery. Although the final purpose is different, in some cases, both plants and viruses share common mechanisms to modulate translation. In others, the mechanisms leading to the control of translation are viral- or stress-specific. In this paper, we review the different mechanisms involved in the regulation of translation initiation under virus infection and under environmental stress in plants. In addition, we describe the main features within the viral RNAs and the cellular mRNAs that promote their selective translation in plants undergoing biotic and abiotic stress situations.

  16. Why do leaf-tying caterpillars abandon their leaf ties?

    Directory of Open Access Journals (Sweden)

    Michelle Sliwinski

    2013-09-01

    Full Text Available Leaf-tying caterpillars act as ecosystem engineers by building shelters between overlapping leaves, which are inhabited by other arthropods. Leaf-tiers have been observed to leave their ties and create new shelters (and thus additional microhabitats, but the ecological factors affecting shelter fidelity are poorly known. For this study, we explored the effects of resource limitation and occupant density on shelter fidelity and assessed the consequences of shelter abandonment. We first quantified the area of leaf material required for a caterpillar to fully develop for two of the most common leaf-tiers that feed on white oak, Quercus alba. On average, Psilocorsis spp. caterpillars consumed 21.65 ± 0.67 cm2 leaf material to complete development. We also measured the area of natural leaf ties found in a Maryland forest, to determine the distribution of resources available to caterpillars in situ. Of 158 natural leaf ties examined, 47% were too small to sustain an average Psilocorsis spp. caterpillar for the entirety of its development. We also manipulated caterpillar densities within experimental ties on potted trees to determine the effects of cohabitants on the likelihood of a caterpillar to leave its tie. We placed 1, 2, or 4 caterpillars in ties of a standard size and monitored the caterpillars twice daily to track their movement. In ties with more than one occupant, caterpillars showed a significantly greater propensity to leave their tie, and left sooner and at a faster rate than those in ties as single occupants. To understand the consequences of leaf tie abandonment, we observed caterpillars searching a tree for a site to build a shelter in the field. This is a risky behavior, as 17% of the caterpillars observed died while searching for a shelter site. Caterpillars that successfully built a shelter traveled 110 ± 20 cm and took 28 ± 7 min to find a suitable site to build a shelter. In conclusion, leaf-tying caterpillars must frequently

  17. Molecular Characterization of a Leaf Senescence-Related Transcription Factor BrWRKY75 of Chinese Flowering Cabbage

    Directory of Open Access Journals (Sweden)

    Xiaoli Tan

    2016-09-01

    Full Text Available WRKY is a plant-specific transcription factor (TF involved in the regulation of many biological processes; however, its role in leaf senescence of leafy vegetables remains unknown. In the present work, a WRKY TF, termed BrWRKY75 was isolated from Chinese flowering cabbage [Brassica rapa L. ssp. chinensis (L. Mokino var. utilis Tsen et Lee]. Analysis of deduced amino acid sequence and the phylogenetic tree showed that BrWRKY75 has high homology with WRKY75 from Brassica oleracea and Arabidopsis thaliana, and belongs to the II c sub-group. Sub-cellular localization and transcriptional activity analysis revealed that BrWRKY75 is a nuclear protein with transcriptional repression activity, and was up-regulated during leaf senescence. Electrophoretic mobility shift assay confirmed that BrWRKY75 directly bound to the W-box (TTGAC cis-element. Collectively, these results provide a basis for further investigation of the transcriptional regulation of Chinese flowering cabbage leaf senescence.

  18. The YABBY Genes of Leaf and Leaf-Like Organ Polarity in Leafless Plant Monotropa hypopitys

    Directory of Open Access Journals (Sweden)

    Anna V. Shchennikova

    2018-01-01

    Full Text Available Monotropa hypopitys is a mycoheterotrophic, nonphotosynthetic plant acquiring nutrients from the roots of autotrophic trees through mycorrhizal symbiosis, and, similar to other extant plants, forming asymmetrical lateral organs during development. The members of the YABBY family of transcription factors are important players in the establishment of leaf and leaf-like organ polarity in plants. This is the first report on the identification of YABBY genes in a mycoheterotrophic plant devoid of aboveground vegetative organs. Seven M. hypopitys YABBY members were identified and classified into four clades. By structural analysis of putative encoded proteins, we confirmed the presence of YABBY-defining conserved domains and identified novel clade-specific motifs. Transcriptomic and qRT-PCR analyses of different tissues revealed MhyYABBY transcriptional patterns, which were similar to those of orthologous YABBY genes from other angiosperms. These data should contribute to the understanding of the role of the YABBY genes in the regulation of developmental and physiological processes in achlorophyllous leafless plants.

  19. Hypolipidemic Effect of Psidium guajava Leaf Extract Against Hepatotoxicity in Rats.

    Science.gov (United States)

    Vijayakumar, K; Rengarajan, R L; Radhakrishnan, R; Anand, A Vijaya

    2018-01-01

    Plant-based natural extracts cure several diseases in human. However, the extract of Psidium guajava leaf is not yet evaluated on changes of lipid profile in hepatic disease affected rats. The present study was aimed to evaluate the mitigation effect of the ethanolic extract of P. guajava leaf and its isolated quercetin fraction on hepatotoxic rats. Carbon tetrachloride (CCl 4 ) was injected to rats for hepatic disease induction and silymarin drug was used as positive control to compare plant ethanolic extract. The lipid profiles were assessed in both plasma and liver tissue of diseased and control rats. Levels of total cholesterol, triglycerides, free fatty acids, phospholipids, and low-density lipoprotein cholesterol were increased and the level of high-density lipoprotein cholesterol (HDL-C) was decreased in CCl 4 -induced hepatotoxic rats. The treatment of P. guajava (100, 200, and 300 mg/kg, bw) and isolated quercetin fraction (20 mg/kg, bw) doses decreased the elevated levels of all these parameters in diseased rats and restored the normal concentration of HDL-C. The results of the present study concluded that the P. guajava leaf and its isolated quercetin fraction can significantly regulate lipid metabolism in CCl 4 -induced hepatotoxic rats and decrease the disease rate. Psidium guajava leaf extract reduces the hepatotoxicity and disease rate in ratsQuercetin fraction of leaf extract significantly regulates lipid profile in hepatic diseased rats. Abbreviations used: CCl 4 : Carbon tetrachloride; FFA: Free fatty acids; HDL-C: High-density lipoprotein cholesterol; LCAT: Lecithin cholesterol acyltransferase; LDL-C: Low-density lipoprotein cholesterol; PL: Phospholipids; TC: Total cholesterol; TG: Triglycerides; VLDL-C: Very low-density lipoprotein cholesterol.

  20. Tuning Transpiration by Interfacial Solar Absorber-Leaf Engineering.

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining; Wang, Zhenlin; Zhu, Jia

    2018-02-01

    Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber-water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber-leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber-leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle.

  1. Tuning Transpiration by Interfacial Solar Absorber‐Leaf Engineering

    Science.gov (United States)

    Zhuang, Shendong; Zhou, Lin; Xu, Weichao; Xu, Ning; Hu, Xiaozhen; Li, Xiuqiang; Lv, Guangxin; Zheng, Qinghui; Zhu, Shining

    2017-01-01

    Abstract Plant transpiration, a process of water movement through a plant and its evaporation from aerial parts especially leaves, consumes a large component of the total continental precipitation (≈48%) and significantly influences global water distribution and climate. To date, various chemical and/or biological explorations have been made to tune the transpiration but with uncertain environmental risks. In recent years, interfacial solar steam/vapor generation is attracting a lot of attention for achieving high energy transfer efficiency. Various optical and thermal designs at the solar absorber–water interface for potential applications in water purification, seawater desalination, and power generation appear. In this work, the concept of interfacial solar vapor generation is extended to tunable plant transpiration by showing for the first time that the transpiration efficiency can also be enhanced or suppressed through engineering the solar absorber–leaf interface. By tuning the solar absorption of membrane in direct touch with green leaf, surface temperature of green leaf will change accordingly because of photothermal effect, thus the transpiration efficiency as well as temperature and relative humidity in the surrounding environment will be tuned. This tunable transpiration by interfacial absorber‐leaf engineering can open an alternative avenue to regulate local atmospheric temperature, humidity, and eventually hydrologic cycle. PMID:29619300

  2. (TECTONA GRANDIS LEAF POWDER

    Directory of Open Access Journals (Sweden)

    Yash Mishra

    2015-01-01

    Full Text Available In this study, the adsorption potential of Teak (Tectona grandis leaf powder (TLP toremove Methylene blue (MB and Malachite Green (MG dye molecules from aqueoussolution was investigated. Batch experiments were conducted to evaluate the influenceof operational parameters such as, pH (2−9, adsorbent dosage (1−7 g/L, contact time(15−150 minutes and initial dye concentration (20−120 mg/L at stirring speed of 150rpm for the adsorption of MB and MG on TLP. Maximum removal efficiency of 98.4%and 95.1% was achieved for MB and MG dye, respectively. The experimentalequilibrium data were analysed using Langmuir, Freundlich and Temkin isothermmodels and it was found that, it fitted well to the Freundlich isotherm model. Thesurface structure and morphology of the adsorbent was characterized using scanningelectron microscopy (SEM and the presence of functional groups and its interactionwith the dye molecules were analysed using Fourier transform infrared spectroscopy(FTIR. Based on the investigation, it has been demonstrated that the teak leaf powderhas good potential for effective adsorption of methylene blue and malachite green dye.

  3. Butterfly Learning and the Diversification of Plant Leaf Shape

    Directory of Open Access Journals (Sweden)

    Denise Dalbosco Dell'aglio

    2016-07-01

    Full Text Available Visual cues are important for insects to find flowers and host plants. It has been proposed that the diversity of leaf shape in Passiflora vines could be a result of negative frequency dependent selection driven by visual searching behavior among their butterfly herbivores. Here we tested the hypothesis that Heliconius butterflies use leaf shape as a cue to initiate approach towards a host plant. We first tested for the ability to recognize shapes using a food reward conditioning experiment. Butterflies showed an innate preference for flowers with three and five petals. However, they could be trained to increase the frequency of visits to a non-preferred flower with two petals, indicating an ability to learn to associate shape with a reward. Next we investigated shape learning specifically in the context of oviposition by conditioning females to lay eggs on two shoots associated with different artificial leaf shapes: their own host plant, Passiflora biflora, and a lanceolate non-biflora leaf shape. The conditioning treatment had a significant effect on the approach of butterflies to the two leaf shapes, consistent with a role for shape learning in oviposition behavior. This study is the first to show that Heliconius butterflies use shape as a cue for feeding and oviposition, and can learn shape preference for both flowers and leaves. This demonstrates the potential for Heliconius to drive negative frequency dependent selection on the leaf shape of their Passiflora host plants.

  4. Can Leaf Spectroscopy Predict Leaf and Forest Traits Along a Peruvian Tropical Forest Elevation Gradient?

    Science.gov (United States)

    Doughty, Christopher E.; Santos-Andrade, P. E.; Goldsmith, G. R.; Blonder, B.; Shenkin, A.; Bentley, L. P.; Chavana-Bryant, C.; Huaraca-Huasco, W.; Díaz, S.; Salinas, N.; Enquist, B. J.; Martin, R.; Asner, G. P.; Malhi, Y.

    2017-11-01

    High-resolution spectroscopy can be used to measure leaf chemical and structural traits. Such leaf traits are often highly correlated to other traits, such as photosynthesis, through the leaf economics spectrum. We measured VNIR (visible-near infrared) leaf reflectance (400-1,075 nm) of sunlit and shaded leaves in 150 dominant species across ten, 1 ha plots along a 3,300 m elevation gradient in Peru (on 4,284 individual leaves). We used partial least squares (PLS) regression to compare leaf reflectance to chemical traits, such as nitrogen and phosphorus, structural traits, including leaf mass per area (LMA), branch wood density and leaf venation, and "higher-level" traits such as leaf photosynthetic capacity, leaf water repellency, and woody growth rates. Empirical models using leaf reflectance predicted leaf N and LMA (r2 > 30% and %RMSE < 30%), weakly predicted leaf venation, photosynthesis, and branch density (r2 between 10 and 35% and %RMSE between 10% and 65%), and did not predict leaf water repellency or woody growth rates (r2<5%). Prediction of higher-level traits such as photosynthesis and branch density is likely due to these traits correlations with LMA, a trait readily predicted with leaf spectroscopy.

  5. Trade-offs between seed and leaf size (seed-phytomer-leaf theory): functional glue linking regenerative with life history strategies … and taxonomy with ecology?

    Science.gov (United States)

    Hodgson, John G; Santini, Bianca A; Montserrat Marti, Gabriel; Royo Pla, Ferran; Jones, Glynis; Bogaard, Amy; Charles, Mike; Font, Xavier; Ater, Mohammed; Taleb, Abdelkader; Poschlod, Peter; Hmimsa, Younes; Palmer, Carol; Wilson, Peter J; Band, Stuart R; Styring, Amy; Diffey, Charlotte; Green, Laura; Nitsch, Erika; Stroud, Elizabeth; Romo-Díez, Angel; de Torres Espuny, Lluis; Warham, Gemma

    2017-11-10

    While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed. Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC). Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones. Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL

  6. Leaf size and leaf display of thirty-eight tropical tree species

    NARCIS (Netherlands)

    Poorter, L.; Rozendaal, D.M.A.

    2008-01-01

    Trees forage for light through optimal leaf display. Effective leaf display is determined by metamer traits (i.e., the internode, petiole, and corresponding leaf), and thus these traits strongly co-determine carbon gain and as a result competitive advantage in a light-limited environment. We

  7. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Directory of Open Access Journals (Sweden)

    Iqbal Ahmad

    2017-04-01

    Full Text Available Quorum sensing (QS is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC and gas chromatography–mass spectrometry (GC-MS analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%, total protease (56%, pyocyanin (89%, chitinase (55%, exopolysaccharide production (58% and swarming motility (74% in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82% over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy.

  8. Leaf Extracts of Mangifera indica L. Inhibit Quorum Sensing – Regulated Production of Virulence Factors and Biofilm in Test Bacteria

    Science.gov (United States)

    Husain, Fohad M.; Ahmad, Iqbal; Al-thubiani, Abdullah S.; Abulreesh, Hussein H.; AlHazza, Ibrahim M.; Aqil, Farrukh

    2017-01-01

    Quorum sensing (QS) is a global gene regulatory mechanism in bacteria for various traits including virulence factors. Disabling QS system with anti-infective agent is considered as a potential strategy to prevent bacterial infection. Mangifera indica L. (mango) has been shown to possess various biological activities including anti-QS. This study investigates the efficacy of leaf extracts on QS-regulated virulence factors and biofilm formation in Gram negative pathogens. Mango leaf (ML) extract was tested for QS inhibition and QS-regulated virulence factors using various indicator strains. It was further correlated with the biofilm inhibition and confirmed by electron microscopy. Phytochemical analysis was carried out using ultra performance liquid chromatography (UPLC) and gas chromatography–mass spectrometry (GC-MS) analysis. In vitro evaluation of anti-QS activity of ML extracts against Chromobacterium violaceum revealed promising dose-dependent interference in violacein production, by methanol extract. QS inhibitory activity is also demonstrated by reduction in elastase (76%), total protease (56%), pyocyanin (89%), chitinase (55%), exopolysaccharide production (58%) and swarming motility (74%) in Pseudomonas aeruginosa PAO1 at 800 μg/ml concentration. Biofilm formation by P. aeruginosa PAO1 and Aeromonas hydrophila WAF38 was reduced considerably (36–82%) over control. The inhibition of biofilm was also observed by scanning electron microscopy. Moreover, ML extracts significantly reduced mortality of Caenorhabditis elegans pre-infected with PAO1 at the tested concentration. Phytochemical analysis of active extracts revealed very high content of phenolics in methanol extract and a total of 14 compounds were detected by GC-MS and UPLC. These findings suggest that phytochemicals from the ML could provide bioactive anti-infective and needs further investigation to isolate and uncover their therapeutic efficacy. PMID:28484444

  9. Adventitious shoot regeneration from leaf explants of the valuable ...

    African Journals Online (AJOL)

    Jane

    2011-08-10

    Aug 10, 2011 ... 2Department of Plant Biology and Plant Biotechnology, St. Joseph's College, Tiruchirappalli – 620 002, South India. Accepted 28 March, 2011 .... Effect of cytokinins (KN and BAP) alone or in combination with NAA on direct shoot bud regeneration from leaf explants of P. barbatus. Plant growth regulator ...

  10. Evaluation of Methane from Sisal Leaf Residue and Palash Leaf Litter

    Science.gov (United States)

    Arisutha, S.; Baredar, P.; Deshpande, D. M.; Suresh, S.

    2014-12-01

    The aim of this study is to evaluate methane production from sisal leaf residue and palash leaf litter mixed with different bulky materials such as vegetable market waste, hostel kitchen waste and digested biogas slurry in a laboratory scale anaerobic reactor. The mixture was prepared with 1:1 proportion. Maximum methane content of 320 ml/day was observed in the case of sisal leaf residue mixed with vegetable market waste as the feed. Methane content was minimum (47 ml/day), when palash leaf litter was used as feed. This was due to the increased content of lignin and polyphenol in the feedstock which were of complex structure and did not get degraded directly by microorganisms. Sisal leaf residue mixtures also showed highest content of volatile fatty acids (VFAs) as compared to palash leaf litter mixtures. It was observed that VFA concentration in the digester first increased, reached maximum (when pH was minimum) and then decreased.

  11. ‘Breath figures’ on leaf surfaces – formation and effects of microscopic leaf wetness

    Directory of Open Access Journals (Sweden)

    Jürgen eBurkhardt

    2013-10-01

    Full Text Available ‘Microscopic leaf wetness’ means minute amounts of persistent liquid water on leaf surfaces which are invisible to the naked eye. The water is mainly maintained by transpired water vapor condensing onto the leaf surface and to attached leaf surface particles. With an estimated average thickness of less than 1 µm, microscopic leaf wetness it is about 2 orders of magnitude thinner than morning dewfall. The most important physical processes which reduce the saturation vapor pressure and promote condensation are cuticular absorption and the deliquescence of hygroscopic leaf surface particles. Deliquescent salts form highly concentrated solutions. Depending on the amount and concentration of the dissolved ions, the physicochemical properties of microscopic leaf wetness can be considerably different from those of pure water. Microscopic leaf wetness can form continuous thin layers on hydrophobic leaf surfaces and in specific cases can act similar to surfactants, enabling a strong potential influence on the foliar exchange of ions. Microscopic leaf wetness can also enhance the dissolution, the emission, and the reaction of specific atmospheric trace gases e.g. ammonia, SO2, or ozone, leading to a strong potential role for microscopic leaf wetness in plant/atmosphere interaction. Due to its difficult detection, there is little knowledge about the occurrence and the properties of microscopic leaf wetness. However, based on the existing evidence and on physicochemical reasoning it can be hypothesized that microscopic leaf wetness occurs on almost any plant worldwide and often permanently, and that it significantly influences the exchange processes of the leaf surface with its neighboring compartments, i.e., the plant interior and the atmosphere. The omission of microscopic water in general leaf wetness concepts has caused far-reaching, misleading conclusions in the past.

  12. Water relation, leaf gas exchange and chlorophyll a fluorescence imaging of soybean leaves infected with Colletotrichum truncatum.

    Science.gov (United States)

    Dias, Carla Silva; Araujo, Leonardo; Alves Chaves, Joicy Aparecida; DaMatta, Fábio M; Rodrigues, Fabrício A

    2018-06-01

    Considering the potential of anthracnose to decrease soybean yield and the need to gain more information regarding its effect on soybean physiology, the present study performed an in-depth analysis of the photosynthetic performance of soybean leaflets challenged with Colletotrichum truncatum by combining chlorophyll a fluorescence images with gas-exchange measurements and photosynthetic pigment pools. There were no significant differences between non-inoculated and inoculated plants in leaf water potential, apparent hydraulic conductance, net CO 2 assimilation rate, stomatal conductance to water vapor and transpiration rate. For internal CO 2 concentration, significant difference between non-inoculated and inoculated plants occurred only at 36 h after inoculation. Reductions in the values of the chlorophyll a fluorescence parameters [initial fluorescence (F 0 ), maximal fluorescence (F m ), maximal photosystem II quantum yield (F v /F m ), quantum yield of regulated energy dissipation (Y(NPQ))] and increases in effective PS II quantum yield (Y(II)), quantum yield of non-regulated energy dissipation Y(NO) and photochemical quenching coefficient (q P ) were noticed on the necrotic vein tissue in contrast to the surrounding leaf tissue. It appears that the impact of the infection by C. truncatum on the photosynthetic performance of the leaflets was minimal considering the preference of the fungus to colonize the veins. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  13. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.; Voss, U.; Wilson, M.; Bennett, M.; Byrne, H.; De Smet, I.; Hodgman, C.; King, J.

    2013-01-01

    thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based

  14. The pokeweed leaf mRNA transcriptome and its regulation by jasmonic acid.

    Directory of Open Access Journals (Sweden)

    Kira C.M. Neller

    2016-03-01

    Full Text Available The American pokeweed plant, Phytolacca americana, is recognized for synthesizing pokeweed antiviral protein (PAP, a ribosome inactivating protein (RIP that inhibits the replication of several plant and animal viruses. The plant is also a heavy metal accumulator with applications in soil remediation. However, little is known about pokeweed stress responses, as large-scale sequencing projects have not been performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed in the presence and absence of jasmonic acid (JA, a hormone mediating plant defense. Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology searches against public sequence databases resulted in the annotation of 59 096 transcripts. Differential expression analysis identified JA-responsive genes that may be involved in defense against pathogen infection and herbivory. We confirmed the existence of several PAP isoforms and cloned a potentially novel isoform of PAP. Expression analysis indicated that PAP isoforms are differentially responsive to JA, perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family member provides a source of new genes that may be involved in stress tolerance in this plant. The sequences generated in our study have been deposited in the SRA database under project # SRP069141.

  15. The effect of plant growth regulators on callus initiation in wormwood ...

    African Journals Online (AJOL)

    Studies were carried out in the Biotechnology laboratory of Plant Science Department of Ahmadu Bello University Zaria, Nigeria to study the effect of some plant growth regulators on the in vitro initiation of callus using the leaves of Chiyong variety of Artemisia annua. The explants were sterilized and incubated on Murashige ...

  16. RNAi-mediated downregulation of poplar plasma membrane intrinsic proteins (PIPs) changes plasma membrane proteome composition and affects leaf physiology.

    Science.gov (United States)

    Bi, Zhen; Merl-Pham, Juliane; Uehlein, Norbert; Zimmer, Ina; Mühlhans, Stefanie; Aichler, Michaela; Walch, Axel Karl; Kaldenhoff, Ralf; Palme, Klaus; Schnitzler, Jörg-Peter; Block, Katja

    2015-10-14

    Plasma membrane intrinsic proteins (PIPs) are one subfamily of aquaporins that mediate the transmembrane transport of water. To reveal their function in poplar, we generated transgenic poplar plants in which the translation of PIP genes was downregulated by RNA interference investigated these plants with a comprehensive leaf plasma membrane proteome and physiome analysis. First, inhibition of PIP synthesis strongly altered the leaf plasma membrane protein composition. Strikingly, several signaling components and transporters involved in the regulation of stomatal movement were differentially regulated in transgenic poplars. Furthermore, hormonal crosstalk related to abscisic acid, auxin and brassinosteroids was altered, in addition to cell wall biosynthesis/cutinization, the organization of cellular structures and membrane trafficking. A physiological analysis confirmed the proteomic results. The leaves had wider opened stomata and higher net CO2 assimilation and transpiration rates as well as greater mesophyll conductance for CO2 (gm) and leaf hydraulic conductance (Kleaf). Based on these results, we conclude that PIP proteins not only play essential roles in whole leaf water and CO2 flux but have important roles in the regulation of stomatal movement. Copyright © 2015. Published by Elsevier B.V.

  17. Effect of Addition of Moringa Leaf By-Product (Leaf-Waste) on ...

    African Journals Online (AJOL)

    The effects of incorporation of Moringa leaf fibre (a by-product of leaf processing which contains 24% Crude Fibre by dry weight at 0, 5 and 10 % substitution of wheat flour in cookies was investigated. Three products containing wheat flour: Moringa leaf fibre ratios of 100:0, 95:5, and 90:10 respectively were prepared, and a ...

  18. Inference of the Genetic Network Regulating Lateral Root Initiation in Arabidopsis thaliana

    KAUST Repository

    Muraro, D.

    2013-01-01

    Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation. © 2004-2012 IEEE.

  19. Leaf mineral nutrient remobilization during leaf senescence and modulation by nutrient deficiency.

    Directory of Open Access Journals (Sweden)

    Anne eMaillard

    2015-05-01

    Full Text Available Higher plants have to cope with fluctuating mineral resource availability. However strategies such as stimulation of root growth, increased transporter activities, and nutrient storage and remobilization have been mostly studied for only a few macronutrients. Leaves of cultivated crops (Zea mays, Brassica napus, Pisum sativum, Triticum aestivum, Hordeum vulgare and tree species (Quercus robur, Populus nigra, Alnus glutinosa grown under field conditions were harvested regularly during their life span and analysed to evaluate the net mobilization of 13 nutrients during leaf senescence. While N was remobilized in all plant species with different efficiencies ranging from 40% (maize to 90% (wheat, other macronutrients (K-P-S-Mg were mobilized in most species. Ca and Mn, usually considered as having low phloem mobility were remobilized from leaves in wheat and barley. Leaf content of Cu-Mo-Ni-B-Fe-Zn decreased in some species, as a result of remobilization. Overall, wheat, barley and oak appeared to be the most efficient at remobilization while poplar and maize were the least efficient. Further experiments were performed with rapeseed plants subjected to individual nutrient deficiencies. Compared to field conditions, remobilization from leaves was similar (N-S-Cu or increased by nutrient deficiency (K-P-Mg while nutrient deficiency had no effect on Mo-Zn-B-Ca-Mn, which seemed to be non-mobile during leaf senescence under field conditions. However, Ca and Mn were largely mobilized from roots (-97 and -86% of their initial root contents, respectively to shoots. Differences in remobilization between species and between nutrients are then discussed in relation to a range of putative mechanisms.

  20. Inter-annual variation in the response of leaf-out onset to soil moisture increase in a teak plantation in northern Thailand.

    Science.gov (United States)

    Yoshifuji, Natsuko; Igarashi, Yasunori; Tanaka, Nobuaki; Tanaka, Katsunori; Sato, Takanori; Tantasirin, Chatchai; Suzuki, Masakazu

    2014-11-01

    To understand the impact of inter-annual climate change on vegetation-atmosphere mass and energy exchanges, it has become necessary to explore changes in leaf-out onset in response to climatic fluctuations. We examined the response of leaf-out and transpiration onset dates to soil moisture in a teak plantation in northern Thailand based on a 12-year leaf area index and sap flow measurements. The date of leaf-out and transpiration onset varied between years by up to 40 days, and depended on the initial date when the relative extractable water in a soil layer of 0-0.6 m (Θ) was greater than 0.2 being consistent with our previous results. Our new finding is that the delay in leaf-out and transpiration onset relative to the initial date when Θ > 0.2 increases linearly as the initial date on which Θ > 0.2 becomes earlier. The delay spans about 20 days in years when Θ > 0.2 occurs in March (the late dry season)-much earlier than usual because of heavy pre-monsoon rainfalls-while there is little delay in years when Θ > 0.2 occurs in May. This delay indicates the influence of additional factors on leaf-out onset, which controls the delay in the response of leaf-out to soil moisture increase. The results increased our knowledge about the pattern and extent of the changes in leaf phenology that occur in response to the inter-annual climate variation in tropical regions, where, in particular, such research is needed.

  1. Fusaric acid is a crucial factor in the disturbance of leaf water imbalance in Fusarium-infected banana plants.

    Science.gov (United States)

    Dong, Xian; Ling, Ning; Wang, Min; Shen, Qirong; Guo, Shiwei

    2012-11-01

    Fusarium wilt of banana is caused by Fusarium oxysporum f. sp. cubense infection. The initial chlorosis symptoms occur progressively from lower to upper leaves, with wilt symptoms subsequently occurring in the whole plant. To determine the effect of the pathogen infection on the gas exchange characteristics and water content in banana leaves, hydroponic experiments with pathogen inoculation were conducted in a greenhouse. Compared with control plants, infected banana seedlings showed a higher leaf temperature as determined by thermal imaging. Reduced stomatal conductance (g(s)) and transpiration rate (E) in infected plants resulted in lower levels of water loss than in control plants. Water potential in heavily diseased plants (II) was significantly reduced and the E/g(s) ratio was higher than in noninfected plants, indicating the occurrence of uncontrolled water loss not regulated by stomata in diseased plants. As no pathogen colonies were detected from the infected plant leaves, the crude toxin was extracted from the pathogen culture and evaluated about the effect on banana plant to further investigate the probable reason of these physiological changes in Fusarium-infected banana leaf. The phytotoxin fusaric acid (FA) was found in the crude toxin, and both crude toxin and pure FA had similar effects as the pathogen infection on the physiological changes in banana leaf. Additionally, FA was present at all positions in diseased plants and its concentration was positively correlated with the incidence of disease symptoms. Taken together, these observations indicated that FA secreted by the pathogen is an important factor involved in the disturbance of leaf temperature, resulting in uncontrolled leaf water loss and electrolyte leakage due to damaging the cell membrane. In conclusion, FA plays a critical role in accelerating the development of Fusarium wilt in banana plants by acting as a phytotoxin. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  2. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    Science.gov (United States)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  3. Seismic retrofit system for single leaf masonry buildings in Groningen

    NARCIS (Netherlands)

    Türkmen, Ö.S.; Vermeltfoort, A.T.; Martens, D.R.W.

    2016-01-01

    Due to recent seismic activity in the Netherlands, the demand of adequate strengthening and retrofitting techniques increased, especially for single leaf masonry. Two Dutch companies founded in the re-gion have initiated an experimental program to study the applicability of existing stand-alone

  4. Effect of nitrogen supply on leaf appearance, leaf growth, leaf nitrogen economy and photosynthetic capacity in maize (Zea mays L.)

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.; Birch, C.J.

    2005-01-01

    Leaf area growth and nitrogen concentration per unit leaf area, Na (g m-2 N) are two options plants can use to adapt to nitrogen limitation. Previous work indicated that potato (Solanum tuberosum L.) adapts the size of leaves to maintain Na and photosynthetic capacity per unit leaf area. This paper

  5. Role of soil-to-leaf tritium transfer in controlling leaf tritium dynamics: Comparison of experimental garden and tritium-transfer model results.

    Science.gov (United States)

    Ota, Masakazu; Kwamena, Nana-Owusua A; Mihok, Steve; Korolevych, Volodymyr

    2017-11-01

    Environmental transfer models assume that organically-bound tritium (OBT) is formed directly from tissue-free water tritium (TFWT) in environmental compartments. Nevertheless, studies in the literature have shown that measured OBT/HTO ratios in environmental samples are variable and generally higher than expected. The importance of soil-to-leaf HTO transfer pathway in controlling the leaf tritium dynamics is not well understood. A model inter-comparison of two tritium transfer models (CTEM-CLASS-TT and SOLVEG-II) was carried out with measured environmental samples from an experimental garden plot set up next to a tritium-processing facility. The garden plot received one of three different irrigation treatments - no external irrigation, irrigation with low tritium water and irrigation with high tritium water. The contrast between the results obtained with the different irrigation treatments provided insights into the impact of soil-to-leaf HTO transfer on the leaf tritium dynamics. Concentrations of TFWT and OBT in the garden plots that were not irrigated or irrigated with low tritium water were variable, responding to the arrival of the HTO-plume from the tritium-processing facility. In contrast, for the plants irrigated with high tritium water, the TFWT concentration remained elevated during the entire experimental period due to a continuous source of high HTO in the soil. Calculated concentrations of OBT in the leaves showed an initial increase followed by quasi-equilibration with the TFWT concentration. In this quasi-equilibrium state, concentrations of OBT remained elevated and unchanged despite the arrivals of the plume. These results from the model inter-comparison demonstrate that soil-to-leaf HTO transfer significantly affects tritium dynamics in leaves and thereby OBT/HTO ratio in the leaf regardless of the atmospheric HTO concentration, only if there is elevated HTO concentrations in the soil. The results of this work indicate that assessment models

  6. SU-F-T-350: Continuous Leaf Optimization (CLO) for IMRT Leaf Sequencing

    Energy Technology Data Exchange (ETDEWEB)

    Long, T; Chen, M; Jiang, S; Lu, W [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: To study a new step-and-shoot IMRT leaf sequencing model that avoids the two main pitfalls of conventional leaf sequencing: (1) target fluence being stratified into a fixed number of discrete levels and/or (2) aperture leaf positions being restricted to a discrete set of locations. These assumptions induce error into the sequence or reduce the feasible region of potential plans, respectively. Methods: We develop a one-dimensional (single leaf pair) methodology that does not make assumptions (1) or (2) that can be easily extended to a multi-row model. The proposed continuous leaf optimization (CLO) methodology takes in an existing set of apertures and associated intensities, or solution “seed,” and improves the plan without the restrictiveness of 1or (2). It then uses a first-order descent algorithm to converge onto a locally optimal solution. A seed solution can come from models that assume (1) and (2), thus allowing the CLO model to improve upon existing leaf sequencing methodologies. Results: The CLO model was applied to 208 generated target fluence maps in one dimension. In all cases for all tested sequencing strategies, the CLO model made improvements on the starting seed objective function. The CLO model also was able to keep MUs low. Conclusion: The CLO model can improve upon existing leaf sequencing methods by avoiding the restrictions of (1) and (2). By allowing for more flexible leaf positioning, error can be reduced when matching some target fluence. This study lays the foundation for future models and solution methodologies that can incorporate continuous leaf positions explicitly into the IMRT treatment planning model. Supported by Cancer Prevention & Research Institute of Texas (CPRIT) - ID RP150485.

  7. Rice leaf hydrophobicity and gas films are conferred by a wax synthesis gene (LGF1) and contribute to flood tolerance

    DEFF Research Database (Denmark)

    Kurokawa, Yusuke; Nagai, Keisuke; Hung, Phung Danh

    2018-01-01

    Floods impede gas (O2and CO2) exchange between plants and the environment. A mechanism to enhance plant gas exchange under water comprises gas films on hydrophobic leaves, but the genetic regulation of this mechanism is unknown. We used a rice mutant (dripping wet leaf 7, drp7) which does...... not retain gas films on leaves, and its wild-type (Kinmaze), in gene discovery for this trait. Gene complementation was tested in transgenic lines. Functional properties of leaves as related to gas film retention and underwater photosynthesis were evaluated. Leaf Gas Film 1 (LGF1) was identified as the gene...... determining leaf gas films. LGF1 regulates C30 primary alcohol synthesis, which is necessary for abundant epicuticular wax platelets, leaf hydrophobicity and gas films on submerged leaves. This trait enhanced underwater photosynthesis 8.2-fold and contributes to submergence tolerance. Gene function...

  8. CLD1/SRL1 modulates leaf rolling by affecting cell wall formation, epidermis integrity and water homeostasis in rice.

    Science.gov (United States)

    Li, Wen-Qiang; Zhang, Min-Juan; Gan, Peng-Fei; Qiao, Lei; Yang, Shuai-Qi; Miao, Hai; Wang, Gang-Feng; Zhang, Mao-Mao; Liu, Wen-Ting; Li, Hai-Feng; Shi, Chun-Hai; Chen, Kun-Ming

    2017-12-01

    Leaf rolling is considered as one of the most important agronomic traits in rice breeding. It has been previously reported that SEMI-ROLLED LEAF 1 (SRL1) modulates leaf rolling by regulating the formation of bulliform cells in rice (Oryza sativa); however, the regulatory mechanism underlying SRL1 has yet to be further elucidated. Here, we report the functional characterization of a novel leaf-rolling mutant, curled leaf and dwarf 1 (cld1), with multiple morphological defects. Map-based cloning revealed that CLD1 is allelic with SRL1, and loses function in cld1 through DNA methylation. CLD1/SRL1 encodes a glycophosphatidylinositol (GPI)-anchored membrane protein that modulates leaf rolling and other aspects of rice growth and development. The cld1 mutant exhibits significant decreases in cellulose and lignin contents in secondary cell walls of leaves, indicating that the loss of function of CLD1/SRL1 affects cell wall formation. Furthermore, the loss of CLD1/SRL1 function leads to defective leaf epidermis such as bulliform-like epidermal cells. The defects in leaf epidermis decrease the water-retaining capacity and lead to water deficits in cld1 leaves, which contribute to the main cause of leaf rolling. As a result of the more rapid water loss and lower water content in leaves, cld1 exhibits reduced drought tolerance. Accordingly, the loss of CLD1/SRL1 function causes abnormal expression of genes and proteins associated with cell wall formation, cuticle development and water stress. Taken together, these findings suggest that the functional roles of CLD1/SRL1 in leaf-rolling regulation are closely related to the maintenance of cell wall formation, epidermal integrity and water homeostasis. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  9. LAM-1 and FAT Genes Control Development of the Leaf Blade in Nicotiana sylvestris.

    Science.gov (United States)

    McHale, NA

    1993-01-01

    Leaf primordia of the lam-1 mutant of Nicotiana sylvestris grow normally in length but remain bladeless throughout development. The blade initiation site is established at the normal time and position in lam-1 primordia. Anticlinal divisions proceed normally in the outer L1 and L2 layers, but the inner L3 cells fail to establish the periclinal divisions that normally generate the middle mesophyll core. The lam-1 mutation also blocks formation of blade mesophyll from distal L2 cells. This suggests that LAM-1 controls a common step in initiation of blade tissue from the L2 and L3 lineage of the primordium. Another recessive mutation (fat) was isolated in N. sylvestris that induces abnormal periclinal divisions in the mesophyll during blade initiation and expansion. This generates a blade approximately twice its normal thickness by doubling the number of mesophyll cell layers from four to approximately eight. Presumably, the fat mutation defines a negative regulator involved in repression of periclinal divisions in the blade. The lam-1 fat double mutant shows radial proliferation of mesophyll cells at the blade initiation site. This produces a highly disorganized, club-shaped blade that appears to represent an additive effect of the lam-1 and fat mutations on blade founder cells. PMID:12271096

  10. α-Tubulin Tyrosination and CLIP-170 Phosphorylation Regulate the Initiation of Dynein-Driven Transport in Neurons

    Directory of Open Access Journals (Sweden)

    Jeffrey J. Nirschl

    2016-03-01

    Full Text Available Motor-cargo recruitment to microtubules is often the rate-limiting step of intracellular transport, and defects in this recruitment can cause neurodegenerative disease. Here, we use in vitro reconstitution assays with single-molecule resolution, live-cell transport assays in primary neurons, computational image analysis, and computer simulations to investigate the factors regulating retrograde transport initiation in the distal axon. We find that phosphorylation of the cytoskeletal-organelle linker protein CLIP-170 and post-translational modifications of the microtubule track combine to precisely control the initiation of retrograde transport. Computer simulations of organelle dynamics in the distal axon indicate that while CLIP-170 primarily regulates the time to microtubule encounter, the tyrosination state of the microtubule lattice regulates the likelihood of binding. These mechanisms interact to control transport initiation in the axon in a manner sensitive to the specialized cytoskeletal architecture of the neuron.

  11. Leaf micro-environment influence the altered foliar phenotype of columnar apple (Malus x domestica Borkh.) trees

    DEFF Research Database (Denmark)

    Talwara, Susheela; Grout, Brian William Wilson; Toldam-Andersen, Torben Bo

    2015-01-01

    in the phenotype of the leaves in the leaf clusters that subtend the fruits of CATs, compared to their standard counterparts. This initial investigation considers standard and columnar trees at different levels of genetic relatedness and records significant increases in leaf area, leaf mass per unit area......Columnar apple trees (CATs) have radically-altered architecture (significantly shorter internodes and lateral branches) when compared to standard apple trees, attributed to a mutation of the Co gene involved in apical dominance. These changes in architecture have been associated with changes......, chlorophyll content and competitive shading in the fruiting leaf clusters of columnar cultivars. Additionally, significant increases in intercepted light have been shown to be associated with the columnar structure, and carbon fixation is also increased. We propose that leaf micro-environment of columnar...

  12. On the temporal variation of leaf magnetic parameters: seasonal accumulation of leaf-deposited and leaf-encapsulated particles of a roadside tree crown.

    Science.gov (United States)

    Hofman, Jelle; Wuyts, Karen; Van Wittenberghe, Shari; Samson, Roeland

    2014-09-15

    Understanding the accumulation behaviour of atmospheric particles inside tree leaves is of great importance for the interpretation of biomagnetic monitoring results. In this study, we evaluated the temporal variation of the saturation isothermal remanent magnetisation (SIRM) of leaves of a roadside urban Platanus × acerifolia Willd. tree in Antwerp, Belgium. We hereby examined the seasonal development of the total leaf SIRM signal as well as the leaf-encapsulated fraction of the deposited dust, by washing the leaves before biomagnetic analysis. On average 38% of the leaf SIRM signal was exhibited by the leaf-encapsulated particles. Significant correlations were found between the SIRM and the cumulative daily average atmospheric PM10 and PM2.5 measurements. Moreover, a steady increase of the SIRM throughout the in-leaf season was observed endorsing the applicability of biomagnetic monitoring as a proxy for the time-integrated PM exposure of urban tree leaves. Strongest correlations were obtained for the SIRM of the leaf-encapsulated particles which confirms the dynamic nature of the leaf surface-accumulated particles. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of Wind on the Relation of Leaf N, P Stoichiometry with Leaf Morphology in Quercus Species

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2018-02-01

    Full Text Available Leaf nitrogen (N and phosphorus (P stoichiometry correlates closely to leaf morphology, which is strongly impacted by wind at multiple scales. However, it is not clear how leaf N, P stoichiometry and its relationship to leaf morphology changes with wind load. We determined the leaf N and P concentrations and leaf morphology—including specific leaf area (SLA and leaf dissection index (LDI—for eight Quercus species under a simulated wind load for seven months. Leaf N and P concentrations increased significantly under these conditions for Quercus acutissima, Quercus rubra, Quercus texana, and Quercus palustris—which have elliptic leaves—due to their higher N, P requirements and a resultant leaf biomass decrease, which is a tolerance strategy for Quercus species under a wind load. Leaf N:P was relatively stable under wind for all species, which supports stoichiometric homeostasis. Leaf N concentrations showed a positive correlation to SLA, leaf N and P concentrations showed positive correlations to LDI under each wind treatment, and the slope of correlations was not affected by wind, which indicates synchronous variations between leaf stoichiometry and leaf morphology under wind. However, the intercept of correlations was affected by wind, and leaf N and P use efficiency decreased under the wind load, which suggests that the Quercus species changes from “fast investment-return” in the control to “slow investment-return” under windy conditions. These results will be valuable to understanding functional strategies for plants under varying wind loads, especially synchronous variations in leaf traits along a wind gradient.

  14. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Directory of Open Access Journals (Sweden)

    BRUNO H.P. ROSADO

    2013-09-01

    Full Text Available During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  15. Are leaf physiological traits related to leaf water isotopic enrichment in restinga woody species?

    Science.gov (United States)

    Rosado, Bruno H P; De Mattos, Eduardo A; Sternberg, Leonel Da S L

    2013-09-01

    During plant-transpiration, water molecules having the lighter stable isotopes of oxygen and hydrogen evaporate and diffuse at a faster rate through the stomata than molecules having the heavier isotopes, which cause isotopic enrichment of leaf water. Although previous models have assumed that leaf water is well-mixed and isotopically uniform, non-uniform stomatal closure, promoting different enrichments between cells, and different pools of water within leaves, due to morpho-physiological traits, might lead to inaccuracies in isotopic models predicting leaf water enrichment. We evaluate the role of leaf morpho-physiological traits on leaf water isotopic enrichment in woody species occurring in a coastal vegetation of Brazil known as restinga. Hydrogen and oxygen stable isotope values of soil, plant stem and leaf water and leaf traits were measured in six species from restinga vegetation during a drought and a wet period. Leaf water isotopic enrichment relative to stem water was more homogeneous among species during the drought in contrast to the wet period suggesting convergent responses to deal to temporal heterogeneity in water availability. Average leaf water isotopic enrichment relative to stem water during the drought period was highly correlated with relative apoplastic water content. We discuss this observation in the context of current models of leaf water isotopic enrichment as a function of the Péclet effect. We suggest that future studies should include relative apoplastic water content in isotopic models.

  16. Impairment of leaf photosynthesis after insect herbivory or mechanical injury on common milkweed, Asclepias syriaca.

    Science.gov (United States)

    Delaney, K J; Haile, F J; Peterson, R K D; Higley, L G

    2008-10-01

    Insect herbivory has variable consequences on plant physiology, growth, and reproduction. In some plants, herbivory reduces photosynthetic rate (Pn) activity on remaining tissue of injured leaves. We sought to better understand the influence of leaf injury on Pn of common milkweed, Asclepias syriaca (Asclepiadaceae), leaves. Initially, we tested whether Pn reductions occurred after insect herbivory or mechanical injury. We also (1) examined the duration of photosynthetic recovery, (2) compared mechanical injury with insect herbivory, (3) studied the relationship between leaf Pn with leaf injury intensity, and (4) considered uninjured leaf compensatory Pn responses neighboring an injured leaf. Leaf Pn was significantly reduced on mechanically injured or insect-fed leaves in all reported experiments except one, so some factor(s) (cardiac glycoside induction, reproductive investment, and water stress) likely interacts with leaf injury to influence whether Pn impairment occurs. Milkweed tussock moth larval herbivory, Euchaetes egle L. (Arctiidae), impaired leaf Pn more severely than mechanical injury in one experiment. Duration of Pn impairment lasted > 5 d to indicate high leaf Pn sensitivity to injury, but Pn recovery occurred within 13 d in one experiment. The degree of Pn reduction was more severe from E. egle herbivory than similar levels of mechanical tissue removal. Negative linear relationships characterized leaf Pn with percentage tissue loss from single E. egle-fed leaves and mechanically injured leaves and suggested that the signal to trigger leaf Pn impairment on remaining tissue of an injured leaf was amplified by additional tissue loss. Finally, neighboring uninjured leaves to an E. egle-fed leaf had a small (approximately 10%) degree of compensatory Pn to partly offset tissue loss and injured leaf Pn impairment.

  17. Seedling growth and biomass allocation in relation to leaf habit and shade tolerance among 10 temperate tree species.

    Science.gov (United States)

    Modrzyński, Jerzy; Chmura, Daniel J; Tjoelker, Mark G

    2015-08-01

    Initial growth of germinated seeds is an important life history stage, critical for establishment and succession in forests. Important questions remain regarding the differences among species in early growth potential arising from shade tolerance. In addition, the role of leaf habit in shaping relationships underlying shade tolerance-related differences in seedling growth remains unresolved. In this study we examined variation in morphological and physiological traits among seedlings of 10 forest tree species of the European temperate zone varying in shade tolerance and leaf habit (broadleaved winter-deciduous species vs needle-leaved conifers) during a 10-week period. Seeds were germinated and grown in a controlled environment simulating an intermediate forest understory light environment to resolve species differences in initial growth and biomass allocation. In the high-resource experimental conditions during the study, seedlings increased biomass allocation to roots at the cost of leaf biomass independent of shade tolerance and leaf habit. Strong correlations between relative growth rate (RGR), net assimilation rate (NAR), leaf area ratio (LAR), specific leaf area (SLA) and leaf mass fraction (LMF) indicate that physiology and biomass allocation were equally important determinants of RGR as plant structure and leaf morphology among these species. Our findings highlight the importance of seed mass- and seed size-related root morphology (specific root length-SRL) for shade tolerance during early ontogeny. Leaf and plant morphology (SLA, LAR) were more successful in explaining variation among species due to leaf habit than shade tolerance. In both broadleaves and conifers, shade-tolerant species had lower SRL and greater allocation of biomass to stems (stem mass fraction). Light-seeded shade-intolerant species with greater SRL had greater RGR in both leaf habit groups. However, the greatest plant mass was accumulated in the group of heavy-seeded shade

  18. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water and nutrient cycling of forests. Researchers have reported that stomata regulate leaf gas-exchange around “set...

  19. How do leaf veins influence the worldwide leaf economic spectrum? Review and synthesis.

    Science.gov (United States)

    Sack, Lawren; Scoffoni, Christine; John, Grace P; Poorter, Hendrik; Mason, Chase M; Mendez-Alonzo, Rodrigo; Donovan, Lisa A

    2013-10-01

    Leaf vein traits are implicated in the determination of gas exchange rates and plant performance. These traits are increasingly considered as causal factors affecting the 'leaf economic spectrum' (LES), which includes the light-saturated rate of photosynthesis, dark respiration, foliar nitrogen concentration, leaf dry mass per area (LMA) and leaf longevity. This article reviews the support for two contrasting hypotheses regarding a key vein trait, vein length per unit leaf area (VLA). Recently, Blonder et al. (2011, 2013) proposed that vein traits, including VLA, can be described as the 'origin' of the LES by structurally determining LMA and leaf thickness, and thereby vein traits would predict LES traits according to specific equations. Careful re-examination of leaf anatomy, published datasets, and a newly compiled global database for diverse species did not support the 'vein origin' hypothesis, and moreover showed that the apparent power of those equations to predict LES traits arose from circularity. This review provides a 'flux trait network' hypothesis for the effects of vein traits on the LES and on plant performance, based on a synthesis of the previous literature. According to this hypothesis, VLA, while virtually independent of LMA, strongly influences hydraulic conductance, and thus stomatal conductance and photosynthetic rate. We also review (i) the specific physiological roles of VLA; (ii) the role of leaf major veins in influencing LES traits; and (iii) the role of VLA in determining photosynthetic rate per leaf dry mass and plant relative growth rate. A clear understanding of leaf vein traits provides a new perspective on plant function independently of the LES and can enhance the ability to explain and predict whole plant performance under dynamic conditions, with applications towards breeding improved crop varieties.

  20. Mobile gene silencing in Arabidopsis is regulated by hydrogen peroxide

    Directory of Open Access Journals (Sweden)

    Dacheng Liang

    2014-12-01

    Full Text Available In plants and nematodes, RNAi can spread from cells from which it is initiated to other cells in the organism. The underlying mechanism controlling the mobility of RNAi signals is not known, especially in the case of plants. A genetic screen designed to recover plants impaired in the movement but not the production or effectiveness of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2-producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants and accelerated it in wild-type plants. The addition of catalase or MnO2, which breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose that endogenous H2O2, under the control of peroxidases, regulates the spread of gene silencing by altering plasmodesmata permeability through remodelling of local cell wall structure, and may play a role in regulating systemic viral defence.

  1. An evolutionary perspective on leaf economics : Phylogenetics of leaf mass per area in vascular plants

    NARCIS (Netherlands)

    Flores, Olivier; Garnier, Eric; Wright, Ian J.; Reich, Peter B.; Pierce, Simon; Diaz, Sandra; Pakeman, Robin J.; Rusch, Graciela M.; Bernard-Verdier, Maud; Testi, Baptiste; Bakker, Jan P.; Bekker, Renee M.; Cerabolini, Bruno E. L.; Ceriani, Roberta M.; Cornu, Guillaume; Cruz, Pablo; Delcamp, Matthieu; Dolezal, Jiri; Eriksson, Ove; Fayolle, Adeline; Freitas, Helena; Golodets, Carly; Gourlet-Fleury, Sylvie; Hodgson, John G.; Brusa, Guido; Kleyer, Michael; Kunzmann, Dieter; Lavorel, Sandra; Papanastasis, Vasilios P.; Perez-Harguindeguy, Natalia; Vendramini, Fernanda; Weiher, Evan

    In plant leaves, resource use follows a trade-off between rapid resource capture and conservative storage. This "worldwide leaf economics spectrum" consists of a suite of intercorrelated leaf traits, among which leaf mass per area, LMA, is one of the most fundamental as it indicates the cost of leaf

  2. β-arrestin regulates estradiol membrane-initiated signaling in hypothalamic neurons.

    Directory of Open Access Journals (Sweden)

    Angela M Wong

    Full Text Available Estradiol (E2 action in the nervous system is the result of both direct nuclear and membrane-initiated signaling (EMS. E2 regulates membrane estrogen receptor-α (ERα levels through opposing mechanisms of EMS-mediated trafficking and internalization. While ß-arrestin-mediated mERα internalization has been described in the cortex, a role of ß-arrestin in EMS, which underlies multiple physiological processes, remains undefined. In the arcuate nucleus of the hypothalamus (ARH, membrane-initiated E2 signaling modulates lordosis behavior, a measure of female sexually receptivity. To better understand EMS and regulation of ERα membrane levels, we examined the role of ß-arrestin, a molecule associated with internalization following agonist stimulation. In the present study, we used an immortalized neuronal cell line derived from embryonic hypothalamic neurons, the N-38 line, to examine whether ß-arrestins mediate internalization of mERα. β-arrestin-1 (Arrb1 was found in the ARH and in N-38 neurons. In vitro, E2 increased trafficking and internalization of full-length ERα and ERαΔ4, an alternatively spliced isoform of ERα, which predominates in the membrane. Treatment with E2 also increased phosphorylation of extracellular-signal regulated kinases 1/2 (ERK1/2 in N-38 neurons. Arrb1 siRNA knockdown prevented E2-induced ERαΔ4 internalization and ERK1/2 phosphorylation. In vivo, microinfusions of Arrb1 antisense oligodeoxynucleotides (ODN into female rat ARH knocked down Arrb1 and prevented estradiol benzoate-induced lordosis behavior compared with nonsense scrambled ODN (lordosis quotient: 3 ± 2.1 vs. 85.0 ± 6.0; p < 0.0001. These results indicate a role for Arrb1 in both EMS and internalization of mERα, which are required for the E2-induction of female sexual receptivity.

  3. Easy Leaf Area: Automated digital image analysis for rapid and accurate measurement of leaf area.

    Science.gov (United States)

    Easlon, Hsien Ming; Bloom, Arnold J

    2014-07-01

    Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. • Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. • Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  4. Leaf anatomical traits determine the 18O enrichment of leaf water in coastal halophytes

    Science.gov (United States)

    Liang, J.; Lin, G., Sr.; Sternberg, L. O.

    2017-12-01

    Foliar anatomical adaptations to high-salinity environment in mangroves may be recorded by leaf water isotopes. Recent studies observed that a few mangrove species have lower 18O enrichment of leaf water (ΔL) relative to source water than the adjacent terrestrial trees, but what factors actually control this phenomenon is still disputable at present. To resolve this issue, we collected 15 species of true mangrove plants, 14 species of adjacent freshwater trees and 4 species of semi-mangrove plants at five study sites on the southeastern coast of China. Leaf stomatal density and pore size, water content, ΔL and other related leaf physiological traits were determined for the selected leaves of these plants. Our results confirmed that ΔL values of mangroves were generally 3 4 ‰ lower than those of the adjacent freshwater or semi-mangrove species. Higher leaf water per area (LWC) and lower leaf stomatal density (LS) of mangroves played co-dominant roles in lowering ΔL through elongating effective leaf mixing length by about 20%. The Péclet model incorporated by LWC and LS performed well in predicting ΔL. The demonstrated general law between leaf anatomy and ΔL in this paper based on a large pool of species bridges the gap between leaf functional traits and metabolic proxies derived ΔL, which will have considerable potential applications in vegetation succession and reconstruction of paleoclimate research.

  5. A Theoretical Model of Jigsaw-Puzzle Pattern Formation by Plant Leaf Epidermal Cells.

    Science.gov (United States)

    Higaki, Takumi; Kutsuna, Natsumaro; Akita, Kae; Takigawa-Imamura, Hisako; Yoshimura, Kenji; Miura, Takashi

    2016-04-01

    Plant leaf epidermal cells exhibit a jigsaw puzzle-like pattern that is generated by interdigitation of the cell wall during leaf development. The contribution of two ROP GTPases, ROP2 and ROP6, to the cytoskeletal dynamics that regulate epidermal cell wall interdigitation has already been examined; however, how interactions between these molecules result in pattern formation remains to be elucidated. Here, we propose a simple interface equation model that incorporates both the cell wall remodeling activity of ROP GTPases and the diffusible signaling molecules by which they are regulated. This model successfully reproduces pattern formation observed in vivo, and explains the counterintuitive experimental results of decreased cellulose production and increased thickness. Our model also reproduces the dynamics of three-way cell wall junctions. Therefore, this model provides a possible mechanism for cell wall interdigitation formation in vivo.

  6. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    Directory of Open Access Journals (Sweden)

    Chunqing Liu

    2015-08-01

    Full Text Available Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74% of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  7. Effects of leaf movement on leaf temperature, transpiration and radiation interception in soybean under water stress conditions

    International Nuclear Information System (INIS)

    Isoda, A.; Wang, P.

    2001-01-01

    Varietal differences in leaf movement were examined in terms of radiation interception, leaf temperature and transpiration under water stressed conditions. Five cultivars (Qindou 7232, Gaofei 16, Dongnong 87 - 138, 8285 - 8 and 8874) were grown in a concrete frame field in Xinjiang, China. Irrigation treatments (irrigation and no irrigation) were made from the flowering to the pod filling stage. A leaflet in the uppermost layer of the canopy was restrained horizontally. Leaf temperatures, transpiration rate (stem sap flow rate of the main stem per unit leaf area) and intercepted radiation of each leaflet were measured. There were greater varietal differences in leaf movement, leaf temperature and transpiration rate. Leaf temperature seemed to be adjusted by leaf movement and transpiration. The extent to which is adjusted by leaf movement and transpiration differed among the cultivars; leaf temperature was influenced mainly by leaf movement for Gaofei 16 and Dongnong 87 - 138, mainly by transpiration for Qindou 7232 and 8874, and by both for 8285 - 8. Intercepted radiation in the upper two layers of the canopy (20 cm from the uppermost) was greater in the irrigated plot, although the mean values of total leaflets of the irrigated plot were not different as compared to the non-irrigated plot. Although paraheliotropic leaf movement decreased radiation interception, it offers some possibilities for the improvement in radiation penetration within a dense canopy. Cumulated amount of transpiration during a day was compared between the restrained-leaf and the non-leaf-restrained plants in 8874. Paraheliotropic leaf movement reduced water loss by 23% in the irrigated and 71% in the non-irrigated plots

  8. Mathematical modeling on obligate mutualism: Interactions between leaf-cutter ants and their fungus garden.

    Science.gov (United States)

    Kang, Yun; Clark, Rebecca; Makiyama, Michael; Fewell, Jennifer

    2011-11-21

    We propose a simple mathematical model by applying Michaelis-Menton equations of enzyme kinetics to study the mutualistic interaction between the leaf cutter ant and its fungus garden at the early stage of colony expansion. We derive sufficient conditions on the extinction and coexistence of these two species. In addition, we give a region of initial condition that leads to the extinction of two species when the model has an interior attractor. Our global analysis indicates that the division of labor by worker ants and initial conditions are two important factors that determine whether leaf cutter ants' colonies and their fungus garden can survive and grow or not. We validate the model by comparing model simulations and data on fungal and ant colony growth rates under laboratory conditions. We perform sensitive analysis of the model based on the experimental data to gain more biological insights on ecological interactions between leaf-cutter ants and their fungus garden. Finally, we give conclusions and discuss potential future work. Published by Elsevier Ltd.

  9. Rapid, high-resolution measurement of leaf area and leaf orientation using terrestrial LiDAR scanning data

    International Nuclear Information System (INIS)

    Bailey, Brian N; Mahaffee, Walter F

    2017-01-01

    The rapid evolution of high performance computing technology has allowed for the development of extremely detailed models of the urban and natural environment. Although models can now represent sub-meter-scale variability in environmental geometry, model users are often unable to specify the geometry of real domains at this scale given available measurements. An emerging technology in this field has been the use of terrestrial LiDAR scanning data to rapidly measure the three-dimensional geometry of trees, such as the distribution of leaf area. However, current LiDAR methods suffer from the limitation that they require detailed knowledge of leaf orientation in order to translate projected leaf area into actual leaf area. Common methods for measuring leaf orientation are often tedious or inaccurate, which places constraints on the LiDAR measurement technique. This work presents a new method to simultaneously measure leaf orientation and leaf area within an arbitrarily defined volume using terrestrial LiDAR data. The novelty of the method lies in the direct measurement of the fraction of projected leaf area G from the LiDAR data which is required to relate projected leaf area to total leaf area, and in the new way in which radiation transfer theory is used to calculate leaf area from the LiDAR data. The method was validated by comparing LiDAR-measured leaf area to (1) ‘synthetic’ or computer-generated LiDAR data where the exact area was known, and (2) direct measurements of leaf area in the field using destructive sampling. Overall, agreement between the LiDAR and reference measurements was very good, showing a normalized root-mean-squared-error of about 15% for the synthetic tests, and 13% in the field. (paper)

  10. Leaf endophyte load influences fungal garden development in leaf-cutting ants

    Directory of Open Access Journals (Sweden)

    Van Bael Sunshine A

    2012-11-01

    Full Text Available Abstract Background Previous work has shown that leaf-cutting ants prefer to cut leaf material with relatively low fungal endophyte content. This preference suggests that fungal endophytes exact a cost on the ants or on the development of their colonies. We hypothesized that endophytes may play a role in their host plants’ defense against leaf-cutting ants. To measure the long-term cost to the ant colony of fungal endophytes in their forage material, we conducted a 20-week laboratory experiment to measure fungal garden development for colonies that foraged on leaves with low or high endophyte content. Results Colony mass and the fungal garden dry mass did not differ significantly between the low and high endophyte feeding treatments. There was, however, a marginally significant trend toward greater mass of fungal garden per ant worker in the low relative to the high endophyte treatment. This trend was driven by differences in the fungal garden mass per worker from the earliest samples, when leaf-cutting ants had been foraging on low or high endophyte leaf material for only 2 weeks. At two weeks of foraging, the mean fungal garden mass per worker was 77% greater for colonies foraging on leaves with low relative to high endophyte loads. Conclusions Our data suggest that the cost of endophyte presence in ant forage material may be greatest to fungal colony development in its earliest stages, when there are few workers available to forage and to clean leaf material. This coincides with a period of high mortality for incipient colonies in the field. We discuss how the endophyte-leaf-cutter ant interaction may parallel constitutive defenses in plants, whereby endophytes reduce the rate of colony development when its risk of mortality is greatest.

  11. Easy Leaf Area: Automated Digital Image Analysis for Rapid and Accurate Measurement of Leaf Area

    Directory of Open Access Journals (Sweden)

    Hsien Ming Easlon

    2014-07-01

    Full Text Available Premise of the study: Measurement of leaf areas from digital photographs has traditionally required significant user input unless backgrounds are carefully masked. Easy Leaf Area was developed to batch process hundreds of Arabidopsis rosette images in minutes, removing background artifacts and saving results to a spreadsheet-ready CSV file. Methods and Results: Easy Leaf Area uses the color ratios of each pixel to distinguish leaves and calibration areas from their background and compares leaf pixel counts to a red calibration area to eliminate the need for camera distance calculations or manual ruler scale measurement that other software methods typically require. Leaf areas estimated by this software from images taken with a camera phone were more accurate than ImageJ estimates from flatbed scanner images. Conclusions: Easy Leaf Area provides an easy-to-use method for rapid measurement of leaf area and nondestructive estimation of canopy area from digital images.

  12. Panax ginseng Leaf Extracts Exert Anti-Obesity Effects in High-Fat Diet-Induced Obese Rats.

    Science.gov (United States)

    Lee, Seul-Gi; Lee, Yoon-Jeong; Jang, Myeong-Hwan; Kwon, Tae-Ryong; Nam, Ju-Ock

    2017-09-10

    Recent studies have reported that the aerial parts of ginseng contain various saponins, which have anti-oxidative, anti-inflammatory, and anti-obesity properties similar to those of ginseng root. However, the leaf extracts of Korean ginseng have not yet been investigated. In this study, we demonstrate the anti-obesity effects of green leaf and dried leaf extracts (GL and DL, respectively) of ginseng in high-fat diet (HFD)-induced obese rats. The administration of GL and DL to HFD-induced obese rats significantly decreased body weight (by 96.5% and 96.7%, respectively), and epididymal and abdominal adipose tissue mass. Furthermore, DL inhibited the adipogenesis of 3T3-L1 adipocytes through regulation of the expression of key adipogenic regulators, such as peroxisome proliferator-activated receptor (PPAR)-γ and CCAAT/enhancer-binding protein (C/EBP)-α. In contrast, GL had little effect on the adipogenesis of 3T3-L1 adipocytes but greatly increased the protein expression of PPARγ compared with that in untreated cells. These results were not consistent with an anti-obesity effect in the animal model, which suggested that the anti-obesity effect of GL in vivo resulted from specific factors released by other organs, or from increased energy expenditure. To our knowledge, these findings are the first evidence for the anti-obesity effects of the leaf extracts of Korean ginseng in vivo.

  13. Photodegradation of Leaf Litter in Water-Limited Ecosystems

    Science.gov (United States)

    Cory, R. M.; Powers, H.; McDowell, N.; Rahn, T.

    2008-12-01

    The longstanding view of terrestrial decomposition holds that heterotrophic respiration drives release of CO2, but recent studies, such as Austin and Vivanco (2006) have shown that in water-limited environments, photochemical decomposition of leaf litter may be equally or more effective than microbial decomposition. Although initial studies have concluded that photochemical degradation can be important in some environments, it has been difficult to quantify and the oxidative mechanisms involved remain unknown. Thus, the objectives of our study were to (1) quantify the CO2 emitted during photochemical degradation of leaf litter and (2) use the stable isotopic signatures of evolved CO2 to elucidate pathways of production. Emitted CO2 and its isotopic signature were measured using a tunable diode laser (TDL) to assess the pool of photochemically-labile plant matter (δ13C-CO2) in a given sample and to assess the source of the oxygen (δ18O-CO2). We quantified the photochemical release of CO2 and its isotopic signature from dried leaf litter of 10 tree and grass species prevalent in major biotic zones of New Mexico. The cumulative CO2 released upon exposure of 0.1-0.3 g of dried leaf litter to three hours of simulated sunlight ranged from 8-25 mg CO2-C g-1 dried litter, corresponding to 1-2% mass loss. Generally, the δ13C-CO2 was more depleted (4-7 ± 2 per mil) than the average δ13C of the respective leaf litter sample. The δ18O-CO2 evolved is approximately equal to δ18O of atmospheric O2, suggesting that the oxidation mechanism involves direct reaction with atmospheric O2.

  14. Computational modelling and analysis of the molecular network regulating sporulation initiation in Bacillus subtilis.

    Science.gov (United States)

    Ihekwaba, Adaoha E C; Mura, Ivan; Barker, Gary C

    2014-10-24

    Bacterial spores are important contaminants in food, and the spore forming bacteria are often implicated in food safety and food quality considerations. Spore formation is a complex developmental process involving the expression of more than 500 genes over the course of 6 to 8 hrs. The process culminates in the formation of resting cells capable of resisting environmental extremes and remaining dormant for long periods of time, germinating when conditions promote further vegetative growth. Experimental observations of sporulation and germination are problematic and time consuming so that reliable models are an invaluable asset in terms of prediction and risk assessment. In this report we develop a model which assists in the interpretation of sporulation dynamics. This paper defines and analyses a mathematical model for the network regulating Bacillus subtilis sporulation initiation, from sensing of sporulation signals down to the activation of the early genes under control of the master regulator Spo0A. Our model summarises and extends other published modelling studies, by allowing the user to execute sporulation initiation in a scenario where Isopropyl β-D-1-thiogalactopyranoside (IPTG) is used as an artificial sporulation initiator as well as in modelling the induction of sporulation in wild-type cells. The analysis of the model results and the comparison with experimental data indicate that the model is good at predicting inducible responses to sporulation signals. However, the model is unable to reproduce experimentally observed accumulation of phosphorelay sporulation proteins in wild type B. subtilis. This model also highlights that the phosphorelay sub-component, which relays the signals detected by the sensor kinases to the master regulator Spo0A, is crucial in determining the response dynamics of the system. We show that there is a complex connectivity between the phosphorelay features and the master regulatory Spo0A. Additional we discovered that the

  15. Stress Marker Signatures in Lesion Mimic Single and Double Mutants Identify a Crucial Leaf Age-Dependent Salicylic Acid Related Defense Signal.

    Science.gov (United States)

    Kaurilind, Eve; Brosché, Mikael

    2017-01-01

    Plants are exposed to abiotic and biotic stress conditions throughout their lifespans that activates various defense programs. Programmed cell death (PCD) is an extreme defense strategy the plant uses to manage unfavorable environments as well as during developmentally induced senescence. Here we investigated the role of leaf age on the regulation of defense gene expression in Arabidopsis thaliana. Two lesion mimic mutants with misregulated cell death, catalase2 (cat2) and defense no death1 (dnd1) were used together with several double mutants to dissect signaling pathways regulating defense gene expression associated with cell death and leaf age. PCD marker genes showed leaf age dependent expression, with the highest expression in old leaves. The salicylic acid (SA) biosynthesis mutant salicylic acid induction deficient2 (sid2) had reduced expression of PCD marker genes in the cat2 sid2 double mutant demonstrating the importance of SA biosynthesis in regulation of defense gene expression. While the auxin- and jasmonic acid (JA)- insensitive auxin resistant1 (axr1) double mutant cat2 axr1 also led to decreased expression of PCD markers; the expression of several marker genes for SA signaling (ISOCHORISMATE SYNTHASE 1, PR1 and PR2) were additionally decreased in cat2 axr1 compared to cat2. The reduced expression of these SA markers genes in cat2 axr1 implicates AXR1 as a regulator of SA signaling in addition to its known role in auxin and JA signaling. Overall, the current study reinforces the important role of SA signaling in regulation of leaf age-related transcript signatures.

  16. Automated Leaf Tracking using Multi-view Image Sequences of Maize Plants for Leaf-growth Monitoring

    Science.gov (United States)

    Das Choudhury, S.; Awada, T.; Samal, A.; Stoerger, V.; Bashyam, S.

    2017-12-01

    Extraction of phenotypes with botanical importance by analyzing plant image sequences has the desirable advantages of non-destructive temporal phenotypic measurements of a large number of plants with little or no manual intervention in a relatively short period of time. The health of a plant is best interpreted by the emergence timing and temporal growth of individual leaves. For automated leaf growth monitoring, it is essential to track each leaf throughout the life cycle of the plant. Plants are constantly changing organisms with increasing complexity in architecture due to variations in self-occlusions and phyllotaxy, i.e., arrangements of leaves around the stem. The leaf cross-overs pose challenges to accurately track each leaf using single view image sequence. Thus, we introduce a novel automated leaf tracking algorithm using a graph theoretic approach by multi-view image sequence analysis based on the determination of leaf-tips and leaf-junctions in the 3D space. The basis of the leaf tracking algorithm is: the leaves emerge using bottom-up approach in the case of a maize plant, and the direction of leaf emergence strictly alternates in terms of direction. The algorithm involves labeling of the individual parts of a plant, i.e., leaves and stem, following graphical representation of the plant skeleton, i.e., one-pixel wide connected line obtained from the binary image. The length of the leaf is measured by the number of pixels in the leaf skeleton. To evaluate the performance of the algorithm, a benchmark dataset is indispensable. Thus, we publicly release University of Nebraska-Lincoln Component Plant Phenotyping dataset-2 (UNL-CPPD-2) consisting of images of the 20 maize plants captured by visible light camera of the Lemnatec Scanalyzer 3D high throughout plant phenotyping facility once daily for 60 days from 10 different views. The dataset is aimed to facilitate the development and evaluation of leaf tracking algorithms and their uniform comparisons.

  17. Control of dew and frost formation on leaf by radiative cooling

    International Nuclear Information System (INIS)

    Matsui, T.; Eguchi, H.; Mori, K.

    1981-01-01

    A radiative cooling system was developed to control dew and frost formations and to examine the effect of the radiative cooling on the leaf temperature. The growth chamber was provided with a box which was constructed by using heat insulating materials to minimize the disturbances and to regulate the air current. A cooling coil (cooling surface of 300 cm was equipped at the bottom of the box and manipulated by a refrigerator of 1, 430 kcal hour -1 , and a concave mirror was attached to the ceiling of the box to facilitate the reflection of the radiation from the leaf to the cooling coil. The moisture in air was supplied by flowing the controlled air (0.2 m min -1 ) into the box. The distribution of dew point temperatures was almost uniform horizontally even under vertically slight conversion (downward velocity of 1.3 cm sec -1 ) of the air. The leaf temperature became about 1.0°C lower than the ambient air temperature under the radiative cooling. The dew and the frost were clearly observed on the leaf after the time when the leaf temperature had become lower than the dew point temperature. The dew increased in size in course of time, and the frost varied in shape and in size with the temperatures. Thus, artificial formations of the dew and the frost were made possible by the radiative cooling system developed in this experiment

  18. Effects of feeding different proportions of silver leaf desmodium (Dismodium uncinatum) with banana (Musa paradisiaca) leaf on nutrient utilization in Horro sheep fed a basal diet of natural grass hay.

    Science.gov (United States)

    Chali, Diriba; Nurfeta, Ajebu; Banerjee, Sandip; Eik, Lars Olav

    2018-03-02

    The objective was to evaluate feed intake, digestibility, body weight change and carcass characteristics of sheep fed a basal diet of hay supplemented with banana leaves and silver leaf desmodium. Thirty yearling lambs with an average initial body weight of 15.85 ± 1.6 kg were grouped into six blocks of five rams in each block. The treatments were: hay alone (T1), hay + 100% banana leaf (T2), hay + 67% banana leaf + 33% desmodium leaf (T3), hay + 33% banana leaf + 67% desmodium leaf (T4) and hay + 100% desmodium leaf (T5). Three hundred grams of treatment diets were offered daily on as fed basis. The feeding and digestibility trial lasted for 84 and 7 days, respectively, followed by carcass evaluation. The total dry matter (DM) intake for T3, T4 and T5 were greater (P T4 > T3 > T2 > T1. Rams lambs receiving supplementary diets had higher (P<0.05) DM, OM, CP, neutral detergent fiber and acid detergent fiber digestibility compared with the control diet. The empty body weight and slaughter weight was highest (P<0.05) in rams receiving T3, T4 and T5 diets. The average daily gain and feed conversion efficiency was highest (P<0.05) in rams receiving the supplementary diets. The DP on the basis of hot carcass weight linearly increased with increasing levels of desmodium. Rams reared on supplementary diet had higher (P<0.05) rib eye area compared with the control diet. In conclusion, when banana leaf is used as a supplement to poor quality grass, better response was obtained when fed in combination with desmodium.

  19. A R2R3-MYB Gene LfMYB113 is Responsible for Autumn Leaf Coloration in Formosan sweet gum (Liquidambar formosana Hance).

    Science.gov (United States)

    Wen, Chi-Hsiang; Chu, Fang-Hua

    2017-03-01

    The regulation of autumn leaf coloration in deciduous trees has long been an enigma. Due to the fact that different coloration phenotypes may be considered when planting, more understanding of the regulation mechanism is needed. In this study, a R2R3-MYB transcription factor gene LfMYB113 was identified from a subtropical deciduous tree species Formosan sweet gum (Liquidambar formosana Hance). The expression patterns of LfMYB113 in four selected phenotypes were different and were positively correlated with leaf anthocyanin content. In a 35S::LfMYB113 transgenic Nicotiana tabacum plant, both the early and late genes in the anthocyanin biosynthetic pathway were shown to be up-regulated. It was also shown that LfMYB113 can activate the promoter sequence of LfDFR1 and LfDFR2. Transient overexpression of LfMYB113 in Nicotiana benthamiana showed strong anthocyanin accumulation and pre-senescence; the latter was confirmed by up-regulation of senescence-associated genes. In addition, the activation of proLfSGR::YFP by LfMYB113 in transient experiments indicated that LfMYB113 may have a role in regulation of Chl degradation. To our knowledge, this is the first time a R2R3-MYB transcription factor has been functionally identified as one of the key regulators of autumn leaf coloration and autumn leaf senescence. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima.

    Science.gov (United States)

    Brodribb, Tim J; Holbrook, N Michele; Zwieniecki, Maciej A; Palma, Beatriz

    2005-03-01

    * The hydraulic plumbing of vascular plant leaves varies considerably between major plant groups both in the spatial organization of veins, as well as their anatomical structure. * Five conifers, three ferns and 12 angiosperm trees were selected from tropical and temperate forests to investigate whether the profound differences in foliar morphology of these groups lead to correspondingly profound differences in leaf hydraulic efficiency. * We found that angiosperm leaves spanned a range of leaf hydraulic conductance from 3.9 to 36 mmol m2 s-1 MPa-1, whereas ferns (5.9-11.4 mmol m-2 s-1 MPa-1) and conifers (1.6-9.0 mmol m-2 s-1 MPa-1) were uniformly less conductive to liquid water. Leaf hydraulic conductance (Kleaf) correlated strongly with stomatal conductance indicating an internal leaf-level regulation of liquid and vapour conductances. Photosynthetic capacity also increased with Kleaf, however, it became saturated at values of Kleaf over 20 mmol m-2 s-1 MPa-1. * The data suggest that vessels in the leaves of the angiosperms studied provide them with the flexibility to produce highly conductive leaves with correspondingly high photosynthetic capacities relative to tracheid-bearing species.

  1. Measurement for the MLC leaf velocity profile by considering the leaf leakage using a radiographic film

    International Nuclear Information System (INIS)

    Chow, James C L; Grigorov, Grigor N

    2006-01-01

    A method to measure the velocity profile of a multi-leaf collimator (MLC) leaf along its travel range using a radiographic film is reported by considering the intra-leaf leakage. A specific dynamic MLC field with leaves travelling from the field edge to the isocentre line was designed. The field was used to expose a radiographic film, which was then scanned, and the dose profile along the horizontal leaf axis was measured. The velocity at a sampling point on the film can be calculated by considering the horizontal distance between the sampling point and the isocentre line, dose at the sampling point, dose rate of the linear accelerator, the total leaf travel time from the field edge to isocentre line and the pre-measured dose rate of leaf leakage. With the leaf velocities and velocity profiles for all MLC leaves measured routinely, a comprehensive and simple QA for the MLC can be set up to test the consistency of the leaf velocity performance which is essential to the IMRT delivery using a sliding window technique. (note)

  2. Dissipation and Residues of Pyrethrins in Leaf Lettuce under Greenhouse and Open Field Conditions.

    Science.gov (United States)

    Pan, Lixiang; Feng, Xiaoxiao; Zhang, Hongyan

    2017-07-21

    Pyrethrins are nowadays widely used for prevention and control of insects in leaf lettuce. However, there is a concern about the pesticide residue in leaf lettuce. A reliable analytical method for determination of pyrethrins (pyrethrin-and П, cinerin І and П, and jasmolin І and П) in leaf lettuce was developed by using gas chromatography-mass spectrometry (GC-MS). Recoveries of pyrethrins in leaf lettuce at three spiking levels were 99.4-104.0% with relative standard deviations of 0.9-3.1% ( n = 5). Evaluation of dissipation and final residues of pyrethrins in leaf lettuce were determined at six different locations, including the open field, as well as under greenhouse conditions. The initial concentration of pyrethrins in greenhouse (0.57 mg/kg) was higher than in open field (0.25 mg/kg) and the half-life for pyrethrins disappearance in field lettuce (0.7 days) was less than that greenhouse lettuce (1.1 days). Factors such as rainfall, solar radiation, wind speed, and crop growth rate are likely to have caused these results. The final residue in leaf lettuce was far below the maximum residue limits (MRLs) (1 mg/kg established by the European Union (EU), Australia, Korea, Japan).

  3. Geometric leaf placement strategies

    International Nuclear Information System (INIS)

    Fenwick, J D; Temple, S W P; Clements, R W; Lawrence, G P; Mayles, H M O; Mayles, W P M

    2004-01-01

    Geometric leaf placement strategies for multileaf collimators (MLCs) typically involve the expansion of the beam's-eye-view contour of a target by a uniform MLC margin, followed by movement of the leaves until some point on each leaf end touches the expanded contour. Film-based dose-distribution measurements have been made to determine appropriate MLC margins-characterized through an index d 90 -for multileaves set using one particular strategy to straight lines lying at various angles to the direction of leaf travel. Simple trigonometric relationships exist between different geometric leaf placement strategies and are used to generalize the results of the film work into d 90 values for several different strategies. Measured d 90 values vary both with angle and leaf placement strategy. A model has been derived that explains and describes quite well the observed variations of d 90 with angle. The d 90 angular variations of the strategies studied differ substantially, and geometric and dosimetric reasoning suggests that the best strategy is the one with the least angular variation. Using this criterion, the best straightforwardly implementable strategy studied is a 'touch circle' approach for which semicircles are imagined to be inscribed within leaf ends, the leaves being moved until the semicircles just touch the expanded target outline

  4. Apparent over-investment in leaf venation relaxes leaf morphological constraints on photosynthesis in arid habitats

    Science.gov (United States)

    de Boer, Hugo; Drake, Paul; Veneklaas, Erik

    2017-04-01

    The close relationship between leaf water status and stomatal conductance implies that the hydraulic architecture of leaves poses an important constraint on transpiration, specifically in arid environments with high evaporative demands. However, it remains uncertain how morphological, hydraulic and photosynthetic traits are coordinated to achieve optimal leaf functioning in arid environments. Critical is that leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy≈1. Although this theory is supported by observations on many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis we assembled leaf hydraulic, morphological and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent over-investment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf lifespan, high hydraulic and thermal capacitances, and high potential rates of leaf

  5. Coordination of leaf and stem water transport properties in tropical forest trees

    Science.gov (United States)

    Frederick C. Meinzer; David R. Woodruff; Jean-Christophe Domec; Guillermo Goldstein; Paula I. Campanello; Genoveva M. Gatti; Randol Villalobos-Vega

    2008-01-01

    Stomatal regulation of transpiration constrains leaf water potential (ψ l) within species-specific ranges that presumably avoid excessive tension and embolism in the stem xylem upstream. However, the hydraulic resistance of leaves can be highly variable over short time scales, uncoupling tension in the xylem of leaves from that in the...

  6. A Personal Perspective on the Initial Federal Health-Based Regulation to Remove Lead from Gasoline

    Science.gov (United States)

    Bridbord, Kenneth; Hanson, David

    2009-01-01

    Objective This article describes the personal experience and perspective of the authors, who had primary responsibility for drafting the initial health-based regulation limiting lead content of gasoline during the early 1970s while employed by the U.S. Environmental Protection Agency (EPA). Data source Information used by the U.S. EPA in developing the initial health-based regulation limiting lead content of gasoline in December 1973 and studies documenting the impact of that and subsequent actions. Data extraction Among the lessons learned from this experience is the importance of having input from independent scientists to the regulatory decision-making process. This also demonstrates the critical role of independent peer-reviewed research, such as that supported by the National Institutes of Health, as well as research conducted by scientists from the Centers for Disease Control and Prevention, in delineating the consequences of lead exposure in the population. Data synthesis Removal of lead from gasoline in the United States has been described as one of the great public health achievements of the 20th century, but it almost did not happen. The experience of the authors in developing this regulation may be helpful to others involved in developing health-based regulatory policy in the future. Conclusion The initial U.S. EPA health-based regulation to remove lead from gasoline is clearly an example where science successfully affected public policy. The leadership of the U.S. EPA at that time deserves much credit for establishing an atmosphere in which this was possible. PMID:19672397

  7. Air pollutants and the leaf cuticle. Proceedings

    International Nuclear Information System (INIS)

    Percy, K.E.; Jagels, R.; Simpson, C.J.

    1994-01-01

    The leaf surface forms the interface between plants and a deteriorating atmospheric environment. It is, therefore, the first point of contact between plants and air pollutants and presents an effective barrier to pollutant entry. Outermost surfaces of leaves are covered by a thin, lipoidal, non-living membrane called a cuticle. Cuticle integrity is essential to plant survival and has many essential functions, including the prevention of excessive water loss, regulation of solute uptake and protection of sensitive underlying photosynthetic tissues against harmful irradiation such as enhanced UV-B resulting from stratospheric ozone depletion. The physicochemical properties of the cuticle vary greatly between and within species. They are known to be sensitive to change through natural and anthropogenic influences. This book comprises contributions made to a NATO-sponsored Advanced Research Workshop ''Air Pollutants and the Leaf Cuticle'' held October 4-9, 1993 in Fredericton, New Brunswick, Canada. The objective of the ARW was to bring together for the first time international expertise on the subject of air pollutant interactions with the cuticle. In order to facilitate a state-of-science review, the ARW was structured around four themes. They were as follows: 1. Cuticular physicochemical characteristics, physiological, regulatory, and protective roles. 2. Effects, mechanisms, and consequences of air pollutant interaction with leaf cuticles. 3. Non-anthropogenic and environmental influences on the cuticle and potential of the cuticle for biomonitoring and critical levels mapping. 4. New developments in experimental methodology and analytical techniques. (orig./vhe)

  8. A Response to Proposed Equal Employment Opportunity Commission Regulations on Employer-Sponsored Health, Safety, and Well-Being Initiatives.

    Science.gov (United States)

    2016-03-01

    The aim of this study was to identify areas of consensus in response to proposed Equal Employment Opportunity Commission Americans with Disabilities Act of 1990 and Genetic Information Nondiscrimination Act of 2008 regulations on employer-sponsored health, safety, and well-being initiatives. The consensus process included review of existing and proposed regulations, identification of key areas where consensus is needed, and a methodical consensus-building process. Stakeholders representing employees, employers, consulting organizations, and wellness providers reached consensus around five areas, including adequate privacy notice on how medical data are collected, used, and protected; effective, equitable use of inducements that influence participation in programs; observance of reasonable alternative standards; what constitutes reasonably designed programs; and the need for greater congruence between federal agency regulations. Employee health and well-being initiatives that are in accord with federal regulations are comprehensive, evidence-based, and are construed as voluntary by employees and regulators alike.

  9. Moringa Oleifera aqueous leaf extract down-regulates nuclear factor-kappaB and increases cytotoxic effect of chemotherapy in pancreatic cancer cells.

    Science.gov (United States)

    Berkovich, Liron; Earon, Gideon; Ron, Ilan; Rimmon, Adam; Vexler, Akiva; Lev-Ari, Shahar

    2013-08-19

    Fewer than 6% patients with adenocarcinoma of the pancreas live up to five years after diagnosis. Chemotherapy is currently the standard treatment, however, these tumors often develop drug resistance over time. Agents for increasing the cytotoxic effects of chemotherapy or reducing the cancer cells' chemo-resistance to the drugs are required to improve treatment outcome. Nuclear factor kappa B (NF-kB), a pro-inflammatory transcription factor, reportedly plays a significant role in the resistance of pancreatic cancer cells to apoptosis-based chemotherapy. This study investigated the effect of aqueous Moringa Oleifera leaf extract on cultured human pancreatic cancer cells - Panc-1, p34, and COLO 357, and whether it can potentiates the effect of cisplatin chemotherapy on these cells. The effect of Moringa Oleifera leaf extract alone and in combination with cisplatin on the survival of cultured human pancreatic cancer cells was evaluated by XTT-based colorimetric assay. The distribution of Panc-1 cells in the cell cycle following treatment with Moringa leaf extract was evaluated by flow cytometry, and evaluations of protein levels were via immunoblotting. Data of cell survival following combined treatments were analyzed with Calcusyn software. Moringa Oleifera leaf extract inhibited the growth of all pancreatic cell lines tested. This effect was significant in all cells following exposure to ≥0.75 mg/ml of the extract. Exposure of Panc-1 cells to Moringa leaf extract induced an elevation in the sub-G1 cell population of the cell-cycle, and reduced the expression of p65, p-IkBα and IkBα proteins in crude cell extracts. Lastly, Moringa Oleifera leaf extract synergistically enhanced the cytotoxic effect of cisplatin on Panc-1 cells. Moringa Oleifera leaf extract inhibits the growth of pancreatic cancer cells, the cells NF-κB signaling pathway, and increases the efficacy of chemotherapy in human pancreatic cancer cells.

  10. NARROW LEAF 7 controls leaf shape mediated by auxin in rice

    NARCIS (Netherlands)

    Fujino, Kenji; Matsuda, Yasuyuki; Ozawa, Kenjirou; Nishimura, Takeshi; Koshiba, Tomokazu; Fraaije, Marco W.; Sekiguchi, Hiroshi

    Elucidation of the genetic basis of the control of leaf shape could be of use in the manipulation of crop traits, leading to more stable and increased crop production. To improve our understanding of the process controlling leaf shape, we identified a mutant gene in rice that causes a significant

  11. Identification of Functional Single-Nucleotide Polymorphisms Affecting Leaf Hair Number in Brassica rapa.

    Science.gov (United States)

    Zhang, Wenting; Mirlohi, Shirin; Li, Xiaorong; He, Yuke

    2018-06-01

    Leaf traits affect plant agronomic performance; for example, leaf hair number provides a morphological indicator of drought and insect resistance. Brassica rapa crops have diverse phenotypes, and many B. rapa single-nucleotide polymorphisms (SNPs) have been identified and used as molecular markers for plant breeding. However, which SNPs are functional for leaf hair traits and, therefore, effective for breeding purposes remains unknown. Here, we identify a set of SNPs in the B. rapa ssp. pekinenesis candidate gene BrpHAIRY LEAVES1 ( BrpHL1 ) and a number of SNPs of BrpHL1 in a natural population of 210 B. rapa accessions that have hairy, margin-only hairy, and hairless leaves. BrpHL1 genes and their orthologs and paralogs have many SNPs. By intensive mutagenesis and genetic transformation, we selected the functional SNPs for leaf hairs by the exclusion of nonfunctional SNPs and the orthologous and paralogous genes. The residue tryptophan-92 of BrpHL1a was essential for direct interaction with GLABROUS3 and, thus, necessary for the formation of leaf hairs. The accessions with the functional SNP leading to substitution of the tryptophan-92 residue had hairless leaves. The orthologous BrcHL1b from B. rapa ssp. chinensis regulates hair formation on leaf margins rather than leaf surfaces. The selected SNP for the hairy phenotype could be adopted as a molecular marker for insect resistance in Brassica spp. crops. Moreover, the procedures optimized here can be used to explain the molecular mechanisms of natural variation and to facilitate the molecular breeding of many crops. © 2018 American Society of Plant Biologists. All rights reserved.

  12. Corporate-NGO partnerships as a form of civil regulation: lessons from the energy biodiversity initiative

    OpenAIRE

    Stephen Tully

    2004-01-01

    This paper will assess the prospects of so-called 'civil' regulation, or the ability of non-governmental organisations (NGOs), to regulate commercial behaviour within the institutional setting of a partnership. The selected case study involves an initiative between five conservation NGOs and five energy firms seeking to integrate biodiversity considerations into upstream oil and gas development projects within, or adjacent to, environmentally-sensitive or protected areas. Part one describes t...

  13. Scaling up stomatal conductance from leaf to canopy using a dual-leaf model for estimating crop evapotranspiration.

    Directory of Open Access Journals (Sweden)

    Risheng Ding

    Full Text Available The dual-source Shuttleworth-Wallace model has been widely used to estimate and partition crop evapotranspiration (λET. Canopy stomatal conductance (Gsc, an essential parameter of the model, is often calculated by scaling up leaf stomatal conductance, considering the canopy as one single leaf in a so-called "big-leaf" model. However, Gsc can be overestimated or underestimated depending on leaf area index level in the big-leaf model, due to a non-linear stomatal response to light. A dual-leaf model, scaling up Gsc from leaf to canopy, was developed in this study. The non-linear stomata-light relationship was incorporated by dividing the canopy into sunlit and shaded fractions and calculating each fraction separately according to absorbed irradiances. The model includes: (1 the absorbed irradiance, determined by separately integrating the sunlit and shaded leaves with consideration of both beam and diffuse radiation; (2 leaf area for the sunlit and shaded fractions; and (3 a leaf conductance model that accounts for the response of stomata to PAR, vapor pressure deficit and available soil water. In contrast to the significant errors of Gsc in the big-leaf model, the predicted Gsc using the dual-leaf model had a high degree of data-model agreement; the slope of the linear regression between daytime predictions and measurements was 1.01 (R2 = 0.98, with RMSE of 0.6120 mm s-1 for four clear-sky days in different growth stages. The estimates of half-hourly λET using the dual-source dual-leaf model (DSDL agreed well with measurements and the error was within 5% during two growing seasons of maize with differing hydrometeorological and management strategies. Moreover, the estimates of soil evaporation using the DSDL model closely matched actual measurements. Our results indicate that the DSDL model can produce more accurate estimation of Gsc and λET, compared to the big-leaf model, and thus is an effective alternative approach for estimating and

  14. Seasonality of Leaf Carbon Isotopic Composition and Leaf Water Isotopic Enrichment in a Mixed Evergreen Forest in Southern California

    Science.gov (United States)

    Santiago, L. S.; Sickman, J. O.; Goulden, M.; DeVan, C.; Pasquini, S. C.; Pivovaroff, A. L.

    2011-12-01

    Leaf carbon isotopic composition and leaf water isotopic enrichment reflect physiological processes and are important for linking local and regional scale processes to global patterns. We investigated how seasonality affects the isotopic composition of bulk leaf carbon, leaf sugar carbon, and leaf water hydrogen under a Mediterranean climate. Leaf and stem samples were collected monthly from four tree species (Calocedrus decurrens, Pinus lambertiana, Pinus ponderosa, and Quercus chrysolepis) at the James San Jacinto Mountain Reserve in southern California. Mean monthly bulk leaf carbon isotopic composition varied from -34.5 % in P. ponderosa to -24.7 % in P. lambertiana and became more depleted in 13C from the spring to the summer. Mean monthly leaf sugar varied from -29.3 % in P. ponderosa to -21.8 % in P. lambertiana and was enriched in 13C during the winter, spring and autumn, but depleted during the mid-summer. Leaf water hydrogen isotopic composition was 28.4 to 68.8 % more enriched in deuterium than source water and this enrichment was greater as seasonal drought progressed. These data indicate that leaf carbon and leaf water hydrogen isotopic composition provide sensitive measures that connect plant physiological processes to short-term climatic variability.

  15. Leaf sequencing algorithms for segmented multileaf collimation

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Li, Jonathan; Palta, Jatinder; Ranka, Sanjay

    2003-01-01

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves

  16. Leaf sequencing algorithms for segmented multileaf collimation

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States)

    2003-02-07

    The delivery of intensity-modulated radiation therapy (IMRT) with a multileaf collimator (MLC) requires the conversion of a radiation fluence map into a leaf sequence file that controls the movement of the MLC during radiation delivery. It is imperative that the fluence map delivered using the leaf sequence file is as close as possible to the fluence map generated by the dose optimization algorithm, while satisfying hardware constraints of the delivery system. Optimization of the leaf sequencing algorithm has been the subject of several recent investigations. In this work, we present a systematic study of the optimization of leaf sequencing algorithms for segmental multileaf collimator beam delivery and provide rigorous mathematical proofs of optimized leaf sequence settings in terms of monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation constraint and leaf interdigitation constraint. Our analytical analysis shows that leaf sequencing based on unidirectional movement of the MLC leaves is as MU efficient as bidirectional movement of the MLC leaves.

  17. Study on creation of an indocalamus leaf flavor

    Directory of Open Access Journals (Sweden)

    Guangyong ZHU

    2015-01-01

    Full Text Available AbstractFlavors represent a small but significant segment of food industry. Sensory characteristics play an important role in the process of consumer acceptance and preference. Indocalamus leaf takes on a pleasant odor and indocalamus leaf flavor can be used in many products. However, indocalamus leaf flavor formula has not been reported. Therefore, developing an indocalamus leaf flavor is of significant interests. Note is a distinct flavor or odor characteristic. This paper concentrates on preparation and creation of indocalamus leaf flavor according to the notes of indocalamus leaf. The notes were obtained by smelling indocalamus leaf, and the results showed that the notes of indocalamus leaf flavor can be classified as: green-leafy note, sweet note, beany note, aldehydic note, waxy note, woody note, roast note, creamy note, and nutty note. According to the notes of indocalamus leaf odor, a typical indocalamus leaf flavor formula was obtained. The indocalamus leaf flavor blended is pleasant, harmonious, and has characteristics of indocalamus leaf odor.

  18. A local maximum in gibberellin levels regulates maize leaf growth by spatial control of cell division.

    Science.gov (United States)

    Nelissen, Hilde; Rymen, Bart; Jikumaru, Yusuke; Demuynck, Kirin; Van Lijsebettens, Mieke; Kamiya, Yuji; Inzé, Dirk; Beemster, Gerrit T S

    2012-07-10

    Plant growth rate is largely determined by the transition between the successive phases of cell division and expansion. A key role for hormone signaling in determining this transition was inferred from genetic approaches and transcriptome analysis in the Arabidopsis root tip. We used the developmental gradient at the maize leaf base as a model to study this transition, because it allows a direct comparison between endogenous hormone concentrations and the transitions between dividing, expanding, and mature tissue. Concentrations of auxin and cytokinins are highest in dividing tissues, whereas bioactive gibberellins (GAs) show a peak at the transition zone between the division and expansion zone. Combined metabolic and transcriptomic profiling revealed that this GA maximum is established by GA biosynthesis in the division zone (DZ) and active GA catabolism at the onset of the expansion zone. Mutants defective in GA synthesis and signaling, and transgenic plants overproducing GAs, demonstrate that altering GA levels specifically affects the size of the DZ, resulting in proportional changes in organ growth rates. This work thereby provides a novel molecular mechanism for the regulation of the transition from cell division to expansion that controls organ growth and size. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts

    International Nuclear Information System (INIS)

    Van Kesteren, Z; Janssen, T M; Damen, E; Van Vliet-Vroegindeweij, C

    2012-01-01

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V 95% was reduced by 0.02 using the thin MLC. The V 65% of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V 95% was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains to be proven

  20. The dosimetric impact of leaf interdigitation and leaf width on VMAT treatment planning in Pinnacle: comparing Pareto fronts.

    Science.gov (United States)

    van Kesteren, Z; Janssen, T M; Damen, E; van Vliet-Vroegindeweij, C

    2012-05-21

    To evaluate in an objective way the effect of leaf interdigitation and leaf width on volumetric modulated arc therapy plans in Pinnacle. Three multileaf collimators (MLCs) were modeled: two 10 mm leaf width MLCs, with and without interdigitating leafs, and a 5 mm leaf width MLC with interdigitating leafs. Three rectum patients and three prostate patients were used for the planning study. In order to compare treatment techniques in an objective way, a Pareto front comparison was carried out. 200 plans were generated in an automated way, per patient per MLC model, resulting in a total of 3600 plans. From these plans, Pareto-optimal plans were selected which were evaluated for various dosimetric variables. The capability of leaf interdigitation showed little dosimetric impact on the treatment plans, when comparing the 10 mm leaf width MLC with and without leaf interdigitation. When comparing the 10 mm leaf width MLC with the 5 mm leaf width MLC, both with interdigitating leafs, improvement in plan quality was observed. For both patient groups, the integral dose was reduced by 0.6 J for the thin MLC. For the prostate patients, the mean dose to the anal sphincter was reduced by 1.8 Gy and the conformity of the V(95%) was reduced by 0.02 using the thin MLC. The V(65%) of the rectum was reduced by 0.1% and the dose homogeneity with 1.5%. For rectum patients, the mean dose to the bowel was reduced by 1.4 Gy and the mean dose to the bladder with 0.8 Gy for the thin MLC. The conformity of the V(95%) was equivalent for the 10 and 5 mm leaf width MLCs for the rectum patients. We have objectively compared three types of MLCs in a planning study for prostate and rectum patients by analyzing Pareto-optimal plans which were generated in an automated way. Interdigitation of MLC leafs does not generate better plans using the SmartArc algorithm in Pinnacle. Changing the MLC leaf width from 10 to 5 mm generates better treatment plans although the clinical relevance remains

  1. DIFFERENCES IN LEAF GAS EXCHANGE AND LEAF CHARACTERISTICS BETWEEN TWO ALMOND CULTIVARS

    Directory of Open Access Journals (Sweden)

    George D. Nanos

    2013-12-01

    Full Text Available Leaf chlorophyll content, specific leaf weight (SLW, photosynthetic and transpiration rates, stomatal functioning, water use efficiency and quantum yield were assessed during the kernel filling period for two consecutive years in order to understand tissue-centered physiological profile differences between two commercial almond cultivars, ‘Ferragnès’ and ‘Texas’. Similar SLWs were observed on the studied cultivars; however, chlorophyll content, net photosynthetic and transpiration rates and stomatal functioning demonstrated statistically significant differences. In both cultivars, an overall decline in the examined parameters towards fruit maturation (i.e. end of the summer was recorded. ‘Ferragnès’ leaves were found to be more efficient in leaf photosynthesis related performance during kernel filling, when irrigated sufficiently, in comparison to ‘Texas’ leaves. Low average values of leaf conductance during summer in ‘Texas’ leaves revealed its potential for adaptation in cool climates and increased carbon assimilation therein for high kernel yield.

  2. Modulation of δ-Aminolevulinic Acid Dehydratase Activity by the Sorbitol-Induced Osmotic Stress in Maize Leaf Segments.

    Science.gov (United States)

    Jain, M; Tiwary, S; Gadre, R

    2018-01-01

    Osmotic stress induced with 1 M sorbitol inhibited δ-aminolevulinic acid dehydratase (ALAD) and aminolevulinic acid (ALA) synthesizing activities in etiolated maize leaf segments during greening; the ALAD activity was inhibited to a greater extent than the ALA synthesis. When the leaves were exposed to light, the ALAD activity increased for the first 8 h, followed by a decrease observed at 16 and 24 h in both sorbitol-treated and untreated leaf tissues. The maximum inhibition of the enzyme activity was observed in the leaf segments incubated with sorbitol for 4 to 8 h. Glutamate increased the ALAD activity in the in vitro enzymatic preparations obtained from the sorbitol-treated leaf segments; sorbitol inhibited the ALAD activity in the preparations from both sorbitol-treated and untreated leaves. It was suggested that sorbitol-induced osmotic stress inhibits the enzyme activity by affecting the ALAD induction during greening and regulating the ALAD steady-state level of ALAD in leaf cells. The protective effect of glutamate on ALAD in the preparations from the sorbitol-treated leaves might be due to its stimulatory effect on the enzyme.

  3. Pruning for crop regulation in high density guava (Psidium guajava L.) plantation

    Energy Technology Data Exchange (ETDEWEB)

    Thakre, M.; Lal, S.; Uniyal, S.; Goswami, A.K. Prakash. P.

    2016-11-01

    High density management and crop regulation are two important aspects in guava (Psidium guajava L.) production. Therefore, to find out the economic way of managing high density planting and crop regulation, the present work was carried out on 6-year-old guava trees of cv. Pant Prabhat under double-hedge row system of planting during 2009-10 and 2010-11. Seven different forms of pruning [FBT: flower bud thinning by hand, FBTT: flower bud thinning by hand followed by removal of terminal one leaf pair, RLFO: removal of leaves and flower buds by hand, retaining one leaf pair at the top, RLF: removal of all leaves and flowers by hand, OLPS: one leaf pair shoot pruning, FSP: full shoot pruning, OLPF: one leaf pair pruning of fruited shoots only] were studied along with control (C).Minimum annual increase in tree volume (6.764 m3) was recorded with the treatment OLPF, which was 2.31 times less than the control (15.682 m3). Highest yield during winter season (55.30 kg/tree) and total yield (59.87 kg/tree) was obtained from treatment OLPF. One leaf pair pruning of fruited shoots only (OLPF) was also found profitable among other treatments by recording cost:benefit ratio of 1:2.96. This treatment also recorded the highest return distributed in rainy as well as in winter season. On the basis of findings it can be concluded that one leaf pair pruning of fruited shoots only is suitable for profitable high density management as well as crop regulation of guava in farmer friendly manner. (Author)

  4. Estimating leaf functional traits by inversion of PROSPECT: Assessing leaf dry matter content and specific leaf area in mixed mountainous forest

    Science.gov (United States)

    Ali, Abebe Mohammed; Darvishzadeh, Roshanak; Skidmore, Andrew K.; Duren, Iris van; Heiden, Uta; Heurich, Marco

    2016-03-01

    Assessments of ecosystem functioning rely heavily on quantification of vegetation properties. The search is on for methods that produce reliable and accurate baseline information on plant functional traits. In this study, the inversion of the PROSPECT radiative transfer model was used to estimate two functional leaf traits: leaf dry matter content (LDMC) and specific leaf area (SLA). Inversion of PROSPECT usually aims at quantifying its direct input parameters. This is the first time the technique has been used to indirectly model LDMC and SLA. Biophysical parameters of 137 leaf samples were measured in July 2013 in the Bavarian Forest National Park, Germany. Spectra of the leaf samples were measured using an ASD FieldSpec3 equipped with an integrating sphere. PROSPECT was inverted using a look-up table (LUT) approach. The LUTs were generated with and without using prior information. The effect of incorporating prior information on the retrieval accuracy was studied before and after stratifying the samples into broadleaf and conifer categories. The estimated values were evaluated using R2 and normalized root mean square error (nRMSE). Among the retrieved variables the lowest nRMSE (0.0899) was observed for LDMC. For both traits higher R2 values (0.83 for LDMC and 0.89 for SLA) were discovered in the pooled samples. The use of prior information improved accuracy of the retrieved traits. The strong correlation between the estimated traits and the NIR/SWIR region of the electromagnetic spectrum suggests that these leaf traits could be assessed at canopy level by using remotely sensed data.

  5. Spectral reflectance relationships to leaf water stress

    Science.gov (United States)

    Ripple, William J.

    1986-01-01

    Spectral reflectance data were collected from detached snapbean leaves in the laboratory with a multiband radiometer. Four experiments were designed to study the spectral response resulting from changes in leaf cover, relative water content of leaves, and leaf water potential. Spectral regions included in the analysis were red (630-690 nm), NIR (760-900 nm), and mid-IR (2.08-2.35 microns). The red and mid-IR bands showed sensitivity to changes in both leaf cover and relative water content of leaves. The NIR was only highly sensitive to changes in leaf cover. Results provided evidence that mid-IR reflectance was governed primarily by leaf moisture content, although soil reflectance was an important factor when leaf cover was less than 100 percent. High correlations between leaf water potentials and reflectance were attributed to covariances with relative water content of leaves and leaf cover.

  6. Comparison of leaf-on and leaf-off ALS data for mapping riparian tree species

    Science.gov (United States)

    Laslier, Marianne; Ba, Antoine; Hubert-Moy, Laurence; Dufour, Simon

    2017-10-01

    Forest species composition is a fundamental indicator of forest study and management. However, describing forest species composition at large scales and of highly diverse populations remains an issue for which remote sensing can provide significant contribution, in particular, Airborne Laser Scanning (ALS) data. Riparian corridors are good examples of highly valuable ecosystems, with high species richness and large surface areas that can be time consuming and expensive to monitor with in situ measurements. Remote sensing could be useful to study them, but few studies have focused on monitoring riparian tree species using ALS data. This study aimed to determine which metrics derived from ALS data are best suited to identify and map riparian tree species. We acquired very high density leaf-on and leaf-off ALS data along the Sélune River (France). In addition, we inventoried eight main riparian deciduous tree species along the study site. After manual segmentation of the inventoried trees, we extracted 68 morphological and structural metrics from both leaf-on and leaf-off ALS point clouds. Some of these metrics were then selected using Sequential Forward Selection (SFS) algorithm. Support Vector Machine (SVM) classification results showed good accuracy with 7 metrics (0.77). Both leaf-on and leafoff metrics were kept as important metrics for distinguishing tree species. Results demonstrate the ability of 3D information derived from high density ALS data to identify riparian tree species using external and internal structural metrics. They also highlight the complementarity of leaf-on and leaf-off Lidar data for distinguishing riparian tree species.

  7. Fine Mapping and Candidate Gene Analysis of the Leaf-Color Gene ygl-1 in Maize.

    Directory of Open Access Journals (Sweden)

    Haiying Guan

    Full Text Available A novel yellow-green leaf mutant yellow-green leaf-1 (ygl-1 was isolated in self-pollinated progenies from the cross of maize inbred lines Ye478 and Yuanwu02. The mutant spontaneously showed yellow-green character throughout the lifespan. Meanwhile, the mutant reduced contents of chlorophyll and Car, arrested chloroplast development and lowered the capacity of photosynthesis compared with the wild-type Lx7226. Genetic analysis revealed that the mutant phenotype was controlled by a recessive nuclear gene. The ygl-1 locus was initially mapped to an interval of about 0.86 Mb in bin 1.01 on the short arm of chromosome 1 using 231 yellow-green leaf individuals of an F2 segregating population from ygl-1/Lx7226. Utilizing four new polymorphic SSR markers, the ygl-1 locus was narrowed down to a region of about 48 kb using 2930 and 2247 individuals of F2 and F3 mapping populations, respectively. Among the three predicted genes annotated within this 48 kb region, GRMZM2G007441, which was predicted to encode a cpSRP43 protein, had a 1-bp nucleotide deletion in the coding region of ygl-1 resulting in a frame shift mutation. Semi-quantitative RT-PCR analysis revealed that YGL-1 was constitutively expressed in all tested tissues and its expression level was not significantly affected in the ygl-1 mutant from early to mature stages, while light intensity regulated its expression both in the ygl-1 mutant and wild type seedlings. Furthermore, the mRNA levels of some genes involved in chloroplast development were affected in the six-week old ygl-1 plants. These findings suggested that YGL-1 plays an important role in chloroplast development of maize.

  8. Specific leaf area estimation from leaf and canopy reflectance through optimization and validation of vegetation indices

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2017-01-01

    Specific leaf area (SLA), which is defined as the leaf area per unit of dry leaf mass is an important component when assessing functional diversity and plays a key role in ecosystem modeling, linking plant carbon and water cycles as well as quantifying plant physiological processes. However, studies

  9. Leaf hydraulic conductance declines in coordination with photosynthesis, transpiration and leaf water status as soybean leaves age regardless of soil moisture

    Science.gov (United States)

    Locke, Anna M.; Ort, Donald R.

    2014-01-01

    Photosynthesis requires sufficient water transport through leaves for stomata to remain open as water transpires from the leaf, allowing CO2 to diffuse into the leaf. The leaf water needs of soybean change over time because of large microenvironment changes over their lifespan, as leaves mature in full sun at the top of the canopy and then become progressively shaded by younger leaves developing above. Leaf hydraulic conductance (K leaf), a measure of the leaf’s water transport capacity, can often be linked to changes in microenvironment and transpiration demand. In this study, we tested the hypothesis that K leaf would decline in coordination with transpiration demand as soybean leaves matured and aged. Photosynthesis (A), stomatal conductance (g s) and leaf water potential (Ψleaf) were also measured at various leaf ages with both field- and chamber-grown soybeans to assess transpiration demand. K leaf was found to decrease as soybean leaves aged from maturity to shading to senescence, and this decrease was strongly correlated with midday A. Decreases in K leaf were further correlated with decreases in g s, although the relationship was not as strong as that with A. Separate experiments investigating the response of K leaf to drought demonstrated no acclimation of K leaf to drought conditions to protect against cavitation or loss of g s during drought and confirmed the effect of leaf age in K leaf observed in the field. These results suggest that the decline of leaf hydraulic conductance as leaves age keeps hydraulic supply in balance with demand without K leaf becoming limiting to transpiration water flux. PMID:25281701

  10. High Diversity Revealed in Leaf-Associated Protists (Rhizaria: Cercozoa) of Brassicaceae.

    Science.gov (United States)

    Ploch, Sebastian; Rose, Laura E; Bass, David; Bonkowski, Michael

    2016-09-01

    The largest biological surface on earth is formed by plant leaves. These leaf surfaces are colonized by a specialized suite of leaf-inhabiting microorganisms, recently termed "phyllosphere microbiome". Microbial prey, however, attract microbial predators. Protists in particular have been shown to structure bacterial communities on plant surfaces, but virtually nothing is known about the community composition of protists on leaves. Using newly designed specific primers targeting the 18S rDNA gene of Cercozoa, we investigated the species richness of this common protist group on leaves of four Brassicaceae species from two different locations in a cloning-based approach. The generated sequences revealed a broad diversity of leaf-associated Cercozoa, mostly bacterial feeders, but also including known plant pathogens and a taxon of potential endophytes that were recently described as algal predators in freshwater systems. This initial study shows that protists must be regarded as an integral part of the microbial diversity in the phyllosphere of plants. © 2016 The Authors. The Journal of Eukaryotic Microbiology published by Wiley Periodicals, Inc. on behalf of International Society of Protistologists.

  11. NAC Transcription Factors of Barley (Hordeum vulgare L.) and their Involvement in Leaf Senescence

    DEFF Research Database (Denmark)

    Wagner, Michael

    parts of the senescence process. The specific aims of this study were therefore (1) to establish and characterise the NAC transcription factors of the model cereal crop barley (Hordeum vulgare L.) (2) to identify and study putative barley NAC transcription factors involved in the regulation of leaf...

  12. Community-weighted mean of leaf traits and divergence of wood traits predict aboveground biomass in secondary subtropical forests.

    Science.gov (United States)

    Ali, Arshad; Yan, En-Rong; Chang, Scott X; Cheng, Jun-Yang; Liu, Xiang-Yu

    2017-01-01

    Subtropical forests are globally important in providing ecological goods and services, but it is not clear whether functional diversity and composition can predict aboveground biomass in such forests. We hypothesized that high aboveground biomass is associated with high functional divergence (FDvar, i.e., niche complementarity) and community-weighted mean (CWM, i.e., mass ratio; communities dominated by a single plant strategy) of trait values. Structural equation modeling was employed to determine the direct and indirect effects of stand age and the residual effects of CWM and FDvar on aboveground biomass across 31 plots in secondary forests in subtropical China. The CWM model accounted for 78, 20, 6 and 2% of the variation in aboveground biomass, nitrogen concentration in young leaf, plant height and specific leaf area of young leaf, respectively. The FDvar model explained 74, 13, 7 and 0% of the variation in aboveground biomass, plant height, twig wood density and nitrogen concentration in young leaf, respectively. The variation in aboveground biomass, CWM of leaf nitrogen concentration and specific leaf area, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf explained by the joint model was 86, 20, 13, 7, 2 and 0%, respectively. Stand age had a strong positive direct effect but low indirect positive effects on aboveground biomass. Aboveground biomass was negatively related to CWM of nitrogen concentration in young leaf, but positively related to CWM of specific leaf area of young leaf and plant height, and FDvar of plant height, twig wood density and nitrogen concentration in young leaf. Leaf and wood economics spectra are decoupled in regulating the functionality of forests, communities with diverse species but high nitrogen conservative and light acquisitive strategies result in high aboveground biomass, and hence, supporting both the mass ratio and niche complementarity hypotheses in secondary subtropical forests

  13. Seagrass leaf element content

    NARCIS (Netherlands)

    Vonk, J.A.; Smulders, Fee O.H.; Christianen, Marjolijn J.A.; Govers, Laura L.

    2017-01-01

    Knowledge on the role of seagrass leaf elements and in particular micronutrients and their ranges is limited. We present a global database, consisting of 1126 unique leaf values for ten elements, obtained from literature and unpublished data, spanning 25 different seagrass species from 28 countries.

  14. Estimating leaf area and leaf biomass of open-grown deciduous urban trees

    Science.gov (United States)

    David J. Nowak

    1996-01-01

    Logarithmic regression equations were developed to predict leaf area and leaf biomass for open-grown deciduous urban trees based on stem diameter and crown parameters. Equations based on crown parameters produced more reliable estimates. The equations can be used to help quantify forest structure and functions, particularly in urbanizing and urban/suburban areas.

  15. Prophylactic effect of paw-paw leaf and bitter leaf extracts on the ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-08-18

    Aug 18, 2008 ... (ANOVA) and significant means separated using FLSD = LSD procedure as outlined in Obi (2002). RESULTS AND DISCUSSION. In pre-soaking, paw-paw leaf (PL) extract had no significant effect (P > 0.05) on the disease incidence at. 50% anthesis. Bitter leaf (BL) extract had a high signifi- cant effect (P ...

  16. Model of cap-dependent translation initiation in sea urchin: a step towards the eukaryotic translation regulation network.

    Science.gov (United States)

    Bellé, Robert; Prigent, Sylvain; Siegel, Anne; Cormier, Patrick

    2010-03-01

    The large and rapid increase in the rate of protein synthesis following fertilization of the sea urchin egg has long been a paradigm of translational control, an important component of the regulation of gene expression in cells. This translational up-regulation is linked to physiological changes that occur upon fertilization and is necessary for entry into first cell division cycle. Accumulated knowledge on cap-dependent initiation of translation makes it suited and timely to start integrating the data into a system view of biological functions. Using a programming environment for system biology coupled with model validation (named Biocham), we have built an integrative model for cap-dependent initiation of translation. The model is described by abstract rules. It contains 51 reactions involved in 74 molecular complexes. The model proved to be coherent with existing knowledge by using queries based on computational tree logic (CTL) as well as Boolean simulations. The model could simulate the change in translation occurring at fertilization in the sea urchin model. It could also be coupled with an existing model designed for cell-cycle control. Therefore, the cap-dependent translation initiation model can be considered a first step towards the eukaryotic translation regulation network.

  17. NaJAZh Regulates a Subset of Defense Responses against Herbivores and Spontaneous Leaf Necrosis in Nicotiana attenuata Plants[C][W][OA

    Science.gov (United States)

    Oh, Youngjoo; Baldwin, Ian T.; Gális, Ivan

    2012-01-01

    The JASMONATE ZIM DOMAIN (JAZ) proteins function as negative regulators of jasmonic acid signaling in plants. We cloned 12 JAZ genes from native tobacco (Nicotiana attenuata), including nine novel JAZs in tobacco, and examined their expression in plants that had leaves elicited by wounding or simulated herbivory. Most JAZ genes showed strong expression in the elicited leaves, but NaJAZg was mainly expressed in roots. Another novel herbivory-elicited gene, NaJAZh, was analyzed in detail. RNA interference suppression of this gene in inverted-repeat (ir)JAZh plants deregulated a specific branch of jasmonic acid-dependent direct and indirect defenses: irJAZh plants showed greater trypsin protease inhibitor activity, 17-hydroxygeranyllinalool diterpene glycosides accumulation, and emission of volatile organic compounds from leaves. Silencing of NaJAZh also revealed a novel cross talk in JAZ-regulated secondary metabolism, as irJAZh plants had significantly reduced nicotine levels. In addition, irJAZh spontaneously developed leaf necrosis during the transition to flowering. Because the lesions closely correlated with the elevated expression of programmed cell death genes and the accumulations of salicylic acid and hydrogen peroxide in the leaves, we propose a novel role of the NaJAZh protein as a repressor of necrosis and/or programmed cell death during plant development. PMID:22496510

  18. Joint Leaf chlorophyll and leaf area index retrieval from Landsat data using a regularized model inversion system

    Science.gov (United States)

    Leaf area index (LAI) and leaf chlorophyll (Chl) content represent key biophysical and biochemical controls on water, energy and carbon exchange processes in the terrestrial biosphere. In combination, LAI and leaf Chl content provide critical information on vegetation density, vitality and photosynt...

  19. Using Leaf Samples to Establish a Library of Tropical Leaf Fingerprints

    Science.gov (United States)

    Ngo, P.; Nguyen, R.; Anderson, C.; Weiss, P.

    2010-12-01

    Variation in leaf chemistry is directly expressed in spectroscopic patterns of tropical canopies. The goal of the Spectranomics project is to explore this variation in the hopes of developing a method to measure tropical forest diversity remotely from airborne or space-bound spectroscopy in the future. We analyzed tomato leaves for various chemical compositions to better understand the Spectranomics approach to quantifying chemical data of tropical species. We also compared our data to standard data in each analysis. Our results allow us to give the tomato leaves a chemical signature in which we are able to use to compare to other leaf samples. Using this process, we are able to create a library of leaf signatures and document the variety of tree species in tropical forests around the world.

  20. Leaf density explains variation in leaf mass per area in rice between cultivars and nitrogen treatments.

    Science.gov (United States)

    Xiong, Dongliang; Wang, Dan; Liu, Xi; Peng, Shaobing; Huang, Jianliang; Li, Yong

    2016-05-01

    Leaf mass per area (LMA) is an important leaf trait; however, correlations between LMA and leaf anatomical features and photosynthesis have not been fully investigated, especially in cereal crops. The objectives of this study were (a) to investigate the correlations between LMA and leaf anatomical traits; and (b) to clarify the response of LMA to nitrogen supply and its effect on photosynthetic nitrogen use efficiency (PNUE). In the present study, 11 rice varieties were pot grown under sufficient nitrogen (SN) conditions, and four selected rice cultivars were grown under low nitrogen (LN) conditions. Leaf anatomical traits, gas exchange and leaf N content were measured. There was large variation in LMA across selected rice varieties. Regression analysis showed that the variation in LMA was more closely related to leaf density (LD) than to leaf thickness (LT). LMA was positively related to the percentage of mesophyll tissue area (%mesophyll), negatively related to the percentage of epidermis tissue area (%epidermis) and unrelated to the percentage of vascular tissue area (%vascular). The response of LMA to N supplementation was dependent on the variety and was also mainly determined by the response of LD to N. Compared with SN, photosynthesis was significantly decreased under LN, while PNUE was increased. The increase in PNUE was more critical in rice cultivars with a higher LMA under SN supply. Leaf density is the major cause of the variation in LMA across rice varieties and N treatments, and an increase in LMA under high N conditions would aggravate the decrease in PNUE. © The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Infrared remote sensing for canopy temperature in paddy field and relationship between leaf temperature and leaf color

    International Nuclear Information System (INIS)

    Wakiyama, Y.

    2002-01-01

    Infrared remote sensing is used for crop monitoring, for example evaluation of water stress, detection of infected crops and estimation of transpiration and photosynthetic rates. This study was conducted to show another application of remote sensing information. The relationship between rice leaf temperature and chlorophyll content in the leaf blade was investigated by using thermography during the ripening period. The canopy of a rice community fertilized by top dressing was cooler than that not fertilized in a 1999 field experiment. In an experiment using thermocouples to measure leaf temperature, a rice leaf with high chlorophyll content was also cooler than that with a low chlorophyll content. Transpiration resistance and transpiration rate were measured with a porometer. Transpiration rate was higher with increasing chlorophyll content in the leaf blade. Stomatal aperture is related to chlorophyll content in the leaf blade. High degree of stomatal aperture is caused by high chlorophyll content in the leaf blade. As degree of stomatal aperture increases, transpiration rate increases. Therefore the rice leaf got cooler with increasing chlorophyll content in leaf blade. Paddy rice communities with different chlorophyll contents were provided with fertilization of different nitrogen levels on basal and top dressing in a 2000 field experiment. Canopy temperature of the rice community with high chlorophyll content was 0.85°C cooler than that of the rice community with low chlorophyll content. Results of this study revealed that infrared remote sensing could detect difference in chlorophyll contents in rice communities and could be used in fertilizer management in paddy fields. (author)

  2. An analytical approach for optimizing the leaf design of a multi-leaf collimator in a linear accelerator

    International Nuclear Information System (INIS)

    Topolnjak, R; Heide, U A van der

    2008-01-01

    In this study, we present an analytical approach for optimizing the leaf design of a multi-leaf collimator (MLC) in a linear accelerator. Because leaf designs vary between vendors, our goal is to characterize and quantify the effects of different compromises which have to be made between performance parameters. Subsequently, an optimal leaf design for an earlier proposed six-bank MLC which combines a high-resolution field-shaping ability with a large field size is determined. To this end a model of the linac is created that includes the following parameters: the source size, the maximum field size, the distance between source and isocenter, and the leaf's design parameters. First, the optimal radius of the leaf tip was found. This optimum was defined by the requirement that the fluence intensity should fall from 80% of the maximum value to 20% in a minimal distance, defining the width of the fluence penumbra. A second requirement was that this penumbra width should be constant when a leaf moves from one side of the field to the other. The geometric, transmission and total penumbra width (80-20%) were calculated depending on the design parameters. The analytical model is in agreement with Elekta, Varian and Siemens collimator designs. For leaves thinner than 4 cm, the transmission penumbra becomes dominant, and for leaves close to the source the geometric penumbra plays a role. Finally, by choosing the leaf thickness of 3.5 cm, 4 cm and 5 cm from the lowest to the highest bank, respectively, an optimal leaf design for a six-bank MLC is achieved

  3. Effect of pre-bloom leaf removal on grape aroma composition and wine sensory profile of Semillon cultivar.

    Science.gov (United States)

    Alessandrini, Massimiliano; Battista, Fabrizio; Panighel, Annarita; Flamini, Riccardo; Tomasi, Diego

    2018-03-01

    Early leaf removal at pre-bloom is an innovative viticultural practice for regulating yield components and improving grape quality. The effects of this technique on vine performance, grape composition and wine sensory profile of Semillon variety were assessed. Pre-bloom leaf removal enhanced canopy porosity, total soluble solids in musts and reduced cluster compactness. This practice had a strong effect on glycoside aroma precursors, in particular by increasing glycoside terpenols and norisoprenoids. Metabolites of linalool were the most responsive to leaf removal. Wine produced from defoliated vines was preferred in tasting trials for its more intense fruity notes and mouthfeel attributes. Pre-bloom leaf removal is a powerful technique for modifying canopy microclimate, vine yield, grape composition and wine quality. The increase of glycoside aroma compounds in treated grapes has potential positive effect in improving the sensory profile of the resulting wines. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  4. Apparent Overinvestment in Leaf Venation Relaxes Leaf Morphological Constraints on Photosynthesis in Arid Habitats1[OPEN

    Science.gov (United States)

    de Boer, Hugo J.; Drake, Paul L.; Wendt, Erin; Price, Charles A.; Schulze, Ernst-Detlef; Turner, Neil C.; Nicolle, Dean

    2016-01-01

    Leaf veins supply the mesophyll with water that evaporates when stomata are open to allow CO2 uptake for photosynthesis. Theoretical analyses suggest that water is optimally distributed in the mesophyll when the lateral distance between veins (dx) is equal to the distance from these veins to the epidermis (dy), expressed as dx:dy ≈ 1. Although this theory is supported by observations of many derived angiosperms, we hypothesize that plants in arid environments may reduce dx:dy below unity owing to climate-specific functional adaptations of increased leaf thickness and increased vein density. To test our hypothesis, we assembled leaf hydraulic, morphological, and photosynthetic traits of 68 species from the Eucalyptus and Corymbia genera (termed eucalypts) along an aridity gradient in southwestern Australia. We inferred the potential gas-exchange advantage of reducing dx beyond dy using a model that links leaf morphology and hydraulics to photosynthesis. Our observations reveal that eucalypts in arid environments have thick amphistomatous leaves with high vein densities, resulting in dx:dy ratios that range from 1.6 to 0.15 along the aridity gradient. Our model suggests that, as leaves become thicker, the effect of reducing dx beyond dy is to offset the reduction in leaf gas exchange that would result from maintaining dx:dy at unity. This apparent overinvestment in leaf venation may be explained from the selective pressure of aridity, under which traits associated with long leaf life span, high hydraulic and thermal capacitances, and high potential rates of leaf water transport confer a competitive advantage. PMID:27784769

  5. Pruning for crop regulation in high density guava (Psidium guajava L. plantation

    Directory of Open Access Journals (Sweden)

    Madhubala Thakre

    2016-06-01

    Full Text Available High density management and crop regulation are two important aspects in guava (Psidium guajava L. production. Therefore, to find out the economic way of managing high density planting and crop regulation, the present work was carried out on 6-year-old guava trees of cv. Pant Prabhat under double-hedge row system of planting during 2009-10 and 2010-11. Seven different forms of pruning [FBT: flower bud thinning by hand, FBTT: flower bud thinning by hand followed by removal of terminal one leaf pair, RLFO: removal of leaves and flower buds by hand, retaining one leaf pair at the top, RLF: removal of all leaves and flowers by hand, OLPS: one leaf pair shoot pruning, FSP: full shoot pruning, OLPF: one leaf pair pruning of fruited shoots only] were studied along with control (C.Minimum annual increase in tree volume (6.764 m3 was recorded with the treatment OLPF, which was 2.31 times less than the control (15.682 m3. Highest yield during winter season (55.30 kg/tree and total yield (59.87 kg/tree was obtained from treatment OLPF. One leaf pair pruning of fruited shoots only (OLPF was also found profitable among other treatments by recording cost:benefit ratio of 1:2.96. This treatment also recorded the highest return distributed in rainy as well as in winter season. On the basis of findings it can be concluded that one leaf pair pruning of fruited shoots only is suitable for profitable high density management as well as crop regulation of guava in farmer friendly manner.

  6. Relationship between Leaf Surface Characteristics and Particle Capturing Capacities of Different Tree Species in Beijing

    Directory of Open Access Journals (Sweden)

    Weikang Zhang

    2017-03-01

    Full Text Available Leaf surface is a multifunctional interface between a plant and its environment, which affects both ecological and biological processes. Leaf surface topography directly affects microhabitat availability and ability for deposition. In this study, atomic force microscopy (AFM and the resuspended particulate matter method were applied to evaluate the adsorptive capacity of the leaf surface. Patterns of particulate‐capturing capacities in different tree species and the effect of leaf surface features on these capacities were explored. Results indicated the following: (1 more total suspended particles (TSP per unit leaf area were captured by coniferous tree species than by broad‐leaved tree species in a particular order—i.e., Pinus tabuliformis > Pinus bungeana > Salix matsudana > Acer truncatum > Ginkgo biloba > Populus tomentosa; (2 Significant seasonal variation in particulate‐capturing capacities were determined. During the observation period, the broad‐leaved tree species capturing TSP and coarse particulate matter (PM10 clearly exhibited a ∩‐shape pattern— that is, increasing initially and later on decreasing; meanwhile, the ∩‐shape pattern was not clearly shown in P. tabuliformis and P. bungeana. However, no obvious patterns in the absorption of fine particulate matter (PM2.5 were found in the tested tree species; (3 The leaf surface topography, as observed by AFM and scanning electron microscopy, revealed that the broad‐leaved tree exhibits a good correlation between micro‐roughness of leaf surfaces and density of particles settling on leaf surfaces over time. However, the main factors affecting the adsorptive capacities of the leaves in coniferous trees are the number of stomata as well as the amount of epicuticular wax and the properties of the cuticle in different seasons.

  7. The genetic architecture of leaf number and its genetic relationship to flowering time in maize.

    Science.gov (United States)

    Li, Dan; Wang, Xufeng; Zhang, Xiangbo; Chen, Qiuyue; Xu, Guanghui; Xu, Dingyi; Wang, Chenglong; Liang, Yameng; Wu, Lishuan; Huang, Cheng; Tian, Jinge; Wu, Yaoyao; Tian, Feng

    2016-04-01

    The number of leaves and their distributions on plants are critical factors determining plant architecture in maize (Zea mays), and leaf number is frequently used as a measure of flowering time, a trait that is key to local environmental adaptation. Here, using a large set of 866 maize-teosinte BC2 S3 recombinant inbred lines genotyped by using 19,838 single nucleotide polymorphism markers, we conducted a comprehensive genetic dissection to assess the genetic architecture of leaf number and its genetic relationship to flowering time. We demonstrated that the two components of total leaf number, the number of leaves above (LA) and below (LB) the primary ear, were under relatively independent genetic control and might be subject to differential directional selection during maize domestication and improvement. Furthermore, we revealed that flowering time and leaf number are commonly regulated at a moderate level. The pleiotropy of the genes ZCN8, dlf1 and ZmCCT on leaf number and flowering time were validated by near-isogenic line analysis. Through fine mapping, qLA1-1, a major-effect locus that specifically affects LA, was delimited to a region with severe recombination suppression derived from teosinte. This study provides important insights into the genetic basis of traits affecting plant architecture and adaptation. The genetic independence of LA from LB enables the optimization of leaf number for ideal plant architecture breeding in maize. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  8. Effect of plant-biostimulant on cassava initial growth

    Directory of Open Access Journals (Sweden)

    João Emílio de Souza Magalhães

    2016-04-01

    Full Text Available ABSTRACT Biostimulants are complex substances that promote hormonal balance in plants, favor the genetic potential expression, and enhance growth of shoots and root system. The use of these plant growth promoters in crops can increase quantitatively and qualitatively crop production. Therefore, the aim of this study was to evaluate the effect of a commercial biostimulant on the initial growth of cassava. The experiment was arranged in a 2 x 5 factorial design, corresponding to two cassava cultivars (Cacau-UFV and Coimbra and five biostimulant concentrations (0, 4, 8, 12 and 16 mL L-1. At 90 days after planting, the characteristics leaf area, plant height, stem diameter, leaf number, total dry matter and dry matter of roots, stems and leaves were evaluated. The biostimulant promoted linear increases in plant height, leaf number, leaf area, total dry matter, dry matter of stems, leaves and roots. The cultivar Cacau-UFV had a higher growth rate than the cultivar Coimbra. The growth promoter stimulated the early growth of the cassava crop.

  9. Propagation of goldenrod (Solidago canadensis L. from leaf and nodal explants

    Directory of Open Access Journals (Sweden)

    Jun Li

    2012-02-01

    Full Text Available Goldenrod (Solidago canadensis L. is an invasive plant species in many countries except North America but a cut-flower species worldwide. There is a need to generate and propagate goldenrod clones efficiently for research and commercial purposes. A callus induction and plantlet regeneration system was developed by studying the influence of explant type and different concentrations of plant growth regulators. The highest callus production from leaf segments was obtained on Murashige and Skoog’s medium (MS medium supplemented with 1.0 mg/L naphthalene acetic acid (NAA and 1.0 mg/L 6-benzylaminopurine (BA. Adventitious shoots could be regenerated directly from leaf explants without an intermediate callus phase with the highest shoot induction percentage of 87.2%. The largest number of adventitious shoots per leaf explant (3.2 was obtained on MS medium supplemented with 0.4 mg/L NAA and 2.0 mg/L BA. MS medium supplemented with 0.1 mg/L NAA and 1.0 mg/L BA was the best medium for axillary shoot regeneration from nodal segments. The highest root number and longest roots occurred on half-strength MS without the addition of any growth regulator. Rooted plantlets were then transferred to a soil-based growth medium, placed in a greenhouse, and acclimatized with 100% success. All surviving plants grew normally without showing any morphological varia­tion when compared to those grow from seed. This regeneration protocol may be used to produce certain biotypes of goldenrod suitable for genetic transformation rapid propagation of goldenrod for commercial purposes or for screening fungi and toxins as potential biocontrol agents against this weed.

  10. Comparison of dwarf bamboos (Indocalamus sp.) leaf parameters to determine relationship between spatial density of plants and total leaf area per plant.

    Science.gov (United States)

    Shi, Pei-Jian; Xu, Qiang; Sandhu, Hardev S; Gielis, Johan; Ding, Yu-Long; Li, Hua-Rong; Dong, Xiao-Bo

    2015-10-01

    The relationship between spatial density and size of plants is an important topic in plant ecology. The self-thinning rule suggests a -3/2 power between average biomass and density or a -1/2 power between stand yield and density. However, the self-thinning rule based on total leaf area per plant and density of plants has been neglected presumably because of the lack of a method that can accurately estimate the total leaf area per plant. We aimed to find the relationship between spatial density of plants and total leaf area per plant. We also attempted to provide a novel model for accurately describing the leaf shape of bamboos. We proposed a simplified Gielis equation with only two parameters to describe the leaf shape of bamboos one model parameter represented the overall ratio of leaf width to leaf length. Using this method, we compared some leaf parameters (leaf shape, number of leaves per plant, ratio of total leaf weight to aboveground weight per plant, and total leaf area per plant) of four bamboo species of genus Indocalamus Nakai (I. pedalis (Keng) P.C. Keng, I. pumilus Q.H. Dai and C.F. Keng, I. barbatus McClure, and I. victorialis P.C. Keng). We also explored the possible correlation between spatial density and total leaf area per plant using log-linear regression. We found that the simplified Gielis equation fit the leaf shape of four bamboo species very well. Although all these four species belonged to the same genus, there were still significant differences in leaf shape. Significant differences also existed in leaf area per plant, ratio of leaf weight to aboveground weight per plant, and leaf length. In addition, we found that the total leaf area per plant decreased with increased spatial density. Therefore, we directly demonstrated the self-thinning rule to improve light interception.

  11. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Michela Lupia

    2018-04-01

    Full Text Available Summary: Cancer-initiating cells (CICs have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC, CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5′-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. : Cavallaro et al. characterized the transcriptome of OCIC-enriched primary cultures and found CD73 as an upregulated gene. CD73 was then shown to regulate the expression of stemness and EMT-associated genes. The expression and function of CD73 in OCICs is required for tumor initiation, and CD73-targeted drugs decrease the rate of tumor take and inhibit cancer growth. Keywords: CD73, ovarian cancer, cancer-initiating cells, cancer stem cells, EMT, adenosine

  12. Evaluation of leaf energy dissipation by the Photochemical Reflectance

    Science.gov (United States)

    Raddi, S.; Magnani, F.

    studied in seedlings of 10 broadleaf tree species (Arbutus unedo, Castanea sativa, Fraxinus angustifolia, Fagussylvatica, Juglans regia, Laurus nobilis, Ligustrum vulgare, Platanus occidentalis, Quercus robur, Q. ilex, Salix capraea) under controlled conditions. To avoid the possibility of a spurious correlation in response to light, electron transport rate was modulated through changes in ambient CO2 concentration, whilst irradiance waskept constant at saturating levels. This would mimic the effects of stomatal changes under midday field conditions. Leaf photosynthetic potential (Jmax, Vcmax) and electron transport rates were derived from the resulting A/ci curves through the Farquhar model (Farquhar &von Caemmerer 1982; Farquhar, von Caemmerer &Berry 1980). Leaf reflectance in the visible region was continuously monitored with a ZEISS MCS-501 spectrometer, with a digitalisation accuracy of 16 bit, band-to-band spacing of 0.8 nm and a bandwidth of approx 3 nm (FWHM). The manipulation of ambient [CO2 ] and electron transport rate induced marked changes in leaf spectroscopy. Apart from an apparent shift in the 680-730 nm region, resulting from leaf fluorescence, a marked peak was observed at 531 nm whilst the signal at 570 nm remained almost constant after an initial acclimation to high light. The shift in leaf reflectance mirrored parallel changes in assimilation rates. As a result, a very strong correlation between PRI and computed PSII quantum efficiency was observed at the leaf level. Different leaves and species, however, differed both in the slope of the relationship and in the absolute PRI level. When all the results were pooled together, however, a significant correlation (R2 = 0.64) was still apparent. This would mimic the situation in distal remote sensing, where a variety of sunlit leaves from different species and with different photosynthetic potential would be sampled together. An even stronger correlation (R2 = 0.69) was observed, however, between PRI and

  13. Synchronized moving aperture radiation therapy (SMART): superimposing tumor motion on IMRT MLC leaf sequences under realistic delivery conditions

    International Nuclear Information System (INIS)

    Xu Jun; Papanikolaou, Nikos; Shi Chengyu; Jiang, Steve B

    2009-01-01

    Synchronized moving aperture radiation therapy (SMART) has been proposed to account for tumor motions during radiotherapy in prior work. The basic idea of SMART is to synchronize the moving radiation beam aperture formed by a dynamic multileaf collimator (DMLC) with the tumor motion induced by respiration. In this paper, a two-dimensional (2D) superimposing leaf sequencing method is presented for SMART. A leaf sequence optimization strategy was generated to assure the SMART delivery under realistic delivery conditions. The study of delivery performance using the Varian LINAC and the Millennium DMLC showed that clinical factors such as collimator angle, dose rate, initial phase and machine tolerance affect the delivery accuracy and efficiency. An in-house leaf sequencing software was developed to implement the 2D superimposing leaf sequencing method and optimize the motion-corrected leaf sequence under realistic clinical conditions. The analysis of dynamic log (Dynalog) files showed that optimization of the leaf sequence for various clinical factors can avoid beam hold-offs which break the synchronization of SMART and fail the SMART dose delivery. Through comparison between the simulated delivered fluence map and the planed fluence map, it was shown that the motion-corrected leaf sequence can greatly reduce the dose error.

  14. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease.

    Science.gov (United States)

    Zhang, Peipei; Liu, Yan; Liu, Wenwen; Cao, Mengji; Massart, Sebastien; Wang, Xifeng

    2017-01-01

    To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV) (most likely pathogens) using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV). The full genome of WLYaV corresponds to 5,772 nucleotides (nt), with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae . Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV), but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP) were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90%) in the family Luteoviridae . Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  15. Identification, Characterization and Full-Length Sequence Analysis of a Novel Polerovirus Associated with Wheat Leaf Yellowing Disease

    Directory of Open Access Journals (Sweden)

    Peipei Zhang

    2017-09-01

    Full Text Available To identify the pathogens responsible for leaf yellowing symptoms on wheat samples collected from Jinan, China, we tested for the presence of three known barley/wheat yellow dwarf viruses (BYDV-GAV, -PAV, WYDV-GPV (most likely pathogens using RT-PCR. A sample that tested negative for the three viruses was selected for small RNA sequencing. Twenty-five million sequences were generated, among which 5% were of viral origin. A novel polerovirus was discovered and temporarily named wheat leaf yellowing-associated virus (WLYaV. The full genome of WLYaV corresponds to 5,772 nucleotides (nt, with six AUG-initiated open reading frames, one non-AUG-initiated open reading frame, and three untranslated regions, showing typical features of the family Luteoviridae. Sequence comparison and phylogenetic analyses suggested that WLYaV had the closest relationship with sugarcane yellow leaf virus (ScYLV, but the identities of full genomic nucleotides and deduced amino acid sequence of coat protein (CP were 64.9 and 86.2%, respectively, below the species demarcation thresholds (90% in the family Luteoviridae. Furthermore, agroinoculation of Nicotiana benthamiana leaves with a cDNA clone of WLYaV caused yellowing symptoms on the plant. Our study adds a new polerovirus that is associated with wheat leaf yellowing disease, which would help to identify and control pathogens of wheat.

  16. Topical application of Moringa oleifera leaf extract ameliorates experimentally induced atopic dermatitis by the regulation of Th1/Th2/Th17 balance.

    Science.gov (United States)

    Choi, Eun-Ju; Debnath, Trishna; Tang, Yujiao; Ryu, Young-Bae; Moon, Sang-Ho; Kim, Eun-Kyung

    2016-12-01

    Moringa oleifera (M. oleifera) is widely cultivated in tropical and subtropical regions and has been used as a vegetable and in traditional medicine. In this study, the anti-atopic dermatitis activity of the ethanol extract of M. oleifera leaf was investigated in vitro and in vivo. For the in vitro study, HaCaT human keratinocytes were used for cytokines and MAPKinase assay. In the in vivo study, M. oleifera leaf ethanolic extract (MO) was topically applied to BALB/c mice with Dermatophagoides farinae extract (DFE; house dust mite extract)- and 2,4-dinitrochlorobenzene (DNCB)-induced atopic dermatitis (AD). The expression of TNF-α, CCL17, IL-1β, IL-6 pro-inflammatory cytokine-related mRNA, and mitogen-activated protein kinases (MAPKs) in TNF-α/IFN-γ-induced HaCaT keratinocytes were reduced by MO. Epidermal and dermal ear thickness, mast cell infiltration, serum immunoglobulin levels, as well as gene expression of various cytokines in the ear tissue, lymph nodes, and splenocytes were improved by treatment with MO. In addition, MO reduced the expression of retinoic acid-related orphan receptor γT (RORγT), thymic stromal lymphopoietin (TSLP), and mannose receptor (CD206) mRNA in the ear tissue and improved cervical lymph node size. The results of this study strongly suggest the beneficial effects of MO on AD via the regulation of inflammatory responses. Copyright © 2016. Published by Elsevier Masson SAS.

  17. Foliar K application delays leaf senescence of winter rape-seed (Brassica napus L.) under waterlogging

    Institute of Scientific and Technical Information of China (English)

    Lin Wan; Chao Hu; Chang Chen; Liyan Zhang; Ni Ma; Chunlei Zhang

    2017-01-01

    To better understand waterlogging effect on leaf senescence in winter rapseed (Brassica napus L.) during flowering stage, experiments were designed to explore foliar K application influences on adverse effects of waterlogging stress. Winter rapeseed was sprayed with K after waterlogging at initial flowering stage. Results indicated that waterlog-ging significantly decreased leaf net photosynthetic rate (Pn), stomatal conductance (Gs), intercellular CO2 concentration (Ci) and transpiration rate (Tr). It also declined maximum quantum yield of PS II (Fv/Fm), quantum yield of electron transport (ΦPS II) and pho-tochemical quenching (qP), but increased leaf non-photochemical quenching (NPQ) and minimal fluorescence (Fo). Interestingly, exogenous application of K significantly alleviated waterlogging-induced photosynthesis inhibition. Foliar K application increased RuBisCO activation, chlorophyll and soluble protein contents, while significantly decreased MDA con-tent under waterlogging stress. Moreover, K supplementation improved accumulation of K+, Ca2+, Mg2+, N, Zn2+, Mn2+, Fe2+ in leaves. In general, foliar K application is effective in alleviating deleterious effects of waterlogging stress and delays leaf senescence of winter rapeseed.

  18. Studies on Callus Induction and Regeneration of Medicinal Plant Chicory (Cichorium intybus L. from Leaf and Petiole Explants

    Directory of Open Access Journals (Sweden)

    H. Hadizadeh

    2016-07-01

    Full Text Available Introduction: Chicory (Cichorium intybus L. belongs to Asteraceae family is commonly known as witloof chicory. The leaves and the roots of this medicinal plant are edible and commonly used as salad. Some varieties are also cultivated as coffee substitute after roasting the roots. All parts of the plant contain these volatile oils, with the majority of the toxic components concentrated in the plant's root. In folk medicine, the plant is used for the treatment of diarrhea, spleen enlargement, fever, and vomiting. Antihepatotoxic activity on damaged rat’s liver sections and anti-bacterial activity of this crop has been recently reported. In vitro regeneration from leaf explants with various hormonal combinations has been reported previously. Moreover, in vitro regeneration of Chicory from cotyledon explants using different combinations of plant growth regulators has been studied. Also, a protocol for the regeneration of plantlets from leaf and petiole explants of witloof chicory has been developed. The aim of the present investigation was optimization of callus induction and shoot regeneration from leaf and petiole tissues of Chicory (Esfahan genotype. Materials and Methods: In this investigation, Esfahan genotype was used for callus induction and direct shoot regeneration. Seeds were first washed with running tap water for 30 min then seeds were surface sterilized by dipping in 70% ethanol for 90 s and rinsed with sterile distilled water, followed by immersing in 5% sodium hypochlorite solution for 25 min and thereafter rinsed for 30 min with sterile distilled water. The basal medium used in this investigation was MS. For shoot regeneration, leaf and petiole explants (5 mm segments were excised from 4-week-old sterile seedlings and cultured on MS medium containing different combinations of NAA / BA and KIN / BA in two separate experiments. Experiments were performed factorial based on completely randomized design. Cultures were incubated at 25

  19. Creating 13C- and 15N-enriched tree leaf litter for decomposition experiments

    Science.gov (United States)

    Szlavecz, K. A.; Pitz, S.; Chang, C.; Bernard, M.

    2013-12-01

    Labeling plant material with heavy isotopes of carbon and nitrogen can produce a traceable nutrient signal that can be followed into the different trophic levels and decomposer food web. We treated 60 tree saplings with 13C-enriched CO2 gas and 15N-enriched ammonium nitrate over a three-month period to create dually-labeled plant material for future decomposition experiments. The trees included both early (Red maple, Sweetgum, Tulip poplar) and late (American beech, White oak) successional deciduous tree species, and a conifer, White pine. We constructed a 2.4 m × 2.4 m × 2.4 m environmental chamber that was climate-controlled using an air conditioning system. An Arduino microcontroller interfaced with a Vaisala GMP343 CO2 probe maintained a CO2 concentration between 500-520 ppm by controlling a solenoid valve on the CO2 tank regulator. The trees were placed into the chamber in August 2012 and remained until senescence unless they were lost to death or disease. Ammonium nitrate was added twice, in September and October. Leaf samples were collected prior to the start of the experiment and after senescence, whereas root samples were collected only in December. Samples were dried, ground and analyzed using an isotope ratio mass spectrometer. American beech and White oak had 40% mortality, and 34% of tulip poplar trees were removed because of powdery mildew overgrowth or death. Most tulip poplar trees exhibited a second leaf out following senescence in late September. Nearly 1 kg of litter was produced with tulip poplar representing over half of the total mass. Levels of enrichment varied greatly by species. Beech (-14.2‰) and White oak (-4.8‰) had low levels of enrichment in comparison to early successional species such as Sweetgum (41.7‰) and Tulip poplar (30.7‰ [first leaf fall] and 238.0‰ [second leaf fall]). Leaf enrichment with 15N followed a similar pattern, though it was achieved at a higher level with δ15N values varying from 271.6‰ to 1354.2

  20. Direct and Indirect Somatic Embryogenesis from Petiole and Leaf Explants of Purple Fan Flower (Scaevola aemula R. Br. cv. 'Purple Fanfare')

    OpenAIRE

    Shyama Ranjani Weerakoon

    2010-01-01

    Direct and indirect somatic embryogenesis (SE) from petiole and leaf explants of Scaevola aemula R. Br. cv. 'Purple Fanfare' was achieved. High frequency of somatic embryos was obtained directly from petiole and leaf explants using an inductive plant growth regulator signal thidiazuron (TDZ). Petiole explants were more responsive to SE than leaves. Plants derived from somatic embryos of petiole explants germinated more readily into plants. SE occurred more efficiently in ...

  1. Interaction between Silver Nanoparticles and Spinach Leaf

    Science.gov (United States)

    Tian, Y.; Li, H.; Zhang, Y.; Riser, E.; He, S.; Zhang, W.

    2013-12-01

    Interactions of engineered nanoparticles (ENPs) with plant surfaces are critical to assessing the bioavailability of ENPs to edible plants and to further evaluating impacts of ENPs on ecological health and food safety. Silver nanoparticles (i.e., nanoAg) could enter the agroecosystems either as an active ingredient in pesticides or from other industrial and consumer applications. Thus, in the events of pesticide application, rainfall, and irrigation, vegetable leaves could become in contact and then interact with nanoAg. The present study was to assess whether the interaction of nanoAg with spinach leaves can be described by classical sorption models and to what extent it depends on and varies with dispersion methods, environmental temperature, and ion release. We investigated the stability and ion release of nanoAg dispersed by sodium dodecyl sulfate (SDS, 1%) and humic acid (HA, 10 mg C/L) solutions, as well as sorption and desorption of nanoAg on and from the fresh spinach leaf. Results showed SDS-nanoAg released about 2%-8% more Ag ion than HA-nanoAg. The sorption of Ag ion, described by the Freundlich model in the initial concentration range of 0.6-50 mg/L, was 2-4 times higher than that of nanoAg. The sorption of nanoAg on spinach leaf can be fitted by the Langmuir model, and the maximum sorption amount of HA-nanoAg and SDS-nanoAg was 0.21 and 0.41 mg/g, respectively. The higher sorption of SDS-nanoAg relative to that of HA-nanoAg could be partially resulted from the higher release of Ag ion from the former. The maximum desorption amount of HA-nanoAg and SDS-nanoAg in 1% SDS solution was 0.08 and 0.10 mg/g, respectively. NanoAg attachment on and its penetration to the spinach leaf was visualized by the Scanning Electron Microscope equipped with an Energy Dispersive Spectrometer (SEM-EDS). It is equally important that the less sorption of nanoAg under low environmental temperature could be partially due to the closure of stomata, as verified by SEM-EDS. Cyto

  2. Mechanical behavior of cells within a cell-based model of wheat leaf growth

    Directory of Open Access Journals (Sweden)

    Ulyana Zubairova

    2016-12-01

    Full Text Available Understanding the principles and mechanisms of cell growth coordination in plant tissue remains an outstanding challenge for modern developmental biology. Cell-based modeling is a widely used technique for studying the geometric and topological features of plant tissue morphology during growth. We developed a quasi-one-dimensional model of unidirectional growth of a tissue layer in a linear leaf blade that takes cell autonomous growth mode into account. The model allows for fitting of the visible cell length using the experimental cell length distribution along the longitudinal axis of a wheat leaf epidermis. Additionally, it describes changes in turgor and osmotic pressures for each cell in the growing tissue. Our numerical experiments show that the pressures in the cell change over the cell cycle, and in symplastically growing tissue, they vary from cell to cell and strongly depend on the leaf growing zone to which the cells belong. Therefore, we believe that the mechanical signals generated by pressures are important to consider in simulations of tissue growth as possible targets for molecular genetic regulators of individual cell growth.

  3. Photoperiod-H1 (Ppd-H1) Controls Leaf Size.

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Tondelli, Alessandro; Xu, Xin; Cattivelli, Luigi; Rossini, Laura; von Korff, Maria

    2016-09-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. © 2016 American Society of Plant Biologists. All rights reserved.

  4. Effects of leaf movement on radiation interception in field grown leguminous crops, 2: Soybean (Glycine max Merr.)

    International Nuclear Information System (INIS)

    Isoda, A.; Yoshimura, T.; Ishikawa, T.; Wang, P.; Nojima, H.; Takasaki, Y.

    1993-01-01

    The effects of the leaf movement on radiation interception were examined by a treatment which restrained the leaf movement in the upper layers of the canopy. Two determinate soybean cultivars with different canopy structures (c.v. Nanbushirome and Miyagishirome) were grown at two planting densities in the field. A pot experiment was also used to evaluate radiation interception under the conditions of no mutual shading. Intercepted radiation of every leaflet of two plants within the canopy and one plant in the pot experiment was measured by the integrated solarimeter films for two consecutive days. The amount of intercepted radiations per unit ground area in the treatments were larger than those in the controls of both cultivars and indicated the ineffectiveness of the leaf movement on radiation interception. In general, Nanbushirome intercepted larger amount of radiation in every layer of the canopy in both field and pot experiments. The differences between the control and the treatment in Nanbushirome were large as compared with Miyagishirome. The leaf temperature of the uppermost layer of the canopy in Nanbushirome was higher than the air temperature in the treatment, whereas it was at par with the air temperature in the control. The leaflets of the upper layer moved paraheliotropically to the sum rays during most of day time, it was therefore assumed that the leaf movement would regulate leaf temperature

  5. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process

    KAUST Repository

    Zhao, Huayan

    2017-03-10

    AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1

  6. AtLSG1-2 Regulates Leaf Growth by Affecting Cell Proliferation and the Onset of Endoreduplication and Synergistically Interacts with AtNMD3 during Cell Proliferation Process

    KAUST Repository

    Zhao, Huayan; Lü , Shiyou; Xiong, Liming

    2017-01-01

    AtLSG1-2 is a circularly permuted GTPase required for ribosome biogenesis and recently shown to be involved in early leaf development, although it was unclear how AtLSG1-2 affects leaf growth. Here, we found that atlsg1-2 mutants had reduced leaf size as a result of decreased cell size and cell number. Leaf kinematic analysis and CYCB1;1

  7. Spatial patterns of leaf δ13C and its relationship with plant functional groups and environmental factors in China

    Science.gov (United States)

    Li, Mingxu; Peng, Changhui; Wang, Meng; Yang, Yanzheng; Zhang, Kerou; Li, Peng; Yang, Yan; Ni, Jian; Zhu, Qiuan

    2017-07-01

    The leaf carbon isotope ratio (δ13C) is a useful parameter for predicting a plant's water use efficiency, as an indicator for plant classification, and even in the reconstruction of paleoclimatic environments. In this study, we investigated the spatial pattern of leaf δ13C values and its relationship with plant functional groups and environmental factors throughout China. The high leaf δ13C in the database appeared in central and western China, and the averaged leaf δ13C was -27.15‰, with a range from -21.05‰ to -31.5‰. The order of the averaged δ13C for plant life forms from most positive to most negative was subshrubs > herbs = shrubs > trees > subtrees. Leaf δ13C is also influenced by some environmental factors, such as mean annual precipitation, relative humidity, mean annual temperature, solar hours, and altitude, although the overall influences are still relatively weak, in particular the influence of MAT and altitude. And we further found that plant functional types are dominant factors that regulate the magnitude of leaf δ13C for an individual site, whereas environmental conditions are key to understanding spatial patterns of leaf δ13C when we consider China as a whole. Ultimately, we conducted a multiple regression model of leaf δ13C with environmental factors and mapped the spatial distribution of leaf δ13C in China by using this model. However, this partial least squares model overestimated leaf δ13C for most life forms, especially for deciduous trees, evergreen shrubs, and subtrees, and thus need more improvement in the future.

  8. MicroRNA profiling of tomato leaf curl new delhi virus (tolcndv infected tomato leaves indicates that deregulation of mir159/319 and mir172 might be linked with leaf curl disease

    Directory of Open Access Journals (Sweden)

    Haq Qazi MR

    2010-10-01

    Full Text Available Abstract Background Tomato leaf curl virus (ToLCV, a constituent of the genus Begomovirus, infects tomato and other plants with a hallmark disease symptom of upward leaf curling. Since microRNAs (miRs are known to control plants developmental processes, we evaluated the roles of miRNAs in Tomato leaf curl New Delhi virus (ToLCNDV induced leaf curling. Results Microarray analyses of miRNAs, isolated from the leaves of both healthy and ToLCNDV agroinfected tomato cv Pusa Ruby, revealed that ToLCNDV infection significantly deregulated various miRNAs representing ~13 different conserved families (e.g., miR319, miR172, etc.. The precursors of these miRNAs showed similar deregulated patterns, indicating that the transcription regulation of respective miRNA genes was perhaps the cause of deregulation. The expression levels of the miRNA-targeted genes were antagonistic with respect to the amount of corresponding miRNA. Such deregulation was tissue-specific in nature as no analogous misexpression was found in flowers. The accumulation of miR159/319 and miR172 was observed to increase with the days post inoculation (dpi of ToLCNDV agroinfection in tomato cv Pusa Ruby. Similarly, these miRs were also induced in ToLCNDV agroinfected tomato cv JK Asha and chilli plants, both exhibiting leaf curl symptoms. Our results indicate that miR159/319 and miR172 might be associated with leaf curl symptoms. This report raises the possibility of using miRNA(s as potential signature molecules for ToLCNDV infection. Conclusions The expression of several host miRNAs is affected in response to viral infection. The levels of the corresponding pre-miRs and the predicted targets were also deregulated. This change in miRNA expression levels was specific to leaf tissues and observed to be associated with disease progression. Thus, certain host miRs are likely indicator of viral infection and could be potentially employed to develop viral resistance strategies.

  9. Wind increases leaf water use efficiency.

    Science.gov (United States)

    Schymanski, Stanislaus J; Or, Dani

    2016-07-01

    A widespread perception is that, with increasing wind speed, transpiration from plant leaves increases. However, evidence suggests that increasing wind speed enhances carbon dioxide (CO2 ) uptake while reducing transpiration because of more efficient convective cooling (under high solar radiation loads). We provide theoretical and experimental evidence that leaf water use efficiency (WUE, carbon uptake per water transpired) commonly increases with increasing wind speed, thus improving plants' ability to conserve water during photosynthesis. Our leaf-scale analysis suggests that the observed global decrease in near-surface wind speeds could have reduced WUE at a magnitude similar to the increase in WUE attributed to global rise in atmospheric CO2 concentrations. However, there is indication that the effect of long-term trends in wind speed on leaf gas exchange may be compensated for by the concurrent reduction in mean leaf sizes. These unintuitive feedbacks between wind, leaf size and water use efficiency call for re-evaluation of the role of wind in plant water relations and potential re-interpretation of temporal and geographic trends in leaf sizes. © 2015 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  10. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition*

    Science.gov (United States)

    Fan, Dong-mei; Fan, Kai; Yu, Cui-ping; Lu, Ya-ting; Wang, Xiao-chang

    2017-01-01

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols. PMID:28124839

  11. Tea polyphenols dominate the short-term tea (Camellia sinensis) leaf litter decomposition.

    Science.gov (United States)

    Fan, Dong-Mei; Fan, Kai; Yu, Cui-Ping; Lu, Ya-Ting; Wang, Xiao-Chang

    Polyphenols are one of the most important secondary metabolites, and affect the decomposition of litter and soil organic matter. This study aims to monitor the mass loss rate of tea leaf litter and nutrient release pattern, and investigate the role of tea polyphenols played in this process. High-performance liquid chromatography (HPLC) and classical litter bag method were used to simulate the decomposition process of tea leaf litter and track the changes occurring in major polyphenols over eight months. The release patterns of nitrogen, potassium, calcium, and magnesium were also determined. The decomposition pattern of tea leaf litter could be described by a two-phase decomposition model, and the polyphenol/N ratio effectively regulated the degradation process. Most of the catechins decreased dramatically within two months; gallic acid (GA), catechin gallate (CG), and gallocatechin (GC) were faintly detected, while others were outside the detection limits by the end of the experiment. These results demonstrated that tea polyphenols transformed quickly and catechins had an effect on the individual conversion rate. The nutrient release pattern was different from other plants which might be due to the existence of tea polyphenols.

  12. Photon flux and leaf temperature effects on flower initiation and early development of 'Red Elite' geraniums

    International Nuclear Information System (INIS)

    White, J.W.; Polys, S.M.

    1987-01-01

    Geranium (Pelargonium x hortorum Bailery ''Red Elite'') seedlings were grown with five daily mean temperature (DMT) and daily light integral (DLI) treatment combinations: DMT of 23 graus C? day at DLI of 8.64 mol -1 m -2 (T10, DMT of 25 graus at 8.64 mol (T20), DMT of 23 graus at DLI of 17.28 mol, (T3) DMT of 25 graus at DLI 17.28 mol (T4), and DMT of 21 graus at 17.28 mol (C1). Using infrared thermometry to control, leaf temperature, DMT had a greater influence on flower initiation at the transition stage and on flower bud development to macrobud stage than DLI. Seedlings in T4 reached transition stage 24 days after sowing with a cumulative irradiance of 415 mol. Transition occurred in T1 at 27 days from sowing . With a cumulative irradiance of only 23 mol. Some time after 27 days from sowing, transition occurred in T2, T3, and C1. With a DLI of 17.28 mol, a DMT reduction from 25 graus to 21 graus effected macrobuds in 42,56, or 62 days after sowing, respectively; whereas with a DLI of 8.64 mol, a decrease from 25 graus to 23 grauseffected macrobuds in 54 or 51 days

  13. Molecular Basis Underlying Leaf Variegation of a Moth Orchid Mutant (Phalaenopsis aphrodite subsp. formosana

    Directory of Open Access Journals (Sweden)

    Chi-Chu Tsai

    2017-07-01

    Full Text Available Leaf variegation is often the focus of plant breeding. Here, we studied a variegated mutant of Phalaenopsis aphrodite subsp. formosana, which is usually used as a parent of horticultural breeding, to understand its anatomic and genetic regulatory mechanisms in variegation. Chloroplasts with well-organized thylakoids and starch grains were found only in the mesophyll cells of green sectors but not of yellow sectors, confirming that the variegation belongs to the chlorophyll type. The two-dimensional electrophoresis and LC/MS/MS also reveal differential expressions of PsbP and PsbO between the green and yellow leaf sectors. Full-length cDNA sequencing revealed that mutant transcripts were caused by intron retention. When conditioning on the total RNA expression, we found that the functional transcript of PsbO and mutant transcript of PsbP are higher expressed in the yellow sector than in the green sector, suggesting that the post-transcriptional regulation of PsbO and PsbP differentiates the performance between green and yellow sectors. Because PsbP plays an important role in the stability of thylakoid folding, we suggest that the negative regulation of PsbP may inhibit thylakoid development in the yellow sectors. This causes chlorophyll deficiency in the yellow sectors and results in leaf variegation. We also provide evidence of the link of virus CymMV and the formation of variegation according to the differential expression of CymMV between green and yellow sectors.

  14. Ext The effect of littoralis leaf extract on Hemolytic Value (HC50 of mice

    Directory of Open Access Journals (Sweden)

    Zhi-jiang WANG

    2013-12-01

    Full Text Available Objective: To study the effect of Umbelliferae littoralis leaf extract on the Hemolytic Value (HC50 of mice, and to provide the basis for the development and utilization medicinal resources and edible resources. Methods: Prepare littoralis leaf water extract and alcohol extract, and set different dose treatment groups and blank control group, and continuously deliver American ginseng capsule for 15 days. Inject sRBC according to the weight on the tenth day. Take the blood serum from eyeball blood after 5 days. Put supernatant of 1ml and Dulbecco's reagent of 3ml in the test tube, and mix the 10% sRBC of 0.25ml and Dulbecco's reagent of 4ml together in another test tube, and measure absorbance at 540nm fine control (SA liquid tubing as blank, HC50 value were calculated. Results: Different extracts of stems and littoralis leaf were given to the mice for 15 days, and hemolytic value of the mice in water extract 4.68g/kg dose group, alcohol extract 4.68g/kg dose group and American ginseng capsule group significantly increased while comparing with the blank control group (P<0.05. Conclusion: Littoralis Leaf plays an important role in regulating human immunity.

  15. Silencing SlMED18, tomato Mediator subunit 18 gene, restricts internode elongation and leaf expansion.

    Science.gov (United States)

    Wang, Yunshu; Hu, Zongli; Zhang, Jianling; Yu, XiaoHui; Guo, Jun-E; Liang, Honglian; Liao, Changguang; Chen, Guoping

    2018-02-19

    Mediator complex, a conserved multi-protein, is necessary for controlling RNA polymerase II (Pol II) transcription in eukaryotes. Given little is known about them in tomato, a tomato Mediator subunit 18 gene was isolated and named SlMED18. To further explore the function of SlMED18, the transgenic tomato plants targeting SlMED18 by RNAi-mediated gene silencing were generated. The SlMED18-RNAi lines exhibited multiple developmental defects, including smaller size and slower growth rate of plant and significantly smaller compound leaves. The contents of endogenous bioactive GA 3 in SlMED18 silenced lines were slightly less than that in wild type. Furthermore, qRT-PCR analysis indicated that expression of gibberellins biosynthesis genes such as SlGACPS and SlGA20x2, auxin transport genes (PIN1, PIN4, LAX1 and LAX2) and several key regulators, KNOX1, KNOX2, PHAN and LANCEOLATE(LA), which involved in the leaf morphogenesis were significantly down-regulated in SlMED18-RNAi lines. These results illustrated that SlMED18 plays an essential role in regulating plant internode elongation and leaf expansion in tomato plants and it acts as a key positive regulator of gibberellins biosynthesis and signal transduction as well as auxin proper transport signalling. These findings are the basis for understanding the function of the individual Mediator subunits in tomato.

  16. Road Transport Management System (RTMS): a self regulation initiative in heavy vehicle transport in South Africa

    CSIR Research Space (South Africa)

    Nordengen, Paul A

    2007-07-01

    Full Text Available This paper describes the most recent developments of an initiative to introduce meaningful self-regulation in the heavy vehicle transport industry through a Road Transport Management System (RTMS) with the aim of contributing to the road authorities...

  17. Biophysical control of leaf temperature

    Science.gov (United States)

    Dong, N.; Prentice, I. C.; Wright, I. J.

    2014-12-01

    In principle sunlit leaves can maintain their temperatures within a narrower range than ambient temperatures. This is an important and long-known (but now overlooked) prediction of energy balance theory. Net radiation at leaf surface in steady state (which is reached rapidly) must be equal to the combination of sensible and latent heat exchanges with surrounding air, the former being proportional to leaf-to-air temperature difference (ΔT), the latter to the transpiration rate. We present field measurements of ΔT which confirm the existence of a 'crossover temperature' in the 25-30˚C range for species in a tropical savanna and a tropical rainforest environment. This finding is consistent with a simple representation of transpiration as a function of net radiation and temperature (Priestley-Taylor relationship) assuming an entrainment factor (ω) somewhat greater than the canonical value of 0.26. The fact that leaves in tropical forests are typically cooler than surrounding air, often already by solar noon, is consistent with a recently published comparison of MODIS day-time land-surface temperatures with air temperatures. Theory further predicts a strong dependence of leaf size (which is inversely related to leaf boundary-layer conductance, and therefore to absolute magnitude of ΔT) on moisture availability. Theoretically, leaf size should be determined by either night-time constraints (risk of frost damage to active leaves) or day-time constraints (risk of heat stress damage),with the former likely to predominate - thereby restricting the occurrence of large leaves - at high latitudes. In low latitudes, daytime maximum leaf size is predicted to increase with temperature, provided that water is plentiful. If water is restricted, however, transpiration cannot proceed at the Priestley-Taylor rate, and it quickly becomes advantageous for plants to have small leaves, which do not heat up much above the temperature of their surroundings. The difference between leaf

  18. Cotton leaf curl Burewala virus with intact or mutant transcriptional activator proteins: complexity of cotton leaf curl disease.

    Science.gov (United States)

    Kumar, Jitendra; Gunapati, Samatha; Alok, Anshu; Lalit, Adarsh; Gadre, Rekha; Sharma, Naresh C; Roy, Joy K; Singh, Sudhir P

    2015-05-01

    Cotton leaf curl disease (CLCuD) is a serious disease of cotton on the Indian subcontinent. In the present study, three cotton leaf curl viruses, cotton leaf curl Burewala virus (CLCuBuV), cotton leaf curl Kokhran virus (CLCuKoV) and cotton leaf curl Multan virus (CLCuMV), and their associated satellites, cotton leaf curl Multan betasatellite (CLCuMB) and cotton leaf curl Multan alphasatellite (CLCuMA), were detected. CLCuBuV with either intact (CLCuBuV-1) or mutant (CLCuBuV-2) transcriptional activator protein (TrAP) were detected in different plants. Agroinoculation with CLCuBuV-1 or CLCuBuV-2 together with CLCuMB and CLCuMA, resulted in typical leaf curling and stunting of tobacco plants. Inoculation with CLCuKoV or an isolate of CLCuMV (CLCuMV-2), together with CLCuMB and CLCuMA, induced severe leaf curling, while the other isolate of CLCuMV (CLCuMV-1), which was recombinant in origin, showed mild leaf curling in tobacco. To investigate the effect of intact or mutant TrAP and also the recombination events, CLCuBuV-1, CLCuBuV-2, CLCuMV-1 or CLCuMV-2 together with the satellites (CLCuMA and CLCuMB) were transferred to cotton via whitefly-mediated transmission. Cotton plants containing CLCuBuV-1, CLCuBuV-2 or CLCuMV-2 together with satellites showed curling and stunting, whereas the plants having CLCuMV-1 and the satellites showed only mild and indistinguishable symptoms. CLCuBuV-1 (intact TrAP) showed severe symptoms in comparison to CLCuBuV-2 (mutant TrAP). The present study reveals that two types of CLCuBuV, one with an intact TrAP and the other with a mutant TrAP, exist in natural infection of cotton in India. Additionally, CLCuMuV-1, which has a recombinant origin, induces mild symptoms in comparison to the other CLCuMV isolates.

  19. Timely binding of IHF and Fis to DARS2 regulates ATP–DnaA production and replication initiation

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-01-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP–DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP–DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP–DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP–DnaA was fully active in replication initiation and underwent DnaA–ATP hydrolysis. ADP–DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP–DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP–DnaA production, thereby promoting timely initiation. Moreover, we show that IHF–DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP–DnaA and replication initiation in coordination with the cell cycle and growth phase. PMID:25378325

  20. Timely binding of IHF and Fis to DARS2 regulates ATP-DnaA production and replication initiation.

    Science.gov (United States)

    Kasho, Kazutoshi; Fujimitsu, Kazuyuki; Matoba, Toshihiro; Oshima, Taku; Katayama, Tsutomu

    2014-12-01

    In Escherichia coli, the ATP-bound form of DnaA (ATP-DnaA) promotes replication initiation. During replication, the bound ATP is hydrolyzed to ADP to yield the ADP-bound form (ADP-DnaA), which is inactive for initiation. The chromosomal site DARS2 facilitates the regeneration of ATP-DnaA by catalyzing nucleotide exchange between free ATP and ADP bound to DnaA. However, the regulatory mechanisms governing this exchange reaction are unclear. Here, using in vitro reconstituted experiments, we show that two nucleoid-associated proteins, IHF and Fis, bind site-specifically to DARS2 to activate coordinately the exchange reaction. The regenerated ATP-DnaA was fully active in replication initiation and underwent DnaA-ATP hydrolysis. ADP-DnaA formed heteromultimeric complexes with IHF and Fis on DARS2, and underwent nucleotide dissociation more efficiently than ATP-DnaA. Consistently, mutant analyses demonstrated that specific binding of IHF and Fis to DARS2 stimulates the formation of ATP-DnaA production, thereby promoting timely initiation. Moreover, we show that IHF-DARS2 binding is temporally regulated during the cell cycle, whereas Fis only binds to DARS2 in exponentially growing cells. These results elucidate the regulation of ATP-DnaA and replication initiation in coordination with the cell cycle and growth phase. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  1. Divergence in Patterns of Leaf Growth Polarity Is Associated with the Expression Divergence of miR396.

    Science.gov (United States)

    Das Gupta, Mainak; Nath, Utpal

    2015-10-01

    Lateral appendages often show allometric growth with a specific growth polarity along the proximo-distal axis. Studies on leaf growth in model plants have identified a basipetal growth direction with the highest growth rate at the proximal end and progressively lower rates toward the distal end. Although the molecular mechanisms governing such a growth pattern have been studied recently, variation in leaf growth polarity and, therefore, its evolutionary origin remain unknown. By surveying 75 eudicot species, here we report that leaf growth polarity is divergent. Leaf growth in the proximo-distal axis is polar, with more growth arising from either the proximal or the distal end; dispersed with no apparent polarity; or bidirectional, with more growth contributed by the central region and less growth at either end. We further demonstrate that the expression gradient of the miR396-GROWTH-REGULATING FACTOR module strongly correlates with the polarity of leaf growth. Altering the endogenous pattern of miR396 expression in transgenic Arabidopsis thaliana leaves only partially modified the spatial pattern of cell expansion, suggesting that the diverse growth polarities might have evolved via concerted changes in multiple gene regulatory networks. © 2015 American Society of Plant Biologists. All rights reserved.

  2. The plant leaf movement analyzer (PALMA): a simple tool for the analysis of periodic cotyledon and leaf movement in Arabidopsis thaliana.

    Science.gov (United States)

    Wagner, Lucas; Schmal, Christoph; Staiger, Dorothee; Danisman, Selahattin

    2017-01-01

    The analysis of circadian leaf movement rhythms is a simple yet effective method to study effects of treatments or gene mutations on the circadian clock of plants. Currently, leaf movements are analysed using time lapse photography and subsequent bioinformatics analyses of leaf movements. Programs that are used for this purpose either are able to perform one function (i.e. leaf tip detection or rhythm analysis) or their function is limited to specific computational environments. We developed a leaf movement analysis tool-PALMA-that works in command line and combines image extraction with rhythm analysis using Fast Fourier transformation and non-linear least squares fitting. We validated PALMA in both simulated time series and in experiments using the known short period mutant sensitivity to red light reduced 1 ( srr1 - 1 ). We compared PALMA with two established leaf movement analysis tools and found it to perform equally well. Finally, we tested the effect of reduced iron conditions on the leaf movement rhythms of wild type plants. Here, we found that PALMA successfully detected period lengthening under reduced iron conditions. PALMA correctly estimated the period of both simulated and real-life leaf movement experiments. As a platform-independent console-program that unites both functions needed for the analysis of circadian leaf movements it is a valid alternative to existing leaf movement analysis tools.

  3. Effects of nitrogen application rate and leaf age on the distribution pattern of leaf SPAD readings in the rice canopy.

    Directory of Open Access Journals (Sweden)

    Hu Yang

    Full Text Available A Soil-Plant Analysis Development (SPAD chlorophyll meter can be used as a simple tool for evaluating N concentration of the leaf and investigating the combined effects of nitrogen rate and leaf age on N distribution. We conducted experiments in a paddy field over two consecutive years (2008-2009 using rice plants treated with six different N application levels. N distribution pattern was determined by SPAD readings based on the temporal dynamics of N concentrations in individual leaves. At 62 days after transplantation (DAT in 2008 and DAT 60 in 2009, leaf SPAD readings increased from the upper to lower in the rice canopy that received N levels of 150 to 375 kg ha(-1The differences in SPAD readings between the upper and lower leaf were larger under higher N application rates. However, as plants grew, this atypical distribution of SPAD readings in canopy leaf quickly reversed to the general order. In addition, temporal dynamics of the leaf SPAD readings (N concentrations were fitted to a piecewise function. In our model, changes in leaf SPAD readings were divided into three stages: growth, functioning, and senescence periods. The leaf growth period lasted approximately 6 days, and cumulative growing days were not affected by N application rates. The leaf functioning period was represented with a relatively stable SPAD reading related to N application rate, and cumulative growing days were extended with increasing N application rates. A quadratic equation was utilized to describe the relationship between SPAD readings and leaf age during the leaf senescence period. The rate of decrease in SPAD readings increased with the age of leaves, but the rate was slowed by N application. As leaves in the lower canopy were physiologically older than leaves in the upper canopy, the rate of decrease in SPAD readings was faster in the lower leaves.

  4. A hairy-leaf gene, BLANKET LEAF, of wild Oryza nivara increases photosynthetic water use efficiency in rice.

    Science.gov (United States)

    Hamaoka, Norimitsu; Yasui, Hideshi; Yamagata, Yoshiyuki; Inoue, Yoko; Furuya, Naruto; Araki, Takuya; Ueno, Osamu; Yoshimura, Atsushi

    2017-12-01

    High water use efficiency is essential to water-saving cropping. Morphological traits that affect photosynthetic water use efficiency are not well known. We examined whether leaf hairiness improves photosynthetic water use efficiency in rice. A chromosome segment introgression line (IL-hairy) of wild Oryza nivara (Acc. IRGC105715) with the genetic background of Oryza sativa cultivar 'IR24' had high leaf pubescence (hair). The leaf hairs developed along small vascular bundles. Linkage analysis in BC 5 F 2 and F 3 populations showed that the trait was governed by a single gene, designated BLANKET LEAF (BKL), on chromosome 6. IL-hairy plants had a warmer leaf surface in sunlight, probably due to increased boundary layer resistance. They had a lower transpiration rate under moderate and high light intensities, resulting in higher photosynthetic water use efficiency. Introgression of BKL on chromosome 6 from O. nivara improved photosynthetic water use efficiency in the genetic background of IR24.

  5. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    Energy Technology Data Exchange (ETDEWEB)

    Bouriaud, O. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France); Soudani, K. [Univ. Paris-Sud XI, Dept. d' Ecophysiologie Vegetale, Lab. Ecologie Systematique et Evolution, Orsay Cedex (France); Breda, N. [Inst. National de la Recherche Agronomique, Centre de Recherches Forestieres de Nancy, Champenoux (France)

    2003-06-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m{sup 2}{center_dot}g{sup -1}) is used to convert dry leaf litter biomass (g .m{sup -}2) into leaf area per ground unit area (m{sup 2}{center_dot}m{sup -2}). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m{sup 2}) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm{sup 2}{center_dot}g{sup -1}. Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant

  6. Leaf area index from litter collection: impact of specific leaf area variability within a beech stand

    International Nuclear Information System (INIS)

    Bouriaud, O.; Soudani, K.; Breda, N.

    2003-01-01

    Litter fall collection is a direct method widely used to estimate leaf area index (LAI) in broad-leaved forest stands. Indirect measurements using radiation transmittance and gap fraction theory are often compared and calibrated against litter fall, which is considered as a reference method, but few studies address the question of litter specific leaf area (SLA) measurement and variability. SLA (leaf area per unit of dry weight, m 2 ·g -1 ) is used to convert dry leaf litter biomass (g .m - 2) into leaf area per ground unit area (m 2 ·m -2 ). We paid special attention to this parameter in two young beech stands (dense and thinned) in northeastern France. The variability of both canopy (closure, LAI) and site conditions (soil properties, vegetation) was investigated as potential contributing factors to beech SLA variability. A systematic description of soil and floristic composition was performed and three types of soil were identified. Ellenberg's indicator values were averaged for each plot to assess nitrogen soil content. SLA of beech litter was measured three times during the fall in 23 plots in the stands (40 ha). Litter was collected bimonthly in square-shaped traps (0.5 m 2 ) and dried. Before drying, 30 leaves per plot and for each date were sampled, and leaf length, width, and area were measured with the help of a LI-COR areameter. SLA was calculated as the ratio of cumulated leaf area to total dry weight of the 30 leaves. Leaves characteristics per plot were averaged for the three dates of litter collection. Plant area index (PAI), estimated using the LAI-2000 plant canopy analyser and considering only the upper three rings, ranged from 2.9 to 8.1. Specific leaf area of beech litter was also highly different from one plot to the other, ranging from 150 to 320 cm 2 ·g -1 . Nevertheless, no relationship was found between SLA and stand canopy closure or PAI On the contrary, a significant relationship between SLA and soil properties was observed. Both SLA

  7. Effect of nitrogen supply on leaf growth, leaf nitrogen economy and photosynthetic capacity in potato

    NARCIS (Netherlands)

    Vos, J.; Putten, van der P.E.L.

    1998-01-01

    Literature reports show little effect of nitrogen supply on radiation use efficiency in potato and in other dicotyledonous C3 species. This paper tests the hypothesis that potato reduces leaf size rather than leaf nitrogen concentration and photosynthetic capacity when nitrogen is in short supply.

  8. Regulation of eukaryotic initiation factor 4AII by MyoD during murine myogenic cell differentiation.

    Directory of Open Access Journals (Sweden)

    Gabriela Galicia-Vázquez

    Full Text Available Gene expression during muscle cell differentiation is tightly regulated at multiple levels, including translation initiation. The PI3K/mTOR signalling pathway exerts control over protein synthesis by regulating assembly of eukaryotic initiation factor (eIF 4F, a heterotrimeric complex that stimulates recruitment of ribosomes to mRNA templates. One of the subunits of eIF4F, eIF4A, supplies essential helicase function during this phase of translation. The presence of two cellular eIF4A isoforms, eIF4AI and eIF4AII, has long thought to impart equivalent functions to eIF4F. However, recent experiments have alluded to distinct activities between them. Herein, we characterize distinct regulatory mechanisms between the eIF4A isoforms during muscle cell differentiation. We find that eIF4AI levels decrease during differentiation whereas eIF4AII levels increase during myofiber formation in a MyoD-dependent manner. This study characterizes a previously undefined mechanism for eIF4AII regulation in differentiation and highlights functional differences between eIF4AI and eIF4AII. Finally, RNAi-mediated alterations in eIF4AI and eIF4AII levels indicate that the myogenic process can tolerate short term reductions in eIF4AI or eIF4AII levels, but not both.

  9. Leaf extraction and analysis framework graphical user interface: segmenting and analyzing the structure of leaf veins and areoles.

    Science.gov (United States)

    Price, Charles A; Symonova, Olga; Mileyko, Yuriy; Hilley, Troy; Weitz, Joshua S

    2011-01-01

    Interest in the structure and function of physical biological networks has spurred the development of a number of theoretical models that predict optimal network structures across a broad array of taxonomic groups, from mammals to plants. In many cases, direct tests of predicted network structure are impossible given the lack of suitable empirical methods to quantify physical network geometry with sufficient scope and resolution. There is a long history of empirical methods to quantify the network structure of plants, from roots, to xylem networks in shoots and within leaves. However, with few exceptions, current methods emphasize the analysis of portions of, rather than entire networks. Here, we introduce the Leaf Extraction and Analysis Framework Graphical User Interface (LEAF GUI), a user-assisted software tool that facilitates improved empirical understanding of leaf network structure. LEAF GUI takes images of leaves where veins have been enhanced relative to the background, and following a series of interactive thresholding and cleaning steps, returns a suite of statistics and information on the structure of leaf venation networks and areoles. Metrics include the dimensions, position, and connectivity of all network veins, and the dimensions, shape, and position of the areoles they surround. Available for free download, the LEAF GUI software promises to facilitate improved understanding of the adaptive and ecological significance of leaf vein network structure.

  10. Leaf Area Estimation Models for Ginger ( Zingibere officinale Rosc ...

    African Journals Online (AJOL)

    The study was carried out to develop leaf area estimation models for three cultivars (37/79, 38/79 and 180/73) and four accessions (29/86, 30/86, 47/86 and 52/86) of ginger. Significant variations were observed among the tested genotypes in leaf length (L), leaf width (W) and actual leaf area (ALA). Leaf area was highly ...

  11. Leaf Serration in Seedlings of Hetero blastic Woody Species Enhance Plasticity and Performance in Gaps But Not in the Under story

    International Nuclear Information System (INIS)

    Gamage, H.K.; Gamage, H.K.

    2010-01-01

    Leaf heteroblasty refers to dramatic ontogenetic changes in leaf size and shape, in contrast to homoblasty that exhibits little change, between seedling and adult stages. This study examined whether the plasticity in leaf morphology of heteroblastic species would be an advantage for their survival and growth over homoblastic congeners to changes in light. Two congeneric pairs of homoblastic (Hoheria lyallii, Aristotelia serrata) and heteroblastic species (H. sexstylosa, A. fruticosa) were grown for 18 months in canopy gap and forest understory sites in a temperate rainforest in New Zealand. Heteroblastic species that initially had serrated leaves reduced leaf serration in the understory, but increased in the gaps. Heteroblastic species also produced thicker leaves and had higher stomatal pore area (density x aperture length), maximum photosynthetic rate, survival, and greater biomass allocation to shoots than homoblastic relatives in the gaps. Findings indicate that increased leaf serration in heteroblastic species is an advantage over homoblastic congeners in high light.

  12. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax...

  13. A Global Data Set of Leaf Photosynthetic Rates, Leaf N and P, and Specific Leaf Area

    Data.gov (United States)

    National Aeronautics and Space Administration — This global data set of photosynthetic rates and leaf nutrient traits was compiled from a comprehensive literature review. It includes estimates of Vcmax (maximum...

  14. Does investment in leaf defenses drive changes in leaf economic strategy? A focus on whole-plant ontogeny.

    Science.gov (United States)

    Mason, Chase M; Donovan, Lisa A

    2015-04-01

    Leaf defenses have long been studied in the context of plant growth rate, resource availability, and optimal investment theory. Likewise, one of the central modern paradigms of plant ecophysiology, the leaf economics spectrum (LES), has been extensively studied in the context of these factors across ecological scales ranging from global species data sets to temporal shifts within individuals. Despite strong physiological links between LES strategy and leaf defenses in structure, function, and resource investment, the relationship between these trait classes has not been well explored. This study investigates the relationship between leaf defenses and LES strategy across whole-plant ontogeny in three diverse Helianthus species known to exhibit dramatic ontogenetic shifts in LES strategy, focusing primarily on physical and quantitative chemical defenses. Plants were grown under controlled environmental conditions and sampled for LES and defense traits at four ontogenetic stages. Defenses were found to shift strongly with ontogeny, and to correlate strongly with LES strategy. More advanced ontogenetic stages with more conservative LES strategy leaves had higher tannin activity and toughness in all species, and higher leaf dry matter content in two of three species. Modeling results in two species support the conclusion that changes in defenses drive changes in LES strategy through ontogeny, and in one species that changes in defenses and LES strategy are likely independently driven by ontogeny. Results of this study support the hypothesis that leaf-level allocation to defenses might be an important determinant of leaf economic traits, where high investment in defenses drives a conservative LES strategy.

  15. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells.

    Science.gov (United States)

    Santini, R; Pietrobono, S; Pandolfi, S; Montagnani, V; D'Amico, M; Penachioni, J Y; Vinci, M C; Borgognoni, L; Stecca, B

    2014-09-18

    Melanoma is one of the most aggressive types of human cancer, characterized by enhanced heterogeneity and resistance to conventional therapy at advanced stages. We and others have previously shown that HEDGEHOG-GLI (HH-GLI) signaling is required for melanoma growth and for survival and expansion of melanoma-initiating cells (MICs). Recent reports indicate that HH-GLI signaling regulates a set of genes typically expressed in embryonic stem cells, including SOX2 (sex-determining region Y (SRY)-Box2). Here we address the function of SOX2 in human melanomas and MICs and its interaction with HH-GLI signaling. We find that SOX2 is highly expressed in melanoma stem cells. Knockdown of SOX2 sharply decreases self-renewal in melanoma spheres and in putative melanoma stem cells with high aldehyde dehydrogenase activity (ALDH(high)). Conversely, ectopic expression of SOX2 in melanoma cells enhances their self-renewal in vitro. SOX2 silencing also inhibits cell growth and induces apoptosis in melanoma cells. In addition, depletion of SOX2 progressively abrogates tumor growth and leads to a significant decrease in tumor-initiating capability of ALDH(high) MICs upon xenotransplantation, suggesting that SOX2 is required for tumor initiation and for continuous tumor growth. We show that SOX2 is regulated by HH signaling and that the transcription factors GLI1 and GLI2, the downstream effectors of HH-GLI signaling, bind to the proximal promoter region of SOX2 in primary melanoma cells. In functional studies, we find that SOX2 function is required for HH-induced melanoma cell growth and MIC self-renewal in vitro. Thus SOX2 is a critical factor for self-renewal and tumorigenicity of MICs and an important mediator of HH-GLI signaling in melanoma. These findings could provide the basis for novel therapeutic strategies based on the inhibition of SOX2 for the treatment of a subset of human melanomas.

  16. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  17. The Role of the S40 Gene Family in Leaf Senescence

    Directory of Open Access Journals (Sweden)

    Muhammad Jehanzeb

    2017-10-01

    Full Text Available Senescence affect different traits of plants, such as the ripening of fruit, number, quality and timing of seed maturation. While senescence is induced by age, growth hormones and different environmental stresses, a highly organized genetic mechanism related to substantial changes in gene expression regulates the process. Only a few genes associated to senescence have been identified in crop plants despite the vital significance of senescence for crop yield. The S40 gene family has been shown to play a role in leaf senescence. The barley HvS40 gene is one of the senescence marker genes which shows expression during age-dependent as well as dark-induced senescence. Like barley HvS40, the Arabidopsis AtS40-3 gene is also induced during natural senescence as well as in response to treatment with abscisic acid, salicylic acid, darkness and pathogen attack. It is speculated that rice OsS40 has a similar function in the leaf senescence of rice.

  18. Leaf litter decomposition rates increase with rising mean annual temperature in Hawaiian tropical montane wet forests

    Directory of Open Access Journals (Sweden)

    Lori D. Bothwell

    2014-12-01

    Full Text Available Decomposing litter in forest ecosystems supplies nutrients to plants, carbon to heterotrophic soil microorganisms and is a large source of CO2 to the atmosphere. Despite its essential role in carbon and nutrient cycling, the temperature sensitivity of leaf litter decay in tropical forest ecosystems remains poorly resolved, especially in tropical montane wet forests where the warming trend may be amplified compared to tropical wet forests at lower elevations. We quantified leaf litter decomposition rates along a highly constrained 5.2 °C mean annual temperature (MAT gradient in tropical montane wet forests on the Island of Hawaii. Dominant vegetation, substrate type and age, soil moisture, and disturbance history are all nearly constant across this gradient, allowing us to isolate the effect of rising MAT on leaf litter decomposition and nutrient release. Leaf litter decomposition rates were a positive linear function of MAT, causing the residence time of leaf litter on the forest floor to decline by ∼31 days for each 1 °C increase in MAT. Our estimate of the Q10 temperature coefficient for leaf litter decomposition was 2.17, within the commonly reported range for heterotrophic organic matter decomposition (1.5–2.5 across a broad range of ecosystems. The percentage of leaf litter nitrogen (N remaining after six months declined linearly with increasing MAT from ∼88% of initial N at the coolest site to ∼74% at the warmest site. The lack of net N immobilization during all three litter collection periods at all MAT plots indicates that N was not limiting to leaf litter decomposition, regardless of temperature. These results suggest that leaf litter decay in tropical montane wet forests may be more sensitive to rising MAT than in tropical lowland wet forests, and that increased rates of N release from decomposing litter could delay or prevent progressive N limitation to net primary productivity with climate warming.

  19. Leaf structural characteristics are less important than leaf chemical properties in determining the response of leaf mass per area and photosynthesis of Eucalyptus saligna to industrial-age changes in [CO2] and temperature.

    Science.gov (United States)

    Xu, Cheng-Yuan; Salih, Anya; Ghannoum, Oula; Tissue, David T

    2012-10-01

    The rise in atmospheric [CO(2)] is associated with increasing air temperature. However, studies on plant responses to interactive effects of [CO(2)] and temperature are limited, particularly for leaf structural attributes. In this study, Eucalyptus saligna plants were grown in sun-lit glasshouses differing in [CO(2)] (290, 400, and 650 µmol mol(-1)) and temperature (26 °C and 30 °C). Leaf anatomy and chloroplast parameters were assessed with three-dimensional confocal microscopy, and the interactive effects of [CO(2)] and temperature were quantified. The relative influence of leaf structural attributes and chemical properties on the variation of leaf mass per area (LMA) and photosynthesis within these climate regimes was also determined. Leaf thickness and mesophyll size increased in higher [CO(2)] but decreased at the warmer temperature; no treatment interaction was observed. In pre-industrial [CO(2)], warming reduced chloroplast diameter without altering chloroplast number per cell, but the opposite pattern (reduced chloroplast number per cell and unchanged chloroplast diameter) was observed in both current and projected [CO(2)]. The variation of LMA was primarily explained by total non-structural carbohydrate (TNC) concentration rather than leaf thickness. Leaf photosynthetic capacity (light- and [CO(2)]-saturated rate at 28 °C) and light-saturated photosynthesis (under growth [CO(2)] and temperature) were primarily determined by leaf nitrogen contents, while secondarily affected by chloroplast gas exchange surface area and chloroplast number per cell, respectively. In conclusion, leaf structural attributes are less important than TNC and nitrogen in affecting LMA and photosynthesis responses to the studied climate regimes, indicating that leaf structural attributes have limited capacity to adjust these functional traits in a changing climate.

  20. The trophic role of a forest salamander: impacts on invertebrates, leaf litter retention, and the humification process

    Science.gov (United States)

    M. L. Best; H. H. Welsh

    2014-01-01

    Woodland (Plethodontid) salamanders are the most abundant vertebrates in North American forests, functioning as predators on invertebrates and prey for higher trophic levels. We investigated the role of Ensatina (Ensatina eschscholtzii) in regulating invertebrate numbers and leaf litter retention in a northern California forest. Our objective was...

  1. Red maple (Acer rubrum) leaf toxicosis in horses: a retrospective study of 32 cases.

    Science.gov (United States)

    Alward, Ashley; Corriher, Candice A; Barton, Michelle H; Sellon, Debra C; Blikslager, Anthony T; Jones, Samuel L

    2006-01-01

    Ingestion of wilted red maple leaves by horses can result in severe hemolytic anemia and methemoglobinemia. Little is known about what factors influence the outcome of red maple leaf toxicosis in horses. Our hypothesis was that physical examination findings, clinicopathologic variables or therapeutic modalities may predict outcome in horses with red maple leaf toxicity. Horses with red maple leaf toxicosis presented to referral hospitals in the southeast region of the United States. A multi-institutional retrospective study was designed to identify factors that predict mortality in horses with red maple toxicosis. Thirty-two horses with red maple toxicosis were identified, 19 of which died. Twenty-nine horses presented with anemia and 24 had clinicopathologic evidence of systemic inflammation. Renal insufficiency was identified in 12/30 (41%) horses. Laminitis (9/28) and colic (13/30) also were identified in horses with red maple toxicosis, but development of these 2 conditions did not have a negative effect on short-term survival. Horses with red maple toxicosis that survived to discharge were likely to have developed pyrexia during hospitalization (P = .030). Horses that were treated with a corticosteroid had a significantly increased likelihood of death (P = .045). There was no significant relationship between initial serum hemoglobin concentration, methemoglobin concentration, or percentage methemoglobin and mortality in this horse series. This study suggests that information obtained on initial examination cannot be used to accurately predict survival in horses with red maple toxicosis, but horses that receive corticosteroids are unlikely to survive.

  2. Dependence of fluence errors in dynamic IMRT on leaf-positional errors varying with time and leaf number

    International Nuclear Information System (INIS)

    Zygmanski, Piotr; Kung, Jong H.; Jiang, Steve B.; Chin, Lee

    2003-01-01

    In d-MLC based IMRT, leaves move along a trajectory that lies within a user-defined tolerance (TOL) about the ideal trajectory specified in a d-MLC sequence file. The MLC controller measures leaf positions multiple times per second and corrects them if they deviate from ideal positions by a value greater than TOL. The magnitude of leaf-positional errors resulting from finite mechanical precision depends on the performance of the MLC motors executing leaf motions and is generally larger if leaves are forced to move at higher speeds. The maximum value of leaf-positional errors can be limited by decreasing TOL. However, due to the inherent time delay in the MLC controller, this may not happen at all times. Furthermore, decreasing the leaf tolerance results in a larger number of beam hold-offs, which, in turn leads, to a longer delivery time and, paradoxically, to higher chances of leaf-positional errors (≤TOL). On the other end, the magnitude of leaf-positional errors depends on the complexity of the fluence map to be delivered. Recently, it has been shown that it is possible to determine the actual distribution of leaf-positional errors either by the imaging of moving MLC apertures with a digital imager or by analysis of a MLC log file saved by a MLC controller. This leads next to an important question: What is the relation between the distribution of leaf-positional errors and fluence errors. In this work, we introduce an analytical method to determine this relation in dynamic IMRT delivery. We model MLC errors as Random-Leaf Positional (RLP) errors described by a truncated normal distribution defined by two characteristic parameters: a standard deviation σ and a cut-off value Δx 0 (Δx 0 ∼TOL). We quantify fluence errors for two cases: (i) Δx 0 >>σ (unrestricted normal distribution) and (ii) Δx 0 0 --limited normal distribution). We show that an average fluence error of an IMRT field is proportional to (i) σ/ALPO and (ii) Δx 0 /ALPO, respectively, where

  3. An RNA-seq transcriptome analysis of histone modifiers and RNA silencing genes in soybean during floral initiation process.

    Directory of Open Access Journals (Sweden)

    Lim Chee Liew

    Full Text Available Epigenetics has been recognised to play vital roles in many plant developmental processes, including floral initiation through the epigenetic regulation of gene expression. The histone modifying proteins that mediate these modifications involve the SET domain-containing histone methyltransferases, JmjC domain-containing demethylase, acetylases and deacetylases. In addition, RNA interference (RNAi-associated genes are also involved in epigenetic regulation via RNA-directed DNA methylation and post-transcriptional gene silencing. Soybean, a major crop legume, requires a short day to induce flowering. How histone modifications regulate the plant response to external cues that initiate flowering is still largely unknown. Here, we used RNA-seq to address the dynamics of transcripts that are potentially involved in the epigenetic programming and RNAi mediated gene silencing during the floral initiation of soybean. Soybean is a paleopolyploid that has been subjected to at least two rounds of whole genome duplication events. We report that the expanded genomic repertoire of histone modifiers and RNA silencing genes in soybean includes 14 histone acetyltransferases, 24 histone deacetylases, 47 histone methyltransferases, 15 protein arginine methyltransferases, 24 JmjC domain-containing demethylases and 47 RNAi-associated genes. To investigate the role of these histone modifiers and RNA silencing genes during floral initiation, we compared the transcriptional dynamics of the leaf and shoot apical meristem at different time points after a short-day treatment. Our data reveal that the extensive activation of genes that are usually involved in the epigenetic programming and RNAi gene silencing in the soybean shoot apical meristem are reprogrammed for floral development following an exposure to inductive conditions.

  4. Refining the application of direct embryogenesis in sugarcane: Effect of the developmental phase of leaf disc explants and the timing of DNA transfer on transformation efficiency.

    Science.gov (United States)

    Snyman, S J; Meyer, G M; Richards, J M; Haricharan, N; Ramgareeb, S; Huckett, B I

    2006-10-01

    A rapid in vitro protocol using direct somatic embryogenesis and microprojectile bombardment was investigated to establish the developmental phases most suitable for efficient sugarcane transformation. Immature leaf roll disc explants with and without pre-emergent inflorescence tissue were compared. It was shown that for effective transformation to occur, explants should be cultured for several days to allow initiation of embryo development prior to bombardment. Leaf roll discs with pre-emergent inflorescences showed a higher degree of embryogenic competence than non-flowering explants, and transformation efficiency was higher when explants containing floral initials were bombarded. Despite the occurrence of high numbers of phenotypically negative plants, combining the use of inflorescent leaf roll discs with direct embryogenic regeneration has the potential to improve the speed and efficiency of transgenesis in sugarcane.

  5. Regulation of root hair initiation and expansin gene expression in Arabidopsis

    Science.gov (United States)

    Cho, Hyung-Taeg; Cosgrove, Daniel J.

    2002-01-01

    The expression of two Arabidopsis expansin genes (AtEXP7 and AtEXP18) is tightly linked to root hair initiation; thus, the regulation of these genes was studied to elucidate how developmental, hormonal, and environmental factors orchestrate root hair formation. Exogenous ethylene and auxin, as well as separation of the root from the medium, stimulated root hair formation and the expression of these expansin genes. The effects of exogenous auxin and root separation on root hair formation required the ethylene signaling pathway. By contrast, blocking the endogenous ethylene pathway, either by genetic mutations or by a chemical inhibitor, did not affect normal root hair formation and expansin gene expression. These results indicate that the normal developmental pathway for root hair formation (i.e., not induced by external stimuli) is independent of the ethylene pathway. Promoter analyses of the expansin genes show that the same promoter elements that determine cell specificity also determine inducibility by ethylene, auxin, and root separation. Our study suggests that two distinctive signaling pathways, one developmental and the other environmental/hormonal, converge to modulate the initiation of the root hair and the expression of its specific expansin gene set.

  6. Lipid raft regulates the initial spreading of melanoma A375 cells by modulating β1 integrin clustering.

    Science.gov (United States)

    Wang, Ruifei; Bi, Jiajia; Ampah, Khamal Kwesi; Zhang, Chunmei; Li, Ziyi; Jiao, Yang; Wang, Xiaoru; Ba, Xueqing; Zeng, Xianlu

    2013-08-01

    Cell adhesion and spreading require integrins-mediated cell-extracellular matrix interaction. Integrins function through binding to extracellular matrix and subsequent clustering to initiate focal adhesion formation and actin cytoskeleton rearrangement. Lipid raft, a liquid ordered plasma membrane microdomain, has been reported to play major roles in membrane motility by regulating cell surface receptor function. Here, we identified that lipid raft integrity was required for β1 integrin-mediated initial spreading of melanoma A375 cells on fibronectin. We found that lipid raft disruption with methyl-β-cyclodextrin led to the inability of focal adhesion formation and actin cytoskeleton rearrangement by preventing β1 integrin clustering. Furthermore, we explored the possible mechanism by which lipid raft regulates β1 integrin clustering and demonstrated that intact lipid raft could recruit and modify some adaptor proteins, such as talin, α-actinin, vinculin, paxillin and FAK. Lipid raft could regulate the location of these proteins in lipid raft fractions and facilitate their binding to β1 integrin, which may be crucial for β1 integrin clustering. We also showed that lipid raft disruption impaired A375 cell migration in both transwell and wound healing models. Together, these findings provide a new insight for the relationship between lipid raft and the regulation of integrins. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. The Nissan LEAF electric powertrain

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Shinsuke [Nissan Motor Co., Ltd. (Japan)

    2011-07-01

    The need for CO{sub 2} reduction as a countermeasure to global warming, and to move away from our dependence on fossil fuels as a countermeasure to energy security are urgent issues. One of the ultimate goals to achieving these targets is to develop a 'Zero emission car' such as an electric vehicle or a fuel cell vehicle, along with the manufacturing of clean energy. Nissan have developed a new powertrain for the electric vehicle, and have installed it in the Nissan LEAF. Sales of the Nissan LEAF started in North America, Europe and Japan in 2010, with plans to sell it globally by 2012. In order to achieve an improved driving range, power performance and drivability performance, Nissan have adapted a high efficiency synchronous motor, a water-cooled inverter, and reducer. Moreover, the Nissan LEAF has the capability of a 3.3kW AC charge and a 50kW DC quick charge. This presentation will introduce the features of the electric powertrain adopted for Nissan LEAF. (orig.)

  8. A non-destructive method for estimating onion leaf area

    Directory of Open Access Journals (Sweden)

    Córcoles J.I.

    2015-06-01

    Full Text Available Leaf area is one of the most important parameters for characterizing crop growth and development, and its measurement is useful for examining the effects of agronomic management on crop production. It is related to interception of radiation, photosynthesis, biomass accumulation, transpiration and gas exchange in crop canopies. Several direct and indirect methods have been developed for determining leaf area. The aim of this study is to develop an indirect method, based on the use of a mathematical model, to compute leaf area in an onion crop using non-destructive measurements with the condition that the model must be practical and useful as a Decision Support System tool to improve crop management. A field experiment was conducted in a 4.75 ha commercial onion plot irrigated with a centre pivot system in Aguas Nuevas (Albacete, Spain, during the 2010 irrigation season. To determine onion crop leaf area in the laboratory, the crop was sampled on four occasions between 15 June and 15 September. At each sampling event, eight experimental plots of 1 m2 were used and the leaf area for individual leaves was computed using two indirect methods, one based on the use of an automated infrared imaging system, LI-COR-3100C, and the other using a digital scanner EPSON GT-8000, obtaining several images that were processed using Image J v 1.43 software. A total of 1146 leaves were used. Before measuring the leaf area, 25 parameters related to leaf length and width were determined for each leaf. The combined application of principal components analysis and cluster analysis for grouping leaf parameters was used to reduce the number of variables from 25 to 12. The parameter derived from the product of the total leaf length (L and the leaf diameter at a distance of 25% of the total leaf length (A25 gave the best results for estimating leaf area using a simple linear regression model. The model obtained was useful for computing leaf area using a non

  9. Modeling canopy-level productivity: is the "big-leaf" simplification acceptable?

    Science.gov (United States)

    Sprintsin, M.; Chen, J. M.

    2009-05-01

    The "big-leaf" approach to calculating the carbon balance of plant canopies assumes that canopy carbon fluxes have the same relative responses to the environment as any single unshaded leaf in the upper canopy. Widely used light use efficiency models are essentially simplified versions of the big-leaf model. Despite its wide acceptance, subsequent developments in the modeling of leaf photosynthesis and measurements of canopy physiology have brought into question the assumptions behind this approach showing that big leaf approximation is inadequate for simulating canopy photosynthesis because of the additional leaf internal control on carbon assimilation and because of the non-linear response of photosynthesis on leaf nitrogen and absorbed light, and changes in leaf microenvironment with canopy depth. To avoid this problem a sunlit/shaded leaf separation approach, within which the vegetation is treated as two big leaves under different illumination conditions, is gradually replacing the "big-leaf" strategy, for applications at local and regional scales. Such separation is now widely accepted as a more accurate and physiologically based approach for modeling canopy photosynthesis. Here we compare both strategies for Gross Primary Production (GPP) modeling using the Boreal Ecosystem Productivity Simulator (BEPS) at local (tower footprint) scale for different land cover types spread over North America: two broadleaf forests (Harvard, Massachusetts and Missouri Ozark, Missouri); two coniferous forests (Howland, Maine and Old Black Spruce, Saskatchewan); Lost Creek shrubland site (Wisconsin) and Mer Bleue petland (Ontario). BEPS calculates carbon fixation by scaling Farquhar's leaf biochemical model up to canopy level with stomatal conductance estimated by a modified version of the Ball-Woodrow-Berry model. The "big-leaf" approach was parameterized using derived leaf level parameters scaled up to canopy level by means of Leaf Area Index. The influence of sunlit

  10. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L..

    Directory of Open Access Journals (Sweden)

    Sebastian Moschen

    Full Text Available Cultivated sunflower (Helianthus annuus L., an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2 previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1 and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could

  11. Identification of candidate genes associated with leaf senescence in cultivated sunflower (Helianthus annuus L.).

    Science.gov (United States)

    Moschen, Sebastian; Bengoa Luoni, Sofia; Paniego, Norma B; Hopp, H Esteban; Dosio, Guillermo A A; Fernandez, Paula; Heinz, Ruth A

    2014-01-01

    Cultivated sunflower (Helianthus annuus L.), an important source of edible vegetable oil, shows rapid onset of senescence, which limits production by reducing photosynthetic capacity under specific growing conditions. Carbon for grain filling depends strongly on light interception by green leaf area, which diminishes during grain filling due to leaf senescence. Transcription factors (TFs) regulate the progression of leaf senescence in plants and have been well explored in model systems, but information for many agronomic crops remains limited. Here, we characterize the expression profiles of a set of putative senescence associated genes (SAGs) identified by a candidate gene approach and sunflower microarray expression studies. We examined a time course of sunflower leaves undergoing natural senescence and used quantitative PCR (qPCR) to measure the expression of 11 candidate genes representing the NAC, WRKY, MYB and NF-Y TF families. In addition, we measured physiological parameters such as chlorophyll, total soluble sugars and nitrogen content. The expression of Ha-NAC01, Ha-NAC03, Ha-NAC04, Ha-NAC05 and Ha-MYB01 TFs increased before the remobilization rate increased and therefore, before the appearance of the first physiological symptoms of senescence, whereas Ha-NAC02 expression decreased. In addition, we also examined the trifurcate feed-forward pathway (involving ORE1, miR164, and ethylene insensitive 2) previously reported for Arabidopsis. We measured transcription of Ha-NAC01 (the sunflower homolog of ORE1) and Ha-EIN2, along with the levels of miR164, in two leaves from different stem positions, and identified differences in transcription between basal and upper leaves. Interestingly, Ha-NAC01 and Ha-EIN2 transcription profiles showed an earlier up-regulation in upper leaves of plants close to maturity, compared with basal leaves of plants at pre-anthesis stages. These results suggest that the H. annuus TFs characterized in this work could play important

  12. A dynamic leaf gas-exchange strategy is conserved in woody plants under changing ambient CO2: evidence from carbon isotope discrimination in paleo and CO2 enrichment studies

    Science.gov (United States)

    Voelker, Steven L.; Brooks, J. Renée; Meinzer, Frederick C.; Anderson, Rebecca D.; Bader, Martin K.-F.; Battipaglia, Giovanna; Becklin, Katie M.; Beerling, David; Bert, Didier; Betancourt, Julio L.; Dawson, Todd E.; Domec, Jean-Christophe; Guyette, Richard P.; Körner, Christian; Leavitt, Steven W.; Linder, Sune; Marshall, John D.; Mildner, Manuel; Ogée, Jérôme; Panyushkina, Irina P.; Plumpton, Heather J.; Pregitzer, Kurt S.; Saurer, Matthias; Smith, Andrew R.; Siegwolf, Rolf T.W.; Stambaugh, Michael C.; Talhelm, Alan F.; Tardif, Jacques C.; Van De Water, Peter K.; Ward, Joy K.; Wingate, Lisa

    2016-01-01

    Rising atmospheric [CO2], ca, is expected to affect stomatal regulation of leaf gas-exchange of woody plants, thus influencing energy fluxes as well as carbon (C), water, and nutrient cycling of forests. Researchers have proposed various strategies for stomatal regulation of leaf gas-exchange that include maintaining a constant leaf internal [CO2], ci, a constant drawdown in CO2(ca − ci), and a constant ci/ca. These strategies can result in drastically different consequences for leaf gas-exchange. The accuracy of Earth systems models depends in part on assumptions about generalizable patterns in leaf gas-exchange responses to varying ca. The concept of optimal stomatal behavior, exemplified by woody plants shifting along a continuum of these strategies, provides a unifying framework for understanding leaf gas-exchange responses to ca. To assess leaf gas-exchange regulation strategies, we analyzed patterns in ci inferred from studies reporting C stable isotope ratios (δ13C) or photosynthetic discrimination (∆) in woody angiosperms and gymnosperms that grew across a range of ca spanning at least 100 ppm. Our results suggest that much of the ca-induced changes in ci/ca occurred across ca spanning 200 to 400 ppm. These patterns imply that ca − ci will eventually approach a constant level at high ca because assimilation rates will reach a maximum and stomatal conductance of each species should be constrained to some minimum level. These analyses are not consistent with canalization toward any single strategy, particularly maintaining a constant ci. Rather, the results are consistent with the existence of a broadly conserved pattern of stomatal optimization in woody angiosperms and gymnosperms. This results in trees being profligate water users at low ca, when additional water loss is small for each unit of C gain, and increasingly water-conservative at high ca, when photosystems are saturated and water loss is large for each unit C gain.

  13. Mutations in the Arabidopsis AtMRS2-11/AtMGT10/VAR5 Gene Cause Leaf Reticulation

    Directory of Open Access Journals (Sweden)

    Shuang Liang

    2017-11-01

    Full Text Available In higher plants, the development of functional chloroplasts is essential for photosynthesis and many other physiological processes. With a long-term goal of elucidating the genetic regulation of chloroplast development, we identified two allelic leaf variegation mutants, variegated5-1 (var5-1 and var5-2. Both mutants showed a distinct leaf reticulation phenotype of yellow paraveinal regions and green interveinal regions, and the leaf reticulation phenotype correlated with photosynthetic defects. Through the identification of mutation sites in the two mutant alleles and the molecular complementation, we confirmed that VAR5 encodes a CorA family of Mg2+ transporters also known as AtMRS2-11/AtMGT10. Using protoplast transient expression and biochemical fractionation assays, we demonstrated that AtMRS2-11/AtMGT10/VAR5 likely localizes to the chloroplast envelope. Moreover, we established that AtMRS2-11/AtMGT10/VAR5 forms large molecular weight complexes in the chloroplast and the sizes of these complexes clearly exceed those of their bacterial counterparts, suggesting the compositions of CorA Mg2+ transporter complex is different between the chloroplast and bacteria. Our findings indicate that AtMRS2-11/AtMGT10/VAR5 plays an important role in the tissue specific regulation of chloroplast development.

  14. Baby leaf lettuce germplasm enhancement: developing diverse populations with resistance to bacterial leaf spot caused by Xanthomonas campestris pv. vitians

    Science.gov (United States)

    Baby leaf lettuce cultivars with resistance to bacterial leaf spot (BLS) caused by Xanthomonas campestris pv. vitians (Xcv) are needed to reduce crop losses. The objectives of this research were to assess the genetic diversity for BLS resistance in baby leaf lettuce cultivars and to select early gen...

  15. Leaf turgor loss point is correlated with drought tolerance and leaf carbon economics traits.

    Science.gov (United States)

    Zhu, Shi-Dan; Chen, Ya-Jun; Ye, Qing; He, Peng-Cheng; Liu, Hui; Li, Rong-Hua; Fu, Pei-Li; Jiang, Guo-Feng; Cao, Kun-Fang

    2018-05-01

    Leaf turgor loss point (πtlp) indicates the capacity of a plant to maintain cell turgor pressure during dehydration, which has been proven to be strongly predictive of the plant response to drought. In this study, we compiled a data set of πtlp for 1752 woody plant individuals belonging to 389 species from nine major woody biomes in China, along with reduced sample size of hydraulic and leaf carbon economics data. We aimed to investigate the variation of πtlp across biomes varying in water availability. We also tested two hypotheses: (i) πtlp predicts leaf hydraulic safety margins and (ii) it is correlated with leaf carbon economics traits. Our results showed that there was a positive relationship between πtlp and aridity index: biomes from humid regions had less negative values than those from arid regions. This supports the idea that πtlp may reflect drought tolerance at the scale of woody biomes. As expected, πtlp was significantly positively correlated with leaf hydraulic safety margins that varied significantly across biomes, indicating that this trait may be useful in modelling changes of forest components in response to increasing drought. Moreover, πtlp was correlated with a suite of coordinated hydraulic and economics traits; therefore, it can be used to predict the position of a given species along the 'fast-slow' whole-plant economics spectrum. This study expands our understanding of the biological significance of πtlp not only in drought tolerance, but also in the plant economics spectrum.

  16. on in vitro callus initiation using leaf of artemisia annua

    African Journals Online (AJOL)

    insecticidal, anticancerous, antiseptic and febrifuge properties. It's oil has been found to repel fleas, mosquitoes and killed house flies(Morton 1981).In antiquity, plants of the genus Artemisia were also used to control the pangs of childbirth, regulate women's menstrual disorders, and as an abortifacient. In 1969, the Chinese.

  17. Comparative transcriptome profiling of a resistant vs. susceptible tomato (Solanum lycopersicum cultivar in response to infection by tomato yellow leaf curl virus.

    Directory of Open Access Journals (Sweden)

    Tianzi Chen

    Full Text Available Tomato yellow leaf curl virus (TYLCV threatens tomato production worldwide by causing leaf yellowing, leaf curling, plant stunting and flower abscission. The current understanding of the host plant defense response to this virus is very limited. Using whole transcriptome sequencing, we analyzed the differential gene expression in response to TYLCV infection in the TYLCV-resistant tomato breeding line CLN2777A (R and TYLCV-susceptible tomato breeding line TMXA48-4-0 (S. The mixed inoculated samples from 3, 5 and 7 day post inoculation (dpi were compared to non-inoculated samples at 0 dpi. Of the total of 34831 mapped transcripts, 209 and 809 genes were differentially expressed in the R and S tomato line, respectively. The proportion of up-regulated differentially expressed genes (DEGs in the R tomato line (58.37% was higher than that in the S line (9.17%. Gene ontology (GO analyses revealed that similar GO terms existed in both DEGs of R and S lines; however, some sets of defense related genes and their expression levels were not similar between the two tomato lines. Genes encoding for WRKY transcriptional factors, R genes, protein kinases and receptor (-like kinases which were identified as down-regulated DEGs in the S line were up-regulated or not differentially expressed in the R line. The up-regulated DEGs in the R tomato line revealed the defense response of tomato to TYLCV infection was characterized by the induction and regulation of a series of genes involved in cell wall reorganization, transcriptional regulation, defense response, ubiquitination, metabolite synthesis and so on. The present study provides insights into various reactions underlining the successful establishment of resistance to TYLCV in the R tomato line, and helps in the identification of important defense-related genes in tomato for TYLCV disease management.

  18. 7 CFR 29.3528 - Leaf surface.

    Science.gov (United States)

    2010-01-01

    ... INSPECTION Standards Official Standard Grades for Dark Air-Cured Tobacco (u.s. Types 35, 36, 37 and Foreign Type 95) § 29.3528 Leaf surface. The roughness or smoothness of the web or lamina of a tobacco leaf...

  19. Conflict between intrinsic leaf asymmetry and phyllotaxis in the resupinate leaves of Alstroemeria psittacina

    Directory of Open Access Journals (Sweden)

    Daniel H Chitwood

    2012-08-01

    Full Text Available Spiral phyllotactic patterning is the result of intricate auxin transport relationships in the shoot apical meristem (SAM that act to place auxin maxima at the future sites of leaf initiation. Inherent to this process is a bias in auxin distribution in leaf primordia, such that increased auxin is found on the descending side of the leaf (towards the older neighbor compared to the ascending side (towards the younger neighbor, creating phyllotactically-dependent leaf asymmetry. Separate from phyllotactic-dependent asymmetry is handedness in plants—that is, genetically encoded, fixed chirality, such as the twining of certain vines and the torsions induced by microtubule mutations. Here, we perform a morphometric analysis on the resupinate leaves of Alstroemeria psittacina. Interestingly, the twist in leaves always occurs in a single direction, regardless of the phyllotactic direction of the plant. Because of the resupination, leaves in this species possess an inherent handedness. However, this asymmetry is modulated in a phyllotactic-dependent manner, consistent with the known developmental constraints of phyllotaxis upon leaf morphology. This creates the interesting circumstance in A. psittacina that leaves arising from plants with a counter-clockwise phyllotactic direction are 1 more asymmetric, 2 larger, and 3 possess symmetrical shape differences relative to leaves from plants with clockwise phyllotaxis. The mechanism underlying these differences likely involves a developmental delay in clockwise leaves caused by the conflict between the phyllotaxis-dependent asymmetry and asymmetry resulting from resupination. The evolutionary implications of a dimorphic population without a genetic basis for selection to act upon are discussed.

  20. What Is a Leaf? An Online Tutorial and Tests

    Science.gov (United States)

    Burrows, Geoffrey

    2008-01-01

    A leaf is a fundamental unit in botany and understanding what constitutes a leaf is fundamental to many plant science activities. My observations and subsequent testing indicated that many students could not confidently and consistently recognise a leaf from a leaflet, or recognise basic leaf arrangements and the various types of compound or…

  1. Phytotoxicity of leaf aqueous extract of Rapanea umbellata (Mart. Mez (Primulaceae on weeds - doi: 10.4025/actasciagron.v35i2.16166

    Directory of Open Access Journals (Sweden)

    Paula Novaes

    2012-12-01

    Full Text Available Allelopathic substances can be used to develop weed control alternatives based on natural products. The objective of this study was to compare the phytotoxic activity of aqueous leaf extracts of Rapanea umbellata with the toxicity of a synthetic herbicide on the germination and growth of weed species. The weeds species barnyard grass (Echinochloa crus-galli, wild poinsettia (Euphorbia heterophylla and morning glory (Ipomoea grandifolia were used. The effects of the aqueous leaf extract of R. umbellata at concentrations of 10% and 5% (g mL-1 were compared to the control (distilled water and to the synthetic herbicide oxyfluorfen. The average weed germination time was significantly lower (p < 0.05 in control than in extract and herbicide treatments. The herbicide had more significant effects than the extract on the initial growth of the aerial part. However, the initial growth of the root part was significantly more affected by the leaf extract than by the herbicide. The extract also caused many disorders in weed root anatomy. Therefore, the leaf aqueous extract of R. umbellata showed important results that indicate that it should be bioprospected and that its allelochemicals should be purified for the discovery of natural-origin herbicides.

  2. Ethylene-auxin interactions regulate lateral root initiation and emergence in Arabidopsis thaliana.

    Science.gov (United States)

    Ivanchenko, Maria G; Muday, Gloria K; Dubrovsky, Joseph G

    2008-07-01

    Plant root systems display considerable plasticity in response to endogenous and environmental signals. Auxin stimulates pericycle cells within elongating primary roots to enter de novo organogenesis, leading to the establishment of new lateral root meristems. Crosstalk between auxin and ethylene in root elongation has been demonstrated, but interactions between these hormones in root branching are not well characterized. We find that enhanced ethylene synthesis, resulting from the application of low concentrations of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), promotes the initiation of lateral root primordia. Treatment with higher doses of ACC strongly inhibits the ability of pericycle cells to initiate new lateral root primordia, but promotes the emergence of existing lateral root primordia: behaviour that is also seen in the eto1 mutation. These effects are correlated with decreased pericycle cell length and increased lateral root primordia cell width. When auxin is applied simultaneously with ACC, ACC is unable to prevent the auxin stimulation of lateral root formation in the root tissues formed prior to ACC exposure. However, in root tissues formed after transfer to ACC, in which elongation is reduced, auxin does not rescue the ethylene inhibition of primordia initiation, but instead increases it by several fold. Mutations that block auxin responses, slr1 and arf7 arf19, render initiation of lateral root primordia insensitive to the promoting effect of low ethylene levels, and mutations that inhibit ethylene-stimulated auxin biosynthesis, wei2 and wei7, reduce the inhibitory effect of higher ethylene levels, consistent with ethylene regulating root branching through interactions with auxin.

  3. Modeling the leaf angle dynamics in rice plant.

    Directory of Open Access Journals (Sweden)

    Yonghui Zhang

    Full Text Available The leaf angle between stem and sheath (SSA is an important rice morphological trait. The objective of this study was to develop and validate a dynamic SSA model under different nitrogen (N rates for selected rice cultivars. The time-course data of SSA were collected in three years, and a dynamic SSA model was developed for different main stem leaf ranks under different N rates for two selected rice cultivars. SSA increased with tiller age. The SSA of the same leaf rank increased with increase in N rate. The maximum SSA increased with leaf rank from the first to the third leaf, then decreased from the third to the final leaf. The relationship between the maximum SSA and leaf rank on main stem could be described with a linear piecewise function. The change of SSA with thermal time (TT was described by a logistic equation. A variety parameter (the maximum SSA of the 3rd leaf on main stem and a nitrogen factor were introduced to quantify the effect of cultivar and N rate on SSA. The model was validated against data collected from both pot and field experiments. The relative root mean square error (RRMSE was 11.56% and 14.05%, respectively. The resulting models could be used for virtual rice plant modeling and plant-type design.

  4. Screening Study of Leaf Terpene Concentration of 75 Borneo Rainforest Plant Species: Relationships with Leaf Elemental Concentrations and Morphology

    Directory of Open Access Journals (Sweden)

    Jordi Sardans

    2015-01-01

    Full Text Available Terpenes confer advantage in plant protection against abiotic stresses such as heat and drought and biotic stresses such as herbivore and pathogen attack. We conducted a screening of leaf mono- and sesquiterpene concentrations in 75 common woody plant species in the rainforest of Danum Valley (Borneo. Terpene compounds were found in 73 out of the 75 analysed species. Similar or lower proportions have been reported in other parts of the world. To our knowledge, this study reports for the first time the foliar concentration of mono- and/or sesquiterpene for 71 species and 39 genera not previously analyzed. Altogether 80 terpene compounds were determined across the species, and out of these only linalool oxide and (E- g -bisabolene had phylogenetic signal. A significant negative relationship between leaf monoterpene concentration and leaf length was observed, but leaf mono- and sesquitepene concentration were not related to any other leaf morphological trait nor to leaf elemental composition. Functions such as temperature protection, radiation protection or signaling and communication could underlie the high frequency of terpene-containing species of this tropical ecosystem which has multiple and very diverse interactions among multiple species.

  5. Identification of gibberellin acid-responsive proteins in rice leaf sheath using proteomics.

    Science.gov (United States)

    Gu, Jia-Yu; Wang, Ye; Zhang, Xu; Zhang, Shi-Hua; Gao, Yin; An, Cheng-Cai

    2010-06-01

    The phytohormone gibberellin acid (GA) controls many aspects of plant development. In this study, we identified proteins that are differentially expressed between the rice (Oryza sativa L.) GA-deficient cultivar, Aijiaonante, and its parental line, Nante. Proteins were extracted from rice leaf sheath and examined by 2DGE. Among more than 1200 protein spots reproducibly detected on each gel, 29 were found to be highly up-regulated by GAs in Nante, and 6 were down-regulated by GAs in Aijiaonante. These 35 proteins were identified by MALDI-TOF MS and were classified into three groups based on their putative function in metabolism, stress/defense processes and signal transduction. These data suggest that metabolic pathways are the main target of regulation by GAs during rice development. Our results provide new information about the involvement of GAs in rice development.

  6. Measurement of Leaf Mass and Leaf Area of Oaks In A Mediterranean-climate Region For Biogenic Emission Estimation

    Science.gov (United States)

    Karlik, J.

    Given the key role played by biogenic volatile organic compounds (BVOC) in tro- pospheric chemistry and regional air quality, it is critical to generate accurate BVOC emission inventories. Because several oak species have high BVOC emission rates, and oak trees are often of large stature with corresponding large leaf masses, oaks may be the most important genus of woody plants for BVOC emissions modeling in the natural landscapes of Mediterranean-climate regions. In California, BVOC emis- sions from oaks may mix with anthropogenic emissions from urban areas, leading to elevated levels of ozone. Data for leaf mass and leaf area for a stand of native blue oaks (Quercus douglasii) were obtained through harvest and leaf removal from 14 trees lo- cated in the Sierra Nevada foothills of central California. Trees ranged in height from 4.2 to 9.9 m, with trunk diameters at breast height of 14 to 85 cm. Mean leaf mass density was 730 g m-2 for the trees and had an overall value of 310 g m-2 for the site. Consideration of the surrounding grassland devoid of trees resulted in a value of about 150 g m-2, less than half of reported values for eastern U.S. oak woodlands, but close to a reported value for oaks found in St. Quercio, Italy. The mean value for leaf area index (LAI) for the trees at this site was 4.4 m2 m-2. LAI for the site was 1.8 m2 m-2, but this value was appropriate for the oak grove only; including the surrounding open grassland resulted in an overall LAI value of 0.9 m2 m-2 or less. A volumetric method worked well for estimating the leaf mass of the oak trees. Among allometric relationships investigated, trunk circumference, mean crown radius, and crown projec- tion were well correlated with leaf mass. Estimated emission of isoprene (mg C m-2 h-1) for the site based these leaf mass data and experimentally determined emission rate was similar to that reported for a Mediterranean oak woodland in France.

  7. Leaf-jams - A new and unique leaf deposit in the ephemeral Hoanib River, NW Namibia: Origin and plant taphonomic implications

    Energy Technology Data Exchange (ETDEWEB)

    Hofmann, Christa-Ch. [University of Vienna, Department of Palaeontology, Palaeobotany Studies Group, Althanstrasse 14, 1090, Vienna (Austria); Rice, A. Hugh N. [University of Vienna, Department of Geodynamics and Sedimentology, Althanstrasse 14, 1090, Vienna (Austria)

    2010-08-01

    This paper documents a previously unrecorded type of leaf deposit, comprising essentially monospecific linear accumulations of Colophospermum mopane leaves on a point bar of the ephemeral Hoanib River, NW Namibia. In these 'leaf-jams', leaf laminae stand on edge, orientated more-or-less normal to bedding. Leaf-jams, which formed upstream of cobbles, clumps of grass and sticks wedged against the former two, were orientated subparallel to the adjacent meandering river-bed, such that over the 40 m of their occurrence, their mean azimuth changed by 59 anticlockwise downstream. The longest leaf-jam was 50 cm and contained approximately 500 leaves, as well as grass culms, twigs (C. mopane, Tamarix usneoides and unidentified) and medium- to fine-grained sand and silt. Individual leaf-jams were partially buried in the point bar sediments up to a depth of 3 cm. Leaf-jam formation occurred in the austral summer of 2006, during the waning stage of a major flood caused by anomalous tropical to extra-tropical storms. Their monospecifity is due to the overwhelming preponderance of the zonal taxon C. mopane in the catchment area, although the Khowarib Gorge contains a quite diverse azonal plant association due to the presence of a permanent water-seep. During leaf-jam formation, the water depth was less than the height of the cobbles (0.1 m), with stream flow-rates competent to transport medium-grained sand (velocity estimated at 0.5 m s{sup -} {sup 1}). Leaves must have been partially or fully waterlogged to inhibit buoyancy forces tending to lift them out of the developing leaf-jams, which propagated upstream in a manner comparable to longitudinal bars in a braided river. If fossilised, such deposits would probably lead to a very biased interpretation of the composition of the surrounding flora; the correct interpretation would be the one least favoured by palaeobotanists. (author)

  8. Chromosome-damaging effect of betel leaf.

    Science.gov (United States)

    Sadasivan, G; Rani, G; Kumari, C K

    1978-05-01

    The chewing of betel leaf with other ingredients is a widespread addiction in India. The chromosome damaging effect was studied in human leukocyte cultures. There was an increase in the frequency of chromatid aberrations when the leaf extract was added to cultures.

  9. Physiological response and differential leaf proteome pattern in the European invasive Asteraceae Solidago canadensis colonizing a former cokery soil.

    Science.gov (United States)

    Immel, Françoise; Renaut, Jenny; Masfaraud, Jean-François

    2012-02-02

    Derelict contaminated sites are often colonized spontaneously by plant species leading to a vegetal cover thought to limit particle dispersal and polluted water infiltration. Those plants must cope with soil pollutants through tolerance mechanisms that are not yet fully understood. Here, we focused our attention on a particular Asteraceae plant, Solidago canadensis, considered as invasive in Europe. S. canadensis spontaneously growing on either polluted (NM soil) or control soils dumped on experimental plots were studied for their physiological status, oxidative stress and 2D-DIGE of leaf extracts. S. canadensis tolerance to soil pollutants was demonstrated since growth rates, allocation to reproduction ratios and Fv/Fm ratios were similar in plants from control and NM soil. At the cell level, the catalase activity level was increased in plants collected on NM soil while lipoperoxidation was unaffected. Also, the leaf proteomic study revealed thirty down-regulated and sixty-six up-regulated proteins. Abundances of proteins related to oxidative stress, carbohydrate metabolism, ion transport were mainly up-regulated while those of proteins involved in cell cycle and transcription/translation were mostly down-regulated. Proteins associated to protein metabolism were either down- or up-regulated. Considered altogether, we highlighted that S. canadensis exhibited a complex proteome response when experiencing a multicontaminated soil. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Does leaf chemistry differentially affect breakdown in tropical vs temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ard& #243; n; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to measure leaf chemistry. We used standardized analytical techniques to measure chemistry and breakdown rate of leaves from common riparian tree species at 2 sites, 1...

  11. Penumbra characteristics of square photon beams delimited by a GEMS multi-leaf collimator

    Energy Technology Data Exchange (ETDEWEB)

    Briot, E; Julia, F [Centre de Lutte Contre le Cancer Gustave-Roussy, 94 - Villejuif (France)

    1995-12-01

    A multi-leaf collimator (MLC) has been designed to replace directly the standard collimator of a SATURNE IV Series linac. It consists of 2 x 32 tungsten leaves and one set of upper block jaws. Isodose curves and dose profiles were measured for symmetric fields at the depth of the maximum and the reference depths for 6 MV, 10 MV, 18 MV photon beams. The penumbra (80%-20%) corresponding to the face and the side of the leaves have been compared with the standard collimators. Along with the X direction, the field delimitation is performed primarily with the leaves which are continuously variable in position. Along the Y direction, the field is initially approximated by the closure of opposite leaf pairs; then the Y upper jaws produce the exact size of the required field. As the leaves move linearly the penumbra (80%-20%) corresponding to the leaf ends is minimized and held constant at all positions by curvature of their faces. Penumbra obtained with the superposition of leaves and Y jaws depend on their relative position. The penumbra is minimum when the leaf side and the Y jaw edge coincide and the comparison of the measurement values with the conventional collimator shows that the differences are within 1 mm. When the leaves delineating the field are not entirely covered by the Y block upper jaws, the penumbra increases, and the junction of the opposing leaves, a width increase up to 3.5 mm has been measured.

  12. Factors that affect leaf extracellular ascorbic acid content and redox status

    Energy Technology Data Exchange (ETDEWEB)

    Burkey, K.O.; Fiscus, E.L. [North Carolina State Univ., United States dept. og Agriculture-Agricultural Research Service and Dept. of Crop Science, Raleigh, NC (United States); Eason, G. [North Carolina, State Univ., United States Dept. of Plant Pathology, Raleigh, NC (United States)

    2003-01-01

    Leaf ascorbic acid content and redox status were compared in ozone-tolerant (Provider) and ozone-sensitive (S156) genotypes of snap bean (Phaseolus vulgaris L.). Plants were grown in pots for 24 days under charcoal-filtered air (CF) conditions in open-top field chambers and then maintained as CF controls (29 nmol mol{sup 1} ozone) or exposed to elevated ozone (71 nmol mol{sup 1} ozone). Following a 10-day treatment, mature leaves of the same age were harvested early in the morning (06:00-08:00 h) or in the afternoon (13:00-15:00 h) for analysis of ascorbic acid (AA) and dehydroascorbic acid (DHA). Vacuum infiltration methods were used to separate leaf AA into apoplast and symplast fractions. The total ascorbate content [AA + DHA] of leaf tissue averaged 28% higher in Provider relative to S156, and Provider exhibited a greater capacity to maintain [AA + DHA] content under ozone stress. Apoplast [AA + DHA] content was 2-fold higher in tolerant Provider (360 nmol g{sup 1} FW maximum) relative to sensitive S156 (160 nmol g1 FW maximum) regardless of sampling period or treatment, supporting the hypothesis that extracellular AA is a factor in ozone tolerance. Apoplast [AA + DHA] levels were significantly higher in the afternoon than early morning for both genotypes, evidence for short-term regulation of extracellular ascorbate content. Total leaf ascorbate was primarily reduced with AA/[AA + DHA] ratios of 0.81-0.90. In contrast, apoplast AA/[AA + DHA] ratios were 0.01-0.60 and depended on genotype and ozone treatment. Provider exhibited a greater capacity to maintain extracellular AA/[AA + DHA] ratios under ozone stress, suggesting that ozone tolerance is associated with apoplast ascorbate redox status. (au)

  13. Effects of plant growth regulators in heliconia ‘Red Opal’

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Ribeiro de Castro

    2016-12-01

    Full Text Available The objective of this study was to evaluate growth regulators with purpose of reducing the size of heliconia ‘Red Opal’ potted plants. The experiment was carried out in randomized block design with five treatments (trinexapac-ethyl and paclobutrazol at rates of 37.5 and 75.0 mg of active ingredient per pot and control without growth regulator and five replicates. The treatments were applied 40 days after planting the rhizomes in pots filled with soil. Thirty and 150 days after the growth regulator application, plant height, number of leaves and shoots, petioles length and leaf area were evaluated. One year after planting the rhizomes in pots the number of inflorescence and leaves (leaves, sheathing leaf bases and inflorescences and rhizomes (rhizomes and roots dry mass were determined. Trinexapac-ethyl had no differences compared to the control in any of the variables evaluated. Paclobutrazol proved effective in reducing plant height, leaf area and petiole length and increase in number of leaves and shoots but the effect was temporary. Also, it did not affect the inflorescences production and leaves and rhizomes dry mass. Paclobutrazol is efficient to promote height reduction and to increase the number of shoots in heliconia ‘Red Opal’ potted plants without affect the inflorescence formation but its effects is temporary.

  14. Impact of anatomical traits of maize (Zea mays L.) leaf as affected by nitrogen supply and leaf age on bundle sheath conductance.

    Science.gov (United States)

    Retta, Moges; Yin, Xinyou; van der Putten, Peter E L; Cantre, Denis; Berghuijs, Herman N C; Ho, Quang Tri; Verboven, Pieter; Struik, Paul C; Nicolaï, Bart M

    2016-11-01

    The mechanism of photosynthesis in C 4 crops depends on the archetypal Kranz-anatomy. To examine how the leaf anatomy, as altered by nitrogen supply and leaf age, affects the bundle sheath conductance (g bs ), maize (Zea mays L.) plants were grown under three contrasting nitrogen levels. Combined gas exchange and chlorophyll fluorescence measurements were done on fully grown leaves at two leaf ages. The measured data were analysed using a biochemical model of C 4 photosynthesis to estimate g bs . The leaf microstructure and ultrastructure were quantified using images obtained from micro-computed tomography and microscopy. There was a strong positive correlation between g bs and leaf nitrogen content (LNC) while old leaves had lower g bs than young leaves. Leaf thickness, bundle sheath cell wall thickness and surface area of bundle sheath cells per unit leaf area (S b ) correlated well with g bs although they were not significantly affected by LNC. As a result, the increase of g bs with LNC was little explained by the alteration of leaf anatomy. In contrast, the combined effect of LNC and leaf age on S b was responsible for differences in g bs between young leaves and old leaves. Future investigations should consider changes at the level of plasmodesmata and membranes along the CO 2 leakage pathway to unravel LNC and age effects further. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Photoperiod-H1 (Ppd-H1) Controls Leaf Size1[OPEN

    Science.gov (United States)

    Digel, Benedikt; Tavakol, Elahe; Verderio, Gabriele; Xu, Xin

    2016-01-01

    Leaf size is a major determinant of plant photosynthetic activity and biomass; however, it is poorly understood how leaf size is genetically controlled in cereal crop plants like barley (Hordeum vulgare). We conducted a genome-wide association scan for flowering time, leaf width, and leaf length in a diverse panel of European winter cultivars grown in the field and genotyped with a single-nucleotide polymorphism array. The genome-wide association scan identified PHOTOPERIOD-H1 (Ppd-H1) as a candidate gene underlying the major quantitative trait loci for flowering time and leaf size in the barley population. Microscopic phenotyping of three independent introgression lines confirmed the effect of Ppd-H1 on leaf size. Differences in the duration of leaf growth and consequent variation in leaf cell number were responsible for the leaf size differences between the Ppd-H1 variants. The Ppd-H1-dependent induction of the BARLEY MADS BOX genes BM3 and BM8 in the leaf correlated with reductions in leaf size and leaf number. Our results indicate that leaf size is controlled by the Ppd-H1- and photoperiod-dependent progression of plant development. The coordination of leaf growth with flowering may be part of a reproductive strategy to optimize resource allocation to the developing inflorescences and seeds. PMID:27457126

  16. Leaf wetness distribution within a potato crop

    Science.gov (United States)

    Heusinkveld, B. G.

    2010-07-01

    The Netherlands has a mild maritime climate and therefore the major interest in leaf wetness is associated with foliar plant diseases. During moist micrometeorological conditions (i.e. dew, fog, rain), foliar fungal diseases may develop quickly and thereby destroy a crop quickly. Potato crop monocultures covering several hectares are especially vulnerable to such diseases. Therefore understanding and predicting leaf wetness in potato crops is crucial in crop disease control strategies. A field experiment was carried out in a large homogeneous potato crop in the Netherlands during the growing season of 2008. Two innovative sensor networks were installed as a 3 by 3 grid at 3 heights covering an area of about 2 hectares within two larger potato crops. One crop was located on a sandy soil and one crop on a sandy peat soil. In most cases leaf wetting starts in the top layer and then progresses downward. Leaf drying takes place in the same order after sunrise. A canopy dew simulation model was applied to simulate spatial leaf wetness distribution. The dew model is based on an energy balance model. The model can be run using information on the above-canopy wind speed, air temperature, humidity, net radiation and within canopy air temperature, humidity and soil moisture content and temperature conditions. Rainfall was accounted for by applying an interception model. The results of the dew model agreed well with the leaf wetness sensors if all local conditions were considered. The measurements show that the spatial correlation of leaf wetness decreases downward.

  17. Foraging on individual leaves by an intracellular feeding insect is not associated with leaf biomechanical properties or leaf orientation.

    Directory of Open Access Journals (Sweden)

    Justin Fiene

    Full Text Available Nearly all herbivorous arthropods make foraging-decisions on individual leaves, yet systematic investigations of the adaptive significance and ecological factors structuring these decisions are rare with most attention given to chewing herbivores. This study investigated why an intracellular feeding herbivore, Western flower thrips (WFT Frankliniella occidentalis Pergande, generally avoids feeding on the adaxial leaf surface of cotton cotyledons. WFT showed a significant aversion to adaxial-feeding even when excised-cotyledons were turned up-side (abaxial-side 'up', suggesting that negative-phototaxis was not a primary cause of thrips foraging patterns. No-choice bioassays in which individual WFT females were confined to either the abaxial or adaxial leaf surface showed that 35% fewer offspring were produced when only adaxial feeding was allowed, which coincided with 32% less plant feeding on that surface. To test the hypothesis that leaf biomechanical properties inhibited thrips feeding on the adaxial surface, we used a penetrometer to measure two variables related to the 'toughness' of each leaf surface. Neither variable negatively co-varied with feeding. Thus, while avoiding the upper leaf surface was an adaptive foraging strategy, the proximate cause remains to be elucidated, but is likely due, in part, to certain leaf properties that inhibit feeding.

  18. Leaf litter traits of invasive species slow down decomposition compared to Spanish natives: a broad phylogenetic comparison.

    Science.gov (United States)

    Godoy, Oscar; Castro-Díez, Pilar; Van Logtestijn, Richard S P; Cornelissen, Johannes H C; Valladares, Fernando

    2010-03-01

    Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their "after life" effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardized incubations, in 19 invasive-native pairs of co-familial species from Spain. They included 12 woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native) > leaf type. Within species pairs litter decomposition tended to be slower and more dependent on N and P in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.

  19. Inheritance of okra leaf type in different genetic backgrounds and its ...

    African Journals Online (AJOL)

    use

    2011-11-21

    Nov 21, 2011 ... discontinuous variation for leaf shape in F2 generations of three crosses .... Variable classes in leaf types (a) Normal leaf (b) Okra leaf (c) Sub-okra leaf. ..... insect pests on different isogenic lines of cotton variety H-777. J.

  20. The T-ALL related gene BCL11B regulates the initial stages of human T-cell differentiation.

    Science.gov (United States)

    Ha, V L; Luong, A; Li, F; Casero, D; Malvar, J; Kim, Y M; Bhatia, R; Crooks, G M; Parekh, C

    2017-11-01

    The initial stages of T-cell differentiation are characterized by a progressive commitment to the T-cell lineage, a process that involves the loss of alternative (myelo-erythroid, NK, B) lineage potentials. Aberrant differentiation during these stages can result in T-cell acute lymphoblastic leukemia (T-ALL). However, the mechanisms regulating the initial stages of human T-cell differentiation are obscure. Through loss of function studies, we showed BCL11B, a transcription factor recurrently mutated T-ALL, is essential for T-lineage commitment, particularly the repression of NK and myeloid potentials, and the induction of T-lineage genes, during the initial stages of human T-cell differentiation. In gain of function studies, BCL11B inhibited growth of and induced a T-lineage transcriptional program in T-ALL cells. We found previously unknown differentiation stage-specific DNA binding of BCL11B at multiple T-lineage genes; target genes showed BCL11B-dependent expression, suggesting a transcriptional activator role for BCL11B at these genes. Transcriptional analyses revealed differences in the regulatory actions of BCL11B between human and murine thymopoiesis. Our studies show BCL11B is a key regulator of the initial stages of human T-cell differentiation and delineate the BCL11B transcriptional program, enabling the dissection of the underpinnings of normal T-cell differentiation and providing a resource for understanding dysregulations in T-ALL.

  1. Waiting for the Leaf; Warten auf den Leaf

    Energy Technology Data Exchange (ETDEWEB)

    Wilms, Jan

    2012-01-15

    Nissan will be the first manufacturer to launch an electric vehicle of the VW Golf category in the German market. With a mileage of about 170 km and a roomy passenger compartment, the Leaf promises much comfort. In the US market, it was launched two years ago. Was it worth while waiting for?.

  2. From leaf to whole-plant water use efficiency (WUE in complex canopies: Limitations of leaf WUE as a selection target

    Directory of Open Access Journals (Sweden)

    Hipólito Medrano

    2015-06-01

    Full Text Available Plant water use efficiency (WUE is becoming a key issue in semiarid areas, where crop production relies on the use of large volumes of water. Improving WUE is necessary for securing environmental sustainability of food production in these areas. Given that climate change predictions include increases in temperature and drought in semiarid regions, improving crop WUE is mandatory for global food production. WUE is commonly measured at the leaf level, because portable equipment for measuring leaf gas exchange rates facilitates the simultaneous measurement of photosynthesis and transpiration. However, when those measurements are compared with daily integrals or whole-plant estimates of WUE, the two sometimes do not agree. Scaling up from single-leaf to whole-plant WUE was tested in grapevines in different experiments by comparison of daily integrals of instantaneous water use efficiency [ratio between CO2 assimilation (AN and transpiration (E; AN/E] with midday AN/E measurements, showing a low correlation, being worse with increasing water stress. We sought to evaluate the importance of spatial and temporal variation in carbon and water balances at the leaf and plant levels. The leaf position (governing average light interception in the canopy showed a marked effect on instantaneous and daily integrals of leaf WUE. Night transpiration and respiration rates were also evaluated, as well as respiration contributions to total carbon balance. Two main components were identified as filling the gap between leaf and whole plant WUE: the large effect of leaf position on daily carbon gain and water loss and the large flux of carbon losses by dark respiration. These results show that WUE evaluation among genotypes or treatments needs to be revised.

  3. A finger leaf design for dual layer MLCs

    International Nuclear Information System (INIS)

    Cui Weijie; Dai Jianrong

    2010-01-01

    Objective: To introduce a finger leaf design that is applied to dual layer MLCs. Methods: An optimization model was firstly constructed to describe the problem of determining leaf end shapes,and the corresponding problems were then solved by the simplex search method or the simulated annealing technique. Optimal parameters for arc shapes of leaf end projections were obtained, and a comparison was done between optimized MLCs and conventional MLCs in terms of field conformity. The optimization process was based on 634 target fields selected from the patient data base of a treatment planning system. Areas of these fields ranged from 20.0 to 602.7 cm with a mean and its standard deviation of (125.7 ± 0.0) cm 2 . Results: The optimized leaf end shapes projected to the isocenter plane were semicircles. With the finger leaf design, the total area of discrepancy regions between MLC fields and target fields was reduced by 32.3%. Conclusions: The finger leaf design improves the conformity of the MLC shaped fields to the desired target fields. (authors)

  4. Leaf Wetness within a Lily Canopy

    NARCIS (Netherlands)

    Jacobs, A.F.G.; Heusinkveld, B.G.; Klok, E.J.

    2005-01-01

    A wetness duration experiment was carried out within a lily field situated adjacent to coastal dunes in the Netherlands. A within-canopy model was applied to simulate leaf wetness in three layers, with equal leaf area indices, within the canopy. This simulation model is an extension of an existing

  5. How Does Temperature Impact Leaf Size and Shape in Four Woody Dicot Species? Testing the Assumptions of Leaf Physiognomy-Climate Models

    Science.gov (United States)

    McKee, M.; Royer, D. L.

    2017-12-01

    The physiognomy (size and shape) of fossilized leaves has been used to reconstruct the mean annual temperature of ancient environments. Colder temperatures often select for larger and more abundant leaf teeth—serrated edges on leaf margins—as well as a greater degree of leaf dissection. However, to be able to accurately predict paleotemperature from the morphology of fossilized leaves, leaves must be able to react quickly and in a predictable manner to changes in temperature. We examined the extent to which temperature affects leaf morphology in four tree species: Carpinus caroliniana, Acer negundo, Ilex opaca, and Ostrya virginiana. Saplings of these species were grown in two growth cabinets under contrasting temperatures (17 and 25 °C). Compared to the cool treatment, in the warm treatment Carpinus caroliniana leaves had significantly fewer leaf teeth and a lower ratio of total number of leaf teeth to internal perimeter; and Acer negundo leaves had a significantly lower feret diameter ratio (a measure of leaf dissection). In addition, a two-way ANOVA tested the influence of temperature and species on leaf physiognomy. This analysis revealed that all plants, regardless of species, tended to develop more highly dissected leaves with more leaf teeth in the cool treatment. Because the cabinets maintained equivalent moisture, humidity, and CO2 concentration between the two treatments, these results demonstrate that these species could rapidly adapt to changes in temperature. However, not all of the species reacted identically to temperature changes. For example, Acer negundo, Carpinus caroliniana, and Ostrya virginiana all had a higher number of total teeth in the cool treatment compared to the warm treatment, but the opposite was true for Ilex opaca. Our work questions a fundamental assumption common to all models predicting paleotemperature from the physiognomy of fossilized leaves: a given climate will inevitably select for the same leaf physiognomy

  6. Transcriptional profile of genes involved in ascorbate glutathione cycle in senescing leaves for an early senescence leaf (esl) rice mutant.

    Science.gov (United States)

    Li, Zhaowei; Su, Da; Lei, Bingting; Wang, Fubiao; Geng, Wei; Pan, Gang; Cheng, Fangmin

    2015-03-15

    To clarify the complex relationship between ascorbate-glutathione (AsA-GSH) cycle and H2O2-induced leaf senescence, the genotype-dependent difference in some senescence-related physiological parameters and the transcript levels and the temporal patterns of genes involved in the AsA-GSH cycle during leaf senescence were investigated using two rice genotypes, namely, the early senescence leaf (esl) mutant and its wild type. Meanwhile, the triggering effect of exogenous H2O2 on the expression of OsAPX genes was examined using detached leaves. The results showed that the esl mutant had higher H2O2 level than its wild type at the initial stage of leaf senescence. At transcriptional level, the association of expression of various genes involved in the AsA-GSH cycle with leaf senescence was isoform dependent. For OsAPXs, the transcripts of two cytosolic OsAPX genes (OsAPX1 and OsAPX2), thylakoid-bound OsAPX8, chloroplastic OsAPX7 and peroxisomal OsAPX4 exhibited remarkable genotype-dependent variation in their expression levels and temporal patterns during leaf senescence, there were significantly increasing transcripts of OsAXP1 and OsAPX7, severely repressed transcripts of OsAPX4 and OsAPX8 for the esl rice at the initial leaf senescence. In contrast, the repressing transcript of OsAPX8 was highly sensitive to the increasing H2O2 level in the senescing rice leaves, while higher H2O2 concentration resulted in the enhancing transcripts of two cytosolic OsAPX genes, OsAPX7 transcript was greatly variable with different H2O2 concentrations and incubating duration, suggesting that the different OsAPXs isoforms played a complementary role in perceiving and scavenging H2O2 accumulation at various H2O2 concentrations during leaf senescence. Higher H2O2 level, increased AsA level, higher activities of APX and glutathione reductase (GR), and relatively stable GSH content during the entire sampling period in the leaves of esl mutant implied that a close interrelationship existed

  7. Branch age and light conditions determine leaf-area-specific conductivity in current shoots of Scots pine.

    Science.gov (United States)

    Grönlund, Leila; Hölttä, Teemu; Mäkelä, Annikki

    2016-08-01

    Shoot size and other shoot properties more or less follow the availability of light, but there is also evidence that the topological position in a tree crown has an influence on shoot development. Whether the hydraulic properties of new shoots are more regulated by the light or the position affects the shoot acclimation to changing light conditions and thereby to changing evaporative demand. We investigated the leaf-area-specific conductivity (and its components sapwood-specific conductivity and Huber value) of the current-year shoots of Scots pine (Pinus sylvestris L.) in relation to light environment and topological position in three different tree classes. The light environment was quantified in terms of simulated transpiration and the topological position was quantified by parent branch age. Sample shoot measurements included length, basal and tip diameter, hydraulic conductivity of the shoot, tracheid area and density, and specific leaf area. In our results, the leaf-area-specific conductivity of new shoots declined with parent branch age and increased with simulated transpiration rate of the shoot. The relation to transpiration demand seemed more decisive, since it gave higher R(2) values than branch age and explained the differences between the tree classes. The trend of leaf-area-specific conductivity with simulated transpiration was closely related to Huber value, whereas the trend of leaf-area-specific conductivity with parent branch age was related to a similar trend in sapwood-specific conductivity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  8. Carbohydrate regulation of photosynthesis and respiration from branch girdling in four species of wet tropical rain forest trees.

    Science.gov (United States)

    Asao, Shinichi; Ryan, Michael G

    2015-06-01

    How trees sense source-sink carbon balance remains unclear. One potential mechanism is a feedback from non-structural carbohydrates regulating photosynthesis and removing excess as waste respiration when the balance of photosynthesis against growth and metabolic activity changes. We tested this carbohydrate regulation of photosynthesis and respiration using branch girdling in four tree species in a wet tropical rainforest in Costa Rica. Because girdling severs phloem to stop carbohydrate export while leaving xylem intact to allow photosynthesis, we expected carbohydrates to accumulate in leaves to simulate a carbon imbalance. We varied girdling intensity by removing phloem in increments of one-quarter of the circumference (zero, one--quarter, half, three-quarters, full) and surrounded a target branch with fully girdled ones to create a gradient in leaf carbohydrate content. Light saturated photosynthesis rate was measured in situ, and foliar respiration rate and leaf carbohydrate content were measured after destructive harvest at the end of the treatment. Girdling intensity created no consistent or strong responses in leaf carbohydrates. Glucose and fructose slightly increased in all species by 3.4% per one-quarter girdle, total carbon content and leaf mass per area increased only in one species by 5.4 and 5.5% per one-quarter girdle, and starch did not change. Only full girdling lowered photosynthesis in three of four species by 59-69%, but the decrease in photosynthesis was unrelated to the increase in glucose and fructose content. Girdling did not affect respiration. The results suggest that leaf carbohydrate content remains relatively constant under carbon imbalance, and any changes are unlikely to regulate photosynthesis or respiration. Because girdling also stops the export of hormones and reactive oxygen species, girdling may induce physiological changes unrelated to carbohydrate accumulation and may not be an effective method to study carbohydrate feedback

  9. Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework.

    Science.gov (United States)

    Weng, Ensheng; Farrior, Caroline E; Dybzinski, Ray; Pacala, Stephen W

    2017-06-01

    Earth system models are incorporating plant trait diversity into their land components to better predict vegetation dynamics in a changing climate. However, extant plant trait distributions will not allow extrapolations to novel community assemblages in future climates, which will require a mechanistic understanding of the trade-offs that determine trait diversity. In this study, we show how physiological trade-offs involving leaf mass per unit area (LMA), leaf lifespan, leaf nitrogen, and leaf respiration may explain the distribution patterns of evergreen and deciduous trees in the temperate and boreal zones based on (1) an evolutionary analysis of a simple mathematical model and (2) simulation experiments of an individual-based dynamic vegetation model (i.e., LM3-PPA). The evolutionary analysis shows that these leaf traits set up a trade-off between carbon- and nitrogen-use efficiency at the scale of individual trees and therefore determine competitively dominant leaf strategies. As soil nitrogen availability increases, the dominant leaf strategy switches from one that is high in nitrogen-use efficiency to one that is high in carbon-use efficiency or, equivalently, from high-LMA/long-lived leaves (i.e., evergreen) to low-LMA/short-lived leaves (i.e., deciduous). In a region of intermediate soil nitrogen availability, the dominant leaf strategy may be either deciduous or evergreen depending on the initial conditions of plant trait abundance (i.e., founder controlled) due to feedbacks of leaf traits on soil nitrogen mineralization through litter quality. Simulated successional patterns by LM3-PPA from the leaf physiological trade-offs are consistent with observed successional dynamics of evergreen and deciduous forests at three sites spanning the temperate to boreal zones. © 2016 John Wiley & Sons Ltd.

  10. Importance of Secondary Metabolites for Leaf Beetles (Coleoptera: Chrysomelidae

    Directory of Open Access Journals (Sweden)

    A. N. EKİZ

    2014-06-01

    Full Text Available Leaf beetles (Chrysomelidae are one of the most diverse families of herbivorous insects. Many of them are important agricultural pests and cause remarkable loss of crop and money as well. Plant leaves and roots are primary food source of both larva and adults of leaf beetles. Plants produce many secondary metabolites in reaction to herbivore insects. It is a well-known phenomenon that quantity and variety of secondary metabolites in plant leaves may change in response to insect attacks. Herbivore insects have to deal with such defensive secondary chemicals and overcome either by detoxifying or storing them. Accordingly, many specialist herbivores coevolved with their host plant. Certain phenolic glycosides may reduce leaf beetle feeding. Condensed tannins are anti-herbivore defenses against leaf chewing beetles, including leaf beetles. Flavonoid compounds are feeding deterrents for many flea leaf beetles. Cinnamic acid derivatives are other known feeding deterrents for leaf beetles. Secondary metabolites quantity and nutritional quality of host plants are not only important for feeding but also for providing enemy-free space and suitable oviposition sites.

  11. Models for leaf area estimation in dwarf pigeon pea by leaf dimensions

    Directory of Open Access Journals (Sweden)

    Rafael Vieira Pezzini

    2018-03-01

    Full Text Available ABSTRACT This study aims to determine the most suitable model to estimate the leaf area of dwarf pigeon pea in function of the leaf central leaflet dimension. Six samplings of 200 leaves were performed in the first experiment, at 36, 42, 50, 56, 64, and 72 days after emergence (DAE. In the second experiment, seven samplings of 200 leaves were performed at 29, 36, 43, 49, 57, 65, and 70 DAE, totaling 2600 leaves. The length (L and width (W of the central leaflet were measured in all leaves composed by left, central, and right leaflets, the product of length times width (LW was calculated, and the leaf area (Y – sum of left, central, and right leaflet areas was determined by digital images. Linear, power, quadratic, and cubic models of Y as function of L, W, and LW were built using data from the second experiment. Leaves from the first experiment were used to validate the models. In dwarf pigeon pea, the linear (Ŷ = – 0.4088 + 1.6669x, R2 = 0.9790 is preferable, but power (Ŷ = 1.6097x1.0065, R2 = 0.9766, quadratic (Ŷ = – 0.3625 + 1.663x + 0.00007x2, R2 = 0.9790, and cubic (Ŷ = 0.7216 + 1.522x + 0.005x2 – 5E–05x3, R2 = 0.9791 models in function of LW are also suitable to estimate the leaf area obtained by digital images. The power model (Ŷ = 5.2508x1.7868, R2 = 0.95 based on the central leaflet width is less laborious because requires only one variable, but it presents accuracy reduction.

  12. Leveraging multiple datasets for deep leaf counting

    OpenAIRE

    Dobrescu, Andrei; Giuffrida, Mario Valerio; Tsaftaris, Sotirios A

    2017-01-01

    The number of leaves a plant has is one of the key traits (phenotypes) describing its development and growth. Here, we propose an automated, deep learning based approach for counting leaves in model rosette plants. While state-of-the-art results on leaf counting with deep learning methods have recently been reported, they obtain the count as a result of leaf segmentation and thus require per-leaf (instance) segmentation to train the models (a rather strong annotation). Instead, our method tre...

  13. Resistance in winter barley against Ramularia leaf spot

    DEFF Research Database (Denmark)

    Hjortshøj, Rasmus Lund

    Ramularia leaf spot is an emerging disease in barley caused by R. collo-cygni. At present little is known about the resistance mechanisms carried out by the host plant to avoid disease development. Nor is the lifecycle of the fungus or its populations structure fully understood. To gain insight....... fulvum-tomato and S. tritici-wheat in order to find modelsystems to enhance interpretation of results from R. collo-cygni-barley interaction. Results from the mapping showed that resistance to Ramularia leaf spot is controlled by a number of QTL’s, some of which co-locate with other physiological traits....... The populations further segregated for physiological leaf spots, a phenomenon related to the leaf damage imposed by Rubellin, although, resistance to physiological leafspots appeared to come from the Ramularia leaf spot susceptible parent. The toxin assay further supported this result as the genotypes susceptible...

  14. Co-ordinate regulation of cytokinin gene family members during flag leaf and reproductive development in wheat.

    Science.gov (United States)

    Song, Jiancheng; Jiang, Lijun; Jameson, Paula Elizabeth

    2012-06-06

    As the global population continues to expand, increasing yield in bread wheat is of critical importance as 20% of the world's food supply is sourced from this cereal. Several recent studies of the molecular basis of grain yield indicate that the cytokinins are a key factor in determining grain yield. In this study, cytokinin gene family members in bread wheat were isolated from four multigene families which regulate cytokinin synthesis and metabolism, the isopentenyl transferases (IPT), cytokinin oxidases (CKX), zeatin O-glucosyltransferases (ZOG), and β-glucosidases (GLU). As bread wheat is hexaploid, each gene family is also likely to be represented on the A, B and D genomes. By using a novel strategy of qRT-PCR with locus-specific primers shared among the three homoeologues of each family member, detailed expression profiles are provided of family members of these multigene families expressed during leaf, spike and seed development. The expression patterns of individual members of the IPT, CKX, ZOG, and GLU multigene families in wheat are shown to be tissue- and developmentally-specific. For instance, TaIPT2 and TaCKX1 were the most highly expressed family members during early seed development, with relative expression levels of up to 90- and 900-fold higher, respectively, than those in the lowest expressed samples. The expression of two cis-ZOG genes was sharply increased in older leaves, while an extremely high mRNA level of TaGLU1-1 was detected in young leaves. Key genes with tissue- and developmentally-specific expression have been identified which would be prime targets for genetic manipulation towards yield improvement in bread wheat breeding programmes, utilising TILLING and MAS strategies.

  15. The Jasmonate-ZIM-domain proteins interact with the WD-Repeat/bHLH/MYB complexes to regulate Jasmonate-mediated anthocyanin accumulation and trichome initiation in Arabidopsis thaliana.

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-05-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)-based SCF(COI1) complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation.

  16. [Latitude variation mechanism of leaf traits of Metasequoia glyptostroboides in eastern coastal China].

    Science.gov (United States)

    Guo, Wei Hong; Wang, Hua; Yu, Mu Kui; Wu, Tong Gui; Han, You Zhi

    2017-03-18

    We analyzed the rules of Metasequoia glyptostroboides along with latitude, including leaf length, leaf width, leaf perimeter, leaf area, ratio of leaf length to width, specific leaf area (SLA), and leaf dry mass based on eight stands growing at different latitudes in the coastal area of eastern China, as well as their relationships with climatic and soil factors. The results showed that the leaf length, leaf width and leaf perimeter increased with increasing latitude, while the leaf area and SLA firstly increased and then decreased. The mean annual temperature and annual precipitation were the major environmental factors affecting the leaf traits along latitude gradient. With the increase of soil N content, the SLA decreased firstly and then increased, while the leaf mass decreased significantly. With the increase of soil P content, the SLA increased, and the leaf mass decreased significantly.

  17. How Do Plants and Phytohormones Accomplish Heterophylly, Leaf Phenotypic Plasticity, in Response to Environmental Cues

    Directory of Open Access Journals (Sweden)

    Hokuto Nakayama

    2017-10-01

    Full Text Available Plant species are known to respond to variations in environmental conditions. Many plant species have the ability to alter their leaf morphology in response to such changes. This phenomenon is termed heterophylly and is widespread among land plants. In some cases, heterophylly is thought to be an adaptive mechanism that allows plants to optimally respond to environmental heterogeneity. Recently, many research studies have investigated the occurrence of heterophylly in a wide variety of plants. Several studies have suggested that heterophylly in plants is regulated by phytohormones. Herein, we reviewed the existing knowledge on the relationship and role of phytohormones, especially abscisic acid, ethylene, gibberellins, and auxins (IAA, in regulating heterophylly and attempted to elucidate the mechanisms that regulate heterophylly.

  18. Endophytic fungi reduce leaf-cutting ant damage to seedlings

    Science.gov (United States)

    Bittleston, L. S.; Brockmann, F.; Wcislo, W.; Van Bael, S. A.

    2011-01-01

    Our study examines how the mutualism between Atta colombica leaf-cutting ants and their cultivated fungus is influenced by the presence of diverse foliar endophytic fungi (endophytes) at high densities in tropical leaf tissues. We conducted laboratory choice trials in which ant colonies chose between Cordia alliodora seedlings with high (Ehigh) or low (Elow) densities of endophytes. The Ehigh seedlings contained 5.5 times higher endophyte content and a greater diversity of fungal morphospecies than the Elow treatment, and endophyte content was not correlated with leaf toughness or thickness. Leaf-cutting ants cut over 2.5 times the leaf area from Elow relative to Ehigh seedlings and had a tendency to recruit more ants to Elow plants. Our findings suggest that leaf-cutting ants may incur costs from cutting and processing leaves with high endophyte loads, which could impact Neotropical forests by causing variable damage rates within plant communities. PMID:20610420

  19. Consequences of leaf calibration errors on IMRT delivery

    International Nuclear Information System (INIS)

    Sastre-Padro, M; Welleweerd, J; Malinen, E; Eilertsen, K; Olsen, D R; Heide, U A van der

    2007-01-01

    IMRT treatments using multi-leaf collimators may involve a large number of segments in order to spare the organs at risk. When a large proportion of these segments are small, leaf positioning errors may become relevant and have therapeutic consequences. The performance of four head and neck IMRT treatments under eight different cases of leaf positioning errors has been studied. Systematic leaf pair offset errors in the range of ±2.0 mm were introduced, thus modifying the segment sizes of the original IMRT plans. Thirty-six films were irradiated with the original and modified segments. The dose difference and the gamma index (with 2%/2 mm criteria) were used for evaluating the discrepancies between the irradiated films. The median dose differences were linearly related to the simulated leaf pair errors. In the worst case, a 2.0 mm error generated a median dose difference of 1.5%. Following the gamma analysis, two out of the 32 modified plans were not acceptable. In conclusion, small systematic leaf bank positioning errors have a measurable impact on the delivered dose and may have consequences for the therapeutic outcome of IMRT

  20. Generality of leaf trait relationships: A test across six biomes

    Energy Technology Data Exchange (ETDEWEB)

    Reich, P.B. [Univ. of Minnesota, Saint Paul, MN (United States). Dept. of Forest Resources; Ellsworth, D.S. [Brookhaven National Lab., Upton, NY (United States). Dept. of Applied Science; Walters, M.B. [Michigan State Univ., East Lansing, MI (United States). Dept. of Forestry; Vose, J.M. [Forest Service, Otto, NC (United States). Coweeta Hydrological Lab.; Gresham, C. [Clemson Univ., Georgetown, SC (United States). Baruch Forest Inst.; Volin, J.C. [Florida Atlantic Univ., Davie, FL (United States). Div. of Science; Bowman, W.D. [Inst. of Arctic and Alpine Research, Boulder, CO (United States). Mountain Research Station]|[Univ. of Colorado, Boulder, CO (United States). Dept. of Evolutionary, Population, and Organismic Biology

    1999-09-01

    Convergence in interspecific leaf trait relationships across diverse taxonomic groups and biomes would have important evolutionary and ecological implications. Such convergence has been hypothesized to result from trade-offs that limit the combination of plant traits for any species. Here the authors address this issue by testing for biome differences in the slope and intercept of interspecific relationships among leaf traits: longevity, net photosynthetic capacity (A{sub max}), leaf diffusive conductance (G{sub S}), specific leaf area (SLA), and nitrogen (N) status, for more than 100 species in six distinct biomes of the Americas. The six biomes were: alpine tundra-subalpine forest ecotone, cold temperate forest-prairie ecotone, montane cool temperate forest, desert shrubland, subtropical forest, and tropical rain forest. Despite large differences in climate and evolutionary history, in all biomes mass-based leaf N (N{sub mass}), SLA, G{sub S}, and A{sub max} were positively related to one another and decreased with increasing leaf life span. The relationships between pairs of leaf traits exhibited similar slopes among biomes, suggesting a predictable set of scaling relationships among key leaf morphological, chemical, and metabolic traits that are replicated globally among terrestrial ecosystems regardless of biome or vegetation type. However, the intercept (i.e., the overall elevation of regression lines) of relationships between pairs of leaf traits usually differed among biomes. With increasing aridity across sites, species had greater A{sub max} for a given level of G{sub S} and lower SLA for any given leaf life span. Using principal components analysis, most variation among species was explained by an axis related to mass-based leaf traits (A{sub max}, N, and SLA) while a second axis reflected climate, G{sub S}, and other area-based leaf traits.

  1. Patterns of leaf morphology and leaf N content in relation to winter temperatures in three evergreen tree species

    Science.gov (United States)

    Mediavilla, Sonia; Gallardo-López, Victoria; González-Zurdo, Patricia; Escudero, Alfonso

    2012-09-01

    The competitive equilibrium between deciduous and perennial species in a new scenario of climate change may depend closely on the productivity of leaves along the different seasons of the year and on the morphological and chemical adaptations required for leaf survival during the different seasons. The aim of the present work was to analyze such adaptations in the leaves of three evergreen species ( Quercus ilex, Q. suber and Pinus pinaster) and their responses to between-site differences in the intensity of winter harshness. We explore the hypothesis that the harshness of winter would contribute to enhancing the leaf traits that allow them to persist under conditions of stress. The results revealed that as winter harshness increases a decrease in leaf size occurs in all three species, together with an increase in the content of nitrogen per unit leaf area and a greater leaf mass per unit area, which seems to be achieved only through increased thickness, with no associated changes in density. P. pinaster was the species with the most intense response to the harshening of winter conditions, undergoing a more marked thickening of its needles than the two Quercus species. Our findings thus suggest that lower winter temperatures involve an increase in the cost of leaf production of evergreen species, which must be taken into account in the estimation of the final cost and benefit balance of evergreens. Such cost increases would be more pronounced for those species that, like P. pinaster, show a stronger response to the winter cold.

  2. Dynamics of vacuum-sealed, double-leaf partitions

    Science.gov (United States)

    Kavanaugh, Joshua Stephen

    The goal of this research is to investigate the feasibility and potential effectiveness of using vacuum-sealed, double-leaf partitions for applications in noise control. Substantial work has been done previously on double-leaf partitions where the acoustics of the inner chamber and mechanical vibrations of structural supports are passively and actively controlled. The work presented here is unique in that the proposed system aims to eliminate the need for active acoustic control of transmitted acoustic energy by removing all the air between the two panels of the double partition. Therefore, the only remaining energy paths would be along the boundary and at the points where there are intermediate structural supports connecting the two panels. The eventual goal of the research is to develop a high-loss double-leaf partition that simplifies active control by removing the need for control of the air cavity and channeling all the energy into discrete structural paths. The work presented here is a first step towards the goal of designing a high-loss, actively-controlled double-leaf partition with an air-evacuated inner chamber. One experiment is conducted to investigate the effects of various levels of vacuum on the response of a double-leaf partition whose panels are mechanically coupled only at the boundary. Another experiment is conducted which investigates the effect of changing the stiffness of an intermediate support coupling the two panels of a double-leaf partition in which a vacuum has been applied to the inner cavity. The available equipment was able to maintain a 99% vacuum between the panels. Both experiments are accompanied by analytical models used to investigate the importance of various dynamic parameters. Results show that the vacuum-sealed system shows some potential for increased transmission loss, primarily by the changing the natural frequencies of the double-leaf partition.

  3. Predicting tropical plant physiology from leaf and canopy spectroscopy.

    Science.gov (United States)

    Doughty, Christopher E; Asner, Gregory P; Martin, Roberta E

    2011-02-01

    A broad regional understanding of tropical forest leaf photosynthesis has long been a goal for tropical forest ecologists, but it has remained elusive due to difficult canopy access and high species diversity. Here we develop an empirical model to predict sunlit, light-saturated, tropical leaf photosynthesis using leaf and simulated canopy spectra. To develop this model, we used partial least squares (PLS) analysis on three tropical forest datasets (159 species), two in Hawaii and one at the biosphere 2 laboratory (B2L). For each species, we measured light-saturated photosynthesis (A), light and CO(2) saturated photosynthesis (A(max)), respiration (R), leaf transmittance and reflectance spectra (400-2,500 nm), leaf nitrogen, chlorophyll a and b, carotenoids, and leaf mass per area (LMA). The model best predicted A [r(2) = 0.74, root mean square error (RMSE) = 2.9 μmol m(-2) s(-1))] followed by R (r(2) = 0.48), and A(max) (r(2) = 0.47). We combined leaf reflectance and transmittance with a canopy radiative transfer model to simulate top-of-canopy reflectance and found that canopy spectra are a better predictor of A (RMSE = 2.5 ± 0.07 μmol m(-2) s(-1)) than are leaf spectra. The results indicate the potential for this technique to be used with high-fidelity imaging spectrometers to remotely sense tropical forest canopy photosynthesis.

  4. The Effect of Leaf Stacking on Leaf Reflectance and Vegetation Indices Measured by Contact Probe during the Season

    Czech Academy of Sciences Publication Activity Database

    Neuwirthová, E.; Lhotáková, Z.; Albrechtová, Jana

    2017-01-01

    Roč. 17, č. 6 (2017), s. 1-23, č. článku 1202. ISSN 1424-8220 Institutional support: RVO:67985939 Keywords : broadleaved trees * leaf optical properties * leaf traits Subject RIV: EF - Botanics OBOR OECD: Plant sciences, botany Impact factor: 2.677, year: 2016

  5. BOREAS TE-9 NSA Leaf Chlorophyll Density

    Science.gov (United States)

    Hall, Forrest G. (Editor); Curd, Shelaine (Editor); Margolis, Hank; Sy, Mikailou

    2000-01-01

    The BOREAS TE-9 team collected several data sets related to chemical and photosynthetic properties of leaves in boreal forest tree species. These data were collected to help provide an explanation of potential seasonal and spatial changes of leaf pigment properties in boreal forest species at the NSA. At different dates (FFC-Winter, FFC-Thaw, IFC-1, IFC-2, and IMC-3), foliage samples were collected from the upper third of the canopy for five NSA sites (YJP, OJP, OBS, UBS, and OA) near Thompson, Manitoba. Subsamples of 100 needles for black spruce, 20 needles for jack pine, and single leaf for trembling aspen were cut into pieces and immersed in a 20-mL DMF aliquot in a Nalgene test tube. The extracted foliage materials were then oven-dried at 68 C for 48 hours and weighed. Extracted leaf dry weight was converted to a total leaf area basis to express the chlorophyll content in mg/sq cm of total leaf area. The data are provided in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  6. Silver nano fabrication using leaf disc of Passiflora foetida Linn

    Science.gov (United States)

    Lade, Bipin D.; Patil, Anita S.

    2017-06-01

    The main purpose of the experiment is to develop a greener low cost SNP fabrication steps using factories of secondary metabolites from Passiflora leaf extract. Here, the leaf extraction process is omitted, and instead a leaf disc was used for stable SNP fabricated by optimizing parameters such as a circular leaf disc of 2 cm (1, 2, 3, 4, 5) instead of leaf extract and grade of pH (7, 8, 9, 11). The SNP synthesis reaction is tried under room temperature, sun, UV and dark condition. The leaf disc preparation steps are also discussed in details. The SNP obtained using (1 mM: 100 ml AgNO3+ singular leaf disc: pH 9, 11) is applied against featured room temperature and sun condition. The UV spectroscopic analysis confirms that sun rays synthesized SNP yields stable nano particles. The FTIR analysis confirms a large number of functional groups such as alkanes, alkyne, amines, aliphatic amine, carboxylic acid; nitro-compound, alcohol, saturated aldehyde and phenols involved in reduction of silver salt to zero valent ions. The leaf disc mediated synthesis of silver nanoparticles, minimizes leaf extract preparation step and eligible for stable SNP synthesis. The methods sun and room temperature based nano particles synthesized within 10 min would be use certainly for antimicrobial activity.

  7. Reading the Leaves: A Comparison of Leaf Rank and Automated Areole Measurement for Quantifying Aspects of Leaf Venation

    Directory of Open Access Journals (Sweden)

    Walton A. Green

    2014-08-01

    Full Text Available The reticulate venation that is characteristic of a dicot leaf has excited interest from systematists for more than a century, and from physiological and developmental botanists for decades. The tools of digital image acquisition and computer image analysis, however, are only now approaching the sophistication needed to quantify aspects of the venation network found in real leaves quickly, easily, accurately, and reliably enough to produce biologically meaningful data. In this paper, we examine 120 leaves distributed across vascular plants (representing 118 genera and 80 families using two approaches: a semiquantitative scoring system called “leaf ranking,” devised by the late Leo Hickey, and an automated image-analysis protocol. In the process of comparing these approaches, we review some methodological issues that arise in trying to quantify a vein network, and discuss the strengths and weaknesses of automatic data collection and human pattern recognition. We conclude that subjective leaf rank provides a relatively consistent, semiquantitative measure of areole size among other variables; that modal areole size is generally consistent across large sections of a leaf lamina; and that both approaches—semiquantitative, subjective scoring; and fully quantitative, automated measurement—have appropriate places in the study of leaf venation.

  8. Up-scaling of water use efficiency from leaf to canopy as based on leaf gas exchange relationships and the modeled in-canopy light distribution

    DEFF Research Database (Denmark)

    Linderson, Maj-Lena; Mikkelsen, Teis Nørgaard; Ibrom, Andreas

    2012-01-01

    The aim of this study was to evaluate the extent to which water use efficiency (WUE) at leaf scale can be used to assess WUE at canopy scale, leaf WUE being assumed to be a constant function of vapor pressure deficit and to thus not be dependent upon other environmental factors or varying leaf...... properties. Leaf WUE and its variability and dependencies were assessed using leafgas-exchange measurements obtained during two growing seasons, 1999 and 2000, at the Soroe beech forest study site on Zealand in Denmark. It was found that the VPD-normalized leaf WUE, WUEnormleaf, although dependent...

  9. Medicinal plants - a potent antibacterial source against bacterial leaf blight (BLB) of rice

    International Nuclear Information System (INIS)

    Jabeen, R.

    2011-01-01

    The antibacterial potential of indigenous medicinal plants as alternative chemical pesticides for controlling bacterial leaf blight (BLB) of rice was investigated. Twenty-five different species of medicinal plants were collected from various sites in Pakistan. Decoctions of all medicinal plant species were screened by the disc plate diffusion method for testing the susceptibility of an aggressive isolate of Xanthomonas oryzae pv. oryzae (Xoo 105). Out of twenty five medicinal plants, Thuja orientalis (cone + leaves), Azadirachta indica (seeds + fruits), Amomum subulatum (fruits), Terminalia chebula (fruits), Terminalia bellirica (fruits), Anethum graveolens (fruits) and Ferula assa-foetida (fruits) decoctions showed significant activity. The efficacy of decoctions from six promising plants were further tested through detached leaf, glasshouse and field assays. A decoction of Terminalia chebula demonstrated the highest effectiveness in terms of regulating BLB in the plants both under laboratory and field conditions. Bioactive fractions of Terminalia chebula were purified, characterized and tentatively identified as allegic acid. (author)

  10. Betel leaf in stoma care.

    Science.gov (United States)

    Banu, Tahmina; Talukder, Rupom; Chowdhury, Tanvir Kabir; Hoque, Mozammel

    2007-07-01

    Construction of a stoma is a common procedure in pediatric surgical practice. For care of these stomas, commercially available devices such as ostomy bag, either disposable or of longer duration are usually used. These are expensive, particularly in countries like Bangladesh, and proper-sized ones are not always available. We have found an alternative for stoma care, betel leaf, which is suitable for Bangladeshis. We report the outcome of its use. After construction of stoma, at first zinc oxide paste was applied on the peristomal skin. A betel leaf with shiny, smooth surface outwards and rough surface inwards was put over the stoma with a hole made in the center according to the size of stoma. Another intact leaf covers the stomal opening. When bowel movement occurs, the overlying intact leaf was removed and the fecal matter was washed away from both. The leaves were reused after cleaning. Leaves were changed every 2 to 3 days. From June 1998 to December 2005, in the department of pediatric surgery, Chittagong Medical College and Hospital, Chittagong, Bangladesh, a total of 623 patients had exteriorization of bowel. Of this total, 495 stomas were cared for with betel leaves and 128 with ostomy bags. Of 623 children, 287 had sigmoid colostomy, 211 had transverse colostomy, 105 had ileostomy, and 20 had jejunostomy. Of the 495 children under betel leaf stoma care, 13 patients (2.6%) developed skin excoriation. There were no allergic reactions. Of the 128 patients using ostomy bag, 52 (40.65%) had skin excoriation. Twenty-four (18.75%) children developed some allergic reactions to adhesive. Monthly costs for betel leaves were 15 cents (10 BDT), whereas ostomy bags cost about US$24. In the care of stoma, betel leaves are cheap, easy to handle, nonirritant, and nonallergic.

  11. Down-regulation of DNA mismatch repair enhances initiation and growth of neuroblastoma and brain tumour multicellular spheroids.

    Directory of Open Access Journals (Sweden)

    Samuel L Collins

    Full Text Available Multicellular tumour spheroid (MCTS cultures are excellent model systems for simulating the development and microenvironmental conditions of in vivo tumour growth. Many documented cell lines can generate differentiated MCTS when cultured in suspension or in a non-adhesive environment. While physiological and biochemical properties of MCTS have been extensively characterized, insight into the events and conditions responsible for initiation of these structures is lacking. MCTS are formed by only a small subpopulation of cells during surface-associated growth but the processes responsible for this differentiation are poorly understood and have not been previously studied experimentally. Analysis of gene expression within spheroids has provided clues but to date it is not known if the observed differences are a cause or consequence of MCTS growth. One mechanism linked to tumourigenesis in a number of cancers is genetic instability arising from impaired DNA mismatch repair (MMR. This study aimed to determine the role of MMR in MCTS initiation and development. Using surface-associated N2a and CHLA-02-ATRT culture systems we have investigated the impact of impaired MMR on MCTS growth. Analysis of the DNA MMR genes MLH1 and PMS2 revealed both to be significantly down-regulated at the mRNA level compared with non-spheroid-forming cells. By using small interfering RNA (siRNA against these genes we show that silencing of MLH1 and PMS2 enhances both MCTS initiation and subsequent expansion. This effect was prolonged over several passages following siRNA transfection. Down-regulation of DNA MMR can contribute to tumour initiation and progression in N2a and CHLA-02-ATRT MCTS models. Studies of surface-associated MCTS differentiation may have broader applications in studying events in the initiation of cancer foci.

  12. Method for continuous measurement of export from a leaf

    International Nuclear Information System (INIS)

    Geiger, D.R.; Fondy, B.R.

    1979-01-01

    Export of labeled material derived by continuous photosynthesis in 14 CO 2 was monitored with a Geiger-Mueller detector positioned next to an exporting leaf blade. Rate of export of labeled material was calculated from the difference between rates of retention and net photosynthesis of labeled carbon for the observed leaf. Given certain conditions, including nearly constant distribution of labeled material among minor veins and various types of cells, count rate data for the source leaf can be coverted to rate of export of carbon. Changes in counting efficiency resulting from changes in leaf water status can be corrected for with data from a transducer which measures leaf thickness. Export data agreed with data obtained by monitoring the arrival of 14 C in the sink region; isolated leaves gave values near zero for export of labeled carbon from a given leaf on an intact plant. The technique detects changes in export with a resolution of 10 to 20 minutes

  13. The influence of leaf anatomy on the internal light environment and photosynthetic electron transport rate: exploration with a new leaf ray tracing model.

    Science.gov (United States)

    Xiao, Yi; Tholen, Danny; Zhu, Xin-Guang

    2016-11-01

    Leaf photosynthesis is determined by biochemical properties and anatomical features. Here we developed a three-dimensional leaf model that can be used to evaluate the internal light environment of a leaf and its implications for whole-leaf electron transport rates (J). This model includes (i) the basic components of a leaf, such as the epidermis, palisade and spongy tissues, as well as the physical dimensions and arrangements of cell walls, vacuoles and chloroplasts; and (ii) an efficient forward ray-tracing algorithm, predicting the internal light environment for light of wavelengths between 400 and 2500nm. We studied the influence of leaf anatomy and ambient light on internal light conditions and J The results show that (i) different chloroplasts can experience drastically different light conditions, even when they are located at the same distance from the leaf surface; (ii) bundle sheath extensions, which are strips of parenchyma, collenchyma or sclerenchyma cells connecting the vascular bundles with the epidermis, can influence photosynthetic light-use efficiency of leaves; and (iii) chloroplast positioning can also influence the light-use efficiency of leaves. Mechanisms underlying leaf internal light heterogeneity and implications of the heterogeneity for photoprotection and for the convexity of the light response curves are discussed. © The Author 2016. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  14. A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity

    NARCIS (Netherlands)

    Fanourakis, D.; Heuvelink, E.; Pinto De Carvalho, S.M.

    2013-01-01

    To better understand the poor regulation of water loss after leaf development at high relative air humidity (RH), the relative importance of the physiological and anatomical components was analyzed focusing on cultivars with a contrasting sensitivity to elevated RH. The stomatal responsiveness to

  15. SU-E-T-247: Multi-Leaf Collimator Model Adjustments Improve Small Field Dosimetry in VMAT Plans

    Energy Technology Data Exchange (ETDEWEB)

    Young, L; Yang, F [University of Washington, Seattle, WA (United States)

    2014-06-01

    Purpose: The Elekta beam modulator linac employs a 4-mm micro multileaf collimator (MLC) backed by a fixed jaw. Out-of-field dose discrepancies between treatment planning system (TPS) calculations and output water phantom measurements are caused by the 1-mm leaf gap required for all moving MLCs in a VMAT arc. In this study, MLC parameters are optimized to improve TPS out-of-field dose approximations. Methods: Static 2.4 cm square fields were created with a 1-mm leaf gap for MLCs that would normally park behind the jaw. Doses in the open field and leaf gap were measured with an A16 micro ion chamber and EDR2 film for comparison with corresponding point doses in the Pinnacle TPS. The MLC offset table and tip radius were adjusted until TPS point doses agreed with photon measurements. Improvements to the beam models were tested using static arcs consisting of square fields ranging from 1.6 to 14.0 cm, with 45° collimator rotation, and 1-mm leaf gap to replicate VMAT conditions. Gamma values for the 3-mm distance, 3% dose difference criteria were evaluated using standard QA procedures with a cylindrical detector array. Results: The best agreement in point doses within the leaf gap and open field was achieved by offsetting the default rounded leaf end table by 0.1 cm and adjusting the leaf tip radius to 13 cm. Improvements in TPS models for 6 and 10 MV photon beams were more significant for smaller field sizes 3.6 cm or less where the initial gamma factors progressively increased as field size decreased, i.e. for a 1.6cm field size, the Gamma increased from 56.1% to 98.8%. Conclusion: The MLC optimization techniques developed will achieve greater dosimetric accuracy in small field VMAT treatment plans for fixed jaw linear accelerators. Accurate predictions of dose to organs at risk may reduce adverse effects of radiotherapy.

  16. ANXIOLYTIC ACTIVITY OF OCIMUM SANCTUM LEAF EXTRACT

    OpenAIRE

    Chattopadhyay, R.R.

    1994-01-01

    The anxiolytic activity of Ocimum sanctum leaf extract was studied in mice. O.sanctum leaf extract produced significant anxiolytic activity in plus – maze and open field behaviour test models. The effect was compared with diazepam, a standard antianxiety drug.

  17. [Seasonal differences in the leaf hydraulic conductance of mature Acacia mangium in response to its leaf water use and photosynthesis].

    Science.gov (United States)

    Zhao, Ping; Sun, Gu-Chou; Ni, Guang-Yan; Zeng, Xiao-Ping

    2013-01-01

    In this study, measurements were made on the leaf water potential (psi1), stomatal conductance (g(s)), transpiration rate, leaf area index, and sapwood area of mature Acacia mangium, aimed to understand the relationships of the leaf hydraulic conductance (K1) with the leaf water use and photosynthetic characteristics of the A. mangium in wet season (May) and dry season (November). The ratio of sapwood area to leaf area (A(sp)/A(cl)) of the larger trees with an average height of 20 m and a diameter at breast height (DBH) of 0.26 m was 8.5% higher than that of the smaller trees with an average height of 14.5 m and a DBH of 0.19 m, suggesting that the larger trees had a higher water flux in their leaf xylem, which facilitated the water use of canopy leaf. The analysis on the vulnerability curve of the xylem showed that when the K1 decreased by 50%, the psi1 in wet season and dry season was -1.41 and -1.55 MPa, respectively, and the vulnerability of the xylem cavitation was higher in dry season than in wet season. The K1 peak value in wet season and dry season was 5.5 and 4.5 mmol x m(-2) x s(-1) x MPa(-1), and the maximum transpiration rate (T(r max)) was 3.6 and 1.8 mmol x m(-2) x s(-1), respectively. Both the K1 and T(r max), were obviously higher in wet season than in dry season. Within a day, the K1 and T(r), fluctuated many times, reflecting the reciprocated cycle of the xylem cavitation and refilling. The leaf stomatal closure occurred when the K1 declined over 50% or the psi1 reached -1.6 MPa. The g(s) would be maintained at a high level till the K1 declined over 50%. The correlation between the hydraulic conductance and photosynthetic rate was more significant in dry season than in wet season. The loss of leaf hydraulic conductance induced by seasonal change could be the causes of the decrease of T(r) and CO2 gas exchange.

  18. Does leaf chemistry differentially affect breakdown in tropical versus temperate streams? Importance of standardized analytical techniques to measure leaf chemistry

    Science.gov (United States)

    Marcelo Ardon; Catherine M. Pringle; Susan L. Eggert

    2009-01-01

    Comparisons of the effects of leaf litter chemistry on leaf breakdown rates in tropical vs temperate streams are hindered by incompatibility among studies and across sites of analytical methods used to...

  19. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Science.gov (United States)

    Boss, Anna; Bishop, Karen S.; Marlow, Gareth; Barnett, Matthew P. G.; Ferguson, Lynnette R.

    2016-01-01

    The traditional Mediterranean diet (MD) is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO) and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE) contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols. PMID:27548217

  20. Evidence to Support the Anti-Cancer Effect of Olive Leaf Extract and Future Directions

    Directory of Open Access Journals (Sweden)

    Anna Boss

    2016-08-01

    Full Text Available The traditional Mediterranean diet (MD is associated with long life and lower prevalence of cardiovascular disease and cancers. The main components of this diet include high intake of fruit, vegetables, red wine, extra virgin olive oil (EVOO and fish, low intake of dairy and red meat. Olive oil has gained support as a key effector of health benefits and there is evidence that this relates to the polyphenol content. Olive leaf extract (OLE contains a higher quantity and variety of polyphenols than those found in EVOO. There are also important structural differences between polyphenols from olive leaf and those from olive fruit that may improve the capacity of OLE to enhance health outcomes. Olive polyphenols have been claimed to play an important protective role in cancer and other inflammation-related diseases. Both inflammatory and cancer cell models have shown that olive leaf polyphenols are anti-inflammatory and protect against DNA damage initiated by free radicals. The various bioactive properties of olive leaf polyphenols are a plausible explanation for the inhibition of progression and development of cancers. The pathways and signaling cascades manipulated include the NF-κB inflammatory response and the oxidative stress response, but the effects of these bioactive components may also result from their action as a phytoestrogen. Due to the similar structure of the olive polyphenols to oestrogens, these have been hypothesized to interact with oestrogen receptors, thereby reducing the prevalence and progression of hormone related cancers. Evidence for the protective effect of olive polyphenols for cancer in humans remains anecdotal and clinical trials are required to substantiate these claims idea. This review aims to amalgamate the current literature regarding bioavailability and mechanisms involved in the potential anti-cancer action of olive leaf polyphenols.

  1. Growth form and seasonal variation in leaf gas exchange of Colophospermum mopane savanna trees in northwest Botswana.

    Science.gov (United States)

    Veenendaal, Elmar M; Mantlana, Khanyisa B; Pammenter, Norman W; Weber, Piet; Huntsman-Mapila, Phillipa; Lloyd, Jon

    2008-03-01

    We investigated differences in physiological and morphological traits between the tall and short forms of mopane (Colophospermum mopane (Kirk ex Benth.) Kirk ex J. Léonard) trees growing near Maun, Botswana on a Kalahari sandveld overlying an impermeable calcrete duricrust. We sought to determine if differences between the two physiognomic types are attributable to the way they exploit available soil water. The tall form, which was located on deeper soil than the short form (5.5 versus 1.6 m), had a lower leaf:fine root biomass ratio (1:20 versus 1:6), but a similar leaf area index (0.9-1.0). Leaf nitrogen concentrations varied between 18 and 27 mg g(-1) and were about 20% higher in the tall form than in the short form. Maximum net assimilation rates (A sat) occurred during the rainy seasons (March-April 2000 and January-February 2001) and were similar in the tall and short forms (15-22 micromol m(-2) s(-1)) before declining to less than 10 micromol m(-2) s(-1) at the end of the rainy season in late April. As the dry season progressed, A sat, soil water content, predawn leaf water potential (Psi pd) and leaf nitrogen concentration declined rapidly. Before leaf abscission, Psi pd was more negative in the short form (-3.4 MPa) than in the tall form (-2.7 MPa) despite the greater availability of soil water beneath the short form trees. This difference appeared attributable to differences in root depth and density between the physiognomic types. Stomatal regulation of water use and carbon assimilation differed between years, with the tall form having a consistently more conservative water-use strategy as the dry season progressed than the short form.

  2. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    Energy Technology Data Exchange (ETDEWEB)

    Wuytack, Tatiana, E-mail: tatiana.wuytack@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Wuyts, Karen, E-mail: karen.wuyts@ugent.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Van Dongen, Stefan, E-mail: stefan.vandongen@ua.ac.be [Department of Biology, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Baeten, Lander, E-mail: lander.baeten@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode (Melle) (Belgium); Kardel, Fatemeh, E-mail: fatemeh.kardel@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium); Verheyen, Kris, E-mail: kris.verheyen@ugent.be [Laboratory of Forestry, Department of Forest and Water Management, Ghent University, Geraardsbergsesteenweg 267, B-9090 Gontrode, Melle (Belgium); Samson, Roeland, E-mail: roeland.samson@ua.ac.be [Department of Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp (Belgium)

    2011-10-15

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO{sub x} and O{sub 3} concentrations had only a marginal influence. The influence of SO{sub 2} concentration was negligible. Although our data analysis suggests a relationship between SLA and NO{sub x}/O{sub 3} concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: > Leaf characteristics of white willow as possible bio-indicators for air quality. > Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. > Shadow increases specific leaf area. > NO{sub x} and O{sub 3} change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO{sub x} and decreasing O{sub 3} concentration, while leaf asymmetry did not respond to air pollution

  3. The effect of air pollution and other environmental stressors on leaf fluctuating asymmetry and specific leaf area of Salix alba L

    International Nuclear Information System (INIS)

    Wuytack, Tatiana; Wuyts, Karen; Van Dongen, Stefan; Baeten, Lander; Kardel, Fatemeh; Verheyen, Kris; Samson, Roeland

    2011-01-01

    We aimed at evaluating the effect of low-level air pollution on leaf area fluctuating asymmetry (FAA) and specific leaf area (SLA) of Salix alba L., taking into account other environmental factors. Cuttings were grown in standardized conditions in the near vicinity of air quality measuring stations in Belgium. Variability of SLA and FAA between measuring stations explained 83% and 7.26%, respectively, of the total variability. FAA was not influenced by air pollution or environmental factors such as shading, herbivory, air temperature and humidity. SLA was increased by an increase in shadow, while NO x and O 3 concentrations had only a marginal influence. The influence of SO 2 concentration was negligible. Although our data analysis suggests a relationship between SLA and NO x /O 3 concentration, the absence of a straightforward relationship between FAA and SLA and air pollution still questions the usefulness of these bio-indicators for monitoring air pollution. - Highlights: → Leaf characteristics of white willow as possible bio-indicators for air quality. → Fluctuating asymmetry is not a good bio-indicator for monitoring the air quality. → Shadow increases specific leaf area. → NO x and O 3 change specific leaf area of white willow. - Specific leaf area of S. alba increased with increasing shade and, in less extent, with increasing NO x and decreasing O 3 concentration, while leaf asymmetry did not respond to air pollution

  4. Controls on declining carbon balance with leaf age among 10 woody species in Australian woodland: do leaves have zero daily net carbon balances when they die?

    Science.gov (United States)

    Reich, Peter B; Falster, Daniel S; Ellsworth, David S; Wright, Ian J; Westoby, Mark; Oleksyn, Jacek; Lee, Tali D

    2009-01-01

    * Here, we evaluated how increased shading and declining net photosynthetic capacity regulate the decline in net carbon balance with increasing leaf age for 10 Australian woodland species. We also asked whether leaves at the age of their mean life-span have carbon balances that are positive, zero or negative. * The net carbon balances of 2307 leaves on 53 branches of the 10 species were estimated. We assessed three-dimensional architecture, canopy openness, photosynthetic light response functions and dark respiration rate across leaf age sequences on all branches. We used YPLANT to estimate light interception and to model carbon balance along the leaf age sequences. * As leaf age increased to the mean life-span, increasing shading and declining photosynthetic capacity each separately reduced daytime carbon gain by approximately 39% on average across species. Together, they reduced daytime carbon gain by 64% on average across species. * At the age of their mean life-span, almost all leaves had positive daytime carbon balances. These per leaf carbon surpluses were of a similar magnitude to the estimated whole-plant respiratory costs per leaf. Thus, the results suggest that a whole-plant economic framework, including respiratory costs, may be useful in assessing controls on leaf longevity.

  5. Constraints to growth of annual nettle (Urtica urens) in an elevated CO{sub 2} atmosphere: Decreased leaf area ratio and tissue N cannot be explained by ontogenetic drift or mineral N supply

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, D.J. [Univ. of Wales, Centre for Ecology and Hydrology, Gwynedd (United Kingdom); Stirling, C.M. [Univ. of Wales, School of Agricultural and Forest Sciences, Gwynedd (United Kingdom); Farrar, J. [Univ. of Wales, School of Biological Science, Gwynedd (United Kingdom)

    2001-07-01

    The current literature indicates that the stimulation of relative growth rate (RGR) by an elevated atmospheric CO{sub 2} concentration is transient. Urtica urens L. was exposed to an elevated atmospheric CO{sub 2} concentration for 26 days to better understand the factors involved in this constraint to growth. Plants were grown hydroponically without nutrient limitation in controlled-environment cabinets. Consistent with studies of other C{sub 3} species, the initial CO{sub 2} stimulation of RGR of U. urens was not sustained and declined in the early stages of exposure. Whilst the decline in RGR was most strongly linked to a reduction in the CO{sub 2} stimulation of net assimilation rate (NAR), its initial increase was constrained by an early and persistent reduction in leaf area ratio (LAR) due to a decreased specific leaf area (SLA). The decline in NAR could not be linked to any down-regulation of photosynthetic capacity of individual leaves, despite an accumulation of soluble sugars in them. The reductions in LAR and SLA reflected an accumulation of structural weight in addition to an accumulation of total non-structural carbohydrate (TNC). To account for the impact of ontogenetic drift on the partitioning of weight and leaf area, this study extends the usual allometric approach to include an analysis of effects on the vertical placement of regression lines (i.e their elevations). Using this approach, we argue that CO{sub 2}-induced reductions in LAR and SLA cannot be explained by ontogenetic drift. By monitoring the tissue N concentration, external N supply was shown unambiguously to be non-limiting for growth at any plant size. Nevertheless, tissue N was consistently lower in elevated CO{sub 2}, independent of both ontogeny and TNC accumulation, raising the possibility that the reductions in NAR, LAR and SLA are related to some internal constraint on N utilization. (au)

  6. Acceleration of leaf senescence is slowed down in transgenic barley plants deficient in the DNA/RNA-binding protein WHIRLY1.

    Science.gov (United States)

    Kucharewicz, Weronika; Distelfeld, Assaf; Bilger, Wolfgang; Müller, Maren; Munné-Bosch, Sergi; Hensel, Götz; Krupinska, Karin

    2017-02-01

    WHIRLY1 in barley was isolated as a potential regulator of the senescence-associated gene HvS40. In order to investigate whether the plastid-nucleus-located DNA/RNA-binding protein WHIRLY1 plays a role in regulation of leaf senescence, primary foliage leaves from transgenic barley plants with an RNAi-mediated knockdown of the WHIRLY1 gene were characterized by typical senescence parameters, namely pigment contents, function and composition of the photosynthetic apparatus, as well as expression of selected genes known to be either down- or up-regulated during leaf senescence. When the plants were grown at low light intensity, senescence progression was similar between wild-type and RNAi-W1 plants. Likewise, dark-induced senescence of detached leaves was not affected by reduction of WHIRLY1. When plants were grown at high light intensity, however, senescence was induced prematurely in wild-type plants but was delayed in RNAi-W1 plants. This result suggests that WHIRLY1 plays a role in light sensing and/or stress communication between chloroplasts and the nucleus. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology.

  7. Use of NAP gene to manipulate leaf senescence in plants

    Science.gov (United States)

    Gan, Susheng; Guo, Yongfeng

    2013-04-16

    The present invention discloses transgenic plants having an altered level of NAP protein compared to that of a non-transgenic plant, where the transgenic plants display an altered leaf senescence phenotype relative to a non-transgenic plant, as well as mutant plants comprising an inactivated NAP gene, where mutant plants display a delayed leaf senescence phenotype compared to that of a non-mutant plant. The present invention also discloses methods for delaying leaf senescence in a plant, as well as methods of making a mutant plant having a decreased level of NAP protein compared to that of a non-mutant plant, where the mutant plant displays a delayed leaf senescence phenotype relative to a non-mutant plant. Methods for causing precocious leaf senescence or promoting leaf senescence in a plant are also disclosed. Also disclosed are methods of identifying a candidate plant suitable for breeding that displays a delayed leaf senescence and/or enhanced yield phenotype.

  8. Initiation of Replication in Escherichia coli

    DEFF Research Database (Denmark)

    Frimodt-Møller, Jakob

    The circular chromosome of Escherichia coli is replicated by two replisomes assembled at the unique origin and moving in the opposite direction until they meet in the less well defined terminus. The key protein in initiation of replication, DnaA, facilitates the unwinding of double-stranded DNA...... to single-stranded DNA in oriC. Although DnaA is able to bind both ADP and ATP, DnaA is only active in initiation when bound to ATP. Although initiation of replication, and the regulation of this, is thoroughly investigated it is still not fully understood. The overall aim of the thesis was to investigate...... the regulation of initiation, the effect on the cell when regulation fails, and if regulation was interlinked to chromosomal organization. This thesis uncovers that there exists a subtle balance between chromosome replication and reactive oxygen species (ROS) inflicted DNA damage. Thus, failure in regulation...

  9. A better way of representing stem area index in two-big-leaf models: the application and impact on canopy integration of leaf nitrogen content

    Science.gov (United States)

    Chen, M.; Butler, E. E.; Wythers, K. R.; Kattge, J.; Ricciuto, D. M.; Thornton, P. E.; Atkin, O. K.; Flores-Moreno, H.; Reich, P. B.

    2017-12-01

    In order to better estimate the carbon budget of the globe, accurately simulating gross primary productivity (GPP) in earth system models is critical. When upscaling leaf level photosynthesis to the canopy, climate models uses different big-leaf schemes. About half of the state-of-the-art earth system models use a "two-big-leaf" scheme that partitions canopies into direct and diffusively illuminated fractions to reduce high bias of GPP simulated by one-big-leaf models. Some two-big-leaf models, such as ACME (identical in this respect to CLM 4.5) add leaf area index (LAI) and stem area index (SAI) together when calculating canopy radiation transfer. This treatment, however, will result in higher fraction of sunlit leaves. It will also lead to an artificial overestimation of canopy nitrogen content. Here we introduce a new algorithm of simulating SAI in a two-big-leaf model. The new algorithm reduced the sunlit leave fraction of the canopy and conserved the nitrogen content from leaf to canopy level. The lower fraction of sunlit leaves reduced global GPP especially in tropical area. Compared to the default model, for the past 100 years (1909-2009), the averaged global annual GPP is lowered by 4.11 PgC year-1 using this new algorithm.

  10. Timing and duration of autumn leaf development in Sweden

    Science.gov (United States)

    Bolmgren, Kjell

    2014-05-01

    The growing season is changing in both ends and autumn phases seem to be responding in more diverse ways than spring events. Indeed, we know little about autumn leaf phenological strategies and how they are correlated with fitness components or ecosystem properties, and how they vary between species and over bioclimatic gradients. In this study more than 10 000 students were involved in observing autumn leaf development at 378 sites all over Sweden (55-68°N). They followed an image based observation protocol classifying autumn leaf development into five levels, from summer green (level 0) to 100% autumn leaf colored (level 4) canopy. In total, they submitted almost 12 000 observations between August 9 and November 15. 75% of the observations were made on the common species of Populus tremula, Betula pendula/pubescens and Sorbus aucuparia. The expected (negative) correlation between latitude and start of leaf senescence (level 2) was found in Populus and Betula, but not in Sorbus. The duration of the leaf senescence period, defined as the period between 1/3 (level 2) and 100% (level 4) of the canopy autumn leaf colored, was negatively correlated with latitude in Populus and Betula, but not in Sorbus. There was also a strong (negative) correlation of the start (level 2) and the duration of the leaf senescence in the early senescing Sorbus and Betula, while this effect was weaker in the late senescing Populus.

  11. Leaf size indices and structure of the peat swamp forest

    Directory of Open Access Journals (Sweden)

    L.G. Aribal

    2017-12-01

    Full Text Available Leaf size indices of the tree species in the peatland of Agusan del Sur in Mindanao in Philippines was examined to deduce the variation of forest structure and observed forest zonation.  Using raunkiaer and webb’s leaf size classification, the leaf morphometrics of seven tree species consistently found on the established sampling plots were determined.  The species includes Ternstroemia philippinensis Merr., Polyscias aherniana Merr. Lowry and G.M. Plunkett, Calophyllum sclerophyllum Vesque, Fagraea racemosa Jack, Ilex cymosa Blume, Syzygium tenuirame (Miq. Merr. and Tristaniopsis micrantha Merr. Peter G.Wilson and J.T.Waterh.The LSI were correlated against the variables of the peat physico-chemical properties (such as bulk density, acrotelm thickness, peat depth, total organic carbon, nitrogen, phosphorus, and potassium, pH; water (pH, ammonium, nitrate, phosphate; and leaf tissue elements (nitrogen, phosphorus and potassium.  Result showed a decreasing leaf size indices and a three leaf size category consisting of mesophyllous, mesophyllous-notophyllous and microphyllous were observed which corresponds to the structure of vegetation i.e., from the tall-pole forest having the biggest average leaf area of 6,142.29 mm2 to the pygmy forest with average leaf area of 1,670.10 mm2.  Such decreased leaf size indices were strongly correlated to soil nitrogen, acrotelm thickness, peat depth, phosphate in water, nitrogen and phosphorus in the plant tissue.

  12. Evaluation of two methods of predicting MLC leaf positions using EPID measurements

    International Nuclear Information System (INIS)

    Parent, Laure; Seco, Joao; Evans, Phil M.; Dance, David R.; Fielding, Andrew

    2006-01-01

    In intensity modulated radiation treatments (IMRT), the position of the field edges and the modulation within the beam are often achieved with a multileaf collimator (MLC). During the MLC calibration process, due to the finite accuracy of leaf position measurements, a systematic error may be introduced to leaf positions. Thereafter leaf positions of the MLC depend on the systematic error introduced on each leaf during MLC calibration and on the accuracy of the leaf position control system (random errors). This study presents and evaluates two methods to predict the systematic errors on the leaf positions introduced during the MLC calibration. The two presented methods are based on a series of electronic portal imaging device (EPID) measurements. A comparison with film measurements showed that the EPID could be used to measure leaf positions without introducing any bias. The first method, referred to as the 'central leaf method', is based on the method currently used at this center for MLC leaf calibration. It mimics the manner in which leaf calibration parameters are specified in the MLC control system and consequently is also used by other centers. The second method, a new method proposed by the authors and referred to as the ''individual leaf method,'' involves the measurement of two positions for each leaf (-5 and +15 cm) and the interpolation and extrapolation from these two points to any other given position. The central leaf method and the individual leaf method predicted leaf positions at prescribed positions of -11, 0, 5, and 10 cm within 2.3 and 1.0 mm, respectively, with a standard deviation (SD) of 0.3 and 0.2 mm, respectively. The individual leaf method provided a better prediction of the leaf positions than the central leaf method. Reproducibility tests for leaf positions of -5 and +15 cm were performed. The reproducibility was within 0.4 mm on the same day and 0.4 mm six weeks later (1 SD). Measurements at gantry angles of 0 deg., 90 deg., and 270 deg

  13. The Arabidopsis thaliana rlp mutations revert the ectopic leaf blade formation conferred by activation tagging of the LEP gene

    DEFF Research Database (Denmark)

    van der Graaff, Eric; Nussbaumer, C; Keller, Bente

    2003-01-01

    -type (non-transgenic) background. This indicates that LEP regulates a subset of the genes involved in the process of leaf blade outgrowth, and that genetic and/or functional redundancy in this process compensates for the loss of RLP function during the formation of the wild-type leaf blade. More detailed...... gene. Therefore, these lines are potentially mutated in genes for interacting partners of LEP or in downstream regulatory genes. In contrast, the recessive rlp lines exhibit a specific reversion of the leafy petiole phenotype. Thus, these lines are most probably mutated in genes specific...

  14. Climatic Controls on Leaf Nitrogen Content and Implications for Biochemical Modeling.

    Science.gov (United States)

    Tcherednichenko, I. A.; White, M.; Bastidas, L.

    2007-12-01

    Leaf nitrogen (N) content, expressed as percent total nitrogen per unit of leaf dry mass, is a widely used parameter in biochemical modeling, due mainly to its role as a potentially limiting factor for photosynthesis. The amount of nitrogen, however, does not occur in a fixed amount in every leaf, but rather varies continuously with the leaf life cycle, in constant response to soil-root-stem-leaf-climate interactions and demand for growth. Moreover, while broad data on leaf N has become available it is normally measured under ambient conditions with consequent difficulty for distinguishing between genetic and time specific environmental effects. In the present work we: 1) Investigate the theoretical variation of leaf mass, specific heat capacity and leaf thickness of full sun-expanded leaves as a regulatory mechanism to ensure thermal survival along with long-term climatic radiation/temperature gradient; and discuss nitrogen and carbon controls on leaf thickness. 2) Based on possible states of partition between nitrogenous and non-nitrogenous components of a leaf we further derive probability density functions (PDFs) of nitrogen and carbon content and assess the effect of water and nutrient uptake on the PDFs. 3) Translate the results to spatially explicit representation over the conterminous USA at 1 km spatial resolution by providing maximum potential values of leaf N of fully expanded leaf optimally suited for long term climatic averages values and soils conditions. Implications for potential presence of inherently slow/fast growing species are discussed along with suitability of results for use by biochemical models.

  15. Transcriptomic Profiling of the Maize (Zea mays L.) Leaf Response to Abiotic Stresses at the Seedling Stage.

    Science.gov (United States)

    Li, Pengcheng; Cao, Wei; Fang, Huimin; Xu, Shuhui; Yin, Shuangyi; Zhang, Yingying; Lin, Dezhou; Wang, Jianan; Chen, Yufei; Xu, Chenwu; Yang, Zefeng

    2017-01-01

    Abiotic stresses, including drought, salinity, heat, and cold, negatively affect maize ( Zea mays L.) development and productivity. To elucidate the molecular mechanisms of resistance to abiotic stresses in maize, RNA-seq was used for global transcriptome profiling of B73 seedling leaves exposed to drought, salinity, heat, and cold stress. A total of 5,330 differentially expressed genes (DEGs) were detected in differential comparisons between the control and each stressed sample, with 1,661, 2,019, 2,346, and 1,841 DEGs being identified in comparisons of the control with salinity, drought, heat, and cold stress, respectively. Functional annotations of DEGs suggested that the stress response was mediated by pathways involving hormone metabolism and signaling, transcription factors (TFs), very-long-chain fatty acid biosynthesis and lipid signaling, among others. Of the obtained DEGs (5,330), 167 genes are common to these four abiotic stresses, including 10 up-regulated TFs (five ERFs, two NACs, one ARF, one MYB, and one HD-ZIP) and two down-regulated TFs (one b-ZIP and one MYB-related), which suggested that common mechanisms may be initiated in response to different abiotic stresses in maize. This study contributes to a better understanding of the molecular mechanisms of maize leaf responses to abiotic stresses and could be useful for developing maize cultivars resistant to abiotic stresses.

  16. Regulation of glutamine synthetase isoforms in two differentially drought-tolerant rice (Oryza sativa L.) cultivars under water deficit conditions.

    Science.gov (United States)

    Singh, Kamal Krishna; Ghosh, Shilpi

    2013-02-01

    KEY MESSAGE : The regulation of GS isoforms by WD was organ specific. Two GS isoforms i.e. OsGS1;1 and OsGS2 were differentially regulated in IR-64 (drought-sensitive) and Khitish (drought-tolerant) cultivars of rice. Water deficit (WD) has adverse effect on rice (Oryza sativa L.) and acclimation requires essential reactions of primary metabolism to continue. Rice plants utilize ammonium as major nitrogen source, which is assimilated into glutamine by the reaction of Glutamine synthetase (GS, EC 6.3.1.2). Rice plants possess one gene (OsGS2) for chloroplastic GS2 and three genes (OsGS1;1, OsGS1;2 and OsGS1;3) for cytosolic GS1. Here, we report the effect of WD on regulation of GS isoforms in drought-sensitive (cv. IR-64) and drought-tolerant (cv. Khitish) rice cultivars. Under WD, total GS activity in root and leaf decreased significantly in IR-64 seedlings in comparison to Khitish seedlings. The reduced GS activity in IR-64 leaf was mainly due to decrease in GS2 activity, which correlated with decrease in corresponding transcript and polypeptide contents. GS1 transcript and polypeptide accumulated in leaf during WD, however, GS1 activity was maintained at a constant level. Total GS activity in stem of both the varieties was insensitive to WD. Among GS1 genes, OsGS1;1 expression was differently regulated by WD in the two rice varieties. Its transcript accumulated more abundantly in IR-64 leaf than in Khitish leaf. Following WD, OsGS1;1 mRNA level in stem and root tissues declined in IR-64 and enhanced in Khitish. A steady OsGS1;2 expression patterns were noted in leaf, stem and root of both the cultivars. Results suggest that OsGS2 and OsGS1;1 expression may contribute to drought tolerance of Khitish cultivar under WD conditions.

  17. Gibberellin Application at Pre-Bloom in Grapevines Down-Regulates the Expressions of VvIAA9 and VvARF7, Negative Regulators of Fruit Set Initiation, during Parthenocarpic Fruit Development

    Science.gov (United States)

    Jung, Chan Jin; Hur, Youn Young; Yu, Hee-Ju; Noh, Jung-Ho; Park, Kyo-Sun; Lee, Hee Jae

    2014-01-01

    Fruit set is initiated only after fertilization and is tightly regulated primarily by gibberellins (GAs) and auxins. The application of either of these hormones induces parthenocarpy, fruit set without fertilization, but the molecular mechanism underlying this induction is poorly understood. In the present study, we have shown that the parthenocarpic fruits induced by GA application at pre-bloom result from the interaction of GA with auxin signaling. The transcriptional levels of the putative negative regulators of fruit set initiation, including Vitis auxin/indole-3-acetic acid transcription factor 9 (VvIAA9), Vitis auxin response factor 7 (VvARF7), and VvARF8 were monitored during inflorescence development in seeded diploid ‘Tamnara’ grapevines with or without GA application. Without GA application, VvIAA9, VvARF7, and VvARF8 were expressed at a relatively high level before full bloom, but decreased thereafter following pollination. After GA application at 14 days before full bloom (DBF); however, the expression levels of VvIAA9 and VvARF7 declined at 5 DBF prior to pollination. The effects of GA application on auxin levels or auxin signaling were also analyzed by monitoring the expression patterns of auxin biosynthesis genes and auxin-responsive genes with or without GA application. Transcription levels of the auxin biosynthesis genes Vitis anthranilate synthase β subunit (VvASB1-like), Vitis YUCCA2 (VvYUC2), and VvYUC6 were not significantly changed by GA application. However, the expressions of Vitis Gretchen Hagen3.2 (VvGH3.2) and VvGH3.3, auxin-responsive genes, were up-regulated from 2 DBF to full bloom with GA application. Furthermore, the Vitis GA signaling gene, VvDELLA was up-regulated by GA application during 12 DBF to 7 DBF, prior to down-regulation of VvIAA9 and VvARF7. These results suggest that VvIAA9 and VvARF7 are negative regulators of fruit set initiation in grapevines, and GA signaling is integrated with auxin signaling via VvDELLA during

  18. Further European initiatives and regulations concerning radiation protection: drinking water guideline, maximum permissible contamination in food products and feeding stuff

    International Nuclear Information System (INIS)

    Mundigl, Stefan

    2013-01-01

    The radiation protection community has observed intensively the development of basic safety standards concerning protection against hazards of ionizing radiation. The new core part of the European radiation protection legislation is complemented by several specialized regulations relevant for radiation protection. Besides the existing regulations in the field of emergency protection the European Commission initiated a drinking water guideline that will be published in the near future. Furthermore the European commission approved a revised regulation concerning the maximum permissible contamination limits for food products and feeding stuff in case of a future nuclear accident. Together with the new radiation protection basic standards a new complete, coherent and modernized European regulation package will be accomplished.

  19. Antioxidant Activity and Cytotoxicity of the Leaf and Bark Extracts of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant potential and cytotoxicity of the leaf and bark extracts of Tarchonanathus campharatus.. Methods: The antioxidant activity of the aqueous leaf extract (Aq LF), methanol leaf extract (MET LF), dichloromethane leaf extract (DCM LF), methanol bark extract (MET BK), dichloromethane bark ...

  20. Estimating leaf photosynthetic pigments information by stepwise multiple linear regression analysis and a leaf optical model

    Science.gov (United States)

    Liu, Pudong; Shi, Runhe; Wang, Hong; Bai, Kaixu; Gao, Wei

    2014-10-01

    Leaf pigments are key elements for plant photosynthesis and growth. Traditional manual sampling of these pigments is labor-intensive and costly, which also has the difficulty in capturing their temporal and spatial characteristics. The aim of this work is to estimate photosynthetic pigments at large scale by remote sensing. For this purpose, inverse model were proposed with the aid of stepwise multiple linear regression (SMLR) analysis. Furthermore, a leaf radiative transfer model (i.e. PROSPECT model) was employed to simulate the leaf reflectance where wavelength varies from 400 to 780 nm at 1 nm interval, and then these values were treated as the data from remote sensing observations. Meanwhile, simulated chlorophyll concentration (Cab), carotenoid concentration (Car) and their ratio (Cab/Car) were taken as target to build the regression model respectively. In this study, a total of 4000 samples were simulated via PROSPECT with different Cab, Car and leaf mesophyll structures as 70% of these samples were applied for training while the last 30% for model validation. Reflectance (r) and its mathematic transformations (1/r and log (1/r)) were all employed to build regression model respectively. Results showed fair agreements between pigments and simulated reflectance with all adjusted coefficients of determination (R2) larger than 0.8 as 6 wavebands were selected to build the SMLR model. The largest value of R2 for Cab, Car and Cab/Car are 0.8845, 0.876 and 0.8765, respectively. Meanwhile, mathematic transformations of reflectance showed little influence on regression accuracy. We concluded that it was feasible to estimate the chlorophyll and carotenoids and their ratio based on statistical model with leaf reflectance data.

  1. Optimal leaf positions for chlorophyll meter measurement in rice

    Directory of Open Access Journals (Sweden)

    Zhaofeng eYuan

    2016-05-01

    Full Text Available The Soil Plant Analysis Development (SPAD chlorophyll meter is one of the most commonly used diagnostic tools to measure crop nitrogen status. However, the measurement method of the meter could significantly affect the accuracy of the final estimation. Thus, this research was undertaken to develop a new methodology to optimize SPAD meter measurements in rice (Oryza sativa L.. A flatbed color scanner was used to map the dynamic chlorophyll distribution and irregular leaf shapes. Calculus algorithm was adopted to estimate the potential positions for SPAD meter measurement along the leaf blade. Data generated by the flatbed color scanner and SPAD meter were analysed simultaneously. The results suggested that a position 2/3 of the distance from the leaf base to the apex (2/3 position could represent the chlorophyll content of the entire leaf blade, as indicated by the relatively low variance of measurements at that positon. SPAD values based on di-positional leaves and the extracted chlorophyll a and b contents were compared. This comparison showed that the 2/3 position on the lower leaves tended to be more sensitive to changes in chlorophyll content. Finally, the 2/3 position and average SPAD values of the fourth fully expanded leaf from the top were compared with leaf nitrogen concentration. The results showed the 2/3 position on that leaf was most suitable for predicting the nitrogen status of rice. Based on these results, we recommend making SPAD measurements at the 2/3 position on the fourth fully expanded leaf from the top. The coupling of dynamic chlorophyll distribution and irregular leaf shapes information can provide a promising approach for the calibration of SPAD meter measurement, which can further benefit the in situ nitrogen management by providing reliable estimation of crops nitrogen nutrition status.

  2. Leaf area prediction models for Tsuga canadensis in Maine

    Science.gov (United States)

    Laura S. Kenefic; R.S. Seymour

    1999-01-01

    Tsuga canadensis (L.) Carr. (eastern hemlock) is a common species throughout the Acadian forest. Studies of leaf area and growth efficiency in this forest type have been limited by the lack of equations to predict leaf area of this species. We found that sapwood area was an effective leaf area surrogate in T. canadensis, though...

  3. Simulated Acid Rain-induced Alterations in Flowering, Leaf ...

    African Journals Online (AJOL)

    Evaluation of SAR effects on budding, flowering, leaf abscission and pollen development revealed that ... Keywords: Simulated acid rain, Helianthus annuus, flowering, leaf abscission, pollen germination, sunflower. ... HOW TO USE AJOL.

  4. Short-term effects of fertilization on photosynthesis and leaf morphology of field-grown loblolly pine following long-term exposure to elevated CO2 concentration

    International Nuclear Information System (INIS)

    Maier, C.A.; Palmroth, S.; Ward, E.

    2008-01-01

    This study examined the effects of an initial nitrogen (N) fertilizer application on the upper-canopy needle morphology and gas exchange of a loblolly pine tree exposed to elevated carbon dioxide (CO 2 ) concentrations over a period of 9 years. Plots in the study were split, and one half of each plot was fertilized with 112 kg ha -1 of elemental N. Measurements included needle length, mass per unit area, N concentrations on a mass and area basis, light-saturated net photosynthesis per unit leaf area, and per unit mass and leaf conductance. Results of the study showed that fertilization had little impact on needle length, mass per unit area, or leaf conductance. Results suggested that although both needle age classes accumulated N following fertilization, current-year foliage incorporated N into its photosynthetic machinery, while 1-year old foliage stored N. No significant interactions were observed between elevated CO 2 and light-saturated net photosynthesis per unit leaf area. The study found few fertilization and CO 2 interaction effects on leaf physiology and morphology. 54 refs., 3 tabs., 3 figs

  5. A leaf gas exchange model that accounts for intra-canopy variability by considering leaf nitrogen content and local acclimation to radiation in grapevine (Vitis vinifera L.).

    Science.gov (United States)

    Prieto, Jorge A; Louarn, Gaëtan; Perez Peña, Jorge; Ojeda, Hernán; Simonneau, Thierry; Lebon, Eric

    2012-07-01

    Understanding the distribution of gas exchange within a plant is a prerequisite for scaling up from leaves to canopies. We evaluated whether leaf traits were reliable predictors of the effects of leaf ageing and leaf irradiance on leaf photosynthetic capacity (V(cmax) , J(max) ) in field-grown vines (Vitis vinifera L). Simultaneously, we measured gas exchange, leaf mass per area (LMA) and nitrogen content (N(m) ) of leaves at different positions within the canopy and at different phenological stages. Daily mean leaf irradiance cumulated over 10 d (PPFD(10) ) was obtained by 3D modelling of the canopy structure. N(m) decreased over the season in parallel to leaf ageing while LMA was mainly affected by leaf position. PPFD(10) explained 66, 28 and 73% of the variation of LMA, N(m) and nitrogen content per area (N(a) ), respectively. Nitrogen content per unit area (N(a) = LMA × N(m) ) was the best predictor of the intra-canopy variability of leaf photosynthetic capacity. Finally, we developed a classical photosynthesis-stomatal conductance submodel and by introducing N(a) as an input, the model accurately simulated the daily pattern of gas exchange for leaves at different positions in the canopy and at different phenological stages during the season. © 2012 Blackwell Publishing Ltd.

  6. Effects of deoxynivalenol on content of chloroplast pigments in barley leaf tissues.

    Science.gov (United States)

    Bushnell, W R; Perkins-Veazie, P; Russo, V M; Collins, J; Seeland, T M

    2010-01-01

    To understand further the role of deoxynivalenol (DON) in development of Fusarium head blight (FHB), we investigated effects of the toxin on uninfected barley tissues. Leaf segments, 1 to 1.2 cm long, partially stripped of epidermis were floated with exposed mesophyll in contact with DON solutions. In initial experiments with the leaf segments incubated in light, DON at 30 to 90 ppm turned portions of stripped tissues white after 48 to 96 h. The bleaching effect was greatly enhanced by addition of 1 to 10 mM Ca(2+), so that DON at 10 to 30 ppm turned virtually all stripped tissues white within 48 h. Content of chlorophylls a and b and of total carotenoid pigment was reduced. Loss of electrolytes and uptake of Evans blue indicated that DON had a toxic effect, damaging plasmalemmas in treated tissues before chloroplasts began to lose pigment. When incubated in the dark, leaf segments also lost electrolytes, indicating DON was toxic although the tissues remained green. Thus, loss of chlorophyll in light was due to photobleaching and was a secondary effect of DON, not required for toxicity. In contrast to bleaching effects, some DON treatments that were not toxic kept tissues green without bleaching or other signs of injury, indicating senescence was delayed compared with slow yellowing of untreated leaf segments. Cycloheximide, which like DON, inhibits protein synthesis, also bleached some tissues and delayed senescence of others. Thus, the effects of DON probably relate to its ability to inhibit protein synthesis. With respect to FHB, the results suggest DON may have multiple roles in host cells of infected head tissues, including delayed senescence in early stages of infection and contributing to bleaching and death of cells in later stages.

  7. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    Energy Technology Data Exchange (ETDEWEB)

    Kamath, Srijit [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Sahni, Sartaj [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Palta, Jatinder [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States); Ranka, Sanjay [Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL (United States); Li, Jonathan [Department of Radiation Oncology, University of Florida, Gainesville, FL (United States)

    2004-02-07

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  8. Optimal leaf sequencing with elimination of tongue-and-groove underdosage

    International Nuclear Information System (INIS)

    Kamath, Srijit; Sahni, Sartaj; Palta, Jatinder; Ranka, Sanjay; Li, Jonathan

    2004-01-01

    The individual leaves of a multileaf collimator (MLC) have a tongue-and-groove or stepped-edge design to minimize leakage radiation between adjacent leaves. This design element has a drawback in that it creates areas of underdosages in intensity-modulated photon beams unless a leaf trajectory is specifically designed such that for any two adjacent leaf pairs, the direct exposure under the tongue-and-groove is equal to the lower of the direct exposures of the leaf pairs. In this work, we present a systematic study of the optimization of a leaf sequencing algorithm for segmental multileaf collimator beam delivery that completely eliminates areas of underdosages due to tongue-and-groove or stepped-edge design of the MLC. Simultaneous elimination of tongue-and-groove effect and leaf interdigitation is also studied. This is an extension of our previous work (Kamath et al 2003a Phys. Med. Biol. 48 307) in which we described a leaf sequencing algorithm that is optimal for monitor unit (MU) efficiency under most common leaf movement constraints that include minimum leaf separation. Compared to our previously published algorithm (without constraints), the new algorithms increase the number of sub-fields by approximately 21% and 25%, respectively, but are optimal in MU efficiency for unidirectional schedules. (note)

  9. Do Aphids Alter Leaf Surface Temperature Patterns During Early Infestation?

    Directory of Open Access Journals (Sweden)

    Thomas Cahon

    2018-03-01

    Full Text Available Arthropods at the surface of plants live in particular microclimatic conditions that can differ from atmospheric conditions. The temperature of plant leaves can deviate from air temperature, and leaf temperature influences the eco-physiology of small insects. The activity of insects feeding on leaf tissues, may, however, induce changes in leaf surface temperatures, but this effect was only rarely demonstrated. Using thermography analysis of leaf surfaces under controlled environmental conditions, we quantified the impact of presence of apple green aphids on the temperature distribution of apple leaves during early infestation. Aphids induced a slight change in leaf surface temperature patterns after only three days of infestation, mostly due to the effect of aphids on the maximal temperature that can be found at the leaf surface. Aphids may induce stomatal closure, leading to a lower transpiration rate. This effect was local since aphids modified the configuration of the temperature distribution over leaf surfaces. Aphids were positioned at temperatures near the maximal leaf surface temperatures, thus potentially experiencing the thermal changes. The feedback effect of feeding activity by insects on their host plant can be important and should be quantified to better predict the response of phytophagous insects to environmental changes.

  10. Leaf micromorphology of some Phyllanthus L. species (Phyllanthaceae)

    Energy Technology Data Exchange (ETDEWEB)

    Solihani, N. S., E-mail: noorsolihani@gmail.com; Noraini, T., E-mail: norainitalip@gmail.com [School of Environmental and Natural Resource Sciences Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Azahana, A., E-mail: bell-azahana@yahoo.com [Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang (Malaysia); Nordahlia, A. S., E-mail: nordahlia@frim.gov.my [Forest Research Institute of Malaysia, 52109 Kepong, Selangor (Malaysia)

    2015-09-25

    Comparative leaf micromorphological study was conducted of five chosen Phyllanthus L. (Phyllanthaceae) species, namely P. acidus L., P. elegans Wall. ex Müll. Arg., P. emblica L., P. urinaria L. and P. pulcher Wall. ex Müll. Arg. The objective of this study is to identify the leaf micromorphological characteristics that can be used in species identification. The procedures involve examination under scanning electron microscope. Findings of this study have demonstrated variations in the leaf micromorphological characteristics such as in the types of waxes present on adaxial and abaxial epidermis surfaces, in the stomata and types of trichome. Common character present in all species studied are the presence of a thin film layer and buttress-like waxes on epidermal leaf surfaces. Diagnostics characters found in this study are the presence of papilla in P. elegens, amphistomatic stomata in P. urinaria and flaky waxes in P. pulcher. The result of this study has shown that leaf micromorphological characters have some taxonomic significance and can be used in identification of species in the genus Phyllanthus.

  11. Leaf absorbance and photosynthesis

    Science.gov (United States)

    Schurer, Kees

    1994-01-01

    The absorption spectrum of a leaf is often thought to contain some clues to the photosynthetic action spectrum of chlorophyll. Of course, absorption of photons is needed for photosynthesis, but the reverse, photosynthesis when there is absorption, is not necessarily true. As a check on the existence of absorption limits we measured spectra for a few different leaves. Two techniques for measuring absorption have been used, viz. the separate determination of the diffuse reflectance and the diffuse transmittance with the leaf at a port of an integrating sphere and the direct determination of the non-absorbed fraction with the leaf in the sphere. In a cross-check both methods yielded the same results for the absorption spectrum. The spectrum of a Fuchsia leaf, covering the short-wave region from 350 to 2500 nm, shows a high absorption in UV, blue and red, the well known dip in the green and a steep fall-off at 700 nm. Absorption drops to virtually zero in the near infrared, with subsequent absorptions, corresponding to the water absorption bands. In more detailed spectra, taken at 5 nm intervals with a 5 nm bandwidth, differences in chlorophyll content show in the different depths of the dip around 550 nm and in a small shift of the absorption edge at 700 nm. Spectra for Geranium (Pelargonium zonale) and Hibiscus (with a higher chlorophyll content) show that the upper limit for photosynthesis can not be much above 700 nm. No evidence, however, is to be seen of a lower limit for photosynthesis and, in fact, some experiments down to 300 nm still did not show a decrease of the absorption although it is well recognized that no photosynthesis results with 300 nm wavelengths.

  12. Antibacterial Activity of Vernonia amygdalina Leaf Extracts against ...

    African Journals Online (AJOL)

    ADOWIE PERE

    (Bitter leaf), Allium sativum (Garlic), O. gratissimum. (Scent leaf) ... complex active components that are useful ... hydroxide was added. .... KEY: CPX-Ciprofloxacin, Ro-Rocephin, St-Streptomycin, AU-Augmentin, SXT-Septrin, SP- Sparfloxacin, ...

  13. Estimation of leaf area in tropical maize

    NARCIS (Netherlands)

    Elings, A.

    2000-01-01

    Leaf area development of six tropical maize cultivars grown in 1995 and 1996 in several tropical environments in Mexico (both favourable and moisture-and N-limited) was observed and analysed. First, the validity of a bell-shaped curve describing the area of individual leaves as a function of leaf

  14. Frost and leaf-size gradients in forests: global patterns and experimental evidence.

    Science.gov (United States)

    Lusk, Christopher H; Clearwater, Michael J; Laughlin, Daniel C; Harrison, Sandy P; Prentice, Iain Colin; Nordenstahl, Marisa; Smith, Benjamin

    2018-05-16

    Explanations of leaf size variation commonly focus on water availability, yet leaf size also varies with latitude and elevation in environments where water is not strongly limiting. We provide the first conclusive test of a prediction of leaf energy balance theory that may explain this pattern: large leaves are more vulnerable to night-time chilling, because their thick boundary layers impede convective exchange with the surrounding air. Seedlings of 15 New Zealand evergreens spanning 12-fold variation in leaf width were exposed to clear night skies, and leaf temperatures were measured with thermocouples. We then used a global dataset to assess several climate variables as predictors of leaf size in forest assemblages. Leaf minus air temperature was strongly correlated with leaf width, ranging from -0.9 to -3.2°C in the smallest- and largest-leaved species, respectively. Mean annual temperature and frost-free period were good predictors of evergreen angiosperm leaf size in forest assemblages, but no climate variable predicted deciduous leaf size. Although winter deciduousness makes large leaves possible in strongly seasonal climates, large-leaved evergreens are largely confined to frost-free climates because of their susceptibility to radiative cooling. Evergreen leaf size data can therefore be used to enhance vegetation models, and to infer palaeotemperatures from fossil leaf assemblages. © 2018 The Authors New Phytologist © 2018 New Phytologist Trust.

  15. Simple models for predicting leaf area of mango (Mangifera indica L.

    Directory of Open Access Journals (Sweden)

    Maryam Ghoreishi

    2012-01-01

    Full Text Available Mango (Mangifera indica L., one of the most popular tropical fruits, is cultivated in a considerable part of southern Iran. Leaf area is a valuable parameter in mango research, especially plant physiological and nutrition field. Most of available methods for estimating plant leaf area are difficult to apply, expensive and destructive which could in turn destroy the canopy and consequently make it difficult to perform further tests on the same plant. Therefore, a non-destructive method which is simple, inexpensive, and could yield an accurate estimation of leaf area will be a great benefit to researchers. A regression analysis was performed in order to determine the relationship between the leaf area and leaf width, leaf length, dry and fresh weight. For this purpose 50 mango seedlings of local selections were randomly took from a nursery in the Hormozgan province, and different parts of plants were separated in laboratory. Leaf area was measured by different method included leaf area meter, planimeter, ruler (length and width and the fresh and dry weight of leaves were also measured. The best regression models were statistically selected using Determination Coefficient, Maximum Error, Model Efficiency, Root Mean Square Error and Coefficient of Residual Mass. Overall, based on regression equation, a satisfactory estimation of leaf area was obtained by measuring the non-destructive parameters, i.e. number of leaf per seedling, length of the longest and width of widest leaf (R2 = 0.88 and also destructive parameters, i.e. dry weight (R2 = 0.94 and fresh weight (R2= 0.94 of leaves.

  16. Chemical changes to leaf litter from trees grown under elevated CO2 and the implications for microbial utilization in a stream ecosystem

    International Nuclear Information System (INIS)

    Rier, S. T.; Tuchman, N. C.; Wetzel, R. G.

    2005-01-01

    The effects of elevated carbon dioxide on the chemistry and subsequent response of stream microorganisms growing on leaf litter of three riparian tree species (quaking aspen, white willow and sugar maple) were studied. Results showed that the effects were species-specific, i.e. aspen leaves contained high concentrations of lignin, maple leafs contained higher concentrations of soluble phenolic compounds and willow leaves contained higher concentrations of carbohydrate-bound condensed tannins. Initially, the higher concentrations of soluble phenolic compounds in maple leaves were rapidly leached in stream water, but overall, the impact of altered leaf chemistry on riparian trees grown under elevated carbon dioxide was clearly variable; no strongly suppressed microbial activity during stream incubation was observed. Any evidence of suppression observed, was species-specific. 49 refs., 2 tabs., 3 figs

  17. Effects of leaf age within growth stages of pepper and sorghum plants on leaf thickness, water, chlorophyll, and light reflectance. [in spectral vegetation discrimination

    Science.gov (United States)

    Gausman, H. W.; Cardenas, R.; Berumen, A.

    1974-01-01

    Pepper and sorghum plants (characterized by porous and compact leaf mesophylls, respectively) were used to study the influence of leaf age on light reflectance. Measurements were limited to the upper five nodal positions within each growth stage, since upper leaves make up most of the reflectance surfaces remotely sensed. The increase in leaf thickness and water content with increasing leaf age was taken into consideration, since each of these factors affects the reflectance as well as the selection of spectral wavelength intervals for optimum discrimination of vegetation.

  18. Canopy and leaf composition drive patterns of nutrient release from pruning residues in a coffee agroforest.

    Science.gov (United States)

    Tully, Katherine L; Lawrence, Deborah

    2012-06-01

    In a coffee agroforest, the crop is cultivated under the shade of fruit-bearing and nitrogen (N)-fixing trees. These trees are periodically pruned to promote flowering and fruiting as well as to make nutrients stored in tree biomass available to plants. We investigated the effect of canopy composition and substrate quality on decomposition rates and patterns of nutrient release from pruning residues in a coffee agroforest located in Costa Rica's Central Valley. Initial phosphorus (P) release was enhanced under a canopy composed solely of N-fixing, Erythrina poeppigiana compared to a mixed canopy of Erythrina and Musa acuminata (banana). Both initial and final N release were similar under the two canopy types. However, after five months of decomposition, a higher proportion of initial N had been released under the single canopy. Although patterns of decomposition and nutrient release were not predicted by initial substrate quality, mass loss in leaf mixtures rates were well predicted by mean mass loss of their component species. This study identifies specific pruning regimes that may regulate N and P release during crucial growth periods, and it suggests that strategic pruning can enhance nutrient availability. For example, during the onset of rapid fruit growth, a two-species mixture may release more P than a three-species mixture. However, by the time of the harvest, the two- and three-species mixtures have released roughly the same amount of N and P. These nutrients do not always follow the same pattern, as N release can be maximized in single-species substrates, while P release is often facilitated in species mixtures. Our study indicates the importance of management practices in mediating patterns of nutrient release. Future research should investigate how canopy composition and farm management can also mediate on-farm nutrient losses.

  19. Underground anemotactic orientation in leaf-cutting ants: perception of airflow and experience-dependent choice of airflow direction during digging

    Science.gov (United States)

    Halboth, Florian; Roces, Flavio

    2017-10-01

    Air exchange between the large nests of Atta vollenweideri leaf-cutting ants and the environment strongly relies on a passive, wind-induced ventilation mechanism. Air moves through nest tunnels and airflow direction depends on the location of the tunnel openings on the nest mound. We hypothesized that ants might use the direction of airflow along nest tunnels as orientation cue in the context of climate control, as digging workers might prefer to broaden or to close tunnels with inflowing or outflowing air in order to regulate nest ventilation. To investigate anemotactic orientation in Atta vollenweideri, we first tested the ants' ability to perceive air movements by confronting single workers with airflow stimuli in the range 0 to 20 cm/s. Workers responded to airflow velocities ≥ 2 cm/s, and the number of ants reacting to the stimulus increased with increasing airflow speed. Second, we asked whether digging workers use airflow direction as an orientation cue. Workers were exposed to either inflow or outflow of air while digging in the nest and could subsequently choose between two digging sites providing either inflow or outflow of air, respectively. Workers significantly chose the side with the same airflow direction they experienced before. When no airflow was present during initial digging, workers showed no preference for airflow directions. Workers developed preferences for airflow direction only after previous exposure to a given airflow direction. We suggest that experience-modified anemotaxis might help leaf-cutting ants spatially organize their digging activity inside the nest during tasks related to climate control.

  20. Soil moisture and temperature conditions affect survival and sporulation capacity of Rhododendron leaf disks infested with Phytophthora ramorum

    Science.gov (United States)

    Ebba K. Peterson; Niklaus J. Grünwald; Jennifer L. ParkeSoil

    2017-01-01

    Soilborne inoculum (infested leaf debris which has become incorporated into the soil) may be an important contributor to the persistence of the sudden oak death pathogen Phytophthora ramorum in recurrently positive nurseries. To initiate new epidemics, soilborne inoculum must not only be able to survive over time, but also be capable of...

  1. CIRCADIAN CLOCK-ASSOCIATED 1 Inhibits Leaf Senescence in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Yi Song

    2018-03-01

    Full Text Available Leaf senescence is an integral part of plant development, and the timing and progressing rate of senescence could substantially affect the yield and quality of crops. It has been known that a circadian rhythm synchronized with external environmental cues is critical for the optimal coordination of various physiological and metabolic processes. However, the reciprocal interactions between the circadian clock and leaf senescence in plants remain unknown. Here, through measuring the physiological and molecular senescence related markers of several circadian components mutants, we found that CIRCADIAN CLOCK-ASSOCIATED 1 inhibits leaf senescence. Further molecular and genetic studies revealed that CCA1 directly activates GLK2 and suppresses ORE1 expression to counteract leaf senescence. As plants age, the expression and periodic amplitude of CCA1 declines and thus weakens the inhibition of senescence. Our findings reveal an age-dependent circadian clock component of the process of leaf senescence.

  2. In Their Own Words: Young Adults' Menthol Cigarette Initiation, Perceptions, Experiences and Regulation Perspectives.

    Science.gov (United States)

    Wackowski, Olivia A; Evans, Kiameesha R; Harrell, Melissa B; Loukas, Alexandra; Lewis, M Jane; Delnevo, Cristine D; Perry, Cheryl L

    2017-02-17

    Menthol cigarettes are disproportionately used by young people and have been called smoking starter products. However, limited qualitative research exists on young adults' perceptions of and experiences with these products, with much of it based on document reviews of the tobacco industry's research. We conducted six focus groups with young adult (ages 18-24) menthol smokers in New Jersey (half with black smokers) between December 2014 and March 2015. Participants were asked open-ended questions about their menthol smoking initiation, preference reasons, substitution behaviors, and perceptions of menthol cigarette risks and regulation. Participants' menthol cigarette initiation and preference were influenced by their perceived popularity, brand recognition, taste, smoothness, satisfaction and access (including as "loosies," typically available for Newport). Some believed menthol cigarettes were less harmful than non-menthol cigarettes when initiating smoking. Many currently believed menthol cigarettes were more harmful because they contained extra "additives," were stronger (ie, requiring fewer cigarettes to feel satisfied), and/or based on hearsay. Many had tried new brand Camel Crush, which was perceived to be especially minty, fun, and attractive for newer smokers. While some used non-menthol cigarettes when menthols were unavailable, many said they would never or almost never substitute. Many acknowledged a menthol cigarettes ban would likely help them quit smoking, even though they did not support the idea. Menthol cigarette initiation is influenced by an interplay of multiple factors including their sensory properties, marketing, perceived popularity and availability. The FDA should continue to pursue closing this flavored cigarette loophole. In this first qualitative study of menthol cigarette use among young adults, we found further evidence that menthol cigarettes can act as starter products because they are perceived as easier to smoke and taste and smell

  3. The chlorophyll-deficient golden leaf mutation in cucumber is due to a single nucleotide substitution in CsChlI for magnesium chelatase I subunit.

    Science.gov (United States)

    Gao, Meiling; Hu, Liangliang; Li, Yuhong; Weng, Yiqun

    2016-10-01

    The cucumber chlorophyll-deficient golden leaf mutation is due to a single nucleotide substitution in the CsChlI gene for magnesium chelatase I subunit which plays important roles in the chlorophyll biosynthesis pathway. The Mg-chelatase catalyzes the insertion of Mg(2+) into the protoporphyrin IX in the chlorophyll biosynthesis pathway, which is a protein complex encompassing three subunits CHLI, CHLD, and CHLH. Chlorophyll-deficient mutations in genes encoding the three subunits have played important roles in understanding the structure, function and regulation of this important enzyme. In an EMS mutagenesis population, we identified a chlorophyll-deficient mutant C528 with golden leaf color throughout its development which was viable and able to set fruits and seeds. Segregation analysis in multiple populations indicated that this leaf color mutation was recessively inherited and the green color showed complete dominance over golden color. Map-based cloning identified CsChlI as the candidate gene for this mutation which encoded the CHLI subunit of cucumber Mg-chelatase. The 1757-bp CsChlI gene had three exons and a single nucleotide change (G to A) in its third exon resulted in an amino acid substitution (G269R) and the golden leaf color in C528. This mutation occurred in the highly conserved nucleotide-binding domain of the CHLI protein in which chlorophyll-deficient mutations have been frequently identified. The mutant phenotype, CsChlI expression pattern and the mutated residue in the CHLI protein suggested the mutant allele in C528 is unique among mutations identified so far in different species. This golden leaf mutant not only has its potential in cucumber breeding, but also provides a useful tool in understanding the CHLI function and its regulation in the chlorophyll biosynthesis pathway as well as chloroplast development.

  4. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  5. Leaf surface anatomy in some woody plants from northeastern Mexico

    International Nuclear Information System (INIS)

    Maiti, R.; Rodriguez, H.G.; Balboa, P.C.R.; Kumari, A

    2016-01-01

    Studies on leaf surface anatomy of woody plants and its significance are rare. The present study was undertaken in the Forest Science Faculty Experimental Research Station, UANL, Mexico, with objectives to determine the variability in leaf surface anatomy in the woody plants of the Tamaulipan thornscrub and its utility in taxonomy and possible adaptation to the prevailing semiarid conditions. The results show the presence of large variability in several leaf anatomical traits viz., waxy leaf surface, type of stomata, its size, and distribution. The species have been classified on the basis of various traits which can be used in species delimitation and adaptation to the semiarid condition such as waxy leaf surface, absence sparse stomata on the leaf surface, sunken stomata. The species identified as better adapters to semi-arid environments on the basis of the presence and absence of stomata on both adaxial and abaxial surface viz., Eysenhardtia texana, Parkinsonia texana, Gymnosperma glutinosum, Celtis laevigata, Condalia hookeri and Karwinskia humboldtiana. (author)

  6. Antibacterial activity, chemical composition, and cytotoxicity of leaf?s essential oil from brazilian pepper tree (schinus terebinthifolius, raddi)

    OpenAIRE

    Silva, A.B.; Silva, T.; Franco, E.S.; Rabelo, S.A.; Lima, E.R.; Mota, R.A.; da C?mara, C.A.G.; Pontes-Filho, N.T.; Lima-Filho, J.V.

    2010-01-01

    The antibacterial potential of leaf?s essential oil (EO) from Brazilian pepper tree (Schinus terebinthifolius Raddi) against staphylococcal isolates from dogs with otitis externa was evaluated. The minimum inhibitory concentration of EO ranged from 78.1 to 1,250 ?g/mL. The oil was analyzed by GC and GC/MS and cytotoxicity tests were carried out with laboratory animals.

  7. Effects of canopy structural variables on retrieval of leaf dry matter content and specific leaf area from remotely sensed data

    NARCIS (Netherlands)

    Ali, A.M.; Darvishzadeh, R.; Skidmore, A.K.; van Duren, I.C.

    2016-01-01

    Leaf dry matter content (LDMC) and specific leaf area (SLA) are two important traits in measuring biodiversity. To use remote sensing for the estimation of these traits, it is essential to understand the underlying factors that influence their relationships with canopy reflectance. The effect of

  8. [Effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of western Sichuan, China].

    Science.gov (United States)

    Xu, Zhen-feng; Hu, Ting-xing; Zhang, Li; Zhang, Yuan-bin; Xian, Jun-ren; Wang, Kai-yun

    2009-01-01

    By using open-top chamber (OTC), the effects of simulated warming on the growth, leaf phenology, and leaf traits of Salix eriostachya in sub-alpine timberline ecotone of Western Sichuan were studied. The results showed that comparing with the control, the mean air temperature at 1.2 m above the ground throughout S. eriostachya growth season in OTC increased by 2.9 degrees C, while the soil temperature at the depth of 5 cm only increased by 0.4 degrees C. The temperature increase in OTC made S. eriostachya budding advanced and defoliation postponed obviously, and the leaf life-span longer. The leaf and branch growth rates as well as the specific leaf area in OTC increased obviously, whereas the leaf nitrogen concentration decreased significantly. In OTC, the stomata conductance, net photosynthetic rate, photorespiration, and dark respiration rate of S. eriostachya all exhibited an increasing trend. It was suggested that S. eriostachya had stronger capability to adapt to warming, and, under the background of future global climate change, the elevation of S. eriostachya distribution in the timberline ecotone would be likely to ascend.

  9. Leaf position optimization for step-and-shoot IMRT

    International Nuclear Information System (INIS)

    Gersem, Werner de; Claus, Filip; Wagter, Carlos de; Duyse, Bart van; Neve, Wilfried de

    2001-01-01

    24 Gy to the primary tumor region only. SOWAT was applied to the Phase 1 plan. Parotid sparing was a planning goal. The second implementation example is an ethmoid sinus cancer case, planned with the intent of bilateral visus sparing. The median PTV prescription dose was 70 Gy with a maximum dose constraint to the optic pathway structures of 60 Gy. Results: The initial set of segments, segment weights, and corresponding dose distribution were obtained, respectively, by an anatomy-based segmentation tool, a segment weight optimization tool, and a differential scatter-air ratio dose computation algorithm as external dose engine. For the supraglottic case, this resulted in a plan that proved to be comparable to the plans obtained at the other institutes by forward or inverse planning techniques. After using SOWAT, the minimum PTV dose and PTV dose homogeneity increased; the maximum dose to the spinal cord decreased from 38 Gy to 32 Gy. The left parotid mean dose decreased from 22 Gy to 19 Gy and the right parotid mean dose from 20 to 18 Gy. For the ethmoid sinus case, the target homogeneity increased by leaf position optimization, together with a better sparing of the optical tracts. Conclusions: By using SOWAT, the plans improved with respect to all plan evaluation end points. Compliance with the multileaf collimator constraints is guaranteed. The treatment delivery time remains almost unchanged, because no additional segments are created

  10. Penumbra measurements of BeamModulatorTM multi leaf collimator

    International Nuclear Information System (INIS)

    Lu Xiaoguang; Wang Yunlai; Huo Xiaoqing; Sha Xiangyan; Miao Xiongfei

    2010-01-01

    Objective: To evaluate the penumbra of a new multileaf collimator equipped with Elekta Synergy accelerator. Methods: The penumbra were derived from beam profiles measured in air and water using PinPoint ion chamber with PTW MP3 water phantom. Variations of penumbra with X-ray beam energy, depth in water, and leaf position were investigated. Results: The penumbra in air for 6 MV X-ray was 2 mm less than that at depth of maximal dose in water. The penumbra of leaf side was 1 mm less than that of the leaf end. The penumbra had close relationship with beam energy, depth in water and leaf position. penumbra increased with beam quality and water depth. The leaf position had great influence on the penumbra. Conclusions: The penumbra of the multileaf collimator is related to its original design and radiation delivery technique. Special considerations should be taken into during treatment planning. Regular measurement should be performed to guarantee the delivery quality. (authors)

  11. Inverse gradients in leaf wax δD and δ13C values along grass blades of Miscanthus sinensis: implications for leaf wax reproduction and plant physiology.

    Science.gov (United States)

    Gao, Li; Huang, Yongsong

    2013-06-01

    Compound specific hydrogen and carbon isotopic ratios of higher plant leaf waxes have been extensively used in paleoclimate and paleoenvironmental reconstructions. However, studies so far have focused on the comparison of leaf wax isotopic differences in bulk leaf samples between different plant species. We sampled three different varieties of tall grasses (Miscanthus sinensis) in six segments from base to tip and determined hydrogen and carbon isotopic ratios of leaf waxes, as well as hydrogen and oxygen isotopic ratios of leaf water samples. We found an increasing, base-to-tip hydrogen isotopic gradient along the grass blades that can probably be attributed to active leaf wax regeneration over the growth season. Carbon isotopic ratios, on the other hand, show opposite trends to hydrogen isotopic ratios along the grass blades, which may reflect different photosynthetic efficiencies at different blade locales.

  12. Leaf Litter Decomposition and Nutrient Dynamics Associated with Common Horticultural Cropland Agroforest Tree Species of Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Hasanuzzaman

    2014-01-01

    Full Text Available Mangifera indica, Zizyphus jujuba, Litchi chinensis, and Artocarpus heterophyllus are the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57% for A. heterophyllus and the lowest (25% was found for L. chinensis. The highest initial rates (0.75% and 2.35%/day of decomposition were observed for Z. jujuba and the lowest (0.50% and 0.79%/day for L. chinensis. The highest decay constant was observed for A. heterophyllus (2.14 and 2.34 and the lowest (0.88 and 0.94 for L. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P of nutrient release during the decomposition process. Zizyphus jujuba showed comparatively higher return of N, P, and K than others. However, a significant (P<0.05 higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.

  13. Short-term responses of leaf growth rate to water deficit scale up to whole-plant and crop levels: an integrated modelling approach in maize.

    Science.gov (United States)

    Chenu, Karine; Chapman, Scott C; Hammer, Graeme L; McLean, Greg; Salah, Halim Ben Haj; Tardieu, François

    2008-03-01

    Physiological and genetic studies of leaf growth often focus on short-term responses, leaving a gap to whole-plant models that predict biomass accumulation, transpiration and yield at crop scale. To bridge this gap, we developed a model that combines an existing model of leaf 6 expansion in response to short-term environmental variations with a model coordinating the development of all leaves of a plant. The latter was based on: (1) rates of leaf initiation, appearance and end of elongation measured in field experiments; and (2) the hypothesis of an independence of the growth between leaves. The resulting whole-plant leaf model was integrated into the generic crop model APSIM which provided dynamic feedback of environmental conditions to the leaf model and allowed simulation of crop growth at canopy level. The model was tested in 12 field situations with contrasting temperature, evaporative demand and soil water status. In observed and simulated data, high evaporative demand reduced leaf area at the whole-plant level, and short water deficits affected only leaves developing during the stress, either visible or still hidden in the whorl. The model adequately simulated whole-plant profiles of leaf area with a single set of parameters that applied to the same hybrid in all experiments. It was also suitable to predict biomass accumulation and yield of a similar hybrid grown in different conditions. This model extends to field conditions existing knowledge of the environmental controls of leaf elongation, and can be used to simulate how their genetic controls flow through to yield.

  14. LEAF MICROMORPHOMETRY OF Schinus molle L. (ANARCADIACEAE IN DIFFERENT CANOPY HEIGHTS.

    Directory of Open Access Journals (Sweden)

    Marinês Ferreira Pires

    2015-03-01

    Full Text Available Leaf characterization of trees is essential for its identification and use, as well as to understand its relationships with environment. The objective of this work is to study the leaflet anatomy and leaf biometrical characteristics at different canopy heights of Schinus molle plants as a function of its environmental and physiological modifications. Leaves were collected at three different canopy heights: base, middle and upper canopy in a plantation of S. molle. Leaves were used for anatomical and biometrical analysis. For the anatomical analysis, leaves were fixed in FAA and stored in ethanol 70% and further submitted to transversal and paradermical sections. Slides were photomicrographed and image analysis was performed in UTHSCSA-Imagetool. For biometrical analysis leaf area, length, width, dry mass and specific leaf area were evaluated. The leaflets exhibited single layer epidermis, anomocytic and ciclocytic stomata, isobilateral mesophyll, subepidermal parenchyma layer in both adaxial and abaxial faces of epidermis, secretory vessels and lamellar collenchyma in midrib and leaf border. Leaf anatomy modifications occurred in cuticle and mesophyll thickness, vascular system, phloem thickness, and stomatal density in accordance with leaf canopy position. Leaves were smaller and with reduced leaf area at higher canopy positions. S. molle leaf anatomy is different from other species within Schinus genre with modifications under different environmental and physiological modifications promoted by its canopy height.

  15. The effect of glyphosate on import into a sink leaf of sugar beet

    International Nuclear Information System (INIS)

    Shieh, Wenjang; Geiger, D.R.

    1990-01-01

    The basis for glyphosate inducted limitation of carbon import into developing leaves was studied in sugar beet. To separate the effects of the herbicide on export from those on import, glyphosate was supplied to a developing leaf from two exporting source leaves which fed the sink leaf. Carbon import into the sink leaf was determined by supplying 14 CO 2 to a third source leaf which also supplies carbon to the monitored sink leaf. Import into the sink leaf decreased within 2 to 3 h after glyphosate application, even though photosynthesis and export in the source leaf supplying 14 C were unaffected. Reduced import into the sink leaf was accompanied by increased import by the tap root. Elongation of the sink leaf was only slightly decreased following arrival of glyphosate. Photosynthesis by the sink leaf was not inhibited. The results to data support the view that import is slowed by the inhibition of synthesis of structural or storage compounds in the developing leaves

  16. Analysis of leaf surfaces using scanning ion conductance microscopy.

    Science.gov (United States)

    Walker, Shaun C; Allen, Stephanie; Bell, Gordon; Roberts, Clive J

    2015-05-01

    Leaf surfaces are highly complex functional systems with well defined chemistry and structure dictating the barrier and transport properties of the leaf cuticle. It is a significant imaging challenge to analyse the very thin and often complex wax-like leaf cuticle morphology in their natural state. Scanning electron microscopy (SEM) and to a lesser extent Atomic force microscopy are techniques that have been used to study the leaf surface but their remains information that is difficult to obtain via these approaches. SEM is able to produce highly detailed and high-resolution images needed to study leaf structures at the submicron level. It typically operates in a vacuum or low pressure environment and as a consequence is generally unable to deal with the in situ analysis of dynamic surface events at submicron scales. Atomic force microscopy also possess the high-resolution imaging required and can follow dynamic events in ambient and liquid environments, but can over exaggerate small features and cannot image most leaf surfaces due to their inherent roughness at the micron scale. Scanning ion conductance microscopy (SICM), which operates in a liquid environment, provides a potential complementary analytical approach able to address these issues and which is yet to be explored for studying leaf surfaces. Here we illustrate the potential of SICM on various leaf surfaces and compare the data to SEM and atomic force microscopy images on the same samples. In achieving successful imaging we also show that SICM can be used to study the wetting of hydrophobic surfaces in situ. This has potentially wider implications than the study of leaves alone as surface wetting phenomena are important in a range of fundamental and applied studies. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.

  17. 7 CFR 29.1162 - Leaf (B Group).

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Leaf (B Group). 29.1162 Section 29.1162 Agriculture... INSPECTION Standards Grades § 29.1162 Leaf (B Group). This group consists of leaves normally grown at or above the midportion of the stalk. Leaves of the B group have a pointed tip, tend to fold, usually are...

  18. Temperature-sensitive leaf color mutation in rice

    International Nuclear Information System (INIS)

    Shu Qingyao; Liu Guifu; Xia Yingwu

    1996-01-01

    Studies on the leaf color appearance of 4 chlorophyll-deficient mutation lines both in field and in phytotron were carried out. The mutation lines were induced by 60 Co gamma rays, and showed that white or yellow leaves at seedling stage were quite different from their-parent 2177 S, a thermal sensitive genie male sterile line and any other rice materials. The temperature had great influence on the expression of leaf color at seedling stage in the mutation lines. the leaf color was white at 30∼35 degree C for the lines W 4 and W 11 . The chlorophyll content of 1.5-leaf-age seedlings was 0.0219 and 0.0536 mg/g FW respectively for W 4 and W 11 at 35 degree C. When the temperature dropped to 20∼25 degree C, the seedlings showed yellow or yellowish and the chlorophyll content reached to 0.2410 and 0.3431 mg/g FW at 25 degree C, respectively. However, the responses to temperature for W 17 and W 25 were just the opposite. They were white at 20∼25 degree C, but appeared greenish at 30∼35 degree C. The chlorophyll content increased from 0.0813 and 0.0172 mg/g FW at 25 degree C to 1.0570 and 1.1367 mg/g FW at 35 degree C for the lines W 1 -7 and W 25 , respectively. The parent line 2177 S showed normal green and the chlorophyll content was between 2.108 and 2.118 mg/g FW. The W 11 is exception, which showed yellow to light green in lifetime, and all the mutation lines could convert to normal green after the extension of the fourth leaf. The chlorophyll content of 3.5-leaf-age W 4 and W 17 seedlings grown under 25 degree C reached to 2.2190 and 1.993 mg/g FW, which was about 86. 6% and 81.1% of that of 2177 S at the same stage. When grown at the temperature bellow 20 degree C, W 25 maintained white and could not changed into green after the 4th leaf extension, and showed a conditional lethal status

  19. Diallel analysis of leaf disease resistance in inbred Brazilian popcorn cultivars.

    Science.gov (United States)

    Vieira, R A; Scapim, C A; Moterle, L M; Tessmann, D J; Conrado, T V; Amaral Júnior, A T

    2009-12-01

    We estimated general and specific combining abilities and examined resistance to northern leaf blight (Exserohilum turcicum) and to gray leaf spot (Cercospora zeae-maydis) in a set of nine inbred popcorn lines. These inbreds were crossed in a complete diallel scheme without reciprocals, which produced 36 F(1) hybrids. Two experiments with a square lattice design and three replications were conducted during the 2008/2009 crop season, in Maringá, PR, Brazil. The severity of northern leaf blight and gray leaf spot was assessed under natural infestation conditions. Data were examined by individual and joint analysis of variance. Individual and joint Griffing's diallel analyses were carried out for adjusted means. General combining ability and specific combining ability were significant (P < 0.10) by the F-test for northern leaf blight and gray leaf spot infestation levels. This denotes that additive and non-additive gene effects both contributed to resistance to these diseases, but that the additive gene effects were more important. Among the inbred lines, P(8) and P(9) gave the highest resistance to northern leaf blight, and P(3) and P(4.3) gave the highest resistance to gray leaf spot. The hybrids P(7.4) x P(8) and P(4.3) x P(9) could be exploited by reciprocal recurrent selection to provide genotypes with both northern leaf blight and gray leaf spot resistance. Significant interaction between general combining ability and crop season (P < 0.10) denotes the importance of environment, even though the disease levels in the hybrids were quite consistent.

  20. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Directory of Open Access Journals (Sweden)

    Michael P Donovan

    Full Text Available Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  1. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of cretaceous leaf miners, Great Plains, USA.

    Science.gov (United States)

    Donovan, Michael P; Wilf, Peter; Labandeira, Conrad C; Johnson, Kirk R; Peppe, Daniel J

    2014-01-01

    Plant and associated insect-damage diversity in the western U.S.A. decreased significantly at the Cretaceous-Paleogene (K-Pg) boundary and remained low until the late Paleocene. However, the Mexican Hat locality (ca. 65 Ma) in southeastern Montana, with a typical, low-diversity flora, uniquely exhibits high damage diversity on nearly all its host plants, when compared to all known local and regional early Paleocene sites. The same plant species show minimal damage elsewhere during the early Paleocene. We asked whether the high insect damage diversity at Mexican Hat was more likely related to the survival of Cretaceous insects from refugia or to an influx of novel Paleocene taxa. We compared damage on 1073 leaf fossils from Mexican Hat to over 9000 terminal Cretaceous leaf fossils from the Hell Creek Formation of nearby southwestern North Dakota and to over 9000 Paleocene leaf fossils from the Fort Union Formation in North Dakota, Montana, and Wyoming. We described the entire insect-feeding ichnofauna at Mexican Hat and focused our analysis on leaf mines because they are typically host-specialized and preserve a number of diagnostic morphological characters. Nine mine damage types attributable to three of the four orders of leaf-mining insects are found at Mexican Hat, six of them so far unique to the site. We found no evidence linking any of the diverse Hell Creek mines with those found at Mexican Hat, nor for the survival of any Cretaceous leaf miners over the K-Pg boundary regionally, even on well-sampled, surviving plant families. Overall, our results strongly relate the high damage diversity on the depauperate Mexican Hat flora to an influx of novel insect herbivores during the early Paleocene, possibly caused by a transient warming event and range expansion, and indicate drastic extinction rather than survivorship of Cretaceous insect taxa from refugia.

  2. Effect of Ethanol Stress on Fermentation Performance of Saccharomyces cerevisiae Cells Immobilized on Nypa fruticans Leaf Sheath Pieces

    Directory of Open Access Journals (Sweden)

    Hoang Phong Nguyen

    2015-01-01

    Full Text Available The yeast cells of Saccharomyces cerevisiae immobilized on Nypa fruticans leaf sheath pieces were tested for ethanol tolerance (0, 23.7, 47.4, 71.0 and 94.7 g/L. Increase in the initial ethanol concentration from 23.7 to 94.7 g/L decreased the average growth rate and concentration of ethanol produced by the immobilized yeast by 5.2 and 4.1 times, respectively. However, in the medium with initial ethanol concentration of 94.7 g/L, the average growth rate, glucose uptake rate and ethanol formation rate of the immobilized yeast were 3.7, 2.5 and 3.5 times, respectively, higher than those of the free yeast. The ethanol stress inhibited ethanol formation by Saccharomyces cerevisiae cells and the yeast responded to the stress by changing the fatty acid composition of cellular membrane. The adsorption of yeast cells on Nypa fruticans leaf sheath pieces of the growth medium increased the saturated fatty acid (C16:0 and C18:0 mass fraction in the cellular membrane and that improved alcoholic fermentation performance of the immobilized yeast.

  3. Leaf Surface Effects on Retrieving Chlorophyll Content from Hyperspectral Remote Sensing

    Science.gov (United States)

    Qiu, Feng; Chen, JingMing; Ju, Weimin; Wang, Jun; Zhang, Qian

    2017-04-01

    Light reflected directly from the leaf surface without entering the surface layer is not influenced by leaf internal biochemical content. Leaf surface reflectance varies from leaf to leaf due to differences in the surface roughness features and is relatively more important in strong absorption spectral regions. Therefore it introduces dispersion of data points in the relationship between biochemical concentration and reflectance (especially in the visible region). Separation of surface from total leaf reflection is important to improve the link between leaf pigments content and remote sensing data. This study aims to estimate leaf surface reflectance from hyperspectral remote sensing data and retrieve chlorophyll content by inverting a modified PROSPECT model. Considering leaf surface reflectance is almost the same in the visible and near infrared spectral regions, a surface layer with a reflectance independent of wavelength but varying from leaf to leaf was added to the PROSPECT model. The specific absorption coefficients of pigments were recalibrated. Then the modified model was inverted on independent datasets to check the performance of the model in predicting the chlorophyll content. Results show that differences in estimated surface layer reflectance of various species are noticeable. Surface reflectance of leaves with epicuticular waxes and trichomes is usually higher than other samples. Reconstruction of leaf reflectance and transmittance in the 400-1000 nm wavelength region using the modified PROSPECT model is excellent with low root mean square error (RMSE) and bias. Improvements for samples with high surface reflectance (e.g. maize) are significant, especially for high pigment leaves. Moreover, chlorophyll retrieved from inversion of the modified model is consequently improved (RMSE from 5.9-13.3 ug/cm2 with mean value 8.1 ug/cm2, while mean correlation coefficient is 0.90) compared to results of PROSPECT-5 (RMSE from 9.6-20.2 ug/cm2 with mean value 13

  4. Fire ants protect mealybugs against their natural enemies by utilizing the leaf shelters constructed by the leaf roller Sylepta derogata.

    Directory of Open Access Journals (Sweden)

    Aiming Zhou

    Full Text Available The importance of mutualism is receiving more attention in community ecology. In this study, the fire ant Solenopsis invicta was found to take advantage of the shelters constructed by the leaf roller Sylepta derogata to protect mealybugs (Phenacoccus solenopsis against their natural enemies. This protective effect of fire ant tending on the survival of mealybugs in shelters was observed when enemies and leaf rollers were simultaneously present. Specifically, fire ants moved the mealybugs inside the shelters produced by S. derogata on enemy-infested plants. Compared with that in plants without ants, the survival of mealybugs in shelters in the presence of natural enemies in plants with ants markedly improved. Both the protection of ants and the shelters provided by leaf rollers did not affect the survival of mealybugs in the absence of enemies in plants. Ants and leaf rollers significantly improved the survival of mealybugs in predator-infested plants, whereas no such improvement was observed in parasitoid-infested ones.

  5. Regulation, initiation, and termination of the cenA and cex transcripts of Cellulomonas fimi

    International Nuclear Information System (INIS)

    Greenberg, N.M.; Warren, R.A.J.; Kilburn, D.G.; Miller, R.C. Jr.

    1987-01-01

    The authors characterized the in vivo transcripts of two Cellulomonas fimi genes, which encodes an extracellular endo-β-1,4-glucanase. By Northern blot analysis, cenA mRNA was detected in C. fimi RNA preparations from glycerol- and carboxymethyl cellulose-grown cells but not from glucose-grown cells. In contrast, cex mRNA was detected only in the preparations from carboxymethyl cellulose-grown cells. Therefore, the transcription of these genes is subject to regulation by the carbon source provided to C. fimi. By nuclease SI protection studies with unique 5'-labeled DNA probes and C. fimi RNA isolated in vivo, 5' termini were found 51 and 62 bases before the cenA translational initiation codon and 28 bases before the cex translational initiation codon. S1 mapping with unlabeled DNA probes and C. fimi RNA which had been isolated in vivo but which had been 5' labeled in vitro with guanylyltransferase and [α- 32 P]GTP confirmed that true transcription initiation sites for cenA and cex mRNA had been identified. Comparative analysis of the DNA sequences immediately upstream of the initiation sites of the cenA and cex mRNAs revealed a 30-base-pair region where these two sequences display at least 66% homology. S1 mapping was also used to locate the 3' termini of the cenA and cex transcripts. Three 3' termini were found for cenA messages, whereas only one 3' terminus was identified for cex mRNA. The transcripts of both genes terminate in regions where their corresponding DNA sequences contain inverted repeats

  6. Theoretical analysis of radiation field penumbra from a multi leaf collimator

    International Nuclear Information System (INIS)

    Li Shidong; Boyer, Arthur; Findley, David; Mok, Ed

    1996-01-01

    Purpose/Objective: Analysis and measurement of the difference between the light field and the radiation field of the multi leaf collimator (MLC) leaves that are constructed with curved ends. Material and Methods: A Varian MLC with curved leaf ends was installed on a Clinac 2300 C/D. The leaves were 6.13 cm deep (dimension in beam direction) and were located 53.9 cm from the x-ray target. The leaf ends had an 8 cm radius of curvature. A relation was derived using three dimensional geometry predicting the location of the light field edge relative to the geometric projection of the tip of the curved leaf end. This is a nonlinear relationship because the shadow of the leaf is generated by different points along the leaf end surface as the leaf moves across the field. The theoretical edge of the radiation fluence for a point source was taken to be located along the projection of a chord whose length was 1 Half-Value Thickness (HVT). The chords having projection points across the light field edge were computed using an analytical solution. The radiation transmission through the leaf end was then estimated. The HVT used for tungsten alloy, the leaf material, was 0.87 cm and 0.94 cm for the 6 MV and 15 MV photon beams, respectively. The location of the projection of the 1 HVT chord at a distance of 100 cm from x-ray target was also a nonlinear function of the projection of the leaf tip. Results: The displacement of the light field edge relative to the projection of the leaf tip varies from 0 mm when the leaf tip projects to the central axis, to approximately 3.2 mm for a 20 cm half-field width. The light field edge was always displaced into the unblocked area. The displacement of the projection of the 1 HVT chord relative to the projection of the leaf tip varies from 0.3 mm on the central axis to 3.0 mm for a 20 cm half-field width. The projection of 1 HVT chord was deviated from the light field edge by only 0.3 mm which would be slightly increased to 0.4 mm on decreasing

  7. Short Communication: The developmentt of a leaf tensilmeter for in ...

    African Journals Online (AJOL)

    The development of a portable leaf tensilmeter for the in situ measurement of leaf tensile strength is described. Tensile strength is determined by the distortion of strain gauges on modified stripping pliers which are used to break leaf blades. The output is displayed via an analogue chip through a liquid crystal display.

  8. Plant traits and environment: floating leaf blade production and turnover of waterlilies.

    Science.gov (United States)

    Klok, Peter F; van der Velde, Gerard

    2017-01-01

    Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L.) Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba , Nuphar lutea , Nymphaea candida . The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/B max ) of the three species ranged from 1.35-2.25. The ratio Vegetation period (Period with floating leaves)/Mean leaf life span ranged from 2.94-4.63, the ratio Growth period (Period with appearance of new floating leaves)/Vegetation period from 0.53-0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba , may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  9. Incomplete resistance to coffee leaf rust (Hemileia vastatrix)

    NARCIS (Netherlands)

    Eskes, A.B.

    1983-01-01

    Incomplete resistance to coffee leaf rust ( Hemileia vastatrix ) may be of value in obtaining durable resistance, which is of great importance for the perennial coffee crop. Methods were developed to assess incomplete resistance to coffee leaf rust by using illustrated scales

  10. cassava brown streak disease effects on leaf metabolites

    African Journals Online (AJOL)

    USER

    Plate 1. Progression of CBSD in cassava leaves with scores 1= leaf from clean plant, no CBSD, 2 = Mild CBSD leaf veinal ... absorb the excess water, after which they were rolled ..... to low carbon dioxide exchange, as observed in sugar cane ...

  11. 48 CFR 25.405 - Caribbean Basin Trade Initiative.

    Science.gov (United States)

    2010-10-01

    ... Initiative. 25.405 Section 25.405 Federal Acquisition Regulations System FEDERAL ACQUISITION REGULATION SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Trade Agreements 25.405 Caribbean Basin Trade Initiative. Under the Caribbean Basin Trade Initiative, the United States Trade Representative has determined that, for...

  12. Photosynthetic properties of erect leaf maize inbred lines as the efficient photo-model in breeding and seed production

    Directory of Open Access Journals (Sweden)

    Radenović Čedomir N.

    2003-01-01

    Full Text Available The initial idea of this study was a hypothesis that erect leaf maize inbred lines were characterized by properties of an efficient photo-model and that as such were very desirable in increasing the number of plants per area unit (plant density in the process of contemporary selection and seed production. The application of a non-invasive bioluminescence-photosynthetic method, suitable for the efficiency estimation of the photo-model, verified the hypothesis. Obtained photosynthetic properties of observed erect leaf maize inbred lines were based on the effects and characteristics of thermal processes of delayed chlorophyll fluorescence occurring in their thylakoid membranes. The temperature dependence of the delayed chlorophyll fluorescence intensity phase transitions (critical temperatures in the thylakoid membranes and activation energy are the principal parameters of the thermal processes. Based on obtained photosynthetic properties it is possible to select erect leaf maize inbred lines that are resistant and tolerant to high and very high temperatures, as well as, to drought. They could be good and efficient photo-models wherewith.

  13. PKC δ Regulates Translation Initiation through PKR and eIF2 α in Response to Retinoic Acid in Acute Myeloid Leukemia Cells

    OpenAIRE

    Ozpolat, Bulent; Akar, Ugur; Tekedereli, Ibrahim; Alpay, S. Neslihan; Barria, Magaly; Gezgen, Baki; Zhang, Nianxiang; Coombes, Kevin; Kornblau, Steve; Lopez-Berestein, Gabriel

    2012-01-01

    Translation initiation and activity of eukaryotic initiation factor-alpha (eIF2 α ), the rate-limiting step of translation initiation, is often overactivated in malignant cells. Here, we investigated the regulation and role of eIF2 α in acute promyelocytic (APL) and acute myeloid leukemia (AML) cells in response to all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), the front-line therapies in APL. ATRA and ATO induce Ser-51 phosphorylation (inactivation) of eIF2 α , through the induct...

  14. The Jasmonate-ZIM-Domain Proteins Interact with the WD-Repeat/bHLH/MYB Complexes to Regulate Jasmonate-Mediated Anthocyanin Accumulation and Trichome Initiation in Arabidopsis thaliana[C][W

    Science.gov (United States)

    Qi, Tiancong; Song, Susheng; Ren, Qingcuo; Wu, Dewei; Huang, Huang; Chen, Yan; Fan, Meng; Peng, Wen; Ren, Chunmei; Xie, Daoxin

    2011-01-01

    Jasmonates (JAs) mediate plant responses to insect attack, wounding, pathogen infection, stress, and UV damage and regulate plant fertility, anthocyanin accumulation, trichome formation, and many other plant developmental processes. Arabidopsis thaliana Jasmonate ZIM-domain (JAZ) proteins, substrates of the CORONATINE INSENSITIVE1 (COI1)–based SCFCOI1 complex, negatively regulate these plant responses. Little is known about the molecular mechanism for JA regulation of anthocyanin accumulation and trichome initiation. In this study, we revealed that JAZ proteins interact with bHLH (Transparent Testa8, Glabra3 [GL3], and Enhancer of Glabra3 [EGL3]) and R2R3 MYB transcription factors (MYB75 and Glabra1), essential components of WD-repeat/bHLH/MYB transcriptional complexes, to repress JA-regulated anthocyanin accumulation and trichome initiation. Genetic and physiological evidence showed that JA regulates WD-repeat/bHLH/MYB complex-mediated anthocyanin accumulation and trichome initiation in a COI1-dependent manner. Overexpression of the MYB transcription factor MYB75 and bHLH factors (GL3 and EGL3) restored anthocyanin accumulation and trichome initiation in the coi1 mutant, respectively. We speculate that the JA-induced degradation of JAZ proteins abolishes the interactions of JAZ proteins with bHLH and MYB factors, allowing the transcriptional function of WD-repeat/bHLH/MYB complexes, which subsequently activate respective downstream signal cascades to modulate anthocyanin accumulation and trichome initiation. PMID:21551388

  15. Biosynthesis of sucrose and mannitol as a function of leaf age in celery (Apium graveolens L. )

    Energy Technology Data Exchange (ETDEWEB)

    Davis, J.M.; Fellman, J.K.; Loescher, W.H.

    1988-01-01

    In celery (Apium graveolens L.), the two major translocated carbohydrates are sucrose and the acyclic polyol mannitol. Their metabolism, however, is different and their specific functions are uncertain. To compare their roles in carbon partitioning and sink-source transitions, developmental changes in /sup 14/CO/sub 2/ labeling, pool sizes, and key enzyme activities in leaf tissues were examined. The proportion of label in mannitol increased dramatically with leaf maturation whereas that in sucrose remained fairly constant. Mannitol content, however, was high in all leaves and sucrose content increased as leaves developed. Activities of mannose-6-P reductase, cytoplasmic and chloroplastic fructose-1,6-bis-phosphatases, sucrose phosphate synthase, and sucrose synthase increased with leaf maturation and decreased as leaves senesced. Ribulose bisphosphate carboxylase and nonreversible glyceraldehyde-3-P dehydrogenase activities rose as leaves developed but did not decrease. Thus, sucrose is produced in all photosynthetically active leaves whereas mannitol is synthesized primarily in mature leaves and stored in all leaves. Onset of sucrose export in celery may result from sucrose accumulation in expanding leaves, but mannitol export is clearly unrelated to mannitol concentration. Mannitol export, however, appears to coincide with increased mannitol biosynthesis. Although mannitol and sucrose arise from a common precursor in celery, subsequent metabolism and transport must be regulated separately.

  16. Leaf gas exchange of mature bottomland oak trees

    Science.gov (United States)

    Rico M. Gazal; Mark E. Kubiske; Kristina F. Connor

    2009-01-01

    We determined how changes in environmental moisture affected leaf gas exchange in Nuttall (Quercus texana Buckley), overcup (Q. lyrata Walt.), and dominant and codominant swamp chestnut (Q. michauxii Nutt.) oak trees in Mississippi and Louisiana. We used canopy access towers to measure leaf level gas...

  17. Leaf area estimation of cassava from linear dimensions

    Directory of Open Access Journals (Sweden)

    SAMARA ZANETTI

    2017-08-01

    Full Text Available ABSTRACT The objective of this study was to determine predictor models of leaf area of cassava from linear leaf measurements. The experiment was carried out in greenhouse in the municipality of Botucatu, São Paulo state, Brazil. The stem cuttings with 5-7 nodes of the cultivar IAC 576-70 were planted in boxes filled with about 320 liters of soil, keeping soil moisture at field capacity, monitored by puncturing tensiometers. At 80 days after planting, 140 leaves were randomly collected from the top, middle third and base of cassava plants. We evaluated the length and width of the central lobe of leaves, number of lobes and leaf area. The measurements of leaf areas were correlated with the length and width of the central lobe and the number of lobes of the leaves, and adjusted to polynomial and multiple regression models. The linear function that used the length of the central lobe LA = -69.91114 + 15.06462L and linear multiple functions LA = -69.9188 + 15.5102L + 0.0197726K - 0.0768998J or LA = -69.9346 + 15.0106L + 0.188931K - 0.0264323H are suitable models to estimate leaf area of cassava cultivar IAC 576-70.

  18. Sorption of lead from aqueous solutions by spent tea leaf | Yoshita ...

    African Journals Online (AJOL)

    Pb) from solution. The Pb removal by the spent tea leaf adsorbent depended on pretreatment of spent tea leaf, adsorption contact time and adsorbent dosage. The optimum pretreatment conditions were confirmed to be that tea leaf was ground ...

  19. Leaf appearance rate and final main stem leaf number as affected by temperature and photoperiod in cereals grown in Mediterranean environment

    Directory of Open Access Journals (Sweden)

    Ezio Riggi

    2017-09-01

    Full Text Available In the present study, a two-year field trial was carried out with the aim to evaluate daylength and air temperature effects on leaf appearance and related rates in two durum wheat (Triticum durum Desf., two bread wheat (Triticum aestivum L. and two barley (Hordeum vulgare L. cultivars, using six different sowing dates (SD. Significant effects of SD on final main stem leaf number (FLN, thermal leaf appearance rate (TLAR, daily leaf appearance rate (DLAR and phyllochron (PhL were found. Cultivars resulted inversely correlated to mean air temperature in the interval emergence - fifth leaf full expansion (E-V. Linear response of leaf number over days after sowing was shown for all SD and cultivars, with R2 higher than 0.95. FLN linearly decreased from the first to the last SD for durum wheat, while more variable behaviour was observed in bread wheat. TLAR and DLAR showed a linear increment of the rate from the first to the last SD in durum wheat, while did not for bread wheat and barley. PhL in durum wheat decreased from the first to the last SD. Barley and bread wheat showed the highest values on those SDs which did not reach flowering. The increase of TLAR was affected by photoperiod and photothermal units in durum wheat, while by temperatures only in barley and bread wheat. Present results might find practical application in the improvement of phenology simulation models for durum wheat, bread wheat and barley grown in Mediterranean area in absence of water and nutrient stress.

  20. Non-destructive linear model for leaf area estimation in Vernonia ferruginea Less

    Directory of Open Access Journals (Sweden)

    MC. Souza

    Full Text Available Leaf area estimation is an important biometrical trait for evaluating leaf development and plant growth in field and pot experiments. We developed a non-destructive model to estimate the leaf area (LA of Vernonia ferruginea using the length (L and width (W leaf dimensions. Different combinations of linear equations were obtained from L, L2, W, W2, LW and L2W2. The linear regressions using the product of LW dimensions were more efficient to estimate the LA of V. ferruginea than models based on a single dimension (L, W, L2 or W2. Therefore, the linear regression “LA=0.463+0.676WL” provided the most accurate estimate of V. ferruginea leaf area. Validation of the selected model showed that the correlation between real measured leaf area and estimated leaf area was very high.

  1. Leaf life span plasticity in tropical seedlings grown under contrasting light regimes.

    Science.gov (United States)

    Vincent, Gregoire

    2006-02-01

    The phenotypic plasticity of leaf life span in response to low resource conditions has a potentially large impact on the plant carbon budget, notably in evergreen species not subject to seasonal leaf shedding, but has rarely been well documented. This study evaluates the plasticity of leaf longevity, in terms of its quantitative importance to the plant carbon balance under limiting light. Seedlings of four tropical tree species with contrasting light requirements (Alstonia scholaris, Hevea brasiliensis, Durio zibethinus and Lansium domesticum) were grown under three light regimes (full sunlight, 45 % sunlight and 12 % sunlight). Their leaf dynamics were monitored over 18 months. All species showed a considerable level of plasticity with regard to leaf life span: over the range of light levels explored, the ratio of the range to the mean value of life span varied from 29 %, for the least plastic species, to 84 %, for the most. The common trend was for leaf life span to increase with decreasing light intensity. The plasticity apparent in leaf life span was similar in magnitude to the plasticity observed in specific leaf area and photosynthetic rate, implying that it has a significant impact on carbon gain efficiency when plants acclimate to different light regimes. In all species, median survival time was negatively correlated with leaf photosynthetic capacity (or its proxy, the nitrogen content per unit area) and leaf emergence rate. Longer leaf life spans under low light are likely to be a consequence of slower ageing as a result of a slower photosynthetic metabolism.

  2. Linkage between canopy water storage and drop size distributions of leaf drips

    Science.gov (United States)

    Nanko, Kazuki; Watanabe, Ai; Hotta, Norifumi; Suzuki, Masakazu

    2013-04-01

    Differences in drop size distribution (DSD) of leaf drips among tree species have been estimated and physically interpreted to clarify the leaf drip generation process. Leaf drip generation experiments for nine species were conducted in an indoor location without foliage vibration using an automatic mist spray. Broad-leaved species produced a similar DSD among species whose leaves had a matte surface and a second similar DSD among species whose leaves had a coated surface. The matte broad leaves produced a larger and wider range of DSDs than the coated broad leaves. Coated coniferous needles had a wider range of DSDs than the coated broad leaves and different DSDs were observed for different species. The species with shorter dense needles generated a larger DSD. The leaf drip diameter was calculated through the estimation of a state of equilibrium of a hanging drop on the leaves based on physical theory. The calculations indicated that the maximum diameter of leaf drips was determined by the contact angle, and the range of DSDs was determined by the variation in contact length and the contact diameter at the hanging points. The results revealed that leaf drip DSD changed due to variations in leaf hydrophobicity, leaf roughness, leaf geometry and leaf inclination among the different tree species. This study allows the modelization of throughfall DSD. Furthermore, it indicates the possibility of interpreting canopy water processes from canopy water storage to drainage through the contact angle and leaf drip DSD. The part of this study is published in Nanko et al. (2013, Agric. Forest. Meteorol. 169, 74-84).

  3. Plant traits and environment: floating leaf blade production and turnover of waterlilies

    Directory of Open Access Journals (Sweden)

    Peter F. Klok

    2017-04-01

    Full Text Available Floating leaf blades of waterlilies fulfill several functions in wetland ecosystems by production, decomposition and turnover as well as exchange processes. Production and turnover rates of floating leaf blades of three waterlily species, Nuphar lutea (L. Sm., Nymphaea alba L. and Nymphaea candida Presl, were studied in three freshwater bodies, differing in trophic status, pH and alkalinity. Length and percentages of leaf loss of marked leaf blades were measured weekly during the growing season. Area and biomass were calculated based on leaf length and were used to calculate the turnover rate of floating leaf blades. Seasonal changes in floating leaf production showed that values decreased in the order: Nymphaea alba, Nuphar lutea, Nymphaea candida. The highest production was reached for Nuphar lutea and Nymphaea alba in alkaline, eutrophic water bodies. The production per leaf was relatively high for both species in the acid water body. Nymphaea candida showed a very short vegetation period and low turnover rates. The ratio Total potential leaf biomass/Maximum potential leaf biomass (P/Bmax of the three species ranged from 1.35–2.25. The ratio Vegetation period (Period with floating leaves/Mean leaf life span ranged from 2.94–4.63, the ratio Growth period (Period with appearance of new floating leaves/Vegetation period from 0.53–0.73. The clear differences between Nymphaea candida versus Nuphar lutea and Nymphaea alba, may be due to adaptations of Nymphaea candida to an Euro-Siberic climate with short-lasting summer conditions.

  4. Effects of combination of leaf resources on competition in container mosquito larvae.

    Science.gov (United States)

    Reiskind, M H; Zarrabi, A A; Lounibos, L P

    2012-08-01

    Resource diversity is critical to fitness in many insect species, and may determine the coexistence of competitive species and the function of ecosystems. Plant material provides the nutritional base for numerous aquatic systems, yet the consequences of diversity of plant material have not been studied in aquatic container systems important for the production of mosquitoes. To address how diversity in leaf detritus affects container-inhabiting mosquitoes, we examined how leaf species affect competition between two container inhabiting mosquito larvae, Aedes aegypti and Aedes albopictus, that co-occur in many parts of the world. We tested the hypotheses that leaf species changes the outcome of intra- and interspecific competition between these mosquito species, and that combinations of leaf species affect competition in a manner not predictable based upon the response to each leaf species alone (i.e. the response to leaf combinations is non-additive). We find support for our first hypothesis that leaf species can affect competition, evidence that, in general, leaf combination alters competitive interactions, and no support that leaf combination impacts interspecific competition differently than intraspecific competition. We conclude that combinations of leaves increase mosquito production non-additively such that combinations of leaves act synergistically, in general, and result in higher total yield of adult mosquitoes in most cases, although certain leaf combinations for A. albopictus are antagonistic. We also conclude that leaf diversity does not have a different effect on interspecific competition between A. aegypti and A. albopictus, relative to intraspecific competition for each mosquito.

  5. Coconut leaf bioactivity toward generalist maize insect pests

    Science.gov (United States)

    Tropical plants are often more resistant to insects than temperate plants due to evolution of robust defenses to cope with a more constant insect threat. Coconut (Cocos nucifera L.) has very few chewing leaf feeding insect pests and was tested against two omnivorous leaf feeding caterpillar species,...

  6. Nutritive evaluation of Telfairia occidentalis leaf protein concentrate ...

    African Journals Online (AJOL)

    Leaf meal (LM), leaf proteins concentrate (LPC) and LPC residues from Telfairia occidentalis were produced, chemically characterized and the protein quality of the LPC evaluated using rats. Five infant weaning foods were formulated using varying combinations of T. occidentalis LPC and soybean meal. These foods were ...

  7. Peach leaf responses to soil and cement dust pollution.

    Science.gov (United States)

    Maletsika, Persefoni A; Nanos, George D; Stavroulakis, George G

    2015-10-01

    Dust pollution can negatively affect plant productivity in hot, dry and with high irradiance areas during summer. Soil or cement dust were applied on peach trees growing in a Mediterranean area with the above climatic characteristics. Soil and cement dust accumulation onto the leaves decreased the photosynthetically active radiation (PAR) available to the leaves without causing any shade effect. Soil and mainly cement dust deposition onto the leaves decreased stomatal conductance, photosynthetic and transpiration rates, and water use efficiency due possibly to stomatal blockage and other leaf cellular effects. In early autumn, rain events removed soil dust and leaf functions partly recovered, while cement dust created a crust partially remaining onto the leaves and causing more permanent stress. Leaf characteristics were differentially affected by the two dusts studied due to their different hydraulic properties. Leaf total chlorophyll decreased and total phenol content increased with dust accumulation late in the summer compared to control leaves due to intense oxidative stress. The two dusts did not cause serious metal imbalances to the leaves, except of lower leaf K content.

  8. Leaf proteome analysis of clematis chinensis: a traditional chinese medicine (tcm) by two-dimensional electrophoresis technique

    International Nuclear Information System (INIS)

    Ishtiaq, M.; Maqbool, M.; Hussaini, T.; Azami, S.

    2014-01-01

    Leaf proteome of Clematis chinensis, a traditional Chinese medicine (TCM) was analyzed by two-dimensional electrophoresis (2-DE) technique. The samples were extracted by phenol-SDS method (PSM) with high protein quantity i.e. 2.35, 0.345 mg/g (yield/dw). Proteins were visualized by staining of gels by silver stain and CBB. The gel images of each species were compared by Image Master 2D Platinum software for analytical purpose. The 2-DE profile depicted distribution of 1085 spots and out of these only 255 protein spots (23.5%) were common to all analyzed taxa. The visualized protein spots showed pI range from 3.0 to 10.0 (pH) and Mr of 7 kDa to 70 kDa. Twelve proteins were exclusively specific to C. chinensis when compared with its allies, C. finetiana and C. armandii, which may be used as biomarkers. Thirteen proteins were up-regulated in C. finetiana (0.75-0.95 fold) and twelve proteins in C. armandii (1.05-1.66 fold) whilst seven proteins down-regulated (0.66-0.94 fold) in former and three proteins (1.07-1.20 fold) in later one in comparison with C. chinensis. Twenty five differential and similar protein spots were picked and analyzed by LC-MS/MS technique. Identified proteins are related to energy metabolism (ATP synthesis), photosynthesis. environmental stimuli, regulating RNA metabolism, growth hormone regulators, evolutionary trends and gene expression. The efficiency and applicability of proteomic approach as biomarker for identification of C. chinensis is discussed in its quality control (QC) perspectives. Leaf proteins of Clematis plants are explored for the first time by 2-DE technique and debated for their metabolic role. (author)

  9. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Directory of Open Access Journals (Sweden)

    Joan Laur

    Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  10. The role of water channel proteins in facilitating recovery of leaf hydraulic conductance from water stress in Populus trichocarpa.

    Science.gov (United States)

    Laur, Joan; Hacke, Uwe G

    2014-01-01

    Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.

  11. Evaluating a tobacco leaf humidification system involving nebulisation

    Directory of Open Access Journals (Sweden)

    Néstor Enrique Cerquera Peña

    2010-05-01

    Full Text Available A tobacco leaf humidifying system involving nebulisation was designned, implemented and evaluated; it had a system for monitoring and recording environmental conditions thereby producing an environment having more homogeneous relative humidity, ensuring better water use, better control of relative humidity and better control in managing cured tobacco leaf moisture content, thereby leading to a consequent improvement in final product quality. 55% to 75% relative humidity and 4 to 6 hour working ranges were obtained to en- sure leaf humidification reached 16% humidity on a wet basis. Two new designs are proposed for the conditioning stage regarding this conditioning chamber’s operational management, based on the results and field observations, which would allow better leaf management, thereby avoiding the risk of losses due to manipulation and over-humidification. This work strengthens research in the field of tobacco pos- tharvest technology, complementing other research projects which have been carried out in Colombia.

  12. SU-G-TeP4-07: Automatic EPID-Based 2D Measurement of MLC Leaf Offset as a Quality Control Tool

    Energy Technology Data Exchange (ETDEWEB)

    Ritter, T; Moran, J [The University of Michigan, Ann Arbor, MI (United States); Schultz, B [University of Michigan, Ann Arbor, MI (United States); Kim, G [University of California, San Diego, La Jolla, CA (United States); Barnes, M [Calvary Mater Hospital Newcastle, Warratah, NSW (Australia); Perez, M [North Sydney Cancer Center, Sydney (Australia); Farrey, K [University of Chicago, Chicago, IL (United States); Popple, R [University Alabama Birmingham, Birmingham, AL (United States); Greer, P [Calvary Mater Newcastle, Newcastle (Australia)

    2016-06-15

    Purpose: The MLC dosimetric leaf gap (DLG) and transmission are measured parameters which impact the dosimetric accuracy of IMRT and VMAT plans. This investigation aims to develop an efficient and accurate routine constancy check of the physical DLG in two dimensions. Methods: The manufacturer’s recommended DLG measurement method was modified by using 5 fields instead of 11 and by utilizing the Electronic Portal Imaging Device (EPID). Validations were accomplished using an ion chamber (IC) in solid water and a 2D IC array. EPID data was collected for 6 months on multiple TrueBeam linacs using both Millennium and HD MLCs at 5 different clinics in an international consortium. Matlab code was written to automatically analyze the images and calculate the 2D results. Sensitivity was investigated by introducing deliberate leaf position errors. MLC calibration and initialization history was recorded to allow quantification of their impact. Results were analyzed using statistical process control (SPC). Results: The EPID method took approximately 5 minutes. Due to detector response, the EPID measured DLG and transmission differed from the IC values but were reproducible and consistent with changes measured using the ICs. For the Millennium MLC, the EPID measured DLG and transmission were both consistently lower than IC results. The EPID method was implemented as leaf offset and transmission constancy tests (LOC and TC). Based on 6 months of measurements, the initial leaf-specific action thresholds for changes from baseline were set to 0.1 mm. Upper and lower control limits for variation were developed for each machine. Conclusion: Leaf offset and transmission constancy tests were implemented on Varian HD and Millennium MLCs using an EPID and found to be efficient and accurate. The test is effective for monitoring MLC performance using dynamic delivery and performing process control on the DLG in 2D, thus enhancing dosimetric accuracy. This work was supported by a grant

  13. Leaf nitrogen from first principles: field evidence for adaptive variation with climate

    Science.gov (United States)

    Dong, Ning; Prentice, Iain Colin; Evans, Bradley J.; Caddy-Retalic, Stefan; Lowe, Andrew J.; Wright, Ian J.

    2017-01-01

    Nitrogen content per unit leaf area (Narea) is a key variable in plant functional ecology and biogeochemistry. Narea comprises a structural component, which scales with leaf mass per area (LMA), and a metabolic component, which scales with Rubisco capacity. The co-ordination hypothesis, as implemented in LPJ and related global vegetation models, predicts that Rubisco capacity should be directly proportional to irradiance but should decrease with increases in ci : ca and temperature because the amount of Rubisco required to achieve a given assimilation rate declines with increases in both. We tested these predictions using LMA, leaf δ13C, and leaf N measurements on complete species assemblages sampled at sites on a north-south transect from tropical to temperate Australia. Partial effects of mean canopy irradiance, mean annual temperature, and ci : ca (from δ13C) on Narea were all significant and their directions and magnitudes were in line with predictions. Over 80 % of the variance in community-mean (ln) Narea was accounted for by these predictors plus LMA. Moreover, Narea could be decomposed into two components, one proportional to LMA (slightly steeper in N-fixers), and the other to Rubisco capacity as predicted by the co-ordination hypothesis. Trait gradient analysis revealed ci : ca to be perfectly plastic, while species turnover contributed about half the variation in LMA and Narea. Interest has surged in methods to predict continuous leaf-trait variation from environmental factors, in order to improve ecosystem models. Coupled carbon-nitrogen models require a method to predict Narea that is more realistic than the widespread assumptions that Narea is proportional to photosynthetic capacity, and/or that Narea (and photosynthetic capacity) are determined by N supply from the soil. Our results indicate that Narea has a useful degree of predictability, from a combination of LMA and ci : ca - themselves in part environmentally determined - with Rubisco activity

  14. Sugarbeet leaf spot disease (Cercospora beticola Sacc.)dagger.

    Science.gov (United States)

    Weiland, John; Koch, Georg

    2004-05-01

    SUMMARY Leaf spot disease caused by Cercospora beticola Sacc. is the most destructive foliar pathogen of sugarbeet worldwide. In addition to reducing yield and quality of sugarbeet, the control of leaf spot disease by extensive fungicide application incurs added costs to producers and repeatedly has selected for fungicide-tolerant C. beticola strains. The genetics and biochemistry of virulence have been examined less for C. beticola as compared with the related fungi C. nicotianae, C. kikuchii and C. zeae-maydis, fungi to which the physiology of C. beticola is often compared. C. beticola populations generally are not characterized as having race structure, although a case of race-specific resistance in sugarbeet to C. beticola has been reported. Resistance currently implemented in the field is quantitatively inherited and exhibits low to medium heritability. Cercospora beticola Sacc.; Kingdom Fungi, Subdivision Deuteromycetes, Class Hyphomycetes, Order Hyphales, Genus Cercospora. Circular, brown to red delimited spots with ashen-grey centre, 0.5-6 mm diameter; dark brown to black stromata against grey background; pale brown unbranched sparingly septate conidiophores, hyaline acicular conidia, multiseptate, from 2.5 to 4 microm wide and 50-200 microm long. Propagative on Beta vulgaris and most species of Beta. Reported on members of the Chenopodiaceae and on Amaranthus. Disease symptoms: Infected leaves and petioles of B. vulgaris exhibit numerous circular leaf spots that coalesce in severe cases causing complete leaf collapse. Dark specks within a grey spot centre are characteristic for the disease. Older leaves exhibit a greater number of lesions with larger spot diameter. During the latter stage of severe epiphytotics, new leaf growth can be seen emerging from the plant surrounded by prostrate, collapsed leaves. Fungicides in the benzimidazole and triazole class as well as organotin derivatives and strobilurins have successfully been used to control Cercospora

  15. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Daniel eSchnaubelt

    2013-11-01

    Full Text Available Reduced glutathione (GSH is an abundant low molecular weight plant thiol. It fulfils multiple functions in plant biology, many of which remain poorly characterised. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2 and rax1 or the export of γ-glutamyl cysteine and GSH from the chloroplast (clt and in wild type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesise GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short term abiotic stress. However, the negative effects of long term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

  16. A phenomics approach to the analysis of the influence of glutathione on leaf area and abiotic stress tolerance in Arabidopsis thaliana.

    Science.gov (United States)

    Schnaubelt, Daniel; Schulz, Philipp; Hannah, Matthew A; Yocgo, Rosita E; Foyer, Christine H

    2013-01-01

    Reduced glutathione (GSH) is an abundant low molecular weight plant thiol. It fulfills multiple functions in plant biology, many of which remain poorly characterized. A phenomics approach was therefore used to investigate the effects of glutathione homeostasis on growth and stress tolerance in Arabidopsis thaliana. Rosette leaf area was compared in mutants that are either defective in GSH synthesis (cad2, pad2, and rax1) or the export of γ-glutamylcysteine and GSH from the chloroplast (clt) and in wild-type plants under standard growth conditions and following exposure to a range of abiotic stress treatments, including oxidative stress, water stress, and high salt. In the absence of stress, the GSH synthesis mutants had a significantly lower leaf area than the wild type. Conversely, the clt mutant has a greater leaf area and a significantly reduced lateral root density than the wild type. These findings demonstrate that cellular glutathione homeostasis exerts an influence on root architecture and on rosette area. An impaired capacity to synthesize GSH or a specific depletion of the cytosolic GSH pool did not adversely affect leaf area in plants exposed to short-term abiotic stress. However, the negative effects of long-term exposure to oxidative stress and high salt on leaf area were less marked in the GSH synthesis mutants than the wild type. These findings demonstrate the importance of cellular glutathione homeostasis in the regulation of plant growth under optimal and stress conditions.

  17. Responses of rubber leaf phenology to climatic variations in Southwest China

    Science.gov (United States)

    Zhai, De-Li; Yu, Haiying; Chen, Si-Chong; Ranjitkar, Sailesh; Xu, Jianchu

    2017-11-01

    The phenology of rubber trees (Hevea brasiliensis) could be influenced by meteorological factors and exhibits significant changes under different geoclimates. In the sub-optimal environment in Xishuangbanna, rubber trees undergo lengthy periods of defoliation and refoliation. The timing of refoliation from budburst to leaf aging could be affected by powdery mildew disease (Oidium heveae), which negatively impacts seed and latex production. Rubber trees are most susceptible to powdery mildew disease at the copper and leaf changing stages. Understanding and predicting leaf phenology of rubber trees are helpful to develop effective means of controlling the disease. This research investigated the effect of several meteorological factors on different leaf phenological stages in a sub-optimal environment for rubber cultivation in Jinghong, Yunnan in Southwest China. Partial least square regression was used to quantify the relationship between meteorological factors and recorded rubber phenologies from 2003 to 2011. Minimum temperature in December was found to be the critical factor for the leaf phenology development of rubber trees. Comparing the delayed effects of minimum temperature, the maximum temperature, diurnal temperature range, and sunshine hours were found to advancing leaf phenologies. A comparatively lower minimum temperature in December would facilitate the advancing of leaf phenologies of rubber trees. Higher levels of precipitation in February delayed the light green and the entire process of leaf aging. Delayed leaf phenology was found to be related to severe rubber powdery mildew disease. These results were used to build predictive models that could be applied to early warning systems of rubber powdery mildew disease.

  18. Phenotypic characterization and inheritance of two foliar mutants in pea (Pisum Sativum L.): 'Reduced leaf size' and 'Orange leaf'

    International Nuclear Information System (INIS)

    Naidenova, N.; Vassilevska-Ivanova, R.; Tcekova, Z.

    2003-01-01

    Two foliar pea (Pisum sativum L.) mutants characterized by reduced leaf size (2/978) and orange leaf (2/1409 M) were established. Both mutants were described morphologically and their productivity potential , pollen viability and inheritance of the mutant traits were evaluated. The mutant 2/978 was identified after irradiation of dry seeds from cv Borek with 15 Gy fast neutrons and was related to the leaf mutation 'rogue'. Reciprocal crosses between mutant 2/978 and cv Borel were executed, and F 1 and F 2 generations were analyzed. The altered leaf trait was presented in all F 1 plants suggesting a dominant character. F 2 segregation data indicated that the trait was controlled by a single dominant gene. The mutant 2/1409M originated from the mutant 2/978 after irradiation with 50 Gy γ-rays. The main mutant's phenotypic characteristic was the orange-yellow coloration of leaves and plants. After of series of crosses it was established that induced chlorophyll mutation is monogenic, recessive and both mutant traits are independently inherited. Two mutants could be used as appropriate plant material for genetic and biological investigations

  19. Translation Initiation from Conserved Non-AUG Codons Provides Additional Layers of Regulation and Coding Capacity

    Directory of Open Access Journals (Sweden)

    Ivaylo P. Ivanov

    2017-06-01

    Full Text Available Neurospora crassa cpc-1 and Saccharomyces cerevisiae GCN4 are homologs specifying transcription activators that drive the transcriptional response to amino acid limitation. The cpc-1 mRNA contains two upstream open reading frames (uORFs in its >700-nucleotide (nt 5′ leader, and its expression is controlled at the level of translation in response to amino acid starvation. We used N. crassa cell extracts and obtained data indicating that cpc-1 uORF1 and uORF2 are functionally analogous to GCN4 uORF1 and uORF4, respectively, in controlling translation. We also found that the 5′ region upstream of the main coding sequence of the cpc-1 mRNA extends for more than 700 nucleotides without any in-frame stop codon. For 100 cpc-1 homologs from Pezizomycotina and from selected Basidiomycota, 5′ conserved extensions of the CPC1 reading frame are also observed. Multiple non-AUG near-cognate codons (NCCs in the CPC1 reading frame upstream of uORF2, some deeply conserved, could potentially initiate translation. At least four NCCs initiated translation in vitro. In vivo data were consistent with initiation at NCCs to produce N-terminally extended N. crassa CPC1 isoforms. The pivotal role played by CPC1, combined with its translational regulation by uORFs and NCC utilization, underscores the emerging significance of noncanonical initiation events in controlling gene expression.

  20. Hyperbolic projections of siemens 3d-mlc leaf paths

    International Nuclear Information System (INIS)

    Menzies, N.

    2004-01-01

    Full text: The Siemens Primus linear accelerator has the option of being fitted with a multi-leaf collimator (3D-MLC) that is marketed as having 'double focus', to achieve a constant dose penumbra for all leaf settings. This is achieved by moving the leaves through arcs (similar to some conventional collimator jaws), as well as shaping the leaf side-faces as divergent planes from the x-ray source. One consequence of the mechanical design of the 3D-MLC is that as individual leaves are moved, their projections from the light / x-ray source to the treatment plane follow paths that are hyperbolic, as shown in the figure below. (The eccentricity of the hyperbola is a function of leaf number / distance from centre.) The trajectories of the MLC leaves were modelled (in a spreadsheet) using geometrical projections of the MLC leaves to the treatment plane, with construction details provided in Siemens documentation. The results were checked against the image of the leaf in the linac light field. This problem belongs to the class of conic sections in mathematics, where the intersection of a plane with both nappes of a double right circular cone results in a hyperbola. The good agreement between the model and the light field image provided confirmation of the MLC construction details. AS/NZS 4434.1:1996 (reproduced from IEC 976:1989) provides specifications for maximum deviation from orthogonality of adjacent edges, which can be interpreted for MLC collimators to parallelism of the direction of leaf travel and the adjacent collimator edge (e.g. Elekta ATS). However for the Siemens 'double focused' MLC, it is demonstrated that the geometrical construction of the MLC militates against the leaf image being used for this kind of test. It is also demonstrated that at last one commercial treatment planning system models the Siemens leaf trajectories linearly. The clinical significance of the error in this model is shown to be negligible. Copyright (2004) Australasian College of

  1. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato.

    Science.gov (United States)

    Pulungan, Sri Imriani; Yano, Ryoichi; Okabe, Yoshihiro; Ichino, Takuji; Kojima, Mikiko; Takebayashi, Yumiko; Sakakibara, Hitoshi; Ariizumi, Tohru; Ezura, Hiroshi

    2018-06-01

    Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.

  2. Zinc Detoxification Is Required for Full Virulence and Modification of the Host Leaf Ionome by Xylella fastidiosa.

    Science.gov (United States)

    Navarrete, Fernando; De La Fuente, Leonardo

    2015-04-01

    Zinc (Zn) is an essential element for all forms of life because it is a structural or catalytic cofactor of many proteins, but it can have toxic effects at high concentrations; thus, microorganisms must tightly regulate its levels. Here, we evaluated the role of Zn homeostasis proteins in the virulence of the xylem-limited bacterium Xylella fastidiosa, causal agent of Pierce's disease of grapevine, among other diseases. Two mutants of X. fastidiosa 'Temecula' affected in genes which regulate Zn homeostasis (zur) and Zn detoxification (czcD) were constructed. Both knockouts showed increased sensitivity to Zn at physiologically relevant concentrations and increased intracellular accumulation of this metal compared with the wild type. Increased Zn sensitivity was correlated with decreased growth in grapevine xylem sap, reduced twitching motility, and downregulation of exopolysaccharide biosynthetic genes. Tobacco plants inoculated with either knockout mutant showed reduced foliar symptoms and a much reduced (czcD) or absent (zur) modification of the leaf ionome (i.e., the mineral nutrient and trace element composition), as well as reduced bacterial populations. The results show that detoxification of Zn is crucial for the virulence of X. fastidiosa and verifies our previous findings that modification of the host leaf ionome correlates with bacterial virulence.

  3. Engineering the Oryza sativa cell wall with rice NAC transcription factors regulating secondary wall formation

    Directory of Open Access Journals (Sweden)

    Kouki eYoshida

    2013-10-01

    Full Text Available Plant tissues that require structural rigidity synthesize a thick, strong secondary cell wall of lignin, cellulose and hemicelluloses in a complicated bridged structure. Master regulators of secondary wall synthesis were identified in dicots, and orthologs of these regulators have been identified in monocots, but regulation of secondary cell wall formation in monocots has not been extensively studied. Here we demonstrate that the rice transcription factors SECONDARY WALL NAC DOMAIN PROTEINs (SWNs can regulate secondary wall formation in rice (Oryza sativa and are potentially useful for engineering the monocot cell wall. The OsSWN1 promoter is highly active in sclerenchymatous cells of the leaf blade and less active in xylem cells. By contrast, the OsSWN2 promoter is highly active in xylem cells and less active in sclerenchymatous cells. OsSWN2 splicing variants encode two proteins; the shorter protein (OsSWN2S has very low transcriptional activation ability, but the longer protein (OsSWN2L and OsSWN1 have strong transcriptional activation ability. In rice, expression of an OsSWN2S chimeric repressor, driven by the OsSWN2 promoter, resulted in stunted growth and para-wilting (leaf rolling and browning under normal water conditions due to impaired vascular vessels. The same OsSWN2S chimeric repressor, driven by the OsSWN1 promoter, caused a reduction of cell wall thickening in sclerenchymatous cells, a drooping leaf phenotype, reduced lignin and xylose contents and increased digestibility as forage. These data suggest that OsSWNs regulate secondary wall formation in rice and manipulation of OsSWNs may enable improvements in monocotyledonous crops for forage or biofuel applications.

  4. Pinus densiflora leaf essential oil induces apoptosis via ROS generation and activation of caspases in YD-8 human oral cancer cells.

    Science.gov (United States)

    Jo, Jeong-Rang; Park, Ju Sung; Park, Yu-Kyoung; Chae, Young Zoo; Lee, Gyu-Hee; Park, Gy-Young; Jang, Byeong-Churl

    2012-04-01

    The leaf of Pinus (P.) densiflora, a pine tree widely distributed in Asian countries, has been used as a traditional medicine. In the present study, we investigated the anticancer activity of essential oil, extracted by steam distillation, from the leaf of P. densiflora in YD-8 human oral squamous cell carcinoma (OSCC) cells. Treatment of YD-8 cells with P. densiflora leaf essential oil (PLEO) at 60 µg/ml for 8 h strongly inhibited proliferation and survival and induced apoptosis. Notably, treatment with PLEO led to generation of ROS, activation of caspase-9, PARP cleavage, down-regulation of Bcl-2, and phosphorylation of ERK-1/2 and JNK-1/2 in YD-8 cells. Treatment with PLEO, however, did not affect the expression of Bax, XIAP and GRP78. Importantly, pharmaco-logical inhibition studies demonstrated that treatment with vitamin E (an anti-oxidant) or z-VAD-fmk (a pan-caspase inhibitor), but not with PD98059 (an ERK-1/2 inhibitor) or SP600125 (a JNK-1/2 inhibitor), strongly suppressed PLEO-induced apoptosis in YD-8 cells and reduction of their survival. Vitamin E treatment further blocked activation of caspase-9 and Bcl-2 down-regulation induced by PLEO. Thus, these results demonstrate firstly that PLEO has anti-proliferative, anti-survival and pro-apoptotic effects on YD-8 cells and the effects are largely due to the ROS-dependent activation of caspases.

  5. Automated rice leaf disease detection using color image analysis

    Science.gov (United States)

    Pugoy, Reinald Adrian D. L.; Mariano, Vladimir Y.

    2011-06-01

    In rice-related institutions such as the International Rice Research Institute, assessing the health condition of a rice plant through its leaves, which is usually done as a manual eyeball exercise, is important to come up with good nutrient and disease management strategies. In this paper, an automated system that can detect diseases present in a rice leaf using color image analysis is presented. In the system, the outlier region is first obtained from a rice leaf image to be tested using histogram intersection between the test and healthy rice leaf images. Upon obtaining the outlier, it is then subjected to a threshold-based K-means clustering algorithm to group related regions into clusters. Then, these clusters are subjected to further analysis to finally determine the suspected diseases of the rice leaf.

  6. Correlated evolution of stem and leaf hydraulic traits in Pereskia (Cactaceae).

    Science.gov (United States)

    Edwards, Erika J

    2006-01-01

    Recent studies have demonstrated significant correlations between stem and leaf hydraulic properties when comparing across species within ecological communities. This implies that these traits are co-evolving, but there have been few studies addressing plant water relations within an explicitly evolutionary framework. This study tests for correlated evolution among a suite of plant water-use traits and environmental parameters in seven species of Pereskia (Cactaceae), using phylogenetically independent contrasts. There were significant evolutionary correlations between leaf-specific xylem hydraulic conductivity, Huber Value, leaf stomatal pore index, leaf venation density and leaf size, but none of these traits appeared to be correlated with environmental water availability; only two water relations traits - mid-day leaf water potentials and photosynthetic water use efficiency - correlated with estimates of moisture regime. In Pereskia, it appears that many stem and leaf hydraulic properties thought to be critical to whole-plant water use have not evolved in response to habitat shifts in water availability. This may be because of the extremely conservative stomatal behavior and particular rooting strategy demonstrated by all Pereskia species investigated. These results highlight the need for a lineage-based approach to understand the relative roles of functional traits in ecological adaptation.

  7. The leaf phenophase of deciduous species altered by land pavements

    Science.gov (United States)

    Chen, Yuanyuan; Wang, Xiaoke; Jiang, Bo; Li, Li

    2018-02-01

    It has been widely reported that the urban environment alters leaf and flowering phenophases; however, it remains unclear if land pavement is correlated with these alterations. In this paper, two popular deciduous urban trees in northern China, ash (Fraxinus chinensis) and maple (Acer truncatum), were planted in pervious and impervious pavements at three spacings (0.5 m × 0.5 m, 1.0 m × 1.0 m, and 2.0 m × 2.0 m apart). The beginning and end dates of the processes of leaf budburst and senescence were recorded in spring and fall of 2015, respectively. The results show that leaf budburst and senescence were significantly advanced in pavement compared to non-pavement lands. The date of full leaf budburst was earlier by 0.7-9.3 days for ash and by 0.3-2.3 days for maple under pavements than non-pavements, respectively. As tree spacing increases, the advanced days of leaf budburst became longer. Our results clearly indicate that alteration of leaf phenophases is attributed to land pavement, which should be taken into consideration in urban planning and urban plant management.

  8. [Spectrum Variance Analysis of Tree Leaves Under the Condition of Different Leaf water Content].

    Science.gov (United States)

    Wu, Jian; Chen, Tai-sheng; Pan, Li-xin

    2015-07-01

    Leaf water content is an important factor affecting tree spectral characteristics. So Exploring the leaf spectral characteristics change rule of the same tree under the condition of different leaf water content and the spectral differences of different tree leaves under the condition of the same leaf water content are not only the keys of hyperspectral vegetation remote sensing information identification but also the theoretical support of research on vegetation spectrum change as the differences in leaf water content. The spectrometer was used to observe six species of tree leaves, and the reflectivity and first order differential spectrum of different leaf water content were obtained. Then, the spectral characteristics of each tree species leaves under the condition of different leaf water content were analyzed, and the spectral differences of different tree species leaves under the condition of the same leaf water content were compared to explore possible bands of the leaf water content identification by hyperspectral remote sensing. Results show that the spectra of each tree leaf have changed a lot with the change of the leaf water content, but the change laws are different. Leaf spectral of different tree species has lager differences in some wavelength range under the condition of same leaf water content, and it provides some possibility for high precision identification of tree species.

  9. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Madhurima Sarkar

    Full Text Available Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP, a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.

  10. Natural Pineapple Leaf Fibre Extraction On Josapine And Morris

    OpenAIRE

    Mazalan Muhammad Firdaus; Yusof Yusri

    2017-01-01

    The pineapple’s leaf plant contains approximately 2.5% to 3.5% of strong white silky fibres. These fibres are useful and can be extracted from the leaves. There are a few ways to extract the fibre such as hand scrapping and by extraction machine. The objective of this research is to study the quality of fibre extraction by using different age of pineapple leaf. Next, the study aims to compare the quality of Josapine and Morris pineapple leaf with tensile test. Fibre yield percentage are calcu...

  11. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting.

    Science.gov (United States)

    Garrett, Ryan W; Carlson, Katherine A; Goggans, Matthew Scott; Nesson, Michael H; Shepard, Christopher A; Schofield, Robert M S

    2016-01-01

    Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.

  12. QTL mapping of flag leaf-related traits in wheat (Triticum aestivum L.).

    Science.gov (United States)

    Liu, Kaiye; Xu, Hao; Liu, Gang; Guan, Panfeng; Zhou, Xueyao; Peng, Huiru; Yao, Yingyin; Ni, Zhongfu; Sun, Qixin; Du, Jinkun

    2018-04-01

    QTL controlling flag leaf length, flag leaf width, flag leaf area and flag leaf angle were mapped in wheat. This study aimed to advance our understanding of the genetic mechanisms underlying morphological traits of the flag leaves of wheat (Triticum aestivum L.). A recombinant inbred line (RIL) population derived from ND3331 and the Tibetan semi-wild wheat Zang1817 was used to identify quantitative trait loci (QTLs) controlling flag leaf length (FLL), flag leaf width (FLW), flag leaf area (FLA), and flag leaf angle (FLANG). Using an available simple sequence repeat genetic linkage map, 23 putative QTLs for FLL, FLW, FLA, and FLANG were detected on chromosomes 1B, 2B, 3A, 3D, 4B, 5A, 6B, 7B, and 7D. Individual QTL explained 4.3-68.52% of the phenotypic variance in different environments. Four QTLs for FLL, two for FLW, four for FLA, and five for FLANG were detected in at least two environments. Positive alleles of 17 QTLs for flag leaf-related traits originated from ND3331 and 6 originated from Zang1817. QTLs with pleiotropic effects or multiple linked QTL were also identified on chromosomes 1B, 4B, and 5A; these are potential target regions for fine-mapping and marker-assisted selection in wheat breeding programs.

  13. Stomatal closure of Pelargonium × hortorum in response to soil water deficit is associated with decreased leaf water potential only under rapid soil drying.

    Science.gov (United States)

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-01-01

    Soil water deficits applied at different rates and for different durations can decrease both stomatal conductance (gs ) and leaf water potential (Ψleaf ). Understanding the physiological mechanisms regulating these responses is important in sustainable irrigation scheduling. Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at various fractions of plant evapotranspiration (100, 75 and 50% ET) for 20 days or irrigation was withheld for 4 days. Xylem sap was collected and gs and Ψleaf were measured on days 15 and 20, and on days 16-19 for the respective treatments. Xylem sap pH and NO3 (-) and Ca(2+) concentrations did not differ between irrigation treatments. Xylem abscisic acid (ABA) concentrations ([ABA]xyl ) increased within 24 h of irrigation being withheld whilst gs and Ψleaf decreased. Supplying irrigation at a fraction of daily ET produced a similar relationship between [ABA]xyl and gs , but did not change Ψleaf . Treatment differences occurred independently of whether Ψleaf was measured in whole leaves with a pressure chamber, or in the lamina with a thermocouple psychrometer. Plants that were irrigated daily showed lower [ABA]xyl than plants from which irrigation was withheld, even at comparable soil moisture content. This implies that regular re-watering attenuates ABA signaling due to maintenance of soil moisture in the upper soil levels. Crucially, detached leaves supplied with synthetic ABA showed a similar relationship between [ABA]xyl and gs as intact plants, suggesting that stomatal closure of P. hortorum in response to soil water deficit is primarily an ABA-induced response, independent of changes in Ψleaf . © 2015 Scandinavian Plant Physiology Society.

  14. Titan Lifting Entry & Atmospheric Flight (T-LEAF) Science Mission

    Science.gov (United States)

    Lee, G.; Sen, B.; Ross, F.; Sokol, D.

    2016-12-01

    Northrop Grumman has been developing the Titan Lifting Entry & Atmospheric Flight (T-LEAF) sky rover to roam the lower atmosphere and observe at close quarters the lakes and plains of Saturn's ocean moon, Titan. T-LEAF also supports surface exploration and science by providing precision delivery of in-situ instruments to the surface of Titan. T-LEAF is a highly maneuverable sky rover and its aerodynamic shape (i.e., a flying wing) does not restrict it to following prevailing wind patterns on Titan, but allows mission operators to chart its course. This freedom of mobility allows T-LEAF to follow the shorelines of Titan's methane lakes, for example, or to target very specific surface locations. We will present a straw man concept of T-LEAF, including size, mass, power, on-board science payloads and measurement, and surface science dropsonde deployment CONOPS. We will discuss the various science instruments and their vehicle level impacts, such as meteorological and electric field sensors, acoustic sensors for measuring shallow depths, multi-spectral imagers, high definition cameras and surface science dropsondes. The stability of T-LEAF and its long residence time on Titan will provide for time to perform a large aerial survey of select prime surface targets deployment of dropsondes at selected locations surface measurements that are coordinated with on-board remote measurements communication relay capabilities to orbiter (or Earth). In this context, we will specifically focus upon key factors impacting the design and performance of T-LEAF science: science payload accommodation, constraints and opportunities characteristics of flight, payload deployment and measurement CONOPS in the Titan atmosphere. This presentation will show how these factors provide constraints as well as enable opportunities for novel long duration scientific studies of Titan's surface.

  15. The long non-coding RNA GAS5 cooperates with the eukaryotic translation initiation factor 4E to regulate c-Myc translation.

    Directory of Open Access Journals (Sweden)

    Guangzhen Hu

    Full Text Available Long noncoding RNAs (lncRNAs are important regulators of transcription; however, their involvement in protein translation is not well known. Here we explored whether the lncRNA GAS5 is associated with translation initiation machinery and regulates translation. GAS5 was enriched with eukaryotic translation initiation factor-4E (eIF4E in an RNA-immunoprecipitation assay using lymphoma cell lines. We identified two RNA binding motifs within eIF4E protein and the deletion of each motif inhibited the binding of GAS5 with eIF4E. To confirm the role of GAS5 in translation regulation, GAS5 siRNA and in vitro transcribed GAS5 RNA were used to knock down or overexpress GAS5, respectively. GAS5 siRNA had no effect on global protein translation but did specifically increase c-Myc protein level without an effect on c-Myc mRNA. The mechanism of this increase in c-Myc protein was enhanced association of c-Myc mRNA with the polysome without any effect on protein stability. In contrast, overexpression of in vitro transcribed GAS5 RNA suppressed c-Myc protein without affecting c-Myc mRNA. Interestingly, GAS5 was found to be bound with c-Myc mRNA, suggesting that GAS5 regulates c-Myc translation through lncRNA-mRNA interaction. Our findings have uncovered a role of GAS5 lncRNA in translation regulation through its interactions with eIF4E and c-Myc mRNA.

  16. Gamma irradiation enhances biological activities of mulberry leaf extract

    International Nuclear Information System (INIS)

    Cho, Byoung-Ok; Che, Denis Nchang; Yin, Hong-Hua; Jang, Seon-Il

    2017-01-01

    The purpose of this study was to investigate the influence of irradiation on the anti-oxidative, anti-inflammatory and whitening effects of mulberry leaf extract. This was done by comparing the phenolic contents; 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effects; 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonicacid) (ABTS) radical scavenging effects; in vitro tyrosinase inhibitory effects and the production of IL-6, TNF-α, PGE 2 , and NO in lipopolysaccharide-stimulated RAW264.7 macrophages and the production of IL-6 and TNF-α in phorbol 12-myristate 13-acetate plus calcium ionophore A23187-stimulated HMC-1 cells, respectively. The results showed that irradiated mulberry leaf extract possesses more anti-oxidant, anti-inflammatory, and tyrosinase inhibitory activities than their non-irradiated counterpart, probably due to increase in phenolic contents induced by gamma irradiation at dose of 10kGy. This research stresses on the importance of irradiation in functional foods. - Highlights: • Gamma-irradiated mulberry leaf extract enhanced in vitro antioxidant activities. • Gamma-irradiated mulberry leaf extract enhanced in vitro tyrosinase inhibitory effects. • Gamma-irradiated mulberry leaf extract treatment reduced the production of IL-6, TNF-α, PGE 2 , and NO.

  17. Ecophysiological function of leaf 'windows' in Lithops species - 'Living Stones' that grow underground.

    Science.gov (United States)

    Martin, C E; Brandmeyer, E A; Ross, R D

    2013-01-01

    Leaf temperatures were lower when light entry at the leaf tip window was prevented through covering the window with reflective tape, relative to leaf temperatures of plants with leaf tip windows covered with transparent tape. This was true when leaf temperatures were measured with an infrared thermometer, but not with a fine-wire thermocouple. Leaf tip windows of Lithops growing in high-rainfall regions of southern Africa were larger than the windows of plants (numerous individuals of 17 species) growing in areas with less rainfall and, thus, more annual insolation. The results of this study indicate that leaf tip windows of desert plants with an underground growth habit can allow entry of supra-optimal levels of radiant energy, thus most likely inhibiting photosynthetic activity. Consequently, the size of the leaf tip windows correlates inversely with habitat solar irradiance, minimising the probability of photoinhibition, while maximising the absorption of irradiance in cloudy, high-rainfall regions. © 2012 German Botanical Society and The Royal Botanical Society of the Netherlands.

  18. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    Energy Technology Data Exchange (ETDEWEB)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Guerra, Mauro; Carvalho, Maria Luisa [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Universidade Nova de Lisboa, Departamento de Fisica, Faculdade de Ciencias e Tecnologia, Caparica (Portugal); Gac, Agnes le [Centro de Fisica Atomica da Universidade de Lisboa, Lisbon (Portugal); Universidade Nova de Lisboa, Departamento de Conservacao e Restauro, Faculdade de Ciencias e Tecnologia, Caparica (Portugal)

    2014-09-15

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (∝1573-1603) and two screens belonging to the early Edo period (∝1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs. (orig.)

  19. Comparison of gold leaf thickness in Namban folding screens using X-ray fluorescence

    International Nuclear Information System (INIS)

    Pessanha, Sofia; Madeira, Teresa I.; Manso, Marta; Guerra, Mauro; Carvalho, Maria Luisa; Gac, Agnes le

    2014-01-01

    In this work, the thickness of the gold leaf applied in six Japanese folding screens is compared using a nondestructive approach. Four screens belonging to the Momoyama period (∝1573-1603) and two screens belonging to the early Edo period (∝1603-1868) were analyzed in situ using energy dispersive X-ray fluorescence, and the thickness of the applied gold leaf was evaluated using a methodology based on the attenuation of the different characteristic lines of gold in the gold leaf layer. Considering that the leaf may well not be made of pure gold, we established that, for the purpose of comparing the intensity ratios of the Au lines, layers made with gold leaf of high grade can be considered identical. The gold leaf applied in one of the screens from the Edo period was found to be thinner than the gold leaf applied in the other ones. This is consistent with the development of the beating technology to obtain ever more thin gold leafs. (orig.)

  20. Gold leaf counter electrodes for dye-sensitized solar cells

    Science.gov (United States)

    Shimada, Kazuhiro; Toyoda, Takeshi

    2018-03-01

    In this study, a gold leaf 100 nm thin film is used as the counter electrode in dye-sensitized solar cells. The traditional method of hammering gold foil to obtain a thin gold leaf, which requires only small amounts of gold, was employed. The gold leaf was then attached to the substrate using an adhesive to produce the gold electrode. The proposed approach for fabricating counter electrodes is demonstrated to be facile and cost-effective, as opposed to existing techniques. Compared with electrodes prepared with gold foil and sputtered gold, the gold leaf counter electrode demonstrates higher catalytic activity with a cobalt-complex electrolyte and higher cell efficiency. The origin of the improved performance was investigated by surface morphology examination (scanning electron microscopy), various electrochemical analyses (cyclic voltammetry, linear sweep voltammetry, and electrochemical impedance spectroscopy), and crystalline analysis (X-ray diffractometry).

  1. Novel fungal disease in complex leaf-cutting ant societies

    DEFF Research Database (Denmark)

    Hughes, David Peter; Evans, Harry C.; Hywel-Jones, Nigel

    2009-01-01

    1. The leaf-cutting ants practise an advanced system of mycophagy where they grow a fungus as a food source. As a consequence of parasite threats to their crops, they have evolved a system of morphological, behavioural, and chemical defences, particularly against fungal pathogens (mycopathogens). 2....... Specific fungal diseases of the leaf-cutting ants themselves have not been described, possibly because broad spectrum anti-fungal defences against mycopathogens have reduced their susceptibility to entomopathogens. 3. Using morphological and molecular tools, the present study documents three rare infection...... events of Acromyrmex and Atta leaf-cutting ants by Ophiocordyceps fungi, agenus of entomopathogens that is normally highly specific in its host choice. 4. As leaf-cutting ants have been intensively studied, the absence of prior records of Ophiocordyceps suggests that these infections may be a novel event...

  2. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish

    2010-07-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  3. Stable genetic transformation of Jatropha curcas via Agrobacterium tumefaciens-mediated gene transfer using leaf explants

    KAUST Repository

    Kumar, Nitish; Vijay Anand, K.G.; Pamidimarri, D.V.N. Sudheer; Sarkar, Tanmoy; Reddy, Muppala P.; Radhakrishnan, T.; Kaul, Tanushri; Reddy, M.K.; Sopori, Sudhir K.

    2010-01-01

    Jatropha curcas is an oil bearing species with multiple uses and considerable economic potential as a biofuel crop. A simple and reproducible protocol was developed for Agrobacterium tumefaciens-mediated stable genetic transformation of J. curcas using leaf explains. Agrobacterium strain LBA 4404 harbouring the binary vector pCAMBIA 1304 having sense-dehydration responsive element binding (S-DREB2A), beta-glucuronidase (gus), and hygromycin-phosphotransferase (hpt) genes were used for gene transfer. A number of parameters such as preculture of explains, wounding of leaf explants, Agrobacterium growth phase (OD), infection duration, co-cultivation period, co-cultivation medium pH, and acetosyringone, were studied to optimized transformation efficiency. The highest transformation efficiency was achieved using 4-day precultured, non-wounded leaf explants infected with Agrobacterium culture corresponding to OD(600)=0.6 for 20 min, followed by co-cultivation for 4 days in a co-cultivation medium containing 100 mu M acetosyringone, pH 5.7. Co-cultivated leaf explants were initially cultured on Murashige and Skoog (MS) medium supplemented with 2.27 mu M thidiazuron (TDZ) for regeneration of shoot buds, followed by selection on same medium with 5 mu g ml(-1) hygromycin. Selected shoot buds were transferred to MS medium containing 10 mu M kinetin (Kn), 4.5 mu M 6-benzyl aminopurine (BA), and 5.5 mu M alpha-naphthaleneacetic acid (NAA) for proliferation. The proliferated shoots were elongated on MS medium supplemented with 2.25 mu M BA and 8.5 mu M indole-3-acetic acid (IAA). The elongated shoots were rooted on half strength MS medium supplemented with 15 mu M indole-3-butyric acid (IBA), 5.7 mu M IAA, 5.5 mu M NAA, and 0.25 mg l(-1) activated charcoal. GUS histochemical analysis of the transgenic tissues further confirmed the transformation event. PCR and DNA gel blot hybridization were performed to confirm the presence of transgene. A transformation efficiency of 29% was

  4. Use of GLM approach to assess the responses of tropical trees to urban air pollution in relation to leaf functional traits and tree characteristics.

    Science.gov (United States)

    Mukherjee, Arideep; Agrawal, Madhoolika

    2018-05-15

    Responses of urban vegetation to air pollution stress in relation to their tolerance and sensitivity have been extensively studied, however, studies related to air pollution responses based on different leaf functional traits and tree characteristics are limited. In this paper, we have tried to assess combined and individual effects of major air pollutants PM 10 (particulate matter ≤ 10 µm), TSP (total suspended particulate matter), SO 2 (sulphur dioxide), NO 2 (nitrogen dioxide) and O 3 (ozone) on thirteen tropical tree species in relation to fifteen leaf functional traits and different tree characteristics. Stepwise linear regression a general linear modelling approach was used to quantify the pollution response of trees against air pollutants. The study was performed for six successive seasons for two years in three distinct urban areas (traffic, industrial and residential) of Varanasi city in India. At all the study sites, concentrations of air pollutants, specifically PM (particulate matter) and NO 2 were above the specified standards. Distinct variations were recorded in all the fifteen leaf functional traits with pollution load. Caesalpinia sappan was identified as most tolerant species followed by Psidium guajava, Dalbergia sissoo and Albizia lebbeck. Stepwise regression analysis identified maximum response of Eucalyptus citriodora and P. guajava to air pollutants explaining overall 59% and 58% variability's in leaf functional traits, respectively. Among leaf functional traits, maximum effect of air pollutants was observed on non-enzymatic antioxidants followed by photosynthetic pigments and leaf water status. Among the pollutants, PM was identified as the major stress factor followed by O 3 explaining 47% and 33% variability's in leaf functional traits. Tolerance and pollution response were regulated by different tree characteristics such as height, canopy size, leaf from, texture and nature of tree. Outcomes of this study will help in urban forest

  5. Radioprotection of Swiss albino mice by Adhatoda vesica leaf extract

    International Nuclear Information System (INIS)

    Kumar, A.

    2003-01-01

    Full text: The radioprotective role of aqueous extract of Adhatoda vesica leaf extract against radiation induced hematological alterations in peripheral blood of Swiss albino mice was studied at various post-irradiation intervals between 6 hrs to 30 days. Oral administration of Adhatoda vesica leaf extract (800 mg / kg body weight) prior to whole-body irradiation showed a significant protection in terms of survival percentage and hematological parameters. Mice exposed to radiation (8 Gy) without Adhatoda vesica leaf extract pre-treatment exhibited signs of radiation sickness like anorexia, lethargicity, ruffled hairs and diarrhoea and such animals died within 26 days post-irradiation. The dose reduction factor (DRF=1.6) for Adhatoda vesica leaf extract was calculated from LD50/30 values. A significant decline in hematological constituents (RBCs, WBCs, Hb and Hct) was evident till day 15, at later period of observation (day 15 onwards), no animals could survive from control group whereas, in Adhatoda vesica leaf extract pre-treated irradiated group, a gradual recovery was noted in the hematological values. However, these hematological values remained significantly below the normal even till day 30. A significant decrease in GSH was recorded in control animals. Experimental animals showed a significant increase in GSH content (blood as well as liver) with respect to control, but such values remained below normal. A significant increase in TBARS level in liver and serum was evident in control animals. Although, no significant difference was noticed in such levels in normal and Adhatoda vesica leaf extract treated animals. But, a significant decrease was registered in Adhatoda vesica leaf extract pretreated irradiated animals. The results from the present study suggest that Adhatoda vesica leaf extract has radioprotective role in stimulating/protecting the hematopoietic system thereby enhancing the survival and increasing the hematological constituents in peripheral

  6. Leaf and stem morphoanatomy of Petiveria alliacea.

    Science.gov (United States)

    Duarte, M R; Lopes, J F

    2005-12-01

    Petiveria alliacea is a perennial herb native to the Amazonian region and used in traditional medicine for different purposes, such as diuretic, antispasmodic and anti-inflammatory. The morphoanatomical characterization of the leaf and stem was carried out, in order to contribute to the medicinal plant identification. The plant material was fixed, freehand sectioned and stained either with toluidine blue or astra blue and basic fuchsine. Microchemical tests were also applied. The leaf is simple, alternate and elliptic. The blade exhibits paracytic stomata on the abaxial side, non-glandular trichomes and dorsiventral mesophyll. The midrib is biconvex and the petiole is plain-convex, both traversed by collateral vascular bundles adjoined with sclerenchymatic caps. The stem, in incipient secondary growth, presents epidermis, angular collenchyma, starch sheath and collateral vascular organization. Several prisms of calcium oxalate are seen in the leaf and stem.

  7. Leaf morphophysiology of a Neotropical mistletoe is shaped by seasonal patterns of host leaf phenology.

    Science.gov (United States)

    Scalon, Marina Corrêa; Rossatto, Davi Rodrigo; Domingos, Fabricius Maia Chaves Bicalho; Franco, Augusto Cesar

    2016-04-01

    Several mistletoe species are able to grow and reproduce on both deciduous and evergreen hosts, suggesting a degree of plasticity in their ability to cope with differences in intrinsic host functions. The aim of this study was to investigate the influence of host phenology on mistletoe water relations and leaf gas exchange. Mistletoe Passovia ovata parasitizing evergreen (Miconia albicans) hosts and P. ovata parasitizing deciduous (Byrsonima verbascifolia) hosts were sampled in a Neotropical savanna. Photosynthetic parameters, diurnal cycles of stomatal conductance, pre-dawn and midday leaf water potential, and stomatal anatomical traits were measured during the peak of the dry and wet seasons, respectively. P. ovata showed distinct water-use strategies that were dependent on host phenology. For P. ovata parasitizing the deciduous host, water use efficiency (WUE; ratio of photosynthetic rate to transpirational water loss) was 2-fold lower in the dry season than in the wet season; in contrast, WUE was maintained at the same level during the wet and dry seasons in P. ovata parasitizing the evergreen host. Generally, mistletoe and host diurnal cycles of stomatal conductance were linked, although there were clear differences in leaf water potential, with mistletoe showing anisohydric behaviour and the host showing isohydric behaviour. Compared to mistletoes attached to evergreen hosts, those parasitizing deciduous hosts had a 1.4-fold lower stomatal density and 1.2-fold wider stomata on both leaf surfaces, suggesting that the latter suffered less intense drought stress. This is the first study to show morphophysiological differences in the same mistletoe species parasitizing hosts of different phenological groups. Our results provide evidence that phenotypical plasticity (anatomical and physiological) might be essential to favour the use of a greater range of hosts.

  8. Determining past leaf-out times of New England's deciduous forests from herbarium specimens.

    Science.gov (United States)

    Everill, Peter H; Primack, Richard B; Ellwood, Elizabeth R; Melaas, Eli K

    2014-08-01

    • There is great interest in studying leaf-out times of temperate forests because of the importance of leaf-out in controlling ecosystem processes, especially in the face of a changing climate. Remote sensing and modeling, combined with weather records and field observations, are increasing our knowledge of factors affecting variation in leaf-out times. Herbarium specimens represent a potential new source of information to determine whether the variation in leaf-out times observed in recent decades is comparable to longer time frames over past centuries.• Here we introduce the use of herbarium specimens as a method for studying long-term changes in leaf-out times of deciduous trees. We collected historical leaf-out data for the years 1834-2008 from common deciduous trees in New England using 1599 dated herbarium specimens with young leaves.• We found that leaf-out dates are strongly affected by spring temperature, with trees leafing out 2.70 d earlier for each degree C increase in mean April temperature. For each degree C increase in local temperature, trees leafed out 2.06 d earlier. Additionally, the mean response of leaf-out dates across all species and sites over time was 0.4 d earlier per decade. Our results are of comparable magnitude to results from studies using remote sensing and direct field observations.• Across New England, mean leaf-out dates varied geographically in close correspondence with those observed in studies using satellite data. This study demonstrates that herbarium specimens can be a valuable source of data on past leaf-out times of deciduous trees. © 2014 Botanical Society of America, Inc.

  9. A sensitive hydrogen peroxide sensor based on leaf-like silver

    International Nuclear Information System (INIS)

    Meng, Zuchao; Zhang, Mingyin; Zhang, Hongfang; Zheng, Jianbin

    2014-01-01

    A novel non-enzymatic hydrogen peroxide sensor based on leaf-like silver was constructed. The leaf-like silver was synthesized on the surface of L-cysteine (L-cys) by electrodeposition. Scanning electron microscopy and electrochemical techniques were used to characterize the leaf-like silver nanoparticles. The sensor showed high electrocatalytic activity towards the reduction of hydrogen peroxide. A wide linear range of 2.5–1.5 mM with a low detection limit of 0.7 µM was obtained. Excellent electrocatalytic activity, large surface-to-volume ratio and efficient electron transport properties of leaf-like silver have enabled stable and highly sensitive performance for the non-enzymatic hydrogen peroxide sensor. (paper)

  10. Mycorrhizal Stimulation of Leaf Gas Exchange in Relation to Root Colonization, Shoot Size, Leaf Phosphorus and Nitrogen: A Quantitative Analysis of the Literature Using Meta-Regression.

    Science.gov (United States)

    Augé, Robert M; Toler, Heather D; Saxton, Arnold M

    2016-01-01

    Arbuscular mycorrhizal (AM) symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER), stomatal conductance (g s), and transpiration rate (E) has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen:phosphorus ratio, and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of g s and E (28 and 26%, respectively). CER has been over twice as sensitive as g s and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for g s and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  11. Mycorrhizal stimulation of leaf gas exchange in relation to root colonization, shoot size, leaf phosphorus and nitrogen: a quantitative analysis of the literature using meta-regression

    Directory of Open Access Journals (Sweden)

    Robert M. Augé

    2016-07-01

    Full Text Available Arbuscular mycorrhizal (AM symbiosis often stimulates gas exchange rates of the host plant. This may relate to mycorrhizal effects on host nutrition and growth rate, or the influence may occur independently of these. Using meta-regression, we tested the strength of the relationship between AM-induced increases in gas exchange, and AM size and leaf mineral effects across the literature. With only a few exceptions, AM stimulation of carbon exchange rate (CER, stomatal conductance (gs and transpiration rate (E has been significantly associated with mycorrhizal stimulation of shoot dry weight, leaf phosphorus, leaf nitrogen: phosphorus ratio and percent root colonization. The sizeable mycorrhizal stimulation of CER, by 49% over all studies, has been about twice as large as the mycorrhizal stimulation of gs and E (28% and 26%, respectively. Carbon exchange rate has been over twice as sensitive as gs and four times as sensitive as E to mycorrhizal colonization rates. The AM-induced stimulation of CER increased by 19% with each AM-induced doubling of shoot size; the AM effect was about half as large for gs and E. The ratio of leaf N to leaf P has been more closely associated with mycorrhizal influence on leaf gas exchange than leaf P alone. The mycorrhizal influence on CER has declined markedly over the 35 years of published investigations.

  12. Impact of Vertical Canopy Position on Leaf Spectral Properties and Traits across Multiple Species

    Directory of Open Access Journals (Sweden)

    Tawanda W. Gara

    2018-02-01

    Full Text Available Understanding the vertical pattern of leaf traits across plant canopies provide critical information on plant physiology, ecosystem functioning and structure and vegetation response to climate change. However, the impact of vertical canopy position on leaf spectral properties and subsequently leaf traits across the entire spectrum for multiple species is poorly understood. In this study, we examined the ability of leaf optical properties to track variability in leaf traits across the vertical canopy profile using Partial Least Square Discriminatory Analysis (PLS-DA. Leaf spectral measurements together with leaf traits (nitrogen, carbon, chlorophyll, equivalent water thickness and specific leaf area were studied at three vertical canopy positions along the plant stem: lower, middle and upper. We observed that foliar nitrogen (N, chlorophyll (Cab, carbon (C, and equivalent water thickness (EWT were higher in the upper canopy leaves compared with lower shaded leaves, while specific leaf area (SLA increased from upper to lower canopy leaves. We found that leaf spectral reflectance significantly (P ≤ 0.05 shifted to longer wavelengths in the ‘red edge’ spectrum (685–701 nm in the order of lower > middle > upper for the pooled dataset. We report that spectral bands that are influential in the discrimination of leaf samples into the three groups of canopy position, based on the PLS-DA variable importance projection (VIP score, match with wavelength regions of foliar traits observed to vary across the canopy vertical profile. This observation demonstrated that both leaf traits and leaf reflectance co-vary across the vertical canopy profile in multiple species. We conclude that canopy vertical position has a significant impact on leaf spectral properties of an individual plant’s traits, and this finding holds for multiple species. These findings have important implications on field sampling protocols, upscaling leaf traits to canopy level

  13. The global distribution of leaf chlorophyll content and seasonal controls on carbon uptake

    Science.gov (United States)

    Croft, H.; Chen, J. M.; Luo, X.; Bartlett, P. A.; Staebler, R. M.; He, L.; Mo, G.; Luo, S.; Simic, A.; Arabian, J.; He, Y.; Zhang, Y.; Beringer, J.; Hutley, L. B.; Noland, T. L.; Arellano, P.; Stahl, C.; Homolová, L.; Bonal, D.; Malenovský, Z.; Yi, Q.; Amiri, R.

    2017-12-01

    Leaf chlorophyll (ChlLeaf) is crucial to biosphere-atmosphere exchanges of carbon and water, and the functioning of terrestrial ecosystems. Improving the accuracy of modelled photosynthetic carbon uptake is a central priority for understanding ecosystem response to a changing climate. A source of uncertainty within gross primary productivity (GPP) estimates is the failure to explicitly consider seasonal controls on leaf photosynthetic potential. Whilst the inclusion of ChlLeafinto carbon models has shown potential to provide a physiological constraint, progress has been hampered by the absence of a spatially-gridded, global chlorophyll product. Here, we present the first spatially-continuous, global view of terrestrial ChlLeaf, at weekly intervals. Satellite-derived ChlLeaf was modelled using a physically-based radiative transfer modelling approach, with a two stage model inversion method. 4-Scale and SAIL canopy models were first used to model leaf-level reflectance from ENIVSAT MERIS 300m satellite data. The PROSPECT leaf model was then used to derive ChlLeaf from the modelled leaf reflectance. This algorithm was validated using measured ChlLeaf data from 248 measurements within 26 field locations, covering six plant functional types (PFTs). Modelled results show very good relationships with measured data, particularly for deciduous broadleaf forests (R2 = 0.67; pmake an important step towards improving the accuracy of global carbon budgets.

  14. Leaf shape responds to temperature but not CO2 in Acer rubrum.

    Science.gov (United States)

    Royer, Dana L

    2012-01-01

    The degree of leaf dissection and the presence of leaf teeth, along with tooth size and abundance, inversely correlate with mean annual temperature (MAT) across many plant communities. These relationships form the core of several methods for reconstructing MAT from fossils, yet the direct selection of temperature on tooth morphology has not been demonstrated experimentally. It is also not known if atmospheric CO(2) concentration affects leaf shape, limiting confidence in ancient climate reconstructions because CO(2) has varied widely on geologic timescales. Here I report the results of growing Acer rubrum (red maple) in growth cabinets at contrasting temperature and CO(2) conditions. The CO(2) treatment imparted no significant differences in leaf size and shape, while plants grown at cooler temperatures tended to have more teeth and more highly dissected leaves. These results provide direct evidence for the selection of temperature on leaf shape in one species, and support a key link in many leaf-climate methods. More broadly, these results increase confidence for using leaf shape in fossils to reconstruct paleoclimate.

  15. Leaf Dynamics of Panicum maximum under Future Climatic Changes.

    Science.gov (United States)

    Britto de Assis Prado, Carlos Henrique; Haik Guedes de Camargo-Bortolin, Lívia; Castro, Érique; Martinez, Carlos Alberto

    2016-01-01

    Panicum maximum Jacq. 'Mombaça' (C4) was grown in field conditions with sufficient water and nutrients to examine the effects of warming and elevated CO2 concentrations during the winter. Plants were exposed to either the ambient temperature and regular atmospheric CO2 (Control); elevated CO2 (600 ppm, eC); canopy warming (+2°C above regular canopy temperature, eT); or elevated CO2 and canopy warming (eC+eT). The temperatures and CO2 in the field were controlled by temperature free-air controlled enhancement (T-FACE) and mini free-air CO2 enrichment (miniFACE) facilities. The most green, expanding, and expanded leaves and the highest leaf appearance rate (LAR, leaves day(-1)) and leaf elongation rate (LER, cm day(-1)) were observed under eT. Leaf area and leaf biomass were higher in the eT and eC+eT treatments. The higher LER and LAR without significant differences in the number of senescent leaves could explain why tillers had higher foliage area and leaf biomass in the eT treatment. The eC treatment had the lowest LER and the fewest expanded and green leaves, similar to Control. The inhibitory effect of eC on foliage development in winter was indicated by the fewer green, expanded, and expanding leaves under eC+eT than eT. The stimulatory and inhibitory effects of the eT and eC treatments, respectively, on foliage raised and lowered, respectively, the foliar nitrogen concentration. The inhibition of foliage by eC was confirmed by the eC treatment having the lowest leaf/stem biomass ratio and by the change in leaf biomass-area relationships from linear or exponential growth to rectangular hyperbolic growth under eC. Besides, eC+eT had a synergist effect, speeding up leaf maturation. Therefore, with sufficient water and nutrients in winter, the inhibitory effect of elevated CO2 on foliage could be partially offset by elevated temperatures and relatively high P. maximum foliage production could be achieved under future climatic change.

  16. Variation in essential oil composition within individual leaves of sweet basil (Ocimum basilicum L.) is more affected by leaf position than by leaf age.

    Science.gov (United States)

    Fischer, Ravit; Nitzan, Nadav; Chaimovitsh, David; Rubin, Baruch; Dudai, Nativ

    2011-05-11

    The aroma in sweet basil is a factor affecting the commercial value of the crop. In previous studies leaf age was considered to be a factor that influences the composition of essential oil (EO). In this study it was hypothesized that a single observation of the EO content in leaves from different positions on the main stem (young vs old) could predict the developmental changes in the plant during its life cycle. Plants harvested at week 16 demonstrated an exponential increase (R(2) = 0.92) in EO concentration in leaves on the main stem and lateral shoots, indicating higher EO concentrations in younger than in older leaves. Eugenol and methyleugenol predominated (28-77%) in the extract. Eugenol levels were higher in younger leaves (∼53%), and methyl-eugenol levels predominated in older leaves (∼68%). Linalool was lower in mature leaves than in younger leaves. This suggested that eugenol converted into methyleugenol and linalool decreased as leaf mature. However, in weekly monitored plants, the levels of these compounds in the EO had limited variation in the maturing leaf regardless of its position on the stem. This proposed that the EO composition in an individual leaf is mostly affected by the leaf position on the stem and not by its maturation process. Because leaf position is related to plant development, it is probable that the plant's physiological age at the time of leaf formation from the primordial tissue is the factor affecting the EO composition. It was concluded that interpretation of scientific observations should be carried out with caution and that hypotheses should be tested utilizing multifaceted approaches.

  17. Leaf reflectance-nitrogen-chlorophyll relations among three south Texas woody rangeland plant species

    Science.gov (United States)

    Gausman, H. W.; Everitt, J. H.; Escobar, D. E. (Principal Investigator)

    1982-01-01

    Annual variations in the nitrogen-chlorophyll leaf reflectance of hackberry, honey mesquite and live oak in south Texas, were compared. In spring, leaf reflectance at the 0.55 m wavelength and nitrogen (N) concentration was high but leaf chlorophyll (chl) concentrations were low. In summer, leaf reflectance and N-concentration were low but lead chl concentrations were high. Linear correlations for both spring and summer of leaf reflectance with N and chl concentration or deviations from linear regression were not statistically significant.

  18. Biophysical constraints on leaf expansion in a tall conifer.

    Science.gov (United States)

    Fredrick C. Meinzer; Barbara J. Bond; Jennifer A. Karanian

    2008-01-01

    The physiological mechanisms responsible for reduced extension growth as trees increase in height remain elusive. We evaluated biophysical constraints on leaf expansion in old-growth Douglas-fir (Psuedotsuga menziesii (Mirb.) Franco) trees. Needle elongation rates, plastic and elastic extensibility, bulk leaf water, (L...

  19. Plant physiology and proteomics reveals the leaf response to drought in alfalfa (Medicago sativa L.).

    Science.gov (United States)

    Aranjuelo, Iker; Molero, Gemma; Erice, Gorka; Avice, Jean Christophe; Nogués, Salvador

    2011-01-01

    Despite its relevance, protein regulation, metabolic adjustment, and the physiological status of plants under drought is not well understood in relation to the role of nitrogen fixation in nodules. In this study, nodulated alfalfa plants were exposed to drought conditions. The study determined the physiological, metabolic, and proteomic processes involved in photosynthetic inhibition in relation to the decrease in nitrogenase (N(ase)) activity. The deleterious effect of drought on alfalfa performance was targeted towards photosynthesis and N(ase) activity. At the leaf level, photosynthetic inhibition was mainly caused by the inhibition of Rubisco. The proteomic profile and physiological measurements revealed that the reduced carboxylation capacity of droughted plants was related to limitations in Rubisco protein content, activation state, and RuBP regeneration. Drought also decreased amino acid content such as asparagine, and glutamic acid, and Rubisco protein content indicating that N availability limitations were caused by N(ase) activity inhibition. In this context, drought induced the decrease in Rubisco binding protein content at the leaf level and proteases were up-regulated so as to degrade Rubisco protein. This degradation enabled the reallocation of the Rubisco-derived N to the synthesis of amino acids with osmoregulant capacity. Rubisco degradation under drought conditions was induced so as to remobilize Rubisco-derived N to compensate for the decrease in N associated with N(ase) inhibition. Metabolic analyses showed that droughted plants increased amino acid (proline, a major compound involved in osmotic regulation) and soluble sugar (D-pinitol) levels to contribute towards the decrease in osmotic potential (Ψ(s)). At the nodule level, drought had an inhibitory effect on N(ase) activity. This decrease in N(ase) activity was not induced by substrate shortage, as reflected by an increase in total soluble sugars (TSS) in the nodules. Proline accumulation

  20. Transformation of Leaf-like Zinc Dendrite in Oxidation and Reduction Cycle

    International Nuclear Information System (INIS)

    Nakata, Akiyoshi; Murayama, Haruno; Fukuda, Katsutoshi; Yamane, Tomokazu; Arai, Hajime; Hirai, Toshiro; Uchimoto, Yoshiharu; Yamaki, Jun-ichi; Ogumi, Zempachi

    2015-01-01

    Highlights: • Leaf-like zinc dendrites change to leaf-like residual oxides at high oxidation current density (10 mA cm −2 ) whereas it completely dissolves at low oxidation current density (1 mA cm −2 ). • Leaf-like residual oxide products is transformed to zinc deposits with particulate morphology, resulting in good rechargeability. • The residual zinc oxide provides sufficient zincate on its reduction, preventing the diffusion-limited condition that causes leaf-like dendrite formation. - Abstract: Zinc is a promising negative electrode material for aqueous battery systems whereas it shows insufficient rechargeability for use in secondary batteries. It has been reported that leaf-like dendrite deposits are often the origin of cell-failure, however, their nature and behavior on discharge (oxidation) - charge (reduction) cycling have been only poorly understood. Here we investigate the transformation of the leaf-like zinc dendrites using ex-situ scanning electron microscopy, X-ray computational tomography and in-situ X-ray diffraction. It is shown that the leaf-like zinc dendrites obtained under diffusion-limited conditions are nearly completely dissolved at a low oxidation current density of 1 mA cm −2 and cause re-evolution of the zinc dendrites. Oxidation at a high current density of 10 mA cm −2 leads to the formation of leaf-like zinc oxide residual products that result in particulate zinc deposits in the following reduction process, enabling good rechargeability. The reaction behavior of this oxide residue is detailed and discussed for the development of long-life zinc electrodes