WorldWideScience

Sample records for regulates hypocretin orexin

  1. Hypocretin/Orexin Regulation of Dopamine Signaling and Cocaine Self-Administration Is Mediated Predominantly by Hypocretin Receptor 1

    OpenAIRE

    Prince, Courtney D.; Rau, Andrew R.; Yorgason, Jordan T.; Espa?a, Rodrigo A.

    2014-01-01

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine s...

  2. Roles of the hypocretin/orexins in the regulation of sleep and wakefulness.

    Science.gov (United States)

    Terao, Akira; Haruyama, Takashi; Kimura, Kazuhiro

    2008-01-01

    Hypocretin/orexin is produced exclusively in the dorsal and lateral hypothalamus but its projection is widespread within the brain and plays important roles. In this paper, we review the independent discoveries of the hypocretin/orexin peptides, the neuroanatomy of this system, and the link to the sleep disorder narcolepsy that has led to the idea that this system plays a crucial role in the regulation of sleep and wakefulness.

  3. Involvement of the hypocretin/orexin system in the addictive properties of nicotine

    OpenAIRE

    Plaza-Zabala, Ainhoa, 1982-

    2012-01-01

    Hypocretin-1 and hypocretin-2, also known as orexin-A and orexin-B, are 2 neuropeptides that are exclusively expressed by a small subset of neurons of the lateral hypothalamic area. Despite their restricted expression pattern, hypocretin-containing axons project widely throughout the brain and exert their physiological functions acting on 2 G protein coupled receptors, hypocretin/orexin receptor-1 and hypocretin/orexin receptor-2. Initially, the hypocretin system was related to the regulation...

  4. Hypocretin (orexin) loss in Parkinson's disease.

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Lee, S.Y.; Hegeman, I.M.; Pelt, J. van; Duinen, S.G. van; Lammers, G.J.; Swaab, D.F.

    2007-01-01

    The hypothalamic hypocretin (orexin) system plays a central role in the regulation of various functions, including sleep/wake regulation and metabolism. There is a growing interest in hypocretin function in Parkinson's disease (PD), given the high prevalence of non-motor symptoms such as sleep

  5. Hypocretin (orexin) loss in Parkinson's disease

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Lee, S.Y.; Hegeman, I.M.; Pelt, J. van; Duinen, S.G. van; Lammers, G.J.; Swaab, D.F.

    2007-01-01

    The hypothalamic hypocretin (orexin) system plays a central role in the regulation of various functions, including sleep/wake regulation and metabolism. There is a growing interest in hypocretin function in Parkinson's disease (PD), given the high prevalence of non-motor symptoms such as sleep

  6. Plasticity in neurons synthesizing wake/arousal promoting hormone hypocretin/orexin.

    Science.gov (United States)

    Gao, Xiao-Bing

    2012-01-01

    The hypothalamus is a critical brain structure regulating physiological functions essential to the survival of individuals and species. One of the striking characteristics of this brain region is the abundance of nerve cells (neurons) expressing a great numbers of neurotransmitters and neuromodulators, among which are hormones released into the blood stream through brain neuroendocrinological routes. The neurons in the lateral hypothalamus take part in intra- and extrahypothalamic circuits controlling basic physiological functions essential for the well being of animal bodies (such as cardiovascular function, respiratory function, immune responses, etc.), animal behaviors required for the maintenance of the survival of individuals (food foraging, flight, fight, etc.) and species (reproductive function), and higher brain functions (learning and memory, mental state, etc.). Hypocretin (also called orexin) comprises of two neuropeptides exclusively synthesized by neurons in the perifornical/lateral hypothalamus. Although hypocretin/orexin was initially found to enhance food intake, it is now clear that the functions mediated by hypocretin/orexin are well beyond what were originally proposed. Specifically, hypocretin/orexin is a crucial promoter of wakefulness; deficiency in the hypocretin/orexin system leads to diseases and disorders such as narcolepsy. It is clear that neurons synthesizing hypocretin/orexin are consistently under regulation originating from various parts of the brain and that the status of activity in hypocretin/orexin neurons is closely related with the nutritional and behavioral state of animals. Therefore, the demand to make adaptive changes in hypocretin/orexin neurons to accommodate the changes in the external environment and behavioral state of animals is expected. The latest developments in the studies of plasticity in hypocretin/orexin neurons under the challenges from environmental and behavioral factors have dramatically shaped the

  7. Hypocretin/orexin disturbances in neurological disorders.

    NARCIS (Netherlands)

    Fronczek, R.; Baumann, C.R.; Lammers, G.J.; Bassetti, C.L.; Overeem, S.

    2009-01-01

    The hypothalamic hypocretin (orexin) system plays a crucial role in the regulation of sleep and wakefulness. The strongest evidence for this is the fact that the primary sleep disorder narcolepsy is caused by disrupted hypocretin signaling in humans as well as various animal models. There is a

  8. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Directory of Open Access Journals (Sweden)

    Rodrigo eEspaña

    2012-08-01

    Full Text Available The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine.

  9. Hypocretin/orexin regulation of dopamine signaling: implications for reward and reinforcement mechanisms

    Science.gov (United States)

    Calipari, Erin S.; España, Rodrigo A.

    2012-01-01

    The hypocretins/orexins are comprised of two neuroexcitatory peptides that are synthesized exclusively within a circumscribed region of the lateral hypothalamus. These peptides project widely throughout the brain and interact with a variety of regions involved in the regulation of arousal-related processes including those associated with motivated behavior. The current review focuses on emerging evidence indicating that the hypocretins influence reward and reinforcement processing via actions on the mesolimbic dopamine system. We discuss contemporary perspectives of hypocretin regulation of mesolimbic dopamine signaling in both drug free and drug states, as well as hypocretin regulation of behavioral responses to drugs of abuse, particularly as it relates to cocaine. PMID:22933994

  10. Sexually dimorphic changes of hypocretin (orexin) in depression.

    NARCIS (Netherlands)

    Lu, J.; Zhao, Juan; Balesar, R.A.; Fronczek, Rolf; Zhu, Q.; Wu, X.; Hu, S.H.; Bao, A.M.; Swaab, D.F.

    2017-01-01

    Background Neurophysiological and behavioral processes regulated by hypocretin (orexin) are severely affected in depression. However, alterations in hypocretin have so far not been studied in the human brain. We explored the hypocretin system changes in the hypothalamus and cortex in depression from

  11. Interactions of the orexin/hypocretin neurones and the histaminergic system.

    Science.gov (United States)

    Sundvik, M; Panula, P

    2015-02-01

    Histaminergic and orexin/hypocretin systems are components in the brain wake-promoting system. Both are affected in the sleep disorder narcolepsy, but the role of histamine in narcolepsy is unclear. The histaminergic neurones are activated by the orexin/hypocretin system in rodents, and the development of the orexin/hypocretin neurones is bidirectionally regulated by the histaminergic system in zebrafish. This review summarizes the current knowledge of the interactions of these two systems in normal and pathological conditions in humans and different animal models. © 2014 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  12. IGFBP3 colocalizes with and regulates hypocretin (orexin.

    Directory of Open Access Journals (Sweden)

    Makoto Honda

    Full Text Available The sleep disorder narcolepsy is caused by a vast reduction in neurons producing the hypocretin (orexin neuropeptides. Based on the tight association with HLA, narcolepsy is believed to result from an autoimmune attack, but the cause of hypocretin cell loss is still unknown. We performed gene expression profiling in the hypothalamus to identify novel genes dysregulated in narcolepsy, as these may be the target of autoimmune attack or modulate hypocretin gene expression.We used microarrays to compare the transcriptome in the posterior hypothalamus of (1 narcoleptic versus control postmortem human brains and (2 transgenic mice lacking hypocretin neurons versus wild type mice. Hypocretin was the most downregulated gene in human narcolepsy brains. Among many additional candidates, only one, insulin-like growth factor binding protein 3 (IGFBP3, was downregulated in both human and mouse models and co-expressed in hypocretin neurons. Functional analysis indicated decreased hypocretin messenger RNA and peptide content, and increased sleep in transgenic mice overexpressing human IGFBP3, an effect possibly mediated through decreased hypocretin promotor activity in the presence of excessive IGFBP3. Although we found no IGFBP3 autoantibodies nor a genetic association with IGFBP3 polymorphisms in human narcolepsy, we found that an IGFBP3 polymorphism known to increase serum IGFBP3 levels was associated with lower CSF hypocretin-1 in normal individuals.Comparison of the transcriptome in narcolepsy and narcolepsy model mouse brains revealed a novel dysregulated gene which colocalized in hypocretin cells. Functional analysis indicated that the identified IGFBP3 is a new regulator of hypocretin cell physiology that may be involved not only in the pathophysiology of narcolepsy, but also in the regulation of sleep in normal individuals, most notably during adolescence. Further studies are required to address the hypothesis that excessive IGFBP3 expression may

  13. Mapping the Hypocretin/Orexin Neuronal System: An Unexpectedly Productive Journey.

    Science.gov (United States)

    Peyron, Christelle; Kilduff, Thomas S

    2017-03-01

    Early in 1998, we (de Lecea et al., 1998) and others (Sakurai et al., 1998) described the same hypothalamic neuropeptides, respectively called the hypocretins or orexins, which were discovered using two different approaches. In December of that year, we published the subject of this commentary in the Journal of Neuroscience : a highly detailed anatomical description of the extensive axonal projections of the hypocretin/orexin neurons. Although the function of this system was unknown at the time, a large body of literature today attests that the hypocretin/orexin neuropeptides play important roles in multiple physiological functions, particularly in sleep/wake regulation. Neuroanatomical studies are rarely frontline news, but the citation rate of this paper underscores the critical nature of such basic research. Based in part on this detailed description, the hypocretin/orexin neuropeptides have since been studied in many different areas of neuroscience research, including sleep/wake regulation, feeding, addiction, reward and motivation, anxiety and depression, cardiovascular regulation, pain, migraine, and neuroendocrine regulation, including reproduction. Thus, this paper has had a surprisingly broad impact on neuroscience research, particularly since it was originally rejected by the Journal ! Copyright © 2017 the authors 0270-6474/17/372268-05$15.00/0.

  14. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression

    OpenAIRE

    Lu, Jing; Zhao, Juan; Balesar, Rawien; Fronczek, Rolf; Zhu, Qiong-Bin; Wu, Xue-Yan; Hu, Shao-Hua; Bao, Ai-Min; Swaab, Dick F.

    2017-01-01

    Background: Neurophysiological and behavioral processes regulated by hypocretin (orexin) are severely affected in depression. However, alterations in hypocretin have so far not been studied in the human brain. We explored the hypocretin system changes in the hypothalamus and cortex in depression from male and female subjects. Methods: We quantified the differences between depression patients and well-matched controls, in terms of hypothalamic hypocretin-1 immunoreactivity (ir) and hypocret...

  15. The Orexins/Hypocretins and Schizophrenia

    Science.gov (United States)

    Deutch, Ariel Y.; Bubser, Michael

    2007-01-01

    Advances in molecular biology have led to new peptides and proteins being discovered on a regular basis, including the isolation of a number of neurotransmitter candidates. Rarely, however, do these immediately capture the attention of the scientific community. The isolation and characterization of the orexin/hypocretin peptides a decade ago resulted in a slew of studies that have helped clarified their diverse functions, including prominent roles in arousal and appetitive behavior. A number of recent studies have detailed the role of the orexins/hypocretins in attention and cognition and uncovered an involvement in schizophrenia and the mechanisms of action of antipsychotic drugs (APDs). This issue of Schizophrenia Bulletin presents several articles that review our current understanding and point to future directions for the study of the orexins/hypocretins in schizophrenia and APD actions. PMID:17728265

  16. The hypocretin/orexin system: implications for drug reward and relapse.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Maldonado, Rafael; Berrendero, Fernando

    2012-06-01

    Hypocretins (also known as orexins) are hypothalamic neuropeptides involved in the regulation of sleep/wake states and feeding behavior. Recent studies have also demonstrated an important role for the hypocretin/orexin system in the addictive properties of drugs of abuse, consistent with the reciprocal innervations between hypocretin neurons and brain areas involved in reward processing. This system participates in the primary reinforcing effects of opioids, nicotine, and alcohol. Hypocretins are also involved in the neurobiological mechanisms underlying relapse to drug-seeking behavior induced by drug-related environmental stimuli and stress, as mainly described in the case of psychostimulants. Based on these preclinical studies, the use of selective ligands targeting hypocretin receptors could represent a new therapeutical strategy for the treatment of substance abuse disorders. In this review, we discuss and update the current knowledge about the participation of the hypocretin system in drug addiction and the possible neurobiological mechanisms involved in these processes regulated by hypocretin transmission.

  17. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1.

    Science.gov (United States)

    Prince, Courtney D; Rau, Andrew R; Yorgason, Jordan T; España, Rodrigo A

    2015-01-21

    Extensive evidence suggests that the hypocretins/orexins influence cocaine reinforcement and dopamine signaling via actions at hypocretin receptor 1. By comparison, the involvement of hypocretin receptor 2 in reward and reinforcement processes has received relatively little attention. Thus, although there is some evidence that hypocretin receptor 2 regulates intake of some drugs of abuse, it is currently unclear to what extent hypocretin receptor 2 participates in the regulation of dopamine signaling or cocaine self-administration, particularly under high effort conditions. To address this, we examined the effects of hypocretin receptor 1, and/or hypocretin receptor 2 blockade on dopamine signaling and cocaine reinforcement. We used in vivo fast scan cyclic voltammetry to test the effects of hypocretin antagonists on dopamine signaling in the nucleus accumbens core and a progressive ratio schedule to examine the effects of these antagonists on cocaine self-administration. Results demonstrate that blockade of either hypocretin receptor 1 or both hypocretin receptor 1 and 2 significantly reduces the effects of cocaine on dopamine signaling and decreases the motivation to take cocaine. In contrast, blockade of hypocretin receptor 2 alone had no significant effects on dopamine signaling or self-administration. These findings suggest a differential involvement of the two hypocretin receptors, with hypocretin receptor 1 appearing to be more involved than hypocretin receptor 2 in the regulation of dopamine signaling and cocaine self-administration. When considered with the existing literature, these data support the hypothesis that hypocretins exert a permissive influence on dopamine signaling and motivated behavior via preferential actions on hypocretin receptor 1.

  18. The Hypocretin/Orexin System Mediates the Extinction of Fear Memories

    OpenAIRE

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-01-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear condi...

  19. Orexin/Hypocretin Signaling.

    Science.gov (United States)

    Kukkonen, Jyrki P

    Orexin/hypocretin peptide (orexin-A and orexin-B) signaling is believed to take place via the two G-protein-coupled receptors (GPCRs), named OX 1 and OX 2 orexin receptors, as described in the previous chapters. Signaling of orexin peptides has been investigated in diverse endogenously orexin receptor-expressing cells - mainly neurons but also other types of cells - and in recombinant cells expressing the receptors in a heterologous manner. Findings in the different systems are partially convergent but also indicate cellular background-specific signaling. The general picture suggests an inherently high degree of diversity in orexin receptor signaling.In the current chapter, I present orexin signaling on the cellular and molecular levels. Discussion of the connection to (potential) physiological orexin responses is only brief since these are in focus of other chapters in this book. The same goes for the post-synaptic signaling mechanisms, which are dealt with in Burdakov: Postsynaptic actions of orexin. The current chapter is organized according to the tissue type, starting from the central nervous system. Finally, receptor signaling pathways are discussed across tissues, cell types, and even species.

  20. Conditional ablation of orexin/hypocretin neurons: a new mouse model for the study of narcolepsy and orexin system function.

    Science.gov (United States)

    Tabuchi, Sawako; Tsunematsu, Tomomi; Black, Sarah W; Tominaga, Makoto; Maruyama, Megumi; Takagi, Kazuyo; Minokoshi, Yasuhiko; Sakurai, Takeshi; Kilduff, Thomas S; Yamanaka, Akihiro

    2014-05-07

    The sleep disorder narcolepsy results from loss of hypothalamic orexin/hypocretin neurons. Although narcolepsy onset is usually postpubertal, current mouse models involve loss of either orexin peptides or orexin neurons from birth. To create a model of orexin/hypocretin deficiency with closer fidelity to human narcolepsy, diphtheria toxin A (DTA) was expressed in orexin neurons under control of the Tet-off system. Upon doxycycline removal from the diet of postpubertal orexin-tTA;TetO DTA mice, orexin neurodegeneration was rapid, with 80% cell loss within 7 d, and resulted in disrupted sleep architecture. Cataplexy, the pathognomic symptom of narcolepsy, occurred by 14 d when ∼5% of the orexin neurons remained. Cataplexy frequency increased for at least 11 weeks after doxycycline. Temporary doxycycline removal followed by reintroduction after several days enabled partial lesion of orexin neurons. DTA-induced orexin neurodegeneration caused a body weight increase without a change in food consumption, mimicking metabolic aspects of human narcolepsy. Because the orexin/hypocretin system has been implicated in the control of metabolism and addiction as well as sleep/wake regulation, orexin-tTA; TetO DTA mice are a novel model in which to study these functions, for pharmacological studies of cataplexy, and to study network reorganization as orexin input is lost.

  1. Hypocretin / orexin involvement in reward and reinforcement

    Science.gov (United States)

    España, Rodrigo A.

    2015-01-01

    Since the discovery of the hypocretins/orexins, a series of observations have indicated that these peptides influence a variety of physiological processes including feeding, sleep/wake function, memory, and stress. More recently, the hypocretins have been implicated in reinforcement and reward-related processes via actions on the mesolimbic dopamine system. Although investigation into the relationship between the hypocretins and reinforcement/reward remains in relatively early stages, accumulating evidence suggests that continued research into this area may offer new insights into the addiction process and provide the foundation to generate novel pharmacotherapies for drug abuse. The current chapter will focus on contemporary perspectives of hypocretin regulation of cocaine reward and reinforcement via actions on the mesolimbic dopamine system. PMID:22640614

  2. Hypocretin (orexin regulation of sleep-to-wake transitions

    Directory of Open Access Journals (Sweden)

    Luis eDe Lecea

    2014-02-01

    Full Text Available The hypocretin (Hcrt, also known as orexin, peptides are essential for arousal stability. Here I discuss background information about the interaction of Hcrt with other neuromodulators, including norepinephrine and acetylcholine probed with optogenetics. I conclude that Hcrt neurons integrate metabolic, circadian and limbic inputs and convey this information to a network of neuromodulators, each of which has a different role on the dynamic of sleep-to-wake transitions. This model may prove useful to predict the effects of orexin receptor antagonists in sleep disorders and other conditions.

  3. The hypocretin/orexin system in sleep disorders: preclinical insights and clinical progress

    Directory of Open Access Journals (Sweden)

    Chow M

    2016-03-01

    Full Text Available Matthew Chow, Michelle CaoDepartment of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University School of Medicine, Stanford, CA, USAAbstract: Much of the understanding of the hypocretin/orexin (HCRT/OX system in sleep–wake regulation came from narcolepsy–cataplexy research. The neuropeptides hypocretin-1 and -2/orexin-A and -B (HCRT-1 and -2/OX-A and -B, respectively, as we know, are intimately involved in the regulation wakefulness. The HCRT/OX system regulates sleep–wake control through complex interactions between monoaminergic/cholinergic (wake-promoting and gamma-aminobutyric acid-ergic (sleep-promoting neuronal systems. Deficiency of HCRT/OX results in loss of sleep–wake control or stability with consequent unstable transitions between wakefulness to nonrapid eye movement and rapid eye movement sleep. This manifests clinically as abnormal daytime sleepiness with sleep attacks and cataplexy. Research on the development of HCRT/OX agonists and antagonists for the treatment of sleep disorders has dramatically increased with the US Food and Drug Administration approval of the first-in-class dual HCRT/OX receptor antagonist for the treatment of insomnia. This review focuses on the origin, mechanisms of HCRT/OX receptors, clinical progress, and applications for the treatment of sleep disorders.Keywords: hypocretin, orexin, narcolepsy, insomnia, orexin antagonist, orexin agonist

  4. Hypocretin/orexin and energy expenditure.

    Science.gov (United States)

    Teske, J A; Billington, C J; Kotz, C M

    2010-03-01

    The hypocretins or orexins are endogenous neuropeptides synthesized in discrete lateral, perifornical and dorsal hypothalamic neurones. These multi-functional neuropeptides modulate energy homeostasis, arousal, stress, reward, reproduction and cardiovascular function. This review summarizes the role of hypocretins in modulating non-sleep-related energy expenditure with specific focus on the augmentation of whole body energy expenditure as well as hypocretin-induced physical activity and sympathetic outflow. We compare the efficacy of hypocretin-1 and 2 on energy expenditure and evaluate whether the literature implicates hypocretin signalling though the hypocretin-1 and -2 receptor as having shared and or functionally specific physiological effects. Thus far data suggest that hypocretin-1 has a more robust stimulatory effect relative to hypocretin-2. Furthermore, hypocretin-1 receptor predominantly mediates behaviours known to influence energy expenditure. Further studies on the hypocretin-2 receptor are needed.

  5. The physiological role of orexin/hypocretin neurons in the regulation of sleep/wakefulness and neuroendocrine functions

    Directory of Open Access Journals (Sweden)

    Ayumu eInutsuka

    2013-03-01

    Full Text Available The hypothalamus monitors body homeostasis and regulates various behaviors such as feeding, thermogenesis, and sleeping. Orexins (also known as hypocretins were identified as endogenous ligands for two orphan G-protein-coupled receptors in the lateral hypothalamic area. They were initially recognized as regulators of feeding behavior, but they are mainly regarded as key modulators of the sleep/wakefulness cycle. Orexins activate orexin neurons, monoaminergic and cholinergic neurons in the hypothalamus/brainstem regions, to maintain a long, consolidated awake period. Anatomical studies of neural projections from/to orexin neurons and phenotypic characterization of transgenic mice revealed various roles for orexin neurons in the coordination of emotion, energy homeostasis, reward system, and arousal. For example, orexin neurons are regulated by peripheral metabolic cues, including ghrelin, leptin, and glucose concentration. This suggests that they may provide a link between energy homeostasis and arousal states. A link between the limbic system and orexin neurons might be important for increasing vigilance during emotional stimuli. Orexins are also involved in reward systems and the mechanisms of drug addiction. These findings suggest that orexin neurons sense the outer and inner environment of the body and maintain the proper wakefulness level of animals for survival. This review discusses the mechanism by which orexins maintain sleep/wakefulness states and how this mechanism relates to other systems that regulate emotion, reward, and energy homeostasis.

  6. Motivational activation: a unifying hypothesis of orexin/hypocretin function.

    Science.gov (United States)

    Mahler, Stephen V; Moorman, David E; Smith, Rachel J; James, Morgan H; Aston-Jones, Gary

    2014-10-01

    Orexins (hypocretins) are two peptides (orexin A and B) produced from the pre-pro-orexin precursor and expressed in a limited region of dorsolateral hypothalamus. Orexins were originally thought to specifically mediate feeding and promote wakefulness, but it is now clear that they participate in a wide range of behavioral and physiological processes under select circumstances. Orexins primarily mediate behavior under situations of high motivational relevance, such as during physiological need states, exposure to threats or reward opportunities. We hypothesize that many behavioral functions of orexins (including regulation of sleep/wake cycling) reflect a fundamentally integrated function for orexins in translating motivational activation into organized suites of psychological and physiological processes supporting adaptive behaviors. We also discuss how numerous forms of neural heterogeneity modulate this function, allowing orexin neurons to organize diverse, adaptive responses in a variety of motivationally relevant situations. Thus, the involvement of orexins in diverse behaviors may reflect a common underlying function for this peptide system.

  7. Optogenetic activation of serotonergic terminals facilitates GABAergic inhibitory input to orexin/hypocretin neurons

    OpenAIRE

    Chowdhury, Srikanta; Yamanaka, Akihiro

    2016-01-01

    Orexin/hypocretin neurons play a crucial role in the regulation of sleep/wakefulness, primarily in the maintenance of wakefulness. These neurons innervate wide areas of the brain and receive diverse synaptic inputs including those from serotonergic (5-HT) neurons in the raphe nucleus. Previously we showed that pharmacological application of 5-HT directly inhibited orexin neurons via 5-HT1A receptors. However, it was still unclear how 5-HT neurons regulated orexin neurons since 5-HT neurons co...

  8. The hypocretin/orexin system mediates the extinction of fear memories.

    Science.gov (United States)

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-11-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias.

  9. The Hypocretin/Orexin System Mediates the Extinction of Fear Memories

    Science.gov (United States)

    Flores, África; Valls-Comamala, Victòria; Costa, Giulia; Saravia, Rocío; Maldonado, Rafael; Berrendero, Fernando

    2014-01-01

    Anxiety disorders are often associated with an inability to extinguish learned fear responses. The hypocretin/orexin system is involved in the regulation of emotional states and could also participate in the consolidation and extinction of aversive memories. Using hypocretin receptor-1 and hypocretin receptor-2 antagonists, hypocretin-1 and hypocretin-2 peptides, and hypocretin receptor-1 knockout mice, we investigated the role of the hypocretin system in cue- and context-dependent fear conditioning and extinction. Hypocretins were crucial for the consolidation of fear conditioning, and this effect was mainly observed in memories with a high emotional component. Notably, after the acquisition of fear memory, hypocretin receptor-1 blockade facilitated fear extinction, whereas hypocretin-1 administration impaired this extinction process. The extinction-facilitating effects of the hypocretin receptor-1 antagonist SB334867 were associated with increased expression of cFos in the basolateral amygdala and the infralimbic cortex. Intra-amygdala, but neither intra-infralimbic prefrontal cortex nor intra-dorsohippocampal infusion of SB334867 enhanced fear extinction. These results reveal a key role for hypocretins in the extinction of aversive memories and suggest that hypocretin receptor-1 blockade could represent a novel therapeutic target for the treatment of diseases associated with inappropriate retention of fear, such as post-traumatic stress disorder and phobias. PMID:24930888

  10. Sexually Dimorphic Changes of Hypocretin (Orexin) in Depression.

    Science.gov (United States)

    Lu, Jing; Zhao, Juan; Balesar, Rawien; Fronczek, Rolf; Zhu, Qiong-Bin; Wu, Xue-Yan; Hu, Shao-Hua; Bao, Ai-Min; Swaab, Dick F

    2017-04-01

    Neurophysiological and behavioral processes regulated by hypocretin (orexin) are severely affected in depression. However, alterations in hypocretin have so far not been studied in the human brain. We explored the hypocretin system changes in the hypothalamus and cortex in depression from male and female subjects. We quantified the differences between depression patients and well-matched controls, in terms of hypothalamic hypocretin-1 immunoreactivity (ir) and hypocretin receptors (Hcrtr-receptors)-mRNA in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex. In addition, we determined the alterations in the hypocretin system in a frequently used model for depression, the chronic unpredictable mild stress (CUMS) rat. i) Compared to control subjects, the amount of hypocretin-immunoreactivity (ir) was significantly increased in female but not in male depression patients; ii) hypothalamic hypocretin-ir showed a clear diurnal fluctuation, which was absent in depression; iii) male depressive patients who had committed suicide showed significantly increased ACC Hcrt-receptor-2-mRNA expression compared to male controls; and iv) female but not male CUMS rats showed a highly significant positive correlation between the mRNA levels of corticotropin-releasing hormone and prepro-hypocretin in the hypothalamus, and a significantly increased Hcrt-receptor-1-mRNA expression in the frontal cortex compared to female control rats. The clear sex-related change found in the hypothalamic hypocretin-1-ir in depression should be taken into account in the development of hypocretin-targeted therapeutic strategies. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking.

    Science.gov (United States)

    Prasad, Asheeta A; McNally, Gavan P

    2014-01-01

    Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1). Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin-concentrating hormone (MCH) protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.

  12. Effects of vivo morpholino knockdown of lateral hypothalamus orexin/hypocretin on renewal of alcohol seeking.

    Directory of Open Access Journals (Sweden)

    Asheeta A Prasad

    Full Text Available Two experiments used vivo morpholinos to assess the role of orexin/hypocretin in ABA renewal of extinguished alcohol seeking. Rats were trained to respond for alcoholic beer in a distinctive context, A, and then extinguished in a second distinctive context, B. When rats were tested in the extinction context, ABB, responding was low but when they were tested in the training context, ABA, responding was significantly higher. Microinjection of an orexin/hypocretin antisense vivo morpholino into LH significantly reduced orexin/hypocretin protein expression but had no effect on the ABA renewal of alcohol seeking (Experiment 1. Microinjection of a higher dose of the antisense vivo morpholino into LH also significantly reduced orexin/hypocretin protein expression but this was not selective and yielded significant reduction in melanin-concentrating hormone (MCH protein expression. This non-selective knockdown did significantly reduce ABA renewal as well as reduce the reacquisition of alcohol seeking. Taken together, these findings show an important role for LH in the ABA renewal of alcohol seeking but that orexin/hypocretin is not necessary for this renewal.

  13. The hypocretins/orexins: integrators of multiple physiological functions

    Science.gov (United States)

    Li, Jingcheng; Hu, Zhian; Lecea, Luis

    2014-01-01

    The hypocretins (Hcrts), also known as orexins, are two peptides derived from a single precursor produced in the posterior lateral hypothalamus. Over the past decade, the orexin system has been associated with numerous physiological functions, including sleep/arousal, energy homeostasis, endocrine, visceral functions and pathological states, such as narcolepsy and drug abuse. Here, we review the discovery of Hcrt/orexins and their receptors and propose a hypothesis as to how the orexin system orchestrates these multifaceted physiological functions. Linked ArticlesThis article is part of a themed section on Orexin Receptors. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-2 PMID:24102345

  14. Hypocretin/orexin loss changes the hypothalamic immune response.

    Science.gov (United States)

    Tanaka, Susumu; Takizawa, Nae; Honda, Yoshiko; Koike, Taro; Oe, Souichi; Toyoda, Hiromi; Kodama, Tohru; Yamada, Hisao

    2016-10-01

    Hypocretin, also known as orexin, maintains the vigilance state and regulates various physiological processes, such as arousal, sleep, food intake, energy expenditure, and reward. Previously, we found that when wild-type mice and hypocretin/ataxin-3 littermates (which are depleted of hypothalamic hypocretin-expressing neurons postnatally) were administered lipopolysaccharide (LPS), the two genotypes exhibited significant differences in their sleep/wake cycle, including differences in the degree of increase in sleep periods and in recovery from sickness behaviour. In the present study, we examined changes in the hypothalamic vigilance system and in the hypothalamic expression of inflammatory factors in response to LPS in hypocretin/ataxin-3 mice. Peripheral immune challenge with LPS affected the hypothalamic immune response and vigilance states. This response was altered by the loss of hypocretin. Hypocretin expression was inhibited after LPS injection in both hypocretin/ataxin-3 mice and their wild-type littermates, but expression was completely abolished only in hypocretin/ataxin-3 mice. Increases in the number of histidine decarboxylase (HDC)-positive cells and in Hdc mRNA expression were found in hypocretin/ataxin-3 mice, and this increase was suppressed by LPS. Hypocretin loss did not impact the change in expression of hypothalamic inflammatory factors in response to LPS, except for interferon gamma and colony stimulating factor 3. The number of c-Fos-positive/HDC-positive cells in hypocretin/ataxin-3 mice administered LPS injections was elevated, even during the rest period, in all areas, suggesting that there is an increase in the activity of histaminergic neurons in hypocretin/ataxin-3 mice following LPS injection. Taken together, our results suggest a novel role for hypocretin in the hypothalamic response to peripheral immune challenge. Our findings contribute to the understanding of the pathophysiology of narcolepsy. Copyright © 2016 Elsevier Inc. All

  15. The dual orexin/hypocretin receptor antagonist, almorexant, in the ventral tegmental area attenuates ethanol self-administration.

    Directory of Open Access Journals (Sweden)

    Subhashini Srinivasan

    Full Text Available Recent studies have implicated the hypocretin/orexinergic system in reward-seeking behavior. Almorexant, a dual orexin/hypocretin R(1 and R(2 receptor antagonist, has proven effective in preclinical studies in promoting sleep in animal models and was in Phase III clinical trials for sleep disorders. The present study combines behavioral assays with in vitro biochemical and electrophysiological techniques to elucidate the role of almorexant in ethanol and sucrose intake. Using an operant self-administration paradigm, we demonstrate that systemic administration of almorexant decreased operant self-administration of both 20% ethanol and 5% sucrose. We further demonstrate that intra-ventral tegmental area (VTA infusions, but not intra-substantia nigra infusions, of almorexant reduced ethanol self-administration. Extracellular recordings performed in VTA neurons revealed that orexin-A increased firing and this enhancement of firing was blocked by almorexant. The results demonstrate that orexin/hypocretin receptors in distinct brain regions regulate ethanol and sucrose mediated behaviors.

  16. Orexin/hypocretin system modulates amygdala-dependent threat learning through the locus coeruleus

    Science.gov (United States)

    Sears, Robert M.; Fink, Ann E.; Wigestrand, Mattis B.; Farb, Claudia R.; de Lecea, Luis; LeDoux, Joseph E.

    2013-01-01

    Survival in a dangerous environment requires learning about stimuli that predict harm. Although recent work has focused on the amygdala as the locus of aversive memory formation, the hypothalamus has long been implicated in emotional regulation, and the hypothalamic neuropeptide orexin (hypocretin) is involved in anxiety states and arousal. Nevertheless, little is known about the role of orexin in aversive memory formation. Using a combination of behavioral pharmacology, slice physiology, and optogenetic techniques, we show that orexin acts upstream of the amygdala via the noradrenergic locus coeruleus to enable threat (fear) learning, specifically during the aversive event. Our results are consistent with clinical studies linking orexin levels to aversive learning and anxiety in humans and dysregulation of the orexin system may contribute to the etiology of fear and anxiety disorders. PMID:24277819

  17. Function and dysfunction of hypocretin/orexin: an energetics point of view.

    Science.gov (United States)

    Gao, Xiao-Bing; Horvath, Tamas

    2014-01-01

    The basic elements of animal behavior that are critical to survival include energy, arousal, and motivation: Energy intake and expenditure are fundamental to all organisms for the performance of any type of function; according to the Yerkes-Dodson law, an optimal level of arousal is required for animals to perform normal functions; and motivation is critical to goal-oriented behaviors in higher animals. The brain is the primary organ that controls these elements and, through evolution, has developed specialized structures to accomplish this task. The orexin/hypocretin system in the perifornical/lateral hypothalamus, which was discovered 15 years ago, is one such specialized area. This review summarizes a fast-growing body of evidence discerning how the orexin/hypocretin system integrates internal and external cues to regulate energy intake that can then be used to generate sufficient arousal for animals to perform innate and goal-oriented behaviors.

  18. Multiple roles for orexin/hypocretin in addiction

    Science.gov (United States)

    Mahler, Stephen V.; Smith, Rachel J.; Moorman, David E.; Sartor, Gregory C.; Aston-Jones, Gary

    2013-01-01

    Orexins/hypocretins are hypothalamic peptides involved in arousal and wakefulness, but also play a critical role in drug addiction and reward-related behaviors. Here, we review the roles played by orexins in a variety of animal models of drug addiction, emphasizing both commonalities and differences for orexin’s involvement in seeking of the major classes of abused drugs, as well as food. One common theme that emerges is an involvement of orexins in drug seeking triggered by external stimuli (e.g., cues, contexts or stressors). We also discuss the functional neuronal circuits in which orexins are embedded, and how these circuits mediate addiction-related behaviors, with particular focus on the role of orexin and glutamate interactions within the ventral tegmental area. Finally, we attempt to contextualize the role of orexins in reward by discussing ways in which these peptides, expressed in only a few thousand neurons in the brain, can have such wide-ranging effects on behavior. PMID:22813971

  19. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons.

    Directory of Open Access Journals (Sweden)

    Viviana Lo Martire

    Full Text Available The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11 and wild-type controls (n = 12 were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C and the thermoneutral zone (30°C. In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS than either in non-rapid-eye-movement sleep (NREMS or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.

  20. Effects of ambient temperature on sleep and cardiovascular regulation in mice: the role of hypocretin/orexin neurons.

    Science.gov (United States)

    Lo Martire, Viviana; Silvani, Alessandro; Bastianini, Stefano; Berteotti, Chiara; Zoccoli, Giovanna

    2012-01-01

    The central neural pathways underlying the physiological coordination between thermoregulation and the controls of the wake-sleep behavior and cardiovascular function remain insufficiently understood. Growing evidence supports the involvement of hypocretin (orexin) peptides in behavioral, cardiovascular, and thermoregulatory functions. We investigated whether the effects of ambient temperature on wake-sleep behavior and cardiovascular control depend on the hypothalamic neurons that release hypocretin peptides. Orexin-ataxin3 transgenic mice with genetic ablation of hypocretin neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure transducer. Simultaneous sleep and blood pressure recordings were performed on freely-behaving mice at ambient temperatures ranging between mild cold (20°C) and the thermoneutral zone (30°C). In both mouse groups, the time spent awake and blood pressure were higher at 20°C than at 30°C. The cold-related increase in blood pressure was significantly smaller in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness. Blood pressure was higher in wakefulness than either in NREMS or REMS at both ambient temperatures. This effect was significantly blunted in orexin-ataxin3 mice irrespective of ambient temperature and particularly during REMS. These data demonstrate that hypocretin neurons are not a necessary part of the central pathways that coordinate thermoregulation with wake-sleep behavior and cardiovascular control. Data also support the hypothesis that hypocretin neurons modulate changes in blood pressure between wakefulness and the sleep states. These concepts may have clinical implications in patients with narcolepsy with cataplexy, who lack hypocretin neurons.

  1. The hypocretin/orexin system in sleep disorders: preclinical insights and clinical progress.

    Science.gov (United States)

    Chow, Matthew; Cao, Michelle

    2016-01-01

    Much of the understanding of the hypocretin/orexin (HCRT/OX) system in sleep-wake regulation came from narcolepsy-cataplexy research. The neuropeptides hypocretin-1 and -2/orexin-A and -B (HCRT-1 and -2/OX-A and -B, respectively), as we know, are intimately involved in the regulation wakefulness. The HCRT/OX system regulates sleep-wake control through complex interactions between monoaminergic/cholinergic (wake-promoting) and gamma-aminobutyric acid-ergic (sleep-promoting) neuronal systems. Deficiency of HCRT/OX results in loss of sleep-wake control or stability with consequent unstable transitions between wakefulness to nonrapid eye movement and rapid eye movement sleep. This manifests clinically as abnormal daytime sleepiness with sleep attacks and cataplexy. Research on the development of HCRT/OX agonists and antagonists for the treatment of sleep disorders has dramatically increased with the US Food and Drug Administration approval of the first-in-class dual HCRT/OX receptor antagonist for the treatment of insomnia. This review focuses on the origin, mechanisms of HCRT/OX receptors, clinical progress, and applications for the treatment of sleep disorders.

  2. Circadian and dark-pulse activation of orexin/hypocretin neurons

    Directory of Open Access Journals (Sweden)

    Marston Oliver J

    2008-12-01

    Full Text Available Temporal control of brain and behavioral states emerges as a consequence of the interaction between circadian and homeostatic neural circuits. This interaction permits the daily rhythm of sleep and wake, regulated in parallel by circadian cues originating from the suprachiasmatic nuclei (SCN and arousal-promoting signals arising from the orexin-containing neurons in the tuberal hypothalamus (TH. Intriguingly, the SCN circadian clock can be reset by arousal-promoting stimuli while activation of orexin/hypocretin neurons is believed to be under circadian control, suggesting the existence of a reciprocal relationship. Unfortunately, since orexin neurons are themselves activated by locomotor promoting cues, it is unclear how these two systems interact to regulate behavioral rhythms. Here mice were placed in conditions of constant light, which suppressed locomotor activity, but also revealed a highly pronounced circadian pattern in orexin neuronal activation. Significantly, activation of orexin neurons in the medial and lateral TH occurred prior to the onset of sustained wheel-running activity. Moreover, exposure to a 6 h dark pulse during the subjective day, a stimulus that promotes arousal and phase advances behavioral rhythms, activated neurons in the medial and lateral TH including those containing orexin. Concurrently, this stimulus suppressed SCN activity while activating cells in the median raphe. In contrast, dark pulse exposure during the subjective night did not reset SCN-controlled behavioral rhythms and caused a transient suppression of neuronal activation in the TH. Collectively these results demonstrate, for the first time, pronounced circadian control of orexin neuron activation and implicate recruitment of orexin cells in dark pulse resetting of the SCN circadian clock.

  3. Hypocretin (orexin) loss in Alzheimer's disease.

    Science.gov (United States)

    Fronczek, Rolf; van Geest, Sarita; Frölich, Marijke; Overeem, Sebastiaan; Roelandse, Freek W C; Lammers, Gert Jan; Swaab, Dick F

    2012-08-01

    Sleep disturbances in Alzheimer's disease (AD) patients are associated with the severity of dementia and are often the primary reason for institutionalization. These sleep problems partly resemble core symptoms of narcolepsy, a sleep disorder caused by a general loss of the neurotransmitter hypocretin. AD is a neurodegenerative disorder targeting different brain areas and types of neurons. In this study, we assessed whether the neurodegenerative process of AD also affects hypothalamic hypocretin/orexin neurons. The total number of hypocretin-1 immunoreactive neurons was quantified in postmortem hypothalami of AD patients (n = 10) and matched controls (n = 10). In addition, the hypocretin-1 concentration was measured in postmortem ventricular cerebrospinal fluid of 24 AD patients and 25 controls (including the patients and controls in which the hypothalamic cell counts were performed). The number of hypocretin-1 immunoreactive neurons was significantly decreased by 40% in AD patients (median [25th-75th percentiles]); AD 12,935 neurons (9972-19,051); controls 21,002 neurons (16,439-25,765); p = 0.049). Lower cerebrospinal fluid (CSF) hypocretin-1 levels were found in AD patients compared with controls (AD: 275 pg/mL [197-317]; controls: 320 pg/mL [262-363]; p = 0.038). Two AD patients with documented excessive daytime sleepiness showed the lowest CSF hypocretin-1 concentrations (55 pg/mL and 76 pg/mL). We conclude that the hypocretin system is affected in advanced AD. This is reflected in a 40% decreased cell number, and 14% lower CSF hypocretin-1 levels. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Selective Enhancement of Synaptic Inhibition by Hypocretin (Orexin) in Rat Vagal Motor Neurons: Implications for Autonomic Regulation

    Science.gov (United States)

    Davis, Scott F.; Williams, Kevin W.; Xu, Weiye; Glatzer, Nicholas R.; Smith, Bret N.

    2012-01-01

    The hypocretins (orexins) are hypothalamic neuropeptides implicated in feeding, arousal, and autonomic regulation. These studies were designed to determine the actions of hypocretin peptides on synaptic transmission in the dorsal motor nucleus of the vagus nerve (DMV). Whole-cell patch-clamp recordings were made from DMV neurons in transverse slices of rat brainstem. Some of the neurons were identified as gastric-related by retrograde labeling after inoculation of the stomach wall with pseudorabies virus 152, a viral label that reports enhanced green fluorescent protein. Consistent with previous findings, hypocretins caused an inward current (6–68 pA) in most neurons at holding potentials near rest. In addition, the frequency of spontaneous IPSCs was increased in a concentration-related manner (up to 477%), with little change in EPSCs. This effect was preserved in the presence of tetrodotoxin, suggesting a presynaptic site of action. Hypocretins increased the amplitude of IPSCs evoked by electrical stimulation of the nucleus tractus solitarius (NTS) but not evoked EPSCs. Hypocretin-induced increases in the frequency of IPSCs evoked by photoactivation of caged glutamate within the NTS were also observed. Identical effects of the peptides were observed in identified gastric-related and unlabeled DMV neurons. In contrast to some previous studies, which have reported primarily excitatory actions of the hypocretins in many regions of the CNS, these data support a role for hypocretin in preferentially enhancing synaptic inhibition, including inhibitory inputs arising from neurons in the NTS. These findings indicate that the hypocretins can modulate and coordinate visceral autonomic output by acting directly on central vagal circuits. PMID:12736355

  5. Cerebrospinal Fluid Hypocretin-1 (Orexin-A) Level Fluctuates with Season and Correlates with Day Length

    DEFF Research Database (Denmark)

    Boddum, Kim; Hansen, Mathias Hvidtfelt; Jennum, Poul Jørgen

    2016-01-01

    The hypocretin/orexin neuropeptides (hcrt) are key players in the control of sleep and wakefulness evidenced by the fact that lack of hcrt leads to the sleep disorder Narcolepsy Type 1. Sleep disturbances are common in mood disorders, and hcrt has been suggested to be poorly regulated in depressed...

  6. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome.

    NARCIS (Netherlands)

    Fronczek, R.; Lammers, G.J.; Balesar, R.; Unm, U.A.hopa; Swaab, D.F.

    2005-01-01

    CONTEXT: Narcoleptic patients with cataplexy have a general loss of hypocretin (orexin) in the lateral hypothalamus, possibly due to an autoimmune-mediated degeneration of the hypocretin neurons. In addition to excessive daytime sleepiness, Prader-Willi syndrome (PWS) patients may show

  7. The number of hypothalamic hypocretin (orexin) neurons is not affected in Prader-Willi syndrome

    NARCIS (Netherlands)

    Fronczek, Rolf; Lammers, Gert Jan; Balesar, Rawien; Unmehopa, Unga A.; Swaab, Dick F.

    2005-01-01

    Narcoleptic patients with cataplexy have a general loss of hypocretin (orexin) in the lateral hypothalamus, possibly due to an autoimmune-mediated degeneration of the hypocretin neurons. In addition to excessive daytime sleepiness, Prader-Willi syndrome (PWS) patients may show narcolepsy-like

  8. The Role of Orexins/Hypocretins in Alcohol Use and Abuse.

    Science.gov (United States)

    Walker, Leigh C; Lawrence, Andrew J

    Addiction is a chronic relapsing disorder characterized by compulsive drug seeking and drug taking despite negative consequences. Alcohol abuse and addiction have major social and economic consequences and cause significant morbidity and mortality worldwide. Currently available therapeutics are inadequate, outlining the need for alternative treatments. Detailed knowledge of the neurocircuitry and brain chemistry responsible for aberrant behavior patterns should enable the development of novel pharmacotherapies to treat addiction. Therefore it is important to expand our knowledge and understanding of the neural pathways and mechanisms involved in alcohol seeking and abuse. The orexin (hypocretin) neuropeptide system is an attractive target, given the recent FDA and PMDA approval of suvorexant for the treatment of insomnia. Orexin is synthesized exclusively in neurons located in the lateral (LH), perifornical (PEF), and dorsal medial (DMH) hypothalamus. These neurons project widely throughout the neuraxis with regulatory roles in a wide range of behavioral and physiological responses, including sleep-wake cycle neuroendocrine regulation, anxiety, feeding behavior, and reward seeking. Here we summarize the literature to date, which have evaluated the interplay between alcohol and the orexin system.

  9. Hypocretin (orexin) regulates glutamate input to fast-spiking interneurons in layer V of the Fr2 region of the murine prefrontal cortex.

    Science.gov (United States)

    Aracri, Patrizia; Banfi, Daniele; Pasini, Maria Enrica; Amadeo, Alida; Becchetti, Andrea

    2015-05-01

    We studied the effect of hypocretin 1 (orexin A) in the frontal area 2 (Fr2) of the murine neocortex, implicated in the motivation-dependent goal-directed tasks. In layer V, hypocretin stimulated the spontaneous excitatory postsynaptic currents (EPSCs) on fast-spiking (FS) interneurons. The effect was accompanied by increased frequency of miniature EPSCs, indicating that hypocretin can target the glutamatergic terminals. Moreover, hypocretin stimulated the spontaneous inhibitory postsynaptic currents (IPSCs) on pyramidal neurons, with no effect on miniature IPSCs. This action was prevented by blocking 1) the ionotropic glutamatergic receptors; 2) the hypocretin receptor type 1 (HCRTR-1), with SB-334867. Finally, hypocretin increased the firing frequency in FS cells, and the effect was blocked when the ionotropic glutamate transmission was inhibited. Immunolocalization confirmed that HCRTR-1 is highly expressed in Fr2, particularly in layer V-VI. Conspicuous labeling was observed in pyramidal neuron somata and in VGLUT1+ glutamatergic terminals, but not in VGLUT2+ fibers (mainly thalamocortical afferents). The expression of HCRTR-1 in GABAergic structures was scarce. We conclude that 1) hypocretin regulates glutamate release in Fr2; 2) the effect presents a presynaptic component; 3) the peptide control of FS cells is indirect, and probably mediated by the regulation of glutamatergic input onto these cells. © The Author 2013. Published by Oxford University Press.

  10. The Hypocretin/Orexin Neuronal Networks in Zebrafish.

    Science.gov (United States)

    Elbaz, Idan; Levitas-Djerbi, Talia; Appelbaum, Lior

    2017-01-01

    The hypothalamic Hypocretin/Orexin (Hcrt) neurons secrete two Hcrt neuropeptides. These neurons and peptides play a major role in the regulation of feeding, sleep wake cycle, reward-seeking, addiction, and stress. Loss of Hcrt neurons causes the sleep disorder narcolepsy. The zebrafish has become an attractive model to study the Hcrt neuronal network because it is a transparent vertebrate that enables simple genetic manipulation, imaging of the structure and function of neuronal circuits in live animals, and high-throughput monitoring of behavioral performance during both day and night. The zebrafish Hcrt network comprises ~16-60 neurons, which similar to mammals, are located in the hypothalamus and widely innervate the brain and spinal cord, and regulate various fundamental behaviors such as feeding, sleep, and wakefulness. Here we review how the zebrafish contributes to the study of the Hcrt neuronal system molecularly, anatomically, physiologically, and pathologically.

  11. Hypocretin/Orexin and Plastic Adaptations Associated with Drug Abuse.

    Science.gov (United States)

    Baimel, Corey; Borgland, Stephanie L

    Dopamine neurons in the ventral tegmental area (VTA) are a critical part of the neural circuits that underlie reward learning and motivation. Dopamine neurons send dense projections throughout the brain and recent observations suggest that both the intrinsic properties and the functional output of dopamine neurons are dependent on projection target and are subject to neuromodulatory influences. Lateral hypothalamic hypocretin (also termed orexin) neurons project to the VTA and contain both hypocretin and dynorphin peptides in the same dense core vesicles suggesting they may be co-released. Hypocretin peptides act at excitatory G αq protein-coupled receptors and dynorphin acts at inhibitory G αi/o protein-coupled receptors, which are both expressed on subpopulations of dopamine neurons. This review describes a role for neuromodulation of dopamine neurons and the influence on motivated behaviour in response to natural and drug rewards.

  12. HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency

    DEFF Research Database (Denmark)

    Han, Fang; Lin, Ling; Schormair, Barbara

    2014-01-01

    STUDY OBJECTIVES: To identify rare allelic variants and HLA alleles in narcolepsy patients with hypocretin (orexin, HCRT) deficiency but lacking DQB1*06:02. SETTINGS: China (Peking University People's Hospital), Czech Republic (Charles University), Denmark (Golstrup Hospital), Italy (University o...

  13. HYPOCRETIN/OREXIN AND NARCOLEPSY NEW BASIC AND CLINICAL INSIGHTS

    Science.gov (United States)

    NISHINO, Seiji; OKURO, Masashi; KOTORII, Nozomu; ANEGAWA, Emiko; ISHIMARU, Yuji; MATSUMURA, Mari; KANBAYASHI, Takashi

    2009-01-01

    Narcolepsy is a chronic sleep disorder, characterized by excessive daytime sleepiness (EDS), cataplexy, hypnagogic hallucinations, and sleep paralysis. Both sporadic (95%) and familial (5%) forms of narcolepsy exist in humans. The major pathophysiology of human narcolepsy has been recently discovered based on the discovery of narcolepsy genes in animals; the genes involved in the pathology of the hypocretin/orexin ligand and its receptor. Mutations in hypocretin-related genes are rare in humans, but hypocretin-ligand deficiency is found in a large majority of narcolepsy with cataplexy. Hypocretin ligand deficiency in human narcolepsy is likely due to the postnatal cell death of hypocretin neurons. Although tight association between human leukocyte antigen (HLA) association and human narcolepsy with cataplexy suggests an involvement of autoimmune mechanisms, this has not yet been proven. Hypocretin deficiency is also found in symptomatic cases of narcolepsy and EDS with various neurological conditions, including immune-mediated neurological disorders, such as Guillain-Barre syndrome, MA2-positive paraneoplastic syndrome and neuromyelitis optica (NMO) related disorder. These findings likely have significant clinical relevance and for understanding the mechanisms of hypocretin cell death and choice of treatment option. These series of discoveries in humans lead to the establishment of the new diagnostic test of narcolepsy (i.e. low cerebrospinal fluid [CSF] hypocretin-1 levels for narcolepsy with cataplexy and narcolepsy due to medical condition). Since a large majority of human narcolepsy patients are ligand deficient, hypocretin replacement therapy may be a promising new therapeutic option, and animal experiments using gene therapy and cell transplantations are in progress. PMID:19555382

  14. An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus

    DEFF Research Database (Denmark)

    Justinussen, J L; Holm, A; Kornum, B R

    2015-01-01

    an optimized peptide quantification method for hypocretin-1 extracted from different mouse brain areas and use this method for investigating circadian fluctuations of hypocretin-1 levels in these areas. The results show that hypocretin-1 peptide can be extracted from small pieces of intact tissue...... as does prepro-hypocretin mRNA in the hypothalamus. However, in midbrain and brainstem tissue caudal to the hypothalamus, there was less circadian fluctuation and a tendency for higher levels during the light phase. These data suggest that regulation of the hypocretin system differs between brain areas.......The hypocretin/orexin system regulates, among other things, sleep and energy homeostasis. The system is likely regulated by both homeostatic and circadian mechanisms. Little is known about local differences in the regulation of hypocretin activity. The aim of this study was to establish...

  15. Feeding Behavior: Hypocretin/Orexin Neurons Act between Food Seeking and Eating.

    Science.gov (United States)

    Gao, Xiao-Bing; Horvath, Tamas L

    2016-09-26

    A report on the rapid change of activity of hypocretin/orexin cells in response to contact rather than digestion of food delivers new insights into the behavioral control of food intake and systemic energy expenditure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Narcolepsy with hypocretin/orexin deficiency, infections and autoimmunity of the brain

    DEFF Research Database (Denmark)

    Kornum, Birgitte Rahbek; Faraco, Juliette; Mignot, Emmanuel

    2011-01-01

    The loss of hypothalamic hypocretin/orexin (hcrt) producing neurons causes narcolepsy with cataplexy. An autoimmune basis for the disease has long been suspected and recent results have greatly strengthened this hypothesis. Narcolepsy with hcrt deficiency is now known to be associated with a Huma...

  17. Hypocretin (orexin) biology and the pathophysiology of narcolepsy with cataplexy.

    Science.gov (United States)

    Liblau, Roland S; Vassalli, Anne; Seifinejad, Ali; Tafti, Mehdi

    2015-03-01

    The discovery of hypocretins (orexins) and their causal implication in narcolepsy is the most important advance in sleep research and sleep medicine since the discovery of rapid eye movement sleep. Narcolepsy with cataplexy is caused by hypocretin deficiency owing to destruction of most of the hypocretin-producing neurons in the hypothalamus. Ablation of hypocretin or hypocretin receptors also leads to narcolepsy phenotypes in animal models. Although the exact mechanism of hypocretin deficiency is unknown, evidence from the past 20 years strongly favours an immune-mediated or autoimmune attack, targeting specifically hypocretin neurons in genetically predisposed individuals. These neurons form an extensive network of projections throughout the brain and show activity linked to motivational behaviours. The hypothesis that a targeted immune-mediated or autoimmune attack causes the specific degeneration of hypocretin neurons arose mainly through the discovery of genetic associations, first with the HLA-DQB1*06:02 allele and then with the T-cell receptor α locus. Guided by these genetic findings and now awaiting experimental testing are models of the possible immune mechanisms by which a specific and localised brain cell population could become targeted by T-cell subsets. Great hopes for the identification of new targets for therapeutic intervention in narcolepsy also reside in the development of patient-derived induced pluripotent stem cell systems. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. OX1 and OX2 orexin/hypocretin receptor pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles Douglas Thompson

    2014-05-01

    Full Text Available Orexin/hypocretin peptide mutations are rare in humans. Even though human narcolepsy is associated with orexin deficiency, this is only extremely rarely due to mutations in the gene coding prepro-orexin, the precursor for both orexin peptides. In contrast, coding and non-coding variants of the OX1 and OX2 orexin receptors have been identified in many human populations; sometimes, these have been associated with disease phenotype, although most confer a relatively low risk. In most cases, these studies have been based on a candidate gene hypothesis that predicts involvement of orexins in the relevant pathophysiological processes. In the current review, the known human OX1/HCRTR1 and OX2/HCRTR2 genetic variants/polymorphisms as well as studies concerning their involvement in disorders such as narcolepsy, excessive daytime sleepiness, cluster headache, polydipsia-hyponatremia in schizophrenia, and affective disorders are presented. In most cases, the functional cellular or pharmacological correlates of orexin variants have not been investigated  with the exception of the possible impact of an amino acid 10 Pro/Ser variant of OX2 on orexin potency  leaving conclusions on the nature of the receptor variant effects speculative. Nevertheless, we present perspectives that could shape the basis for further studies. The pharmacology and other properties of the orexin receptor variants are discussed in the context of GPCR signaling. Since orexinergic therapeutics are emerging, the impact of receptor variants on the affinity or potency of ligands deserves consideration. This perspective (pharmacogenetics is also discussed in the review.

  19. Role of the Orexin/Hypocretin System in Stress-Related Psychiatric Disorders.

    Science.gov (United States)

    James, Morgan H; Campbell, Erin J; Dayas, Christopher V

    2017-01-01

    Orexins (hypocretins) are critically involved in coordinating appropriate physiological and behavioral responses to aversive and threatening stimuli. Acute stressors engage orexin neurons via direct projections from stress-sensitive brain regions. Orexin neurons, in turn, facilitate adaptive behavior via reciprocal connections as well as via direct projections to the hypophysiotropic neurons that coordinate the hypothalamic-pituitary-adrenal (HPA) axis response to stress. Consequently, hyperactivity of the orexin system is associated with increased motivated arousal and anxiety, and is emerging as a key feature of panic disorder. Accordingly, there has been significant interest in the therapeutic potential of pharmacological agents that antagonize orexin signaling at their receptors for the treatment of anxiety disorders. In contrast, disorders characterized by inappropriately low levels of motivated arousal, such as depression, generally appear to be associated with hypoactivity of the orexin system. This includes narcolepsy with cataplexy, a disorder characterized by the progressive loss of orexin neurons and increased rates of moderate/severe depression symptomology. Here, we provide a comprehensive overview of both clinical and preclinical evidence highlighting the role of orexin signaling in stress reactivity, as well as how perturbations to this system can result in dysregulated behavioral phenotypes.

  20. Hypocretin 1/orexin A in the ventral tegmental area enhances dopamine responses to cocaine and promotes cocaine self-administration.

    Science.gov (United States)

    España, Rodrigo A; Melchior, James R; Roberts, David C S; Jones, Sara R

    2011-03-01

    Recent evidence indicates that the hypocretin/orexin system participates in the regulation of reinforcement and addiction processes. For example, manipulations that decrease hypocretin neurotransmission result in disruptions of neurochemical and behavioral responses to cocaine. To further assess the relationship between the hypocretin system and cocaine reinforcement, the current studies used microdialysis and in vivo voltammetry to examine the effects of hypocretin 1 on cocaine-induced enhancement of dopamine signaling in the nucleus accumbens core. Fixed ratio, discrete trials, and progressive ratio self-administration procedures were also used to assess whether hypocretin 1 promotes cocaine self-administration behavior. Infusions of hypocretin 1 into the ventral tegmental area increased the effects of cocaine on tonic and phasic dopamine signaling and increased the motivation to self-administer cocaine on the discrete trials and progressive ratio schedules. Together with previous observations demonstrating that a hypocretin 1 receptor antagonist disrupts dopamine signaling and reduces self-administration of cocaine, the current observations further indicate that the hypocretin system participates in reinforcement processes likely through modulation of the mesolimbic dopamine system.

  1. An optimized method for measuring hypocretin-1 peptide in the mouse brain reveals differential circadian regulation of hypocretin-1 levels rostral and caudal to the hypothalamus.

    Science.gov (United States)

    Justinussen, J L; Holm, A; Kornum, B R

    2015-12-03

    The hypocretin/orexin system regulates, among other things, sleep and energy homeostasis. The system is likely regulated by both homeostatic and circadian mechanisms. Little is known about local differences in the regulation of hypocretin activity. The aim of this study was to establish an optimized peptide quantification method for hypocretin-1 extracted from different mouse brain areas and use this method for investigating circadian fluctuations of hypocretin-1 levels in these areas. The results show that hypocretin-1 peptide can be extracted from small pieces of intact tissue, with sufficient yield for measurements in a standard radioimmunoassay. Utilizing the optimized method, it was found that prepro-hypocretin mRNA and peptide show circadian fluctuations in the mouse brain. This study further demonstrates that the hypocretin-1 peptide level in the frontal brain peaks during dark as does prepro-hypocretin mRNA in the hypothalamus. However, in midbrain and brainstem tissue caudal to the hypothalamus, there was less circadian fluctuation and a tendency for higher levels during the light phase. These data suggest that regulation of the hypocretin system differs between brain areas. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  2. Decline of CSF orexin (hypocretin) levels in Prader-Willi syndrome.

    Science.gov (United States)

    Omokawa, Mayu; Ayabe, Tadayuki; Nagai, Toshiro; Imanishi, Aya; Omokawa, Ayumi; Nishino, Seiji; Sagawa, Yohei; Shimizu, Tetsuo; Kanbayashi, Takashi

    2016-05-01

    Prader-Willi syndrome is a congenital neurodevelopmental disorder resulting from deletion of the paternal copies of genes within the chromosome region 15q11-q13. Patients with Prader-Willi syndrome often exhibit excessive daytime sleepiness, excessive appetite, and obesity. As is the case in narcolepsy, orexin (hypocretin) may be responsible for these symptoms. However, reports showing cerebrospinal fluid orexin levels in Prader-Willi syndrome patients have been limited. The aim of this study was to examine the relationship between the characteristic symptoms of Prader-Willi syndrome and cerebrospinal fluid orexin levels. We clinically identified 14 Prader-Willi syndrome patients and examined their cerebrospinal fluid orexin levels. A total of 12 patients with a 15q11-q13 deletion and two patients with maternal uniparental disomy of chromosome 15 were identified. A total of 37 narcoleptic patients and 14 idiopathic hypersomnia patients were recruited for comparison. Cerebrospinal fluid orexin levels (median [25-75 percentiles]) in the 14 Prader-Willi syndrome patients were intermediate (192 [161-234.5] pg/ml), higher than in the narcoleptic patients, but lower than in the idiopathic hypersomnia patients. Body mass index of the Prader-Willi syndrome patients was higher than in the narcoleptic and idiopathic hypersomnia patients. There was also a negative correlation between Epworth sleepiness scale scores and orexin levels in Prader-Willi syndrome patients. Decreased cerebrospinal fluid orexin levels in Prader-Willi syndrome may play an important role in severity of obesity and excessive daytime sleepiness. © 2016 Wiley Periodicals, Inc.

  3. A Decade of Orexin/Hypocretin and Addiction: Where Are We Now?

    Science.gov (United States)

    James, Morgan H; Mahler, Stephen V; Moorman, David E; Aston-Jones, Gary

    2017-01-01

    One decade ago, our laboratory provided the first direct evidence linking orexin/hypocretin signaling with drug seeking by showing that activation of these neurons promotes conditioned morphine-seeking behavior. In the years since, contributions from many investigators have revealed roles for orexins in addiction for all drugs of abuse tested, but only under select circumstances. We recently proposed that orexins play a fundamentally unified role in coordinating "motivational activation" under numerous behavioral conditions, and here we unpack this hypothesis as it applies to drug addiction. We describe evidence collected over the past 10 years that elaborates the role of orexin in drug seeking under circumstances where high levels of effort are required to obtain the drug, or when motivation for drug reward is augmented by the presence of external stimuli like drug-associated cues/contexts or stressors. Evidence from studies using traditional self-administration and reinstatement models, as well as behavioral economic analyses of drug demand elasticity, clearly delineates a role for orexin in modulating motivational, rather than the primary reinforcing aspects of drug reward. We also discuss the anatomical interconnectedness of the orexin system with wider motivation and reward circuits, with a particular focus on how orexin modulates prefrontal and other glutamatergic inputs onto ventral tegmental area dopamine neurons. Last, we look ahead to the next decade of the research in this area, highlighting the recent FDA approval of the dual orexin receptor antagonist suvorexant (Belsomra ® ) for the treatment of insomnia as a promising sign of the potential clinical utility of orexin-based therapies for the treatment of addiction.

  4. Orexin/hypocretin role in reward: implications for opioid and other addictions.

    Science.gov (United States)

    Baimel, Corey; Bartlett, Selena E; Chiou, Lih-Chu; Lawrence, Andrew J; Muschamp, John W; Patkar, Omkar; Tung, Li-Wei; Borgland, Stephanie L

    2015-01-01

    Addiction is a devastating disorder that affects 15.3 million people worldwide. While prevalent, few effective treatments exist. Orexin receptors have been proposed as a potential target for anti-craving medications. Orexins, also known as hypocretins, are neuropeptides produced in neurons of the lateral and dorsomedial hypothalamus and perifornical area, which project widely throughout the brain. The absence of orexins in rodents and humans leads to narcolepsy. However, orexins also have an established role in reward seeking. This review will discuss some of the original studies describing the roles of the orexins in reward seeking as well as specific works that were presented at the 2013 International Narcotics Research Conference. Orexin signalling can promote drug-induced plasticity of glutamatergic synapses onto dopamine neurons of the ventral tegmental area (VTA), a brain region implicated in motivated behaviour. Additional evidence suggests that orexin signalling can also promote drug seeking by initiating an endocannabinoid-mediated synaptic depression of GABAergic inputs to the VTA, and thereby disinhibiting dopaminergic neurons. Orexin neurons co-express the inhibitory opioid peptide dynorphin. It has been proposed that orexin in the VTA may not mediate reward per se, but rather occludes the 'anti-reward' effects of dynorphin. Finally, orexin signalling in the prefrontal cortex and the central amygdala is implicated in reinstatement of reward seeking. This review will highlight recent work describing the role of orexin signalling in cellular processes underlying addiction-related behaviours and propose novel hypotheses for the mechanisms by which orexin signalling may impart drug seeking. This article is part of a themed section on Opioids: New Pathways to Functional Selectivity. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2015.172.issue-2. © 2014 The British Pharmacological Society.

  5. Increased numbers of orexin/hypocretin neurons in a genetic rat depression model

    DEFF Research Database (Denmark)

    Mikrouli, Elli; Wörtwein, Gitta; Soylu, Rana

    2011-01-01

    The Flinders Sensitive Line (FSL) rat is a genetic animal model of depression that displays characteristics similar to those of depressed patients including lower body weight, decreased appetite and reduced REM sleep latency. Hypothalamic neuropeptides such as orexin/hypocretin, melanin......-concentrating hormone (MCH) and cocaine and amphetamine regulated transcript (CART), that are involved in the regulation of both energy metabolism and sleep, have recently been implicated also in depression. We therefore hypothesized that alterations in these neuropeptide systems may play a role in the development...... of the FSL phenotype with both depressive like behavior, metabolic abnormalities and sleep disturbances. In this study, we first confirmed that the FSL rats displayed increased immobility in the Porsolt forced swim test compared to their control strain, the Flinders Resistant Line (FRL), which is indicative...

  6. Increased heart rate variability but normal resting metabolic rate in hypocretin/orexin-deficient human narcolepsy.

    NARCIS (Netherlands)

    Fronczek, R.; Overeem, S.; Reijntjes, R.; Lammers, G.J.; Dijk, J.G.M.; Pijl, H.

    2008-01-01

    STUDY OBJECTIVES: We investigated autonomic balance and resting metabolic rate to explore their possible involvement in obesity in hypocretin/orexin-deficient narcoleptic subjects. METHODS: Resting metabolic rate (using indirect calorimetry) and variability in heart rate and blood pressure were

  7. Anti-Tribbles Pseudokinase 2 (TRIB2)-Immunization Modulates Hypocretin/Orexin Neuronal Functions.

    Science.gov (United States)

    Tanaka, Susumu; Honda, Yoshiko; Honda, Makoto; Yamada, Hisao; Honda, Kazuki; Kodama, Tohru

    2017-01-01

    Recent findings showed that 16%-26% of narcolepsy patients were positive for anti-tribbles pseudokinase 2 (TRIB2) antibody, and the intracerebroventricular administration of immunoglobulin-G purified from anti-TRIB2 positive narcolepsy patients caused hypocretin/orexin neuron loss. We investigated the pathophysiological role of TRIB2 antibody using TRIB2-immunized rats and hypocretin/ataxin-3 transgenic (ataxin-3) mice. Plasma, cerebrospinal fluid (CSF), and hypothalamic tissues from TRIB2-immunized rats were collected. Anti-TRIB2 titers, hypocretin contents, mRNA expressions, the cell count of hypocretin neurons, and immunoreactivity of anti-TRIB2 antibodies on hypocretin neurons were investigated. The plasma from ataxin-3 mice was also used to determine the anti-TRIB2 antibody titer changes following the loss of hypocretin neurons. TRIB2 antibody titers increased in the plasma and CSF of TRIB2-immunized rats. The hypothalamic tissue immunostained with the sera from TRIB2-immunized rats revealed positive signals in the cytoplasm of hypcretin neurons. While no changes were found regarding hypothalamic hypocretin contents or cell counts, but there were significant decreases of the hypocretin mRNA level and release into the CSF. The plasma from over 26-week-old ataxin-3 mice, at the advanced stage of hypocretin cell destruction, showed positive reactions against TRIB2 antigen, and positive plasma also reacted with murine hypothalamic hypocretin neurons. Our results suggest that the general activation of the immune system modulates the functions of hypocretin neurons. The absence of a change in hypocretin cell populations suggested that factors other than anti-TRIB2 antibody play a part in the loss of hypocretin neurons in narcolepsy. The increased anti-TRIB2 antibody after the destruction of hypocretin neurons suggest that anti-TRIB2 antibody in narcolepsy patients is the consequence rather than the inciting cause of hypocretin cell destruction. © Sleep Research

  8. Roles for Orexin/Hypocretin in the Control of Energy Balance and Metabolism.

    Science.gov (United States)

    Goforth, Paulette B; Myers, Martin G

    The neuropeptide hypocretin is also commonly referred to as orexin, since its orexigenic action was recognized early. Orexin/hypocretin (OX) neurons project widely throughout the brain and the physiologic and behavioral functions of OX are much more complex than initially conceived based upon the stimulation of feeding. OX most notably controls functions relevant to attention, alertness, and motivation. OX also plays multiple crucial roles in the control of food intake, metabolism, and overall energy balance in mammals. OX signaling not only promotes food-seeking behavior upon short-term fasting to increase food intake and defend body weight, but, conversely, OX signaling also supports energy expenditure to protect against obesity. Furthermore, OX modulates the autonomic nervous system to control glucose metabolism, including during the response to hypoglycemia. Consistently, a variety of nutritional cues (including the hormones leptin and ghrelin) and metabolites (e.g., glucose, amino acids) control OX neurons. In this chapter, we review the control of OX neurons by nutritional/metabolic cues, along with our current understanding of the mechanisms by which OX and OX neurons contribute to the control of energy balance and metabolism.

  9. Orexin System: The Key for a Healthy Life

    Directory of Open Access Journals (Sweden)

    Sergio Chieffi

    2017-05-01

    Full Text Available The orexin-A/hypocretin-1 and orexin-B/hypocretin-2 are neuropeptides synthesized by a cluster of neurons in the lateral hypothalamus and perifornical area. Orexin neurons receive a variety of signals related to environmental, physiological and emotional stimuli, and project broadly to the entire CNS. Orexin neurons are “multi-tasking” neurons regulating a set of vital body functions, including sleep/wake states, feeding behavior, energy homeostasis, reward systems, cognition and mood. Furthermore, a dysfunction of orexinergic system may underlie different pathological conditions. A selective loss orexin neurons was found in narcolepsia, supporting the crucial role of orexins in maintaining wakefulness. In animal models, orexin deficiency lead to obesity even if the consume of calories is lower than wildtype counterpart. Reduced physical activity appears the main cause of weight gain in these models resulting in energy imbalance. Orexin signaling promotes obesity resistance via enhanced spontaneous physical activity and energy expenditure regulation and the deficiency/dysfunction in orexins system lead to obesity in animal models despite of lower calories intake than wildtype associated with reduced physical activity. Interestingly, orexinergic neurons show connections to regions involved in cognition and mood regulation, including hippocampus. Orexins enhance hippocampal neurogenesis and improve spatial learning and memory abilities, and mood. Conversely, orexin deficiency results in learning and memory deficits, and depression.

  10. Role of the orexin (hypocretin) system in contextual fear conditioning in rats.

    Science.gov (United States)

    Wang, Huiying; Li, Sa; Kirouac, Gilbert J

    2017-01-01

    Orexin (hypocretin) neurons located in the posterior hypothalamus send projections to multiple areas of the brain involved in arousal and experimental evidence indicates that these neurons play a role in the physiological and behavioral responses to stress. This study was done to determine if the orexin system was involved in mediating the fear associated with shock context (5×2s of 1.5mA). First, real-time RT-PCR was used to examine changes in the mRNA levels for prepro-orexin (ppOX), the orexin-1 receptor (OX1R) and the orexin-2 receptor (OX2R) at two weeks post-shock. We found that the mRNA levels for ppOX and OX1R were increased in the posterior hypothalamus of shocked rats. In contrast, no significant difference was found in the midline thalamus or the locus coeruleus/parabrachial region. Second, the study examined if systemic injections of antagonists for orexin receptors attenuated the freezing related to contextual fear. The OX1R antagonist SB334867 (20 or 30mg/kg; i.p.) decreased freezing while the same doses of the OX2R antagonist TCSOX229 had no effect. The dual orexin antagonist TCS1102 (20mg/kg; i.p.) also decreased the freezing to the shock context. The results of the present study show upregulation of orexin activity and of the OX1R in the hypothalamus following exposure of rats to footshocks and highlight a specific role of OX1R in contextual fear. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons.

    Directory of Open Access Journals (Sweden)

    Aaron Uschakov

    Full Text Available We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA of hypocretin/orexin (hcrt/orx neurons was changed to an inhibition following sleep deprivation (SD. Here we describe that in control condition (CC, i.e. following 2 hours of natural sleep in the morning, the α(2-adrenergic receptor (α(2-AR agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC, it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK channels. Since concentrations of clonidine up to a thousand times (100 µM higher than those effective in SDC (100 nM, were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABA(B agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α(2-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α(2-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α(2-ARs associated with GIRK channels is normally down-regulated (or desensitized in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.

  12. Sleep-deprivation regulates α-2 adrenergic responses of rat hypocretin/orexin neurons.

    Science.gov (United States)

    Uschakov, Aaron; Grivel, Jeremy; Cvetkovic-Lopes, Vesna; Bayer, Laurence; Bernheim, Laurent; Jones, Barbara E; Mühlethaler, Michel; Serafin, Mauro

    2011-02-08

    We recently demonstrated, in rat brain slices, that the usual excitation by noradrenaline (NA) of hypocretin/orexin (hcrt/orx) neurons was changed to an inhibition following sleep deprivation (SD). Here we describe that in control condition (CC), i.e. following 2 hours of natural sleep in the morning, the α(2)-adrenergic receptor (α(2)-AR) agonist, clonidine, had no effect on hcrt/orx neurons, whereas following 2 hours of SD (SDC), it hyperpolarized the neurons by activating G-protein-gated inwardly rectifying potassium (GIRK) channels. Since concentrations of clonidine up to a thousand times (100 µM) higher than those effective in SDC (100 nM), were completely ineffective in CC, a change in the availability of G-proteins is unlikely to explain the difference between the two conditions. To test whether the absence of effect of clonidine in CC could be due to a down-regulation of GIRK channels, we applied baclofen, a GABA(B) agonist known to also activate GIRK channels, and found that it hyperpolarized hcrt/orx neurons in that condition. Moreover, baclofen occluded the response to clonidine in SDC, indicating that absence of effect of clonidine in CC could not be attributed to down-regulation of GIRK channels. We finally tested whether α(2)-ARs were still available at the membrane in CC and found that clonidine could reduce calcium currents, indicating that α(2)-ARs associated with calcium channels remain available in that condition. Taken together, these results suggest that a pool of α(2)-ARs associated with GIRK channels is normally down-regulated (or desensitized) in hcrt/orx neurons to only become available for their inhibition following sleep deprivation.

  13. CSF levels of hypocretin-1 (orexin-A) peak during early infancy in humans.

    Science.gov (United States)

    Aran, Adi; Shors, Irina; Lin, Ling; Mignot, Emmanuel; Schimmel, Michael S

    2012-02-01

    Hypocretin (orexin) is a unique neuropeptide involved in the consolidation of wakefulness and sleep. Although hypocretin-1 levels in the cerebrospinal fluid (CSF) are stable after infancy, how levels change in preterm and term human infants is unknown. Hypocretin-1 levels were measured in CSF samples, obtained from 284 preterm (25-37 gestational weeks) and full-term infants in the first 4 months of life and 35 older children (ages 0.5-13 years), in a tertiary hospital. Detailed clinical and laboratory data were collected for each of the 319 participants. Based on that data, 108 neurologically intact children were selected (95 infants [43 preterm and 52 term] and 13 older children). CSF hypocretin-1 was measured by direct radioimmunoassay. Hypocretin-1 levels at the first weeks of the 3rd embryonic trimester (gestational age [GA] 28-34 weeks) were 314 ± 65 pg/mL (n = 17). The levels linearly increased during the third trimester and early infancy (r = 0.6), peaking in infants of 2-4 months ages (476 ± 72 pg/mL; n = 16) and decreasing thereafter; hypocretin levels in 2- to 4-month-old infants were significantly higher than those in children 0.5-13 years old (353 ± 78 pg/mL, n = 13; P = 0.0001). The present findings indicate that in human infants, CSF hypocretin-1 increases during the third embryonic trimester and is highest at 4 months of life. Thereafter, and consistent with previously published results, hypocretin levels are lower and stable until the geriatric age. This pattern may reflect the role of hypocretin in the dramatic process of sleep and wakefulness consolidation that occurs during early infancy.

  14. Upregulation of orexin/hypocretin expression in aged rats: Effects on feeding latency and neurotransmission in the insular cortex.

    Science.gov (United States)

    Hagar, Janel M; Macht, Victoria A; Wilson, Steven P; Fadel, James R

    2017-05-14

    Aging is associated with changes in numerous homeostatic functions, such as food intake, that are thought to be mediated by the hypothalamus. Orexin/hypocretin neurons of the hypothalamus regulate several physiological functions, including feeding, sleep and wakefulness. Evidence from both clinical and animal studies supports the notion that aging is associated with loss or dysregulation of the orexin system. Here, we used virus-mediated gene transfer to manipulate expression of orexin peptides in young and aged rats and examined behavioral and neurochemical correlates of food intake in these animals. Aged rats showed slower feeding latencies when presented with palatable food compared to young control rats, and these deficits were ameliorated by upregulation of orexin expression. Similarly, young animals treated with a virus designed to decrease preproorexin expression showed longer feeding latencies reminiscent of aged control rats. Feeding was also associated with increased acetylcholine, glutamate and GABA efflux in insular cortex of young control animals. Orexin upregulation did not restore deficits in feeding-elicited release of these neurotransmitters in aged rats, but did enhance basal neurotransmitter levels which may have contributed to the behavioral correlates of these genetic manipulations. These studies demonstrate that age-related deficits in behavioral and neurochemical measures of feeding are likely to be mediated, in part, by the orexin system. Because these same neurotransmitter systems have been shown to underlie orexin effects on cognition, treatments which increase orexin function may have potential for improving both physiological and cognitive manifestations of certain age-related disorders. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  15. Cellular activation of hypothalamic hypocretin/orexin neurons facilitates short-term spatial memory in mice.

    Science.gov (United States)

    Aitta-Aho, Teemu; Pappa, Elpiniki; Burdakov, Denis; Apergis-Schoute, John

    2016-12-01

    The hypothalamic hypocretin/orexin (HO) system holds a central role in the regulation of several physiological functions critical for food-seeking behavior including mnemonic processes for effective foraging behavior. It is unclear however whether physiological increases in HO neuronal activity can support such processes. Using a designer rM3Ds receptor activation approach increasing HO neuronal activity resulted in improved short-term memory for novel locations. When tested on a non-spatial novelty object recognition task no significant difference was detected between groups indicating that hypothalamic HO neuronal activation can selectively facilitate short-term spatial memory for potentially supporting memory for locations during active exploration. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. HLA DQB1*06:02 negative narcolepsy with hypocretin/orexin deficiency.

    Science.gov (United States)

    Han, Fang; Lin, Ling; Schormair, Barbara; Pizza, Fabio; Plazzi, Giuseppe; Ollila, Hanna M; Nevsimalova, Sona; Jennum, Poul; Knudsen, Stine; Winkelmann, Juliane; Coquillard, Cristin; Babrzadeh, Farbod; Strom, Tim M; Wang, Chunlin; Mindrinos, Michael; Fernandez Vina, Marcelo; Mignot, Emmanuel

    2014-10-01

    To identify rare allelic variants and HLA alleles in narcolepsy patients with hypocretin (orexin, HCRT) deficiency but lacking DQB1*06:02. China (Peking University People's Hospital), Czech Republic (Charles University), Denmark (Golstrup Hospital), Italy (University of Bologna), Korea (Catholic University), and USA (Stanford University). CSF hypocretin-1, DQB1*06:02, clinical and polysomnographic data were collected in narcolepsy patients (552 with and 144 without cataplexy) from 6 sites. Numbers of cases with and without DQB1*06:02 and low CSF hypocretin-1 were compiled. HLA class I (A, B, C), class II (DRBs, DQA1, DQB1, DPA1, and DPB1), and whole exome sequencing were conducted in 9 DQB1*06:02 negative cases with low CSF hypocretin-1. Sanger sequencing of selected exons in DNMT1, HCRT, and MOG was performed to exclude mutations in known narcolepsy-associated genes. Classic narcolepsy markers DQB1*06:02 and low CSF hypocretin-1 were found in 87.4% of cases with cataplexy, and in 20.0% without cataplexy. Nine cases (all with cataplexy) were DQB1*06:02 negative with low CSF hypocretin-1, constituting 1.7% [0.8%-3.4%] of all cases with cataplexy and 1.8% [0.8%-3.4%] of cases with low CSF hypocretin independent of cataplexy across sites. Five HLA negative subjects had severe cataplexy, often occurring without clear triggers. Subjects had diverse ethnic backgrounds and HLA alleles at all loci, suggesting no single secondary HLA association. The rare subtype DPB1*0901, and homologous DPB1*10:01 subtype, were present in 5 subjects, suggesting a secondary association with HLA-DP. Preprohypocretin sequencing revealed no mutations beyond one previously reported in a very early onset case. No new MOG or DNMT1 mutations were found, nor were suspicious or private variants in novel genes identified through exome sequencing. Hypocretin, MOG, or DNMT1 mutations are exceptional findings in DQB1*06:02 negative cases with hypocretin deficiency. A secondary HLA-DP association may be

  17. Tumor necrosis factor-alpha regulates the Hypocretin system via mRNA degradation and ubiquitination.

    Science.gov (United States)

    Zhan, Shuqin; Cai, Guo-Qiang; Zheng, Anni; Wang, Yuping; Jia, Jianping; Fang, Haotian; Yang, Youfeng; Hu, Meng; Ding, Qiang

    2011-04-01

    Recent studies recognize that Hypocretin system (also known as Orexin) plays a critical role in sleep/wake disorders and feeding behaviors. However, little is known about the regulation of the Hypocretin system. It is also known that tumor necrosis factor alpha (TNF-α) is involved in the regulation of sleep/wake cycle. Here, we test our hypothesis that the Hypocretin system is regulated by TNF-α. Prepro-Hypocretin and Hypocretin receptor 2 (HcrtR2) can be detected at a very low level in rat B35 neuroblastoma cells. In response to TNF-α, Prepro-Hypocretin mRNA and protein levels are down-regulated, and also HcrtR2 protein level is down-regulated in B35 cells. To investigate the mechanism, exogenous rat Prepro-Hypocretin and rat HcrtR2 were overexpressed in B35 cells. In response to TNF-α, protein and mRNA of Prepro-Hypocretin are significantly decreased (by 93% and 94%, respectively), and the half-life of Prepro-Hypocretin mRNA is decreased in a time- and dose-dependent manner. The level of HcrtR2 mRNA level is not affected by TNF-α treatment; however, HcrtR2 protein level is significantly decreased (by 86%) through ubiquitination in B35 cells treated with TNF-α. Downregulation of cellular inhibitor of apoptosis protein-1 and -2 (cIAP-1 and -2) abrogates the HcrtR2 ubiquitination induced by TNF-α. The control green fluorescent protein (GFP) expression is not affected by TNF-α treatment. These studies demonstrate that TNF-α can impair the function of the Hypocretin system by reducing the levels of both Prepro-Hypocretin and HcrtR2. Copyright © 2010 Elsevier B.V. All rights reserved.

  18. Orexin/Hypocretin and Organizing Principles for a Diversity of Wake-Promoting Neurons in the Brain.

    Science.gov (United States)

    Schöne, Cornelia; Burdakov, Denis

    2017-01-01

    An enigmatic feature of behavioural state control is the rich diversity of wake-promoting neural systems. This diversity has been rationalized as 'robustness via redundancy', wherein wakefulness control is not critically dependent on one type of neuron or molecule. Studies of the brain orexin/hypocretin system challenge this view by demonstrating that wakefulness control fails upon loss of this neurotransmitter system. Since orexin neurons signal arousal need, and excite other wake-promoting neurons, their actions illuminate nonredundant principles of arousal control. Here, we suggest such principles by reviewing the orexin system from a collective viewpoint of biology, physics and engineering. Orexin peptides excite other arousal-promoting neurons (noradrenaline, histamine, serotonin, acetylcholine neurons), either by activating mixed-cation conductances or by inhibiting potassium conductances. Ohm's law predicts that these opposite conductance changes will produce opposite effects on sensitivity of neuronal excitability to current inputs, thus enabling orexin to differentially control input-output gain of its target networks. Orexin neurons also produce other transmitters, including glutamate. When orexin cells fire, glutamate-mediated downstream excitation displays temporal decay, but orexin-mediated excitation escalates, as if orexin transmission enabled arousal controllers to compute a time integral of arousal need. Since the anatomical and functional architecture of the orexin system contains negative feedback loops (e.g. orexin ➔ histamine ➔ noradrenaline/serotonin-orexin), such computations may stabilize wakefulness via integral feedback, a basic engineering strategy for set point control in uncertain environments. Such dynamic behavioural control requires several distinct wake-promoting modules, which perform nonredundant transformations of arousal signals and are connected in feedback loops.

  19. CSF hypocretin-1 levels are normal in patients with amyotrophic lateral sclerosis.

    NARCIS (Netherlands)

    Rooij, F.G. van; Schelhaas, H.J.; Lammers, G.J.; Verbeek, M.M.; Overeem, S.

    2009-01-01

    Hypocretin (orexin) neurotransmission is not only crucially involved in the regulation of sleep and wake, but serves in multiple autonomic and cognitive functions as well. This is reflected in the widespread connections between the hypothalamic hypocretin neurons and the rest of the brain, such as

  20. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Directory of Open Access Journals (Sweden)

    Xiao-Bing eGao

    2015-10-01

    Full Text Available The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc and long-term behavioral changes (such as reward seeking and addiction, stress response, etc in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation and long-term changes (such as cocaine seeking in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological behavioral, and mental health implications of these findings will be discussed.

  1. Neural plasticity in hypocretin neurons: the basis of hypocretinergic regulation of physiological and behavioral functions in animals

    Science.gov (United States)

    Gao, Xiao-Bing; Hermes, Gretchen

    2015-01-01

    The neuronal system that resides in the perifornical and lateral hypothalamus (Pf/LH) and synthesizes the neuropeptide hypocretin/orexin participates in critical brain functions across species from fish to human. The hypocretin system regulates neural activity responsible for daily functions (such as sleep/wake homeostasis, energy balance, appetite, etc.) and long-term behavioral changes (such as reward seeking and addiction, stress response, etc.) in animals. The most recent evidence suggests that the hypocretin system undergoes substantial plastic changes in response to both daily fluctuations (such as food intake and sleep-wake regulation) and long-term changes (such as cocaine seeking) in neuronal activity in the brain. The understanding of these changes in the hypocretin system is essential in addressing the role of the hypocretin system in normal physiological functions and pathological conditions in animals and humans. In this review, the evidence demonstrating that neural plasticity occurs in hypocretin-containing neurons in the Pf/LH will be presented and possible physiological, behavioral, and mental health implications of these findings will be discussed. PMID:26539086

  2. CD4+ T-Cell Reactivity to Orexin/Hypocretin in Patients With Narcolepsy Type 1.

    Science.gov (United States)

    Ramberger, Melanie; Högl, Birgit; Stefani, Ambra; Mitterling, Thomas; Reindl, Markus; Lutterotti, Andreas

    2017-03-01

    Narcolepsy type 1 is accompanied by a selective loss of orexin/hypocretin (hcrt) neurons in the lateral hypothalamus caused by yet unknown mechanisms. Epidemiologic and genetic associations strongly suggest an immune-mediated pathogenesis of the disease. We compared specific T-cell reactivity to orexin/hcrt peptides in peripheral blood mononuclear cells of narcolepsy type 1 patients to healthy controls by a carboxyfluorescein succinimidyl ester proliferation assay. Orexin/hcrt-specific T-cell reactivity was also determined by cytokine (interferon gamma and granulocyte-macrophage colony-stimulating factor) analysis. Individuals were considered as responders if the cell division index of CD3+CD4+ T cells and both stimulation indices of cytokine secretion exceeded the cutoff 3. Additionally, T-cell reactivity to orexin/hcrt had to be confirmed by showing reactivity to single peptides present in different peptide pools. Using these criteria, 3/15 patients (20%) and 0/13 controls (0%) showed orexin/hcrt-specific CD4+ T-cell proliferation (p = .2262). The heterogeneous reactivity pattern did not allow the identification of a preferential target epitope. A significant role of orexin/hcrt-specific T cells in narcolepsy type 1 patients could not be confirmed in this study. Further studies are needed to assess the exact role of CD4+ T cells and possible target antigens in narcolepsy type 1 patients. © Sleep Research Society 2016. Published by Oxford University Press [on behalf of the Sleep Research Society].

  3. Repeated in vivo exposure of cocaine induces long-lasting synaptic plasticity in hypocretin/orexin-producing neurons in the lateral hypothalamus in mice.

    Science.gov (United States)

    Rao, Yan; Mineur, Yann S; Gan, Geliang; Wang, Alex Hanxiang; Liu, Zhong-Wu; Wu, Xinyuan; Suyama, Shigetomo; de Lecea, Luis; Horvath, Tamas L; Picciotto, Marina R; Gao, Xiao-Bing

    2013-04-01

    Hypocretin (orexin), a neuropeptide synthesized exclusively in the perifornical/lateral hypothalamus, is critical for drug seeking and relapse, but it is not clear how the circuitry centred on hypocretin-producing neurons (hypocretin neurons) is modified by drugs of abuse and how changes in this circuit might alter behaviours related to drug addiction. In this study, we show that repeated, but not single, in vivo cocaine administration leads to a long-lasting, experience-dependent potentiation of glutamatergic synapses on hypocretin neurons in mice following a cocaine-conditioned place preference (CPP) protocol. The synaptic potentiation occurs postsynaptically and probably involves up-regulation of AMPA-type glutamate receptors on hypocretin neurons. Phosphorylation of cAMP response element-binding protein (CREB) is also significantly increased in hypocretin neurons in cocaine-treated animals, suggesting that CREB-mediated pathways may contribute to synaptic potentiation in these cells. Furthermore, the potentiation of synaptic efficacy in hypocretin neurons persists during cocaine withdrawal, but reverses to baseline levels after prolonged abstinence. Finally, the induction of long-term potentiation (LTP) triggered by a high-frequency stimulation is facilitated in hypocretin neurons in cocaine-treated mice, suggesting that long-lasting changes in synapses onto hypocretin neurons would probably be further potentiated by other stimuli (such as concurrent environmental cues) paired with the drug. In summary, we show here that hypocretin neurons undergo experience-dependent synaptic potentiation that is distinct from that reported in other reward systems, such as the ventral tegmental area, following exposure to cocaine. These findings support the idea that the hypocretin system is important for behavioural changes associated with cocaine administration in animals and humans.

  4. Hypocretin and its emerging role as a target for treatment of sleep disorders.

    Science.gov (United States)

    Cao, Michelle; Guilleminault, Christian

    2011-04-01

    The neuropeptides hypocretin-1 and -2 (orexin A and B) are critical in the regulation of arousal and maintenance of wakefulness. Understanding the role of the hypocretin system in sleep/wake regulation has come from narcolepsy-cataplexy research. Deficiency of hypocretin results in loss of sleep/wake control with consequent unstable transitions from wakefulness into non-rapid eye movement (REM) and REM sleep, and clinical manifestations including daytime hypersomnolence, sleep attacks, and cataplexy. The hypocretin system regulates sleep/wake control through complex interactions between monoaminergic/cholinergic wake-promoting and GABAergic sleep-promoting neuronal systems. Research for the hypocretin agonist and the hypocretin antagonist for the treatment of sleep disorders has vigorously increased over the past 10 years. This review will focus on the origin, functions, and mechanisms in which the hypocretin system regulates sleep and wakefulness, and discuss its emerging role as a target for the treatment of sleep disorders.

  5. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction.

    Science.gov (United States)

    Keefer, Sara E; Cole, Sindy; Petrovich, Gorica D

    2016-08-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  6. Orexin/hypocretin receptor 1 signaling mediates Pavlovian cue-food conditioning and extinction

    Science.gov (United States)

    Keefer, Sara E.; Cole, Sindy; Petrovich, Gorica D.

    2016-01-01

    Learned food cues can drive feeding in the absence of hunger, and orexin/hypocretin signaling is necessary for this type of overeating. The current study examined whether orexin also mediates cue-food learning during the acquisition and extinction of these associations. In Experiment 1, rats underwent two sessions of Pavlovian appetitive conditioning, consisting of tone-food presentations. Prior to each session, rats received either the orexin 1 receptor antagonist SB-334867 (SB) or vehicle systemically. SB treatment did not affect conditioned responses during the first conditioning session, measured as food cup behavior during the tone and latency to approach the food cup after the tone onset, compared to the vehicle group. During the second conditioning session, SB treatment attenuated learning. All groups that received SB, prior to either the first or second conditioning session, displayed significantly less food cup behavior and had longer latencies to approach the food cup after tone onset compared to the vehicle group. These findings suggest orexin signaling at the 1 receptor mediates the consolidation and recall of cue-food acquisition. In Experiment 2, another group of rats underwent tone-food conditioning sessions (drug free), followed by two extinction sessions under either SB or vehicle treatment. Similar to Experiment 1, SB did not affect conditioned responses during the first session. During the second extinction session, the group that received SB prior to the first extinction session, but vehicle prior to the second, expressed conditioned food cup responses longer after tone offset, when the pellets were previously delivered during conditioning, and maintained shorter latencies to approach the food cup compared to the other groups. The persistence of these conditioned behaviors indicates impairment in extinction consolidation due to SB treatment during the first extinction session. Together, these results demonstrate an important role for orexin

  7. Medial vestibular connections with the hypocretin (orexin) system

    Science.gov (United States)

    Horowitz, Seth S.; Blanchard, Jane; Morin, Lawrence P.

    2005-01-01

    The mammalian medial vestibular nucleus (MVe) receives input from all vestibular endorgans and provides extensive projections to the central nervous system. Recent studies have demonstrated projections from the MVe to the circadian rhythm system. In addition, there are known projections from the MVe to regions considered to be involved in sleep and arousal. In this study, afferent and efferent subcortical connectivity of the medial vestibular nucleus of the golden hamster (Mesocricetus auratus) was evaluated using cholera toxin subunit-B (retrograde), Phaseolus vulgaris leucoagglutinin (anterograde), and pseudorabies virus (transneuronal retrograde) tract-tracing techniques. The results demonstrate MVe connections with regions mediating visuomotor and postural control, as previously observed in other mammals. The data also identify extensive projections from the MVe to regions mediating arousal and sleep-related functions, most of which receive immunohistochemically identified projections from the lateral hypothalamic hypocretin (orexin) neurons. These include the locus coeruleus, dorsal and pedunculopontine tegmental nuclei, dorsal raphe, and lateral preoptic area. The MVe itself receives a projection from hypocretin cells. CTB tracing demonstrated reciprocal connections between the MVe and most brain areas receiving MVe efferents. Virus tracing confirmed and extended the MVe afferent connections identified with CTB and additionally demonstrated transneuronal connectivity with the suprachiasmatic nucleus and the medial habenular nucleus. These anatomical data indicate that the vestibular system has access to a broad array of neural functions not typically associated with visuomotor, balance, or equilibrium, and that the MVe is likely to receive information from many of the same regions to which it projects.

  8. The wake-promoting hypocretin/orexin neurons change their response to noradrenaline after sleep deprivation.

    Science.gov (United States)

    Grivel, Jeremy; Cvetkovic, Vesna; Bayer, Laurence; Machard, Danièle; Tobler, Irene; Mühlethaler, Michel; Serafin, Mauro

    2005-04-20

    Sleep deprivation is accompanied by the progressive development of an irresistible need to sleep, a phenomenon whose mechanism has remained elusive. Here, we identified for the first time a reflection of that phenomenon in vitro by showing that, after a short 2 h period of total sleep deprivation, the action of noradrenaline on the wake-promoting hypocretin/orexin neurons changes from an excitation to an inhibition. We propose that such a conspicuous modification of responsiveness should contribute to the growing sleepiness that accompanies sleep deprivation.

  9. Do enteric neurons make hypocretin? ☆

    OpenAIRE

    Baumann, Christian R.; Clark, Erika L.; Pedersen, Nigel P.; Hecht, Jonathan L.; Scammell, Thomas E.

    2007-01-01

    Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, s...

  10. Hypocretin/orexin signaling in the hypothalamic paraventricular nucleus is essential for the expression of nicotine withdrawal.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Flores, África; Maldonado, Rafael; Berrendero, Fernando

    2012-02-01

    Hypocretin (orexin) signaling is involved in drug addiction. In this study, we investigated the role of these hypothalamic neuropeptides in nicotine withdrawal by using behavioral and neuroanatomical approaches. Nicotine withdrawal syndrome was precipitated by mecamylamine (2 mg/kg, subcutaneous) in C57BL/6J nicotine-dependent mice (25 mg/kg/day for 14 days) pretreated with the hypocretin receptor 1 (Hcrtr-1) antagonist SB334867 (5 and 10 mg/kg, intraperitoneal), the hypocretin receptor 2 antagonist TCSOX229 (5 and 10 mg/kg, intraperitoneal), and in preprohypocretin knockout mice. c-Fos expression was analyzed in several brain areas related to nicotine dependence by immunofluorescence techniques. Retrograde tracing with rhodamine-labeled fluorescent latex microspheres was used to determine whether the hypocretin neurons project directly to the paraventricular nucleus of the hypothalamus (PVN), and SB334867 was locally administered intra-PVN (10 nmol/side) to test the specific involvement of Hcrtr-1 in this brain area during nicotine withdrawal. Somatic signs of nicotine withdrawal were attenuated in mice pretreated with SB334867 and in preprohypocretin knockout mice. No changes were found in TCSOX229 pretreated animals. Nicotine withdrawal increased the percentage of hypocretin cells expressing c-Fos in the perifornical, dorsomedial, and lateral hypothalamus. In addition, the increased c-Fos expression in the PVN during withdrawal was dependent on hypocretin transmission through Hcrtr-1 activation. Hypocretin neurons directly innervate the PVN and the local infusion of SB334867 into the PVN decreased the expression of nicotine withdrawal. These data demonstrate that hypocretin signaling acting on Hcrtr-1 in the PVN plays a crucial role in the expression of nicotine withdrawal. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  11. REM sleep enhancement and behavioral cataplexy following orexin (hypocretin)-II receptor antisense perfusion in the pontine reticular formation.

    Science.gov (United States)

    Thakkar, M M; Ramesh, V; Cape, E G; Winston, S; Strecker, R E; McCarley, R W

    1999-01-01

    Orexin (hypocretin)-containing neurons of the hypothalamus project to brainstem sites that are involved in the neural control of REM sleep, including the locus coeruleus, the dorsal raphe nucleus, the cholinergic zone of the mesopontine tegmentum, and the pontine reticular formation (PRF). Orexin knockout mice exhibit narcolepsy/cataplexy, and a mutant and defective gene for the orexin type II receptor is present in dogs with an inherited form of narcolepsy/cataplexy. However, the physiological systems mediating these effects have not been described. We reasoned that, since the effector neurons for the majority of REM sleep signs, including muscle atonia, were located in the PRF, this region was likely implicated in the production of these orexin-related abnormalities. To test this possibility, we used microdialysis perfusion of orexin type II receptor antisense in the PRF of rats. Ten to 24 hours after antisense perfusion, REM sleep increased two- to three-fold during both the light period (quiescent phase) and the dark period (active phase), and infrared video showed episodes of behavioral cataplexy. Moreover, preliminary data indicated no REM-related effects following perfusion with nonsense DNA, or when perfusion sites were outside the PRF. More work is needed to provide precise localization of the most effective site of orexin-induced inhibition of REM sleep phenomena.

  12. Tobacco dependence, the insular cortex and the hypocretin connection

    Science.gov (United States)

    Kenny, Paul J.

    2010-01-01

    Tobacco use is a major cause of disease and premature death in the United States. Nicotine is considered the key component of tobacco responsible for addiction in human smokers. Accumulating evidence supports an important role for the hypocretin (orexin) neuropeptide system in regulating the reinforcing properties of most major drugs of abuse, including nicotine. Here, data showing that nicotine activates hypocretin-producing neurons in the lateral hypothalamus, and that disruption of hypocretin transmission decreases nicotine self-administration behavior in rats will be reviewed. Recent findings suggesting that plasma hypocretin levels may be related to the magnitude of cigarette craving in abstinent smokers will be discussed. Finally, data suggesting that hypocretin transmission in the insular cortex may play an important role in regulating nicotine self-administration behavior in rats will be reviewed. This latter finding may provide mechanistic insight into the apparent disruption of tobacco addiction reported in human smokers with stroke-associated damage to the insular cortex. PMID:20816891

  13. Addiction and arousal: the hypocretin connection

    Science.gov (United States)

    Boutrel, Benjamin; de Lecea, Luis

    2015-01-01

    The hypocretins, also known as orexins, are two neuropeptides now commonly described as critical components to maintain and regulate the stability of arousal. Several lines of evidence have raised the hypothesis that hypocretin-producing neurons are part of the circuitries that mediate the hypothalamic response to acute stress. Intracerebral administration of hypocretin leads to a dose related reinstatement of drug and food seeking behaviors. Furthermore, stress-induced reinstatement can be blocked with hypocretin receptor 1 antagonism. These results, together with recent data showing that hypocretin is critically involved in cocaine sensitization through the recruitment of NMDA receptors in the ventral tegmental area, strongly suggest that activation of hypocretin neurons play a critical role in the development of the addiction process. The activity of hypocretin neurons may affect addictive behavior by contributing to brain sensitization or by modulating the brain reward system. Hypocretinergic cells, in coordination with brain stress systems may lead to a vulnerable state that facilitates the resumption of drug seeking behavior. Hence, the hypocretinergic system is a new drug target that may be used to prevent relapse of drug seeking. PMID:18262574

  14. Orexin A/Hypocretin Modulates Leptin Receptor-Mediated Signaling by Allosteric Modulations Mediated by the Ghrelin GHS-R1A Receptor in Hypothalamic Neurons.

    Science.gov (United States)

    Medrano, Mireia; Aguinaga, David; Reyes-Resina, Irene; Canela, Enric I; Mallol, Josefa; Navarro, Gemma; Franco, Rafael

    2018-06-01

    The hypothalamus is a key integrator of nutrient-seeking signals in the form of hormones and metabolites originated in both the central nervous system and the periphery. The main autocrine and paracrine target of orexinergic-related hormones such as leptin, orexin/hypocretin, and ghrelin are neuropeptide Y neurons located in the arcuate nucleus of the hypothalamus. The aim of this study was to investigate the expression and the molecular and functional relationships between leptin, orexin/hypocretin and ghrelin receptors. Biophysical studies in a heterologous system showed physical interactions between them, with potential formation of heterotrimeric complexes. Functional assays showed robust allosteric interactions particularly different when the three receptors are expressed together. Further biochemical and pharmacological assays provided evidence of heterotrimer functional expression in primary cultures of hypothalamic neurons. These findings constitute evidence of close relationships in the action of the three hormones already starting at the receptor level in hypothalamic cells.

  15. Nicotinic receptor blockade decreases fos immunoreactivity within orexin/hypocretin-expressing neurons of nicotine-exposed rats.

    Science.gov (United States)

    Simmons, Steven J; Gentile, Taylor A; Mo, Lili; Tran, Fionya H; Ma, Sisi; Muschamp, John W

    2016-11-01

    Tobacco smoking is the leading cause of preventable death in the United States. Nicotine is the principal psychoactive ingredient in tobacco that causes addiction. The structures governing nicotine addiction, including those underlying withdrawal, are still being explored. Nicotine withdrawal is characterized by negative affective and cognitive symptoms that enhance relapse susceptibility, and suppressed dopaminergic transmission from ventral tegmental area (VTA) to target structures underlies behavioral symptoms of nicotine withdrawal. Agonist and partial agonist therapies help 1 in 4 treatment-seeking smokers at one-year post-cessation, and new targets are needed to more effectively aid smokers attempting to quit. Hypothalamic orexin/hypocretin neurons send excitatory projections to dopamine (DA)-producing neurons of VTA and modulate mesoaccumbal DA release. The effects of nicotinic receptor blockade, which is commonly used to precipitate withdrawal, on orexin neurons remain poorly investigated and present an attractive target for intervention. The present study sought to investigate the effects of nicotinic receptor blockade on hypothalamic orexin neurons using mecamylamine to precipitate withdrawal in rats. Separate groups of rats were treated with either chronic nicotine or saline for 7-days at which point effects of mecamylamine or saline on somatic signs and anxiety-like behavior were assessed. Finally, tissue from rats was harvested for immunofluorescent analysis of Fos within orexin neurons. Results demonstrate that nicotinic receptor blockade leads to reduced orexin cell activity, as indicated by lowered Fos-immunoreactivity, and suggest that this underlying cellular activity may be associated with symptoms of nicotine withdrawal as effects were most prominently observed in rats given chronic nicotine. We conclude from this study that orexin transmission becomes suppressed in rats upon nicotinic receptor blockade, and that behavioral symptoms associated

  16. Do enteric neurons make hypocretin? ☆

    Science.gov (United States)

    Baumann, Christian R.; Clark, Erika L.; Pedersen, Nigel P.; Hecht, Jonathan L.; Scammell, Thomas E.

    2008-01-01

    Hypocretins (orexins) are wake-promoting neuropeptides produced by hypothalamic neurons. These hypocretin-producing cells are lost in people with narcolepsy, possibly due to an autoimmune attack. Prior studies described hypocretin neurons in the enteric nervous system, and these cells could be an additional target of an autoimmune process. We sought to determine whether enteric hypocretin neurons are lost in narcoleptic subjects. Even though we tried several methods (including whole mounts, sectioned tissue, pre-treatment of mice with colchicine, and the use of various primary antisera), we could not identify hypocretin-producing cells in enteric nervous tissue collected from mice or normal human subjects. These results raise doubts about whether enteric neurons produce hypocretin. PMID:18191238

  17. Activation of the Basal Forebrain by the Orexin/Hypocretin Neurons: Orexin International Symposium

    Science.gov (United States)

    Arrigoni, Elda; Mochizuki, Takatoshi; Scammell, Thomas E.

    2010-01-01

    The orexin neurons play an essential role in driving arousal and in maintaining normal wakefulness. Lack of orexin neurotransmission produces a chronic state of hypoarousal characterized by excessive sleepiness, frequent transitions between wake and sleep, and episodes of cataplexy. A growing body of research now suggests that the basal forebrain (BF) may be a key site through which the orexin-producing neurons promote arousal. Here we review anatomical, pharmacological and electrophysiological studies on how the orexin neurons may promote arousal by exciting cortically-projecting neurons of the BF. Orexin fibers synapse on BF cholinergic neurons and orexin-A is released in the BF during waking. Local application of orexins excites BF cholinergic neurons, induces cortical release of acetylcholine, and promotes wakefulness. The orexin neurons also contain and probably co-release the inhibitory neuropeptide dynorphin. We found that orexin-A and dynorphin have specific effects on different classes of BF neurons that project to the cortex. Cholinergic neurons were directly excited by orexin-A, but did not respond to dynorphin. Non-cholinergic BF neurons that project to the cortex seem to comprise at least two populations with some directly excited by orexin that may represent wake-active, GABAergic neurons, whereas others did not respond to orexin but were inhibited by dynorphin and may be sleep-active, GABAergic neurons. This evidence suggests that the BF is a key site through which orexins activate the cortex and promotes behavioral arousal. In addition, orexins and dynorphin may act synergistically in the BF to promote arousal and improve cognitive performance. PMID:19723027

  18. Hypocretin-1 (orexin A) prevents the effects of hypoxia/hypercapnia and enhances the GABAergic pathway from the lateral paragigantocellular nucleus to cardiac vagal neurons in the nucleus ambiguus.

    Science.gov (United States)

    Dergacheva, O; Philbin, K; Bateman, R; Mendelowitz, D

    2011-02-23

    Hypocretins (orexins) are hypothalamic neuropeptides that play a crucial role in regulating sleep/wake states and autonomic functions including parasympathetic cardiac activity. We have recently demonstrated stimulation of the lateral paragigantocellular nucleus (LPGi), the nucleus which is thought to play a role in rapid eye movement (REM) sleep control, activates an inhibitory pathway to preganglionic cardiac vagal neurons in the nucleus ambiguus (NA). In this study we test the hypothesis that hypocretin-1 modulates the inhibitory neurotransmission to cardiac vagal neurons evoked by stimulation of the LPGi using whole-cell patch-clamp recordings in an in vitro brain slice preparation from rats. Activation of hypocretin-1 receptors produced a dose-dependent and long-term facilitation of GABAergic postsynaptic currents evoked by electrical stimulation of the LPGi. Hypoxia/hypercapnia diminished LPGi-evoked GABAergic current in cardiac vagal neurons and this inhibition by hypoxia/hypercapnia was prevented by pre-application of hypocretin-1. The action of hypocretin-1 was blocked by the hypocretin-1 receptor antagonist SB-334867. Facilitation of LPGi-evoked GABAergic current in cardiac vagal neurons under both normal condition and during hypoxia/hypercapnia could be the mechanism by which hypocretin-1 affects parasympathetic cardiac function and heart rate during REM sleep. Furthermore, our findings indicate a new potential mechanism that might be involved in the cardiac arrhythmias, bradycardia, and sudden cardiac death that can occur during sleep. Copyright © 2011. Published by Elsevier Ltd.

  19. Locus Coeruleus and Tuberomammillary Nuclei Ablations Attenuate Hypocretin/Orexin Antagonist-Mediated REM Sleep.

    Science.gov (United States)

    Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Palmerston, Jeremiah B; Thomas, Alexia M; Morairty, Stephen R; Neylan, Thomas C; Kilduff, Thomas S

    2016-01-01

    Hypocretin 1 and 2 (Hcrts; also known as orexin A and B), excitatory neuropeptides synthesized in cells located in the tuberal hypothalamus, play a central role in the control of arousal. Hcrt inputs to the locus coeruleus norepinephrine (LC NE) system and the posterior hypothalamic histaminergic tuberomammillary nuclei (TMN HA) are important efferent pathways for Hcrt-induced wakefulness. The LC expresses Hcrt receptor 1 (HcrtR1), whereas HcrtR2 is found in the TMN. Although the dual Hcrt/orexin receptor antagonist almorexant (ALM) decreases wakefulness and increases NREM and REM sleep time, the neural circuitry that mediates these effects is currently unknown. To test the hypothesis that ALM induces sleep by selectively disfacilitating subcortical wake-promoting populations, we ablated LC NE neurons (LCx) or TMN HA neurons (TMNx) in rats using cell-type-specific saporin conjugates and evaluated sleep/wake following treatment with ALM and the GABAA receptor modulator zolpidem (ZOL). Both LCx and TMNx attenuated the promotion of REM sleep by ALM without affecting ALM-mediated increases in NREM sleep. Thus, eliminating either HcrtR1 signaling in the LC or HcrtR2 signaling in the TMN yields similar effects on ALM-induced REM sleep without affecting NREM sleep time. In contrast, neither lesion altered ZOL efficacy on any measure of sleep-wake regulation. These results contrast with those of a previous study in which ablation of basal forebrain cholinergic neurons attenuated ALM-induced increases in NREM sleep time without affecting REM sleep, indicating that Hcrt neurotransmission influences distinct aspects of NREM and REM sleep at different locations in the sleep-wake regulatory network.

  20. Cerebrospinal fluid hypocretin-1 levels during the active period of cluster headache.

    Science.gov (United States)

    Cevoli, Sabina; Pizza, Fabio; Grimaldi, Daniela; Nicodemo, Marianna; Favoni, Valentina; Pierangeli, Giulia; Valko, Philipp O; Baumann, Christian R; Montagna, Pasquale; Bassetti, Claudio L; Cortelli, Pietro

    2011-06-01

    Hypocretins (orexins) are hypothalamic neuropeptides which are involved in a wide range of physiological processes in mammals including central pain processing. Genetic studies in humans evidenced a role for the hypocretinergic system in cluster headache (CH). We tested cerebrospinal fluid (CSF) hypocretin-1 (orexin-A) levels in 10 CH patients during an active cluster period. CSF hypocretin-1 levels were measured by radioimmunoassay. CSF hypocretin-1 levels were within the normal range (mean 457.3±104.98 pg/ml, range 304-639) in our 10 patients, with a slight reduction in one case (304 pg/ml). There were no associations between CSF hypocretin-1 levels and the clinical features of CH. A trend towards higher hypocretin-1 levels was disclosed in patients with chronic CH compared to episodic CH. CSF hypocretin-1 levels seem not to influence the clinical course of CH, but our results cannot completely exclude a functional involvement of the hypothalamic hypocretinergic system in the pathogenesis of CH.

  1. Hypocretin and melanin-concentrating hormone in patients with Huntington disease.

    NARCIS (Netherlands)

    Aziz, A.; Fronczek, R.; Maat-Schieman, M.L.; Unmehopa, U.A.; Roelandse, F.W.; Overeem, S.; Duinen, S.G. van; Lammers, G.J.; Swaab, D.F.; Roos, R.A.C.

    2008-01-01

    To evaluate whether hypocretin-1 (orexin-A) and melanin-concentrating hormone (MCH) neurotransmission are affected in patients with Huntington disease (HD), we immunohistochemically stained hypocretin and MCH neurons and estimated their total numbers in the lateral hypothalamus of both HD patients

  2. Orexins excite ventrolateral geniculate nucleus neurons predominantly via OX2 receptors.

    Science.gov (United States)

    Chrobok, Lukasz; Palus, Katarzyna; Lewandowski, Marian Henryk

    2016-04-01

    Orexins/hypocretins are two neuropeptides that influence many behaviours, such as feeding, sleep or arousal. Orexin A/hypocretin-1 (OXA) and orexin B/hypocretin-2 (OXB) bind to two metabotropic receptors, named the OX1 and OX2 receptors. The lateral geniculate complex of the thalamus is one of the many targets of orexinergic fibres derived from the lateral hypothalamus, although the impact of orexins on the ventrolateral geniculate nucleus (VLG) is poorly understood. The VLG, an important relay station of the subcortical visual system, is implicated in visuomotor and/or circadian processes. Therefore, in this study we evaluated the effects of orexins on single VLG neurons using a patch-clamp technique in vitro. Surprisingly, orexins depolarised the majority of the recorded neurons regardless of their localisation in the borders of the VLG. In addition, data presented in this article show that neurons synthesising NO were also affected by OXA. Moreover, immunohistochemical staining of OXB revealed the moderate density of orexinergic fibbers in the VLG. Our study using specific orexin receptor antagonists suggests that the OX2 receptor has a dominant role in the observed effects of OXA. To our knowledge, this article is the first to show orexinergic modulation of the VLG. These findings strengthen the postulated link between orexins and the circadian system, and propose a new role of these neuropeptides in the modulation of visuomotor functions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Hypocretin/Orexin Peptides Alter Spike Encoding by Serotonergic Dorsal Raphe Neurons through Two Distinct Mechanisms That Increase the Late Afterhyperpolarization.

    Science.gov (United States)

    Ishibashi, Masaru; Gumenchuk, Iryna; Miyazaki, Kenichi; Inoue, Takafumi; Ross, William N; Leonard, Christopher S

    2016-09-28

    Orexins (hypocretins) are neuropeptides that regulate multiple homeostatic processes, including reward and arousal, in part by exciting serotonergic dorsal raphe neurons, the major source of forebrain serotonin. Here, using mouse brain slices, we found that, instead of simply depolarizing these neurons, orexin-A altered the spike encoding process by increasing the postspike afterhyperpolarization (AHP) via two distinct mechanisms. This orexin-enhanced AHP (oeAHP) was mediated by both OX1 and OX2 receptors, required Ca(2+) influx, reversed near EK, and decayed with two components, the faster of which resulted from enhanced SK channel activation, whereas the slower component decayed like a slow AHP (sAHP), but was not blocked by UCL2077, an antagonist of sAHPs in some neurons. Intracellular phospholipase C inhibition (U73122) blocked the entire oeAHP, but neither component was sensitive to PKC inhibition or altered PKA signaling, unlike classical sAHPs. The enhanced SK current did not depend on IP3-mediated Ca(2+) release but resulted from A-current inhibition and the resultant spike broadening, which increased Ca(2+) influx and Ca(2+)-induced-Ca(2+) release, whereas the slower component was insensitive to these factors. Functionally, the oeAHP slowed and stabilized orexin-induced firing compared with firing produced by a virtual orexin conductance lacking the oeAHP. The oeAHP also reduced steady-state firing rate and firing fidelity in response to stimulation, without affecting the initial rate or fidelity. Collectively, these findings reveal a new orexin action in serotonergic raphe neurons and suggest that, when orexin is released during arousal and reward, it enhances the spike encoding of phasic over tonic inputs, such as those related to sensory, motor, and reward events. Orexin peptides are known to excite neurons via slow postsynaptic depolarizations. Here we elucidate a significant new orexin action that increases and prolongs the postspike

  4. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy.

    Science.gov (United States)

    Andlauer, Olivier; Moore, Hyatt; Hong, Seung-Chul; Dauvilliers, Yves; Kanbayashi, Takashi; Nishino, Seiji; Han, Fang; Silber, Michael H; Rico, Tom; Einen, Mali; Kornum, Birgitte R; Jennum, Poul; Knudsen, Stine; Nevsimalova, Sona; Poli, Francesca; Plazzi, Giuseppe; Mignot, Emmanuel

    2012-09-01

    To compare clinical, electrophysiologic, and biologic data in narcolepsy without cataplexy with low (≤ 110 pg/ml), intermediate (110-200 pg/ml), and normal (> 200 pg/ml) concentrations of cerebrospinal fluid (CSF) hypocretin-1. University-based sleep clinics and laboratories. Narcolepsy without cataplexy (n = 171) and control patients (n = 170), all with available CSF hypocretin-1. Retrospective comparison and receiver operating characteristics curve analysis. Patients were also recontacted to evaluate if they developed cataplexy by survival curve analysis. The optimal cutoff of CSF hypocretin-1 for narcolepsy without cataplexy diagnosis was 200 pg/ml rather than 110 pg/ml (sensitivity 33%, specificity 99%). Forty-one patients (24%), all HLA DQB1*06:02 positive, had low concentrations (≤ 110 pg/ml) of CSF hypocretin-1. Patients with low concentrations of hypocretin-1 only differed subjectively from other groups by a higher Epworth Sleepiness Scale score and more frequent sleep paralysis. Compared with patients with normal hypocretin-1 concentration (n = 117, 68%), those with low hypocretin-1 concentration had higher HLA DQB1*06:02 frequencies, were more frequently non-Caucasians (notably African Americans), with lower age of onset, and longer duration of illness. They also had more frequently short rapid-eye movement (REM) sleep latency (≤ 15 min) during polysomnography (64% versus 23%), and shorter sleep latencies (2.7 ± 0.3 versus 4.4 ± 0.2 min) and more sleep-onset REM periods (3.6 ± 0.1 versus 2.9 ± 0.1 min) during the Multiple Sleep Latency Test (MSLT). Patients with intermediate concentrations of CSF hypocretin-1 (n = 13, 8%) had intermediate HLA DQB1*06:02 and polysomnography results, suggesting heterogeneity. Of the 127 patients we were able to recontact, survival analysis showed that almost half (48%) with low concentration of CSF hypocretin-1 had developed typical cataplexy at 26 yr after onset, whereas only 2% had done so when CSF hypocretin-1

  5. A critical role of hypocretin deficiency in pregnancy.

    Science.gov (United States)

    Bastianini, Stefano; Berteotti, Chiara; Lo Martire, Viviana; Silvani, Alessandro; Zoccoli, Giovanna

    2014-04-01

    Hypocretin/orexin peptides are known for their role in the control of the wake–sleep cycle and narcolepsy–cataplexy pathophysiology. Recent studies suggested that hypocretin peptides also have a role in pregnancy. We tested this hypothesis by conducting a retrospective analysis on pregnancy complications in two different mouse models of hypocretin deficiency. We recorded 85 pregnancies of mice lacking either hypocretin peptides (knockout) or hypocretin-releasing neurons (transgenic) and their wild-type controls. Pregnancy was associated with unexplained dam death before delivery in 3/15 pregnancies in knockout mice, and in 3/23 pregnancies in transgenic mice. No casualties occurred in wild-type pregnant dams (P hypocretin-deficient mice as a whole). Hypocretin deficiency did not impact either on litter size or the number of weaned pups per litter. These data provide preliminary evidence of a critical role of hypocretin deficiency in pregnancy.

  6. Neuropeptides controlling energy balance: orexins and neuromedins

    Science.gov (United States)

    Nixon, Joshua P.; Kotz, Catherine M.; Novak, Colleen M.; Billington, Charles J.; Teske, Jennifer A.

    2016-01-01

    In this section we review the feeding and energy expenditure effects of orexin (also known as hypocretin) and neuromedin. Orexins are multifunctional neuropeptides that affect energy balance by participating in regulation of appetite, arousal, and spontaneous physical activity. Central orexin signaling for all functions originates in the lateral hypothalamus–perifornical area, and is likely functionally differentiated based on site of action and on interacting neural influences. The effect of orexin on feeding is likely related to arousal in some ways, but is nonetheless a separate neural process that depends on interactions with other feeding related neuropeptides. In a pattern distinct from other neuropeptides, orexin stimulates both feeding and energy expenditure. Orexin increases in energy expenditure are mainly by increasing spontaneous physical activity, and this energy expenditure effect is more potent than the effect on feeding. Global orexin manipulations, such as in transgenic models, produce energy balance changes consistent with a dominant energy expenditure effect of orexin. Neuromedins are gut-brain peptides that reduce appetite. There are gut sources of neuromedin, but likely the key appetite related neuromedin producing neurons are in hypothalamus and parallel other key anorectic neuropeptide expression in the arcuate to paraventricular hypothalamic projection. As with other hypothalamic feeding related peptides, hindbrain sites are likely also important sources and targets of neuromedin anorectic action. Neuromedin increases physical activity in addition to reducing appetite, thus producing a consistent negative energy balance effect. Together with the various other neuro-peptides, -transmitters, -modulators and –hormones, neuromedin and orexin act in the appetite network to produce changes in food intake and energy expenditure, which ultimately influences the regulation of body weight. PMID:22249811

  7. Orexin - does it have a role in mental illness? | Moosa | South ...

    African Journals Online (AJOL)

    Orexin-A and Orexin-B (also known as hypocretin 1 and 2) are, respectively, 33- and 28-amino acid residue peptides that activate a G-protein-coupled 'orphan\\' receptor, i.e. which has no known ligand.1 Immuno-cytochemical studies show that orexin-positive neurons are located in the lateral hypothalamic area and arcuate ...

  8. Orexin receptor antagonists as therapeutic agents for insomnia

    Directory of Open Access Journals (Sweden)

    Ana Clementina Equihua

    2013-12-01

    Full Text Available Insomnia is a common clinical condition characterized by difficulty initiating or maintaining sleep, or non-restorative sleep with impairment of daytime functioning.Currently, treatment for insomnia involves a combination of cognitive behavioral therapy and pharmacological therapy. Among pharmacological interventions, the most evidence exists for benzodiazepine receptor agonist drugs (GABAA receptor, although concerns persist regarding their safety and their limited efficacy. The use of these hypnotic medications must be carefully monitored for adverse effects.Orexin (hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep by promoting cholinergic/monoaminergic neural pathways. This has led to the development of a new class of pharmacological agents that antagonize the physiological effects of orexin. The development of these agents may lead to novel therapies for insomnia without the side effect profile of hypnotics (e.g. impaired cognition, disturbed arousal, and motor balance difficulties. However, antagonizing a system that regulates the sleep-wake cycle may create an entirely different side effect profile. In this review, we discuss the role of orexin and its receptors on the sleep-wake cycle and that of orexin antagonists in the treatment of insomnia.

  9. Diurnal inhibition of NMDA-EPSCs at rat hippocampal mossy fibre synapses through orexin-2 receptors

    Science.gov (United States)

    Perin, Martina; Longordo, Fabio; Massonnet, Christine; Welker, Egbert; Lüthi, Anita

    2014-01-01

    Diurnal release of the orexin neuropeptides orexin-A (Ox-A, hypocretin-1) and orexin-B (Ox-B, hypocretin-2) stabilises arousal, regulates energy homeostasis and contributes to cognition and learning. However, whether cellular correlates of brain plasticity are regulated through orexins, and whether they do so in a time-of-day-dependent manner, has never been assessed. Immunohistochemically we found sparse but widespread innervation of hippocampal subfields through Ox-A- and Ox-B-containing fibres in young adult rats. The actions of Ox-A were studied on NMDA receptor (NMDAR)-mediated excitatory synaptic transmission in acute hippocampal slices prepared around the trough (Zeitgeber time (ZT) 4–8, corresponding to 4–8 h into the resting phase) and peak (ZT 23) of intracerebroventricular orexin levels. At ZT 4–8, exogenous Ox-A (100 nm in bath) inhibited NMDA receptor-mediated excitatory postsynaptic currents (NMDA-EPSCs) at mossy fibre (MF)–CA3 (to 55.6 ± 6.8% of control, P = 0.0003) and at Schaffer collateral–CA1 synapses (70.8 ± 6.3%, P = 0.013), whereas it remained ineffective at non-MF excitatory synapses in CA3. Ox-A actions were mediated postsynaptically and blocked by the orexin-2 receptor (OX2R) antagonist JNJ10397049 (1 μm), but not by orexin-1 receptor inhibition (SB334867, 1 μm) or by adrenergic and cholinergic antagonists. At ZT 23, inhibitory effects of exogenous Ox-A were absent (97.6 ± 2.9%, P = 0.42), but reinstated (87.2 ± 3.3%, P = 0.002) when endogenous orexin signalling was attenuated for 5 h through i.p. injections of almorexant (100 mg kg−1), a dual orexin receptor antagonist. In conclusion, endogenous orexins modulate hippocampal NMDAR function in a time-of-day-dependent manner, suggesting that they may influence cellular plasticity and consequent variations in memory performance across the sleep–wake cycle. PMID:25085886

  10. Organization of the orexin/hypocretin system in the brain of two basal actinopterygian fishes, the cladistians Polypterus senegalus and Erpetoichthys calabaricus.

    Science.gov (United States)

    López, Jesús M; Sanz-Morello, Berta; González, Agustín

    2014-11-01

    Cladistians are primitive actinopterygian fishes mostly neglected in neuroanatomical studies. In the present study, the detailed neuroanatomical distribution of orexin (hypocretin)-like immunoreactive (OX-ir) cell bodies and fibers was analyzed in the brain of two species representative of the two extant genera of cladistians. Antibodies against mammalian orexin-A and orexin-B peptides were used. Simultaneous detection of orexins with neuropeptide Y (NPY), tyrosine hydroxylase (TH), and serotonin (5-HT) was used to establish accurately the topography of the orexin system and to evaluate the possible interactions with NPY and monoaminergic systems. A largely common pattern of OX-ir distribution in the two cladistian species was observed. Most OX-ir cells were located in the suprachiasmatic nucleus and tuberal hypothalamus, whereas scarce cells were observed in the posterior tubercle. In addition, a population of OX-ir cells was found in the preoptic area only in Polypterus and some cells also contained TH. The observed widespread distribution of OX-ir fibers was especially abundant in the retrobulbar area, subpallial areas, preoptic area, suprachiasmatic nucleus, tuberal hypothalamic area, prethalamus, thalamus, pretectum, optic tectum, and tegmentum. Low innervation was found in relation to monoaminergic cell groups, whereas a high NPY innervation was observed in all OX-ir cell groups. These relationships would represent the anatomical substrate for the functional interdependence between these systems. The organization of the orexin system in cladistians revealed a pattern largely consistent with those reported for all studied groups of vertebrates, suggesting that the primitive organization of this peptidergic system occurred in the common ancestor of gnathostome vertebrates. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Morphological and Physiological Interactions Between GnRH3 and Hypocretin/Orexin Neuronal Systems in Zebrafish (Danio rerio).

    Science.gov (United States)

    Zhao, Yali; Singh, Chanpreet; Prober, David A; Wayne, Nancy L

    2016-10-01

    GnRH neurons integrate internal and external cues to control sexual maturation and fertility. Homeostasis of energy balance and food intake correlates strongly with the status of reproduction. Neuropeptides secreted by the hypothalamus involved in modulating energy balance and feeding may play additional roles in the regulation of reproduction. Hypocretin (Hcrt) (also known as orexin) is one such peptide, primarily controlling sleep/wakefulness, food intake, and reward processing. There is a growing body of evidence indicating that Hcrt/orexin (Hcrt) modulates reproduction through interacting with the hypothalamo-pituitary-gonadal axis in mammals. To explore potential morphological and functional interactions between the GnRH and Hcrt neuronal systems, we employed a variety of experimental approaches including confocal imaging, immunohistochemistry, and electrophysiology in transgenic zebrafish, in which fluorescent proteins are genetically expressed in GnRH3 and Hcrt neurons. Our imaging data revealed close apposition and direct connection between GnRH3 and Hcrt neuronal systems in the hypothalamus during larval development through adulthood. Furthermore, the Hcrt receptor (HcrtR) is expressed in GnRH3 neurons. Electrophysiological data revealed a reversible inhibitory effect of Hcrt on GnRH3 neuron electrical activity, which was blocked by the HcrtR antagonist almorexant. In addition, Hcrt had no effect on the electrical activity of GnRH3 neurons in the HcrtR null mutant zebrafish (HcrtR -/- ). Our findings demonstrate a close anatomical and functional relationship between Hcrt and GnRH neuronal systems in zebrafish. It is the first demonstration of a link between neuronal circuits controlling sleeping/arousal/feeding and reproduction in zebrafish, an important animal model for investigating the molecular genetics of development.

  12. Increased plasma orexin-A levels in patients with insomnia disorder are not associated with prepro-orexin or orexin receptor gene polymorphisms.

    Science.gov (United States)

    Tang, Shi; Huang, Weiwei; Lu, Shanshan; Lu, Lili; Li, Guohua; Chen, Xu; Liu, Xiaomin; Lv, Xin; Zhao, Zhangning; Duan, Ruisheng; Du, Yifeng; Tang, Jiyou

    2017-02-01

    Orexins, also known as hypocretins, play a regulatory role in the sleep-wake cycle by activating orexin receptors. Previous animal studies have shown that sleep deprivation can elevate orexinergic peptide levels. However, the relationship between insomnia disorder and orexin-A levels in humans has not been explored. In the current study, we examined plasma orexin-A levels in patients with insomnia disorder and in normal sleepers. We also studied the possible mechanisms underlying changes in orexin-A levels between the study groups; this included investigations of prepro-orexin and orexin receptor gene polymorphisms as well as exploration of other variables. We measured plasma orexin-A levels in 228 patients with insomnia disorder and 282 normal sleepers. The results indicated that the patients with insomnia disorder had significantly higher orexin-A levels than normal sleepers (63.42±37.56 vs. 54.84±23.95pg/ml). A positive relationship was detected between orexin-A level and age in patients with insomnia disorder. Orexin-A levels were elevated in relation to course of insomnia, as well as in relation to increased Insomnia Severity Index score. None of the evaluated prepro-orexin gene single nucleotide polymorphisms were informative between the two study populations. After sequencing all orexin receptor exons, one variation (rs2271933) in the OX1R gene and one variation (rs2653349) in the OX2R gene were found. However, no significant differences were found in either genotypic or allelic frequency distributions between the two study groups. It is suggested that the increased plasma orexin-A levels in patients with insomnia disorder are associated with the course and severity of insomnia, but not with prepro-orexin and orexin receptor gene polymorphisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Orexin 1 receptor antagonists in compulsive behaviour and anxiety: possible therapeutic use.

    Directory of Open Access Journals (Sweden)

    Emilio eMerlo-Pich

    2014-02-01

    Full Text Available Fifteen years after the discovery of hypocretin/orexin a large body of evidence has been collected supporting its critical role in the modulation of several regulatory physiological functions. While reduced levels of hypocretin/orexin were early on associated with narcolepsy, increased levels have been linked in recent years to pathological states of hypervigilance and, in particular, to insomnia. The filing to FDA of the dual-activity orexin receptor antagonist (DORA suvorexant for the indication of insomnia further corroborates the robustness of such evidences. However, as excessive vigilance is also typical of anxiety and panic episodes, as well as of abstinence and craving in substance misuse disorders, in this review we briefly discuss the evidence supporting the development of hypocretin/orexin receptor 1 (OX1 antagonists for these indications. Experiments using the OX1 antagonist SB-334867 and mutant mice have involved the OX1 receptor in mediating the compulsive reinstatement of drug seeking for ethanol, nicotine, cocaine, cannabinoids and morphine. More recently, data have been generated with the novel selective OX1 antagonists GSK1059865 and ACT-335827 on behavioural and cardiovascular response to stressors and panic-inducing agents in animals. Concluding, while waiting for pharmacologic data to become available in humans, risks and benefits for the development of an OX1 receptor antagonist for Binge Eating and Anxiety Disorders are discussed.

  14. Absence of autoreactive CD4(+) T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot

    DEFF Research Database (Denmark)

    Kornum, Birgitte Rahbek; Burgdorf, Kristoffer Sølvsten; Holm, Anja

    2017-01-01

    Narcolepsy type 1, a neurological sleep disorder strongly associated with Human Leukocyte Antigen (HLA-)DQB1*06:02, is caused by the loss of hypothalamic neurons producing the wake-promoting neuropeptide hypocretin (hcrt, also known as orexin). This loss is believed to be caused by an autoimmune...... reaction. To test whether hcrt itself could be a possible target in the autoimmune attack, CD4(+) T-cell reactivity towards six different 15-mer peptides from prepro-hypocretin with high predicted affinity to the DQA1*01:02/DQB1*06:02 MHC class II dimer was tested using EliSpot in a cohort of 22 narcolepsy...

  15. Orexin-A/Hypocretin-1 Mediates Cocaine-Seeking Behavior in the Posterior Paraventricular Nucleus of the Thalamus via Orexin/Hypocretin Receptor-2.

    Science.gov (United States)

    Matzeu, Alessandra; Kerr, Tony M; Weiss, Friedbert; Martin-Fardon, Rémi

    2016-11-01

    Orexin/hypocretin (Orx/Hcrt) projections from the lateral hypothalamus to the paraventricular nucleus of the thalamus (PVT) are implicated in drug addiction. Specifically, the posterior section of the PVT (pPVT) innervates brain structures that modulate motivated behavior. This study investigated the role of pPVT-Orx/Hcrt transmission in cocaine-seeking behavior. Because the effects of Orx/Hcrt are mediated by two Orx/Hcrt receptors (Hcrt-r1 and Hcrt-r2), we examined the extent to which Hcrt-r1 and Hcrt-r2 are involved in Orx/Hcrt-induced cocaine seeking. Male Wistar rats were made cocaine dependent by self-administering cocaine 6 hours/day (long access) for 21 days. After self-administration training, the rats underwent daily extinction training, during which cocaine was withheld. After extinction, the rats were injected into the pPVT with Orx-A/Hcrt-1 (0-2 µg) alone or, using a single dose of 0.5 µg, in combination with an Hcrt-r1 antagonist (SB334867; 0-15 µg) or an Hcrt-r2 antagonist (TCSOX229; 0-15 µg). Orx-A/Hcrt-1 alone reinstated (primed) cocaine seeking. Unexpectedly, coadministration of Orx-A/Hcrt-1 with SB334867 did not have any effects on Orx-A/Hcrt-1-induced reinstatement, whereas when coadministered with Orx-A/Hcrt-1, TCSOX229 prevented cocaine-seeking behavior. These results indicate that Hcrt-r2 in the pPVT mediates the reinstating effect of Orx-A/Hcrt-1 in animals with a history of cocaine dependence and further identify Hcrt-r2 as a possible molecular target that can guide future therapeutic approaches for the prevention of drug-seeking behavior. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  16. Predictors of hypocretin (orexin) deficiency in narcolepsy without cataplexy

    DEFF Research Database (Denmark)

    Andlauer, Olivier; Moore, Hyatt; Hong, Seung-Chul

    2012-01-01

    To compare clinical, electrophysiologic, and biologic data in narcolepsy without cataplexy with low (≤ 110 pg/ml), intermediate (110-200 pg/ml), and normal (> 200 pg/ml) concentrations of cerebrospinal fluid (CSF) hypocretin-1.......To compare clinical, electrophysiologic, and biologic data in narcolepsy without cataplexy with low (≤ 110 pg/ml), intermediate (110-200 pg/ml), and normal (> 200 pg/ml) concentrations of cerebrospinal fluid (CSF) hypocretin-1....

  17. Paradoxical (REM) sleep deprivation in mice using the small-platforms-over-water method: polysomnographic analyses and melanin-concentrating hormone and hypocretin/orexin neuronal activation before, during and after deprivation.

    Science.gov (United States)

    Arthaud, Sebastien; Varin, Christophe; Gay, Nadine; Libourel, Paul-Antoine; Chauveau, Frederic; Fort, Patrice; Luppi, Pierre-Herve; Peyron, Christelle

    2015-06-01

    Studying paradoxical sleep homeostasis requires the specific and efficient deprivation of paradoxical sleep and the evaluation of the subsequent recovery period. With this aim, the small-platforms-over-water technique has been used extensively in rats, but only rare studies were conducted in mice, with no sleep data reported during deprivation. Mice are used increasingly with the emergence of transgenic mice and technologies such as optogenetics, raising the need for a reliable method to manipulate paradoxical sleep. To fulfil this need, we refined this deprivation method and analysed vigilance states thoroughly during the entire protocol. We also studied activation of hypocretin/orexin and melanin-concentrating hormone neurones using Fos immunohistochemistry to verify whether mechanisms regulating paradoxical sleep in mice are similar to those in rats. We showed that 48 h of deprivation was highly efficient, with a residual amount of paradoxical sleep of only 2.2%. Slow wave sleep and wake quantities were similar to baseline, except during the first 4 h of deprivation, where slow wave sleep was strongly reduced. After deprivation, we observed a 124% increase in paradoxical sleep quantities during the first hour of rebound. In addition, 34% of hypocretin/orexin neurones were activated during deprivation, whereas melanin-concentrated hormone neurones were activated only during paradoxical sleep rebound. Corticosterone level showed a twofold increase after deprivation and returned to baseline level after 4 h of recovery. In summary, a fairly selective deprivation and a significant rebound of paradoxical sleep can be obtained in mice using the small-platforms-over-water method. As in rats, rebound is accompanied by a selective activation of melanin-concentrating hormone neurones. © 2014 European Sleep Research Society.

  18. Antagonistic interplay between hypocretin and leptin in the lateral hypothalamus regulates stress responses.

    Science.gov (United States)

    Bonnavion, Patricia; Jackson, Alexander C; Carter, Matthew E; de Lecea, Luis

    2015-02-19

    The hypothalamic-pituitary-adrenal (HPA) axis functions to coordinate behavioural and physiological responses to stress in a manner that depends on the behavioural state of the organism. However, the mechanisms through which arousal and metabolic states influence the HPA axis are poorly understood. Here using optogenetic approaches in mice, we show that neurons that produce hypocretin (Hcrt)/orexin in the lateral hypothalamic area (LHA) regulate corticosterone release and a variety of behaviours and physiological hallmarks of the stress response. Interestingly, we found that Hcrt neuronal activity and Hcrt-mediated stress responses were inhibited by the satiety hormone leptin, which acts, in part, through a network of leptin-sensitive neurons in the LHA. These data demonstrate how peripheral metabolic signals interact with hypothalamic neurons to coordinate stress and arousal and suggest one mechanism through which hyperarousal or altered metabolic states may be linked with abnormal stress responses.

  19. Hypocretin/orexin neurons contribute to hippocampus-dependent social memory and synaptic plasticity in mice.

    Science.gov (United States)

    Yang, Liya; Zou, Bende; Xiong, Xiaoxing; Pascual, Conrado; Xie, James; Malik, Adam; Xie, Julian; Sakurai, Takeshi; Xie, Xinmin Simon

    2013-03-20

    Hypocretin/orexin (Hcrt)-producing neurons in the lateral hypothalamus project throughout the brain, including to the hippocampus, where Hcrt receptors are widely expressed. Hcrt neurons activate these targets to orchestrate global arousal state, wake-sleep architecture, energy homeostasis, stress adaptation, and reward behaviors. Recently, Hcrt has been implicated in cognitive functions and social interaction. In the present study, we tested the hypothesis that Hcrt neurons are critical to social interaction, particularly social memory, using neurobehavioral assessment and electrophysiological approaches. The validated "two-enclosure homecage test" devices and procedure were used to test sociability, preference for social novelty (social novelty), and recognition memory. A conventional direct contact social test was conducted to corroborate the findings. We found that adult orexin/ataxin-3-transgenic (AT) mice, in which Hcrt neurons degenerate by 3 months of age, displayed normal sociability and social novelty with respect to their wild-type littermates. However, AT mice displayed deficits in long-term social memory. Nasal administration of exogenous Hcrt-1 restored social memory to an extent in AT mice. Hippocampal slices taken from AT mice exhibited decreases in degree of paired-pulse facilitation and magnitude of long-term potentiation, despite displaying normal basal synaptic neurotransmission in the CA1 area compared to wild-type hippocampal slices. AT hippocampi had lower levels of phosphorylated cAMP response element-binding protein (pCREB), an activity-dependent transcription factor important for synaptic plasticity and long-term memory storage. Our studies demonstrate that Hcrt neurons play an important role in the consolidation of social recognition memory, at least in part through enhancements of hippocampal synaptic plasticity and cAMP response element-binding protein phosphorylation.

  20. Orexin Receptor Multimerization versus Functional Interactions: Neuropharmacological Implications for Opioid and Cannabinoid Signalling and Pharmacogenetics

    Directory of Open Access Journals (Sweden)

    Miles D. Thompson

    2017-10-01

    Full Text Available Orexins/hypocretins are neuropeptides formed by proteolytic cleavage of a precursor peptide, which are produced by neurons found in the lateral hypothalamus. The G protein-coupled receptors (GPCRs for these ligands, the OX1 and OX2 orexin receptors, are more widely expressed throughout the central nervous system. The orexin/hypocretin system has been implicated in many pathways, and its dysregulation is under investigation in a number of diseases. Disorders in which orexinergic mechanisms are being investigated include narcolepsy, idiopathic sleep disorders, cluster headache and migraine. Human narcolepsy has been associated with orexin deficiency; however, it has only rarely been attributed to mutations in the gene encoding the precursor peptide. While gene variations within the canine OX2 gene hcrtr2 have been directly linked with narcolepsy, the majority of human orexin receptor variants are weakly associated with diseases (the idiopathic sleep disorders, cluster headache and polydipsia-hyponatremia in schizophrenia or are of potential pharmacogenetic significance. Evidence for functional and/or heterodimerization between wild-type variant orexin receptors and opioid and cannabinoid receptors is discussed in the context of its relevance to depression and epilepsy.

  1. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice.

    Science.gov (United States)

    Lopez, Marcelo F; Moorman, David E; Aston-Jones, Gary; Becker, Howard C

    2016-04-01

    The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol-dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. The hypocretins and the reward function: what have we learned so far?

    Directory of Open Access Journals (Sweden)

    Benjamin eBoutrel

    2013-06-01

    Full Text Available A general consensus acknowledges that drug consumption (including alcohol, tobacco and illicit drugs constitutes the leading cause of preventable death worldwide. Dramatically, drug abuse is not only a major cause of mortality. The comorbid long-term debilitating effects also significantly deteriorates the quality of life of individuals suffering from addiction disorders. Despite the large body of evidence delineating the cellular and molecular adaptations induced by chronic drug consumption, the brain mechanisms responsible for drug craving and relapse remain insufficiently understood, and even the most recent developments in the field have not brought significant improvement in the management of drug dependence. Though, recent preclinical evidence suggests that disrupting the hypocretin (orexin system may serve as an anticraving medication therapy. Here, we discuss how the hypocretins, which orchestrate normal wakefulness, metabolic health and the execution of goal-oriented behaviors, may be compromised and contribute to elicit compulsive drug seeking. We propose an overview on the most recent studies demonstrating an important role for the hypocretin neuropeptide system in the regulation of drug reward and the prevention of drug relapse, and we question the relevance of disrupting the hypocretin system to alleviate symptoms of drug addiction.

  3. Role of the Orexin System on the Hypothalamus-Pituitary-Thyroid Axis

    Science.gov (United States)

    Messina, Antonietta; De Fusco, Carolina; Monda, Vincenzo; Esposito, Maria; Moscatelli, Fiorenzo; Valenzano, Anna; Carotenuto, Marco; Viggiano, Emanuela; Chieffi, Sergio; De Luca, Vincenzo; Cibelli, Giuseppe; Monda, Marcellino; Messina, Giovanni

    2016-01-01

    Hypocretin/orexin (ORX) are two hypothalamic neuropeptides discovered in 1998. Since their discovery, they have been one of the most studied neuropeptide systems because of their projecting fields innervating various brain areas. The orexinergic system is tied to sleep-wakefulness cycle, and narcolepsy is a consequence of their system hypofunction. Orexinergic system is also involved in many other autonomic functions such as feeding, thermoregulation, cardiovascular and neuroendocrine regulation. The main aim of this mini review article is to investigate the relationship between ORX and thyroid system regulation. Although knowledge about the ORX system is evolving, its putative effects on hypothalamic-pituitary-thyroid (HPT) axis still appear unclear. We analyzed some studies about ORX control of HPT axis to know better the relationship between them. The studies that were analyzed suggest Hypocretin/ORX to modulate the thyroid regulation, but the nature (excitatory or inhibitory) of this possible interaction remains actually unclear and needs to be confirmed. PMID:27610076

  4. Hypocretin-1 receptors regulate the reinforcing and reward-enhancing effects of cocaine: Pharmacological and behavioral genetics evidence

    Directory of Open Access Journals (Sweden)

    Jonathan eHollander

    2012-07-01

    Full Text Available Considerable evidence suggests that transmission at hypocretin-1 (orexin-1 receptors (Hcrt-R1 plays an important role in the reinstatement of extinguished cocaine-seeking behaviors in rodents. However, far less is known about the role for hypocretin transmission in regulating ongoing cocaine-taking behavior. Here, we investigated the effects of the selective Hcrt-R1 antagonist SB-334867 on cocaine intake, as measured by intravenous (IV cocaine self-administration in rats. The stimulatory effects of cocaine on brain reward systems contribute to the establishment and maintenance of cocaine-taking behaviors. Therefore, we also assessed the effects of SB-334867 on the reward-enhancing properties of cocaine, as measured by cocaine-induced lowering of intracranial self-stimulation (ICSS thresholds. Finally, to definitively establish a role for Hcrt-R1 in regulating cocaine intake, we assessed IV cocaine self-administration in Hcrt-R1 knockout mice. We found that SB-334867 (1-4 mg/kg dose-dependently decreased cocaine (0.5 mg/kg/infusion self-administration in rats but did not alter responding for food rewards under the same schedule of reinforcement. This suggests that SB-334867 decreased cocaine reinforcement without negatively impacting operant performance. SB-334867 (1-4 mg/kg also dose-dependently attenuated the stimulatory effects of cocaine (10 mg/kg on brain reward systems, as measured by reversal of cocaine-induced lowering of ICSS thresholds in rats. Finally, we found that Hcrt-R1 knockout mice self-administered far less cocaine than wildtype mice across the entire dose-response function. These data demonstrate that Hcrt-R1 play an important role in regulating the reinforcing and reward-enhancing properties of cocaine, and suggest that hypocretin transmission is likely essential for establishing and maintaining the cocaine habit in human addicts.

  5. The excitatory/inhibitory input to orexin/hypocretin neuron soma undergoes day/night reorganization.

    Science.gov (United States)

    Laperchia, Claudia; Imperatore, Roberta; Azeez, Idris A; Del Gallo, Federico; Bertini, Giuseppe; Grassi-Zucconi, Gigliola; Cristino, Luigia; Bentivoglio, Marina

    2017-11-01

    Orexin (OX)/hypocretin-containing neurons are main regulators of wakefulness stability, arousal, and energy homeostasis. Their activity varies in relation to the animal's behavioral state. We here tested whether such variation is subserved by synaptic plasticity phenomena in basal conditions. Mice were sacrificed during day or night, at times when sleep or wake, respectively, predominates, as assessed by electroencephalography in matched mice. Triple immunofluorescence was used to visualize OX-A perikarya and varicosities containing the vesicular glutamate transporter (VGluT)2 or the vesicular GABA transporter (VGAT) combined with synaptophysin (Syn) as a presynaptic marker. Appositions on OX-A + somata were quantitatively analyzed in pairs of sections in epifluorescence and confocal microscopy. The combined total number of glutamatergic (Syn + /VGluT2 + ) and GABAergic (Syn + /VGAT + ) varicosities apposed to OX-A somata was similar during day and night. However, glutamatergic varicosities were significantly more numerous at night, whereas GABAergic varicosities prevailed in the day. Triple immunofluorescence in confocal microscopy was employed to visualize synapse scaffold proteins as postsynaptic markers and confirmed the nighttime prevalence of VGluT2 + together with postsynaptic density protein 95 + excitatory contacts, and daytime prevalence of VGAT + together with gephyrin + inhibitory contacts, while also showing that they formed synapses on OX-A + cell bodies. The findings reveal a daily reorganization of axosomatic synapses in orexinergic neurons, with a switch from a prevalence of excitatory innervation at a time corresponding to wakefulness to a prevalence of inhibitory innervations in the antiphase, at a time corresponding to sleep. This reorganization could represent a key mechanism of plasticity of the orexinergic network in basal conditions.

  6. Activation of orexin/hypocretin neurons is associated with individual differences in cued fear extinction.

    Science.gov (United States)

    Sharko, Amanda C; Fadel, Jim R; Kaigler, Kris F; Wilson, Marlene A

    2017-09-01

    freezing during extinction learning was positively correlated with the percentage of activated orexin neurons in both the lateral and medial hypothalamic regions. No differences in the overall density of orexin neurons or Fos activation were seen between extinction phenotypes. Although correlative, our results support other studies implicating a role of the orexinergic system in regulating extinction of conditioned responses to threat. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Tandem-pore K+ channels mediate inhibition of orexin neurons by glucose

    DEFF Research Database (Denmark)

    Burdakov, Denis; Jensen, Lise T; Alexopoulos, Haris

    2006-01-01

    Glucose-inhibited neurons orchestrate behavior and metabolism according to body energy levels, but how glucose inhibits these cells is unknown. We studied glucose inhibition of orexin/hypocretin neurons, which promote wakefulness (their loss causes narcolepsy) and also regulate metabolism...... and reward. Here we demonstrate that their inhibition by glucose is mediated by ion channels not previously implicated in central or peripheral glucose sensing: tandem-pore K(+) (K(2P)) channels. Importantly, we show that this electrical mechanism is sufficiently sensitive to encode variations in glucose...... levels reflecting those occurring physiologically between normal meals. Moreover, we provide evidence that glucose acts at an extracellular site on orexin neurons, and this information is transmitted to the channels by an intracellular intermediary that is not ATP, Ca(2+), or glucose itself...

  8. Narcolepsy and Orexins: An Example of Progress in Sleep Research

    Science.gov (United States)

    De la Herrán-Arita, Alberto K.; Guerra-Crespo, Magdalena; Drucker-Colín, René

    2011-01-01

    Narcolepsy is a chronic neurodegenerative disease caused by a deficiency of orexin-producing neurons in the lateral hypothalamus. It is clinically characterized by excessive daytime sleepiness and by intrusions into wakefulness of physiological aspects of rapid eye movement sleep such as cataplexy, sleep paralysis, and hypnagogic hallucinations. The major pathophysiology of narcolepsy has been recently described on the bases of the discovery of the neuropeptides named orexins (hypocretins) in 1998; considerable evidence, summarized below, demonstrates that narcolepsy is the result of alterations in the genes involved in the pathology of the orexin ligand or its receptor. Deficient orexin transmission is sufficient to produce narcolepsy, as we describe here, animal models with dysregulated orexin signaling exhibit a narcolepsy-like phenotype. Remarkably, these narcoleptic models have different alterations of the orexinergic circuit, this diversity provide us with the means for making comparison, and have a better understanding of orexin-cell physiology. It is of particular interest that the most remarkable findings regarding this sleep disorder were fortuitous and due to keen observations. Sleep is a highly intricate and regulated state, and narcolepsy is a disorder that still remains as one of the unsolved mysteries in science. Nevertheless, advances and development of technology in neuroscience will provide us with the necessary tools to unravel the narcolepsy puzzle in the near future. Through an evaluation of the scientific literature we traced an updated picture of narcolepsy and orexins in order to provide insight into the means by which neurobiological knowledge is constructed. PMID:21541306

  9. Narcolepsy and Orexins: An Example of Progress in Sleep Research

    Directory of Open Access Journals (Sweden)

    Alberto K De La Herrán-Arita

    2011-04-01

    Full Text Available Narcolepsy is a chronic neurodegenerative disease caused by a deficiency of orexin-producing neurons in the lateral hypothalamus (LH. It is clinically characterized by excessive daytime sleepiness and by intrusions into wakefulness of physiological aspects of rapid eye movement (REM sleep such as cataplexy, sleep paralysis and hypnagogic hallucinations. The major pathophysiology of narcolepsy has been recently described on the bases of the discovery of the neuropeptides named orexins (hypocretins in 1998; considerable evidence, summarized below, demonstrates that narcolepsy is the result of alterations in the genes involved in the pathology of the orexin ligand or its receptor. Deficient orexin transmission is sufficient to produce narcolepsy, as we describe here, animal models with dysregulated orexin signaling exhibit a narcolepsy-like phenotype. Remarkably, these narcoleptic models have different alterations of the orexinergic circuit, this diversity provide us with the means for making comparison, and have a better understanding of orexin cell physiology.It is of particular interest that the most remarkable findings regarding this sleep disorder were fortuitous and due to keen observations. Sleep is a highly intricate and regulated state, and narcolepsy is a disorder that still remains as one of the unsolved mysteries in science. Nevertheless, advances and development of technology in neuroscience will provide us with the necessary tools to unravel the narcolepsy puzzle in the near future.Through an evaluation of the scientific literature we traced an updated picture of narcolepsy and orexins in order to provide insight into the means by which neurobiological knowledge is constructed.

  10. Cocaine and nicotine research illustrates a range of hypocretin mechanisms in addiction.

    Science.gov (United States)

    Baimel, Corey; Borgland, Stephanie L; Corrigall, William

    2012-01-01

    Hypocretins (also known as orexins) are neuropeptides synthesized in the lateral hypothalamus and perifornical region and projecting widely throughout the brain. They play an important modulatory role in plasticity related to addictive behavior. Hypocretin signaling to the ventral tegmental area (VTA) promotes synaptic plasticity by potentiating glutamatergic inputs to dopamine neurons and is required for the plasticity induced by stimulant drugs like cocaine. Plasticity in the VTA leads to increased output of dopamine neurons and increased release of dopamine in projection areas, which is associated with the development of addiction-related behaviors. Antagonists of hypocretin receptors inhibit some of these behaviors, particularly those with high effort requirements, suggesting a significant role of hypocretin in the motivation to obtain drugs. Furthermore, hypocretin neurons are also targeted by drugs of abuse, such as nicotine. Projections of hypocretin neurons to regions beyond the VTA may also play a significant role in motivation and addiction. Taken together, the hypocretin system may be a prime drug target for treatment of addiction and related disorders. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Hypocretin and GABA interact in the pontine reticular formation to increase wakefulness.

    Science.gov (United States)

    Brevig, Holly N; Watson, Christopher J; Lydic, Ralph; Baghdoyan, Helen A

    2010-10-01

    Hypocretin-1/orexin A administered directly into the oral part of rat pontine reticular formation (PnO) causes an increase in wakefulness and extracellular gamma-aminobutyric acid (GABA) levels. The receptors in the PnO that mediate these effects have not been identified. Therefore, this study tested the hypothesis that the increase in wakefulness caused by administration of hypocretin-1 into the PnO occurs via activation of GABAA receptors and hypocretin receptors. Within/between subjects. University of Michigan. Twenty-three adult male Crl:CD*(SD) (Sprague Dawley) rats. Microinjection of hypocretin-1, bicuculline (GABAA receptor antagonist), SB-334867 (hypocretin receptor-1 antagonist), and Ringer solution (vehicle control) into the PnO. Hypocretin-1 caused a significant concentration-dependent increase in wakefulness and decrease in rapid eye movement (REM) sleep and non-REM (NREM) sleep. Coadministration of SB-334867 and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in both the NREM and REM phases of sleep. Coadministration of bicuculline and hypocretin-1 blocked the hypocretin-1-induced increase in wakefulness and decrease in NREM sleep caused by hypocretin-1. The increase in wakefulness caused by administering hypocretin-1 to the PnO is mediated by hypocretin receptors and GABAA receptors in the PnO. These results show for the first time that hypocretinergic and GABAergic transmission in the PnO can interact to promote wakefulness.

  12. Concurrent and robust regulation of feeding behaviors and metabolism by orexin neurons.

    Science.gov (United States)

    Inutsuka, Ayumu; Inui, Azusa; Tabuchi, Sawako; Tsunematsu, Tomomi; Lazarus, Michael; Yamanaka, Akihiro

    2014-10-01

    Orexin neurons in the hypothalamus regulate energy homeostasis by coordinating various physiological responses. Past studies have shown the role of the orexin peptide itself; however, orexin neurons contain not only orexin but also other neurotransmitters such as glutamate and dynorphin. In this study, we examined the physiological role of orexin neurons in feeding behavior and metabolism by pharmacogenetic activation and chronic ablation. We generated novel orexin-Cre mice and utilized Cre-dependent adeno-associated virus vectors to express Gq-coupled modified GPCR, hM3Dq or diphtheria toxin fragment A in orexin neurons. By intraperitoneal injection of clozapine-N oxide in orexin-Cre mice expressing hM3Dq in orexin neurons, we could selectively manipulate the activity of orexin neurons. Pharmacogenetic stimulation of orexin neurons simultaneously increased locomotive activity, food intake, water intake and the respiratory exchange ratio (RER). Elevation of blood glucose levels and RER persisted even after locomotion and feeding behaviors returned to basal levels. Accordantly, 83% ablation of orexin neurons resulted in decreased food and water intake, while 70% ablation had almost no effect on these parameters. Our results indicate that orexin neurons play an integral role in regulation of both feeding behavior and metabolism. This regulation is so robust that greater than 80% of orexin neurons were ablated before significant changes in feeding behavior emerged. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Hypocretin measurement: shelf age of radioimmunoassay kit, but not freezer time, influences assay variability.

    Science.gov (United States)

    Keating, Glenda; Bliwise, Donald L; Saini, Prabhjyot; Rye, David B; Trotti, Lynn Marie

    2017-09-01

    The hypothalamic peptide hypocretin 1 (orexin A) may be assayed in cerebrospinal fluid to diagnose narcolepsy type 1. This testing is not commercially available, and factors contributing to assay variability have not previously been comprehensively explored. In the present study, cerebrospinal fluid hypocretin concentrations were determined in duplicate in 155 patient samples, across a range of sleep disorders. Intra-assay variability of these measures was analyzed. Inter-assay correlation between samples tested at Emory and at Stanford was high (r = 0.79, p hypocretin values, such that kits closer to expiration exhibit significantly more variability.

  14. Sleep disorders, obesity, and aging: the role of orexin.

    Science.gov (United States)

    Nixon, Joshua P; Mavanji, Vijayakumar; Butterick, Tammy A; Billington, Charles J; Kotz, Catherine M; Teske, Jennifer A

    2015-03-01

    The hypothalamic neuropeptides orexin A and B (hypocretin 1 and 2) are important homeostatic mediators of central control of energy metabolism and maintenance of sleep/wake states. Dysregulation or loss of orexin signaling has been linked to narcolepsy, obesity, and age-related disorders. In this review, we present an overview of our current understanding of orexin function, focusing on sleep disorders, energy balance, and aging, in both rodents and humans. We first discuss animal models used in studies of obesity and sleep, including loss of function using transgenic or viral-mediated approaches, gain of function models using exogenous delivery of orexin receptor agonist, and naturally-occurring models in which orexin responsiveness varies by individual. We next explore rodent models of orexin in aging, presenting evidence that orexin loss contributes to age-related changes in sleep and energy balance. In the next section, we focus on clinical importance of orexin in human obesity, sleep, and aging. We include discussion of orexin loss in narcolepsy and potential importance of orexin in insomnia, correlations between animal and human studies of age-related decline, and evidence for orexin involvement in age-related changes in cognitive performance. Finally, we present a summary of recent studies of orexin in neurodegenerative disease. We conclude that orexin acts as an integrative homeostatic signal influencing numerous brain regions, and that this pivotal role results in potential dysregulation of multiple physiological processes when orexin signaling is disrupted or lost. Published by Elsevier B.V.

  15. Early expression of hypocretin/orexin in the chick embryo brain.

    Directory of Open Access Journals (Sweden)

    Kyle E Godden

    Full Text Available Hypocretin/Orexin (H/O neuropeptides are released by a discrete group of neurons in the vertebrate hypothalamus which play a pivotal role in the maintenance of waking behavior and brain state control. Previous studies have indicated that the H/O neuronal development differs between mammals and fish; H/O peptide-expressing cells are detectable during the earliest stages of brain morphogenesis in fish, but only towards the end of brain morphogenesis (by ∼ 85% of embryonic development in rats. The developmental emergence of H/O neurons has never been previously described in birds. With the goal of determining whether the chick developmental pattern was more similar to that of mammals or of fish, we investigated the emergence of H/O-expressing cells in the brain of chick embryos of different ages using immunohistochemistry. Post-natal chick brains were included in order to compare the spatial distribution of H/O cells with that of other vertebrates. We found that H/O-expressing cells appear to originate from two separate places in the region of the diencephalic proliferative zone. These developing cells express the H/O neuropeptide at a comparatively early age relative to rodents (already visible at 14% of the way through fetal development, thus bearing a closer resemblance to fish. The H/O-expressing cell population proliferates to a large number of cells by a relatively early embryonic age. As previously suggested, the distribution of H/O neurons is intermediate between that of mammalian and non-mammalian vertebrates. This work suggests that, in addition to its roles in developed brains, the H/O peptide may play an important role in the early embryonic development of non-mammalian vertebrates.

  16. Crystal structure of the human OX2 orexin receptor bound to the insomnia drug suvorexant

    Science.gov (United States)

    Yin, Jie; Mobarec, Juan Carlos; Kolb, Peter; Rosenbaum, Daniel M.

    2015-03-01

    The orexin (also known as hypocretin) G protein-coupled receptors (GPCRs) respond to orexin neuropeptides in the central nervous system to regulate sleep and other behavioural functions in humans. Defects in orexin signalling are responsible for the human diseases of narcolepsy and cataplexy; inhibition of orexin receptors is an effective therapy for insomnia. The human OX2 receptor (OX2R) belongs to the β branch of the rhodopsin family of GPCRs, and can bind to diverse compounds including the native agonist peptides orexin-A and orexin-B and the potent therapeutic inhibitor suvorexant. Here, using lipid-mediated crystallization and protein engineering with a novel fusion chimaera, we solved the structure of the human OX2R bound to suvorexant at 2.5 Å resolution. The structure reveals how suvorexant adopts a π-stacked horseshoe-like conformation and binds to the receptor deep in the orthosteric pocket, stabilizing a network of extracellular salt bridges and blocking transmembrane helix motions necessary for activation. Computational docking suggests how other classes of synthetic antagonists may interact with the receptor at a similar position in an analogous π-stacked fashion. Elucidation of the molecular architecture of the human OX2R expands our understanding of peptidergic GPCR ligand recognition and will aid further efforts to modulate orexin signalling for therapeutic ends.

  17. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner.

    Science.gov (United States)

    Moorman, David E; James, Morgan H; Kilroy, Elisabeth A; Aston-Jones, Gary

    2016-03-01

    Orexin (ORX) (also known as hypocretin) neurons are located exclusively in the posterior hypothalamus, and are involved in a wide range of behaviours, including motivation for drugs of abuse such as alcohol. Hypothalamic subregions contain functionally distinct populations of ORX neurons that may play different roles in regulating drug-motivated and alcohol-motivated behaviours. To investigate the role of ORX neurons in ethanol (EtOH) seeking, we measured Fos activation of ORX neurons in rats following three different measures of EtOH seeking and preference: (i) context-induced reinstatement, or ABA renewal; (ii) cue-induced reinstatement of extinguished responding for EtOH; and (iii) a home cage task in which preference for EtOH (vs. water) was measured in the absence of either reinforcer. We found significant activation of ORX neurons in multiple subregions across all three behavioural tests. Notably, ORX neuron activation in the lateral hypothalamus correlated with the degree of seeking in context reinstatement and the degree of preference in home cage preference testing. In addition, Fos activation in ORX neurons in the dorsomedial hypothalamic and perifornical areas was correlated with context and home cage seeking/preference, respectively. Surprisingly, we found no relationship between the degree of cue-induced reinstatement and ORX neuron activation in any region, despite robust activation overall during reinstatement. These results demonstrate a strong relationship between ORX neuron activation and EtOH seeking/preference, but one that is differentially expressed across ORX field subregions, depending on reinstatement modality. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  18. Orexin Receptor Targets for Anti-Relapse Medication Development in Drug Addiction

    Directory of Open Access Journals (Sweden)

    Ronald E. See

    2011-06-01

    Full Text Available Drug addiction is a chronic illness characterized by high rates of relapse. Relapse to drug use can be triggered by re-exposure to drug-associated cues, stressful events, or the drug itself after a period of abstinence. Pharmacological intervention to reduce the impact of relapse-instigating factors offers a promising target for addiction treatment. Growing evidence has implicated an important role of the orexin/hypocretin system in drug reward and drug-seeking, including animal models of relapse. Here, we review the evidence for the role of orexins in modulating reward and drug-seeking in animal models of addiction and the potential for orexin receptors as specific targets for anti-relapse medication approaches.

  19. Attenuation of saccharin-seeking in rats by orexin/hypocretin receptor 1 antagonist.

    Science.gov (United States)

    Cason, Angie M; Aston-Jones, Gary

    2013-08-01

    The orexin (Orx)/hypocretin system has been implicated in reward-seeking, especially for highly salient food and drug rewards. We recently demonstrated that signaling at the OxR1 receptor is involved in sucrose reinforcement and reinstatement of sucrose-seeking elicited by sucrose-paired cues in food-restricted rats. Because sucrose reinforcement has both a hedonic and caloric component, it remains unknown what aspect of this reward drives its reinforcing value. The present study examined the involvement of the Orx system in operant responding for saccharin, a noncaloric, hedonic (sweet) reward, and in cue-induced reinstatement of extinguished saccharin-seeking in ad libitum-fed vs food-restricted male subjects. Male Sprague Dawley rats were fed ad libitum or food-restricted and trained to self-administer saccharin. We determined the effects of pretreatment with the OxR1 receptor antagonist SB-334867 (SB; 10-30 mg/kg) on fixed ratio (FR) saccharin self-administration and on cue-induced reinstatement of extinguished saccharin-seeking. SB decreased responding and number of reinforcers earned during FR responding for saccharin and decreased cue-induced reinstatement of extinguished saccharin-seeking. All of these effects were obtained similarly in food-restricted and ad libitum-fed rats. These results indicate that signaling at the OxR1 receptor is involved in saccharin reinforcement and reinstatement of saccharin-seeking elicited by saccharin-paired cues regardless of food restriction. These findings lead us to conclude that the Orx system contributes to the motivational effects of hedonic food rewards, independently of caloric value and homeostatic needs.

  20. Cerebrospinal fluid melanin-concentrating hormone (MCH and hypocretin-1 (HCRT-1, orexin-A in Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Frank M Schmidt

    Full Text Available Ancillary to decline in cognitive abilities, patients with Alzheimer's disease (AD frequently suffer from behavioural and psychological symptoms of dementia (BPSD. Hypothalamic polypeptides such as melanin-concentrating hormone (MCH and hypocretin-1 (HCRT-1, orexin-A are promoters of sleep-wake regulation and energy homeostasis and are found to impact on cognitive performance. To investigate the role of MCH and HCRT-1 in AD, cerebrospinal fluid (CSF levels were measured in 33 patients with AD and 33 healthy subjects (HS using a fluorescence immunoassay (FIA. A significant main effect of diagnosis (F(1,62 = 8.490, p<0.01 on MCH levels was found between AD (93.76±13.47 pg/mL and HS (84.65±11.40 pg/mL. MCH correlated with T-tau (r = 0.47; p<0.01 and P-tau (r = 0.404; p<0.05 in the AD but not in the HS. CSF-MCH correlated negatively with MMSE scores in the AD (r = -0.362, p<0.05 and was increased in more severely affected patients (MMSE≤20 compared to HS (p<0.001 and BPSD-positive patients compared to HS (p<0.05. In CSF-HCRT-1, a significant main effect of sex (F(1,31 = 4.400, p<0.05 with elevated levels in females (90.93±17.37 pg/mL vs. 82.73±15.39 pg/mL was found whereas diagnosis and the sex*diagnosis interaction were not significant. Elevated levels of MCH in patients suffering from AD and correlation with Tau and severity of cognitive impairment point towards an impact of MCH in AD. Gender differences of CSF-HCRT-1 controversially portend a previously reported gender dependence of HCRT-1-regulation. Histochemical and actigraphic explorations are warranted to further elucidate alterations of hypothalamic transmitter regulation in AD.

  1. Cerebrospinal Fluid Hypocretin-1 (Orexin-A Level Fluctuates with Season and Correlates with Day Length.

    Directory of Open Access Journals (Sweden)

    Kim Boddum

    Full Text Available The hypocretin/orexin neuropeptides (hcrt are key players in the control of sleep and wakefulness evidenced by the fact that lack of hcrt leads to the sleep disorder Narcolepsy Type 1. Sleep disturbances are common in mood disorders, and hcrt has been suggested to be poorly regulated in depressed subjects. To study seasonal variation in hcrt levels, we obtained data on hcrt-1 levels in the cerebrospinal fluid (CSF from 227 human individuals evaluated for central hypersomnias at a Danish sleep center. The samples were taken over a 4 year timespan, and obtained in the morning hours, thus avoiding impact of the diurnal hcrt variation. Hcrt-1 concentration was determined in a standardized radioimmunoassay. Using biometric data and sleep parameters, a multivariate regression analysis was performed. We found that the average monthly CSF hcrt-1 levels varied significantly across the seasons following a sine wave with its peak in the summer (June-July. The amplitude was 19.9 pg hcrt/mL [12.8-26.9] corresponding to a 10.6% increase in midsummer compared to winter. Factors found to significantly predict the hcrt-1 values were day length, presence of snow, and proximity to the Christmas holiday season. The hcrt-1 values from January were much higher than predicted from the model, suggestive of additional factors influencing the CSF hcrt-1 levels such as social interaction. This study provides evidence that human CSF hcrt-1 levels vary with season, correlating with day length. This finding could have implications for the understanding of winter tiredness, fatigue, and seasonal affective disorder. This is the first time a seasonal variation of hcrt-1 levels has been shown, demonstrating that the hcrt system is, like other neurotransmitter systems, subjected to long term modulation.

  2. Regulation by orexin of feeding behaviour and locomotor activity in the goldfish.

    Science.gov (United States)

    Nakamachi, T; Matsuda, K; Maruyama, K; Miura, T; Uchiyama, M; Funahashi, H; Sakurai, T; Shioda, S

    2006-04-01

    Orexin is a hypothalamic neuropeptide that is implicated in the regulation of feeding behaviour and the sleep-wakefulness cycle in mammals. However, in spite of a growing body of knowledge concerning orexin in mammals, the orexin system and its function have not been well studied in lower vertebrates. In the present study, we first examined the effect of feeding status on the orexin-like immunoreactivity (orexin-LI) and the expression of orexin mRNA in the goldfish brain. The number of cells showing orexin-LI in the hypothalamus of goldfish brain showed a significant increase in fasted fish and a significant decrease in glucose-injected fish. The expression level of orexin mRNA in the brains of fasted fish increased compared to that of fed fish. We also examined the effect of an i.c.v. injection of orexin or an anti-orexin serum on food intake and locomotor activity in the goldfish. Administration of orexin by i.c.v. injection induced a significant increase of food intake and locomotor activity, whereas i.p. injection of glucose or i.c.v. injection of anti-orexin serum decreased food consumption. These results indicate that the orexin functions as an orexigenic factor in the goldfish brain.

  3. Continuous intrathecal orexin delivery inhibits cataplexy in a murine model of narcolepsy.

    Science.gov (United States)

    Kaushik, Mahesh K; Aritake, Kosuke; Imanishi, Aya; Kanbayashi, Takashi; Ichikawa, Tadashi; Shimizu, Tetsuo; Urade, Yoshihiro; Yanagisawa, Masashi

    2018-06-05

    Narcolepsy-cataplexy is a chronic neurological disorder caused by loss of orexin (hypocretin)-producing neurons, associated with excessive daytime sleepiness, sleep attacks, cataplexy, sleep paralysis, hypnagogic hallucinations, and fragmentation of nighttime sleep. Currently, human narcolepsy is treated by providing symptomatic therapies, which can be associated with an array of side effects. Although peripherally administered orexin does not efficiently penetrate the blood-brain barrier, centrally delivered orexin can effectively alleviate narcoleptic symptoms in animal models. Chronic intrathecal drug infusion through an implantable pump is a clinically available strategy to treat a number of neurological diseases. Here we demonstrate that the narcoleptic symptoms of orexin knockout mice can be reversed by lumbar-level intrathecal orexin delivery. Orexin was delivered via a chronically implanted intrathecal catheter at the upper lumbar level. The computed tomographic scan confirmed that intrathecally administered contrast agent rapidly moved from the spinal cord to the brain. Intrathecally delivered orexin was detected in the brain by radioimmunoassay at levels comparable to endogenous orexin levels. Cataplexy and sleep-onset REM sleep were significantly decreased in orexin knockout mice during and long after slow infusion of orexin (1 nmol/1 µL/h). Sleep/wake states remained unchanged both quantitatively as well as qualitatively. Intrathecal orexin failed to induce any changes in double orexin receptor-1 and -2 knockout mice. This study supports the concept of intrathecal orexin delivery as a potential therapy for narcolepsy-cataplexy to improve the well-being of patients.

  4. Antidepressant effects of exercise are produced via suppression of hypocretin/orexin and melanin-concentrating hormone in the basolateral amygdala.

    Science.gov (United States)

    Kim, Tae-Kyung; Kim, Ji-Eun; Park, Jin-Young; Lee, Jung-Eun; Choi, Juli; Kim, Hannah; Lee, Eun-Hwa; Kim, Seung-Woo; Lee, Ja-Kyeong; Kang, Hyun-Sik; Han, Pyung-Lim

    2015-07-01

    Physical exercise is considered beneficial in the treatment of depression, but the underlying mechanism is not clearly understood. In the present study, we investigated the mechanism regulating antidepressant effects of exercise by focusing on the role of the amygdala using a well-defined animal model of depression. C57BL/6 mice treated with repeated restraint showed depression-like behaviors, which was counteracted by post-stress treatment with physical exercise. The two neuropeptides hypocretin/orexin (Hcrt/Orx) and melanin-concentrating hormone (MCH) were transcriptionally upregulated in the BLA after repeated stress, and their enhanced expression was downregulated by treatment with exercise, mirroring stress-induced depression-like behaviors and their reversal by exercise. Stereotaxic injection of either Hcrt/Orx peptide or MCH peptide within the BLA commonly increased phospho-CaMKIIα level and produced depression-like behaviors, mimicking the neural states in the BLA of mice subjected to repeated stress. In contrast, siRNA-mediated suppression of Hcrt/Orx or MCH in the BLA blocked stress-induced depression-like behaviors. Furthermore, siRNA-mediated inhibition of CaMKIIα in the BLA also counteracted stress-induced depression-like behaviors. Local injection of Hcrt/Orx peptide or MCH peptide within the BLA in exercise-treated animals blocked antidepressant-like effects of exercise. Together these results suggest that exercise produces antidepressant effects via suppression of Hcrt/Orx and MCH neural systems in the BLA. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Serotonin neurons in the dorsal raphe mediate the anticataplectic action of orexin neurons by reducing amygdala activity.

    Science.gov (United States)

    Hasegawa, Emi; Maejima, Takashi; Yoshida, Takayuki; Masseck, Olivia A; Herlitze, Stefan; Yoshioka, Mitsuhiro; Sakurai, Takeshi; Mieda, Michihiro

    2017-04-25

    Narcolepsy is a sleep disorder caused by the loss of orexin (hypocretin)-producing neurons and marked by excessive daytime sleepiness and a sudden weakening of muscle tone, or cataplexy, often triggered by strong emotions. In a mouse model for narcolepsy, we previously demonstrated that serotonin neurons of the dorsal raphe nucleus (DRN) mediate the suppression of cataplexy-like episodes (CLEs) by orexin neurons. Using an optogenetic tool, in this paper we show that the acute activation of DRN serotonin neuron terminals in the amygdala, but not in nuclei involved in regulating rapid eye-movement sleep and atonia, suppressed CLEs. Not only did stimulating serotonin nerve terminals reduce amygdala activity, but the chemogenetic inhibition of the amygdala using designer receptors exclusively activated by designer drugs also drastically decreased CLEs, whereas chemogenetic activation increased them. Moreover, the optogenetic inhibition of serotonin nerve terminals in the amygdala blocked the anticataplectic effects of orexin signaling in DRN serotonin neurons. Taken together, the results suggest that DRN serotonin neurons, as a downstream target of orexin neurons, inhibit cataplexy by reducing the activity of amygdala as a center for emotional processing.

  6. Orexin-A potentiates L-type calcium/barium currents in rat retinal ganglion cells.

    Science.gov (United States)

    Liu, F; Weng, S-J; Yang, X-L; Zhong, Y-M

    2015-10-01

    Two neuropeptides, orexin-A and orexin-B (also called hypocretin-1 and -2), have been implicated in sleep/wake regulation, feeding behaviors via the activation of two subtypes of G-protein-coupled receptors: orexin 1 and orexin 2 receptors (OX1R and OX2R). While the expression of orexins and orexin receptors is immunohistochemically revealed in retinal neurons, the function of these peptides in the retina is largely unknown. Using whole-cell patch-clamp recordings in rat retinal slices, we demonstrated that orexin-A increased L-type-like barium currents (IBa,L) in ganglion cells (GCs), and the effect was blocked by the selective OX1R antagonist SB334867, but not by the OX2R antagonist TCS OX2 29. The orexin-A effect was abolished by intracellular dialysis of GDP-β-S/GPAnt-2A, a Gq protein inhibitor, suggesting the mediation of Gq. Additionally, during internal dialysis of the phosphatidylinositol (PI)-phospholipase C (PLC) inhibitor U73122, orexin-A did not change the IBa,L of GCs, whereas the orexin-A effect persisted in the presence of the phosphatidylcholine (PC)-PLC inhibitor D609. The orexin-A-induced potentiation was not seen with internal infusion of Ca(2+)-free solution or when inositol 1,4,5-trisphosphate (IP3)-sensitive Ca(2+) release from intracellular stores was blocked by heparin/xestospongins-C. Moreover, the orexin-A effect was mimicked by the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate, but was eliminated when PKC was inhibited by bisindolylmaleimide IV (Bis-IV)/Gö6976. Neither adenosine 3',5'-cyclic monophosphate (cAMP)-protein kinase A (PKA) nor guanosine 3',5'-cyclic monophosphate (cGMP)-protein kinase G (PKG) signaling pathway was likely involved, as orexin-A persisted to potentiate the IBa,L of GCs no matter these two pathways were activated or inhibited. These results suggest that, by activating OX1R, orexin-A potentiates the IBa,L of rat GCs through a distinct Gq/PI-PLC/IP3/Ca(2+)/PKC signaling pathway. Copyright

  7. Hypocretin-2 saporin lesions of the ventrolateral periaquaductal gray (vlPAG increase REM sleep in hypocretin knockout mice.

    Directory of Open Access Journals (Sweden)

    Satvinder Kaur

    2009-07-01

    Full Text Available Ten years ago the sleep disorder narcolepsy was linked to the neuropeptide hypocretin (HCRT, also known as orexin. This disorder is characterized by excessive day time sleepiness, inappropriate triggering of rapid-eye movement (REM sleep and cataplexy, which is a sudden loss of muscle tone during waking. It is still not known how HCRT regulates REM sleep or muscle tone since HCRT neurons are localized only in the lateral hypothalamus while REM sleep and muscle atonia are generated from the brainstem. To identify a potential neuronal circuit, the neurotoxin hypocretin-2-saporin (HCRT2-SAP was used to lesion neurons in the ventral lateral periaquaductal gray (vlPAG. The first experiment utilized hypocretin knock-out (HCRT-ko mice with the expectation that deletion of both HCRT and its target neurons would exacerbate narcoleptic symptoms. Indeed, HCRT-ko mice (n = 8 given the neurotoxin HCRT2-SAP (16.5 ng/23nl/sec each side in the vlPAG had levels of REM sleep and sleep fragmentation that were considerably higher compared to HCRT-ko given saline (+39%; n = 7 or wildtype mice (+177%; n = 9. However, cataplexy attacks did not increase, nor were levels of wake or non-REM sleep changed. Experiment 2 determined the effects in mice where HCRT was present but the downstream target neurons in the vlPAG were deleted by the neurotoxin. This experiment utilized an FVB-transgenic strain of mice where eGFP identifies GABA neurons. We verified this and also determined that eGFP neurons were immunopositive for the HCRT-2 receptor. vlPAG lesions in these mice increased REM sleep (+79% versus saline controls and it was significantly correlated (r = 0.89 with loss of eGFP neurons. These results identify the vlPAG as one site that loses its inhibitory control over REM sleep, but does not cause cataplexy, as a result of hypocretin deficiency.

  8. Hypocretin as a Hub for Arousal and Motivation

    Directory of Open Access Journals (Sweden)

    Susan M. Tyree

    2018-06-01

    Full Text Available The lateral hypothalamus is comprised of a heterogeneous mix of neurons that serve to integrate and regulate sleep, feeding, stress, energy balance, reward, and motivated behavior. Within these populations, the hypocretin/orexin neurons are among the most well studied. Here, we provide an overview on how these neurons act as a central hub integrating sensory and physiological information to tune arousal and motivated behavior accordingly. We give special attention to their role in sleep-wake states and conditions of hyper-arousal, as is the case with stress-induced anxiety. We further discuss their roles in feeding, drug-seeking, and sexual behavior, which are all dependent on the motivational state of the animal. We further emphasize the application of powerful techniques, such as optogenetics, chemogenetics, and fiber photometry, to delineate the role these neurons play in lateral hypothalamic functions.

  9. Discovery of (1R,2S)-2-{[(2,4-Dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006): A Potent and Efficacious Oral Orexin Receptor Antagonist.

    Science.gov (United States)

    Yoshida, Yu; Naoe, Yoshimitsu; Terauchi, Taro; Ozaki, Fumihiro; Doko, Takashi; Takemura, Ayumi; Tanaka, Toshiaki; Sorimachi, Keiichi; Beuckmann, Carsten T; Suzuki, Michiyuki; Ueno, Takashi; Ozaki, Shunsuke; Yonaga, Masahiro

    2015-06-11

    The orexin/hypocretin receptors are a family of G protein-coupled receptors and consist of orexin-1 (OX1) and orexin-2 (OX2) receptor subtypes. Orexin receptors are expressed throughout the central nervous system and are involved in the regulation of the sleep/wake cycle. Because modulation of these receptors constitutes a promising target for novel treatments of disorders associated with the control of sleep and wakefulness, such as insomnia, the development of orexin receptor antagonists has emerged as an important focus in drug discovery research. Here, we report the design, synthesis, characterization, and structure-activity relationships (SARs) of novel orexin receptor antagonists. Various modifications made to the core structure of a previously developed compound (-)-5, the lead molecule, resulted in compounds with improved chemical and pharmacological profiles. The investigation afforded a potential therapeutic agent, (1R,2S)-2-{[(2,4-dimethylpyrimidin-5-yl)oxy]methyl}-2-(3-fluorophenyl)-N-(5-fluoropyridin-2-yl)cyclopropanecarboxamide (E2006), an orally active, potent orexin antagonist. The efficacy was demonstrated in mice in an in vivo study by using sleep parameter measurements.

  10. A comparative analysis of the distribution of immunoreactive orexin A and B in the brains of nocturnal and diurnal rodents

    Directory of Open Access Journals (Sweden)

    Nixon Joshua P

    2007-06-01

    Full Text Available Abstract Background The orexins (hypocretins are a family of peptides found primarily in neurons in the lateral hypothalamus. Although the orexinergic system is generally thought to be the same across species, the orexins are involved in behaviors which show considerable interspecific variability. There are few direct cross-species comparisons of the distributions of cells and fibers containing these peptides. Here, we addressed the possibility that there might be important species differences by systematically examining and directly comparing the distribution of orexinergic neurons and fibers within the forebrains of species with very different patterns of sleep-wake behavior. Methods We compared the distribution of orexin-immunoreactive cell bodies and fibers in two nocturnal species (the lab rat, Rattus norvegicus and the golden hamster, Mesocricetus auratus and two diurnal species (the Nile grass rat, Arvicanthis niloticus and the degu, Octodon degus. For each species, tissue from the olfactory bulbs through the brainstem was processed for immunoreactivity for orexin A and orexin B (hypocretin-1 and -2. The distribution of orexin-positive cells was noted for each species. Orexin fiber distribution and density was recorded and analyzed using a principal components factor analysis to aid in evaluating potential species differences. Results Orexin-positive cells were observed in the lateral hypothalamic area of each species, though there were differences with respect to distribution within this region. In addition, cells positive for orexin A but not orexin B were observed in the paraventricular nucleus of the lab rat and grass rat, and in the supraoptic nucleus of the lab rat, grass rat and hamster. Although the overall distributions of orexin A and B fibers were similar in the four species, some striking differences were noted, especially in the lateral mammillary nucleus, ventromedial hypothalamic nucleus and flocculus. Conclusion The orexin

  11. Role of innate and drug-induced dysregulation of brain stress and arousal systems in addiction: Focus on corticotropin-releasing factor, nociceptin/orphanin FQ, and orexin/hypocretin

    Science.gov (United States)

    Martin-Fardon, Rémi; Zorrilla, Eric P.; Ciccocioppo, Roberto; Weiss, Friedbert

    2010-01-01

    Stress-like symptoms are an integral part of acute and protracted drug withdrawal, and several lines of evidence have shown that dysregulation of brain stress systems, including the extrahypothalamic corticotropin-releasing factor (CRF) system, following long-term drug use is of major importance in maintaining drug and alcohol addiction. Recently, two other neuropeptide systems have attracted interest, the nociceptin/orphanin FQ (N/OFQ) and orexin/hypocretin (Orx/Hcrt) systems. N/OFQ participates in a wide range of physiological responses, and the hypothalamic Orx/Hcrt system helps regulate several physiological processes, including feeding, energy metabolism, and arousal. Moreover, these two systems have been suggested to participate in psychiatric disorders, including anxiety and drug addiction. Dysregulation of these systems by chronic drug exposure has been hypothesized to play a role in the maintenance of addiction and dependence. Recent evidence demonstrated that interactions between CRF-N/OFQ and CRF-Orx/Hcrt systems may be functionally relevant for the control of stress-related addictive behavior. The present review discusses recent findings that support the hypotheses of the participation and dysregulation of these systems in drug addiction and evaluates the current understanding of interactions among these stress-regulatory peptides. PMID:20026088

  12. Hypocretin/orexin antagonism enhances sleep-related adenosine and GABA neurotransmission in rat basal forebrain.

    Science.gov (United States)

    Vazquez-DeRose, Jacqueline; Schwartz, Michael D; Nguyen, Alexander T; Warrier, Deepti R; Gulati, Srishti; Mathew, Thomas K; Neylan, Thomas C; Kilduff, Thomas S

    2016-03-01

    Hypocretin/orexin (HCRT) neurons provide excitatory input to wake-promoting brain regions including the basal forebrain (BF). The dual HCRT receptor antagonist almorexant (ALM) decreases waking and increases sleep. We hypothesized that HCRT antagonists induce sleep, in part, through disfacilitation of BF neurons; consequently, ALM should have reduced efficacy in BF-lesioned (BFx) animals. To test this hypothesis, rats were given bilateral IgG-192-saporin injections, which predominantly targets cholinergic BF neurons. BFx and intact rats were then given oral ALM, the benzodiazepine agonist zolpidem (ZOL) or vehicle (VEH) at lights-out. ALM was less effective than ZOL at inducing sleep in BFx rats compared to controls. BF adenosine (ADO), γ-amino-butyric acid (GABA), and glutamate levels were then determined via microdialysis from intact, freely behaving rats following oral ALM, ZOL or VEH. ALM increased BF ADO and GABA levels during waking and mixed vigilance states, and preserved sleep-associated increases in GABA under low and high sleep pressure conditions. ALM infusion into the BF also enhanced cortical ADO release, demonstrating that HCRT input is critical for ADO signaling in the BF. In contrast, oral ZOL and BF-infused ZOL had no effect on ADO levels in either BF or cortex. ALM increased BF ADO (an endogenous sleep-promoting substance) and GABA (which is increased during normal sleep), and required an intact BF for maximal efficacy, whereas ZOL blocked sleep-associated BF GABA release, and required no functional contribution from the BF to induce sleep. ALM thus induces sleep by facilitating the neural mechanisms underlying the normal transition to sleep.

  13. Hypocretin neuron-specific transcriptome profiling identifies the sleep modulator Kcnh4a.

    Science.gov (United States)

    Yelin-Bekerman, Laura; Elbaz, Idan; Diber, Alex; Dahary, Dvir; Gibbs-Bar, Liron; Alon, Shahar; Lerer-Goldshtein, Tali; Appelbaum, Lior

    2015-10-01

    Sleep has been conserved throughout evolution; however, the molecular and neuronal mechanisms of sleep are largely unknown. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate sleep\\wake states, feeding, stress, and reward. To elucidate the mechanism that enables these various functions and to identify sleep regulators, we combined fluorescence cell sorting and RNA-seq in hcrt:EGFP zebrafish. Dozens of Hcrt-neuron-specific transcripts were identified and comprehensive high-resolution imaging revealed gene-specific localization in all or subsets of Hcrt neurons. Clusters of Hcrt-neuron-specific genes are predicted to be regulated by shared transcription factors. These findings show that Hcrt neurons are heterogeneous and that integrative molecular mechanisms orchestrate their diverse functions. The voltage-gated potassium channel Kcnh4a, which is expressed in all Hcrt neurons, was silenced by the CRISPR-mediated gene inactivation system. The mutant kcnh4a (kcnh4a(-/-)) larvae showed reduced sleep time and consolidation, specifically during the night, suggesting that Kcnh4a regulates sleep.

  14. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    Science.gov (United States)

    2012-09-01

    infantile febrile seizures), epilepsy, or brain infection caused by meningitis, encephalitis, or any other infectious agent. 7.) Systemic illness...not including infantile febrile seizures), epilepsy, or brain infection caused by meningitis, encephalitis, or any other infectious agent. 7...hyperalgesic effects of intrathecally- administered orexins in diabetic neuropathic pain model rats. Brain Res 1044: 76–86. 17. Mobarakeh JI, Takahashi K

  15. Progressive dopamine and hypocretin deficiencies in Parkinson's disease: is there an impact on sleep and wakefulness?

    Science.gov (United States)

    Wienecke, Miriam; Werth, Esther; Poryazova, Rositsa; Baumann-Vogel, Heide; Bassetti, Claudio L; Weller, Michael; Waldvogel, Daniel; Storch, Alexander; Baumann, Christian R

    2012-12-01

    Sleep-wake disturbances are frequent in patients with Parkinson's disease, but prospective controlled electrophysiological studies of sleep in those patients are surprisingly sparse, and the pathophysiology of sleep-wake disturbances in Parkinson's disease remains largely elusive. In particular, the impact of impaired dopaminergic and hypocretin (orexin) signalling on sleep and wakefulness in Parkinson's disease is still unknown. We performed a prospective, controlled electrophysiological study in patients with early and advanced Parkinson's disease, e.g. in subjects with presumably different levels of dopamine and hypocretin cell loss. We compared sleep laboratory tests and cerebrospinal fluid levels with hypocretin-deficient patients with narcolepsy with cataplexy, and with matched controls. Nocturnal sleep efficiency was most decreased in advanced Parkinson patients, and still lower in early Parkinson patients than in narcolepsy subjects. Excessive daytime sleepiness was most severe in narcolepsy patients. In Parkinson patients, objective sleepiness correlated with decrease of cerebrospinal fluid hypocretin levels, and repeated hypocretin measurements in two Parkinson patients revealed a decrease of levels over years. This suggests that dopamine and hypocretin deficiency differentially affect sleep and wakefulness in Parkinson's disease. Poorer sleep quality is linked to dopamine deficiency and other disease-related factors. Despite hypocretin cell loss in Parkinson's disease being only partial, disturbed hypocretin signalling is likely to contribute to excessive daytime sleepiness in Parkinson patients. © 2012 European Sleep Research Society.

  16. Effects of a newly developed potent orexin-2 receptor-selective antagonist Compound1m on sleep/wake states in mice

    Directory of Open Access Journals (Sweden)

    Keishi eEtori

    2014-01-01

    Full Text Available Orexins (also known as hypocretins, which are hypothalamic neuropeptides, play critical roles in the regulation of sleep/wakefulness states by activating two G-protein coupled receptors (GPCRs, orexin 1 (OX1R and orexin 2 receptors (OX2R. In order to know the difference between effects of OX2R-selective antagonists (2-SORA and dual orexin receptor antagonists (DORA, and to understand the mechanisms underlying orexin-mediated regulation of sleep/wakefulness states, we examined the effects of a newly developed 2-SORA, Compound 1m (C1m, and a DORA, suvorexant, on sleep/wakefulness states in C57BL/6J mice. After oral administration in the dark period, both C1m and suvorexant exhibited potent sleep-promoting properties with similar efficacy in a dose-dependent manner. While C1m did not increase NREM and REM sleep episode durations, suvorexant induced longer episode durations of NREM and REM sleep as compared with both the vehicle- and C1m-administered groups. When compounds were injected during light period, C1m did not show a significant change in sleep/wakefulness states in the light period, whereas suvorexant slightly but significantly increased the sleep time. We also found that C1m did not affect the time of REM sleep, while suvorexant markedly increased it. This suggests that although OX1R-mediated pathway plays a pivotal role in promoting wakefulness, OX1R-mediated pathway also plays an additional role. OX1R-mediated pathway also plays a role in suppression of REM sleep. Fos-immunostaining showed that both compounds affected the activity of arousal-related neurons with different patterns. These results suggest partly overlapping and partly distinct roles of orexin receptors in the regulation of sleep/wakefulness states.

  17. Orexin inputs to caudal raphé neurons involved in thermal, cardiovascular, and gastrointestinal regulation.

    Science.gov (United States)

    Berthoud, Hans-Rudolf; Patterson, Laurel M; Sutton, Gregory M; Morrison, Christopher; Zheng, Huiyuan

    2005-02-01

    Orexin-expressing neurons in the lateral hypothalamus with their wide projections throughout the brain are important for the regulation of sleep and wakefulness, ingestive behavior, and the coordination of these behaviors in the environmental context. To further identify downstream effector targets of the orexin system, we examined in detail orexin-A innervation of the caudal raphe nuclei in the medulla, known to harbor sympathetic preganglionic motor neurons involved in thermal, cardiovascular, and gastrointestinal regulation. All three components of the caudal raphe nuclei, raphe pallidus, raphe obscurus, and parapyramidal nucleus, are innervated by orexin-A-immunoreactive fibers. Using confocal microscopy, we demonstrate close anatomical appositions between varicose orexin-A immunoreactive axon profiles and sympathetic premotor neurons identified with either a transneuronal retrograde pseudorabies virus tracer injected into the interscapular brown fat pads, or with in situ hybridization of pro-TRH mRNA. Furthermore, orexin-A injected into the fourth ventricle induced c-Fos expression in the raphe pallidus and parapyramidal nucleus. These findings suggest that orexin neurons in the hypothalamus can modulate brown fat thermogenesis, cardiovascular, and gastrointestinal functions by acting directly on neurons in the caudal raphe nuclei, and support the idea that orexin's simultaneous stimulation of food intake and sympathetic activity might have evolved as a mechanism to stay alert while foraging.

  18. Rat hypocretin/orexin neurons are maintained in a depolarized state by TRPC channels.

    Directory of Open Access Journals (Sweden)

    Vesna Cvetkovic-Lopes

    Full Text Available In a previous study we proposed that the depolarized state of the wake-promoting hypocretin/orexin (hcrt/orx neurons was independent of synaptic inputs as it persisted in tetrodotoxin and low calcium/high magnesium solutions. Here we show first that these cells are hyperpolarized when external sodium is lowered, suggesting that non-selective cation channels (NSCCs could be involved. As canonical transient receptor channels (TRPCs are known to form NSCCs, we looked for TRPCs subunits using single-cell RT-PCR and found that TRPC6 mRNA was detectable in a small minority, TRPC1, TRPC3 and TRPC7 in a majority and TRPC4 and 5 in the vast majority (∼90% of hcrt/orx neurons. Using intracellular applications of TRPC antibodies against subunits known to form NSCCs, we then found that only TRPC5 antibodies elicited an outward current, together with hyperpolarization and inhibition of the cells. These effects were blocked by co-application of a TRPC5 antigen peptide. Voltage-clamp ramps in the presence or absence of TRPC5 antibodies indicated the presence of a current with a reversal potential close to -15 mV. Application of the non-selective TRPC channel blocker, flufenamic acid, had a similar effect, which could be occluded in cells pre-loaded with TRPC5 antibodies. Finally, using the same TRPC5 antibodies we found that most hcrt/orx cells show immunostaining for the TRPC5 subunit. These results suggest that hcrt/orx neurons are endowed with a constitutively active non-selective cation current which depends on TRPC channels containing the TRPC5 subunit and which is responsible for the depolarized and active state of these cells.

  19. Absence of autoreactive CD4+ T-cells targeting HLA-DQA1*01:02/DQB1*06:02 restricted hypocretin/orexin epitopes in narcolepsy type 1 when detected by EliSpot.

    Science.gov (United States)

    Kornum, Birgitte Rahbek; Burgdorf, Kristoffer Sølvsten; Holm, Anja; Ullum, Henrik; Jennum, Poul; Knudsen, Stine

    2017-08-15

    Narcolepsy type 1, a neurological sleep disorder strongly associated with Human Leukocyte Antigen (HLA-)DQB1*06:02, is caused by the loss of hypothalamic neurons producing the wake-promoting neuropeptide hypocretin (hcrt, also known as orexin). This loss is believed to be caused by an autoimmune reaction. To test whether hcrt itself could be a possible target in the autoimmune attack, CD4 + T-cell reactivity towards six different 15-mer peptides from prepro-hypocretin with high predicted affinity to the DQA1*01:02/DQB1*06:02 MHC class II dimer was tested using EliSpot in a cohort of 22 narcolepsy patients with low CSF hcrt levels, and 23 DQB1*06:02 positive healthy controls. Our ELISpot assay had a detection limit of 1:10,000 cells. We present data showing that autoreactive CD4 + T-cells targeting epitopes from the hcrt precursor in the context of MHC-DQA1*01:02/DQB1*06:02 are either not present or present in a frequency is <1:10,000 among peripheral CD4 + T-cells from narcolepsy type 1 patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Characterization of sleep in zebrafish and insomnia in hypocretin receptor mutants.

    Directory of Open Access Journals (Sweden)

    Tohei Yokogawa

    2007-10-01

    Full Text Available Sleep is a fundamental biological process conserved across the animal kingdom. The study of how sleep regulatory networks are conserved is needed to better understand sleep across evolution. We present a detailed description of a sleep state in adult zebrafish characterized by reversible periods of immobility, increased arousal threshold, and place preference. Rest deprivation using gentle electrical stimulation is followed by a sleep rebound, indicating homeostatic regulation. In contrast to mammals and similarly to birds, light suppresses sleep in zebrafish, with no evidence for a sleep rebound. We also identify a null mutation in the sole receptor for the wake-promoting neuropeptide hypocretin (orexin in zebrafish. Fish lacking this receptor demonstrate short and fragmented sleep in the dark, in striking contrast to the excessive sleepiness and cataplexy of narcolepsy in mammals. Consistent with this observation, we find that the hypocretin receptor does not colocalize with known major wake-promoting monoaminergic and cholinergic cell groups in the zebrafish. Instead, it colocalizes with large populations of GABAergic neurons, including a subpopulation of Adra2a-positive GABAergic cells in the anterior hypothalamic area, neurons that could assume a sleep modulatory role. Our study validates the use of zebrafish for the study of sleep and indicates molecular diversity in sleep regulatory networks across vertebrates.

  1. Hypocretin antagonists in insomnia treatment and beyond.

    Science.gov (United States)

    Ruoff, Chad; Cao, Michelle; Guilleminault, Christian

    2011-01-01

    Hypocretin neuropeptides have been shown to regulate transitions between wakefulness and sleep through stabilization of sleep promoting GABAergic and wake promoting cholinergic/monoaminergic neural pathways. Hypocretin also influences other physiologic processes such as metabolism, appetite, learning and memory, reward and addiction, and ventilatory drive. The discovery of hypocretin and its effect upon the sleep-wake cycle has led to the development of a new class of pharmacologic agents that antagonize the physiologic effects of hypocretin (i.e. hypocretin antagonists). Further investigation of these agents may lead to novel therapies for insomnia without the side-effect profile of currently available hypnotics (e.g. impaired cognition, confusional arousals, and motor balance difficulties). However, antagonizing a system that regulates the sleep-wake cycle while also influencing non-sleep physiologic processes may create an entirely different but equally concerning side-effect profile such as transient loss of muscle tone (i.e. cataplexy) and a dampened respiratory drive. In this review, we will discuss the discovery of hypocretin and its receptors, hypocretin and the sleep-wake cycle, hypocretin antagonists in the treatment of insomnia, and other implicated functions of the hypocretin system.

  2. Orexins and gastrointestinal functions.

    Science.gov (United States)

    Baccari, M C

    2010-03-01

    Orexin A (OXA) and orexin B (OXB) are recently discovered neuropeptides that appear to play a role in various distinct functions such as arousal and the sleep-wake cycle as well as on appetite and regulation of feeding and energy homeostasis. Orexins were first described as neuropeptides expressed by a specific population of neurons in the lateral hypothalamic area, a region classically implicated in feeding behaviour. Orexin neurons project to numerous brain regions, where orexin receptors have been shown to be widely distributed: both OXA and OXB act through two subtypes of receptors (OX1R and OX2R) that belong to the G protein-coupled superfamily of receptors. Growing evidence indicates that orexins act in the central nervous system also to regulate gastrointestinal functions: animal studies have indeed demonstrated that centrally-injected orexins or endogenously released orexins in the brain stimulates gastric secretion and influence gastrointestinal motility. The subsequent identification of orexins and their receptors in the enteric nervous system (including the myenteric and the submucosal plexuses) as well as in mucosa and smooth muscles has suggested that these neuropeptides may also play a local action. In this view, emerging studies indicate that orexins also exert region-specific contractile or relaxant effects on isolated gut preparations. The aim of the proposed review is to summarize both centrally- and peripherally-mediated actions of orexins on gastrointestinal functions and to discuss the related physiological role on the basis of the most recent findings.

  3. Role of orexins in the central and peripheral regulation of glucose homeostasis: Evidences & mechanisms.

    Science.gov (United States)

    Rani, Monika; Kumar, Raghuvansh; Krishan, Pawan

    2018-04-01

    Orexins (A & B), neuropeptides of hypothalamic origin, act through G-protein coupled receptors, orexin 1 receptor (OX 1 R) and orexin 2 receptor (OX 2 R). The wide projection of orexin neurons in the hypothalamic region allows them to interact with the other neurons and regulate food intake, emotional status, sleep wake cycle and energy metabolism. The autonomic nervous system plays an important regulatory role in the energy metabolism as well as glucose homeostasis. Orexin neurons are also under the control of GABAergic neurons. Emerging preclinical as well as clinical research has reported the role of orexins in the glucose homeostasis since orexins are involved in hypothalamic metabolism circuitry and also rely on sensing peripheral metabolic signals such as gut, adipose derived and pancreatic peptides. Apart from the hypothalamic origin, integration and control in various physiological functions, peripheral origin in wide organs, raises the possibility of use of orexins as a therapeutic biomarker in the management of metabolic disorders. The present review focuses the central as well as peripheral roles of orexins in the glucose homeostasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. NCBI nr-aa BLAST: CBRC-RNOR-05-0227 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RNOR-05-0227 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 91% ...

  5. NCBI nr-aa BLAST: CBRC-DNOV-01-2981 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DNOV-01-2981 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 90% ...

  6. NCBI nr-aa BLAST: CBRC-RMAC-01-0022 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-01-0022 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 97% ...

  7. NCBI nr-aa BLAST: CBRC-LAFR-01-2099 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-LAFR-01-2099 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 1e-122 73% ...

  8. NCBI nr-aa BLAST: CBRC-OANA-01-1933 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OANA-01-1933 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 82% ...

  9. NCBI nr-aa BLAST: CBRC-EEUR-01-1563 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-EEUR-01-1563 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 88% ...

  10. NCBI nr-aa BLAST: CBRC-CFAM-02-0020 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-02-0020 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 93% ...

  11. NCBI nr-aa BLAST: CBRC-CPOR-01-1953 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CPOR-01-1953 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 82% ...

  12. NCBI nr-aa BLAST: CBRC-CJAC-01-1463 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CJAC-01-1463 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 93% ...

  13. NCBI nr-aa BLAST: CBRC-OGAR-01-0835 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OGAR-01-0835 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 6e-90 91% ...

  14. NCBI nr-aa BLAST: CBRC-PTRO-01-0025 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-01-0025 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 91% ...

  15. NCBI nr-aa BLAST: CBRC-MMUS-04-0069 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-MMUS-04-0069 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 91% ...

  16. NCBI nr-aa BLAST: CBRC-OCUN-01-1293 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OCUN-01-1293 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 93% ...

  17. NCBI nr-aa BLAST: CBRC-HSAP-01-0038 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-01-0038 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 100% ...

  18. NCBI nr-aa BLAST: CBRC-FCAT-01-0950 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-0950 gb|AAG28020.1| hypocretin receptor-1 [Homo sapiens] gb|AAL47214.1| hypocretin... receptor 1; orexin receptor 1 [Homo sapiens] gb|AAL50221.1| hypocretin receptor 1 [Homo sapiens...] gb|AAH74796.1| Hypocretin (orexin) receptor 1 [Homo sapiens] gb|EAX07602.1| hypocretin (orexin) receptor 1, isoform CRA_c [Homo sapiens] AAG28020.1 0.0 76% ...

  19. The inappropriate occurrence of rapid eye movement sleep in narcolepsy is not due to a defect in homeostatic regulation of rapid eye movement sleep.

    Science.gov (United States)

    Roman, Alexis; Meftah, Soraya; Arthaud, Sébastien; Luppi, Pierre-Hervé; Peyron, Christelle

    2018-06-01

    Narcolepsy type 1 is a disabling disorder with four primary symptoms: excessive-daytime-sleepiness, cataplexy, hypnagogic hallucinations, and sleep paralysis. The later three symptoms together with a short rapid eye movement (REM) sleep latency have suggested impairment in REM sleep homeostatic regulation with an enhanced propensity for (i.e. tendency to enter) REM sleep. To test this hypothesis, we challenged REM sleep homeostatic regulation in a recognized model of narcolepsy, the orexin knock-out (Orex-KO) mice and their wild-type (WT) littermates. We first performed 48 hr of REM sleep deprivation using the classic small-platforms-over-water method. We found that narcoleptic mice are similarly REM sleep deprived to WT mice. Although they had shorter sleep latency, Orex-KO mice recovered similarly to WT during the following 10 hr of recovery. Interestingly, Orex-KO mice also had cataplexy episodes immediately after REM sleep deprivation, anticipating REM sleep rebound, at a time of day when cataplexy does not occur in baseline condition. We then evaluated REM sleep propensity using our new automated method of deprivation that performs a specific and efficient REM sleep deprivation. We showed that REM sleep propensity is similar during light phase in Orex-KO and WT mice. However, during the dark phase, REM sleep propensity was not suppressed in Orex-KO mice when hypocretin/orexin neuropeptides are normally released. Altogether our data suggest that in addition to the well-known wake-promoting role of hypocretin/orexin, these neuropeptides would also suppress REM sleep. Therefore, hypocretin/orexin deficiency would facilitate the occurrence of REM sleep at any time of day in an opportunistic manner as seen in human narcolepsy.

  20. CD4+ T cell autoimmunity to hypocretin/orexin and cross-reactivity to a 2009 H1N1 influenza A epitope in narcolepsy

    DEFF Research Database (Denmark)

    De la Herrán-Arita, Alberto K; Kornum, Birgitte Rahbek; Mahlios, Josh

    2013-01-01

    the wake-promoting neuropeptide hypocretin (HCRT) (orexin). We identified two DQ0602-binding HCRT epitopes, HCRT56-68 and HCRT87-99, that activated a subpopulation of CD4(+) T cells in narcolepsy patients but not in DQ0602-positive healthy control subjects. Because of the established association...... to the 2009 H1N1 strain, pHA1275-287, with homology to HCRT56-68 and HCRT87-99. In vitro stimulation of narcolepsy CD4(+) T cells with pH1N1 proteins or pHA1275-287 increased the frequency of HCRT56-68- and HCRT87-99-reactive T cells. Our data indicate the presence of CD4(+) T cells that are reactive to HCRT...... of narcolepsy with the 2009 H1N1 influenza A strain (pH1N1), we administered a seasonal influenza vaccine (containing pH1N1) to patients with narcolepsy and found an increased frequency of circulating HCRT56-68- and HCRT87-99-reactive T cells. We also identified a hemagglutinin (HA) pHA1 epitope specific...

  1. Pharmacological or genetic orexin 1 receptor inhibition attenuates MK-801 induced glutamate release in mouse cortex

    Directory of Open Access Journals (Sweden)

    Leah eAluisio

    2014-05-01

    Full Text Available The orexin/hypocretin neuropeptides are produced by a cluster of neurons within the lateral posterior hypothalamus and participate in neuronal regulation by activating their receptors (OX1 and OX2 receptors. The orexin system projects widely through the brain and functions as an interface between multiple regulatory systems including wakefulness, energy balance, stress, reward and emotion. Recent studies have demonstrated that orexins and glutamate interact at the synaptic level and that orexins facilitate glutamate actions. We tested the hypothesis that orexins modulate glutamate signaling via OX1 receptors by monitoring levels of glutamate in frontal cortex of freely moving mice using enzyme coated biosensors under inhibited OX1 receptor conditions. MK-801, an NMDA receptor antagonist, was administered subcutaneously (0.178 mg/kg to indirectly disinhibit pyramidal neurons and therefore increase cortical glutamate release. In wild-type mice, pretreatment with the OX1 receptor antagonist GSK-1059865 (10 mg/kg S.C. which had no effect by itself, significantly attenuated the cortical glutamate release elicited by MK-801. OX1 receptor knockout mice had a blunted glutamate release response to MK-801 and exhibited about half of the glutamate release observed in wild-type mice in agreement with the data obtained with transient blockade of OX1 receptors. These results indicate that pharmacological (transient or genetic (permanent inhibition of the OX1 receptor similarly interfere with glutamatergic function in the cortex. Selectively targeting the OX1 receptor with an antagonist may normalize hyperglutamatergic states and thus may represent a novel therapeutic strategy for the treatment of various psychiatric disorders associated with hyperactive states.

  2. Hypocretin-1 levels in the cerebrospinal fluid of patients with Percheron artery infarction with or without midbrain involvement: A case series.

    Science.gov (United States)

    Suzuki, Keisuke; Miyamoto, Tomoyuki; Miyamoto, Masayuki; Maeda, Hiroto; Nokura, Kazuya; Tohyama, Jun; Hirata, Koichi; Shimizu, Tetsuo; Kanbayashi, Takashi

    2016-07-01

    Bilateral paramedian thalamic infarctions (BPTIs) due to artery of Percheron occlusion are known to cause hypersomnia. However, the role of hypocretin-1, a wake-promoting peptide that is located at the lateral hypothalamus, in hypersomnia in these patients remains unclear. To clarify the role of hypocretin-1 in hypersomnia in patients with BPTIs, hypocretin-1 levels in the cerebrospinal fluid (CSF) were measured in 6 patients with BPTIs: 2 with rostral midbrain involvement (BPT+RMI) and 4 without midbrain involvement (BPT-MI). CSF hypocretin-1 levels were decreased in 2 patients with BPT+RMI and were within normal ranges in 4 patients with BPT-MI. Hypersomnia was noted in all the patients. In one BPT+RMI patient, hypersomnia was improved within 2 weeks and decreased CSF hypocretin-1 levels were reversed (acute phase (on day 9), 109.2 pg/mL; chronic phase (at 3 months), 323 pg/mL), whereas another BPT+RMI patient who displayed coma in the acute phase had decreased CSF orexin levels (107 pg/mL) at day 49 and exhibited severe disability. Hypocretin deficiency was not involved in hypersomnia observed in BPT-MI patients; however, CSF hypocretin-1 levels were reduced in BPT+RMI patients. Reduced CSF hypocretin-1 levels in the chronic phase may possibly predict a poor clinical outcome in patients with Percheron artery infarction.

  3. Effects of Hypocretin/Orexin and Major Transmitters of Arousal on Fast Spiking Neurons in Mouse Cortical Layer 6B.

    Science.gov (United States)

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-08-01

    Fast spiking (FS) GABAergic neurons are thought to be involved in the generation of high-frequency cortical rhythms during the waking state. We previously showed that cortical layer 6b (L6b) was a specific target for the wake-promoting transmitter, hypocretin/orexin (hcrt/orx). Here, we have investigated whether L6b FS cells were sensitive to hcrt/orx and other transmitters associated with cortical activation. Recordings were thus made from L6b FS cells in either wild-type mice or in transgenic mice in which GFP-positive GABAergic cells are parvalbumin positive. Whereas in a control condition hcrt/orx induced a strong increase in the frequency, but not amplitude, of spontaneous synaptic currents, in the presence of TTX, it had no effect at all on miniature synaptic currents. Hcrt/orx effect was thus presynaptic although not by an action on glutamatergic terminals but rather on neighboring cells. In contrast, noradrenaline and acetylcholine depolarized and excited these cells through a direct postsynaptic action. Neurotensin, which is colocalized in hcrt/orx neurons, also depolarized and excited these cells but the effect was indirect. Morphologically, these cells exhibited basket-like features. These results suggest that hcrt/orx, noradrenaline, acetylcholine, and neurotensin could contribute to high-frequency cortical activity through an action on L6b GABAergic FS cells. © The Author 2016. Published by Oxford University Press.

  4. Orexin A and Orexin Receptor 1 axonal traffic in dorsal roots at the CNS/PNS interface

    Directory of Open Access Journals (Sweden)

    Damien eColas

    2014-02-01

    Full Text Available Hypothalamic orexin/hypocretin neurons send long axonal projections through the dorsal spinal cord in lamina I-II of the dorsal horn at the interface with the peripheral nervous system (PNS. We show that in the dorsal horn OXA fibers colocalize with substance P (SP positive afferents of dorsal root ganglia (DRG neurons known to mediate sensory processing. Further, OR1 is expressed in p75NTR and SP positive DRG neurons, suggesting a potential signaling pathway between orexin and DRG neurons. Interestingly, DRG sensory neurons have a distinctive bifurcating axon where one branch innervates the periphery and the other one the spinal cord (pseudo-unipolar neurons, allowing for potential functional coupling of distinct targets. We observe that OR1 is transported selectively from DRG toward the spinal cord, while OXA is accumulated retrogradely toward the DRG. We hence report a rare situation of asymmetrical neuropeptide receptor distribution between axons projected by a single neuron. This molecular and cellular data are consistent with the role of OXA/OR1 in sensory processing, including DRG neuronal modulation, and support the potential existence of an OX/HCRT circuit between CNS and PNS.

  5. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss.

    Directory of Open Access Journals (Sweden)

    Ronald McGregor

    Full Text Available The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC, the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT, the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within "non-visible" phenotypically defined cells has fundamental implications for our understanding of brain plasticity.

  6. Diurnal fluctuation in the number of hypocretin/orexin and histamine producing: Implication for understanding and treating neuronal loss.

    Science.gov (United States)

    McGregor, Ronald; Shan, Ling; Wu, Ming-Fung; Siegel, Jerome M

    2017-01-01

    The loss of specific neuronal phenotypes, as determined by immunohistochemistry, has become a powerful tool for identifying the nature and cause of neurological diseases. Here we show that the number of neurons identified and quantified using this method misses a substantial percentage of extant neurons in a phenotype specific manner. In mice, 24% more hypocretin/orexin (Hcrt) neurons are seen in the night compared to the day, and an additional 17% are seen after inhibiting microtubule polymerization with colchicine. We see no such difference between the number of MCH (melanin concentrating hormone) neurons in dark, light or colchicine conditions, despite MCH and Hcrt both being hypothalamic peptide transmitters. Although the size of Hcrt neurons did not differ between light and dark, the size of MCH neurons was increased by 15% in the light phase. The number of neurons containing histidine decarboxylase (HDC), the histamine synthesizing enzyme, was 34% greater in the dark than in the light, but, like Hcrt, cell size did not differ. We did not find a significant difference in the number or the size of neurons expressing choline acetyltransferase (ChAT), the acetylcholine synthesizing enzyme, in the horizontal diagonal band (HBD) during the dark and light conditions. As expected, colchicine treatment did not increase the number of these neurons. Understanding the function and dynamics of transmitter production within "non-visible" phenotypically defined cells has fundamental implications for our understanding of brain plasticity.

  7. Increased immune complexes of hypocretin autoantibodies in narcolepsy.

    Science.gov (United States)

    Deloumeau, Aude; Bayard, Sophie; Coquerel, Quentin; Déchelotte, Pierre; Bole-Feysot, Christine; Carlander, Bertrand; Cochen De Cock, Valérie; Fetissov, Sergueï O; Dauvilliers, Yves

    2010-10-13

    Hypocretin peptides participate in the regulation of sleep-wake cycle while deficiency in hypocretin signaling and loss of hypocretin neurons are causative for narcolepsy-cataplexy. However, the mechanism responsible for alteration of the hypocretin system in narcolepsy-cataplexy and its relevance to other central hypersomnias remain unknown. Here we studied whether central hypersomnias can be associated with autoantibodies reacting with hypocretin-1 peptide present as immune complexes. Serum levels of free and dissociated (total) autoantibodies reacting with hypocretin-1 peptide were measured by enzyme-linked immunosorbent assay and analyzed with regard to clinical parameters in 82 subjects with narcolepsy-cataplexy, narcolepsy without cataplexy or idiopathic hypersomnia and were compared to 25 healthy controls. Serum levels of total but not free IgG autoantibodies against hypocretin-1 were increased in narcolepsy-cataplexy. Increased levels of complexed IgG autoantibodies against hypocretin-1 were found in all patients groups with a further increase in narcolepsy-cataplexy. Levels of total IgM hypocretin-1 autoantibodies were also elevated in all groups of patients. Increased levels of anti-idiotypic IgM autoantibodies reacting with hypocretin-1 IgG autoantibodies affinity purified from sera of subjects with narcolepsy-cataplexy were found in all three groups of patients. Disease duration correlated negatively with serum levels of hypocretin-1 IgG and IgM autoantibodies and with anti-idiotypic IgM autoantibodies. Central hypersomnias and particularly narcolepsy-cataplexy are characterized by higher serum levels of autoantibodies directed against hypocretin-1 which are present as immune complexes most likely with anti-idiotypic autoantibodies suggesting their relevance to the mechanism of sleep-wake cycle regulation.

  8. Increased immune complexes of hypocretin autoantibodies in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Aude Deloumeau

    Full Text Available BACKGROUND: Hypocretin peptides participate in the regulation of sleep-wake cycle while deficiency in hypocretin signaling and loss of hypocretin neurons are causative for narcolepsy-cataplexy. However, the mechanism responsible for alteration of the hypocretin system in narcolepsy-cataplexy and its relevance to other central hypersomnias remain unknown. Here we studied whether central hypersomnias can be associated with autoantibodies reacting with hypocretin-1 peptide present as immune complexes. METHODOLOGY: Serum levels of free and dissociated (total autoantibodies reacting with hypocretin-1 peptide were measured by enzyme-linked immunosorbent assay and analyzed with regard to clinical parameters in 82 subjects with narcolepsy-cataplexy, narcolepsy without cataplexy or idiopathic hypersomnia and were compared to 25 healthy controls. PRINCIPAL FINDINGS: Serum levels of total but not free IgG autoantibodies against hypocretin-1 were increased in narcolepsy-cataplexy. Increased levels of complexed IgG autoantibodies against hypocretin-1 were found in all patients groups with a further increase in narcolepsy-cataplexy. Levels of total IgM hypocretin-1 autoantibodies were also elevated in all groups of patients. Increased levels of anti-idiotypic IgM autoantibodies reacting with hypocretin-1 IgG autoantibodies affinity purified from sera of subjects with narcolepsy-cataplexy were found in all three groups of patients. Disease duration correlated negatively with serum levels of hypocretin-1 IgG and IgM autoantibodies and with anti-idiotypic IgM autoantibodies. CONCLUSION: Central hypersomnias and particularly narcolepsy-cataplexy are characterized by higher serum levels of autoantibodies directed against hypocretin-1 which are present as immune complexes most likely with anti-idiotypic autoantibodies suggesting their relevance to the mechanism of sleep-wake cycle regulation.

  9. A role of melanin-concentrating hormone producing neurons in the central regulation of paradoxical sleep

    Directory of Open Access Journals (Sweden)

    Salin Paul

    2003-09-01

    Full Text Available Abstract Background Peptidergic neurons containing the melanin-concentrating hormone (MCH and the hypocretins (or orexins are intermingled in the zona incerta, perifornical nucleus and lateral hypothalamic area. Both types of neurons have been implicated in the integrated regulation of energy homeostasis and body weight. Hypocretin neurons have also been involved in sleep-wake regulation and narcolepsy. We therefore sought to determine whether hypocretin and MCH neurons express Fos in association with enhanced paradoxical sleep (PS or REM sleep during the rebound following PS deprivation. Next, we compared the effect of MCH and NaCl intracerebroventricular (ICV administrations on sleep stage quantities to further determine whether MCH neurons play an active role in PS regulation. Results Here we show that the MCH but not the hypocretin neurons are strongly active during PS, evidenced through combined hypocretin, MCH, and Fos immunostainings in three groups of rats (PS Control, PS Deprived and PS Recovery rats. Further, we show that ICV administration of MCH induces a dose-dependant increase in PS (up to 200% and slow wave sleep (up to 70% quantities. Conclusion These results indicate that MCH is a powerful hypnogenic factor. MCH neurons might play a key role in the state of PS via their widespread projections in the central nervous system.

  10. Genetics Home Reference: narcolepsy

    Science.gov (United States)

    ... brain called the hypothalamus. These cells normally produce chemicals called hypocretins (also known as orexins), which have many important functions in the body. In particular, hypocretins regulate the daily sleep-wake cycle. It is unclear what triggers the death of ...

  11. NCBI nr-aa BLAST: CBRC-PTRO-07-0056 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PTRO-07-0056 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 99% ...

  12. NCBI nr-aa BLAST: CBRC-XTRO-01-2897 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-XTRO-01-2897 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 82% ...

  13. NCBI nr-aa BLAST: CBRC-RMAC-04-0045 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-RMAC-04-0045 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 98% ...

  14. NCBI nr-aa BLAST: CBRC-CFAM-12-0011 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CFAM-12-0011 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 97% ...

  15. NCBI nr-aa BLAST: CBRC-BTAU-01-1407 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-BTAU-01-1407 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 96% ...

  16. NCBI nr-aa BLAST: CBRC-PABE-07-0050 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-PABE-07-0050 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 98% ...

  17. NCBI nr-aa BLAST: CBRC-HSAP-06-0066 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-HSAP-06-0066 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 0.0 100% ...

  18. Sleep Transitions in Hypocretin-Deficient Narcolepsy

    DEFF Research Database (Denmark)

    Sorensen, Gertrud Laura; Knudsen, Stine; Jennum, Poul

    2013-01-01

    Narcolepsy is characterized by instability of sleep-wake, tonus, and rapid eye movement (REM) sleep regulation. It is associated with severe hypothalamic hypocretin deficiency, especially in patients with cataplexy (loss of tonus). As the hypocretin neurons coordinate and stabilize the brain......'s sleep-wake pattern, tonus, and REM flip-flop neuronal centers in animal models, we set out to determine whether hypocretin deficiency and/or cataplexy predicts the unstable sleep-wake and REM sleep pattern of the human phenotype....

  19. Orexin neurons receive glycinergic innervations.

    Directory of Open Access Journals (Sweden)

    Mari Hondo

    Full Text Available Glycine, a nonessential amino-acid that acts as an inhibitory neurotransmitter in the central nervous system, is currently used as a dietary supplement to improve the quality of sleep, but its mechanism of action is poorly understood. We confirmed the effects of glycine on sleep/wakefulness behavior in mice when administered peripherally. Glycine administration increased non-rapid eye movement (NREM sleep time and decreased the amount and mean episode duration of wakefulness when administered in the dark period. Since peripheral administration of glycine induced fragmentation of sleep/wakefulness states, which is a characteristic of orexin deficiency, we examined the effects of glycine on orexin neurons. The number of Fos-positive orexin neurons markedly decreased after intraperitoneal administration of glycine to mice. To examine whether glycine acts directly on orexin neurons, we examined the effects of glycine on orexin neurons by patch-clamp electrophysiology. Glycine directly induced hyperpolarization and cessation of firing of orexin neurons. These responses were inhibited by a specific glycine receptor antagonist, strychnine. Triple-labeling immunofluorescent analysis showed close apposition of glycine transporter 2 (GlyT2-immunoreactive glycinergic fibers onto orexin-immunoreactive neurons. Immunoelectron microscopic analysis revealed that GlyT2-immunoreactive terminals made symmetrical synaptic contacts with somata and dendrites of orexin neurons. Double-labeling immunoelectron microscopy demonstrated that glycine receptor alpha subunits were localized in the postsynaptic membrane of symmetrical inhibitory synapses on orexin neurons. Considering the importance of glycinergic regulation during REM sleep, our observations suggest that glycine injection might affect the activity of orexin neurons, and that glycinergic inhibition of orexin neurons might play a role in physiological sleep regulation.

  20. NCBI nr-aa BLAST: CBRC-TBEL-01-2208 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-TBEL-01-2208 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 1e-84 62% ...

  1. NCBI nr-aa BLAST: CBRC-OCUN-01-1134 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-OCUN-01-1134 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 2e-36 98% ...

  2. NCBI nr-aa BLAST: CBRC-CPOR-01-2034 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CPOR-01-2034 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 1e-152 73% ...

  3. NCBI nr-aa BLAST: CBRC-CINT-01-0134 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-CINT-01-0134 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 2e-63 34% ...

  4. NCBI nr-aa BLAST: CBRC-DRER-05-0072 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-DRER-05-0072 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 1e-157 75% ...

  5. NCBI nr-aa BLAST: CBRC-FCAT-01-0510 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FCAT-01-0510 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 5e-38 100% ...

  6. NCBI nr-aa BLAST: CBRC-FRUB-02-0131 [SEVENS

    Lifescience Database Archive (English)

    Full Text Available CBRC-FRUB-02-0131 emb|CAH73407.1| hypocretin (orexin) receptor 2 [Homo sapiens] emb|CAI19665.1| hypocretin... (orexin) receptor 2 [Homo sapiens] gb|AAI11377.1| HCRTR2 protein [synthetic construct] gb|EAX04440.1| hypocre...tin (orexin) receptor 2 [Homo sapiens] CAH73407.1 1e-177 71% ...

  7. [Pathogenesis of narcolepsy: from HLA association to hypocretin deficiency].

    Science.gov (United States)

    Klein, G; Burghaus, L; Diederich, N

    2012-11-01

    Narcolepsy is a rare and chronic sleep disorder, characterised by excessive daytime sleepiness. Frequently associated signs are cataplexy, sleep paralysis and hypnagogic or hypnopompic hallucinations. Advances in understanding the pathogenesis of the disease have essentially been elucidated during the last fifteen years. The most significant finding has been the discovery of hypocretin-1 and -2 in 1998. Hypocretin-containing cells have widespread projections throughout the entire CNS and play a crucial role in the regulation of the sleep-wake cycle. They also contribute to olefaction and to the regulation of food intake. Animal models and human studies concordantly show that the disturbed hypocretin system is the probable cause of narcolepsy. However, it remains unclear why there is neuronal death of hypocretin-producing cells in the lateral hypothalamus. As the HLA-allele DQB1*0602 is associated with narcolepsy and hypocretin deficiency, an autoimmune reaction against hypocretin-producing neurons has been vigorously discussed. Newly discovered gene polymorphisms as well as previously unknown pathogenetic mechanisms, linking the sleep-wake cycle with the immune system, may also contribute to the pathogenetic cascade. Worthy of mention in this context is, e.g., the "insulin-like growth factor"-binding protein 3 (IGFBP3), whose overexpression causes a down-regulation of the hypocretin production. Substitution of the deficient neuropeptides by hypocretin agonists may become the causal treatment strategy of the future, if an adequate administration route can be found. Presently, animal trials, including genetic therapy, cell transplantations or the administration of hypocretin receptor agonists, are underway. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Orexin in sleep, addiction and more: is the perfect insomnia drug at hand?

    Science.gov (United States)

    Hoyer, Daniel; Jacobson, Laura H

    2013-12-01

    Orexins A and B (hypocretins 1 and 2) and their two receptors (OX1R and OX2R) were discovered in 1998 by two different groups. Orexin A and B are derived from the differential processing of a common precursor, the prepro-orexin peptide. The neuropeptides are expressed in a few thousand cells located in the lateral hypothalamus (LH), but their projections and receptor distribution are widespread throughout the brain. Remarkably, prepro peptide and double (OX1R/OX2R) receptor knock out (KO) mice reproduce a sleep phenotype known in humans and dogs as narcolepsy/cataplexy. In humans, this disease is characterized by the absence of orexin producing cells in the LH, and severely depleted levels of orexin the cerebrospinal fluid. Null mutation of the individual OX1R or OX2R in mice substantially ameliorates the narcolepsy/cataplexy phenotype compared to the OX1R/OX2R KO, and highlights specific roles of the individual receptors in sleep architecture, the OX1R KO demonstrating an a attenuated sleep phenotype relative to the OX2R KO. It has therefore been suggested that orexin is a master regulator of the sleep-wake cycle, with high activity of the LH orexin cells during wake and almost none during sleep. Less than 10years later, the first orexin antagonist, almorexant, a dual orexin receptor antagonist (DORA), was reported to be effective in inducing sleep in volunteers and insomnia patients. Although development was stopped for almorexant and for Glaxo's DORA SB-649868, no less than 4 orexin receptor antagonists have reached phase II for insomnia, including Filorexant (MK-6096) and Suvorexant (MK-4305) from Merck. Suvorexant has since progressed to Phase III and dossier submission to the FDA. These four compounds are reported as DORAs, however, they equilibrate very slowly at one and/or the other orexin receptor, and thus at equilibrium may show more or less selectivity for OX1R or OX2R. The appropriate balance of antagonism of the two receptors for sleep is a point of

  9. Reversed synaptic effects of hypocretin and NPY mediated by excitatory GABA-dependent synaptic activity in developing MCH neurons.

    Science.gov (United States)

    Li, Ying; Xu, Youfen; van den Pol, Anthony N

    2013-03-01

    In mature neurons, GABA is the primary inhibitory neurotransmitter. In contrast, in developing neurons, GABA exerts excitatory actions, and in some neurons GABA-mediated excitatory synaptic activity is more prevalent than glutamate-mediated excitation. Hypothalamic neuropeptides that modulate cognitive arousal and energy homeostasis, hypocretin/orexin and neuropeptide Y (NPY), evoked reversed effects on synaptic actions that were dependent on presynaptic GABA release onto melanin-concentrating hormone (MCH) neurons. MCH neurons were identified by selective green fluorescent protein (GFP) expression in transgenic mice. In adults, hypocretin increased GABA release leading to reduced excitation. In contrast, in the developing brain as studied here with analysis of miniature excitatory postsynaptic currents, paired-pulse ratios, and evoked potentials, hypocretin acted presynaptically to enhance the excitatory actions of GABA. The ability of hypocretin to enhance GABA release increases inhibition in adult neurons but paradoxically enhances excitation in developing MCH neurons. In contrast, NPY attenuation of GABA release reduced inhibition in mature neurons but enhanced inhibition during development by attenuating GABA excitation. Both hypocretin and NPY also evoked direct actions on developing MCH neurons. Hypocretin excited MCH cells by activating a sodium-calcium exchanger and by reducing potassium currents; NPY reduced activity by increasing an inwardly rectifying potassium current. These data for the first time show that both hypocretin and NPY receptors are functional presynaptically during early postnatal hypothalamic development and that both neuropeptides modulate GABA actions during development with a valence of enhanced excitation or inhibition opposite to that of the adult state, potentially allowing neuropeptide modulation of use-dependent synapse stabilization.

  10. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia.

    Science.gov (United States)

    Pace, Marta; Adamantidis, Antoine; Facchin, Laura; Bassetti, Claudio

    2017-01-01

    Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD) before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH) and orexin/hypocretin (OX) systems. This study aims to 1) assess the relationship between sleep and recovery; 2) test the association between MCH and OX systems with the pathological mechanisms of stroke. Sprague-Dawley rats were assigned to four experimental groups: (i) SD_IS: SD performed before ischemia; (ii) IS: ischemia; (iii) SD_Sham: SD performed before sham surgery; (iv) Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR. A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group. Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.

  11. Role of REM Sleep, Melanin Concentrating Hormone and Orexin/Hypocretin Systems in the Sleep Deprivation Pre-Ischemia.

    Directory of Open Access Journals (Sweden)

    Marta Pace

    Full Text Available Sleep reduction after stroke is linked to poor recovery in patients. Conversely, a neuroprotective effect is observed in animals subjected to acute sleep deprivation (SD before ischemia. This neuroprotection is associated with an increase of the sleep, melanin concentrating hormone (MCH and orexin/hypocretin (OX systems. This study aims to 1 assess the relationship between sleep and recovery; 2 test the association between MCH and OX systems with the pathological mechanisms of stroke.Sprague-Dawley rats were assigned to four experimental groups: (i SD_IS: SD performed before ischemia; (ii IS: ischemia; (iii SD_Sham: SD performed before sham surgery; (iv Sham: sham surgery. EEG and EMG were recorded. The time-course of the MCH and OX gene expression was measured at 4, 12, 24 hours and 3, 4, 7 days following ischemic surgery by qRT-PCR.A reduction of infarct volume was observed in the SD_IS group, which correlated with an increase of REM sleep observed during the acute phase of stroke. Conversely, the IS group showed a reduction of REM sleep. Furthermore, ischemia induces an increase of MCH and OX systems during the acute phase of stroke, although, both systems were still increased for a long period of time only in the SD_IS group.Our data indicates that REM sleep may be involved in the neuroprotective effect of SD pre-ischemia, and that both MCH and OX systems were increased during the acute phase of stroke. Future studies should assess the role of REM sleep as a prognostic marker, and test MCH and OXA agonists as new treatment options in the acute phase of stroke.

  12. Xingshentongqiao Decoction Mediates Proliferation, Apoptosis, Orexin-A Receptor and Orexin-B Receptor Messenger Ribonucleic Acid Expression and Represses Mitogen-activated Protein Kinase Signaling

    Directory of Open Access Journals (Sweden)

    Yuanli Dong

    2015-01-01

    Full Text Available Background: Hypocretin (HCRT signaling plays an important role in the pathogenesis of narcolepsy and can be significantly influenced by Chinese herbal therapy. Our previous study showed that xingshentongqiao decoction (XSTQ is clinically effective for the treatment of narcolepsy. To determine whether XSTQ improves narcolepsy by modulating HCRT signaling, we investigated its effects on SH-SY5Y cell proliferation, apoptosis, and HCRT receptor 1/2 (orexin receptor 1 [OX1R] and orexin receptor 2 [OX2R] expression. The signaling pathways involved in these processes were also assessed. Methods: The effects of XSTQ on proliferation and apoptosis in SH-SY5Y cells were assessed using cell counting kit-8 and annexin V-fluorescein isothiocyanate assays. OX1R and OX2R expression was assessed by quantitative real-time polymerase chain reaction analysis. Western blotting for mitogen-activated protein kinase (MAPK pathway activation was performed to further assess the signaling mechanism of XSTQ. Results: XSTQ reduced the proliferation and induced apoptosis of SH-SY5Y cells. This effect was accompanied by the upregulation of OX1R and OX2R expression and the reduced phosphorylation of extracellular signal-regulated kinase (Erk 1/2, p38 MAPK and c-Jun N-terminal kinase (JNK. Conclusions: XSTQ inhibits proliferation and induces apoptosis in SH-SY5Y cells. XSTQ also promotes OX1R and OX2R expression. These effects are associated with the repression of the Erk1/2, p38 MAPK, and JNK signaling pathways. These results define a molecular mechanism for XSTQ in regulating HCRT and MAPK activation, which may explain its ability to treat narcolepsy.

  13. Evidence for a role of orexin/hypocretin system in vestibular lesion-induced locomotor abnormalities in rats

    Directory of Open Access Journals (Sweden)

    Leilei Pan

    2016-07-01

    Full Text Available Vestibular damage can induce locomotor abnormalities in both animals and humans. Rodents with bilateral vestibular loss showed vestibular deficits syndrome such as circling, opisthotonus as well as locomotor and exploratory hyperactivity. Previous studies have investigated the changes in the dopamine system after vestibular loss, but the results are inconsistent and inconclusive. Numerous evidences indicate that the orexin system is implicated in central motor control. We hypothesized that orexin may be potentially involved in vestibular loss-induced motor disorders. In this study, we examined the effects of arsanilate- or 3, 3′-iminodipropionitrile (IDPN-induced vestibular lesion (AVL or IVL on the orexin-A (OXA labeling in rat hypothalamus using immunohistochemistry. The vestibular lesion-induced locomotor abnormalities were recorded and verified using a histamine H4 receptor antagonist JNJ7777120 (20 mg/kg, i.p.. The effects of the orexin receptor type 1 antagonist SB334867 (16 μg, i.c.v. on these behavior responses were also investigated. At 72 h post-AVL and IVL, animals exhibited vestibular deficit syndrome and locomotor hyperactivity in the home cages. These responses were significantly alleviated by JNJ7777120 which also eliminated AVL-induced increases in exploratory behavior in an open field. The numbers of OXA-labeled neurons in the hypothalamus were significantly increased in the AVL animals at 72 h post-AVL and in the IVL animals at 24, 48 and 72 h post-IVL. SB334867 significantly attenuated the vestibular deficit syndrome and locomotor hyperactivity at 72 h post-AVL and IVL. It also decreased exploratory behavior in the AVL animals. These results suggested that the alteration of OXA expression might contribute to locomotor abnormalities after acute vestibular lesion. The orexin receptors might be the potential therapeutic targets for vestibular disorders.

  14. Orexins control intestinal glucose transport by distinct neuronal, endocrine and direct epithelial pathways. : Orexins regulate intestinal glucose absorption

    OpenAIRE

    Ducroc, Robert; Voisin, Thierry; El Firar, Aadil; Laburthe, Marc

    2007-01-01

    International audience; Objective : Orexins are neuropeptides involved in energy homeostasis. We investigated the effect of orexin A (OxA) and OxB on intestinal glucose transport in the rat. Research Design and Methods : Injection of orexins led to a decrease in the blood glucose level in OGTT. Effects of orexins on glucose entry were analysed in Ussing chamber using the Na+-dependent increase in short-circuit current to quantify jejunal glucose transport. Results & Conclusions : The rapid an...

  15. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB1 cannabinoid receptors

    International Nuclear Information System (INIS)

    Jäntti, Maria H.; Mandrika, Ilona; Kukkonen, Jyrki P.

    2014-01-01

    Highlights: • OX 1 and OX 2 orexin and CB 1 cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX 1 orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB 1 cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX 1 , OX 2 and CB 1 receptors, C-terminally fused with either Renilla luciferase or GFP 2 green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB 1 receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP 2 to CB 1 produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX 1 –OX 2 interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB 1 receptors, dimerization could be an effective way of forming signal complexes with optimal cannabinoid concentrations

  16. Sex- and Age-dependent Effects of Orexin 1 Receptor Blockade on Open-Field Behavior and Neuronal Activity.

    Science.gov (United States)

    Blume, Shannon R; Nam, Hannah; Luz, Sandra; Bangasser, Debra A; Bhatnagar, Seema

    2018-06-15

    Adolescence is a sensitive and critical period in brain development where psychiatric disorders such as anxiety, depression and post-traumatic stress disorder are more likely to emerge following a stressful life event. Females are two times more likely to suffer from psychiatric disorders than males. Patients with these disorders show alterations in orexins (also called hypocretins), important neuropeptides that regulate arousal, wakefulness and the hypothalamic-pituitary-adrenal axis activity. Little is known on the role of orexins in mediating arousal behaviors in male and female rats during adolescence or adulthood. Here, we examine the influence of orexin 1 receptor blockade by SB334867 in open-field behavior in male and female rats during early adolescence (PND 31-33) or adulthood (PND 75-77). Animals were injected with 0 (vehicle), 1, 10, or 30 mg/kg SB334867 (i.p.). Thirty minutes later, they were placed in an open field, and behavior and neuronal activity (c-Fos) were assessed. In adolescent males, SB334867 significantly increased immobility in the 10 mg/kg group compared to vehicle. However, this increase in immobility in adolescent males was not observed in adolescent females. In contrast to adolescent males, adult males in the 10 mg/kg dose group showed the opposite effect on immobility compared to vehicle. These results indicate that 10 mg/kg dose of SB334867 has opposing effects in adolescent and adult males, but few effects in adolescent and adult females. Differences in functional networks between limbic regions may underlie these effects of orexin receptor blockade that are sex- and age-dependent in rats. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  17. Sleep transitions in hypocretin-deficient narcolepsy.

    Science.gov (United States)

    Sorensen, Gertrud Laura; Knudsen, Stine; Jennum, Poul

    2013-08-01

    Narcolepsy is characterized by instability of sleep-wake, tonus, and rapid eye movement (REM) sleep regulation. It is associated with severe hypothalamic hypocretin deficiency, especially in patients with cataplexy (loss of tonus). As the hypocretin neurons coordinate and stabilize the brain's sleep-wake pattern, tonus, and REM flip-flop neuronal centers in animal models, we set out to determine whether hypocretin deficiency and/or cataplexy predicts the unstable sleep-wake and REM sleep pattern of the human phenotype. We measured the frequency of transitions in patients with narcolepsy between sleep-wake states and to/from REM and NREM sleep stages. Patients were subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. Sleep laboratory studies conducted from 2001-2011. In total 63 narcolepsy patients were included in the study. Cataplexy was present in 43 of 63 patients and hypocretin-1 deficiency was present in 37 of 57 patients. Hypocretin-deficient patients with narcolepsy had a significantly higher frequency of sleep-wake transitions (P = 0.014) and of transitions to/from REM sleep (P = 0.044) than patients with normal levels of hypocretin-1. Patients with cataplexy had a significantly higher frequency of sleep-wake transitions (P = 0.002) than those without cataplexy. A multivariate analysis showed that transitions to/from REM sleep were predicted mainly by hypocretin-1 deficiency (P = 0.011), whereas sleep-wake transitions were predicted mainly by cataplexy (P = 0.001). In human narcolepsy, hypocretin deficiency and cataplexy are both associated with signs of destabilized sleep-wake and REM sleep control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches.

  18. Gastrointestinal-projecting neurones in the dorsal motor nucleus of the vagus exhibit direct and viscerotopically organized sensitivity to orexin

    Science.gov (United States)

    Grabauskas, Gintautas; Moises, Hylan C

    2003-01-01

    Orexin (hypocretin)-containing projections from lateral hypothalamus (LH) are thought to play an important role in the regulation of feeding behaviour and energy balance. In rodent studies, central administration of orexin peptides increases food intake, and orexin neurones in the LH are activated by hypoglycaemia during fasting. In addition, administration of orexins into the fourth ventricle or the dorsal motor nucleus of the vagus (DMV) has been shown to stimulate gastric acid secretion and motility, respectively, via vagal efferent pathways. In this study, whole-cell recordings were obtained from DMV neurones in rat brainstem slices to investigate the cellular mechanism(s) by which orexins produce their gastrostimulatory effects. To determine whether responsiveness to orexins might be differentially expressed among distinct populations of preganglionic vagal motor neurones, recordings were made from neurones whose projections to the gastrointestinal tract had been identified by retrograde labelling following apposition of the fluorescent tracer DiI to the gastric fundus, corpus or antrum/pylorus, the duodenum or caecum. Additionally, the responses of neurones to orexins were compared with those produced by oxytocin, which acts within the DMV to stimulate gastric acid secretion, but inhibits gastric motor function. Bath application of orexin-A or orexin-B (30–300 nm) produced a slow depolarization, accompanied by increased firing in 47 of 102 DMV neurones tested, including 70 % (30/43) of those that projected to the gastric fundus or corpus. In contrast, few DMV neurones that supplied the antrum/pylorus (3/13), duodenum (4/18) or caecum (1/13) were responsive to these peptides. The depolarizing responses were concentration dependent and persisted during synaptic isolation of neurones with TTX or Cd2+, indicating they resulted from activation of postsynaptic orexin receptors. They were also associated with a small increase in membrane resistance, and in voltage

  19. Roles of orexin in modulating arousal, feeding and motivation

    Directory of Open Access Journals (Sweden)

    Natsuko eTsujino

    2013-04-01

    Full Text Available Orexin deficiency results in narcolepsy in humans, dogs, and rodents, suggesting that the orexin system is particularly important for maintenance of wakefulness. However, orexin neurons are ‘multi-tasking’ neurons that regulate sleep/wake states as well as feeding behavior, emotion, and reward processes. Orexin deficiency causes abnormalities in energy homeostasis, stress-related behavior, and reward systems. Orexin excites waking-active monoaminergic and cholinergic neurons in the hypothalamus and brain stem regions to maintain a long, consolidated waking period. Orexin neurons also have reciprocal links with the hypothalamic nucleus, which regulates feeding. Moreover, the responsiveness of orexin neurons to peripheral metabolic cues suggests that these neurons have an important role as a link between energy homeostasis and vigilance states. The link between orexin and the ventral tegmental nucleus serves to motivate an animal to engage in goal-directed behavior. This review focuses on the interaction of orexin neurons with emotion, reward, and energy homeostasis systems. These connectivities are likely to be highly important to maintain proper vigilance states.

  20. Orexins depolarize rostral ventrolateral medulla neurons and increase arterial pressure and heart rate in rats mainly via orexin 2 receptors.

    Science.gov (United States)

    Huang, Shang-Cheng; Dai, Yu-Wen E; Lee, Yen-Hsien; Chiou, Lih-Chu; Hwang, Ling-Ling

    2010-08-01

    An injection of orexin A or B into the cisterna magna or the rostral ventrolateral medulla (RVLM), where bulbospinal vasomotor neurons are located, elevated arterial pressure (AP) and heart rate (HR). We examined how orexins affected RVLM neurons to regulate cardiovascular functions by using in vitro recordings of neuronal activity of the RVLM and in vivo measurement of cardiovascular functions in rats. Orexin A and B concentration-dependently depolarized RVLM neurons. At 100 nM, both peptides excited 42% of RVLM neurons. Tetrodotoxin failed to block orexin-induced depolarization. In the presence of N-(2-methyl-6-benzoxazolyl)-N'-1, 5-naphthyridin-4-yl urea (SB-334867), an orexin 1 receptor (OX(1)R) antagonist, orexin A depolarized 42% of RVLM neurons with a smaller, but not significantly different, amplitude (4.9 +/- 0.8 versus 7.2 +/- 1.1 mV). In the presence of (2S)-1- (3,4-dihydro-6,7-dimethoxy-2(1H)-isoquinolinyl)-3,3-dimethyl-2-[(4-pyridinylmethyl)amino]-1-butanone hydrochloride (TCS OX2 29), an orexin 2 receptor (OX(2)R) antagonist, orexin A depolarized 25% of RVLM neurons with a significantly smaller amplitude (1.7 +/- 0.5 mV). Coapplication of both antagonists completely eliminated orexin A-induced depolarization. An OX(2)R agonist, [Ala(11),D-Leu(15)]-orexin B, concentration-dependently depolarized RVLM neurons. Regarding neuronal phenotypes, orexins depolarized 88% of adrenergic, 43% of nonadrenergic, and 36 to 41% of rhythmically firing RVLM neurons. Intracisternal TCS OX2 29 (3 and 10 nmol) suppressed intracisternal orexin A-induced increases of AP and HR, whereas intracisternal SB-334867 (3 and 10 nmol) had no effect on the orexin A-induced increase of HR but suppressed the orexin A-induced pressor response at 10 nmol. We concluded that orexins directly excite RVLM neurons, which include bulbospinal vasomotor neurons, and regulate cardiovascular function mainly via the OX(2)R, with a smaller contribution from the OX(1)R.

  1. Human orexin/hypocretin receptors form constitutive homo- and heteromeric complexes with each other and with human CB{sub 1} cannabinoid receptors

    Energy Technology Data Exchange (ETDEWEB)

    Jäntti, Maria H., E-mail: maria.jantti@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland); Mandrika, Ilona, E-mail: ilona@biomed.lu.lv [Latvian Biomedical Research and Study Centre, Ratsupites Str. 1, Riga LV 1067 (Latvia); Kukkonen, Jyrki P., E-mail: jyrki.kukkonen@helsinki.fi [Department of Veterinary Biosciences, POB 66, FIN-00014 University of Helsinki (Finland)

    2014-03-07

    Highlights: • OX{sub 1} and OX{sub 2} orexin and CB{sub 1} cannabinoid receptor dimerization was investigated. • Bioluminescence resonance energy transfer method was used. • All receptors readily formed constitutive homo- and heteromeric complexes. - Abstract: Human OX{sub 1} orexin receptors have been shown to homodimerize and they have also been suggested to heterodimerize with CB{sub 1} cannabinoid receptors. The latter has been suggested to be important for orexin receptor responses and trafficking. In this study, we wanted to assess the ability of the other combinations of receptors to also form similar complexes. Vectors for expression of human OX{sub 1}, OX{sub 2} and CB{sub 1} receptors, C-terminally fused with either Renilla luciferase or GFP{sup 2} green fluorescent protein variant, were generated. The constructs were transiently expressed in Chinese hamster ovary cells, and constitutive dimerization between the receptors was assessed by bioluminescence energy transfer (BRET). Orexin receptor subtypes readily formed homo- and hetero(di)mers, as suggested by significant BRET signals. CB{sub 1} receptors formed homodimers, and they also heterodimerized with both orexin receptors. Interestingly, BRET efficiency was higher for homodimers than for almost all heterodimers. This is likely to be due to the geometry of the interaction; the putatively symmetric dimers may place the C-termini in a more suitable orientation in homomers. Fusion of luciferase to an orexin receptor and GFP{sup 2} to CB{sub 1} produced more effective BRET than the opposite fusions, also suggesting differences in geometry. Similar was seen for the OX{sub 1}–OX{sub 2} interaction. In conclusion, orexin receptors have a significant propensity to make homo- and heterodi-/oligomeric complexes. However, it is unclear whether this affects their signaling. As orexin receptors efficiently signal via endocannabinoid production to CB{sub 1} receptors, dimerization could be an effective way

  2. Nocturnal rapid eye movement sleep latency for identifying patients with narcolepsy/hypocretin deficiency.

    Science.gov (United States)

    Andlauer, Olivier; Moore, Hyatt; Jouhier, Laura; Drake, Christopher; Peppard, Paul E; Han, Fang; Hong, Seung-Chul; Poli, Francesca; Plazzi, Giuseppe; O'Hara, Ruth; Haffen, Emmanuel; Roth, Thomas; Young, Terry; Mignot, Emmanuel

    2013-07-01

    Narcolepsy, a disorder associated with HLA-DQB1*06:02 and caused by hypocretin (orexin) deficiency, is diagnosed using the Multiple Sleep Latency Test (MSLT) following nocturnal polysomnography (NPSG). In many patients, a short rapid eye movement sleep latency (REML) during the NPSG is also observed but not used diagnostically. To determine diagnostic accuracy and clinical utility of nocturnal REML measures in narcolepsy/hypocretin deficiency. Observational study using receiver operating characteristic curves for NPSG REML and MSLT findings (sleep studies performed between May 1976 and September 2011 at university medical centers in the United States, China, Korea, and Europe) to determine optimal diagnostic cutoffs for narcolepsy/hypocretin deficiency compared with different samples: controls, patients with other sleep disorders, patients with other hypersomnias, and patients with narcolepsy with normal hypocretin levels. Increasingly stringent comparisons were made. In a first comparison, 516 age- and sex-matched patients with narcolepsy/hypocretin deficiency were selected from 1749 patients and compared with 516 controls. In a second comparison, 749 successive patients undergoing sleep evaluation for any sleep disorders (low pretest probability for narcolepsy) were compared within groups by final diagnosis of narcolepsy/hypocretin deficiency. In the third comparison, 254 patients with a high pretest probability of having narcolepsy were compared within group by their final diagnosis. Finally, 118 patients with narcolepsy/hypocretin deficiency were compared with 118 age- and sex-matched patients with a diagnosis of narcolepsy but with normal hypocretin levels. Sensitivity and specificity of NPSG REML and MSLT as diagnostic tests for narcolepsy/hypocretin deficiency. This diagnosis was defined as narcolepsy associated with cataplexy plus HLA-DQB1*06:02 positivity (no cerebrospinal fluid hypocretin-1 results available) or narcolepsy with documented low (≤ 110 pg

  3. Expression and potential role of the peptide orexin-A in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Valiante, Salvatore [Department of Biology, University of Naples Federico II (Italy); Liguori, Giovanna; Tafuri, Simona [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy); Pavone, Luigi Michele [Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II (Italy); Campese, Roberto [Department of Urology, “A. Cardarelli” Hospital, Naples (Italy); Monaco, Roberto [Department of Pathology, “A. Cardarelli” Hospital, Naples (Italy); Iachetta, Giuseppina; Assisi, Loredana [Department of Biology, University of Naples Federico II (Italy); Mirabella, Nicola [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy); Forte, Maurizio [Institute of Genetics and Biophysics “A. Buzzati-Traverso”, CNR, Naples (Italy); Costagliola, Anna [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy); Vittoria, Alfredo, E-mail: avittori@unina.it [Department of Veterinary Medicine and Animal Productions, University of Naples Federico II (Italy)

    2015-09-04

    The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A in human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer. - Highlights: • Orexin-A and OX1 receptor are present in human cancer prostate tissues. • Orexin-A up-regulates OX1 receptor expression in LNCaP cells. • Orexin-A inhibits testosterone-induced nuclear translocation of androgen receptor.

  4. Expression and potential role of the peptide orexin-A in prostate cancer

    International Nuclear Information System (INIS)

    Valiante, Salvatore; Liguori, Giovanna; Tafuri, Simona; Pavone, Luigi Michele; Campese, Roberto; Monaco, Roberto; Iachetta, Giuseppina; Assisi, Loredana; Mirabella, Nicola; Forte, Maurizio; Costagliola, Anna; Vittoria, Alfredo

    2015-01-01

    The peptides orexin-A and orexin-B and their G protein-coupled OX1 and OX2 receptors are involved in multiple physiological processes in the central nervous system and peripheral organs. Altered expression or signaling dysregulation of orexins and their receptors have been associated with a wide range of human diseases including narcolepsy, obesity, drug addiction, and cancer. Although orexin-A, its precursor molecule prepro-orexin and OX1 receptor have been detected in the human normal and hyperplastic prostate tissues, their expression and function in the prostate cancer (PCa) remains to be addressed. Here, we demonstrate for the first time the immunohistochemical localization of orexin-A in human PCa specimens, and the expression of prepro-orexin and OX1 receptor at both protein and mRNA levels in these tissues. Orexin-A administration to the human androgen-dependent prostate carcinoma cells LNCaP up-regulates OX1 receptor expression resulting in a decrease of cell survival. Noteworthy, nanomolar concentrations of the peptide counteract the testosterone-induced nuclear translocation of the androgen receptor in the cells: the orexin-A action is prevented by the addition of the OX1 receptor antagonist SB-408124 to the test system. These findings indicate that orexin-A/OX1 receptor interaction interferes with the activity of the androgen receptor which regulates PCa onset and progression, thus suggesting that orexin-A and its receptor might represent novel therapeutic targets to challenge this aggressive cancer. - Highlights: • Orexin-A and OX1 receptor are present in human cancer prostate tissues. • Orexin-A up-regulates OX1 receptor expression in LNCaP cells. • Orexin-A inhibits testosterone-induced nuclear translocation of androgen receptor

  5. The paraventricular nucleus of the thalamus is recruited by both natural rewards and drugs of abuse: recent evidence of a pivotal role for orexin/hypocretin signaling in this thalamic nucleus in drug-seeking behavior

    Directory of Open Access Journals (Sweden)

    Alessandra eMatzeu

    2014-04-01

    Full Text Available A major challenge for the successful treatment of drug addiction is the long-lasting susceptibility to relapse and multiple processes that have been implicated in the compulsion to resume drug intake during abstinence. Recently, the orexin/hypocretin (Orx/Hcrt system has been shown to play a role in drug-seeking behavior. The Orx/Hcrt system regulates a wide range of physiological processes, including feeding, energy metabolism, and arousal. It has also been shown to be recruited by drugs of abuse. Orx/Hcrt neurons are predominantly located in the lateral hypothalamus that projects to the paraventricular nucleus of the thalamus (PVT, a region that has been identified as a way-station that processes information and then modulates the mesolimbic reward and extrahypothalamic stress systems. Although not thought to be part of the drug addiction circuitry, recent evidence indicates that the PVT is involved in the modulation of reward function in general and drug-directed behavior in particular. Evidence indicates a role for Orx/Hcrt transmission in the PVT in the modulation of reward function in general and drug-directed behavior in particular. One hypothesis is that following repeated drug exposure, the Orx/Hcrt system acquires a preferential role in mediating the effects of drugs vs. natural rewards. The present review discusses recent findings that suggest maladaptive recruitment of the PVT by drugs of abuse, specifically Orx/Hcrt-PVT neurotransmission.

  6. Role of brain orexin in the pathophysiology of functional gastrointestinal disorders.

    Science.gov (United States)

    Okumura, Toshikatsu; Nozu, Tsukasa

    2011-04-01

    Orexins are neuropeptides that are localized in neurons within the lateral hypothalamic area and regulate feeding behavior. The lateral hypothalamic area plays an important role in not only feeding but the central regulation of other functions including gut physiology. Accumulating evidence have shown that orexins acts in the brain to regulate a wide variety of body functions including gastrointestinal functions. The purpose of this review is to summarize relevant findings on brain orexins and a digestive system, and discuss the pathophysiological roles of the peptides with special reference to functional gastrointestinal disorders. Exogenously administered orexin or endogenously released orexin in the brain potently stimulates gastric acid secretion in pylorus-ligated conscious rats. The vagal cholinergic pathway is involved in the orexin-induced stimulation of acid secretion, suggesting that orexin-containing neurons in lateral hypothalamic area activates neurons in the dorsal motor nucleus in medulla oblongata, followed by increasing vagal outflow, thereby stimulating gastric acid secretion. In addition, brain orexin stimulates gastric motility, pancreatic secretion and induce gastroprotective action. On the other hand, brain orexin is involved in a number of physiological functions other than gut physiology, such as control of sleep/awake cycle and anti-depressive action in addition to increase in appetite. From these evidence, we would like to make a hypothesis that decreased orexin signaling in the brain may play a role in the pathophysiology in a part of patients with functional gastrointestinal disorders who are frequently accompanied with appetite loss, sleep disturbance, depressive state and the inhibition of gut function. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  7. An investigation of interactions between hypocretin/orexin signaling and glutamate receptor surface expression in the rat nucleus accumbens under basal conditions and after cocaine exposure.

    Science.gov (United States)

    Plaza-Zabala, Ainhoa; Li, Xuan; Milovanovic, Mike; Loweth, Jessica A; Maldonado, Rafael; Berrendero, Fernando; Wolf, Marina E

    2013-12-17

    Hypocretin peptides are critical for the effects of cocaine on excitatory synaptic strength in the ventral tegmental area (VTA). However, little is known about their role in cocaine-induced synaptic plasticity in the nucleus accumbens (NAc). First, we tested whether hypocretin-1 by itself could acutely modulate glutamate receptor surface expression in the NAc, given that hypocretin-1 in the VTA reproduces cocaine's effects on glutamate transmission. We found no effect of hypocretin-1 infusion on AMPA or NMDA receptor surface expression in the NAc, measured by biotinylation, either 30 min or 3h after the infusion. Second, we were interested in whether changes in hypocretin receptor-2 (Hcrtr-2) expression contribute to cocaine-induced plasticity in the NAc. As a first step towards addressing this question, Hcrtr-2 surface expression was compared in the NAc after withdrawal from extended-access self-administration of saline (control) versus cocaine. We found that surface Hcrtr-2 levels remain unchanged following 14, 25 or 48 days of withdrawal from cocaine, a time period in which high conductance GluA2-lacking AMPA receptors progressively emerge in the NAc. Overall, our results fail to support a role for hypocretins in acute modulation of glutamate receptor levels in the NAc or a role for altered Hcrtr-2 expression in withdrawal-dependent synaptic adaptations in the NAc following cocaine self-administration. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  8. The effect of orexin-A on cardiac dysfunction mediated by NADPH oxidase-derived superoxide anion in ventrolateral medulla.

    Directory of Open Access Journals (Sweden)

    Jun Chen

    Full Text Available Hypocretin/orexin-producing neurons, located in the perifornical region of the lateral hypothalamus area (LHA and projecting to the brain sites of rostral ventrolateral medulla (RVLM, involve in the increase of sympathetic activity, thereby regulating cardiovascular function. The current study was designed to test the hypothesis that the central orexin-A (OXA could be involved in the cardiovascular dysfunction of acute myocardial infarction (AMI by releasing NAD(PH oxidase-derived superoxide anion (O2 (- generation in RVLM, AMI rat model established by ligating the left anterior descending (LAD coronary artery to induce manifestation of cardiac dysfunction, monitored by the indicators as heart rate (HR, heart rate variability (HRV, mean arterial pressure (MAP and left intraventricular pressure. The results showed that the expressions of OXA in LHA and orexin 1 receptor (OX1R increased in RVLM of AMI rats. The double immunofluorescent staining indicated that OX1R positive cells and NAD(PH oxidative subunit gp91phox or p47phox-immunoreactive (IR cells were co-localized in RVLM. Microinjection of OXA into the cerebral ventricle significantly increased O2 (- production and mRNA expression of NAD(PH oxidase subunits when compared with aCSF-treated ones. Exogenous OXA administration in RVLM produced pressor and tachycardiac effects. Furthermore, the antagonist of OX1R and OX2R (SB-408124 and TCS OX2 29, respectively or apocynin (APO, an inhibitor of NAD(PH oxidase, partly abolished those cardiovascular responses of OXA. HRV power spectral analysis showed that exogenous OXA led to decreased HF component of HRV and increased LF/HF ratio in comparison with aCSF, which suggested that OXA might be related to sympathovagal imbalance. As indicated by the results, OXA might participate in the central regulation of cardiovascular activities by disturbing the sympathovagal balance in AMI, which could be explained by the possibility that OXR and NAD(PH-derived O

  9. Slow Bursting Neurons of Mouse Cortical Layer 6b Are Depolarized by Hypocretin/Orexin and Major Transmitters of Arousal.

    Science.gov (United States)

    Wenger Combremont, Anne-Laure; Bayer, Laurence; Dupré, Anouk; Mühlethaler, Michel; Serafin, Mauro

    2016-01-01

    Neurons firing spontaneously in bursts in the absence of synaptic transmission have been previously recorded in different layers of cortical brain slices. It has been suggested that such neurons could contribute to the generation of alternating UP and DOWN states, a pattern of activity seen during slow-wave sleep. Here, we show that in layer 6b (L6b), known from our previous studies to contain neurons highly responsive to the wake-promoting transmitter hypocretin/orexin (hcrt/orx), there is a set of neurons, endowed with distinct intrinsic properties, which displayed a strong propensity to fire spontaneously in rhythmic bursts. In response to small depolarizing steps, they responded with a delayed firing of action potentials which, upon higher depolarizing steps, invariably inactivated and were followed by a depolarized plateau potential and a depolarizing afterpotential. These cells also displayed a strong hyperpolarization-activated rectification compatible with the presence of an I h current. Most L6b neurons with such properties were able to fire spontaneously in bursts. Their bursting activity was of intrinsic origin as it persisted not only in presence of blockers of ionotropic glutamatergic and GABAergic receptors but also in a condition of complete synaptic blockade. However, a small number of these neurons displayed a mix of intrinsic bursting and synaptically driven recurrent UP and DOWN states. Most of the bursting L6b neurons were depolarized and excited by hcrt/orx through a direct postsynaptic mechanism that led to tonic firing and eventually inactivation. Similarly, they were directly excited by noradrenaline, histamine, dopamine, and neurotensin. Finally, the intracellular injection of these cells with dye and their subsequent Neurolucida reconstruction indicated that they were spiny non-pyramidal neurons. These results lead us to suggest that the propensity for slow rhythmic bursting of this set of L6b neurons could be directly impeded by hcrt

  10. Metabolic regulation of lateral hypothalamic glucose-inhibited orexin neurons may influence midbrain reward neurocircuitry.

    Science.gov (United States)

    Sheng, Zhenyu; Santiago, Ammy M; Thomas, Mark P; Routh, Vanessa H

    2014-09-01

    Lateral hypothalamic area (LHA) orexin neurons modulate reward-based feeding by activating ventral tegmental area (VTA) dopamine (DA) neurons. We hypothesize that signals of peripheral energy status influence reward-based feeding by modulating the glucose sensitivity of LHA orexin glucose-inhibited (GI) neurons. This hypothesis was tested using electrophysiological recordings of LHA orexin-GI neurons in brain slices from 4 to 6week old male mice whose orexin neurons express green fluorescent protein (GFP) or putative VTA-DA neurons from C57Bl/6 mice. Low glucose directly activated ~60% of LHA orexin-GFP neurons in both whole cell and cell attached recordings. Leptin indirectly reduced and ghrelin directly enhanced the activation of LHA orexin-GI neurons by glucose decreases from 2.5 to 0.1mM by 53±12% (n=16, Pglucose sensitivity. Fasting increased activation of LHA orexin-GI neurons by decreased glucose, as would be predicted by these hormonal effects. We also evaluated putative VTA-DA neurons in a novel horizontal slice preparation containing the LHA and VTA. Decreased glucose increased the frequency of spontaneous excitatory post-synaptic currents (sEPSCs; 125 ± 40%, n=9, Pneurons. sEPSCs were completely blocked by AMPA and NMDA glutamate receptor antagonists (CNQX 20 μM, n=4; APV 20μM, n=4; respectively), demonstrating that these sEPSCs were mediated by glutamatergic transmission onto VTA DA neurons. Orexin-1 but not 2 receptor antagonism with SB334867 (10μM; n=9) and TCS-OX2-29 (2μM; n=5), respectively, blocks the effects of decreased glucose on VTA DA neurons. Thus, decreased glucose increases orexin-dependent excitatory glutamate neurotransmission onto VTA DA neurons. These data suggest that the glucose sensitivity of LHA orexin-GI neurons links metabolic state and reward-based feeding. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Did hypocretin receptor 2 autoantibodies cause narcolepsy with hypocretin deficiency in Pandemrix-vaccinated children? Comment on “Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2”

    OpenAIRE

    Vassalli Anne

    2015-01-01

    Abstract Did hypocretin receptor 2 auto antibodies cause narcolepsy with hypocretin deficiency in Pandemrix vaccinated children as suggested by Ahmed et al.? Using newly developed mouse models to report and inactivate hypocretin receptor expression Vassalli et al. now show that hypocretin neurons (whose loss causes narcolepsy) do not express hypocretin autoreceptors raising questions to the interpretation of Ahmed et al.’s findings. Mouse Genome Informatics: www.informatics.jax.org/reference/...

  12. Human hypocretin-deficient narcolepsy - aberrant food choice due to impaired taste?

    Directory of Open Access Journals (Sweden)

    Giselle de Martin Truzzi

    Full Text Available Authors demonstrate that patients with narcolepsy type 1 (N1 have more tendency of eat salty snacks after satiety than health volunteers. A few mechanisms to explain the weight gain have been discussed in narcolepsy. The hypocretin-1 deficiency can influence the olfactory system. The olfactory system should be modulated through hypocretin-1 via connections from the hypothalamic to other brain regions. Likewise, hypocretin-1 can be synthesized locally in our olfactory mucosa with possible private role modulating the olfactory. In experimental studies, different kinds of smell influence the preference for type of diet. Olfactory and taste sensations help control of appetite and regulate the quantity and quality of foods that will be chosen. N1 patients have lower levels of hypocretin-1 and consequent inferior olfactory threshold, less olfactory discrimination, and these findings improved after nasal hypocretin-1 administration. It is possible that the hyposmia influenced the quality and quantity of food by narcoleptic patients. We suggest that a complementary analysis of olfactory function should be done concomitant with food preferences to compare narcoleptic patients with and without hypocretin-1 deficiency.

  13. Activation of Hypocretin-1/Orexin-A Neurons Projecting to the Bed Nucleus of the Stria Terminalis and Paraventricular Nucleus Is Critical for Reinstatement of Alcohol Seeking by Neuropeptide S.

    Science.gov (United States)

    Ubaldi, Massimo; Giordano, Antonio; Severi, Ilenia; Li, Hongwu; Kallupi, Marsida; de Guglielmo, Giordano; Ruggeri, Barbara; Stopponi, Serena; Ciccocioppo, Roberto; Cannella, Nazzareno

    2016-03-15

    Environmental conditioning is a major trigger for relapse in abstinent addicts. We showed that activation of the neuropeptide S (NPS) system exacerbates reinstatement vulnerability to cocaine and alcohol via stimulation of the hypocretin-1/orexin-A (Hcrt-1/Ox-A) system. Combining pharmacologic manipulations with immunohistochemistry techniques, we sought to determine how NPS and Hcrt-1/Ox-A systems interact to modulate reinstatement of alcohol seeking in rats. Intrahypothalamic injection of NPS facilitated discriminative cue-induced reinstatement of alcohol seeking. This effect was blocked by the selective Hcrt-1/Ox-A antagonist SB334867 microinjected into the hypothalamic paraventricular nucleus (PVN) or into the bed nucleus of the stria terminalis (BNST) but not into the ventral tegmental area or the locus coeruleus. Combining double labeling and confocal microscopy analyses, we found that NPS-containing axons are in close apposition to hypothalamic Hcrt-1/Ox-A positive neurons, a significant proportion of which express NPS receptors, suggesting a direct interaction between the two systems. Retrograde tracing experiments showed that intra-PVN or intra-BNST red fluorobead unilateral injection labeled bilaterally Hcrt-1/Ox-A somata, suggesting that NPS could recruit two distinct neuronal pathways. Confirming this assumption, intra-BNST or PVN Hcrt-1/Ox-A injection enhanced alcohol seeking similarly to hypothalamic NPS injection but to a lesser degree. Results suggest that the Hcrt-1/Ox-A neurocircuitry mediating the facilitation of cue-induced reinstatement by NPS involves structures critically involved in stress regulation such as the PVN and the BNST. These findings open to the tempting hypothesis of a role of the NPS system in modulating the interactions between stress and environmental conditioning factors in drug relapse. Copyright © 2016. Published by Elsevier Inc.

  14. Hypocretin and brain β-amyloid peptide interactions in cognitive disorders and narcolepsy

    Directory of Open Access Journals (Sweden)

    Yves A Dauvilliers

    2014-06-01

    Full Text Available Objective: To examine relationships between cerebrospinal fluid (CSF Alzheimer’ disease (AD biomarkers and hypocretin-1 levels in patients with cognitive abnormalities and hypocretin-deficient narcolepsy-cataplexy (NC, estimate diagnostic accuracy, and determine correlations with sleep disturbances. Background: Sleep disturbances are frequent in AD. Interactions between brain β-amyloid (Aβ aggregation and a wake-related neurotransmitter hypocretin have been reported in a mouse model of AD. Methods: Ninety-one cognitive patients (37 AD, 16 mild cognitive impairment – MCI that converts to AD, 38 other dementias and 15 elderly patients with NC were recruited. Patients were diagnosed blind to CSF results. CSF A42, total tau, ptau181, and hypocretin-1 were measured. Sleep disturbances were assessed with questionnaires in 32 cognitive patients. Results: Lower CSF Aβ42 but higher tau and P-tau levels were found in AD and MCI compared to other dementias. CSF hypocretin-1 levels were higher in patients with MCI due to AD compared to other dementias, with a similar tendency for patients with advanced AD. CSF hypocretin-1 was significantly and independently associated with AD/MCI due to AD, with an OR of 2.70 after full adjustment, exceeding that for Aβ42. Aβ42 correlated positively with hypocretin-1 levels in advanced stage AD. No association was found between sleep disturbances and CSF biomarkers. No patients with NC achieved pathological cutoffs for Aβ42, with respectively one and four patients with NC above tau and P-tau cutoffs and no correlations between hypocretin-1 and other biomarkers. Conclusions: Our results suggest a pathophysiological relationship between Aβ42 and hypocretin-1 in the AD process, with higher CSF hypocretin-1 levels in early disease stages. Further longitudinal studies are needed to validate these biomarker interactions and to determine the cause-effect relationship and the role of wake/sleep behavior in amyloid

  15. Presynaptic inhibition of GABAergic synaptic transmission by adenosine in mouse hypothalamic hypocretin neurons.

    Science.gov (United States)

    Xia, J X; Xiong, J X; Wang, H K; Duan, S M; Ye, J N; Hu, Z A

    2012-01-10

    Hypocretin neurons in the lateral hypothalamus, a new wakefulness-promoting center, have been recently regarded as an important target involved in endogenous adenosine-regulating sleep homeostasis. The GABAergic synaptic transmissions are the main inhibitory afferents to hypocretin neurons, which play an important role in the regulation of excitability of these neurons. The inhibitory effect of adenosine, a homeostatic sleep-promoting factor, on the excitatory glutamatergic synaptic transmissions in hypocretin neurons has been well documented, whether adenosine also modulates these inhibitory GABAergic synaptic transmissions in these neurons has not been investigated. In this study, the effect of adenosine on inhibitory postsynaptic currents (IPSCs) in hypocretin neurons was examined by using perforated patch-clamp recordings in the acute hypothalamic slices. The findings demonstrated that adenosine suppressed the amplitude of evoked IPSCs in a dose-dependent manner, which was completely abolished by 8-cyclopentyltheophylline (CPT), a selective antagonist of adenosine A1 receptor but not adenosine A2 receptor antagonist 3,7-dimethyl-1-(2-propynyl) xanthine. A presynaptic origin was suggested as following: adenosine increased paired-pulse ratio as well as reduced GABAergic miniature IPSC frequency without affecting the miniature IPSC amplitude. Further findings demonstrated that when the frequency of electrical stimulation was raised to 10 Hz, but not 1 Hz, a time-dependent depression of evoked IPSC amplitude was detected in hypocretin neurons, which could be partially blocked by CPT. However, under a higher frequency at 100 Hz stimulation, CPT had no action on the depressed GABAergic synaptic transmission induced by such tetanic stimulation in these hypocretin neurons. These results suggest that endogenous adenosine generated under certain stronger activities of synaptic transmissions exerts an inhibitory effect on GABAergic synaptic transmission in hypocretin

  16. Hypocretin in cerebrospinal fluid is positively correlated with Tau and pTau.

    Science.gov (United States)

    Deuschle, Michael; Schilling, Claudia; Leweke, F Markus; Enning, Frank; Pollmächer, Thomas; Esselmann, Hermann; Wiltfang, Jens; Frölich, Lutz; Heuser, Isabella

    2014-02-21

    It has been suggested that sleep-wake regulation as well as hypocretins play a role in the pathophysiology of Alzheimer's disease. We analyzed Aβ40, Aβ42, Tau protein, phosphorylated Tau (pTau) protein as well as hypocretin-1 concentrations in the CSF of a detection sample of 10 patients with Alzheimer's disease (AD) as well as 10 age- and gender-matched patients with major depression as a comparison group of different pathology. In order to replicate the findings, we used a confirmation sample of 17 AD patients and 8 patients with major depression. We found hypocretin-1 concentrations in CSF not to differ between patients with depression and AD. However, hypocretin-1 was significantly related to Tau (r=0.463, phypocretin-1 may play a role in the metabolism of Tau proteins across different diagnostic entities including AD. It has to be determined whether there is a causal relationship between hypocretin-1 and Tau as well as pTau. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  17. Aberrant Food Choices after Satiation in Human Orexin-Deficient Narcolepsy Type 1

    NARCIS (Netherlands)

    van Holst, R.J.; van der Cruijsen, L.; van Mierlo, P.; Lammers, G.J.; Cools, R.; Overeem, S.; Aarts, E.

    2016-01-01

    STUDY OBJECTIVES: Besides influencing vigilance, orexin neurotransmission serves a variety of functions, including reward, motivation, and appetite regulation. As obesity is an important symptom in orexin-deficient narcolepsy, we explored the effects of satiety on food-related choices and

  18. Aberrant food choices after satiation in human orexin-deficient narcolepsy type 1

    NARCIS (Netherlands)

    van Holst, R.J.; van der Cruijsen, L.; van Mierlo, P.; Lammers, G.J.; Cools, R.; Overeem, S.; Aarts, E.

    2016-01-01

    STUDY OBJECTIVES: Besides influencing vigilance, orexin neurotransmission serves a variety of functions, including reward, motivation, and appetite regulation. As obesity is an important symptom in orexin-deficient narcolepsy, we explored the effects of satiety on food-related choices and

  19. CSF HYPOCRETIN CONCENTRATION IN VARIOUS NEUROLOGICAL AND SLEEP DISORDERS

    OpenAIRE

    Tsutsui, Kou; Kanbayashi, Takashi; Sawaishi, Yukio; Tokunaga, Jun; Sato, Masahiro; Shimizu, Tetsuo

    2011-01-01

    Recent CSF and postmortem brain hypocretin measurements in human narcolepsy suggest that hypocretin deficiency is involved in the pathophysiology of the disease. Thus, it is important to study whether neurological disorders also have abnormal CSF hypocretin levels. We therefore measured hypocretins in the CSF of various neurological disorders and obstructive sleep apnea syndrome (OSAS) to identify altered hypocretin levels. CSF hypocretin levels in patients with OSAS and neurological diseases...

  20. Aberrant Food Choices after Satiation in Human Orexin-Deficient Narcolepsy Type 1

    NARCIS (Netherlands)

    van Holst, Ruth Janke; van der Cruijsen, Lisa; van Mierlo, Petra; Lammers, Gert Jan; Cools, Roshan; Overeem, Sebastiaan; Aarts, Esther

    2016-01-01

    Besides influencing vigilance, orexin neurotransmission serves a variety of functions, including reward, motivation, and appetite regulation. As obesity is an important symptom in orexin-deficient narcolepsy, we explored the effects of satiety on food-related choices and spontaneous snack intake in

  1. Dual hypocretin receptor antagonism is more effective for sleep promotion than antagonism of either receptor alone.

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    Full Text Available The hypocretin (orexin system is involved in sleep/wake regulation, and antagonists of both hypocretin receptor type 1 (HCRTR1 and/or HCRTR2 are considered to be potential hypnotic medications. It is currently unclear whether blockade of either or both receptors is more effective for promoting sleep with minimal side effects. Accordingly, we compared the properties of selective HCRTR1 (SB-408124 and SB-334867 and HCRTR2 (EMPA antagonists with that of the dual HCRTR1/R2 antagonist almorexant in the rat. All 4 antagonists bound to their respective receptors with high affinity and selectivity in vitro. Since in vivo pharmacokinetic experiments revealed poor brain penetration for SB-408124, SB-334867 was selected for subsequent in vivo studies. When injected in the mid-active phase, SB-334867 produced small increases in rapid-eye-movement (REM and non-REM (NR sleep. EMPA produced a significant increase in NR only at the highest dose studied. In contrast, almorexant decreased NR latency and increased both NR and REM proportionally throughout the subsequent 6 h without rebound wakefulness. The increased NR was due to a greater number of NR bouts; NR bout duration was unchanged. At the highest dose tested (100 mg/kg, almorexant fragmented sleep architecture by increasing the number of waking and REM bouts. No evidence of cataplexy was observed. HCRTR1 occupancy by almorexant declined 4-6 h post-administration while HCRTR2 occupancy was still elevated after 12 h, revealing a complex relationship between occupancy of HCRT receptors and sleep promotion. We conclude that dual HCRTR1/R2 blockade is more effective in promoting sleep than blockade of either HCRTR alone. In contrast to GABA receptor agonists which induce sleep by generalized inhibition, HCRTR antagonists seem to facilitate sleep by reducing waking "drive".

  2. Intermittent but not sustained hypoxia activates orexin-containing neurons in mice.

    Science.gov (United States)

    Yamaguchi, Keiji; Futatsuki, Takahiro; Ushikai, Jumpei; Kuroki, Chiharu; Minami, Toshiaki; Kakihana, Yasuyuki; Kuwaki, Tomoyuki

    2015-01-15

    Hypothalamic orexin-containing neurons are activated by CO2 and contribute to hypercapnic ventilatory activation. However, their role in oxygen-related regulation of breathing is not well defined. In this study, we examined whether an experimental model mimicking apnea-induced repetitive hypoxemia (intermittent hypoxia [IH]) activates orexin-containing neurons. Mice were exposed to IH (5×5min at 10% O2), intermittent hyperoxia (IO; 5×5min at 50% O2), sustained hypoxia (SH; 25min at 10% O2), or sham stimulation. Their brains were examined using double immunohistochemical staining for orexin and c-Fos. The results indicated that IH (25.8±3.0%), but not SH (9.0±1.5%) activated orexin-containing neurons when compared to IO (5.5±0.6%) and sham stimulation (5.9±1.4%). These results correlate with those of our previous work showing that IH-induced respiratory long-term facilitation is dependent on orexin-containing neurons. Taken together, orexin contributes to repetitive hypoxia-induced respiratory activation and the hypoxic activation of orexin-containing neurons is pattern dependent. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Direct projections from hypothalamic orexin neurons to brainstem cardiac vagal neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2016-12-17

    Orexin neurons are known to augment the sympathetic control of cardiovascular function, however the role of orexin neurons in parasympathetic cardiac regulation remains unclear. To test the hypothesis that orexin neurons contribute to parasympathetic control we selectively expressed channelrhodopsin-2 (ChR2) in orexin neurons in orexin-Cre transgenic rats and examined postsynaptic currents in cardiac vagal neurons (CVNs) in the dorsal motor nucleus of the vagus (DMV). Simultaneous photostimulation and recording in ChR2-expressing orexin neurons in the lateral hypothalamus resulted in reliable action potential firing as well as large whole-cell currents suggesting a strong expression of ChR2 and reliable optogenetic excitation. Photostimulation of ChR2-expressing fibers in the DMV elicited short-latency (ranging from 3.2ms to 8.5ms) postsynaptic currents in 16 out of 44 CVNs tested. These responses were heterogeneous and included excitatory glutamatergic (63%) and inhibitory GABAergic (37%) postsynaptic currents. The results from this study suggest different sub-population of orexin neurons may exert diverse influences on brainstem CVNs and therefore may play distinct functional roles in parasympathetic control of the heart. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  4. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far

    Directory of Open Access Journals (Sweden)

    África eFlores

    2013-12-01

    Full Text Available Emerging findings suggest the existence of a cross-talk between hypocretinergic and endocannabinoid systems. Although few studies have examined this relationship, the apparent overlap observed in the neuroanatomical distribution of both systems as well as their putative functions strongly point to the existence of such cross-modulation. In agreement, biochemical and functional studies have revealed the existence of heterodimers between CB1 cannabinoid receptor and hypocretin receptor-1, which modulates the cellular localization and downstream signalling of both receptors. Moreover, the activation of hypocretin receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol culminating in the retrograde inhibition of neighbouring cells and suggesting that endocannabinoids could contribute to some hypocretin effects. Pharmacological data indicate that endocannabinoids and hypocretins might have common physiological functions in the regulation of appetite, reward and analgesia. In contrast, these neuromodulatory systems seem to play antagonistic roles in the regulation of sleep/wake cycle and anxiety-like responses. The present review attempts to piece together what is known about this interesting interaction and describe its potential therapeutic implications.

  5. Cannabinoid-hypocretin cross-talk in the central nervous system: what we know so far.

    Science.gov (United States)

    Flores, Africa; Maldonado, Rafael; Berrendero, Fernando

    2013-12-20

    Emerging findings suggest the existence of a cross-talk between hypocretinergic and endocannabinoid systems. Although few studies have examined this relationship, the apparent overlap observed in the neuroanatomical distribution of both systems as well as their putative functions strongly point to the existence of such cross-modulation. In agreement, biochemical and functional studies have revealed the existence of heterodimers between CB1 cannabinoid receptor and hypocretin receptor-1, which modulates the cellular localization and downstream signaling of both receptors. Moreover, the activation of hypocretin receptor-1 stimulates the synthesis of 2-arachidonoyl glycerol culminating in the retrograde inhibition of neighboring cells and suggesting that endocannabinoids could contribute to some hypocretin effects. Pharmacological data indicate that endocannabinoids and hypocretins might have common physiological functions in the regulation of appetite, reward and analgesia. In contrast, these neuromodulatory systems seem to play antagonistic roles in the regulation of sleep/wake cycle and anxiety-like responses. The present review attempts to piece together what is known about this interesting interaction and describes its potential therapeutic implications.

  6. Involvement of spinal orexin A in the electroacupuncture analgesia in a rat model of post-laparotomy pain

    Directory of Open Access Journals (Sweden)

    Feng Xiao-Ming

    2012-11-01

    Full Text Available Abstract Background Orexin A (OXA, hypocretin/hcrt 1 is a newly discovered potential analgesic substance. However, whether OXA is involved in acupuncture analgesia remains unknown. The present study was designed to investigate the involvement of spinal OXA in electroacupuncture (EA analgesia. Methods A modified rat model of post-laparotomy pain was adopted and evaluated. Von Frey filaments were used to measure mechanical allodynia of the hind paw and abdomen. EA at 2/15 Hz or 2/100 Hz was performed once on the bilateral ST36 and SP6 for 30 min perioperatively. SB-334867, a selective orexin 1 receptor (OX1R antagonist with a higher affinity for OXA than OXB, was intrathecally injected to observe its effect on EA analgesia. Results OXA at 0.3 nmol and EA at 2/15 Hz produced respective analgesic effects on the model (P0.05. In addition, naloxone, a selective opioid receptor antagonist, failed to antagonize OXA-induced analgesia (P>0.05. Conclusions The results of the present study indicate the involvement of OXA in EA analgesia via OX1R in an opioid-independent way.

  7. Plasma Orexin-A Levels in COPD Patients with Hypercapnic Respiratory Failure

    Directory of Open Access Journals (Sweden)

    Lin-Yun Zhu

    2011-01-01

    Full Text Available Orexins have previously been shown to promote wakefulness, regulate lipid metabolism and participate in energy homeostasis. The aim of the study was to determine the relationship between plasma orexin-A and body composition in COPD in-patients with hypercapnic respiratory failure. 40 patients with hypercapnic respiratory failure and 22 healthy individuals were enrolled prospectively in this study. Plasma orexin-A levels, BMI, SaO2, PaCO2 and PaO2 were noted for all the patients. Plasma orexin-A levels were higher in the underweight (UW group, normal weight (NW group and overweight (OW group of COPD patients as compared with UW, NW and OW group of the control group (P<.05. Plasma orexin-A in COPD patients were higher in the OW group than in the NW group and the UW group. Plasma orexin-A levels showed significant correlation with body mass index (BMI, independent of PaO2 (r=0.576; P<.05 and %fat (r=0.367; P<.05; a negative correlation was noted between plasma orexin-A levels and PaO2 (r=−0.738; P<.05 and SaO2 (r=−0.616; P<.05. Our results suggest that orexin-A levels are high in COPD patients with hypercapnic respiratory failure, and vary according to BMI and body composition. Orexin-A may be associated with the severity of hypoxemia in COPD patients with hypercapnic respiratory failure.

  8. Orexin: a Missing Link Between Sleep Disorders and Heart Failure?

    Science.gov (United States)

    Pan, Stephen; Cabral, Carolina S; Ashley, Euan A; Perez, Marco V

    2017-04-01

    Sleep disorders represent a significant comorbidity in the heart failure population, and there is mounting evidence that treatment of sleep disorders such as obstructive sleep apnea can significantly improve cardiac function. However, the link between these two disorders is still not entirely clear. Recently, a novel neurohormonal pathway has been elucidated involving signaling molecules now collectively known as the orexins, which have been implicated in regulating autonomic function during sleep/wake cycles. Further evidence has mounted that orexin signaling is deeply perturbed in the setting of sleep disorders, and furthermore that abnormal orexin signaling may be implicated in the pathology of heart failure. The orexin signaling pathway represents an enticing novel target for both the treatment of sleep disorders as well as heart failure, and may represent one facet of the "missing link" between these two prevalent and often comorbid diseases.

  9. Comprehensive behavioral analysis of Ox1r-/- mice showed implication of orexin receptor-1 in mood, anxiety and social behavior

    OpenAIRE

    Md Golam Abbas; Hirotaka eShoji; Shingo eSoya; Mari eHondo; Tsuyoshi eMiyakawa; Takeshi eSakurai

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system and sleep/wakefulness states. Recent pharmacological stu...

  10. Association between hypocretin-1 and amyloid-β42 cerebrospinal fluid levels in Alzheimer's disease and healthy controls.

    Science.gov (United States)

    Slats, Diane; Claassen, Jurgen A H R; Lammers, Gert Jan; Melis, René J; Verbeek, Marcel M; Overeem, Sebastiaan

    2012-12-01

    Alzheimer's disease is associated with sleep disorders. Recently, animal studies demonstrated a link between hypocretin, a sleep-regulation neurotransmitter, and AD pathology. In this study, we investigated the circadian rhythm of hypocretin-1 in Alzheimer's Disease (AD) patients and controls. Moreover, we assessed the relation between CSF hypocretin-1 and amyloid-β. A continuous CSF sampling study via indwelling intrathecal catheter was performed to collect hourly CSF samples of six patients with AD (59-85 yrs, MMSE 16-26) and six healthy volunteers (64-77 yrs). CSF hypocretin-1 and Aβ42 concentrations were determined at 8 individual time points over 24 hours. A circadian pattern was assessed by fitting a 24 hour sine curve to the hypocretin-1 data using mixed model analysis. Clinical diagnosis and Aβ42 were entered into the model as time invariant covariates to determine differences between AD and controls, and correlate Aβ42 to hypocretin-1 levels. A hypocretin-1 circadian rhythm with an amplitude of 11.5 pg/ml was found in clinical AD patients, which did not differ from the control group (7.15 pg/ml). Lower mean CSF Aβ42 levels were related to lower hypocretin-1 levels; 1.6 pg/ml hypocretin-1 per 10 pg/ml Aβ42 (p=0.03), and a higher amplitude of the hypocretin-1 circadian rhythm (0.4 pg/ml, p=0.03). CSF hypocretin-1 has a circadian rhythm for which we could show no difference between AD and controls. However, the association between mean Aβ42 levels and mean hypocretin-1 levels and amplitude may suggest a relationship between AD pathology and hypocretin disturbance, which could hold possibilities for treatment of AD related sleep disorders.

  11. The orexin neuropeptide system: Physical activity and hypothalamic function throughout the aging process.

    Directory of Open Access Journals (Sweden)

    Anastasia N Zink

    2014-11-01

    Full Text Available There is a rising medical need for novel therapeutic targets of physical activity. Physical activity spans from spontaneous, low intensity movements to voluntary, high-intensity exercise. Regulation of spontaneous and voluntary movement is distributed over many brain areas and neural substrates, but the specific cellular and molecular mechanisms responsible for mediating overall activity levels are not well understood. The hypothalamus plays a central role in the control of physical activity, which is executed through coordination of multiple signaling systems, including the orexin neuropeptides. Orexin producing neurons integrate physiological and metabolic information to coordinate multiple behavioral states and modulate physical activity in response to the environment. This review is organized around three questions: (1 How do orexin peptides modulate physical activity? (2 What are the effects of aging and lifestyle choices on physical activity? (3 What are the effects of aging on hypothalamic function and the orexin peptides? Discussion of these questions will provide a summary of the current state of knowledge regarding hypothalamic orexin regulation of physical activity during aging and provide a platform on which to develop improved clinical outcomes in age-associated obesity and metabolic syndromes.

  12. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency

    DEFF Research Database (Denmark)

    Knudsen, Stine; Gammeltoft, Steen; Jennum, Poul J

    2010-01-01

    variables were analysed in relation to cataplexy and hypocretin deficiency with uni- and multivariate logistic/linear regression models, controlling for possible rapid eye movement sleep behaviour disorder biasing factors (age, gender, disease duration, previous anti-cataplexy medication). Only hypocretin......Rapid eye movement sleep behaviour disorder is characterized by dream-enacting behaviour and impaired motor inhibition during rapid eye movement sleep. Rapid eye movement sleep behaviour disorder is commonly associated with neurodegenerative disorders, but also reported in narcolepsy with cataplexy....... Most narcolepsy with cataplexy patients lack the sleep-wake, and rapid eye movement sleep, motor-regulating hypocretin neurons in the lateral hypothalamus. In contrast, rapid eye movement sleep behaviour disorder and hypocretin deficiency are rare in narcolepsy without cataplexy. We hypothesized...

  13. Food consumption and activity levels increase in rats following intranasal Hypocretin-1.

    Science.gov (United States)

    Dhuria, Shyeilla V; Fine, Jared M; Bingham, Deborah; Svitak, Aleta L; Burns, Rachel B; Baillargeon, Amanda M; Panter, Scott S; Kazi, Abdul N; Frey, William H; Hanson, Leah R

    2016-08-03

    Hypocretin-1 (HC, orexin-A) is a neuropeptide involved in regulating physiological functions of sleep, appetite and arousal, and it has been shown that intranasal (IN) administration can target HC to the brain. Recent clinical studies have shown that IN HC has functional effects in human clinical trials. In this study, we use rats to determine whether IN HC has an immediate effect on food consumption and locomotor activity, whether distribution in the brain after IN delivery is dose-dependent, and whether MAPK and PDK1 are affected after IN delivery. Food intake and wheel-running activity were quantified for 24h after IN delivery. Biodistribution was determined 30min after IN delivery of both a high and low dose of 125I-radiolabelled HC throughout the brain and other bodily tissues, while Western blots were used to quantify changes in cell signaling pathways (MAPK and PDK1) in the brain. Intranasal HC significantly increased food intake and wheel activity within 4h after delivery, but balanced out over the course of 24h. The distribution studies showed dose-dependent delivery in the CNS and peripheral tissues, while PDK1 was significantly increased in the brain 30min after IN delivery of HC. This study adds to the growing body of evidence that IN administration of HC is a promising strategy for treatment of HC related behaviors. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Suvorexant: The first orexin receptor antagonist to treat insomnia

    OpenAIRE

    Dubey, Ashok K.; Handu, Shailendra S.; Mediratta, Pramod K.

    2015-01-01

    Primary insomnia is mainly treated with drugs acting on benzodiazepine receptors and a few other classes of drugs used for different co-morbidities. A novel approach to treat insomnia has been introduced recently, with the approval of suvorexant, the first in a new class of orexin receptor antagonists. Orexin receptors in the brain have been found to play an important role in the regulation of various aspects of arousal and motivation. The drugs commonly used for insomnia therapy to date, hav...

  15. The role of the lateral hypothalamus and orexin in ingestive behavior: A model for the translation of past experience and sensed deficits into motivated behaviors

    Directory of Open Access Journals (Sweden)

    Seth William Hurley

    2014-11-01

    Full Text Available The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behavior. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA. It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd and perifornical area (PeF provide a link between neural systems that regulates homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA, providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is fed into mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony and salt

  16. The role of the lateral hypothalamus and orexin in ingestive behavior: a model for the translation of past experience and sensed deficits into motivated behaviors.

    Science.gov (United States)

    Hurley, Seth W; Johnson, Alan Kim

    2014-01-01

    The hypothalamus has been recognized for its involvement in both maintaining homeostasis and mediating motivated behaviors. The present article discusses a region of the hypothalamus known as the lateral hypothalamic area (LHA). It is proposed that brain nuclei within the LHA including the dorsal region of the lateral hypothalamus (LHAd) and perifornical area (PeF) provide a link between neural systems that regulate homeostasis and those that mediate appetitive motivated behaviors. Functional and immunohistochemical data indicate that the LHA promotes many motivated behaviors including food intake, water intake, salt intake, and sexual behavior. Anatomical tracing experiments demonstrate that the LHA is positioned to receive inputs from brain areas involved in regulating body fluid and energy homeostasis. Regions within the LHA send dense projections to the ventral tegmental area (VTA), providing a pathway for the LHA to influence dopaminergic systems generally recognized to be involved in motivated behaviors and their reinforcement. Furthermore, the LHA contains neurons that synthesize orexin/hypocretin, a neuropeptide that promotes many appetitive motivated behaviors. The LHA also receives inputs from brain areas involved in reward-related learning and orexin neuron activation can become conditioned to environmental stimuli that are associated with rewards. Therefore, it is hypothesized that the LHA integrates signaling from areas that regulate body fluid and energy balance and reward-related learning. In turn, this information is "fed into" mesolimbic circuitry to influence the performance of motivated behaviors. This hypothesis may foster experiments that will result in an improved understanding of LHA function. An improved understanding of LHA function may aid in treating disorders that are associated with an excess or impairment in the expression of ingestive behavior including obesity, anorexia, impairments in thirst, salt gluttony, and salt deficiency.

  17. Narcolepsy and the hypocretins.

    Science.gov (United States)

    Wurtman, Richard J

    2006-10-01

    Narcolepsy is a chronic neurologic disease characterized by excessive daytime sleepiness and one or more of three additional symptoms (cataplexy, or sudden loss of muscle tone; vivid hallucinations; and brief periods of total paralysis) related to the occurrence of rapid eye movement (REM) sleep at inappropriate times. The daytime sleepiness typically presents as a sudden overwhelming urge to sleep, followed by periods of sleep that last for seconds or minutes, or even longer. During daytime sleep episodes, patients may exhibit "automatic behavior," performing conventionalized functions (eg, taking notes), but not remembering having done so once they are awake. About 10% of narcoleptics are members of familial clusters; however, genetic factors alone are apparently insufficient to cause the disease, inasmuch as the most common genetic disorder, a mutation in chromosome 6 controlling the HLA antigen immune complex, although seen in 90% to 100% of patients, also occurs in as many as 50% of people without narcolepsy. A dog model of narcolepsy exhibits a mutation on chromosome 12 that disrupts the processing of the peptide neurotransmitter hypocretin. No such mutation characterizes human narcolepsy; however, cerebrospinal fluid (CSF) hypocretin levels are profoundly depressed in narcoleptic patients, and a specific reduction in hypocretin-containing neurons has been described. One hypothesis concerning the pathophysiology of narcolepsy proposes that the HLA subtype resulting from the mutation on chromosome 6 increases the susceptibility of hypocretin-containing brain neurons to immune attack. Because hypocretin may normally participate in the maintenance of wakefulness, the loss of neurons that release this peptide might allow REM sleep to occur at inappropriate times, ie, while the patient is awake, in contrast to its normal cyclic appearance after a period of slow-wave sleep. The cataplexy, hallucinations, and/or paralysis associated with REM episodes normally are

  18. Comprehensive Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior

    OpenAIRE

    Abbas, Md. G.; Shoji, Hirotaka; Soya, Shingo; Hondo, Mari; Miyakawa, Tsuyoshi; Sakurai, Takeshi

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological st...

  19. Functional Changes Induced by Orexin A and Adiponectin on the Sympathetic/Parasympathetic Balance

    Directory of Open Access Journals (Sweden)

    Antonietta Messina

    2018-03-01

    Full Text Available Obesity and lifestyle-related diseases are major problems faced by people in developed nations. Although exercise training prevents the progression of diabetes and obesity, the motivation for exercise is generally low in obese animals and humans. The autonomic nervous system (SNA plays a crucial role in the regulation of eating behavior. Moreover, the SNA is involved in the body temperature regulation that is strictly related to body weight control, in accordance with the “thermoregulatory hypothesis” of food intake. Some neuronal peptides and hormones, like orexins and adiponectin, are also involved in the regulation of locomotion activity as well as food intake and metabolic rate. Furthermore, adiponectin as well as orexin A are involved in the control of body temperature, food intake and therefore in obesity-related diseases. The aim of this study was to investigate the changes in body temperature (Tc, and heart rate (HR after an intracerebroventricular (ICV injection of orexin A and adiponectin in animal model. The results of this study show that the orexin A levels are likely involved in the increase of Tc and HR. It is also clear that there is not a correlation between these parameters and adiponectin levels. Further studies are needed to assess adiponectin actions and outcome in the central nervous system in terms of energy expenditure, body temperature, heart rate and physical activity performance regulation.

  20. Global analysis of gene expression mediated by OX1 orexin receptor signaling in a hypothalamic cell line.

    Directory of Open Access Journals (Sweden)

    Eric Koesema

    Full Text Available The orexins and their cognate G-protein coupled receptors have been widely studied due to their associations with various behaviors and cellular processes. However, the detailed downstream signaling cascades that mediate these effects are not completely understood. We report the generation of a neuronal model cell line that stably expresses the OX1 orexin receptor (OX1 and an RNA-Seq analysis of changes in gene expression seen upon receptor activation. Upon treatment with orexin, several families of related transcription factors are transcriptionally regulated, including the early growth response genes (Egr, the Kruppel-like factors (Klf, and the Nr4a subgroup of nuclear hormone receptors. Furthermore, some of the transcriptional effects observed have also been seen in data from in vivo sleep deprivation microarray studies, supporting the physiological relevance of the data set. Additionally, inhibition of one of the most highly regulated genes, serum and glucocorticoid-regulated kinase 1 (Sgk1, resulted in the diminished orexin-dependent induction of a subset of genes. These results provide new insight into the molecular signaling events that occur during OX1 signaling and support a role for orexin signaling in the stimulation of wakefulness during sleep deprivation studies.

  1. Orexin-A increases the firing activity of hippocampal CA1 neurons through orexin-1 receptors.

    Science.gov (United States)

    Chen, Xin-Yi; Chen, Lei; Du, Yi-Feng

    2017-07-01

    Orexins including two peptides, orexin-A and orexin-B, are produced in the posterior lateral hypothalamus. Much evidence has indicated that central orexinergic systems play numerous functions including energy metabolism, feeding behavior, sleep/wakefulness, and neuroendocrine and sympathetic activation. Morphological studies have shown that the hippocampal CA1 regions receive orexinergic innervation originating from the hypothalamus. Positive orexin-1 (OX 1 ) receptors are detected in the CA1 regions. Previous behavioral studies have shown that microinjection of OX 1 receptor antagonist into the hippocampus impairs acquisition and consolidation of spatial memory. However, up to now, little has been known about the direct electrophysiological effects of orexin-A on hippocampal CA1 neurons. Employing multibarrel single-unit extracellular recordings, the present study showed that micropressure administration of orexin-A significantly increased the spontaneous firing rate from 2.96 ± 0.85 to 8.45 ± 1.86 Hz (P neurons in male rats. Furthermore, application of the specific OX 1 receptor antagonist SB-334867 alone significantly decreased the firing rate from 4.02 ± 1.08 to 2.11 ± 0.58 Hz in 7 out of the 17 neurons (P neurons. Coapplication of SB-334867 completely blocked orexin-A-induced excitation of hippocampal CA1 neurons. The PLC pathway may be involved in activation of OX 1 receptor-induced excitation of CA1 neurons. Taken together, the present study's results suggest that orexin-A produces excitatory effects on hippocampal neurons via OX 1 receptors. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Proliferative hypothalamic neurospheres express NPY, AGRP, POMC, CART and Orexin-A and differentiate to functional neurons.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available Some pathological conditions with feeding pattern alterations, including obesity and Huntington disease (HD are associated with hypothalamic dysfunction and neuronal cell death. Additionally, the hypothalamus is a neurogenic region with the constitutive capacity to generate new cells of neuronal lineage, in adult rodents. The aim of the present work was to evaluate the expression of feeding-related neuropeptides in hypothalamic progenitor cells and their capacity to differentiate to functional neurons which have been described to be affected by hypothalamic dysfunction. Our study shows that hypothalamic progenitor cells from rat embryos grow as floating neurospheres and express the feeding-related neuropeptides Neuropeptide Y (NPY, Agouti-related Protein (AGRP, Pro-OpioMelanocortin (POMC, Cocaine-and-Amphetamine Responsive Transcript (CART and Orexin-A/Hypocretin-1. Moreover the relative mRNA expression of NPY and POMC increases during the expansion of hypothalamic neurospheres in proliferative conditions.Mature neurons were obtained from the differentiation of hypothalamic progenitor cells including NPY, AGRP, POMC, CART and Orexin-A positive neurons. Furthermore the relative mRNA expression of NPY, CART and Orexin-A increases after the differentiation of hypothalamic neurospheres. Similarly to the adult hypothalamic neurons the neurospheres-derived neurons express the glutamate transporter EAAT3. The orexigenic and anorexigenic phenotype of these neurons was identified by functional response to ghrelin and leptin hormones, respectively. This work demonstrates the presence of appetite-related neuropeptides in hypothalamic progenitor cells and neurons obtained from the differentiation of hypothalamic neurospheres, including the neuronal phenotypes that have been described by others as being affected by hypothalamic neurodegeneration. These in vitro models can be used to study hypothalamic progenitor cells aiming a therapeutic intervention to

  3. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats.

    Science.gov (United States)

    Schmeichel, Brooke E; Matzeu, Alessandra; Koebel, Pascale; Vendruscolo, Leandro F; Sidhu, Harpreet; Shahryari, Roxana; Kieffer, Brigitte L; Koob, George F; Martin-Fardon, Rémi; Contet, Candice

    2018-04-06

    The hypocretin/orexin (HCRT) neuropeptide system regulates feeding, arousal state, stress responses, and reward, especially under conditions of enhanced motivational relevance. In particular, HCRT neurotransmission facilitates drug-seeking behavior in circumstances that demand increased effort and/or motivation to take the drug. The present study used a shRNA-encoding adeno-associated viral vector to knockdown Hcrt expression throughout the dorsal hypothalamus in adult rats and determine the role of HCRT in cocaine self-administration. Chronic Hcrt silencing did not impact cocaine self-administration under short-access conditions, but robustly attenuated cocaine intake under extended access conditions, a model that mimics key features of compulsive cocaine taking. In addition, Hcrt silencing decreased motivation for both cocaine and a highly palatable food reward (i.e., sweetened condensed milk; SCM) under a progressive ratio schedule of reinforcement, but did not alter responding for SCM under a fixed ratio schedule. Importantly, Hcrt silencing did not affect food or water consumption, and had no consequence for general measures of arousal and stress reactivity. At the molecular level, chronic Hcrt knockdown reduced the number of neurons expressing dynorphin (DYN), and to a smaller extent melanin-concentrating hormone (MCH), in the dorsal hypothalamus. These original findings support the hypothesis that HCRT neurotransmission promotes operant responding for both drug and non-drug rewards, preferentially under conditions requiring a high degree of motivation. Furthermore, the current study provides compelling evidence for the involvement of the HCRT system in cocaine self-administration also under low-effort conditions in rats allowed extended access, possibly via functional interactions with DYN and MCH signaling.

  4. Orexin receptor activation generates gamma band input to cholinergic and serotonergic arousal system neurons and drives an intrinsic Ca2+-dependent resonance in LDT and PPT cholinergic neurons.

    Directory of Open Access Journals (Sweden)

    Masaru eIshibashi

    2015-06-01

    Full Text Available A hallmark of the waking state is a shift in EEG power to higher frequencies with epochs of synchronized intracortical gamma activity (30-60 Hz - a process associated with high-level cognitive functions. The ascending arousal system, including cholinergic laterodorsal (LDT and pedunculopontine (PPT tegmental neurons and serotonergic dorsal raphe (DR neurons, promotes this state. Recently, this system has been proposed as a gamma wave generator, in part, because some neurons produce high-threshold, Ca2+-dependent oscillations at gamma frequencies. However, it is not known whether arousal-related inputs to these neurons generate such oscillations, or whether such oscillations are ever transmitted to neuronal targets. Since key arousal input arises from hypothalamic orexin (hypocretin neurons, we investigated whether the unusually noisy, depolarizing orexin current could provide significant gamma input to cholinergic and serotonergic neurons, and whether such input could drive Ca2+-dependent oscillations. Whole-cell recordings in brain slices were obtained from mice expressing Cre-induced fluorescence in cholinergic LDT and PPT, and serotonergic DR neurons. After first quantifying reporter expression accuracy in cholinergic and serotonergic neurons, we found that the orexin current produced significant high frequency, including gamma, input to both cholinergic and serotonergic neurons. Then, by using a dynamic clamp, we found that adding a noisy orexin conductance to cholinergic neurons induced a Ca2+-dependent resonance that peaked in the theta and alpha frequency range (4 - 14 Hz and extended up to 100 Hz. We propose that this orexin current noise and the Ca2+ dependent resonance work synergistically to boost the encoding of high-frequency synaptic inputs into action potentials and to help ensure cholinergic neurons fire during EEG activation. This activity could reinforce thalamocortical states supporting arousal, REM sleep and intracortical

  5. Hypocretin deficiency : neuronal loss and functional consequences

    NARCIS (Netherlands)

    Fronczek, Rolf

    2008-01-01

    The first part deals with the hypothalamic hypocretin system in disorders that are accompanied by narcolepsy-like sleep disturbances, i.e. Prader-Willi Syndrome, Parkinson’s Disease and Huntington’s Disease. To determine whether the hypocretin system is affected in these disorders, the total number

  6. Normal levels of cerebrospinal fluid hypocretin-1 and daytime sleepiness during attacks of relapsing-remitting multiple sclerosis and monosymptomatic optic neuritis

    DEFF Research Database (Denmark)

    Knudsen, S; Jennum, P J; Korsholm, K

    2008-01-01

    There is emerging evidence that multiple sclerosis (MS), the hypothalamic sleep-wake regulating neuropeptide hypocretin-1 (hcrt-1) and the sleep disorder narcolepsy may be connected. Thus, the major pathophysiological component of narcolepsy is lack of hcrt-1. Dysfunction of the hypocretin system....../ml). No statistically significant differences were found between attack and remission. MRI scans revealed no hypothalamic lesions. The results show that the hypocretin system is intact and sleepiness is not typical in RRMS and MON without hypothalamic lesions on MRI....

  7. Acute stimulation of dissociated cortical neurons of newborn rats with orexin A : Effect on the network activity

    NARCIS (Netherlands)

    Stoyanova, I.I.; le Feber, J.; Rutten, W.L.C.; El Haj, Alicia; Bader, Dan

    2011-01-01

    Orexin A (OXA) and B are hypothalamic neu-ropeptides with recognized importance in the physiological regulation of various brain activities, including sleep/wakefulness, learning and memory, locomotion, auto-nomic control. Orexin activity is mediated by two types of receptors; OR1 binds OXA with

  8. Hypocretin-1 CSF levels in anti-Ma2 associated encephalitis.

    Science.gov (United States)

    Overeem, S; Dalmau, J; Bataller, L; Nishino, S; Mignot, E; Verschuuren, J; Lammers, G J

    2004-01-13

    Idiopathic narcolepsy is associated with deficient hypocretin transmission. Narcoleptic symptoms have recently been described in paraneoplastic encephalitis with anti-Ma2 antibodies. The authors measured CSF hypocretin-1 levels in six patients with anti-Ma2 encephalitis, and screened for anti-Ma antibodies in patients with idiopathic narcolepsy. Anti-Ma autoantibodies were not detected in patients with idiopathic narcolepsy. Four patients with anti-Ma2 encephalitis had excessive daytime sleepiness; hypocretin-1 was not detectable in their cerebrospinal fluid, suggesting an immune-mediated hypocretin dysfunction.

  9. Rapid eye movement sleep behaviour disorder in patients with narcolepsy is associated with hypocretin-1 deficiency

    DEFF Research Database (Denmark)

    Knudsen, Stine; Gammeltoft, Steen; Jennum, Poul J

    2010-01-01

    Rapid eye movement sleep behaviour disorder is characterized by dream-enacting behaviour and impaired motor inhibition during rapid eye movement sleep. Rapid eye movement sleep behaviour disorder is commonly associated with neurodegenerative disorders, but also reported in narcolepsy with cataplexy....... Most narcolepsy with cataplexy patients lack the sleep-wake, and rapid eye movement sleep, motor-regulating hypocretin neurons in the lateral hypothalamus. In contrast, rapid eye movement sleep behaviour disorder and hypocretin deficiency are rare in narcolepsy without cataplexy. We hypothesized...... that rapid eye movement sleep behaviour disorder coexists with cataplexy in narcolepsy due to hypocretin deficiency. In our study, rapid eye movement sleep behaviour disorder was diagnosed by the International Classification of Sleep Disorders (2nd edition) criteria in 63 narcolepsy patients with or without...

  10. Impact of Orexin-A Treatment on Food Intake, Energy Metabolism and Body Weight in Mice.

    Directory of Open Access Journals (Sweden)

    Anne Blais

    Full Text Available Orexin-A and -B are hypothalamic neuropeptides of 33 and 28-amino acids, which regulate many homeostatic systems including sleep/wakefulness states, energy balance, energy homeostasis, reward seeking and drug addiction. Orexin-A treatment was also shown to reduce tumor development in xenografted nude mice and is thus a potential treatment for carcinogenesis. The aim of this work was to explore in healthy mice the consequences on energy expenditure components of an orexin-A treatment at a dose previously shown to be efficient to reduce tumor development. Physiological approaches were used to evaluate the effect of orexin-A on food intake pattern, energy metabolism body weight and body adiposity. Modulation of the expression of brain neuropeptides and receptors including NPY, POMC, AgRP, cocaine- and amphetamine related transcript (CART, corticotropin-releasing hormone (CRH and prepro-orexin (HCRT, and Y2 and Y5 neuropeptide Y, MC4 (melanocortin, OX1 and OX2 orexin receptors (Y2R, Y5R, MC4R, OX1R and OX2R, respectively was also explored. Our results show that orexin-A treatment does not significantly affect the components of energy expenditure, and glucose metabolism but reduces intraperitoneal fat deposit, adiposity and the expression of several brain neuropeptide receptors suggesting that peripheral orexin-A was able to reach the central nervous system. These findings establish that orexin-A treatment which is known for its activity as an inducer of tumor cell death, do have minor parallel consequence on energy homeostasis control.

  11. Comment on "Antibodies to influenza nucleoprotein cross-react with human hypocretin receptor 2".

    OpenAIRE

    Vassalli, A.; Li, S.; Tafti, M.

    2015-01-01

    Did hypocretin receptor 2 autoantibodies cause narcolepsy with hypocretin deficiency in Pandemrix-vaccinated children, as suggested by Ahmed et al.? Using newly developed mouse models to report and inactivate hypocretin receptor expression, Vassalli et al. now show that hypocretin neurons (whose loss causes narcolepsy) do not express hypocretin autoreceptors, raising questions to the interpretation of Ahmed et al.'s findings.

  12. The analgesic effect of orexin-A in a murine model of chemotherapy-induced neuropathic pain.

    Science.gov (United States)

    Toyama, Satoshi; Shimoyama, Naohito; Shimoyama, Megumi

    2017-02-01

    Orexins are neuropeptides that are localized to neurons in the lateral and dorsal hypothalamus but its receptors are distributed to many different regions of the central nervous system. Orexins are implicated in a variety of physiological functions including sleep regulation, energy homeostats, and stress reactions. Furthermore, orexins administered exogenously have been shown to have analgesic effects in animal models. A type of intractable pain in patients is pain due to chemotherapy-induced peripheral neuropathy (CIPN). Several chemotherapeutic agents used for the treatment of malignant diseases induce dose-limiting neuropathic pain that compromises patients' quality of life. Here, we examined the analgesic effect of orexin-A in a murine model of CIPN, and compared it with the effect of duloxetine, the only drug recommended for the treatment of CIPN pain in patients. CIPN was induced in male BALB/c mice by repeated intraperitoneal injection of oxaliplatin, a platinum chemotherapeutic agent used for the treatment of advanced colorectal cancer. Neuropathic mechanical allodynia was assessed by the von Frey test, and the effect on acute thermal pain was assessed by the tail flick test. Intracerebroventricularly administered orexin-A dose-dependently attenuated oxaliplatin-induced mechanical allodynia and increased tail flick latencies. Oxaliplatin-induced mechanical allodynia was completely reversed by orexin-A at a low dose that did not increase tail flick latency. Duloxetine only partially reversed mechanical allodynia and had no effect on tail flick latency. The analgesic effect of orexin-A on oxaliplatin-induced mechanical allodynia was completely antagonized by prior intraperitoneal injection of SB-408124 (orexin type-1 receptor antagonist), but not by prior intraperitoneal injection of TCS-OX2-29 (orexin type-2 receptor antagonist). Our findings suggest that orexin-A is more potent than duloxetine in relieving pain CIPN pain and its analgesic effect is

  13. Serum level of orexin-A, leptin, adiponectin and insulin in north Indian obese women.

    Science.gov (United States)

    Mishra, Sameeksha; Gupta, Vani; Mishra, Supriya; Sachan, Rekha; Asthana, Akash

    2017-12-01

    Obesity is regulated by different metabolic factors like leptin, adiponectin insulin and neuropeptide orexin-A. The aim of this study is to assess the role of these hormones and their interrelationship with obesity in north Indian women. A total of 168 obese women with Body Mass Index (BMI)>30kg/m 2 and 150 lean women (BMIWomen with obesity were further subdivided into two groups according to their BMI, 71 overweight women with the BMI 25-29.9kg/m 2 (mean±S.D: 27.87±0.71) and the 97 obese women with BMI>30kg/m 2 (34.68±1.90). Orexin -A, leptin and adiponectin were estimated using quantitative sandwich enzyme linked immunoassay and insulin was estimated by using an immuno-radiometric assay. Orexin -A and adiponectin level were significantly lower however, leptin and inulin level were significantly higher in obese women as compared with control group. Further, the one- way group analysis showed that the orexin -A and adiponectin level were significantly lower but leptin and insulin level was significantly higher in obese women as compared to overweight and control group respectively. Result showed that the level of adiponectin, leptin, orexin-A and insulin play an important role in the regulation of energy expenditure. In obesity, the activity of these peptides is disturbed. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  14. Comprehensive behavioral analysis of Ox1r-/- mice showed implication of orexin receptor-1 in mood, anxiety and social behavior

    Directory of Open Access Journals (Sweden)

    Md Golam Abbas

    2015-12-01

    Full Text Available Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R is involved in physiological processes that regulate emotion, the reward system and autonomic nervous system. Here, we examined Ox1r-/- mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r-/- mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behaviour and sensory motor gating in addition to roles in mood and anxiety.

  15. Comparison of Pre and Post-Treatment Orexin A Levels in Patients with Subclinical Hypothyroidism

    Directory of Open Access Journals (Sweden)

    Muhammed Erdal

    2010-01-01

    Full Text Available Aim: Subclinical hypothyroidism is a clinical condition mostly observed in women, the prevalence of which increases by age. Sleepiness and appetite problems are observed in subclinical hypothyroidism. Orexins play a role in the physiological regulations like the stabilization of cardiovascular functions and the sleep-alert cycle. Similarities in the physiological regulation areas of orexins and the clinical findings of hypothyroidism were influential in the planning of this research. Additionally, homosisteine, which is influential on the cardiovascular system and the plasma level of which changes by eating (as is the case with orexins, was also analyzed. Besides, the change in the lipid profiles of the patients was also observed. Material and Methods: Nineteen pre-menopausal female patients (mean age=39.58±12.58, mean BMI= 26.7±4.9 included in this study. Following 12 hours fasting blood samples were taken from brachial vein. All patients were given 50µg/day L-T4 TSH levels were examined in every 4-6 weeks to adjust the L-T4 doses. When euthyroidism was ensured, a re-evaluation was made 4 months later. Results:  Pre-treatment plasma orexin A levels of 19 patients with pre-menopausal subclinical hypothyroidism increased significantly following a treatment of l-tiroxin for 4 months (pre-treatment orexin level median=1.20 mg/dl (mean: 1.33±0.28 post-treatment median=1.82 mg/dl (mean: 1.70±0.42 p=0.007. A significant change in the level of plasma total homosisteine and lipid profile was not detected. Conclusions: Advanced studies are needed to study the physiological effects of orexin levels in cases with subclinical hypothyroidism and the possible benefits in treatment.

  16. Functional wiring of hypocretin and LC-NE neurons: implications for arousal.

    Directory of Open Access Journals (Sweden)

    Matthew E Carter

    2013-05-01

    Full Text Available To survive in a rapidly changing environment, animals must sense their external world and internal physiological state and properly regulate levels of arousal. Levels of arousal that are abnormally high may result in inefficient use of internal energy stores and unfocused attention to salient environmental stimuli. Alternatively, levels of arousal that are abnormally low may result in the inability to properly seek food, water, sexual partners, and other factors necessary for life. In the brain, neurons that express hypocretin neuropeptides may be uniquely posed to sense the external and internal state of the animal and tune arousal state according to behavioral needs. In recent years, we have applied temporally precise optogenetic techniques to study the role of these neurons and their downstream connections in regulating arousal. In particular, we have found that noradrenergic neurons in the brainstem locus coeruleus are particularly important for mediating the effects of hypocretin neurons on arousal. Here, we discuss our recent results and consider the implications of the anatomical connectivity of these neurons in regulating the arousal state of an organism across various states of sleep and wakefulness.

  17. Sleep-wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels.

    Science.gov (United States)

    Hansen, Mathias Hvidtfelt; Kornum, Birgitte Rahbek; Jennum, Poul

    2017-06-01

    To compare diurnal and nocturnal electrophysiological data from narcolepsy patients with undetectable (110 pg/mL) cerebrospinal fluid (CSF) hypocretin-1 levels. A total of 109 narcolepsy patients and 37 controls were studied; all had available CSF hypocretin-1 measurements. The sleep laboratory studies were conducted between 2008 and 2014. The study retrospectively examined measurements of sleep stage transitions in diurnal and nocturnal continuous polysomnography. The percentage distribution of time awake and rapid eye movement (REM) sleep, and the occurrence of sleep onset REM (SOREM) in the nocturnal polysomnography were also measured. Participants with undetectable hypocretin-1 levels had significantly higher frequencies of transitions than controls and those with normal hypocretin-1 levels. Participants with low hypocretin-1 levels showed more transitions than controls and, in some cases, also more than those with normal hypocretin-1. Participants with normal hypocretin-1 failed to show any significant difference from the controls, except in the overall diurnal transitions. Undetectable hypocretin-1 levels in particular, but also low hypocretin-1 levels, were associated with a less stable phenotype featuring more sleep state transitions and SOREM episodes. In addition, there was a distinction between nocturnal and diurnal REM sleep in hypocretin-deficient participants, expressed as increased diurnal REM sleep, which was not reflected in nocturnal sleep. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Orexinergic system and pathophysiology of epilepsy.

    Science.gov (United States)

    Doreulee, N; Alania, M; Vashalomidze, G; Skhirtladze, E; Kapanadze, Ts

    2010-11-01

    Neuropeptids orexins, also known as the hypocretins, are expressed in the lateral hypothalamus. Orexin-containing cells project widely throughout the brains, are crucial for the regulation of wakefulness and dysfunction of this system is associated with pathophysiology of narcolepsy-cataplexy. Orexin neurons play an important role in motivation, feeding and adaptive behaviors. Distribution of orexinergic receptors in the hippocampus tended to the ideas that orexins might be involved in the functions relating to the hippocampus. Effects of neuropeptide orexin-A on epileptiform activity in hippocampal slices were investigated. 500 µm thick hippocampal slices from 8-10 week-old rodents were used. Field excitatory postsynaptic potential (pop-fEPSP) and population spike in CA1 of hippocamopus were registered using standard protocol of in vitro electrophysiological experiments. Initial slope of the fEPSP and amplitude of II pop-spike were measured. Bursting neurons in CA3 were recorded in modified saline. We have found that orexin-A decreases duration/amplitude of multiple discharges of pop-spikes and inhibits spontaneous epileptiform afterdischarges induced by bicuculline methiodide in CA1. Orexin-A also modulates the frequency of discharges of bursting neurons in CA3. Our results suggest possible involvement of orexinergic system in antiepileptic action. Supported by ISTC Grant G-1318.

  19. Attenuated heart rate response is associated with hypocretin deficiency in patients with narcolepsy.

    Science.gov (United States)

    Sorensen, Gertrud Laura; Knudsen, Stine; Petersen, Eva Rosa; Kempfner, Jacob; Gammeltoft, Steen; Sorensen, Helge Bjarup Dissing; Jennum, Poul

    2013-01-01

    Several studies have suggested that hypocretin-1 may influence the cerebral control of the cardiovascular system. We analyzed whether hypocretin-1 deficiency in narcolepsy patients may result in a reduced heart rate response. We analyzed the heart rate response during various sleep stages from a 1-night polysomnography in patients with narcolepsy and healthy controls. The narcolepsy group was subdivided by the presence of +/- cataplexy and +/- hypocretin-1 deficiency. Sleep laboratory studies conducted from 2001-2011. In total 67 narcolepsy patients and 22 control subjects were included in the study. Cataplexy was present in 46 patients and hypocretin-1 deficiency in 38 patients. None. All patients with narcolepsy had a significantly reduced heart rate response associated with arousals and leg movements (P hypocretin-1 deficiency and cataplexy groups compared with patients with normal hypocretin-1 levels (P hypocretin-1 deficiency significantly predicted the heart rate response associated with arousals in both REM and non-REM in a multivariate linear regression. Our results show that autonomic dysfunction is part of the narcoleptic phenotype, and that hypocretin-1 deficiency is the primary predictor of this dysfunction. This finding suggests that the hypocretin system participates in the modulation of cardiovascular function at rest.

  20. Comprehensive Behavioral Analysis of Male Ox1r−/− Mice Showed Implication of Orexin Receptor-1 in Mood, Anxiety, and Social Behavior

    Science.gov (United States)

    Abbas, Md. G.; Shoji, Hirotaka; Soya, Shingo; Hondo, Mari; Miyakawa, Tsuyoshi; Sakurai, Takeshi

    2015-01-01

    Neuropeptides orexin A and orexin B, which are exclusively produced by neurons in the lateral hypothalamic area, play an important role in the regulation of a wide range of behaviors and homeostatic processes, including regulation of sleep/wakefulness states and energy homeostasis. The orexin system has close anatomical and functional relationships with systems that regulate the autonomic nervous system, emotion, mood, the reward system, and sleep/wakefulness states. Recent pharmacological studies using selective antagonists have suggested that orexin receptor-1 (OX1R) is involved in physiological processes that regulate emotion, the reward system, and autonomic nervous system. Here, we examined Ox1r−/− mice with a comprehensive behavioral test battery to screen additional OX1R functions. Ox1r−/− mice showed increased anxiety-like behavior, altered depression-like behavior, slightly decreased spontaneous locomotor activity, reduced social interaction, increased startle response, and decreased prepulse inhibition. These results suggest that OX1R plays roles in social behavior and sensory motor gating in addition to roles in mood and anxiety. PMID:26696848

  1. cDNA cloning of chicken orexin receptor and tissue distribution: sexually dimorphic expression in chicken gonads.

    Science.gov (United States)

    Ohkubo, T; Tsukada, A; Shamoto, K

    2003-12-01

    Orexin-A and -B are known to stimulate food intake in mammals. However, the critical roles of orexins in birds are not fully understood, since orexins have no stimulatory effect on food intake in the chicken. To understand the physiological role(s) of orexins in birds, we have cloned chicken orexin receptor (cOXR) cDNA by RT-PCR, and analysed the tIssue distribution of OXR mRNA in the chicken. The cOXR cDNA is 1869 bp long and encodes 501 amino acids. The cloned cDNA for cOXR corresponds to the type 2 OXR in mammals, and shows approximately 80% similarity to those of mammals at the amino acid level. Expression analysis by RNase protection assay revealed OXR mRNA was distributed widely in brain regions, and expression in the cerebrum, hypothalamus and optic tectum were abundant. In peripheral tIssues, OXR mRNA was expressed in the pituitary gland, adrenal gland and testis, but no mRNA expression was observed in other tIssues examined. Furthermore, we found that the amount of cOXR mRNA was different between testis and ovary, while prepro-orexin mRNA is equally expressed in the gonads of both sexes in the chicken. These data indicate that the orexins have neuroendocrine actions in chickens, which are mediated through hypothalamic receptors as has been observed in mammals. In addition, orexin may have specific role(s) in the regulation of gonadal function in which sex-dependent mechanisms could be involved.

  2. Sleep-wake stability in narcolepsy patients with normal, low and unmeasurable hypocretin levels

    DEFF Research Database (Denmark)

    Hansen, Mathias Hvidtfelt; Kornum, Birgitte Rahbek; Jennum, Poul

    2017-01-01

    movement (REM) sleep, and the occurrence of sleep onset REM (SOREM) in the nocturnal polysomnography were also measured. RESULTS: Participants with undetectable hypocretin-1 levels had significantly higher frequencies of transitions than controls and those with normal hypocretin-1 levels. Participants...... hypocretin-1 levels in particular, but also low hypocretin-1 levels, were associated with a less stable phenotype featuring more sleep state transitions and SOREM episodes. In addition, there was a distinction between nocturnal and diurnal REM sleep in hypocretin-deficient participants, expressed...... as increased diurnal REM sleep, which was not reflected in nocturnal sleep....

  3. Facilitation of Contextual Fear Extinction by Orexin-1 Receptor Antagonism Is Associated with the Activation of Specific Amygdala Cell Subpopulations.

    Science.gov (United States)

    Flores, África; Herry, Cyril; Maldonado, Rafael; Berrendero, Fernando

    2017-08-01

    Orexins are hypothalamic neuropeptides recently involved in the regulation of emotional memory. The basolateral amygdala, an area orchestrating fear memory processes, appears to be modulated by orexin transmission during fear extinction. However, the neuronal types within the basolateral amygdala involved in this modulation remain to be elucidated. We used retrograde tracing combined with immunofluorescence techniques in mice to identify basolateral amygdala projection neurons and cell subpopulations in this brain region influenced by orexin transmission during contextual fear extinction consolidation. Treatment with the orexin-1 receptor antagonist SB334867 increased the activity of basolateral amygdala neurons projecting to infralimbic medial prefrontal cortex during fear extinction. GABAergic interneurons expressing calbindin, but not parvalbumin, were also activated by orexin-1 receptor antagonism in the basolateral amygdala. These data identify neuronal circuits and cell populations of the amygdala associated with the facilitation of fear extinction consolidation induced by the orexin-1 receptor antagonist SB334867. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  4. Low cerebrospinal fluid hypocretin levels during sudden infant death syndrome (SIDS) risk period.

    Science.gov (United States)

    Lancien, Marion; Inocente, Clara Odilia; Dauvilliers, Yves; Kugener, Beatrice; Scholz, Sabine; Raverot, Veronique; Lin, Jian-Sheng; Guyon, Aurore; Gustin, Marie-Paule; Franco, Patricia

    2017-05-01

    The temporal association between sudden infant death syndrome (SIDS) and sleep suggests that the arousability from sleep provides a protective mechanism for survival. Recently, the hypocretin system, which promotes wakefulness, has been implicated in SIDS, since it has been reported that SIDS victims have fewer hypocretin neurons than infants who have died from other causes. To understand the role of hypocretin in SIDS, it is essential to better understand how this system matures. The present study compared cerebrospinal fluid (CSF) hypocretin in children aged 2-6 months, which is the age of peak incidence for SIDS, to both younger and older children. Hypocretin levels were measured in CSF samples from 101 children who underwent a clinically relevant lumbar puncture. Children were separated into five age groups: 0-2 months, 2-6 months, 1-5 years, 5-10 years, and 10-18 years. Hypocretin levels were not significantly different between 1-5 years, 5-10 years, and 10-18 years. Therefore, these three groups were pooled into a single one (1-18 years) for further analysis. Between the 0-2 month, 2-6 month, and 1-18 year groups, a significant difference in CSF hypocretin levels existed (p = 0.001). Simple comparisons showed that CSF hypocretin levels in the 2-6 month age group were significantly lower than hypocretin levels in both the 0-2 month and 1-18 year group (p hypocretin levels were lower at the age of peak incidence for SIDS. This could underlie an increased vulnerability to SIDS at this specific age. Copyright © 2017. Published by Elsevier B.V.

  5. Orexin – does it have a role in mental illness?

    African Journals Online (AJOL)

    behaviours that contribute to homeostasis (such as arousal, feeding, and thermoregulation) by integrating external and internal stimuli.3 It is involved in the regulation of nutritional status via the co-ordination of many neurotransmitter systems implicated in food intake and energy expenditure.4 The hypothalamic orexin.

  6. Different Levels in Orexin Concentrations and Risk Factors Associated with Higher Orexin Levels: Comparison between Detoxified Opiate and Methamphetamine Addicts in 5 Chinese Cities

    Directory of Open Access Journals (Sweden)

    Haoran Zhang

    2013-01-01

    Full Text Available This study sought to explore the degree of orexin levels in Chinese opiate and methamphetamine addicts and the differences between them. The cross-sectional study was conducted among detoxified drug addicts from Mandatory Detoxification Center (MDC in five Chinese cities. Orexin levels were assayed with radioimmunoassay (RIA. Mann-Whitney U test and Kruskal-Wallis test were used to detect differences across groups, and logistic regression was used to explore the association between orexin levels and characteristics of demographic and drug abuse. Between November 2009 and January 2011, 285 opiates addicts, 112 methamphetamine addicts, and 79 healthy controls were enrolled. At drug withdrawal period, both opiate and methamphetamine addicts had lower median orexin levels than controls, and median orexin levels in opiate addicts were higher than those in methamphetamine addicts (all above P<0.05. Adjusted odds of the above median concentration of orexin were higher for injection than “chasing the dragon” (AOR = 3.1, 95% CI = 1.2–7.9. No significant factors associated with orexin levels of methamphetamine addicts were found. Development of intervention method on orexin system by different administration routes especially for injected opiate addicts at detoxification phase may be significant and was welcome.

  7. Interactions of the histamine and hypocretin systems in CNS disorders.

    Science.gov (United States)

    Shan, Ling; Dauvilliers, Yves; Siegel, Jerome M

    2015-07-01

    Histamine and hypocretin neurons are localized to the hypothalamus, a brain area critical to autonomic function and sleep. Narcolepsy type 1, also known as narcolepsy with cataplexy, is a neurological disorder characterized by excessive daytime sleepiness, impaired night-time sleep, cataplexy, sleep paralysis and short latency to rapid eye movement (REM) sleep after sleep onset. In narcolepsy, 90% of hypocretin neurons are lost; in addition, two groups reported in 2014 that the number of histamine neurons is increased by 64% or more in human patients with narcolepsy, suggesting involvement of histamine in the aetiology of this disorder. Here, we review the role of the histamine and hypocretin systems in sleep-wake modulation. Furthermore, we summarize the neuropathological changes to these two systems in narcolepsy and discuss the possibility that narcolepsy-associated histamine abnormalities could mediate or result from the same processes that cause the hypocretin cell loss. We also review the changes in the hypocretin and histamine systems, and the associated sleep disruptions, in Parkinson disease, Alzheimer disease, Huntington disease and Tourette syndrome. Finally, we discuss novel therapeutic approaches for manipulation of the histamine system.

  8. Cerebrospinal fluid hypocretin 1 deficiency, overweight, and metabolic dysregulation in patients with narcolepsy.

    Science.gov (United States)

    Heier, Mona S; Jansson, Tine S; Gautvik, Kaare M

    2011-12-15

    The possible relationship between cerebrospinal fluid (CSF) hypocretin and leptin levels, overweight, and association to risk factors for diabetes 2 in narcolepsy with cataplexy were compared to patients with idiopathic hypersomnia and controls. 26 patients with narcolepsy, cataplexy, and hypocretin deficiency; 23 patients with narcolepsy, cataplexy, and normal hypocretin values; 11 patients with idiopathic hypersomnia; and 43 controls. Body mass index (BMI), serum leptin, and HbA1C were measured in patients and controls; and CSF hypocretin 1 and leptin measured in all patients. Female and male patients with narcolepsy and hypocretin deficiency had the highest mean BMI (27.8 and 26.2, respectively), not statistically different from patients with narcolepsy and normal hypocretin or controls, but statistically higher than the patients with idiopathic hypersomnia (p 30) was increased in both narcolepsy groups. Serum and CSF leptin levels correlated positively to BMI in patients and controls, but not to CSF hypocretin concentrations. HbA1C was within normal levels and similar in all groups. The study confirms a moderate tendency to obesity (BMI > 30) and overweight in patients with narcolepsy and cataplexy. Obesity was not correlated to hypocretin deficiency or reduced serum or CSF leptin concentrations. We suggest that overweight and possible metabolic changes previously reported in narcolepsy, may be caused by other mechanisms.

  9. Clinical and Neurobiological Aspects of Narcolepsy

    Science.gov (United States)

    Nishino, Seiji

    2007-01-01

    Narcolepsy is characterized by excessive daytime sleepiness (EDS), cataplexy and/or other dissociated manifestations of rapid eye movement (REM) sleep (hypnagogic hallucinations and sleep paralysis). Narcolepsy is currently treated with amphetamine-like central nervous system (CNS) stimulants (for EDS) and antidepressants (for cataplexy). Some other classes of compounds such as modafinil (a non-amphetamine wake-promoting compound for EDS) and gamma-hydroxybutyrate (GHB, a short-acting sedative for EDS/fragmented nighttime sleep and cataplexy) given at night are also employed. The major pathophysiology of human narcolepsy has been recently elucidated based on the discovery of narcolepsy genes in animals. Using forward (i.e., positional cloning in canine narcolepsy) and reverse (i.e., mouse gene knockout) genetics, the genes involved in the pathogenesis of narcolepsy (hypocretin/orexin ligand and its receptor) in animals have been identified. Hypocretins/orexins are novel hypothalamic neuropeptides also involved in various hypothalamic functions such as energy homeostasis and neuroendocrine functions. Mutations in hypocretin-related genes are rare in humans, but hypocretin-ligand deficiency is found in many narcolepsy-cataplexy cases. In this review, the clinical, pathophysiological and pharmacological aspects of narcolepsy are discussed. PMID:17470414

  10. Prefrontal cortex-projecting glutamatergic thalamic paraventricular nucleus-excited by hypocretin: a feedforward circuit that may enhance cognitive arousal.

    Science.gov (United States)

    Huang, Hao; Ghosh, Prabhat; van den Pol, Anthony N

    2006-03-01

    The paraventricular thalamic nucleus (PVT) receives one of the most dense innervations by hypothalamic hypocretin/orexin (Hcrt) neurons, which play important roles in sleep-wakefulness, attention, and autonomic function. The PVT projects to several loci, including the medial prefrontal cortex (mPFC), a cortical region involved in associative function and attention. To study the effect of Hcrt on excitatory PVT neurons that project to the mPFC, we used a new line of transgenic mice expressing green fluorescent protein (GFP) under the control of the vesicular glutamate-transporter-2 promoter. These neurons were retrogradely labeled with cholera toxin subunit B that had been microinjected into the mPFC. Membrane characteristics and responses to hypocretin-1 and -2 (Hcrt-1 and -2) were studied using whole cell recording (n > 300). PVT neurons showed distinct membrane properties including inward rectification, H-type potassium currents, low threshold spikes, and spike frequency adaptation. Cortically projecting neurons were depolarized and excited by Hcrt-2. Hcrt-2 actions were stronger than those of Hcrt-1, and the action persisted in TTX and in low calcium/high magnesium artificial cerebrospinal fluid, consistent with direct actions mediated by Hcrt receptor-2. Two mechanisms of Hcrt excitation were found: an increase in input resistance caused by closure of potassium channels and activation of nonselective cation channels. The robust excitation evoked by Hcrt-2 on cortically projecting glutamate PVT neurons could generate substantial excitation in multiple layers of the mPFC, adding to the more selective direct excitatory actions of Hcrt in the mPFC and potentially increasing cortical arousal and attention to limbic or visceral states.

  11. Discovery and characterization of ACT-335827, an orally available, brain penetrant orexin receptor type 1 selective antagonist.

    Science.gov (United States)

    Steiner, Michel A; Gatfield, John; Brisbare-Roch, Catherine; Dietrich, Hendrik; Treiber, Alexander; Jenck, Francois; Boss, Christoph

    2013-06-01

    Stress relief: Orexin neuropeptides regulate arousal and stress processing through orexin receptor type 1 (OXR-1) and 2 (OXR-2) signaling. A selective OXR-1 antagonist, represented by a phenylglycine-amide substituted tetrahydropapaverine derivative (ACT-335827), is described that is orally available, penetrates the brain, and decreases fear, compulsive behaviors and autonomic stress reactions in rats. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Orexin 1 and orexin 2 receptor antagonism in the basolateral amygdala modulate long-term potentiation of the population spike in the perforant path-dentate gyrus-evoked field potential in rats.

    Science.gov (United States)

    Ardeshiri, Motahareh Rouhi; Hosseinmardi, Narges; Akbari, Esmaeil

    2018-03-01

    Involvement of amygdalo-hippocampal substructures in patients with narcolepsy due to deficiencies in the orexinergic system, and the presence of hippocampus-dependent memory impairments in this disorder, have led us to investigate the effects of orexin 1 and 2 receptor antagonism in the basolateral amygdala (BLA) on long-term potentiation (LTP) of dentate gyrus (DG) granular cells. We used a 200-Hz high-frequency stimulation protocol in anesthetized rats. We studied the long-term synaptic plasticity of perforant path-dentate gyrus granule cells following the inactivation of orexin receptors before and after tetanic stimulation. LTP of the DG population spike was attenuated in the presence of orexin 1 and 2 receptor antagonism (treatment with SB-334867-A and TCS-OX2-29, respectively) in the BLA when compared to that observed following treatment with dimethyl sulfoxide (DMSO). However, the population excitatory post-synaptic potentials were not affected. Moreover, when orexin 1 and 2 receptors in the BLA were blocked after LTP induction, there were no differences between the DMSO and treatment groups. Our findings suggest that the orexinergic system of the BLA plays a modulatory role in the regulation of hippocampal plasticity in rats. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Optogenetic identification of hypothalamic orexin neuron projections to paraventricular spinally projecting neurons.

    Science.gov (United States)

    Dergacheva, Olga; Yamanaka, Akihiro; Schwartz, Alan R; Polotsky, Vsevolod Y; Mendelowitz, David

    2017-04-01

    Orexin neurons, and activation of orexin receptors, are generally thought to be sympathoexcitatory; however, the functional connectivity between orexin neurons and a likely sympathetic target, the hypothalamic spinally projecting neurons (SPNs) in the paraventricular nucleus of the hypothalamus (PVN) has not been established. To test the hypothesis that orexin neurons project directly to SPNs in the PVN, channelrhodopsin-2 (ChR2) was selectively expressed in orexin neurons to enable photoactivation of ChR2-expressing fibers while examining evoked postsynaptic currents in SPNs in rat hypothalamic slices. Selective photoactivation of orexin fibers elicited short-latency postsynaptic currents in all SPNs tested ( n = 34). These light-triggered responses were heterogeneous, with a majority being excitatory glutamatergic responses (59%) and a minority of inhibitory GABAergic (35%) and mixed glutamatergic and GABAergic currents (6%). Both glutamatergic and GABAergic responses were present in the presence of tetrodotoxin and 4-aminopyridine, suggesting a monosynaptic connection between orexin neurons and SPNs. In addition to generating postsynaptic responses, photostimulation facilitated action potential firing in SPNs (current clamp configuration). Glutamatergic, but not GABAergic, postsynaptic currents were diminished by application of the orexin receptor antagonist almorexant, indicating orexin release facilitates glutamatergic neurotransmission in this pathway. This work identifies a neuronal circuit by which orexin neurons likely exert sympathoexcitatory control of cardiovascular function. NEW & NOTEWORTHY This is the first study to establish, using innovative optogenetic approaches in a transgenic rat model, that there are robust heterogeneous projections from orexin neurons to paraventricular spinally projecting neurons, including excitatory glutamatergic and inhibitory GABAergic neurotransmission. Endogenous orexin release modulates glutamatergic, but not

  14. Cataplexy with Normal Sleep Studies and Normal CSF Hypocretin: An Explanation?

    Science.gov (United States)

    Drakatos, Panagis; Leschziner, Guy

    2016-03-01

    Patients with narcolepsy usually develop excessive daytime sleepiness (EDS) before or coincide with the occurrence of cataplexy, with the latter most commonly associated with low cerebrospinal fluid (CSF) hypocretin-1 levels. Cataplexy preceding the development of other features of narcolepsy is a rare phenomenon. We describe a case of isolated cataplexy in the context of two non-diagnostic multiple sleep latency tests and normal CSF-hypocretin-1 levels (217 pg/mL) who gradually developed EDS and low CSF-hypocretin-1 (< 110 pg/mL). © 2016 American Academy of Sleep Medicine.

  15. The Hypocretin/Orexin Antagonist Almorexant Promotes Sleep Without Impairment of Performance in Rats

    Directory of Open Access Journals (Sweden)

    Stephen R Morairty

    2014-01-01

    Full Text Available The hypocretin receptor (HcrtR antagonist almorexant (ALM has potent hypnotic actions but little is known about neurocognitive performance in the presence of ALM. HcrtR antagonists are hypothesized to induce sleep by disfacilitation of wake-promoting systems whereas GABAA receptor modulators such as zolpidem (ZOL induce sleep through general inhibition of neural activity. To test the hypothesis that less functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL. Performance in spatial reference memory (SRM and spatial working memory (SWM tasks were assessed during the dark period after equipotent sleep-promoting doses (100 mg/kg, po following undisturbed and sleep deprivation (SD conditions. ALM-treated rats were indistinguishable from vehicle (VEH-treated rats for all SRM performance measures (distance travelled, latency to enter, time within, and number of entries into, the target quadrant after both the undisturbed and 6 h SD conditions. In contrast, rats administered ZOL showed impairments in all parameters measured compared to VEH or ALM in the undisturbed conditions. Following SD, ZOL-treated rats also showed impairments in all measures. ALM-treated rats were similar to VEH-treated rats for all SWM measures (velocity, time to locate the platform and success rate at finding the platform within 60 s after both the undisturbed and SD conditions. In contrast, ZOL-treated rats showed impairments in velocity and in the time to locate the platform. Importantly, ZOL rats only completed the task 23-50% of the time while ALM and VEH rats completed the task 79-100% of the time. Thus, following equipotent sleep-promoting doses, ZOL impaired rats in both memory tasks while ALM rats performed at levels comparable to VEH rats. These results are consistent with the hypothesis that less impairment results from HcrtR antagonism than from GABAA

  16. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus).

    Science.gov (United States)

    Gatta, Claudia; Russo, Finizia; Russolillo, Maria Grazia; Varricchio, Ettore; Paolucci, Marina; Castaldo, Luciana; Lucini, Carla; de Girolamo, Paolo; Cozzi, Bruno; Maruccio, Lucianna

    2014-01-01

    This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine) of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.

  17. The orexin system in the enteric nervous system of the bottlenose dolphin (Tursiops truncatus.

    Directory of Open Access Journals (Sweden)

    Claudia Gatta

    Full Text Available This study provides a general approach to the presence and possible role of orexins and their receptors in the gut (three gastric chambers and intestine of confined environment bottlenose dolphin. The expression of prepro-orexin, orexin A and B and orexin 1 and 2 receptors were investigated by single immunostaining and western blot analysis. The co-localization of vasoactive intestinal peptide and orexin 1 receptor in the enteric nervous system was examined by double immunostaining. Also, orexin A concentration were measured in plasma samples to assess the possible diurnal variation of the plasma level of peptide in this species. Our results showed that the orexin system is widely distributed in bottlenose dolphin enteric nervous system of the all gastrointestinal tract examined. They are very peculiar and partially differs from that of terrestrial mammals. Orexin peptides and prepro-orexin were expressed in the main stomach, pyloric stomach and proximal intestine; while orexin receptors were expressed in the all examined tracts, with the exception of main stomach where found no evidence of orexin 2 receptor. Co-localization of vasoactive intestinal peptide and orexin 1 receptor were more evident in the pyloric stomach and proximal intestine. These data could suggest a possible role of orexin system on the contractility of bottlenose dolphin gastrointestinal districts. Finally, in agreement with several reports, bottlenose dolphin orexin A plasma level was higher in the morning during fasting. Our results emphasize some common features between bottlenose dolphin and terrestrial mammals. Certainly, further functional investigations may help to better explain the role of the orexin system in the energy balance of bottlenose dolphin and the complex interaction between feeding and digestive physiology.

  18. Hypocretin deficiency develops during onset of human narcolepsy with cataplexy

    DEFF Research Database (Denmark)

    Savvidou, Andri; Knudsen, Stine; Olsson-Engman, Mia

    2013-01-01

    Although hypothesized through animal studies, a temporal and causal association between hypocretin deficiency and the onset of narcolepsy with cataplexy (NC) has never been proven in humans.......Although hypothesized through animal studies, a temporal and causal association between hypocretin deficiency and the onset of narcolepsy with cataplexy (NC) has never been proven in humans....

  19. Profile of suvorexant in the management of insomnia

    Directory of Open Access Journals (Sweden)

    Sutton EL

    2015-11-01

    Full Text Available Eliza L Sutton Department of Medicine, University of Washington, Seattle, WA, USA Abstract: Suvorexant, approved in late 2014 in the United States and Japan for the treatment of insomnia characterized by difficulty achieving and/or maintaining sleep, is a dual orexin receptor antagonist and the first drug in its class to reach the market. Its development followed from the 1998 discovery of orexins (also called hypocretins, excitatory neuropeptides originating from neurons in the hypothalamus involved in regulation of sleep and wake, feeding behavior and energy regulation, motor activity, and reward-seeking behavior. Suvorexant objectively improves sleep, shortening the time to achieve persistent sleep and reducing wake after sleep onset, although at approved doses (≤20 mg the benefit was subjectively assessed as modest. Its half-life of 12 hours is relatively long for a modern hypnotic; however, at approved doses (≤20 mg next-day sedation and driving impairment were much less apparent than at higher doses. Suvorexant is metabolized by the hepatic CYP3A system and should be avoided in combination with strong CYP3A inhibitors. Drug levels are higher in women and obese people; hence, dosing should be conservative in obese women. Administration with food delays drug absorption and is not advised. No dose adjustment is needed for advanced age, renal impairment, or mild-to-moderate hepatic impairment. Suvorexant in contraindicated in narcolepsy and has not been studied in children. In alignment with the changes begun in 2013 in the labeling of other hypnotics, the United States Food and Drug Administration advises that the lowest dose effective to treat symptoms be used and that patients be advised of the possibility of next-day impairment in function, including driving. Infrequent but notable side effects included abnormal dreams, sleep paralysis, and suicidal ideation that were dose-related and reported to be mild. Given its mechanism of

  20. Orexins Mediate Sex Differences in the Stress Response and in Cognitive Flexibility.

    Science.gov (United States)

    Grafe, Laura A; Cornfeld, Amanda; Luz, Sandra; Valentino, Rita; Bhatnagar, Seema

    2017-04-15

    Women are twice as likely as men to experience stress-related psychiatric disorders. The biological basis of these sex differences is poorly understood. Orexins are altered in anxious and depressed patients. Using a rat model of repeated stress, we examined whether orexins contribute to sex differences in outcomes relevant to stress-related psychiatric diseases. Behavioral, neural, and endocrine habituation to repeated restraint stress and subsequent cognitive flexibility was examined in adult male and female rats. In parallel, orexin expression and activation were determined in both sexes, and chromatin immunoprecipitation was used to determine transcription factors acting at the orexin promoter. Designer receptors exclusively activated by designer drugs were used to inhibit orexin activation throughout repeated restraint to determine if the stress-related impairments in female rats could be reduced. Female rats exhibited impaired habituation to repeated restraint with subsequent deficits in cognitive flexibility compared with male rats. Increased orexin expression and activation were observed in female rats compared with male rats. The higher expression of orexin messenger RNA in female rats was due to actions of glucocorticoid receptors on the orexin promoter, as determined by chromatin immunoprecipitation. Inhibition of orexins using designer receptors exclusively activated by designer drugs in female rats throughout repeated restraint abolished their heightened hypothalamic-pituitary-adrenal responsivity and reduced stress-induced cognitive impairments. Orexins mediate the impairments in adaptations to repeated stress and in subsequent cognitive flexibility exhibited by female rats and provide evidence for a broader role for orexins in mediating functions relevant to stress-related psychiatric diseases. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  1. Computer Simulation of Noise Effects of the Neighborhood of Stimulus Threshold for a Mathematical Model of Homeostatic Regulation of Sleep-Wake Cycles

    Directory of Open Access Journals (Sweden)

    Wuyin Jin

    2017-01-01

    Full Text Available The noise effects on a homeostatic regulation of sleep-wake cycles’ neuronal mathematical model determined by the hypocretin/orexin and the local glutamate interneurons spatiotemporal behaviors are studied within the neighborhood of stimulus threshold in this work; the neuronal noise added to the stimulus, the conductance, and the activation variable of the modulation function are investigated, respectively, based on a circadian input skewed in sine function. The computer simulation results suggested that the increased amplitude of external current input will lead to the fact that awakening time is advanced but the sleepy time remains the same; for the bigger conductance and modulation noise, the regulatory mechanism of the model sometimes will be collapsed and the coupled two neurons of the model show very irregular activities; the falling asleep or wake transform appears at nondeterminate time.

  2. Temporal Changes in the Cerebrospinal Fluid Level of Hypocretin-1 and Histamine in Narcolepsy.

    Science.gov (United States)

    Lopez, Régis; Barateau, Lucie; Evangelista, Elisa; Chenini, Sofiene; Robert, Philippe; Jaussent, Isabelle; Dauvilliers, Yves

    2017-01-01

    To follow the temporal changes of cerebrospinal fluid (CSF) biomarker levels in narcoleptic patients with unexpected hypocretin level at referral. From 2007 to 2015, 170 human leukocyte antigen (HLA) DQB1*06:02-positive patients with primary narcolepsy and definite (n = 155, 95 males, 60 females, 36 children) or atypical cataplexy (n = 15, 4 males, 3 children) were referred to our center. Cerebrospinal hypocretin deficiency was found in 95.5% and 20% of patients with definitive and atypical cataplexy, respectively. CSF hypocretin-1 (n = 6) and histamine/tele-methylhistamine (n = 5) levels were assessed twice (median interval: 14.4 months) in four patients with definite and in two with atypical cataplexy and hypocretin level greater than 100 pg/mL at baseline. CSF hypocretin levels decreased from normal/intermediate to undetectable levels in three of the four patients with definite cataplexy and remained stable in the other (>250 pg/mL). Hypocretin level decreased from 106 to 27 pg/mL in one patient with atypical cataplexy, and remained stable in the other (101 and 106 pg/mL). CSF histamine and tele-methylhistamine levels remained stable, but for one patient showing increased frequency of cataplexy and a strong decrease (-72.5%) of tele-methylhistamine levels several years after disease onset. No significant association was found between relative or absolute change in hypocretin level and demographic/clinical features. These findings show that in few patients with narcolepsy with cataplexy, symptoms and CSF marker levels can change over time. In these rare patients with cataplexy without baseline hypocretin deficiency, CSF markers should be monitored over time with potential for immune therapies in early stages to try limiting hypocretin neuron loss. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society].

  3. Neurons Containing Orexin or Melanin Concentrating Hormone Reciprocally Regulate Wake and Sleep

    Directory of Open Access Journals (Sweden)

    Roda Rani eKonadhode

    2015-01-01

    Full Text Available There is considerable amount of data on arousal neurons whereas there is a paucity of knowledge regarding neurons that make us fall asleep. Indeed, current network models of sleep-wake regulation list many arousal neuronal populations compared to only one sleep group located in the preoptic area. There are neurons outside the preoptic area that are active during sleep, but they have never been selectively manipulated. Indeed, none of the sleep-active neurons have been selectively stimulated. To close this knowledge gap we used optogenetics to selectively manipulate neurons containing melanin concentrating hormone (MCH. The MCH neurons are located in the posterior hypothalamus intermingled with the orexin arousal neurons. Our data indicated that optogenetic stimulation of MCH neurons in wildtype mice (J Neuroscience, 2013 robustly increased both non-REM and REM sleep. MCH neuron stimulation increased sleep during the animal’s normal active period, which is compelling evidence that stimulation of MCH neurons has a powerful effect in counteracting the strong arousal signal from all of the arousal neurons. The MCH neurons represent the only group of sleep-active neurons that when selectively stimulated induce sleep. From a translational perspective this is potentially useful in sleep disorders, such as insomnia, where sleep needs to be triggered against a strong arousal drive. Our studies indicate that the MCH neurons belong within an overall model of sleep-wake regulation.

  4. Attenuated Heart Rate Response is Associated with Hypocretin Deficiency in Patients with Narcolepsy

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Knudsen, Stine; Petersen, Eva Rosa

    2013-01-01

    Our results show that autonomic dysfunction is part of the narcoleptic phenotype, and that hypocretin-1 deficiency is the primary predictor of this dysfunction. This finding suggests that the hypocretin system participates in the modulation of cardiovascular function at rest. CITATION: Sorensen GL......; Knudsen S; Petersen ER; Kempfner J; Gammeltoft S; Sorensen HBD; Jennum P. Attenuated heart rate response is associated with hypocretin deficiency in patients with narcolepsy. SLEEP 2013;36(1):91-98....

  5. Dual orexin receptor antagonists - promising agents in the treatment of sleep disorders.

    Science.gov (United States)

    Pałasz, Artur; Lapray, Damien; Peyron, Christelle; Rojczyk-Gołębiewska, Ewa; Skowronek, Rafał; Markowski, Grzegorz; Czajkowska, Beata; Krzystanek, Marek; Wiaderkiewicz, Ryszard

    2014-01-01

    Insomnia is a serious medical and social problem, its prevalence in the general population ranges from 9 to 35% depending on the country and assessment method. Often, patients are subject to inappropriate and therefore dangerous pharmacotherapies that include prolonged administration of hypnotic drugs, benzodiazepines and other GABAA receptor modulators. This usually does not lead to a satisfactory improvement in patients' clinical states and may cause lifelong drug dependence. Brain state transitions require the coordinated activity of numerous neuronal pathways and brain structures. It is thought that orexin-expressing neurons play a crucial role in this process. Due to their interaction with the sleep-wake-regulating neuronal population, they can activate vigilance-promoting regions and prevent unwanted sleep intrusions. Understanding the multiple orexin modulatory effects is crucial in the context of pathogenesis of insomnia and should lead to the development of novel treatments. An important step in this process was the synthesis of dual antagonists of orexin receptors. Crucially, these drugs, as opposed to benzodiazepines, do not change the sleep architecture and have limited side-effects. This new pharmacological approach might be the most appropriate to treat insomnia.

  6. CSF Hypocretin-1 Levels and Clinical Profiles in Narcolepsy and Idiopathic CNS Hypersomnia in Norway

    Science.gov (United States)

    Heier, Mona Skard; Evsiukova, Tatiana; Vilming, Steinar; Gjerstad, Michaela D.; Schrader, Harald; Gautvik, Kaare

    2007-01-01

    Objective: To evaluate the relationship between CSF hypocretin-1 levels and clinical profiles in narcolepsy and CNS hypersomnia in Norwegian patients. Method: CSF hypocretin-1 was measured by a sensitive radioimmunoassay in 47 patients with narcolepsy with cataplexy, 7 with narcolepsy without cataplexy, 10 with idiopathic CNS hypersomnia, and a control group. Results: Low hypocretin-1 values were found in 72% of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy. Patients with low CSF hypocretin-1 levels reported more extensive muscular involvement during cataplectic attacks than patients with normal levels. Hypnagogic hallucinations and sleep paralysis occurred more frequently in patients with cataplexy than in the other patient groups, but with no correlation to hypocretin-1 levels. Conclusion: About three quarters of the HLA DQB1*0602 positive patients with narcolepsy and cataplexy had low CSF hypocretin-1 values, and appear to form a distinct clinical entity. Narcolepsy without cataplexy could not be distinguished from idiopathic CNS hypersomnia by clinical symptoms or biochemical findings. Citation: Heier MS; Evsiukova T; Vilming S; Gjerstad MD; Schrader H; Gautvik K. CSF hypocretin-1 levels and clinical profiles in narcolepsy and idiopathic CNS hypersomnia in norway. SLEEP 2007;30(8):969-973. PMID:17702265

  7. Hypocretin-1 Levels Associate with Fragmented Sleep in Patients with Narcolepsy Type 1.

    Science.gov (United States)

    Alakuijala, Anniina; Sarkanen, Tomi; Partinen, Markku

    2016-05-01

    We aimed to analyze nocturnal sleep characteristics of patients with narcolepsy type 1 (narcolepsy with cataplexy) measured by actigraphy in respect to cerebrospinal fluid hypocretin-1 levels of the same patients. Actigraphy recording of 1-2 w and hypocretin-1 concentration analysis were done to thirty-six unmedicated patients, aged 7 to 63 y, 50% female. Twenty-six of them had hypocretin-1 levels under 30 pg/mL and the rest had levels of 31-79 pg/mL. According to actigraphy, patients with very low hypocretin levels had statistically significantly longer sleep latency (P = 0.033) and more fragmented sleep, indicated by both the number of immobile phases of 1 min (P = 0.020) and movement + fragmentation index (P = 0.049). There were no statistically significant differences in the actual sleep time or circadian rhythm parameters measured by actigraphy. Actigraphy gives additional information about the stabilization of sleep in patients with narcolepsy type 1. Very low hypocretin levels associate with more wake intruding into sleep. © 2016 Associated Professional Sleep Societies, LLC.

  8. A unifying computational framework for stability and flexibility of arousal

    Directory of Open Access Journals (Sweden)

    Christin eKosse

    2014-10-01

    Full Text Available Arousal and consciousness flexibly adjust to salient cues, but remain stable despite noise and disturbance. Diverse, highly interconnected neural networks govern the underlying transitions of behavioural state; these networks are robust but very complex. Frameworks from systems engineering provide powerful tools for understanding functional logic behind component complexity. From a general systems viewpoint, a minimum of three communicating control modules may enable flexibility and stability to coexist. Comparators would subtract current arousal from desired arousal, producing an error signal. Regulators would compute control signals from this error. Generators would convert control signals into arousal, which is fed back to comparators, to make the system noise-proof through self-correction. Can specific neurons correspond to these control elements? To explore this, here we consider the brain-wide orexin/hypocretin network, which is experimentally established to be vital for flexible and stable arousal. We discuss whether orexin neurons may act as comparators, and their target neurons as regulators and generators. Experiments are proposed for testing such predictions, based on computational simulations showing that comparators, regulators, and generators have distinct temporal signatures of activity. If some regulators integrate orexin-communicated errors, robust arousal control may be achieved via integral feedback (a basic engineering strategy for tracking a set-point despite noise. An integral feedback view also suggests functional roles for specific molecular aspects, such as differing life-spans of orexin peptides. The proposed framework offers a unifying logic for molecular, cellular, and network details of arousal systems, and provides insight into behavioral state transitions, complex behaviour, and bases for disease.

  9. GABA(A) receptors mediate orexin-A induced stimulation of food intake.

    Science.gov (United States)

    Kokare, Dadasaheb M; Patole, Angad M; Carta, Anna; Chopde, Chandrabhan T; Subhedar, Nishikant K

    2006-01-01

    Although the role of orexins in sleep/wake cycle and feeding behavior is well established, underlying mechanisms have not been fully understood. An attempt has been made to investigate the role of GABA(A) receptors and their benzodiazepine site on the orexin-A induced response to feeding. Different groups of rats were food deprived overnight and next day injected intracerebroventricularly (icv) with vehicle (artificial CSF; 5 microl/rat) or orexin-A (20-50 nM/rat) and the animals were given free access to food. Cumulative food intake was measured during light phase of light/dark cycle at 1-, 2-, 4- and 6-h post-injection time points. Orexin-A (30-50 nM/rat, icv) stimulated food intake at all the time points (P GABA(A) receptor agonists muscimol (25 ng/rat, icv) and diazepam (0.5 mg/kg, ip) at subeffective doses significantly potentiated the hyperphagic effect of orexin-A (30 nM/rat, icv). However, the effect was negated by the GABA(A) receptor antagonist bicuculline (1 mg/kg, ip). Interestingly, benzodiazepine receptor antagonist flumazenil (5 ng/rat, icv), augmented the orexin-A (30 nM/rat, icv) induced hyperphagia; the effect may be attributed to the intrinsic activity of the agent. The results suggest that the hyperphagic effect of orexin-A, at least in part, is mediated by enhanced GABA(A) receptor activity.

  10. Evaluation of potential PET imaging probes for the orexin 2 receptors

    International Nuclear Information System (INIS)

    Wang, Changning; Wilson, Colin M.; Moseley, Christian K.; Carlin, Stephen M.; Hsu, Shirley; Arabasz, Grae; Schroeder, Frederick A.; Sander, Christin Y.; Hooker, Jacob M.

    2013-01-01

    A wide range of central nervous system (CNS) disorders, particularly those related to sleep, are associated with the abnormal function of orexin (OX) receptors. Several orexin receptor antagonists have been reported in recent years, but currently there are no imaging tools to probe the density and function of orexin receptors in vivo. To date there are no published data on the pharmacokinetics (PK) and accumulation of some lead orexin receptor antagonists. Evaluation of CNS pharmacokinetics in the pursuit of positron emission tomography (PET) radiotracer development could be used to elucidate the association of orexin receptors with diseases and to facilitate the drug discovery and development. To this end, we designed and evaluated carbon-11 labeled compounds based on diazepane orexin receptor antagonists previously described. One of the synthesized compounds, [ 11 C]CW4, showed high brain uptake in rats and further evaluated in non-human primate (NHP) using PET-MR imaging. PET scans performed in a baboon showed appropriate early brain uptake for consideration as a radiotracer. However, [ 11 C]CW4 exhibited fast kinetics and high nonspecific binding, as determined after co-administration of [ 11 C]CW4 and unlabeled CW4. These properties indicate that [ 11 C]CW4 has excellent brain penetrance and could be used as a lead compound for developing new CNS-penetrant PET imaging probes of orexin receptors

  11. Functional magnetic resonance imaging reveals different neural substrates for the effects of orexin-1 and orexin-2 receptor antagonists.

    Directory of Open Access Journals (Sweden)

    Alessandro Gozzi

    Full Text Available Orexins are neuro-modulatory peptides involved in the control of diverse physiological functions through interaction with two receptors, orexin-1 (OX1R and orexin-2 (OX2R. Recent evidence in pre-clinical models points toward a putative dichotomic role of the two receptors, with OX2R predominantly involved in the regulation of the sleep/wake cycle and arousal, and the OX1R being more specifically involved in reward processing and motivated behaviour. However, the specific neural substrates underlying these distinct processes in the rat brain remain to be elucidated. Here we used functional magnetic resonance imaging (fMRI in the rat to map the modulatory effect of selective OXR blockade on the functional response produced by D-amphetamine, a psychostimulant and arousing drug that stimulates orexigenic activity. OXR blockade was produced by GSK1059865 and JNJ1037049, two novel OX1R and OX2R antagonists with unprecedented selectivity at the counter receptor type. Both drugs inhibited the functional response to D-amphetamine albeit with distinct neuroanatomical patterns: GSK1059865 focally modulated functional responses in striatal terminals, whereas JNJ1037049 induced a widespread pattern of attenuation characterised by a prominent cortical involvement. At the same doses tested in the fMRI study, JNJ1037049 exhibited robust hypnotic properties, while GSK1059865 failed to display significant sleep-promoting effects, but significantly reduced drug-seeking behaviour in cocaine-induced conditioned place preference. Collectively, these findings highlight an essential contribution of the OX2R in modulating cortical activity and arousal, an effect that is consistent with the robust hypnotic effect exhibited by JNJ1037049. The subcortical and striatal pattern observed with GSK1059865 represent a possible neurofunctional correlate for the modulatory role of OX1R in controlling reward-processing and goal-oriented behaviours in the rat.

  12. Independent feeding and metabolic actions of orexins in mice.

    Science.gov (United States)

    Lubkin, M; Stricker-Krongrad, A

    1998-12-18

    Orexin-A and orexin-B (OX peptides) are two putative products of a newly discovered secreted protein encoded by a mRNA restricted to neuronal cell bodies of the lateral hypothalamus (LH). Because the activation of the LH can induce changes in energy balance, we wanted to investigate the actions of OX peptides on energy metabolism in mice. We injected male C57BL/6J mice with different doses (1, 3, and 10 nmol) of orexin-A and orexin-B into the third ventricle (i3vt). A single i3vt injection of orexin-A 3 h into the light period slightly stimulated feeding at the lowest dose only over the following 4 h (11 +/- 09 mg/mouse vs 80 +/- 13 mg/mouse, p energy utilization using indirect calorimetry. Single i3vt injection 3 h after light on, or just before dark onset, or in 4-h fasted mice resulted in increases in the metabolic rate. These effects were associated with decreases or increases in the respiratory quotient regarding the time of injection or the underlying metabolic state of the mice. The present findings provide direct evidence that OX peptides are more likely to be involved in the control of energy metabolism than of food intake in mice. Copyright 1998 Academic Press.

  13. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    OpenAIRE

    Steiner, Michel A.; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS...

  14. Orexin modulates behavioral fear expression through the locus coeruleus.

    Science.gov (United States)

    Soya, Shingo; Takahashi, Tohru M; McHugh, Thomas J; Maejima, Takashi; Herlitze, Stefan; Abe, Manabu; Sakimura, Kenji; Sakurai, Takeshi

    2017-11-20

    Emotionally salient information activates orexin neurons in the lateral hypothalamus, leading to increase in sympathetic outflow and vigilance level. How this circuit alters animals' behavior remains unknown. Here we report that noradrenergic neurons in the locus coeruleus (NA LC neurons) projecting to the lateral amygdala (LA) receive synaptic input from orexin neurons. Pharmacogenetic/optogenetic silencing of this circuit as well as acute blockade of the orexin receptor-1 (OX1R) decreases conditioned fear responses. In contrast, optogenetic stimulation of this circuit potentiates freezing behavior against a similar but distinct context or cue. Increase of orexinergic tone by fasting also potentiates freezing behavior and LA activity, which are blocked by pharmacological blockade of OX1R in the LC. These findings demonstrate the circuit involving orexin, NA LC and LA neurons mediates fear-related behavior and suggests inappropriate excitation of this pathway may cause fear generalization sometimes seen in psychiatric disorders, such as PTSD.

  15. Hypocretin Deficiency Associated with Narcolepsy Type 1 and Central Hypoventilation Syndrome in Neurosarcoidosis of the Hypothalamus.

    Science.gov (United States)

    Mayo, Mary Catherine; Deng, Jane C; Albores, Jeffrey; Zeidler, Michelle; Harper, Ronald M; Avidan, Alon Y

    2015-09-15

    We report a case of a 53-year-old man presenting with depressed alertness and severe excessive sleepiness in the setting of neurosarcoidosis. Neuroimaging demonstrated hypothalamic destruction due to sarcoidosis with a CSF hypocretin level of 0 pg/mL. The patient also experienced respiratory depression that presumably resulted from hypocretin-mediated hypothalamic dysfunction as a result of extensive diencephalic injury. This is a novel case, demonstrating both hypocretin deficiency syndrome, as well as respiratory dysfunction from destruction of hypocretin neurons and extensive destruction of key diencephalic structures secondary to the underlying neurosarcoidosis. © 2015 American Academy of Sleep Medicine.

  16. Orexin signaling during social defeat stress influences subsequent social interaction behaviour and recognition memory.

    Science.gov (United States)

    Eacret, Darrell; Grafe, Laura A; Dobkin, Jane; Gotter, Anthony L; Rengerb, John J; Winrow, Christopher J; Bhatnagar, Seema

    2018-06-11

    Orexins are neuropeptides synthesized in the lateral hypothalamus that influence arousal, feeding, reward pathways, and the response to stress. However, the role of orexins in repeated stress is not fully characterized. Here, we examined how orexins and their receptors contribute to the coping response during repeated social defeat and subsequent anxiety-like and memory-related behaviors. Specifically, we used Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) to stimulate orexins prior to each of five consecutive days of social defeat stress in adult male rats. Additionally, we determined the role of the orexin 2 receptor in these behaviors by using a selective orexin 2 receptor antagonist (MK-1064) administered prior to each social defeat. Following the 5 day social defeat conditioning period, rats were evaluated in social interaction and novel object recognition paradigms to assess anxiety-like behavior and recognition memory, respectively. Activation of orexin neurons by DREADDs prior to each social defeat decreased the average latency to become defeated across 5 days, indicative of a passive coping strategy that we have previously linked to a stress vulnerable phenotype. Moreover, stimulation of orexin signaling during defeat conditioning decreased subsequent social interaction and performance in the novel object recognition test indicating increased subsequent anxiety-like behavior and reduced working memory. Blocking the orexin 2 receptor during repeated defeat did not alter these effects. Together, our results suggest that orexin neuron activation produces a passive coping phenotype during social defeat leading to subsequent anxiety-like behaviors and memory deficits. Copyright © 2018. Published by Elsevier B.V.

  17. Intravenous immunoglobulin treatment and screening for hypocretin neuron-specific autoantibodies in recent onset childhood narcolepsy with cataplexy

    DEFF Research Database (Denmark)

    Knudsen, S; Mikkelsen, J D; Bang, B

    2010-01-01

    Narcolepsy with cataplexy (NC) is caused by substantial loss of hypocretin neurons. NC patients carry the HLA-DQB1*0602 allele suggesting that hypocretin neuron loss is due to an autoimmune attack. We tested intravenous immunoglobulin (IVIG) treatment in early onset NC.......Narcolepsy with cataplexy (NC) is caused by substantial loss of hypocretin neurons. NC patients carry the HLA-DQB1*0602 allele suggesting that hypocretin neuron loss is due to an autoimmune attack. We tested intravenous immunoglobulin (IVIG) treatment in early onset NC....

  18. Functional link between the hypocretin and serotonin systems in the neural control of breathing and central chemosensitivity.

    Science.gov (United States)

    Corcoran, Andrea E; Richerson, George B; Harris, Michael B

    2015-07-01

    Serotonin (5-HT)-synthesizing neurons of the medullary raphe are putative central chemoreceptors, proposed to be one of potentially multiple brain stem chemosensitive cell types and loci interacting to produce the respiratory chemoreflex. Hypocretin-synthesizing neurons of the lateral hypothalamus are important contributors to arousal state, thermoregulation, and feeding behavior and are also reportedly involved in the hypercapnic ventilatory response. Recently, a functional interaction was found between the hypocretin system and 5-HT neurons of the dorsal raphe. The validity and potential significance of hypocretin modulation of medullary raphe 5-HT neurons, however, is unknown. As such, the purpose of this study was to explore functional interactions between the hypocretin system and 5-HT system of the medullary raphe on baseline respiratory output and central chemosensitivity. To explore such interactions, we used the neonatal in vitro medullary slice preparation derived from wild-type (WT) mice (normal 5-HT function) and a knockout strain lacking all central 5-HT neurons (Lmx1b(f/f/p) mice). We examined effects of acidosis, hypocretin-1, a hypocretin receptor antagonist (SB-408124), and the effect of the antagonist on the response to acidosis. We confirmed the critical role of 5-HT neurons in central chemosensitivity given that the increased hypoglossal burst frequency with acidosis, characteristic of WT mice, was absent in preparations derived from Lmx1b(f/f/p) mice. We also found that hypocretin facilitated baseline neural ventilatory output in part through 5-HT neurons. Although the impact of hypocretin on 5-HT neuronal sensitivity to acidosis is still unclear, hypocretins did appear to mediate the burst duration response to acidosis via serotonergic mechanisms.

  19. Reduced Orexin System Function Contributes to Resilience to Repeated Social Stress.

    Science.gov (United States)

    Grafe, Laura A; Eacret, Darrell; Dobkin, Jane; Bhatnagar, Seema

    2018-01-01

    Exposure to stress increases the risk of developing affective disorders such as depression and post-traumatic stress disorder (PTSD). However, these disorders occur in only a subset of individuals, those that are more vulnerable to the effects of stress, whereas others remain resilient. The coping style adopted to deal with the stressor, either passive or active coping, is related to vulnerability or resilience, respectively. Important neural substrates that mediate responses to a stressor are the orexins. These neuropeptides are altered in the cerebrospinal fluid of patients with stress-related illnesses such as depression and PTSD. The present experiments used a rodent social defeat model that generates actively coping rats and passively coping rats, which we have previously shown exhibit resilient and vulnerable profiles, respectively, to examine if orexins play a role in these stress-induced phenotypes. In situ radiolabeling and qPCR revealed that actively coping rats expressed significantly lower prepro-orexin mRNA compared with passively coping rats. This led to the hypothesis that lower levels of orexins contribute to resilience to repeated social stress. To test this hypothesis, rats first underwent 5 d of social defeat to establish active and passive coping phenotypes. Then, orexin neurons were inhibited before each social defeat for three additional days using designer receptors exclusively activated by designer drugs (DREADDs). Inhibition of orexins increased social interaction behavior and decreased depressive-like behavior in the vulnerable population of rats. Indeed, these data suggest that lowering orexins promoted resilience to social defeat and may be an important target for treatment of stress-related disorders.

  20. Activation of GABAergic pathway by hypocretin in the median raphe nucleus (MRN) mediates stress-induced theta rhythm in rats.

    Science.gov (United States)

    Hsiao, Yi-Tse; Jou, Shuo-Bin; Yi, Pei-Lu; Chang, Fang-Chia

    2012-07-15

    The frequency of electroencephalograms (EEGs) is predominant in theta rhythm during stress (e.g., footshock) in rats. Median raphe nucleus (MRN) desynchronizes hippocampal theta waves via activation of GABAergic neurons in the medial septum-diagonal band of Broca (MS-DBB), a theta rhythm pacemaker. Increased hypocretin mediates stress responses in addition to the maintenance of wakefulness. Hypocretin receptors are abundant in the MRN, suggesting a possible role of hypocretin in modulating stress-induced theta rhythm. Our results indicated that the intensity of theta waves was enhanced by footshock and that a hypocretin receptor antagonist (TCS1102) suppressed the footshock-induced theta waves. Administration of hypocretin-1 (1 and 10 μg) and hypocretin-2 (10 μg) directly into the MRN simulated the effect of footshock and significantly increased theta waves. Co-administration of GABA(A) receptor antagonist, bicuculline, into the MRN blocked the increase of theta waves induced by hypocretins or footshock. These results suggested that stress enhances the release of hypocretins, activates GABAergic neurons in the MRN, blocks the ability of MRN to desynchronize theta waves, and subsequently increases the intensity of theta rhythm. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Hindbrain Catecholamine Neurons Activate Orexin Neurons During Systemic Glucoprivation in Male Rats.

    Science.gov (United States)

    Li, Ai-Jun; Wang, Qing; Elsarelli, Megan M; Brown, R Lane; Ritter, Sue

    2015-08-01

    Hindbrain catecholamine neurons are required for elicitation of feeding responses to glucose deficit, but the forebrain circuitry required for these responses is incompletely understood. Here we examined interactions of catecholamine and orexin neurons in eliciting glucoprivic feeding. Orexin neurons, located in the perifornical lateral hypothalamus (PeFLH), are heavily innervated by hindbrain catecholamine neurons, stimulate food intake, and increase arousal and behavioral activation. Orexin neurons may therefore contribute importantly to appetitive responses, such as food seeking, during glucoprivation. Retrograde tracing results showed that nearly all innervation of the PeFLH from the hindbrain originated from catecholamine neurons and some raphe nuclei. Results also suggested that many catecholamine neurons project collaterally to the PeFLH and paraventricular hypothalamic nucleus. Systemic administration of the antiglycolytic agent, 2-deoxy-D-glucose, increased food intake and c-Fos expression in orexin neurons. Both responses were eliminated by a lesion of catecholamine neurons innervating orexin neurons using the retrogradely transported immunotoxin, anti-dopamine-β-hydroxylase saporin, which is specifically internalized by dopamine-β-hydroxylase-expressing catecholamine neurons. Using designer receptors exclusively activated by designer drugs in transgenic rats expressing Cre recombinase under the control of tyrosine hydroxylase promoter, catecholamine neurons in cell groups A1 and C1 of the ventrolateral medulla were activated selectively by peripheral injection of clozapine-N-oxide. Clozapine-N-oxide injection increased food intake and c-Fos expression in PeFLH orexin neurons as well as in paraventricular hypothalamic nucleus neurons. In summary, catecholamine neurons are required for the activation of orexin neurons during glucoprivation. Activation of orexin neurons may contribute to appetitive responses required for glucoprivic feeding.

  2. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Science.gov (United States)

    Mensen, Armand; Poryazova, Rositsa; Huegli, Gordana; Baumann, Christian R; Schwartz, Sophie; Khatami, Ramin

    2015-01-01

    The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP), which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN) potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  3. The Roles of Dopamine and Hypocretin in Reward: A Electroencephalographic Study.

    Directory of Open Access Journals (Sweden)

    Armand Mensen

    Full Text Available The proper functioning of the mesolimbic reward system is largely dependent on the neurotransmitter dopamine. Recent evidence suggests that the hypocretin system has significant projections to this reward system. We examined the distinct effects of reduced dopamine or reduced hypocretin levels on reward activity in patients with Parkinson's disease, dopamine deficient, as well as patients with narcolepsy-cataplexy, hypocretin depleted, and healthy controls. Participants performed a simple game-like task while high-density electroencephalography was recorded. Topography and timing of event-related potentials for both reward cue, and reward feedback was examined across the entire dataset. While response to reward cue was similar in all groups, two distinct time points were found to distinguish patients and controls for reward feedback. Around 160 ms both patient groups had reduced ERP amplitude compared to controls. Later at 250 ms, both patient groups also showed a clear event-related potential (ERP, which was absent in controls. The initial differences show that both patient groups show a similar, blunted response to reward delivery. The second potential corresponds to the classic feedback-related negativity (FRN potential which relies on dopamine activity and reflects reward prediction-error signaling. In particular the mismatch between predicted reward and reward subsequently received was significantly higher in PD compared to NC, independent of reward magnitude and valence. The intermediate FRN response in NC highlights the contribution of hypocretin in reward processing, yet also shows that this is not as detrimental to the reward system as in Parkinson's. Furthermore, the inability to generate accurate predictions in NC may explain why hypocretin deficiency mediates cataplexy triggered by both positive and negative emotions.

  4. Hepatic Branch Vagus Nerve Plays a Critical Role in the Recovery of Post-Ischemic Glucose Intolerance and Mediates a Neuroprotective Effect by Hypothalamic Orexin-A

    Science.gov (United States)

    Harada, Shinichi; Yamazaki, Yui; Koda, Shuichi; Tokuyama, Shogo

    2014-01-01

    Orexin-A (a neuropeptide in the hypothalamus) plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve) is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO) for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse) administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve) with orexin-1 receptor and c-Fos (activated neural cells marker). These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A. PMID:24759941

  5. Hepatic branch vagus nerve plays a critical role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

    Directory of Open Access Journals (Sweden)

    Shinichi Harada

    Full Text Available Orexin-A (a neuropeptide in the hypothalamus plays an important role in many physiological functions, including the regulation of glucose metabolism. We have previously found that the development of post-ischemic glucose intolerance is one of the triggers of ischemic neuronal damage, which is suppressed by hypothalamic orexin-A. Other reports have shown that the communication system between brain and peripheral tissues through the autonomic nervous system (sympathetic, parasympathetic and vagus nerve is important for maintaining glucose and energy metabolism. The aim of this study was to determine the involvement of the hepatic vagus nerve on hypothalamic orexin-A-mediated suppression of post-ischemic glucose intolerance development and ischemic neuronal damage. Male ddY mice were subjected to middle cerebral artery occlusion (MCAO for 2 h. Intrahypothalamic orexin-A (5 pmol/mouse administration significantly suppressed the development of post-ischemic glucose intolerance and neuronal damage on day 1 and 3, respectively after MCAO. MCAO-induced decrease of hepatic insulin receptors and increase of hepatic gluconeogenic enzymes on day 1 after was reversed to control levels by orexin-A. This effect was reversed by intramedullary administration of the orexin-1 receptor antagonist, SB334867, or hepatic vagotomy. In the medulla oblongata, orexin-A induced the co-localization of cholin acetyltransferase (cholinergic neuronal marker used for the vagus nerve with orexin-1 receptor and c-Fos (activated neural cells marker. These results suggest that the hepatic branch vagus nerve projecting from the medulla oblongata plays an important role in the recovery of post-ischemic glucose intolerance and mediates a neuroprotective effect by hypothalamic orexin-A.

  6. Emerging role of orexin antagonists in insomnia therapeutics: An update on SORAs and DORAs.

    Science.gov (United States)

    Kumar, Anil; Chanana, Priyanka; Choudhary, Supriti

    2016-04-01

    The pharmacological management of insomnia has lately become a challenge for researchers worldwide. As per the third International Classification of Sleep disorders (ICSD-3) insomnia can be defined as a state with repeated difficulty in sleep initiation, duration, consolidation, or quality that occurs despite adequate opportunity and circumstances for sleep, and results in some form of daytime impairment. The conventional treatments approved for management of insomnia were benzodiazepines (BZDs) (estazolam, quazepam, triazolam, flurazepam and temazepam) and non-BZDs, also known as z-drugs (zaleplon, zolpidem, and eszopiclone), tricyclic antidepressant (TCA) doxepin as well as melatonin agonists, e.g. ramelteon. But the potential of these agents to address sleep problems has been limited due to substantial side effects associated with them like hangover, dependence and tolerance, rebound insomnia, muscular atonia, inhibition of respiratory system, cognitive dysfunctions, and increased anxiety. Recently, orexin neuropeptides have been identified as regulators of transition between wakefulness and sleep and documented to aid an initial transitory effect towards wakefulness by activating cholinergic/monoaminergic neural pathways of the ascending arousal system. This has led to the development of orexin peptides and receptors, as possible therapeutic targets for the treatment of sleep disorders with the advantage of having lesser side effects as compared to conventional treatments. The present review focuses on the orexin peptides and receptors signifying their physiological profile as well as the development of orexin receptor antagonists as novel strategies in sleep medicine. Copyright © 2015 Institute of Pharmacology, Polish Academy of Sciences. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.

  7. Concentration-dependent activation of dopamine receptors differentially modulates GABA release onto orexin neurons.

    Science.gov (United States)

    Linehan, Victoria; Trask, Robert B; Briggs, Chantalle; Rowe, Todd M; Hirasawa, Michiru

    2015-08-01

    Dopamine (DA) and orexin neurons play important roles in reward and food intake. There are anatomical and functional connections between these two cell groups: orexin peptides stimulate DA neurons in the ventral tegmental area and DA inhibits orexin neurons in the hypothalamus. However, the cellular mechanisms underlying the action of DA on orexin neurons remain incompletely understood. Therefore, the effect of DA on inhibitory transmission to orexin neurons was investigated in rat brain slices using the whole-cell patch-clamp technique. We found that DA modulated the frequency of spontaneous and miniature IPSCs (mIPSCs) in a concentration-dependent bidirectional manner. Low (1 μM) and high (100 μM) concentrations of DA decreased and increased IPSC frequency, respectively. These effects did not accompany a change in mIPSC amplitude and persisted in the presence of G-protein signaling inhibitor GDPβS in the pipette, suggesting that DA acts presynaptically. The decrease in mIPSC frequency was mediated by D2 receptors whereas the increase required co-activation of D1 and D2 receptors and subsequent activation of phospholipase C. In summary, our results suggest that DA has complex effects on GABAergic transmission to orexin neurons, involving cooperation of multiple receptor subtypes. The direction of dopaminergic influence on orexin neurons is dependent on the level of DA in the hypothalamus. At low levels DA disinhibits orexin neurons whereas at high levels it facilitates GABA release, which may act as negative feedback to curb the excitatory orexinergic output to DA neurons. These mechanisms may have implications for consummatory and motivated behaviours. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  8. Kinetic properties of 'dual' orexin receptor antagonists at OX1R and OX2R orexin receptors.

    Directory of Open Access Journals (Sweden)

    Gabrielle Elizabeth Callander

    2013-12-01

    Full Text Available Orexin receptor antagonists represent attractive targets for the development of drugs for the treatment of insomnia. Both efficacy and safety are crucial in clinical settings and thorough investigations of pharmacokinetics and pharmacodynamics can predict contributing factors such as duration of action and undesirable effects. To this end, we studied the interactions between various ‘dual’ orexin receptor antagonists and the orexin receptors, OX1R and OX2R, over time using saturation and competition radioligand binding with [3H]-BBAC ((S-N-([1,1'-biphenyl]-2-yl-1-(2-((1-methyl-1H-benzo[d]imidazol-2-ylthioacetylpyrrolidine-2-carboxamide. In addition, the kinetics of these compounds were investigated in cells expressing human, mouse and rat OX1R and OX2R using FLIPR® assays for calcium accumulation. We demonstrate that almorexant reaches equilibrium very slowly at OX2R, whereas SB-649868, suvorexant and filorexant may take hours to reach steady state at both orexin receptors. By contrast, compounds such as BBAC or the selective OX2R antagonist IPSU ((2-((1H-Indol-3-ylmethyl-9-(4-methoxypyrimidin-2-yl-2,9-diazaspiro[5.5]undecan-1-one bind rapidly and reach equilibrium very quickly in both binding and / or functional assays. Overall, the dual antagonists tested here tend to be rather unselective under non-equilibrium conditions and reach equilibrium very slowly. Once equilibrium is reached, each ligand demonstrates a selectivity profile that is however, distinct from the non-equilibrium condition. The slow kinetics of the dual antagonists tested suggest that in vitro receptor occupancy may be longer lasting than would be predicted. This raises questions as to whether pharmacokinetic studies measuring plasma or brain levels of these antagonists are accurate reflections of receptor occupancy in vivo.

  9. Study of plasma orexin-A level in COPD patients during acute exacerbation

    Directory of Open Access Journals (Sweden)

    Magdy M. Omar

    2017-10-01

    Conclusion: Patients with COPD during acute exacerbation had higher values of plasma orexin-A when compared with normal subjects and plasma orexin-A correlated positively with BMI and BFP in these patients.

  10. The effects of diurnal intermittent fasting on the wake-promoting neurotransmitter orexin-A.

    Science.gov (United States)

    Almeneessier, Aljohara S; Alzoghaibi, Mohammed; BaHammam, Abdulrahman A; Ibrahim, Mahmoud G; Olaish, Awad H; Nashwan, Samar Z; BaHammam, Ahmed S

    2018-01-01

    Food restriction has been demonstrated to increase the alertness in different species and to increase the levels of the wake-promoting neurotransmitter orexin. We hypothesized that diurnal intermittent fasting (DIF) increases orexin-A levels during fasting. Therefore, we conducted this study to assess the effects of DIF, during the month of Ramadan, on orexin, while controlling for lifestyle changes that may accompany Ramadan such as sleep duration, bedtime and wake time, energy expenditure, light exposure, and food. Eight young healthy volunteers (mean age, 25.4 ± 3.5 years) reported to the laboratory on three occasions: (1) 4 weeks before Ramadan while performing DIF for 1 week outside the month of Ramadan (fasting outside Ramadan); (2) 1 week before Ramadan (nonfasting baseline) (BL); and (3) during the 2 nd week of Ramadan while performing DIF (Ramadan). Plasma levels of orexin-A were measured using an enzyme immunoassay five times at 22:00, 02:00, 04:00, 06:00, and 11:00. Caloric intake, light exposure, and sleep schedule were maintained during the participants' stays in the laboratory in the three study periods. Orexin-A levels increased in the daytime during fasting and decreased at night compared to BL. The differences in orexin-A levels between DIF and BL were significant at 06:00, 11:00, 22:00, and 02:00. DIF increases orexin-A levels in the plasma during fasting hours. This finding supports findings from animal studies showing that fasting increases alertness.

  11. Ghrelin increases the rewarding value of high-fat diet in an orexin-dependent manner.

    Science.gov (United States)

    Perello, Mario; Sakata, Ichiro; Birnbaum, Shari; Chuang, Jen-Chieh; Osborne-Lawrence, Sherri; Rovinsky, Sherry A; Woloszyn, Jakub; Yanagisawa, Masashi; Lutter, Michael; Zigman, Jeffrey M

    2010-05-01

    Ghrelin is a potent orexigenic hormone that likely impacts eating via several mechanisms. Here, we hypothesized that ghrelin can regulate extra homeostatic, hedonic aspects of eating behavior. In the current study, we assessed the effects of different pharmacological, physiological, and genetic models of increased ghrelin and/or ghrelin-signaling blockade on two classic behavioral tests of reward behavior: conditioned place preference (CPP) and operant conditioning. Using both CPP and operant conditioning, we found that ghrelin enhanced the rewarding value of high-fat diet (HFD) when administered to ad lib-fed mice. Conversely, wild-type mice treated with ghrelin receptor antagonist and ghrelin receptor-null mice both failed to show CPP to HFD normally observed under calorie restriction. Interestingly, neither pharmacologic nor genetic blockade of ghrelin signaling inhibited the body weight homeostasis-related, compensatory hyperphagia associated with chronic calorie restriction. Also, ghrelin's effects on HFD reward were blocked in orexin-deficient mice and wild-type mice treated with an orexin 1 receptor antagonist. Our results demonstrate an obligatory role for ghrelin in certain rewarding aspects of eating that is separate from eating associated with body weight homeostasis and that requires the presence of intact orexin signaling. Copyright 2010 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  12. DQB1*06:02 allele-specific expression varies by allelic dosage, not narcolepsy status

    DEFF Research Database (Denmark)

    Weiner Lachmi, Karin; Lin, Ling; Kornum, Birgitte Rahbek

    2012-01-01

    The association of narcolepsy-cataplexy, a sleep disorder caused by the loss of hypocretin/orexin neurons in the hypothalamus, with DQA1*01:02-DQB1*06:02 is one of the tightest known single-allele human leukocyte antigen (HLA) associations. In this study, we explored genome-wide expression...

  13. Ventral tegmental area orexin 1 receptors promote palatable food intake and oppose postingestive negative feedback.

    Science.gov (United States)

    Terrill, Sarah J; Hyde, Kellie M; Kay, Kristen E; Greene, Hayden E; Maske, Calyn B; Knierim, Amanda E; Davis, Jon F; Williams, Diana L

    2016-09-01

    Hypothalamic orexin neurons project to numerous brain areas, including the ventral tegmental area (VTA), which is involved in motivation and food-seeking behavior. Here we address how exogenously administered orexin-A and endogenous orexin 1 receptor (OX1R) activation in the VTA affects feeding behavior. We hypothesized that orexin-A and OX1R antagonist SB334867 delivered to the VTA, at doses that were subthreshold for effect when injected into the ventricle, would affect intake of palatable foods in multiple test situations. We first used a hedonic feeding model in which satiated rats selectively consume a high-fat diet (HFD). Intra-VTA orexin-A stimulated additional consumption of chow and increased HFD intake in this model. In ad libitum-fed rats given daily 30-min test sessions, intra-VTA orexin-A also increased intake of HFD and 0.1 M sucrose. Further analysis of licking patterns revealed that that VTA orexin-A increased meal size and licking burst size only toward the end of the meal. Consistent with this finding, a subthreshold dose of VTA orexin-A prevented intake suppression induced by gastrointestinal nutrient infusion. Surprisingly, intra-VTA orexin-A had no effect on operant responding for sucrose pellets on a progressive ratio schedule of reinforcement. A role for endogenous VTA OX1R stimulation is supported by our finding that bilateral VTA injection of the selective OX1R antagonist SB334867 suppressed 0.1 M sucrose intake. Together, our data suggest that OX1R activity in the VTA facilitates food intake, potentially by counteracting postingestive negative feedback that would normally suppress feeding later in a meal. Copyright © 2016 the American Physiological Society.

  14. Microinjection of Orexin-A into the Locus Coeruleus Area Induces Morphine Withdrawal Behaviors in Morphine Independent Rats

    Directory of Open Access Journals (Sweden)

    Hosin Azizi

    2012-02-01

    Full Text Available Introduction: Orexin neuropeptide has a role in opioid withdrawal behaviors. Orexin-expressing neurons that are present in the hypothalamic nuclei send dense projections to the Locus Coeruleus (LC. Withdrawal syndrome is temporally associated with hyperactivity of LC neurons. LC neurons do not show withdrawal-induced hyperactivity in brain slices from morphine-dependent rats. Thus, it has been suggested that the increase in LC neuronal activity seen in vivo is mediated by extrinsic factors. Therefore, this study was carried out to find whether LC microinjection of orexin-A can induce withdrawal behaviors. Method: Adult male Wistar rats were used in this study. Intra-LC microinjection of orexin-A or orexin-A vehicle was performed one week after LC cannulation. Thereafter, somatic signs of withdrawal were evaluated during a period of 25 min.Findings: Orexin-A induced several signs of morphine withdrawal. Conclusion: It may be concluded that orexin at LC acts as an extrinsic factor in the expression of morphine withdrawal syndrome.

  15. Discovery, synthesis, selectivity modulation and DMPK characterization of 5-azaspiro[2.4]heptanes as potent orexin receptor antagonists.

    Science.gov (United States)

    Stasi, Luigi Piero; Artusi, Roberto; Bovino, Clara; Buzzi, Benedetta; Canciani, Luca; Caselli, Gianfranco; Colace, Fabrizio; Garofalo, Paolo; Giambuzzi, Silvia; Larger, Patrice; Letari, Ornella; Mandelli, Stefano; Perugini, Lorenzo; Pucci, Sabrina; Salvi, Matteo; Toro, PierLuigi

    2013-05-01

    Starting from a orexin 1 receptor selective antagonist 4,4-disubstituted piperidine series a novel potent 5-azaspiro[2.4]heptane dual orexin 1 and orexin 2 receptor antagonist class has been discovered. SAR and Pharmacokinetic optimization of this series is herein disclosed. Lead compound 15 exhibits potent activity against orexin 1 and orexin 2 receptors along with low cytochrome P450 inhibition potential, good brain penetration and oral bioavailability in rats. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Orexin-corticotropin-releasing factor receptor heteromers in the ventral tegmental area as targets for cocaine.

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I; Ferré, Sergi; McCormick, Peter J

    2015-04-29

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R-OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R-OX1R heteromer. Cocaine binding to the σ1R-CRF1R-OX1R complex promotes a long-term disruption of the orexin-A-CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. Copyright © 2015 the authors 0270-6474/15/356639-15$15.00/0.

  17. Partial Sleep Deprivation Reduces the Efficacy of Orexin-A to Stimulate Physical Activity and Energy Expenditure.

    Science.gov (United States)

    DePorter, Danielle P; Coborn, Jamie E; Teske, Jennifer A

    2017-10-01

    Sufficient sleep is required for weight maintenance. Sleep deprivation due to noise exposure stimulates weight gain by increasing hyperphagia and reducing energy expenditure (EE). Yet the mechanistic basis underlying the weight gain response is unclear. Orexin-A promotes arousal and negative energy balance, and orexin terminals project to the ventrolateral preoptic area (VLPO), which is involved in sleep-to-wake transitions. To determine whether sleep deprivation reduces orexin function in VLPO and to test the hypothesis that sleep deprivation would attenuate the orexin-A-stimulated increase in arousal, physical activity (PA), and EE. Electroencephalogram, electromyogram, distance traveled, and EE were determined in male Sprague-Dawley rats following orexin-A injections into VLPO both before and after acute (12-h) and chronic (8 h/d, 9 d) sleep deprivation by noise exposure. Orexin-A in the VLPO significantly increased arousal, PA, total EE, and PA-related EE and reduced sleep and respiratory quotient before sleep deprivation. In contrast to after acute sleep deprivation in which orexin-A failed to stimulate EE during PA only, orexin-A failed to significantly increase arousal, PA, fat oxidation, total EE, and PA-related EE after chronic sleep deprivation. Sleep deprivation may reduce sensitivity to endogenous stimuli that enhance EE due to PA and thus stimulate weight gain. © 2017 The Obesity Society.

  18. A Neuron-Based Model of Sleep-Wake Cycles

    Science.gov (United States)

    Postnova, Svetlana; Peters, Achim; Braun, Hans

    2008-03-01

    In recent years it was discovered that a neuropeptide orexin/hypocretin plays a main role in sleep processes. This peptide is produced by the neurons in the lateral hypothalamus, which project to almost all brain areas. We present a computational model of sleep-wake cycles, which is based on the Hodgkin-Huxley type neurons and considers reciprocal glutaminergic projections between the lateral hypothalamus and the prefrontal cortex. Orexin is released as a neuromodulator and is required to keep the neurons firing, which corresponds to the wake state. When orexin is depleted the neurons are getting silent as observed in the sleep state. They can be reactivated by the circadian signal from the suprachiasmatic nucleus and/or external stimuli (alarm clock). Orexin projections to the thalamocortical neurons also can account for their transition from tonic firing activity during wakefulness to synchronized burst discharges during sleep.

  19. Aberrant Food Choices after Satiation in Human Orexin-Deficient Narcolepsy Type 1.

    Science.gov (United States)

    van Holst, Ruth Janke; van der Cruijsen, Lisa; van Mierlo, Petra; Lammers, Gert Jan; Cools, Roshan; Overeem, Sebastiaan; Aarts, Esther

    2016-11-01

    Besides influencing vigilance, orexin neurotransmission serves a variety of functions, including reward, motivation, and appetite regulation. As obesity is an important symptom in orexin-deficient narcolepsy, we explored the effects of satiety on food-related choices and spontaneous snack intake in patients with narcolepsy type 1 (n = 24) compared with healthy matched controls (n = 19). In additional analyses, we also included patients with idiopathic hypersomnia (n = 14) to assess sleepiness-related influences. Participants were first trained on a choice task to earn salty and sweet snacks. Next, one of the snack outcomes was devalued by having participants consume it until satiation (i.e., sensory-specific satiety). We then measured the selective reduction in choices for the devalued snack outcome. Finally, we assessed the number of calories that participants consumed spontaneously from ad libitum available snacks afterwards. After satiety, all participants reported reduced hunger and less wanting for the devalued snack. However, while controls and idiopathic hypersomnia patients chose the devalued snack less often in the choice task, patients with narcolepsy still chose the devalued snack as often as before satiety. Subsequently, narcolepsy patients spontaneously consumed almost 4 times more calories during ad libitum snack intake. We show that the manipulation of food-specific satiety has reduced effects on food choices and caloric intake in narcolepsy type 1 patients. These mechanisms may contribute to their obesity, and suggest an important functional role for orexin in human eating behavior. Study registered at Netherlands Trial Register. URL: www.trialregister.nl. Trial ID: NTR4508. © 2016 Associated Professional Sleep Societies, LLC.

  20. Orexin Receptor Antagonism Improves Sleep and Reduces Seizures in Kcna1-null Mice.

    Science.gov (United States)

    Roundtree, Harrison M; Simeone, Timothy A; Johnson, Chaz; Matthews, Stephanie A; Samson, Kaeli K; Simeone, Kristina A

    2016-02-01

    Comorbid sleep disorders occur in approximately one-third of people with epilepsy. Seizures and sleep disorders have an interdependent relationship where the occurrence of one can exacerbate the other. Orexin, a wake-promoting neuropeptide, is associated with sleep disorder symptoms. Here, we tested the hypothesis that orexin dysregulation plays a role in the comorbid sleep disorder symptoms in the Kcna1-null mouse model of temporal lobe epilepsy. Rest-activity was assessed using infrared beam actigraphy. Sleep architecture and seizures were assessed using continuous video-electroencephalography-electromyography recordings in Kcna1-null mice treated with vehicle or the dual orexin receptor antagonist, almorexant (100 mg/kg, intraperitoneally). Orexin levels in the lateral hypothalamus/perifornical region (LH/P) and hypothalamic pathology were assessed with immunohistochemistry and oxygen polarography. Kcna1-null mice have increased latency to rapid eye movement (REM) sleep onset, sleep fragmentation, and number of wake epochs. The numbers of REM and non-REM (NREM) sleep epochs are significantly reduced in Kcna1-null mice. Severe seizures propagate to the wake-promoting LH/P where injury is apparent (indicated by astrogliosis, blood-brain barrier permeability, and impaired mitochondrial function). The number of orexin-positive neurons is increased in the LH/P compared to wild-type LH/P. Treatment with a dual orexin receptor antagonist significantly increases the number and duration of NREM sleep epochs and reduces the latency to REM sleep onset. Further, almorexant treatment reduces the incidence of severe seizures and overall seizure burden. Interestingly, we report a significant positive correlation between latency to REM onset and seizure burden in Kcna1-null mice. Dual orexin receptor antagonists may be an effective sleeping aid in epilepsy, and warrants further study on their somnogenic and ant-seizure effects in other epilepsy models. © 2016 Associated

  1. Orexins control intestinal glucose transport by distinct neuronal, endocrine, and direct epithelial pathways.

    Science.gov (United States)

    Ducroc, Robert; Voisin, Thierry; El Firar, Aadil; Laburthe, Marc

    2007-10-01

    Orexins are neuropeptides involved in energy homeostasis. We investigated the effect of orexin A (OxA) and orexin B (OxB) on intestinal glucose transport in the rat. Injection of orexins led to a decrease in the blood glucose level in oral glucose tolerance tests (OGTTs). Effects of orexins on glucose entry were analyzed in Ussing chambers using the Na(+)-dependent increase in short-circuit current (Isc) to quantify jejunal glucose transport. The rapid and marked increase in Isc induced by luminal glucose was inhibited by 10 nmol/l OxA or OxB (53 and 59%, respectively). Response curves to OxA and OxB were not significantly different with half-maximal inhibitory concentrations at 0.9 and 0.4 nmol/l, respectively. On the one hand, OxA-induced inhibition of Isc was reduced by the neuronal blocker tetrodotoxin (TTX) and by a cholecystokinin (CCK) 2R antagonist, indicating involvement of neuronal and endocrine CCK-releasing cells. The OX(1)R antagonist SB334867 had no effect on OxA-induced inhibition, which is likely to occur via a neuronal and/or endocrine OX(2)R. On the other hand, SB334867 induced a significant right shift of the concentration-effect curve for OxB. This OxB-preferring OX(1)R pathway was not sensitive to TTX or to CCKR antagonists, suggesting that OxB may act directly on enterocytic OX(1)R. These distinct effects of OxA and OxB are consistent with the expression of OX(1)R and OX(2)R mRNA in the epithelial and nonepithelial tissues, respectively. Our data delineate a new function for orexins as inhibitors of intestinal glucose absorption and provide a new basis for orexin-induced short-term control of energy homeostasis.

  2. Hypocretin (orexin) loss in Alzheimer's disease.

    NARCIS (Netherlands)

    Fronczek, R.; Geest, S. de; Frolich, M.; Overeem, S.; Roelandse, F.W.; Lammers, G.J.; Swaab, D.F.

    2012-01-01

    Sleep disturbances in Alzheimer's disease (AD) patients are associated with the severity of dementia and are often the primary reason for institutionalization. These sleep problems partly resemble core symptoms of narcolepsy, a sleep disorder caused by a general loss of the neurotransmitter

  3. Hypocretin (orexin) loss in Alzheimer's disease

    NARCIS (Netherlands)

    Fronczek, Rolf; van Geest, Sarita; Frölich, Marijke; Overeem, Sebastiaan; Roelandse, Freek W. C.; Lammers, Gert Jan; Swaab, Dick F.

    2012-01-01

    Sleep disturbances in Alzheimer's disease (AD) patients are associated with the severity of dementia and are often the primary reason for institutionalization. These sleep problems partly resemble core symptoms of narcolepsy, a sleep disorder caused by a general loss of the neurotransmitter

  4. Interaction Between Orexin-A and Sleep Quality in Females in Extreme Weight Conditions.

    Science.gov (United States)

    Sauchelli, Sarah; Jiménez-Murcia, Susana; Fernández-García, Jose C; Garrido-Sánchez, Lourdes; Tinahones, Francisco J; Casanueva, Felipe F; Baños, Rosa M; Botella, Cristina; Crujeiras, Ana B; de la Torre, Rafael; Fernández-Real, Jose M; Frühbeck, Gema; Granero, Roser; Ortega, Francisco J; Rodríguez, Amaia; Zipfel, Stephan; Giel, Katrin E; Menchón, Jose M; Fernández-Aranda, Fernando

    2016-11-01

    The current study examined the relationship between plasma orexin-A and sleep in obesity. Concentrations of orexin-A and sleep were evaluated in 26 obese, 40 morbid obese and 32 healthy-weight participants. The sleep monitor Actiwatch AW7 and the Pittsburgh Sleep Quality Index were used to evaluate sleep. The Symptom Checklist-90-Revised was administered to assess symptoms of psychopathology. A higher weight status was associated with elevated orexin-A levels (p = .050), greater depression, anxiety and somatization symptoms (all: p quality (p quality, which in turn was associated with elevated body mass index. Our data confirm an interaction between elevated plasma orexin-A concentrations and poor sleep that contributes to fluctuations in body mass index. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2016 John Wiley & Sons, Ltd and Eating Disorders Association.

  5. Electrophysiological Properties of Melanin-Concentrating Hormone and Orexin Neurons in Adolescent Rats

    Directory of Open Access Journals (Sweden)

    Victoria Linehan

    2018-03-01

    Full Text Available Orexin and melanin-concentrating hormone (MCH neurons have complementary roles in various physiological functions including energy balance and the sleep/wake cycle. in vitro electrophysiological studies investigating these cells typically use post-weaning rodents, corresponding to adolescence. However, it is unclear whether these neurons are functionally mature at this period and whether these studies can be generalized to adult cells. Therefore, we examined the electrophysiological properties of orexin and MCH neurons in brain slices from post-weaning rats and found that MCH neurons undergo an age-dependent reduction in excitability, but not orexin neurons. Specifically, MCH neurons displayed an age-dependent hyperpolarization of the resting membrane potential (RMP, depolarizing shift of the threshold, and decrease in excitatory transmission, which reach the adult level by 7 weeks of age. In contrast, basic properties of orexin neurons were stable from 4 weeks to 14 weeks of age. Furthermore, a robust short-term facilitation of excitatory synapses was found in MCH neurons, which showed age-dependent changes during the post-weaning period. On the other hand, a strong short-term depression was observed in orexin neurons, which was similar throughout the same period. These differences in synaptic responses and age dependence likely differentially affect the network activity within the lateral hypothalamus where these cells co-exist. In summary, our study suggests that orexin neurons are electrophysiologically mature before adolescence whereas MCH neurons continue to develop until late adolescence. These changes in MCH neurons may contribute to growth spurts or consolidation of adult sleep patterns associated with adolescence. Furthermore, these results highlight the importance of considering the age of animals in studies involving MCH neurons.

  6. Intravenous immunoglobulin treatment and screening for hypocretin neuron-specific autoantibodies in recent onset childhood narcolepsy with cataplexy

    DEFF Research Database (Denmark)

    Knudsen, S; Mikkelsen, J D; Bang, B

    2010-01-01

    Narcolepsy with cataplexy (NC) is caused by substantial loss of hypocretin neurons. NC patients carry the HLA-DQB1*0602 allele suggesting that hypocretin neuron loss is due to an autoimmune attack. We tested intravenous immunoglobulin (IVIG) treatment in early onset NC....

  7. Association of Circulating Orexin-A Level With Metabolic Risk Factors in North Indian Pre Menopausal Women.

    Science.gov (United States)

    Gupta, Vani; Mishra, Sameeksha; Kumar, Sandeep; Mishra, Supriya

    2015-01-01

    The present study was designed to investigate the association between circulating Orexin-A level with metabolic risk factors in North Indian adult women. 342 women were enrolled for the case-control study, 172 women were with metabolic syndrome (mets) and 170 healthy control women were without metabolic syndrome, (womets) according to (NCEP ATP III criteria). Circulating Orexin-A level was determined by enzyme-linked immunosorbent assay. Observations indicated low levels of orexin-A (26.06 ± 6.09 ng/ml) in women with mets and other metabolic risk factors compared to women without metabolic syndrome (36.50 ± 10.42 ng/ml). Further, in women with metabolic syndrome, circulating Orexin A was significantly associated with waist circumference, triglyceride (negative correlation) and hyperdensity lipoprotein (positive correlation). Our study shows that circulating Orexin A was found to be significantly associated with hyperlipidemia, obesity and obesity-related disorders in North Indian premenopausal women.

  8. Human hypocretin and melanin-concentrating hormone levels are linked to emotion and social interaction.

    Science.gov (United States)

    Blouin, Ashley M; Fried, Itzhak; Wilson, Charles L; Staba, Richard J; Behnke, Eric J; Lam, Hoa A; Maidment, Nigel T; Karlsson, Karl Æ; Lapierre, Jennifer L; Siegel, Jerome M

    2013-01-01

    The neurochemical changes underlying human emotions and social behaviour are largely unknown. Here we report on the changes in the levels of two hypothalamic neuropeptides, hypocretin-1 and melanin-concentrating hormone, measured in the human amygdala. We show that hypocretin-1 levels are maximal during positive emotion, social interaction and anger, behaviours that induce cataplexy in human narcoleptics. In contrast, melanin-concentrating hormone levels are minimal during social interaction, but are increased after eating. Both peptides are at minimal levels during periods of postoperative pain despite high levels of arousal. Melanin-concentrating hormone levels increase at sleep onset, consistent with a role in sleep induction, whereas hypocretin-1 levels increase at wake onset, consistent with a role in wake induction. Levels of these two peptides in humans are not simply linked to arousal, but rather to specific emotions and state transitions. Other arousal systems may be similarly emotionally specialized.

  9. Unilateral Hypothalamus Inactivation Prevents PTZ Kindling Development through Hippocampal Orexin Receptor 1 Modulation

    Directory of Open Access Journals (Sweden)

    Nasibe Akbari

    2014-02-01

    Full Text Available Introduction: Epilepsy is a neural disorder in which abnormal plastic changes during short and long term periods lead to increased excitability of brain tissue. Kindling is an animal model of epileptogenesis which results in changes of synaptic plasticity due to repetitive electrical or chemical sub-convulsive stimulations of the brain. Lateral hypothalamus, as the main niche of orexin neurons with extensive projections, is involved in sleep and wakefulness and so it affects the excitability of the brain. Therefore, we investigated whether lateral hypothalamic area (LHA inactivation or orexin-A receptor blocking could change convulsive behavior of acute and kindled PTZ treated animals and if glutamate has a role in this regard.  Methods: Kindling was induced by 40 mg/kg PTZ, every 48 hours up to 13 injections to each rat. Three consecutive stages 4 or 5 of convulsive behavior were used to ensure kindling. Lidocaine was injected stereotaxically to inactivate LHA, unilaterally. SB334867 used for orexin receptor 1 (OX1R blocking administered in CSF.  Results: We demonstrated that LHA inactivation prevented PTZ kindling and hence, excitability evolution. Hippocampal glutamate content was decreased due to LHA inactivation, OX1R antagonist infusion, lidocaine injection and kindled groups. In accordance, OX1R antagonist (SB334867 and lidocaine injection decreased PTZ single dose induced convulsive behavior. While orexin-A i.c.v. infusion increased hippocampal glutamate content, it did not change PTZ induced convulsive intensity.  Discussion: It is concluded that LHA inactivation prevented kindling development probably through orexin receptor antagonism. CSF orexin probably acts as an inhibitory step on convulsive intensity through another unknown process.

  10. OREXIN 1 AND 2 RECEPTOR INVOLVEMENT IN CO2-INDUCED PANIC-ASSOCIATED BEHAVIOR AND AUTONOMIC RESPONSES

    Science.gov (United States)

    Johnson, Philip L.; Federici, Lauren M.; Fitz, Stephanie D.; Renger, John J.; Shireman, Brock; Winrow, Christopher J.; Bonaventure, Pascal; Shekhar, Anantha

    2016-01-01

    Background The neuropeptides orexin A and B play a role in reward and feeding and are critical for arousal. However, it was not initially appreciated that most prepro-orexin synthesizing neurons are almost exclusively concentrated in the perifornical hypothalamus, which when stimulated elicits panic-associated behavior and cardiovascular responses in rodents and self-reported “panic attacks” and “fear of dying” in humans. More recent studies support a role for the orexin system in coordinating an integrative stress response. For instance, orexin neurons are highly reactive to anxiogenic stimuli, are hyperactive in anxiety pathology, and have strong projections to anxiety and panic-associated circuitry. Although the two cognate orexin receptors are colocalized in many brain regions, the orexin 2 receptor (OX2R) most robustly maps to the histaminergic wake-promoting region, while the orexin 1 receptor (OX1R) distribution is more exclusive and dense in anxiety and panic circuitry regions, such as the locus ceruleus. Overall, this suggests that OX1Rs play a critical role in mobilizing anxiety and panic responses. Methods Here, we used a CO2-panic provocation model to screen a dual OX1/2R antagonist (DORA-12) to globally inhibit orexin activity, then a highly selective OX1R antagonist (SORA1, Compound 56) or OX2R antagonist (SORA2, JnJ10397049) to assess OX1R and OX2R involvement. Results All compounds except the SORA2 attenuated CO2-induced anxiety-like behaviors, and all but the SORA2 and DORA attenuated CO2-induced cardiovascular responses. Conclusions SORA1s may represent a novel method of treating anxiety disorders, with no apparent sedative effects that were present with a benzodiazepine. PMID:26332431

  11. Discovery of MK-3697: a selective orexin 2 receptor antagonist (2-SORA) for the treatment of insomnia.

    Science.gov (United States)

    Roecker, Anthony J; Reger, Thomas S; Mattern, M Christa; Mercer, Swati P; Bergman, Jeffrey M; Schreier, John D; Cube, Rowena V; Cox, Christopher D; Li, Dansu; Lemaire, Wei; Bruno, Joseph G; Harrell, C Meacham; Garson, Susan L; Gotter, Anthony L; Fox, Steven V; Stevens, Joanne; Tannenbaum, Pamela L; Prueksaritanont, Thomayant; Cabalu, Tamara D; Cui, Donghui; Stellabott, Joyce; Hartman, George D; Young, Steven D; Winrow, Christopher J; Renger, John J; Coleman, Paul J

    2014-10-15

    Orexin receptor antagonists have demonstrated clinical utility for the treatment of insomnia. The majority of clinical efforts to date have focused on the development of dual orexin receptor antagonists (DORAs), small molecules that antagonize both the orexin 1 and orexin 2 receptors. Our group has recently disclosed medicinal chemistry efforts to identify highly potent, orally bioavailable selective orexin 2 receptor antagonists (2-SORAs) that possess acceptable profiles for clinical development. Herein we report additional SAR studies within the 'triaryl' amide 2-SORA series focused on improvements in compound stability in acidic media and time-dependent inhibition of CYP3A4. These studies resulted in the discovery of 2,5-disubstituted isonicotinamide 2-SORAs such as compound 24 that demonstrated improved stability and TDI profiles as well as excellent sleep efficacy across species. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Orexinergic innervation of urocortin1 and cocaine and amphetamine regulated transcript neurons in the midbrain centrally projecting Edinger-Westphal nucleus.

    NARCIS (Netherlands)

    Emmerzaal, T.L.; Doelen, R.H.A. van der; Roubos, E.W.; Kozicz, L.T.

    2013-01-01

    Orexin is a neuropeptide that has been implicated in several processes, such as induction of appetite, arousal and alertness and sleep/wake regulation. Multiple lines of evidence also suggest that orexin is involved in the stress response. When orexin is administered intracerebroventricular it

  13. Reduced CSF hypocretin-1 levels are associated with cluster headache

    DEFF Research Database (Denmark)

    Barloese, Mads; Jennum, Poul; Lund, Nunu

    2015-01-01

    BACKGROUND: Cluster headache (CH) is a debilitating disorder characterized by unilateral, severe pain attacks with accompanying autonomic symptoms, often waking the patient from sleep. As it exhibits strong chronobiological traits and genetic studies have suggested a link with the hypocretin (HCR...

  14. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells

    OpenAIRE

    Merkle, Florian T.; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F.

    2015-01-01

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin...

  15. Contribution of Orexin to the Neurogenic Hypertension in BPH/2J Mice.

    Science.gov (United States)

    Jackson, Kristy L; Dampney, Bruno W; Moretti, John-Luis; Stevenson, Emily R; Davern, Pamela J; Carrive, Pascal; Head, Geoffrey A

    2016-05-01

    BPH/2J mice are a genetic model of hypertension associated with an overactive sympathetic nervous system. Orexin is a neuropeptide which influences sympathetic activity and blood pressure. Orexin precursor mRNA expression is greater in hypothalamic tissue of BPH/2J compared with normotensive BPN/3J mice. To determine whether enhanced orexinergic signaling contributes to the hypertension, BPH/2J and BPN/3J mice were preimplanted with radiotelemetry probes to compare blood pressure 1 hour before and 5 hours after administration of almorexant, an orexin receptor antagonist. Mid frequency mean arterial pressure power and the depressor response to ganglion blockade were also used as indicators of sympathetic nervous system activity. Administration of almorexant at 100 (IP) and 300 mg/kg (oral) in BPH/2J mice during the dark-active period (2 hours after lights off) markedly reduced blood pressure (-16.1 ± 1.6 and -11.0 ± 1.1 mm Hg, respectively;PBPH/2J mice (PBPH/2J mice have 29% more orexin neurons than BPN/3J mice which are preferentially located in the lateral hypothalamus. The results suggest that enhanced orexinergic signaling contributes to sympathetic overactivity and hypertension during the dark period in BPH/2J mice. © 2016 American Heart Association, Inc.

  16. A Major Role for Perifornical Orexin Neurons in the Control of Glucose Metabolism in Rats

    NARCIS (Netherlands)

    Yi, Chun-Xia; Serlie, Mireille J.; Ackermans, Mariette T.; Foppen, Ewout; Buijs, Ruud M.; Sauerwein, Hans P.; Fliers, Eric; Kalsbeek, Andries

    2009-01-01

    OBJECTIVE-The hypothalamic neuropeptide orexin influences (feeding) behavior as well as energy metabolism. Administration of exogenous orexin-A into the brain has been shown to increase both food intake and blood glucose levels. In the present study, we investigated the role of endogenous

  17. Circulating Levels of Orexin-A, Nesfatin-1, Agouti-Related Peptide, and Neuropeptide Y in Patients with Hyperthyroidism.

    Science.gov (United States)

    Tohma, Yusuf; Akturk, Mujde; Altinova, Alev; Yassibas, Emine; Cerit, Ethem Turgay; Gulbahar, Ozlem; Arslan, Metin; Sanlier, Nevin; Toruner, Fusun

    2015-07-01

    There is insufficient information about the appetite-related hormones orexin-A, nesfatin-1, agouti-related peptide (AgRP), and neuropeptide Y (NPY) in hyperthyroidism. The aim of the present study was to investigate the effects of hyperthyroidism on the basal metabolic rate (BMR) and energy intake, orexin-A, nesfatin-1, AgRP, NPY, and leptin levels in the circulation, and their relationship with each other and on appetite. In this prospective study, patients were evaluated in hyperthyroid and euthyroid states in comparison with healthy subjects. Twenty-one patients with overt hyperthyroidism and 33 healthy controls were included in the study. Daily energy intake in the hyperthyroid state was found to be higher than that in the euthyroid state patient group (p=0.039). BMR was higher in hyperthyroid patients than the control group (p=0.018). Orexin-A was lower and nesfatin-1 was higher in hyperthyroid patients compared to the controls (phyperthyroid and euthyroid states and controls (p>0.05). Orexin-A correlated negatively with nesfatin-1 (p=0.042), BMR (p=0.013), free triiodothyronine (fT3; phyperthyroidism" was the main factor affecting orexin-A (phyperthyroidism, the orexin-A and nesfatin-1 levels are markedly affected by hyperthyroidism.

  18. Altered circadian rhythm of melatonin concentrations in hypocretin-deficient men.

    NARCIS (Netherlands)

    Donjacour, C.E.; Kalsbeek, A.; Overeem, S.; Lammers, G.J.; Pevet, P.; Bothorel, B.; Pijl, H.; Aziz, N.A.

    2012-01-01

    Hypocretin deficiency causes narcolepsy. It is unknown whether melatonin secretion is affected in this sleep disorder. Therefore, in both narcolepsy patients and matched controls, the authors measured plasma melatonin levels hourly for 24 h before and after 5 days of sodium oxybate (SXB)

  19. Origin of secretin receptor precedes the advent of tetrapoda: evidence on the separated origins of secretin and orexin.

    Directory of Open Access Journals (Sweden)

    Janice K V Tam

    Full Text Available At present, secretin and its receptor have only been identified in mammals, and the origin of this ligand-receptor pair in early vertebrates is unclear. In addition, the elusive similarities of secretin and orexin in terms of both structures and functions suggest a common ancestral origin early in the vertebrate lineage. In this article, with the cloning and functional characterization of secretin receptors from lungfish and X. laevis as well as frog (X. laevis and Rana rugulosa secretins, we provide evidence that the secretin ligand-receptor pair has already diverged and become highly specific by the emergence of tetrapods. The secretin receptor-like sequence cloned from lungfish indicates that the secretin receptor was descended from a VPAC-like receptor prior the advent of sarcopterygians. To clarify the controversial relationship of secretin and orexin, orexin type-2 receptor was cloned from X. laevis. We demonstrated that, in frog, secretin and orexin could activate their mutual receptors, indicating their coordinated complementary role in mediating physiological processes in non-mammalian vertebrates. However, among the peptides in the secretin/glucagon superfamily, secretin was found to be the only peptide that could activate the orexin receptor. We therefore hypothesize that secretin and orexin are of different ancestral origins early in the vertebrate lineage.

  20. Plasma orexin-A and ghrelin levels in patients with chronic obstructive pulmonary disease: Interaction with nutritional status and body composition.

    Science.gov (United States)

    Akbulut, Gamze; Gezmen-Karadağ, Makbule; Ertaş, Yasemın; Uyar, Banugül Barut; Yassibaş, Emıne; Türközü, Duygu; Celebı, Ferıde; Paşaoğlu, Ozge Tuğçe; Toka, Onur; Yildiran, Hılal; Sanlier, Nevın; Köktürk, Nurdan

    2014-06-01

    Orexin-A and ghrelin are two important polypeptides that stimulate food intake, however, there is a lack of sufficient information concerning their plasma levels in patients with chronic obstructive pulmonary disease (COPD). The aim of the present study was to investigate the association between plasma orexin-A and ghrelin levels with food consumption and body composition in patients with stable phase COPD. In total, 40 patients (age, 44-80 years; male, 31; female 9) who were in the stable phase of COPD were included in the study. Blood samples for plasma orexin-A and ghrelin analysis were collected after 8-12 h of fasting; certain anthropometric measurements were obtained and a 24-h dietary recall was recorded. The mean plasma orexin-A levels in the male and female patients were 1.3±0.37 and 1.4±0.13 ng/ml, respectively, while the mean plasma ghrelin levels were 25.9±7.31 and 27.3±8.54 ng/ml, respectively. No significant correlation was observed between the body mass index and plasma orexin-A and ghrelin levels or between the plasma ghrelin levels and dietary nutrient intake (P>0.05). The plasma orexin-A levels were demonstrated to be higher in patients with a higher dietary total fibre intake (r=0.303, P=0.022). A similar correlation was observed between plasma orexin-A levels and dietary intake of soluble (r=0.033, P=0.029) and insoluble (r=0.335, P=0.024) fibre, as well as between the daily consumption of calcium and the levels of plasma orexin-A (r=0.065, P=0.046). Therefore, the results of the present study indicated that a positive correlation existed between dietary nutrient intake and plasma orexin-A levels in patients with COPD.

  1. Control of hypothalamic orexin neurons by acid and CO2

    Czech Academy of Sciences Publication Activity Database

    Williams, R.H.; Jensen, L.T.; Verkhratsky, Alexei; Fugger, L.; Burdakov, D.

    2007-01-01

    Roč. 104, č. 25 (2007), s. 10685-10690 ISSN 0027-8424 Institutional research plan: CEZ:AV0Z50390512 Keywords : Arousal * Hypocretin * Hypothalamus Subject RIV: FH - Neurology Impact factor: 9.598, year: 2007

  2. Attention impairments and ADHD symptoms in adult narcoleptic patients with and without hypocretin deficiency.

    Science.gov (United States)

    Filardi, Marco; Pizza, Fabio; Tonetti, Lorenzo; Antelmi, Elena; Natale, Vincenzo; Plazzi, Giuseppe

    2017-01-01

    Attentional complaints are common in narcolepsy patients and can overlap with daytime sleepiness features. Few studies attempted to characterize attentional domains in narcolepsy leading to controversial results. We aimed to assess the impact of hypocretin deficiency on attentional functioning by comparing performances on the attention network test (ANT) of narcoleptic patients with hypocretin deficiency (narcolepsy type 1-NT1) versus patients without hypocretin deficiency (narcolepsy type 2-NT2) and healthy controls. We also addressed frequency and severity of psychopathological symptoms and their influence on performances on ANT. Twenty-one NT1 patients, fifteen NT2 patients and twenty-two healthy controls underwent the ANT, which allows assessing three separate attentional processes (alerting, orienting and executive control), and a psychometric assessment including questionnaires on attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, anxiety and depression symptoms. NT1 and NT2 patients presented with slower reaction times compared to controls. NT1 patients exhibited an impairment of alerting network relative to NT2 and healthy controls, while orienting and executive control networks efficiency were comparable between groups. NT1 and NT2 displayed higher severity of ADHD inattentive domain than controls, NT1 patients also displayed higher severity of ADHD hyperactive domain and depressive symptoms. In NT1, ADHD and depressive symptoms were positively correlated. Despite a shared slowing of reaction times in both NT1 and NT2, a selective impairment of alerting network was present only in hypocretin deficient patients. Clinicians should carefully consider attentional deficits and psychopathological symptoms, including ADHD symptoms, in the clinical assessment and management of patients with narcolepsy.

  3. Attention impairments and ADHD symptoms in adult narcoleptic patients with and without hypocretin deficiency.

    Directory of Open Access Journals (Sweden)

    Marco Filardi

    Full Text Available Attentional complaints are common in narcolepsy patients and can overlap with daytime sleepiness features. Few studies attempted to characterize attentional domains in narcolepsy leading to controversial results. We aimed to assess the impact of hypocretin deficiency on attentional functioning by comparing performances on the attention network test (ANT of narcoleptic patients with hypocretin deficiency (narcolepsy type 1-NT1 versus patients without hypocretin deficiency (narcolepsy type 2-NT2 and healthy controls. We also addressed frequency and severity of psychopathological symptoms and their influence on performances on ANT.Twenty-one NT1 patients, fifteen NT2 patients and twenty-two healthy controls underwent the ANT, which allows assessing three separate attentional processes (alerting, orienting and executive control, and a psychometric assessment including questionnaires on attention-deficit hyperactivity disorder (ADHD, obsessive-compulsive disorder, anxiety and depression symptoms.NT1 and NT2 patients presented with slower reaction times compared to controls. NT1 patients exhibited an impairment of alerting network relative to NT2 and healthy controls, while orienting and executive control networks efficiency were comparable between groups. NT1 and NT2 displayed higher severity of ADHD inattentive domain than controls, NT1 patients also displayed higher severity of ADHD hyperactive domain and depressive symptoms. In NT1, ADHD and depressive symptoms were positively correlated.Despite a shared slowing of reaction times in both NT1 and NT2, a selective impairment of alerting network was present only in hypocretin deficient patients. Clinicians should carefully consider attentional deficits and psychopathological symptoms, including ADHD symptoms, in the clinical assessment and management of patients with narcolepsy.

  4. Opioid systems in the lateral hypothalamus regulate feeding behavior through orexin and GABA neurons.

    Science.gov (United States)

    Ardianto, C; Yonemochi, N; Yamamoto, S; Yang, L; Takenoya, F; Shioda, S; Nagase, H; Ikeda, H; Kamei, J

    2016-04-21

    The hypothalamus controls feeding behavior. Since central opioid systems may regulate feeding behavior, we examined the role of μ-, δ- and κ-opioid receptors in the lateral hypothalamus (LH), the hunger center, in feeding behavior of mice. Non-selective (naloxone; 3 mg/kg, s.c.) and selective μ- (β-funaltrexamine, β-FNA; 10 mg/kg, s.c.), δ- (naltrindole; 3 mg/kg, s.c.) and κ- (norbinaltorphimine, norBNI; 20 mg/kg, s.c.) opioid receptor antagonists significantly decreased food intake in food-deprived mice. The injection of naloxone (20 μg/side) into the LH significantly decreased food intake whereas the injection of naloxone (20 μg/side) outside of the LH did not affect food intake. The injection of β-FNA (2 μg/side), naltrindole (1 μg/side) or norBNI (2 μg/side) into the LH significantly decreased food intake. Furthermore, all these antagonists significantly decreased the mRNA level of preproorexin, but not those of other hypothalamic neuropeptides. In addition, the injection of the GABAA receptor agonist muscimol (5 μg/side) into the LH significantly decreased food intake, and this effect was abolished by the GABAA receptor antagonist bicuculline (50 μg/side). Muscimol (1mg/kg, i.p.) decreased the mRNA level of preproorexin in the hypothalamus. Naloxone (3mg/kg, s.c.) significantly increased the GABA level in the LH and both bicuculline and the GABA release inhibitor 3-mercaptopropionic acid (3-MP, 5 μg/side) attenuated the inhibitory effect of naloxone on feeding behavior. 3-MP also attenuated the effects of β-FNA and norBNI, but not that of naltrindole. These results show that opioid systems in the LH regulate feeding behavior through orexin neurons. Moreover, μ- and κ-, but not δ-, opioid receptor antagonists inhibit feeding behavior by activating GABA neurons in the LH. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Wake-promoting effects of ONO-4127Na, a prostaglandin DP1 receptor antagonist, in hypocretin/orexin deficient narcoleptic mice.

    Science.gov (United States)

    Sagawa, Yohei; Sato, Masatoshi; Sakai, Noriaki; Chikahisa, Sachiko; Chiba, Shintaro; Maruyama, Takashi; Yamamoto, Junki; Nishino, Seiji

    2016-11-01

    Prostaglandin (PG)D2 is an endogenous sleep substance, and a series of animal studies reported that PGD2 or PGD2 receptor (DP1) agonists promote sleep, while DP1 antagonists promote wakefulness. This suggests the possibility of use of PG DP1 antagonists as wake-promoting compounds. We therefore evaluated the wake-promoting effects of ONO-4127Na, a DP1 antagonist, in a mouse model of narcolepsy (i.e., orexin/ataxin-3 transgenic mice) and compared those to effects of modafinil. ONO-4127Na perfused in the basal forebrain (BF) area potently promoted wakefulness in both wild type and narcoleptic mice, and the wake-promoting effects of ONO-4127Na at 2.93 × 10(-4) M roughly corresponded to those of modafinil at 100 mg/kg (p.o.). The wake promoting effects of ONO-4127Na was observed both during light and dark periods, and much larger effects were seen during the light period when mice slept most of the time. ONO-4127Na, when perfused in the hypothalamic area, had no effects on sleep. We further demonstrated that wake-promoting effects of ONO-4127Na were abolished in DP1 KO mice, confirming that the wake-promoting effect of ONO-4127Na is mediated by blockade of the PG DP1 receptors located in the BF area. ONO-4127Na reduced DREM, an EEG/EMG assessment of behavioral cataplexy in narcoleptic mice, suggesting that ONO-4127Na is likely to have anticataplectic effects. DP1 antagonists may be a new class of compounds for the treatment of narcolepsy-cataplexy, and further studies are warranted. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Control of sleep-to-wake transitions via fast amino acid and slow neuropeptide transmission

    International Nuclear Information System (INIS)

    Mosqueiro, Thiago; Lecea, Luis de; Huerta, Ramon

    2014-01-01

    The locus coeruleus (LC) modulates cortical, subcortical, cerebellar, brainstem and spinal cord circuits and it expresses receptors for neuromodulators that operate on a time scale of several seconds. Evidence from anatomical, electrophysiological and optogenetic experiments has shown that LC neurons receive input from a group of neurons called hypocretin neurons that release a neuropeptide called hypocretin. It is less well known how these two groups of neurons can be coregulated using GABAergic (GABA standing for gamma aminobutyric acid) neurons. As the time scale for GABA A inhibition is several orders of magnitude faster than that for the hypocretin neuropeptide effect, we investigate the limits of circuit activity regulation using a realistic model of neurons. Our investigation shows that GABA A inhibition is insufficient to control the activity levels of the LCs. Although slower forms of GABA A can in principle work, there is not much plausibility due to the low probability of the presence of slow GABA A and lack of robust stability at the maximum firing frequencies. The best possible control mechanism predicted by our modeling analysis is the presence of inhibitory neuropeptides, which exert effects on a similar time scale to the hypocretin/orexin. Although the nature of these inhibitory neuropeptides has not been identified yet, it provides the most efficient mechanism in the modeling analysis. Finally, we present a reduced mean-field model that perfectly captures the dynamics and the phenomena generated by this circuit. This investigation shows that brain communication involving multiple time scales can be better controlled by employing orthogonal mechanisms of neural transmission to decrease interference between cognitive processes and hypothalamic functions. (paper)

  7. Hypocretin-1 deficiency in a girl with ROHHAD syndrome.

    Science.gov (United States)

    Dhondt, Karlien; Verloo, Patrick; Verhelst, Hélène; Van Coster, Rudy; Overeem, Sebastiaan

    2013-09-01

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare and complex pediatric syndrome, essentially caused by dysfunction of 3 vital systems regulating endocrine, respiratory, and autonomic nervous system functioning. The clinical spectrum of ROHHAD is broad, but sleep/wake disorders have received relatively little attention so far, although the central hypothalamic dysfunction would make the occurrence of sleep symptoms likely. In this case report, we expand the phenotype of ROHHAD with a number of striking sleep symptoms that together can be classified as a secondary form of narcolepsy. We present a 7-year-old girl with ROHHAD who displayed the classic features of narcolepsy with cataplexy: excessive daytime sleepiness with daytime naps, visual hallucinations, and partial cataplexy reflected in intermittent loss of facial muscle tone. Nocturnal polysomnography revealed sleep fragmentation and a sleep-onset REM period characteristic for narcolepsy. The diagnosis was confirmed by showing an absence of hypocretin-1 in the cerebrospinal fluid. We discuss potential pathophysiological implications as well as symptomatic treatment options.

  8. Orexin A-induced anxiety-like behavior is mediated through GABA-ergic, α- and β-adrenergic neurotransmissions in mice.

    Science.gov (United States)

    Palotai, Miklós; Telegdy, Gyula; Jászberényi, Miklós

    2014-07-01

    Orexins are hypothalamic neuropeptides, which are involved in several physiological functions of the central nervous system, including anxiety and stress. Several studies provide biochemical and behavioral evidence about the anxiogenic action of orexin A. However, we have little evidence about the underlying neuromodulation. Therefore, the aim of the present study was to investigate the involvement of neurotransmitters in the orexin A-induced anxiety-like behavior in elevated plus maze (EPM) test in mice. Accordingly, mice were pretreated with a non-selective muscarinic cholinergic antagonist, atropine; a γ-aminobutyric acid subunit A (GABA-A) receptor antagonist, bicuculline; a D2, D3, D4 dopamine receptor antagonist, haloperidol; a non-specific nitric oxide synthase (NOS) inhibitor, nitro-l-arginine; a nonselective α-adrenergic receptor antagonist, phenoxybenzamine and a β-adrenergic receptor antagonist, propranolol 30min prior to the intracerebroventricular administration of orexin A. The EPM test started 30min after the i.c.v. injection of the neuropeptide. Our results show that orexin A decreases significantly the time spent in the arms (open/open+closed) and this action is reversed by bicuculline, phenoxybenzamine and propranolol, but not by atropine, haloperidol or nitro-l-arginine. Our results provide evidence for the first time that the orexin A-induced anxiety-like behavior is mediated through GABA-A-ergic, α- and β-adrenergic neurotransmissions, whereas muscarinic cholinergic, dopaminergic and nitrergic neurotransmissions may not be implicated. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Functional inactivation of hypocretin 1 receptors in the medial prefrontal cortex affects the pyramidal neuron activity and gamma oscillations: An in vivo multiple-channel single-unit recording study.

    Science.gov (United States)

    He, C; Chen, Q-H; Ye, J-N; Li, C; Yang, L; Zhang, J; Xia, J-X; Hu, Z-A

    2015-06-25

    The hypocretin signaling is thought to play a critical role in maintaining wakefulness via stimulating the subcortical arousal pathways. Although the cortical areas, including the medial prefrontal cortex (mPFC), receive dense hypocretinergic fibers and express its receptors, it remains unclear whether the hypocretins can directly regulate the neural activity of the mPFC in vivo. In the present study, using multiple-channel single-unit recording study, we found that infusion of the SB-334867, a blocker for the Hcrtr1, beside the recording sites within the mPFC substantially exerted an inhibitory effect on the putative pyramidal neuron (PPN) activity in naturally behaving rats. In addition, functional blockade of the Hcrtr1 also selectively reduced the power of the gamma oscillations. The PPN activity and the power of the neural oscillations were not affected after microinjection of the TCS-OX2-29, a blocker for the Hcrtr2, within the mPFC. Together, these data indicate that endogenous hypocretins acting on the Hcrtr1 are required for the normal neural activity in the mPFC in vivo, and thus might directly contribute cortical arousal and mPFC-dependent cognitive processes. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  10. Non-Rapid Eye Movement Sleep Parasomnias and Migraine: A Role of Orexinergic Projections

    Directory of Open Access Journals (Sweden)

    Antonietta Messina

    2018-02-01

    Full Text Available IntroductionSleep and migraine share a common pathophysiological substrate, although the underlying mechanisms are unknown. The serotonergic and orexinergic systems are both involved in the regulation of sleep/wake cycle, and numerous studies show that both are involved in the migraine etiopathogenesis. These two systems are anatomically and functionally interconnected. Our hypothesis is that in migraine a dysfunction of orexinergic projections on the median raphe (MR nuclei, interfering with serotonergic regulation, may cause Non-Rapid Eye Movement parasomnias, such as somnambulism.Hypothesis/theoryActing on the serotonergic neurons of the raphe nuclei, the dysfunction of orexinergic neurons would lead to a higher release of serotonin. The activation of serotonergic receptors located on the walls of large cerebral vessels would lead to abnormal vasodilatation and consequently increase transmural pressure. This process could activate the trigeminal nerve terminals that innervate vascular walls. As a consequence, there is activation of sensory nerve endings at the level of hard vessels in the meninges, with release of pro-inflammatory peptides (e.g., substance P and CGRP. Within this hypothetical frame, the released serotonin could also interact with trigeminovascular afferents to activate and/or facilitate the release of the neuropeptide at the level of the trigeminal ganglion. The dysregulation of the physiological negative feedback of serotonin on the orexinergic neurons, in turn, would contribute to an alteration of the whole system, altering the sleep–wake cycle.ConclusionSerotonergic neurons of the MR nuclei receive an excitatory input from hypothalamic orexin/hypocretin neurons and reciprocally inhibit orexin/hypocretin neurons through the serotonin 1A receptor (or 5-HT1A receptor. Considering this complex system, if there is an alteration it may facilitate the pathophysiological mechanisms involved in the migraine, while it may produce

  11. Dual orexin receptor antagonist 12 inhibits expression of proteins in neurons and glia implicated in peripheral and central sensitization.

    Science.gov (United States)

    Cady, R J; Denson, J E; Sullivan, L Q; Durham, P L

    2014-06-06

    Sensitization and activation of trigeminal nociceptors is implicated in prevalent and debilitating orofacial pain conditions including temporomandibular joint (TMJ) disorders. Orexins are excitatory neuropeptides that function to regulate many physiological processes and are reported to modulate nociception. To determine the role of orexins in an inflammatory model of trigeminal activation, the effects of a dual orexin receptor antagonist (DORA-12) on levels of proteins that promote peripheral and central sensitization and changes in nocifensive responses were investigated. In adult male Sprague-Dawley rats, mRNA for orexin receptor 1 (OX₁R) and receptor 2 (OX₂R) were detected in trigeminal ganglia and spinal trigeminal nucleus (STN). OX₁R immunoreactivity was localized primarily in neuronal cell bodies in the V3 region of the ganglion and in laminas I-II of the STN. Animals injected bilaterally with complete Freund's adjuvant (CFA) in the TMJ capsule exhibited increased expression of P-p38, P-ERK, and lba1 in trigeminal ganglia and P-ERK and lba1 in the STN at 2 days post injection. However, levels of each of these proteins in rats receiving daily oral DORA-12 were inhibited to near basal levels. Similarly, administration of DORA-12 on days 3 and 4 post CFA injection in the TMJ effectively inhibited the prolonged stimulated expression of protein kinase A, NFkB, and Iba1 in the STN on day 5 post injection. While injection of CFA mediated a nocifensive response to mechanical stimulation of the orofacial region at 2h and 3 and 5 days post injection, treatment with DORA-12 suppressed the nocifensive response on day 5. Somewhat surprisingly, nocifensive responses were again observed on day 10 post CFA stimulation in the absence of daily DORA-12 administration. Our results provide evidence that DORA-12 can inhibit CFA-induced stimulation of trigeminal sensory neurons by inhibiting expression of proteins associated with sensitization of peripheral and central

  12. Reduced CSF hypocretin-1 levels are associated with cluster headache.

    Science.gov (United States)

    Barloese, Mads; Jennum, Poul; Lund, Nunu; Knudsen, Stine; Gammeltoft, Steen; Jensen, Rigmor

    2015-09-01

    Cluster headache (CH) is a debilitating disorder characterized by unilateral, severe pain attacks with accompanying autonomic symptoms, often waking the patient from sleep. As it exhibits strong chronobiological traits and genetic studies have suggested a link with the hypocretin (HCRT) system, the objective of this study was to investigate HCRT-1 in CH patients. Cerebrospinal fluid HCRT-1 concentration was measured in 12 chronic and 14 episodic CH patients during an active bout, and in 27 healthy controls. The patients were well characterized and clinical features compared to the HCRT concentration. We found significantly lower HCRT levels both in chronic (p = 0.0221) and episodic CH (p = 0.0005) patients compared with controls. No significant relationship was found with other clinical features. This is the first report of significantly reduced HCRT concentrations in CH patients. We speculate that decreased HCRT may reflect insufficient antinociceptive activity of the hypothalamus. The mechanism of the antinociceptive effect of HCRT is not known and requires further investigation. This study supports the hypothesis of a connection between arousal regulation and CH. © International Headache Society 2014.

  13. The adjuvant component α-tocopherol triggers via modulation of Nrf2 the expression and turnover of hypocretin in vitro and its implication to the development of narcolepsy.

    Science.gov (United States)

    Masoudi, Sanita; Ploen, Daniela; Kunz, Katharina; Hildt, Eberhard

    2014-05-23

    After the H1N1 swine flu vaccination campaign an increased number of narcolepsy cases in children and adolescents was observed in Scandinavian and later in further European countries that correlated with the vaccination by an AS03-adjuvanted influenza vaccine (Pandemrix). Narcolepsy is a chronic sleep disorder characterized by the loss of hypocretin in the cerebrospinal fluid due to selective destruction of hypocretin-producing neurons in the perifornical hypothalamus. In >99% of the cases narcolepsy is associated with the HLA-subtype DQB1*602 giving the link to an autoimmune process. In contrast to other squalene-based adjuvants, for which no association with narcolepsy was reported so far, ASO3 contains in addition α-tocopherol. It could be observed recently that α-tocopherol activates the transcription factor Nrf2. Nrf2 triggers the expression of cytoprotective genes, i.e. the catalytic active subunits of the constitutive proteasome, by binding to the antioxidant response element (ARE). It was hypothesized that α-tocopherol via activation of Nrf2 affects expression and turnover of hypocretin, leading to an increased amount of hypocretinα-specific fragments that bind to DQB1*602. α-Tocopherol activates Nrf2 in neuronal cells in vitro. Promoter analysis revealed an ARE sequence in the hypocretin promoter. Indeed, α-tocopherol increases by activation of Nrf2 the expression of hypocretin. In parallel, α-tocopherol -dependent induction of Nrf2 augments expression of catalytic subunits of the proteasome leading to increased degradation of hypocretin. Moreover, elevated activation of Nrf2 is associated with a decreased activity of NF-κB that results in an increased sensitivity to apoptotic stimuli. In case of a genetic predisposition (DQB1*602) α-tocopherol could confer to development of narcolepsy by activation of Nrf2 that finally leads to an elevated formation of longer hypocretin-derived fragments that can be presented by HLA-subtype DQB1*602. These cells

  14. Changes of orexin A plasma levels in girls with anorexia nervosa during eight weeks of realimentation.

    Science.gov (United States)

    Bronsky, Jiri; Nedvidkova, Jara; Krasnicanova, Hana; Vesela, Marie; Schmidtova, Jana; Koutek, Jiri; Kellermayer, Richard; Chada, Martin; Kabelka, Zdenek; Hrdlicka, Michal; Nevoral, Jiri; Prusa, Richard

    2011-09-01

    Orexin A (OXA) is a hypothalamic neuropeptide involved in regulation of food intake and nutritional status. There are multiple disturbances of neuropeptide signaling described in girls with anorexia nervosa (AN), but OXA levels have not been addressed in this population to date. Therefore, we analyzed OXA levels of AN girls in this study. OXA (radioimmunoassay/RIA/method), leptin, insulinlike growth factor-1 (IGF-1), and insulinlike growth factor-1 binding protein-3 (IGFBP-3) levels were measured before and after 8 weeks of realimentation in 36 girls with AN and in 14 healthy controls (control group: CG). Average weight increased significantly in AN during the study (p nutritional regulation of malnourished children and adolescents. Copyright © 2010 Wiley Periodicals, Inc.

  15. Orexin receptor-1 in the locus coeruleus plays an important role in cue-dependent fear memory consolidation.

    Science.gov (United States)

    Soya, Shingo; Shoji, Hirotaka; Hasegawa, Emi; Hondo, Mari; Miyakawa, Tsuyoshi; Yanagisawa, Masashi; Mieda, Michihiro; Sakurai, Takeshi

    2013-09-04

    The noradrenergic (NA) projections arising from the locus ceruleus (LC) to the amygdala and bed nucleus of the stria terminalis have been implicated in the formation of emotional memory. Since NA neurons in the LC (LC-NA neurons) abundantly express orexin receptor-1 (OX1R) and receive prominent innervation by orexin-producing neurons, we hypothesized that an OX1R-mediated pathway is involved in the physiological fear learning process via regulation of LC-NA neurons. To evaluate this hypothesis, we examined the phenotype of Ox1r(-/-) mice in the classic cued and contextual fear-conditioning test. We found that Ox1r(-/-) mice showed impaired freezing responses in both cued and contextual fear-conditioning paradigms. In contrast, Ox2r(-/-) mice showed normal freezing behavior in the cued fear-conditioning test, while they exhibited shorter freezing time in the contextual fear-conditioning test. Double immunolabeling of Fos and tyrosine hydroxylase showed that double-positive LC-NA neurons after test sessions of both cued and contextual stimuli were significantly fewer in Ox1r(-/-) mice. AAV-mediated expression of OX1R in LC-NA neurons in Ox1r(-/-) mice restored the freezing behavior to the auditory cue to a comparable level to that in wild-type mice in the test session. Decreased freezing time during the contextual fear test was not affected by restoring OX1R expression in LC-NA neurons. These observations support the hypothesis that the orexin system modulates the formation and expression of fear memory via OX1R in multiple pathways. Especially, OX1R in LC-NA neurons plays an important role in cue-dependent fear memory formation and/or retrieval.

  16. Expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in control of GnRH secretion.

    Science.gov (United States)

    Yang, Ying; Zhou, Li-bin; Liu, Shang-quan; Tang, Jing-feng; Li, Feng-yin; Li, Rong-ying; Song, Huai-dong; Chen, Ming-dao

    2005-08-01

    To investigate the expression of feeding-related peptide receptors mRNA in GT1-7 cell line and roles of leptin and orexins in the control of GnRH secretion. Receptors of bombesin3, cholecystokinin (CCK)-A, CCK-B, glucagon-like peptide (GLP)1, melanin-concentrating hormone (MCH)1, orexin1, orexin2, neuromedin-B, neuropeptide Y (NPY)1 and NPY5, neurotensin (NT)1, NT2, NT3, and leptin receptor long form mRNA in GT1-7 cells were detected by reversed transcriptase-polymerase chain reaction. GT1-7 cells were treated with leptin, orexin A and orexin B at a cohort of concentrations for different lengths of time, and GnRH in medium was determined by radioimmunoassay (RIA). Receptors of bombesin 3, CCK-B, GLP1, MCH1, orexin1, neuromedin-B, NPY1, NPY5, NT1, NT3, and leptin receptor long form mRNA were expressed in GT1-7 cells, of which, receptors of GLP1, neuromedin-B, NPY1, and NT3 were highly expressed. No amplified fragments of orexin2, NT2, and CCK-A receptor cDNA were generated with GT1-7 RNA, indicating that the GT1-7 cells did not express mRNA of them. Leptin induced a significant stimulation of GnRH release, the results being most significant at 0.1 nmol/L for 15 min. In contrast to other studies in hypothalamic explants, neither orexin A nor orexin B affected basal GnRH secretion over a wide range of concentrations ranging from 1 nmol/L to 500 nmol/Lat 15, 30, and 60 min. Feeding and reproductive function are closely linked. Many orexigenic and anorexigenic signals may control feeding behavior as well as alter GnRH secretion through their receptors on GnRH neurons.

  17. ImmunoChip study implicates antigen presentation to T cells in narcolepsy.

    Directory of Open Access Journals (Sweden)

    Juliette Faraco

    Full Text Available Recent advances in the identification of susceptibility genes and environmental exposures provide broad support for a post-infectious autoimmune basis for narcolepsy/hypocretin (orexin deficiency. We genotyped loci associated with other autoimmune and inflammatory diseases in 1,886 individuals with hypocretin-deficient narcolepsy and 10,421 controls, all of European ancestry, using a custom genotyping array (ImmunoChip. Three loci located outside the Human Leukocyte Antigen (HLA region on chromosome 6 were significantly associated with disease risk. In addition to a strong signal in the T cell receptor alpha (TRA@, variants in two additional narcolepsy loci, Cathepsin H (CTSH and Tumor necrosis factor (ligand superfamily member 4 (TNFSF4, also called OX40L, attained genome-wide significance. These findings underline the importance of antigen presentation by HLA Class II to T cells in the pathophysiology of this autoimmune disease.

  18. Cerebrospinal fluid cytokine levels in type 1 narcolepsy patients very close to onset

    DEFF Research Database (Denmark)

    Kornum, Birgitte Rahbek; Pizza, Fabio; Knudsen, Stine

    2015-01-01

    Type 1 narcolepsy is caused by a loss of hypocretin (orexin) signaling in the brain. Genetic data suggests the disorder is caused by an autoimmune attack on hypocretin producing neurons in hypothalamus. This hypothesis has however not yet been confirmed by consistent findings of autoreactive....... In this study, we tested whether an active immune process in the brain could be detected in these patients, as reflected by increased cytokine levels in the cerebrospinal fluid (CSF). Using multiplex analysis, we measured the levels of 51 cytokines and chemokines in the CSF of 40 type 1 narcolepsy patients...... having varying disease duration. For comparison, we used samples from 9 healthy controls and 9 patients with other central hypersomnia. Cytokine levels did not differ significantly between controls and patients, even in 5 patients with disease onset less than a month prior to CSF sampling....

  19. Recruitment of hypothalamic orexin neurons after formalin injections in adult male rats exposed to a neonatal immune challenge

    Directory of Open Access Journals (Sweden)

    Erin Jane Campbell

    2015-03-01

    Full Text Available Exposure to early life physiological stressors, such as infection, is thought to contribute to the onset of psychopathology in adulthood. In animal models, injections of the bacterial immune challenge, lipopolysaccharide (LPS, during the neonatal period has been shown to alter both neuroendocrine function and behavioural pain responses in adulthood. Interestingly, recent evidence suggests a role for the lateral hypothalamic peptide orexin in stress and nociceptive processing. However, whether neonatal LPS exposure affects the reactivity of the orexin system to formalin-induced inflammatory pain in later life remains to be determined. Male Wistar rats (n=13 were exposed to either LPS or saline (0.05mg/kg, i.p on postnatal days (PND 3 and 5. On PND 80-97, all rats were exposed to a subcutaneous hindpaw injection of 2.25% formalin. Following behavioural testing, animals were perfused and brains processed for Fos-protein and orexin immunohistochemistry. Rats treated with LPS during the neonatal period exhibited decreased licking behaviours during the interphase of the formalin test, the period typically associated with the active inhibition of pain, and increased grooming responses to formalin in adulthood. Interestingly, these behavioural changes were accompanied by an increase in the percentage of Fos-positive orexin cells in the dorsomedial and perifornical hypothalamus in LPS-exposed animals. Similar increases in Fos-protein were also observed in stress and pain sensitive brain regions that receive orexinergic inputs. These findings highlight a potential role for orexin in the behavioural responses to pain and provide further evidence that early life stress can prime the circuitry responsible for these responses in adulthood.

  20. The role of trigeminal nucleus caudalis orexin 1 receptors in orofacial pain transmission and in orofacial pain-induced learning and memory impairment in rats.

    Science.gov (United States)

    Kooshki, Razieh; Abbasnejad, Mehdi; Esmaeili-Mahani, Saeed; Raoof, Maryam

    2016-04-01

    It is widely accepted that the spinal trigeminal nuclear complex, especially the subnucleus caudalis (Vc), receives input from orofacial structures. The neuropeptides orexin-A and -B are expressed in multiple neuronal systems. Orexin signaling has been implicated in pain-modulating system as well as learning and memory processes. Orexin 1 receptor (OX1R) has been reported in trigeminal nucleus caudalis. However, its roles in trigeminal pain modulation have not been elucidated so far. This study was designed to investigate the role of Vc OX1R in the modulation of orofacial pain as well as pain-induced learning and memory deficits. Orofacial pain was induced by subcutaneous injection of capsaicin in the right upper lip of the rats. OX1R agonist (orexin-A) and antagonist (SB-334867-A) were microinjected into Vc prior capsaicin administration. After recording nociceptive times, learning and memory was investigated using Morris water maze (MWM) test. The results indicated that, orexin-A (150 pM/rat) significantly reduced the nociceptive times, while SB334867-A (80 nM/rat) exaggerated nociceptive behavior in response to capsaicin injection. In MWM test, capsaicin-treated rats showed a significant learning and memory impairment. Moreover, SB-334867-A (80 nM/rat) significantly exaggerated learning and memory impairment in capsaicin-treated rats. However, administration of orexin-A (100 pM/rat) prevented learning and memory deficits. Taken together, these results indicate that Vc OX1R was at least in part involved in orofacial pain transmission and orexin-A has also a beneficial inhibitory effect on orofacial pain-induced deficits in abilities of spatial learning and memory. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. [NARCOLEPSY WITH CATAPLEXY: TYPE 1 NARCOLEPSY].

    Science.gov (United States)

    Dauvilliers, Yves; Lopez, Régis

    2016-06-01

    Narcolepsy with cataplexy or narcolepsy type 1 in a rare, disabling sleep disorder, with a prevalence of 20 to 30 per 100,000. Its onset peaks in the second decade. The main features are excessive daytime sleepiness and cataplexy or sudden less of muscle tone triggered by emotional situations. Other less consistent symptoms include hypnagogic hallucinations, sleep paralysis, disturbed nighttime sleep, and weight gain. Narcolepsy with cataplexy remains a clinical diagnosis but nighttime and daytime polysomnography (multiple sleep latency tests) are useful to document mean sleep latency below 8 min and at least two sleep-onset REM periods. HLA typing shows an association with HLA DQB1*0602 in more than 92% of cases but was not included in the new diagnostic criteria. In contrast, a low hypocretin-1/orexin-A levels (values below 110 pg/mL) in the cerebrospinal fluid was highly specific for narcolepsy with cataplexy and was included in the recent diagnostic criteria for narcolepsy. The deficiency of the hypocretin system is well-established in human narcoleptics with a reduction of cerebrospinal fluid hypocretin levels in relation with an early loss of hypocretin neurons. The cause of human narcolepsy remains unknown, however an autoimmune process in most probable acting on a highly genetic background with environmental factors such as streptococcal infections, and H1N1 AS03-adjuvanted vaccine named Pandemrix.

  2. Narcolepsy as an Immune-Mediated Disease

    Directory of Open Access Journals (Sweden)

    Alberto K. De la Herrán-Arita

    2014-01-01

    Full Text Available Narcolepsy is a neurological disorder characterized by excessive daytime sleepiness, cataplexy, hypnagonic hallucinations, sleep paralysis, and disturbed nocturnal sleep patterns. This disease is secondary to the specific loss of hypothalamic hypocretin (orexin-producing neurons in the lateral hypothalamus. An autoimmune basis for the disease has long been suspected based on its strong association with the genetic marker DQB1*06:02, and current studies greatly support this hypothesis. Narcolepsy with hypocretin deficiency is associated with human leukocyte antigen (HLA and T cell receptor (TCR polymorphisms, suggesting that an autoimmune process targets a peptide unique to hypocretin-producing neurons via specific HLA-peptide-TCR interactions. This concept has gained a lot of notoriety after the increase of childhood narcolepsy in 2010 following the 2009 H1N1 pandemic (pH1N1 in China and vaccination with Pandemrix, an adjuvanted H1N1 vaccine that was used in Scandinavia. The surge of narcolepsy cases subsequent to influenza A H1N1 infection and H1N1 vaccination suggests that processes such as molecular mimicry or bystander activation might be crucial for disease development.

  3. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    Science.gov (United States)

    2014-09-01

    Preparing and Dispensing The research pharmacist in the CCRC will maintain a copy of the randomization schedule and will receive the subject’s...follicular phase of the menstrual cycle (PSST [54]). • Review of Inclusion/Exclusion Criteria All screening assessments will be performed at the...follicular phase of the menstrual cycle. Prior to the start of the baseline week, a practice version of the PVT will be administered. Subjects will be

  4. Effect of a Hypocretin/Orexin Antagonist on Neurocogniive Performance

    Science.gov (United States)

    2014-09-01

    time: Tuesday , Nov 12, 2013, 4:00 PM - 5:00 PM Topic: ++E.08.e Sleep: Systems and behavior Authors: W. LINCOLN1, J. PALMERSTON1, T. NEYLAN2, T...functional impairment results from HcrtR antagonist-induced sleep, we evaluated the performance of rats in the Morris Water Maze in the presence of ALM vs. ZOL... Morris Water Maze. Although the concentrations of ALM and ZOL adminis- tered prior to these tests were equipotent in hypnotic efficacy, the

  5. Effect of a Hypocretin/Orexin Antagonist on Neurocognitive Performance

    Science.gov (United States)

    2015-11-01

    release in freely-moving rat. Location: Hall A-C Presentation time: Tuesday , Nov 15, 2011, 1:00 PM - 2:00 PM Authors: *J. VAZQUEZ, A. NGUYEN, T. KILDUFF...induces sleep in rats but does not impair spatial reference memory performance during wake Location: Hall A-C Presentation time: Tuesday , Nov 15, 2011, 2...of a platform in a spatial reference memory task ( Morris Water Maze). Next day, they were dosed with either ALM (100 mg/kg i.p.), ZOL (30 mg/kg i.p

  6. To Ingest or Rest? Specialized Roles of Lateral Hypothalamic Area Neurons in Coordinating Energy Balance

    Directory of Open Access Journals (Sweden)

    Juliette A. Brown

    2015-02-01

    Full Text Available Survival depends on an organism’s ability to sense nutrient status and accordingly regulate intake and energy expenditure behaviors. Uncoupling of energy sensing and behavior, however, underlies energy balance disorders such as anorexia or obesity. The hypothalamus regulates energy balance, and in particular the lateral hypothalamic area (LHA is poised to coordinate peripheral cues of energy status and behaviors that impact weight, such as drinking, locomotor behavior, arousal/sleep and autonomic output. There are several populations of LHA neurons that are defined by their neuropeptide content and contribute to energy balance. LHA neurons that express the neuropeptides melanin-concentrating hormone (MCH or orexins/hypocretins (OX are best characterized and these neurons play important roles in regulating ingestion, arousal, locomotor behavior and autonomic function via distinct neuronal circuits. Recently, another population of LHA neurons containing the neuropeptide Neurotensin (Nts has been implicated in coordinating anorectic stimuli and behavior to regulate hydration and energy balance. Understanding the specific roles of MCH, OX and Nts neurons in harmonizing energy sensing and behavior thus has the potential to inform pharmacological strategies to modify behaviors and treat energy balance disorders.

  7. Validation of the ICSD-2 criteria for CSF hypocretin-1 measurements in the diagnosis of narcolepsy in the Danish population

    DEFF Research Database (Denmark)

    Knudsen, Stine; Jennum, Poul J; Alving, Jørgen

    2010-01-01

    STUDY OBJECTIVES: The International Classification of Sleep Disorders (ICSD-2) criteria for low CSF hypocretin-1 levels (CSF hcrt-1) still need validation as a diagnostic tool for narcolepsy in different populations because inter-assay variability and different definitions of hypocretin deficiency...... complicate direct comparisons of study results. DESIGN AND PARTICIPANTS: Interviews, polysomnography, multiple sleep latency test, HLA-typing, and CSF hcrt-1 measurements in Danish patients with narcolepsy with cataplexy (NC) and narcolepsy without cataplexy (NwC), CSF hcrt-1 measurements in other......). MEASUREMENTS AND RESULTS: In Danes, low CSF hcrt-1 was present in 40/46 NC, 3/14 NwC and 0/106 controls (P sleep latency, more sleep...

  8. Antibodies Against Hypocretin Receptor 2 Are Rare in Narcolepsy.

    Science.gov (United States)

    Giannoccaro, Maria Pia; Waters, Patrick; Pizza, Fabio; Liguori, Rocco; Plazzi, Giuseppe; Vincent, Angela

    2017-02-01

    Recently, antibodies to the hypocretin receptor 2 (HCRTR2-Abs) were reported in a high proportion of narcolepsy patients who developed the disease following Pandemrix® vaccination. We tested a group of narcolepsy patients for the HCRTR2-Abs using a newly established cell-based assay. Sera from 50 narcolepsy type 1 (NT1) and 11 narcolepsy type 2 (NT2) patients, 22 patients with other sleep disorders, 15 healthy controls, and 93 disease controls were studied. Cerebrospinal fluid (CSFs) from three narcoleptic patients were subsequently included. Human embryonic kidney cells were transiently transfected with human HCRTR2, incubated with patients' sera for 1 hr at 1:20 dilution and then fixed. Binding of antibodies was detected by fluorescently labeled secondary antibodies to human immunoglobulin G (IgG) and the different IgG subclasses. A nonlinear visual scoring system was used from 0 to 4; samples scoring ≥1 were considered positive. Only 3 (5%) of 61 patients showed a score ≥1, one with IgG1- and two with IgG3-antibodies, but titers were low (1:40-1:100). CSFs from these patients were negative. The three positive patients included one NT1 case with associated psychotic features, one NT2 patient, and an NT1 patient with normal hypocretin CSF levels. Low levels of IgG1 or IgG3 antibodies against HCRTR2 were found in 3 of 61 patients with narcolepsy, although only 1 presented with full-blown NT1. HCRTR2-Abs are not common in narcolepsy unrelated to vaccination. © Sleep Research Society 2016. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  9. Orexin receptor antagonist-induced sleep does not impair the ability to wake in response to emotionally salient acoustic stimuli in dogs

    Directory of Open Access Journals (Sweden)

    Pamela L. Tannenbaum

    2014-05-01

    Full Text Available The ability to awaken from sleep in response to important stimuli is a critical feature of normal sleep, as is maintaining sleep continuity in the presence of irrelevant background noise. Dual orexin receptor antagonists (DORAs effectively promote sleep across species by targeting the evolutionarily conserved wake-promoting orexin signaling pathway. This study in dogs investigated whether DORA-induced sleep preserved the ability to awaken appropriately to salient acoustic stimuli but remain asleep when exposed to irrelevant stimuli. Sleep and wake in response to DORAs, vehicle, GABA-A receptor modulators (diazepam, eszopiclone and zolpidem and antihistamine (diphenhydramine administration were evaluated in telemetry-implanted adult dogs with continuous electrocorticogram, electromyogram, electrooculogram, and activity recordings. DORAs induced sleep, but GABA-A modulators and antihistamine induced paradoxical hyperarousal. Thus, salience gating studies were conducted during DORA-22 (0.3, 1, and 5 mg/kg; day and night and vehicle nighttime sleep. The acoustic stimuli were either classically conditioned using food reward and positive attention (salient stimulus or presented randomly (neutral stimulus. Once conditioned, the tones were presented at sleep times corresponding to maximal DORA-22 exposure. In response to the salient stimuli, dogs woke completely from vehicle and orexin-antagonized sleep across all sleep stages but rarely awoke to neutral stimuli. Notably, acute pharmacological antagonism of orexin receptors paired with emotionally salient anticipation produced wake, not cataplexy, in a species where genetic (chronic loss of orexin receptor signaling leads to narcolepsy/cataplexy. DORA-induced sleep in this species thereby retains the desired capacity to awaken to emotionally salient acoustic stimuli while preserving uninterrupted sleep in response to irrelevant stimuli.

  10. Differential actions of orexin receptors in brainstem cholinergic and monoaminergic neurons revealed by receptor knockouts: implications for orexinergic signaling in arousal and narcolepsy

    Directory of Open Access Journals (Sweden)

    Kristi A Kohlmeier

    2013-12-01

    Full Text Available Orexin neuropeptides influence multiple homeostatic functions and play an essential role in the expression of normal sleep-wake behavior. While their two known receptors (OX1 and OX2 are targets for novel pharmacotherapeutics, the actions mediated by each receptor remain largely unexplored. Using brain slices from mice constitutively lacking either receptor, we used whole-cell and Ca2+ imaging methods to delineate the cellular actions of each receptor within cholinergic (laterodorsal tegmental nucleus; LDT and monoaminergic (dorsal raphe; DR and locus coeruleus; LC brainstem nuclei – where orexins promote arousal and suppress REM sleep. In slices from OX2-/- mice, orexin-A (300 nM elicited wild-type responses in LDT, DR and LC neurons consisting of a depolarizing current and augmented voltage-dependent Ca2+ transients. In slices from OX1-/- mice, the depolarizing current was absent in LDT and LC neurons and was attenuated in DR neurons, although Ca2+-transients were still augmented. Since orexin-A produced neither of these actions in slices lacking both receptors, our findings suggest that orexin-mediated depolarization is mediated by both receptors in DR, but is exclusively mediated by OX1 in LDT and LC neurons, even though OX2 is present and OX2 mRNA appears elevated in brainstems from OX1-/- mice. Considering published behavioral data, these findings support a model in which orexin-mediated excitation of mesopontine cholinergic and monoaminergic neurons contributes little to stabilizing spontaneous waking and sleep bouts, but functions in context-dependent arousal and helps restrict muscle atonia to REM sleep. The augmented Ca2± transients mediated by both receptors appeared mediated by influx via L-type Ca2+ channels, which is often linked to transcriptional signaling. This could provide an adaptive signal to compensate for receptor loss or prolonged antagonism and may contribute to the reduced severity of narcolepsy in single receptor

  11. Nucleus Accumbens Shell and mPFC but not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking

    Directory of Open Access Journals (Sweden)

    Kelly Lei

    2016-08-01

    Full Text Available Addiction to alcohol remains a major social and economic problem, in part because of the high motivation for alcohol that humans exhibit and the hazardous binge intake this promotes. Orexin-1-type receptors (OX1Rs promote reward intake under conditions of strong drives for reward, including excessive alcohol intake. While systemic modulation of OX1Rs can alter alcohol drinking, the brain regions that mediate this OX1R enhancement of excessive drinking remain unknown. Given the importance of the nucleus accumbens (NAc and anterior insular cortex (aINS in driving many addictive behaviors, including OX1Rs within these regions, we examined the importance of OX1Rs in these regions on excessive alcohol drinking in C57BL/6 mice during limited-access alcohol drinking in the dark cycle. Inhibition of OX1Rs with the widely used SB-334867 within the medial NAc Shell (mNAsh significantly reduced drinking of alcohol, with no effect on saccharin intake, and no effect on alcohol consumption when infused above the mNAsh. In contrast, intra-mNAsh infusion of the orexin-2 receptor TCS-OX2-29 had no impact on alcohol drinking. In addition, OX1R inhibition within the aINS had no effect on excessive drinking, which was surprising given the importance of aINS-NAc circuits in promoting alcohol consumption and the role for aINS OX1Rs in driving nicotine intake. However, OX1R inhibition within the mPFC did reduce alcohol drinking, indicating cortical OXR involvement in promoting intake. Also, in support of the critical role for mNAsh OX1Rs, SB within the mNAsh also significantly reduced operant alcohol self-administration in rats. Finally, orexin ex vivo enhanced firing in mNAsh neurons from alcohol-drinking mice, with no effect on evoked EPSCs or input resistance; a similar orexin increase in firing without a change in input resistance was observed in alcohol-naïve mice. Taken together, our results strongly suggest that OX1Rs within the mNAsh, but not the aINS, play a

  12. Counterregulation of insulin by leptin as key component of autonomic regulation of body weight

    Science.gov (United States)

    Borer, Katarina T

    2014-01-01

    A re-examination of the mechanism controlling eating, locomotion, and metabolism prompts formulation of a new explanatory model containing five features: a coordinating joint role of the (1) autonomic nervous system (ANS); (2) the suprachiasmatic (SCN) master clock in counterbalancing parasympathetic digestive and absorptive functions and feeding with sympathetic locomotor and thermogenic energy expenditure within a circadian framework; (3) interaction of the ANS/SCN command with brain substrates of reward encompassing dopaminergic projections to ventral striatum and limbic and cortical forebrain. These drive the nonhomeostatic feeding and locomotor motivated behaviors in interaction with circulating ghrelin and lateral hypothalamic neurons signaling through melanin concentrating hormone and orexin-hypocretin peptides; (4) counterregulation of insulin by leptin of both gastric and adipose tissue origin through: potentiation by leptin of cholecystokinin-mediated satiation, inhibition of insulin secretion, suppression of insulin lipogenesis by leptin lipolysis, and modulation of peripheral tissue and brain sensitivity to insulin action. Thus weight-loss induced hypoleptimia raises insulin sensitivity and promotes its parasympathetic anabolic actions while obesity-induced hyperleptinemia supresses insulin lipogenic action; and (5) inhibition by leptin of bone mineral accrual suggesting that leptin may contribute to the maintenance of stability of skeletal, lean-body, as well as adipose tissue masses. PMID:25317239

  13. Histaminergic regulation of seasonal metabolic rhythms in Siberian hamsters.

    Science.gov (United States)

    I'anson, Helen; Jethwa, Preeti H; Warner, Amy; Ebling, Francis J P

    2011-06-01

    We investigated whether histaminergic tone contributes to the seasonal catabolic state in Siberian hamsters by determining the effect of ablation of histaminergic neurons on food intake, metabolic rate and body weight. A ribosomal toxin (saporin) conjugated to orexin-B was infused into the ventral tuberomammillary region of the hypothalamus, since most histaminergic neurons express orexin receptors. This caused not only 75-80% loss of histaminergic neurons in the posterior hypothalamus, but also some loss of other orexin-receptor expressing cells e.g. MCH neurons. In the long-day anabolic state, lesions produced a transient post-surgical decrease in body weight, but the hamsters recovered and maintained constant body weight, whereas weight gradually increased in sham-lesioned hamsters. VO(2) in the dark phase was significantly higher in the lesioned hamsters compared to shams, and locomotor activity also tended to be higher. In a second study in short days, sham-treated hamsters showed the expected seasonal decrease in body weight, but weight remained constant in the lesioned hamsters, as in the long-day study. Lesioned hamsters consumed more during the early dark phase and less during the light phase due to an increase in the frequency of meals during the dark and decreased meal size during the light, and their cumulative food intake in their home cages was greater than in the control hamsters. In summary, ablation of orexin-responsive cells in the posterior hypothalamus blocks the short-day induced decline in body weight by preventing seasonal hypophagia, evidence consistent with the hypothesis that central histaminergic mechanisms contribute to long-term regulation of body weight. Copyright © 2011 Elsevier Inc. All rights reserved.

  14. Reward-based behaviors and emotional processing in human with narcolepsy-cataplexy

    Directory of Open Access Journals (Sweden)

    Sophie eBayard

    2013-05-01

    Full Text Available ajor advances in the past decade have led a better understanding of the pathophysiology of narcolepsy with cataplexy caused by the early loss of hypothalamic hypocretin neurons. Although a role for hypocretin in the regulation of sleep/wakefulness state is widely recognized, other functions, not necessarily related to arousal, have been identified. Hence, the hypocretin system enhances signaling in the mesolimbic pathways regulating reward processing, emotion and mood regulation, and addiction. Although studies on hypocretin-deficient mice have shown that hypocretin plays an essential role in reward-seeking, depression-like behavior and addiction, results in human narcolepsy remained subject to debate. Most of studies revealed that hypocretin-deficient narcolepsy patients either drug-free or medicated with psychostimulant had preferences towards risky choices in a decision-making task under ambiguity together with higher frequency of depressive symptoms and binge eating disorder compared to controls. However, human studies mostly reported the lack of association with pathological impulsivity and gambling, and substance and alcohol abuse in the context of narcolepsy-cataplexy. Prospective larger studies are required to confirm these findings in drug-free and medicated patients with narcolepsy. Inclusion of patients with other central hypersomnias without hypocretin deficiency will provide answer to the major question of the role of the hypocretin system in reward-based behaviors and emotional processing in humans.

  15. The Orexin Component of Fasting Triggers Memory Processes Underlying Conditioned Food Selection in the Rat

    Science.gov (United States)

    Ferry, Barbara; Duchamp-Viret, Patricia

    2014-01-01

    To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion…

  16. Dual orexin receptor antagonists show distinct effects on locomotor performance, ethanol interaction and sleep architecture relative to gamma-aminobutyric acid-A receptor modulators

    Directory of Open Access Journals (Sweden)

    Andres D. Ramirez

    2013-12-01

    Full Text Available Dual orexin receptor antagonists (DORAs are a potential treatment for insomnia that function by blocking both the orexin 1 and orexin 2 receptors. The objective of the current study was to further confirm the impact of therapeutic mechanisms targeting insomnia on locomotor coordination and ethanol interaction using DORAs and gamma-aminobutyric acid (GABA-A receptor modulators of distinct chemical structure and pharmacologic properties in the context of sleep-promoting potential. The current study compared rat motor co-ordination after administration of DORAs, DORA-12 and almorexant, and GABA-A receptor modulators, zolpidem, eszopiclone and diazepam, alone or each in combination with ethanol. Motor performance was assessed by measuring time spent walking on a rotarod apparatus. Zolpidem, eszopiclone and diazepam (0.3–30 mg/kg administered orally [PO] impaired rotarod performance in a dose-dependent manner. Furthermore, all three GABA-A receptor modulators potentiated ethanol- (0.25–1.25 g/kg induced impairment on the rotarod. By contrast, neither DORA-12 (10–100 mg/kg, PO nor almorexant (30–300 mg/kg, PO impaired motor performance alone or in combination with ethanol. In addition, distinct differences in sleep architecture were observed between ethanol, GABA-A receptor modulators (zolpidem, eszopiclone and diazepam and DORA-12 in electroencephalogram studies in rats. These findings provide further evidence that orexin receptor antagonists have an improved motor side-effect profile compared with currently available sleep-promoting agents based on preclinical data and strengthen the rationale for further evaluation of these agents in clinical development.

  17. Hormonal status and the orexin system in obese patients with obstructive sleep apnea syndrome

    Directory of Open Access Journals (Sweden)

    Natalya Viktorovna Strueva

    2015-05-01

    Full Text Available The aim of research was to estimate the influence of hormone metabolism and sleep apnea on patients with obesity. 76 patients (37 males and 39 females with obesity were included in this study. After night polysomnography all patients were divided in two groups comparableby age, sex ratio and BMI. The first group consisted of 41 patients with obstructive sleep apnea syndrome (OSAS, the second (controls – 35 patients without breath disorders during sleep. OSAS is accompanied by the increase in urinary cortisol during the night, high levels ofbasal insulin, disturbances of hepatic production of IGF-1, dysfunction of the pituitary-gonadal axis. Our results show that sleep-related breathing disorders render markedly and negatively affect on hormonal parameters of patients with obesity. As a reliable difference of basalsecretion of orexin A in obese patients with and without OSAS was not revealed (42,0 [14; 99,5] vs. 18,0 [14,5; 124,5] pg/ml; р=0,9, we were not able to show the existence that the existence of OSAS is followed by any special changes of activity of the orexin system.

  18. Synthesis and Evaluation of Orexin-1 Receptor Antagonists with Improved Solubility and CNS Permeability.

    Science.gov (United States)

    Perrey, David A; Decker, Ann M; Zhang, Yanan

    2018-03-21

    Orexins are hypothalamic neuropeptides playing important roles in many functions including the motivation of addictive behaviors. Blockade of the orexin-1 receptor has been suggested as a potential strategy for the treatment of drug addiction. We have previously reported OX 1 receptor antagonists based on the tetrahydroisoquinoline scaffold with excellent OX 1 potency and selectivity; however, these compounds had high lipophilicity (clogP > 5) and low to moderate solubility. In an effort to improve their properties, we have designed and synthesized a series of analogues where the 7-position substituents known to favor OX 1 potency and selectivity were retained, and groups of different nature were introduced at the 1-position where substitution was generally tolerated as demonstrated in previous studies. Compound 44 with lower lipophilicity (clogP = 3.07) displayed excellent OX 1 potency ( K e = 5.7 nM) and selectivity (>1,760-fold over OX 2 ) in calcium mobilization assays. In preliminary ADME studies, 44 showed excellent kinetic solubility (>200 μM), good CNS permeability ( P app = 14.7 × 10 -6 cm/sec in MDCK assay), and low drug efflux (efflux ratio = 3.3).

  19. Traumatic brain injury and disturbed sleep and wakefulness.

    Science.gov (United States)

    Baumann, Christian R

    2012-09-01

    Traumatic brain injury is a frequent condition worldwide, and sleep-wake disturbances often complicate the course after the injuring event. Current evidence suggests that the most common sleep-wake disturbances following traumatic brain injury include excessive daytime sleepiness and posttraumatic hypersomnia, that is, increased sleep need per 24 h. The neuromolecular basis of posttraumatic sleep pressure enhancement is not entirely clear. First neuropathological and clinical studies suggest that impaired hypocretin (orexin) signalling might contribute to sleepiness, but direct or indirect traumatic injury also to other sleep-wake modulating systems in the brainstem and the mesencephalon is likely. Posttraumatic insomnia may be less common than posttraumatic sleepiness, but studies on its frequency revealed conflicting results. Furthermore, insomnia is often associated with psychiatric comorbidities, and some patients with posttraumatic disruption of their circadian rhythm may be misdiagnosed as insomnia patients. The pathophysiology of posttraumatic circadian sleep disorders remains elusive; however, there is some evidence that reduced evening melatonin production due to traumatic brain damage may cause disruption of circadian regulation of sleep and wakefulness.

  20. Characteristics of rapid eye movement sleep behavior disorder in narcolepsy

    DEFF Research Database (Denmark)

    Jennum, Poul Jørgen; Frandsen, Rune Asger Vestergaard; Knudsen, Stine

    2013-01-01

    Rapid eye movement (REM) sleep behavior disorder (RBD) is characterized by dream-enacting behavior and impaired motor inhibition during REM sleep (REM sleep without atonia, RSWA). RBD is commonly associated with Parkinsonian disorders, but is also reported in narcolepsy. Most patients...... of hypocretin deficiency. Thus, hypocretin deficiency is linked to the two major disturbances of REM sleep motor regulation in narcolepsy: RBD and cataplexy. Moreover, it is likely that hypocretin deficiency independently predicts periodic limb movements in REM and NREM sleep, probably via involvement...... of the dopaminergic system. This supports the hypothesis that an impaired hypocretin system causes general instability of motor regulation during wakefulness, REM and NREM sleep in human narcolepsy. We propose that hypocretin neurons are centrally involved in motor tone control during wakefulness and sleep in humans...

  1. Nutritional status modulates behavioural and olfactory bulb Fos responses to isoamyl acetate or food odour in rats: roles of orexins and leptin.

    Science.gov (United States)

    Prud'homme, M J; Lacroix, M C; Badonnel, K; Gougis, S; Baly, C; Salesse, R; Caillol, M

    2009-09-15

    Food odours are major determinants for food choice, and their detection depends on nutritional status. The effects of different odour stimuli on both behavioural responses (locomotor activity and sniffing) and Fos induction in olfactory bulbs (OB) were studied in satiated or 48-h fasted rats. We focused on two odour stimuli: isoamyl acetate (ISO), as a neutral stimulus either unknown or familiar, and food pellet odour, that were presented to quiet rats during the light phase of the day. We found significant effects of nutritional status and odour stimulus on both behavioural and OB responses. The locomotor activity induced by odour stimuli was always more marked in fasted than in satiated rats, and food odour induced increased sniffing activity only in fasted rats. Fos expression was quantified in periglomerular, mitral and granular OB cell layers. As a new odour, ISO induced a significant increase in Fos expression in all OB layers, similar in fasted and satiated rats. Significant OB responses to familiar odours were only observed in fasted rats. Among the numerous peptides shown to vary after 48 h of fasting, we focused on orexins (for which immunoreactive fibres are present in the OB) and leptin, as a peripheral hormone linked to adiposity, and tested their effects of food odour. The administration of orexin A in satiated animals partially mimicked fasting, since food odour increased OB Fos responses, but did not induce sniffing. The treatment of fasted animals with either an orexin receptors antagonist (ACT-078573) or leptin significantly decreased both locomotor activity, time spent sniffing food odour and OB Fos induction in all cell layers, thus mimicking a satiated status. We conclude that orexins and leptin are some of the factors that can modify behavioural and OB Fos responses to a familiar food odour.

  2. Wake-promoting actions of median nerve stimulation in TBI-induced coma: An investigation of orexin-A and orexin receptor 1 in the hypothalamic region.

    Science.gov (United States)

    Zhong, Ying-Jun; Feng, Zhen; Wang, Liang; Wei, Tian-Qi

    2015-09-01

    A coma is a serious complication, which can occur following traumatic brain injury (TBI), for which no effective treatment has been established. Previous studies have suggested that neural electrical stimulation, including median nerve stimulation (MNS), may be an effective method for treating patients in a coma, and orexin‑A, an excitatory hypothalamic neuropeptide, may be involved in wakefulness. However, the exact mechanisms underlying this involvement remain to be elucidated. The present study aimed to examine the arousal‑promoting role of MNS in rats in a TBI‑induced coma and to investigate the potential mechanisms involved. A total of 90 rats were divided into three groups, comprising a control group, sham‑stimulated (TBI) group and a stimulated (TBI + MNS) group. MNS was performed on the animals, which were in a TBI‑induced comatose state. Changes in the behavior of the rats were observed following MNS. Subsequently, hypothalamic tissues were extracted from the rats 6, 12 and 24 h following TBI or MNS, respectively. The expression levels of orexin‑A and orexin receptor‑1 (OX1R) in the hypothalamus were examined using immunohistochemistry, western blotting and an enzyme‑linked immunosorbent assay. The results demonstrated that 21 rats subjected to TBI‑induced coma exhibited a restored righting reflex and response to pain stimuli following MNS. In addition, ignificant differences in the expression levels of orexin‑A and OXIR were observed among the three groups and among the time‑points. Orexin‑A and OX1R were upregulated following MNS. The rats in the stimulated group reacted to the MNS and exhibited a re‑awakening response. The results of the present study indicated that MNS may be a therapeutic option for TBI‑induced coma. The mechanism may be associated with increasing expression levels of the excitatory hypothalamic neuropeptide, orexin-A, and its receptor, OX1R, in the hypothalamic region.

  3. The orexin-1 receptor antagonist SB-334867 decreases anxiety-like behavior and c-Fos expression in the hypothalamus of rats exposed to cat odor.

    Science.gov (United States)

    Vanderhaven, M W; Cornish, J L; Staples, L G

    2015-02-01

    Increasing evidence suggests that the orexin system is involved in modulating anxiety, and we have recently shown that cat odor-induced anxiety in rats is attenuated by the orexin receptor antagonist SB-334867. In the current experiment, c-Fos expression was used to map changes in neuronal activation following SB-334867 administration in the cat odor anxiety model. Male Wistar rats were exposed to cat odor with or without SB-334867 pre-treatment (10 mg/kg, i.p.). A naïve control group not exposed to cat odor was also used. Following cat odor exposure, brains were processed for c-Fos expression. Vehicle-treated rats showed an increase in anxiety-like behaviors (increased hiding and decreased approach toward the cat odor), and increased c-Fos expression in the posteroventral medial amygdala (MePV), paraventricular hypothalamus (PVN) and dorsal premammillary nucleus (PMd). In rats pretreated with SB-334867, approach scores increased and c-Fos expression decreased in the PVN and PMd. These results provide both behavioral and neuroanatomical evidence for the attenuation of cat odor-induced anxiety in rats via the orexin system. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  4. Genome-wide analysis of DHEA- and DHT-induced gene expression in mouse hypothalamus and hippocampus.

    Science.gov (United States)

    Mo, Qianxing; Lu, Shifang; Garippa, Carrie; Brownstein, Michael J; Simon, Neal G

    2009-04-01

    Dehydroepiandrosterone (DHEA) is the most abundant steroid in humans and a multi-functional neuroactive steroid that has been implicated in a variety of biological effects in both the periphery and central nervous system. Mechanistic studies of DHEA in the periphery have emphasized its role as a prohormone and those in the brain have focused on effects exerted at cell surface receptors. Recent results demonstrated that DHEA is intrinsically androgenic. It competes with DHT for binding to androgen receptor (AR), induces AR-regulated reporter gene expression in vitro, and exogenous DHEA administration regulates gene expression in peripheral androgen-dependent tissues and LnCAP prostate cancer cells, indicating genomic effects and adding a level of complexity to functional models. The absence of information about the effect of DHEA on gene expression in the CNS is a significant gap in light of continuing clinical interest in the compound as a hormone replacement therapy in older individuals, patients with adrenal insufficiency, and as a treatment that improves sense of well-being, increases libido, relieves depressive symptoms, and serves as a neuroprotective agent. In the present study, ovariectomized CF-1 female mice, an established model for assessing CNS effects of androgens, were treated with DHEA (1mg/day), dihydrotestosterone (DHT, a potent androgen used as a positive control; 0.1mg/day) or vehicle (negative control) for 7 days. The effects of DHEA on gene expression were assessed in two regions of the CNS that are enriched in AR, hypothalamus and hippocampus, using DNA microarray, real-time RT-PCR, and immunohistochemistry. RIA of serum samples assessed treatment effects on circulating levels of major steroids. In hypothalamus, DHEA and DHT significantly up-regulated the gene expression of hypocretin (Hcrt; also called orexin), pro-melanin-concentrating hormone (Pmch), and protein kinase C delta (Prkcd), and down-regulated the expression of deleted in bladder

  5. Co-localization of hypocretin-1 and leucine-enkephalin in hypothalamic neurons projecting to the nucleus of the solitary tract and their effect on arterial pressure.

    Science.gov (United States)

    Ciriello, J; Caverson, M M; McMurray, J C; Bruckschwaiger, E B

    2013-10-10

    Experiments were done to investigate whether hypothalamic hypocretin-1 (hcrt-1; orexin-A) neurons that sent axonal projections to cardiovascular responsive sites in the nucleus of the solitary tract (NTS) co-expressed leucine-enkephalin (L-Enk), and to determine the effects of co-administration of hcrt-1 and D-Ala2,D-Leu5-Enkephalin (DADL) into NTS on mean arterial pressure (MAP) and heart rate. In the first series, in the Wistar rat the retrograde tract-tracer fluorogold (FG) was microinjected (50nl) into caudal NTS sites at which L-glutamate (0.25 M; 10 nl) elicited decreases in MAP and where fibers hcrt-1 immunoreactive fibers were observed that also contained L-Enk immunoreactivity. Of the number of hypothalamic hcrt-1 immunoreactive neurons identified ipsilateral to the NTS injection site (1207 ± 78), 32.3 ± 2.3% co-expressed L-Enk immunoreactivity and of these, 2.6 ± 1.1% were retrogradely labeled with FG. Hcrt-1/L-Enk neurons projecting to NTS were found mainly within the perifornical region. In the second series, the region of caudal NTS found to contain axons that co-expressed hcrt-1 and L-Enk immunoreactivity was microinjected with a combination of hcrt-1 and DADL in α-chloralose anesthetized Wistar rats. Microinjection of DADL into NTS elicited depressor and bradycardia responses similar to those elicited by microinjection of hcrt-1. An hcrt-1 injection immediately after the DADL injection elicited an almost twofold increase in the magnitude of the depressor and bradycardia responses compared to those elicited by hcrt-1 alone. Prior injections of the non-specific opioid receptor antagonist naloxone or the specific opioid δ-receptor antagonist ICI 154,129 significantly attenuated the cardiovascular responses to the combined hcrt-1-DADL injections. Taken together, these data suggest that activation of hypothalamic-opioidergic neuronal systems contribute to the NTS hcrt-1 induced cardiovascular responses, and that this descending hypothalamo

  6. Orexin receptor expression in the hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes of free-living European beavers (Castor fiber L.) in different periods of the reproductive cycle.

    Science.gov (United States)

    Czerwinska, Joanna; Chojnowska, Katarzyna; Kaminski, Tadeusz; Bogacka, Iwona; Smolinska, Nina; Kaminska, Barbara

    2017-01-01

    Orexins are hypothalamic neuropeptides acting via two G protein-coupled receptors in mammals: orexin receptor 1 (OX1R) and orexin receptor 2 (OX2R). In European beavers, which are seasonally breeding animals, the presence and functions of orexins and their receptors remain unknown. Our study aimed to determine the expression of OXR mRNAs and the localization of OXR proteins in hypothalamic-pituitary-adrenal/gonadal (HPA/HPG) axes in free-living beavers. The expression of OXR genes (OX1R, OX2R) and proteins was found in all analysed tissues during three periods of beavers' reproductive cycle (April, July, November). The expression of OXR mRNAs in the beaver HPA axis varied seasonally (Ppituitary and adrenals, OX1R mRNA levels were relatively constant in females and peaked in July in males (P<0.05), whereas the OX2R was most highly expressed in males in November and in females in April (P<0.05). In gonads, OX1R expression did not fluctuate between seasons or sexes, but transcript levels were elevated in the testes in November and in the ovaries in July (P<0.05). In turn, OX2R mRNA levels varied between the sexes (P<0.05) and were higher in females (July and November) than in males (P<0.05). The circannual variations in OXR mRNA levels in HPA and HPG axes suggest that the expression of these receptors is associated with sex-specific changes in beavers' reproductive activity and their environmental adaptations. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Influence of serial electrical stimulations of perifornical and posterior hypothalamic orexin-containing neurons on regulation of sleep homeostasis and sleep-wakefulness cycle recovery from experimental comatose state and anesthesia-induced deep sleep.

    Science.gov (United States)

    Chijavadze, E; Chkhartishvili, E; Babilodze, M; Maglakelidze, N; Nachkebia, N

    2013-11-01

    The work was aimed for the ascertainment of following question - whether Orexin-containing neurons of dorsal and lateral hypothalamic, and brain Orexinergic system in general, are those cellular targets which can speed up recovery of disturbed sleep homeostasis and accelerate restoration of sleep-wakefulness cycle phases during some pathological conditions - experimental comatose state and/or deep anesthesia-induced sleep. Study was carried out on white rats. Modeling of experimental comatose state was made by midbrain cytotoxic lesions at intra-collicular level.Animals were under artificial respiration and special care. Different doses of Sodium Ethaminal were used for deep anesthesia. 30 min after comatose state and/or deep anesthesia induced sleep serial electrical stimulations of posterior and/or perifornical hypothalamus were started. Stimulation period lasted for 1 hour with the 5 min intervals between subsequent stimulations applied by turn to the left and right side hypothalamic parts.EEG registration of cortical and hippocampal electrical activity was started immediately after experimental comatose state and deep anesthesia induced sleep and continued continuously during 72 hour. According to obtained new evidences, serial electrical stimulations of posterior and perifornical hypothalamic Orexin-containing neurons significantly accelerate recovery of sleep homeostasis, disturbed because of comatose state and/or deep anesthesia induced sleep. Speed up recovery of sleep homeostasis was manifested in acceleration of coming out from comatose state and deep anesthesia induced sleep and significant early restoration of sleep-wakefulness cycle behavioral states.

  8. Genetic association, seasonal infections and autoimmune basis of narcolepsy

    Science.gov (United States)

    Singh, Abinav Kumar; Mahlios, Josh; Mignot, Emmanuel

    2014-01-01

    In recent years, a growing number of potential autoimmune disorders affecting neurons in the central nervous system have been identified, including narcolepsy. Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness with irresistible sleep attacks, cataplexy (sudden bilateral loss of muscle tone), hypnagogic hallucinations, and abnormalities of Rapid Eye Movement sleep. Narcolepsy is generally a sporadic disorder and is caused by the loss of hypocretin (orexin)-producing neurons in the hypothalamus region of the brain. Studies have established that more than 90% of patients have a genetic association with HLA DQB1*06:02. Genome-wide association analysis shows a strong association between narcolepsy and polymorphisms in the TCRα locus and weaker associations within TNFSF4 (also called OX40L), Cathepsin H and the P2RY11-DNMT1 (purinergic receptor subtype P2Y11 to DNMT1, a DNA methytransferase) loci, suggesting an autoimmune basis. Mutations in DNMT1 have also been reported to cause narcolepsy in association with a complex neurological syndrome, suggesting the importance of DNA methylation in the pathology. More recently, narcolepsy was identified in association with seasonal streptococcus, H1N1 infections and following AS03-adjuvanted pH1N1 influenza vaccination in Northern Europe. Potential immunological pathways responsible for the loss of hypocretin producing neurons in these cases may be molecular mimicry or bystander activation. Specific autoantibodies or T cells cross-reactive with hypocretin neurons have not yet been identified, however, thus narcolepsy does not meet Witebsky’s criteria for an autoimmune disease. As the brain is not an easily accessible organ, mechanisms of disease initiation and progression remain a challenge to researchers. PMID:23497937

  9. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome.

    Science.gov (United States)

    Steiner, Michel A; Sciarretta, Carla; Pasquali, Anne; Jenck, Francois

    2013-01-01

    The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1) in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF) diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO) associated with metabolic syndrome (MetS). Rats were fed either standard chow (SC) or a cafeteria (CAF) diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S) diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks) and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure) were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% vs. controls) and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG) plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this model.

  10. The selective orexin receptor 1 antagonist ACT-335827 in a rat model of diet-induced obesity associated with metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Michel Alexander Steiner

    2013-12-01

    Full Text Available The orexin system regulates feeding, nutrient metabolism and energy homeostasis. Acute pharmacological blockade of orexin receptor 1 (OXR-1 in rodents induces satiety and reduces normal and palatable food intake. Genetic OXR-1 deletion in mice improves hyperglycemia under high-fat (HF diet conditions. Here we investigated the effects of chronic treatment with the novel selective OXR-1 antagonist ACT-335827 in a rat model of diet-induced obesity (DIO associated with metabolic syndrome (MetS. Rats were fed either standard chow (SC or a cafeteria (CAF diet comprised of intermittent human snacks and a constant free choice between a HF/sweet (HF/S diet and SC for 13 weeks. Thereafter the SC group was treated with vehicle (for 4 weeks and the CAF group was divided into a vehicle and an ACT-335827 treatment group. Energy and water intake, food preference, and indicators of MetS (abdominal obesity, glucose homeostasis, plasma lipids, and blood pressure were monitored. Hippocampus-dependent memory, which can be impaired by DIO, was assessed. CAF diet fed rats treated with ACT-335827 consumed less of the HF/S diet and more of the SC, but did not change their snack or total kcal intake compared to vehicle-treated rats. ACT-335827 increased water intake and the high-density lipoprotein associated cholesterol proportion of total circulating cholesterol. ACT-335827 slightly increased body weight gain (4% versus controls and feed efficiency in the absence of hyperphagia. These effects were not associated with significant changes in the elevated fasting glucose and triglyceride (TG plasma levels, glucose intolerance, elevated blood pressure, and adiposity due to CAF diet consumption. Neither CAF diet consumption alone nor ACT-335827 affected memory. In conclusion, the main metabolic characteristics associated with DIO and MetS in rats remained unaffected by chronic ACT-335827 treatment, suggesting that pharmacological OXR-1 blockade has minimal impact in this

  11. Neuronal Antibodies in Children with or without Narcolepsy following H1N1-AS03 Vaccination.

    Directory of Open Access Journals (Sweden)

    Simon Thebault

    Full Text Available Type 1 narcolepsy is caused by deficiency of hypothalamic orexin/hypocretin. An autoimmune basis is suspected, but no specific antibodies, either causative or as biomarkers, have been identified. However, the AS03 adjuvanted split virion H1N1 (H1N1-AS03 vaccine, created to protect against the 2009 Pandemic, has been implicated as a trigger of narcolepsy particularly in children. Sera and CSFs from 13 H1N1-AS03-vaccinated patients (12 children, 1 young adult with type 1 narcolepsy were tested for autoantibodies to known neuronal antigens including the N-methyl-D-aspartate receptor (NMDAR and contactin-associated protein 2 (CASPR2, both associated with encephalopathies that include disordered sleep, to rodent brain tissue including the lateral hypothalamus, and to live hippocampal neurons in culture. When sufficient sample was available, CSF levels of melanin-concentrating hormone (MCH were measured. Sera from 44 H1N1-ASO3-vaccinated children without narcolepsy were also examined. None of these patients' CSFs or sera was positive for NMDAR or CASPR2 antibodies or binding to neurons; 4/13 sera bound to orexin-neurons in rat brain tissue, but also to other neurons. MCH levels were a marginally raised (n = 8; p = 0.054 in orexin-deficient narcolepsy patients compared with orexin-normal children (n = 6. In the 44 H1N1-AS03-vaccinated healthy children, there was no rise in total IgG levels or in CASPR2 or NMDAR antibodies three weeks following vaccination. In conclusion, there were no narcolepsy-specific autoantibodies identified in type 1 narcolepsy sera or CSFs, and no evidence for a general increase in immune reactivity following H1N1-AS03 vaccination in the healthy children. Antibodies to other neuronal specific membrane targets, with their potential for directing use of immunotherapies, are still an important goal for future research.

  12. Neuronal Antibodies in Children with or without Narcolepsy following H1N1-AS03 Vaccination.

    Science.gov (United States)

    Thebault, Simon; Waters, Patrick; Snape, Matthew D; Cottrell, Dominic; Darin, Niklas; Hallböök, Tove; Huutoniemi, Anne; Partinen, Markku; Pollard, Andrew J; Vincent, Angela

    2015-01-01

    Type 1 narcolepsy is caused by deficiency of hypothalamic orexin/hypocretin. An autoimmune basis is suspected, but no specific antibodies, either causative or as biomarkers, have been identified. However, the AS03 adjuvanted split virion H1N1 (H1N1-AS03) vaccine, created to protect against the 2009 Pandemic, has been implicated as a trigger of narcolepsy particularly in children. Sera and CSFs from 13 H1N1-AS03-vaccinated patients (12 children, 1 young adult) with type 1 narcolepsy were tested for autoantibodies to known neuronal antigens including the N-methyl-D-aspartate receptor (NMDAR) and contactin-associated protein 2 (CASPR2), both associated with encephalopathies that include disordered sleep, to rodent brain tissue including the lateral hypothalamus, and to live hippocampal neurons in culture. When sufficient sample was available, CSF levels of melanin-concentrating hormone (MCH) were measured. Sera from 44 H1N1-ASO3-vaccinated children without narcolepsy were also examined. None of these patients' CSFs or sera was positive for NMDAR or CASPR2 antibodies or binding to neurons; 4/13 sera bound to orexin-neurons in rat brain tissue, but also to other neurons. MCH levels were a marginally raised (n = 8; p = 0.054) in orexin-deficient narcolepsy patients compared with orexin-normal children (n = 6). In the 44 H1N1-AS03-vaccinated healthy children, there was no rise in total IgG levels or in CASPR2 or NMDAR antibodies three weeks following vaccination. In conclusion, there were no narcolepsy-specific autoantibodies identified in type 1 narcolepsy sera or CSFs, and no evidence for a general increase in immune reactivity following H1N1-AS03 vaccination in the healthy children. Antibodies to other neuronal specific membrane targets, with their potential for directing use of immunotherapies, are still an important goal for future research.

  13. Evaluation of JNJ-54717793 a Novel Brain Penetrant Selective Orexin 1 Receptor Antagonist in Two Rat Models of Panic Attack Provocation

    Directory of Open Access Journals (Sweden)

    Pascal Bonaventure

    2017-06-01

    Full Text Available Orexin neurons originating in the perifornical and lateral hypothalamic area are highly reactive to anxiogenic stimuli and have strong projections to anxiety and panic-associated circuitry. Recent studies support a role for the orexin system and in particular the orexin 1 receptor (OX1R in coordinating an integrative stress response. However, no selective OX1R antagonist has been systematically tested in two preclinical models of using panicogenic stimuli that induce panic attack in the majority of people with panic disorder, namely an acute hypercapnia-panic provocation model and a model involving chronic inhibition of GABA synthesis in the perifornical hypothalamic area followed by intravenous sodium lactate infusion. Here we report on a novel brain penetrant, selective and high affinity OX1R antagonist JNJ-54717793 (1S,2R,4R-7-([(3-fluoro-2-pyrimidin-2-ylphenylcarbonyl]-N-[5-(trifluoromethylpyrazin-2-yl]-7-azabicyclo[2.2.1]heptan-2-amine. JNJ-54717793 is a high affinity/potent OX1R antagonist and has an excellent selectivity profile including 50 fold versus the OX2R. Ex vivo receptor binding studies demonstrated that after oral administration JNJ-54717793 crossed the blood brain barrier and occupied OX1Rs in the rat brain. While JNJ-54717793 had minimal effect on spontaneous sleep in rats and in wild-type mice, its administration in OX2R knockout mice, selectively promoted rapid eye movement sleep, demonstrating target engagement and specific OX1R blockade. JNJ-54717793 attenuated CO2 and sodium lactate induced panic-like behaviors and cardiovascular responses without altering baseline locomotor or autonomic activity. These data confirm that selective OX1R antagonism may represent a novel approach of treating anxiety disorders, with no apparent sedative effects.

  14. Characterization of JNJ-42847922, a Selective Orexin-2 Receptor Antagonist, as a Clinical Candidate for the Treatment of Insomnia.

    Science.gov (United States)

    Bonaventure, Pascal; Shelton, Jonathan; Yun, Sujin; Nepomuceno, Diane; Sutton, Steven; Aluisio, Leah; Fraser, Ian; Lord, Brian; Shoblock, James; Welty, Natalie; Chaplan, Sandra R; Aguilar, Zuleima; Halter, Robin; Ndifor, Anthony; Koudriakova, Tatiana; Rizzolio, Michele; Letavic, Michael; Carruthers, Nicholas I; Lovenberg, Timothy; Dugovic, Christine

    2015-09-01

    Dual orexin receptor antagonists have been shown to promote sleep in various species, including humans. Emerging research indicates that selective orexin-2 receptor (OX2R) antagonists may offer specificity and a more adequate sleep profile by preserving normal sleep architecture. Here, we characterized JNJ-42847922 ([5-(4,6-dimethyl-pyrimidin-2-yl)-hexahydro-pyrrolo[3,4-c]pyrrol-2-yl]-(2-fluoro-6-[1,2,3]triazol-2-yl-phenyl)-methanone), a high-affinity/potent OX2R antagonist. JNJ-42847922 had an approximate 2-log selectivity ratio versus the human orexin-1 receptor. Ex vivo receptor binding studies demonstrated that JNJ-42847922 quickly occupied OX2R binding sites in the rat brain after oral administration and rapidly cleared from the brain. In rats, single oral administration of JNJ-42847922 (3-30 mg/kg) during the light phase dose dependently reduced the latency to non-rapid eye movement (NREM) sleep and prolonged NREM sleep time in the first 2 hours, whereas REM sleep was minimally affected. The reduced sleep onset and increased sleep duration were maintained upon 7-day repeated dosing (30 mg/kg) with JNJ-42847922, then all sleep parameters returned to baseline levels following discontinuation. Although the compound promoted sleep in wild-type mice, it had no effect in OX2R knockout mice, consistent with a specific OX2R-mediated sleep response. JNJ-42847922 did not increase dopamine release in rat nucleus accumbens or produce place preference in mice after subchronic conditioning, indicating that the compound lacks intrinsic motivational properties in contrast to zolpidem. In a single ascending dose study conducted in healthy subjects, JNJ-42847922 increased somnolence and displayed a favorable pharmacokinetic and safety profile for a sedative/hypnotic, thus emerging as a promising candidate for further clinical development for the treatment of insomnia. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  15. Descending projections of the hamster intergeniculate leaflet: relationship to the sleep/arousal and visuomotor systems

    Science.gov (United States)

    Morin, Lawrence P.; Blanchard, Jane H.

    2005-01-01

    The intergeniculate leaflet (IGL), homolog of the primate pregeniculate nucleus, modulates circadian rhythms. However, its extensive anatomical connections suggest that it may regulate other systems, particularly those for visuomotor function and sleep/arousal. Here, descending IGL-efferent pathways are identified with the anterograde tracer, Phaseolus vulgaris leucoagglutinin, with projections to over 50 brain stem nuclei. Projections of the ventral lateral geniculate are similar, but more limited. Many of the nuclei with IGL afferents contribute to circuitry governing visuomotor function. These include the oculomotor, trochlear, anterior pretectal, Edinger-Westphal, and the terminal nuclei; all layers of the superior colliculus, interstitial nucleus of the medial longitudinal fasciculus, supraoculomotor periaqueductal gray, nucleus of the optic tract, the inferior olive, and raphe interpositus. Other target nuclei are known to be involved in the regulation of sleep, including the lateral dorsal and pedunculopontine tegmentum. The dorsal raphe also receives projections from the IGL and may contribute to both sleep/arousal and visuomotor function. However, the locus coeruleus and medial vestibular nucleus, which contribute to sleep and eye movement regulation and which send projections to the IGL, do not receive reciprocal projections from it. The potential involvement of the IGL with the sleep/arousal system is further buttressed by existing evidence showing IGL-efferent projections to the ventrolateral preoptic area, dorsomedial, and medial tuberal hypothalamus. In addition, the great majority of all regions receiving IGL projections also receive input from the orexin/hypocretin system, suggesting that this system contributes not only to the regulation of sleep, but to eye movement control as well.

  16. Failure to upregulate Agrp and Orexin in response to activity based anorexia in weight loss vulnerable rats characterized by passive stress coping and prenatal stress experience.

    Science.gov (United States)

    Boersma, Gretha J; Liang, Nu-Chu; Lee, Richard S; Albertz, Jennifer D; Kastelein, Anneke; Moody, Laura A; Aryal, Shivani; Moran, Timothy H; Tamashiro, Kellie L

    2016-05-01

    We hypothesize that anorexia nervosa (AN) poses a physiological stress. Therefore, the way an individual copes with stress may affect AN vulnerability. Since prenatal stress (PNS) exposure alters stress responsivity in offspring this may increase their risk of developing AN. We tested this hypothesis using the activity based anorexia (ABA) rat model in control and PNS rats that were characterized by either proactive or passive stress-coping behavior. We found that PNS passively coping rats ate less and lost more weight during the ABA paradigm. Exposure to ABA resulted in higher baseline corticosterone and lower insulin levels in all groups. However, leptin levels were only decreased in rats with a proactive stress-coping style. Similarly, ghrelin levels were increased only in proactively coping ABA rats. Neuropeptide Y (Npy) expression was increased and proopiomelanocortin (Pomc) expression was decreased in all rats exposed to ABA. In contrast, agouti-related peptide (Agrp) and orexin (Hctr) expression were increased in all but the PNS passively coping ABA rats. Furthermore, DNA methylation of the orexin gene was increased after ABA in proactive coping rats and not in passive coping rats. Overall our study suggests that passive PNS rats have innate impairments in leptin and ghrelin in responses to starvation combined with prenatal stress associated impairments in Agrp and orexin expression in response to starvation. These impairments may underlie decreased food intake and associated heightened body weight loss during ABA in the passively coping PNS rats. Published by Elsevier Ltd.

  17. Norepinephrine is required to promote wakefulness and for hypocretin-induced arousal in zebrafish.

    Science.gov (United States)

    Singh, Chanpreet; Oikonomou, Grigorios; Prober, David A

    2015-09-16

    Pharmacological studies in mammals suggest that norepinephrine (NE) plays an important role in promoting arousal. However, the role of endogenous NE is unclear, with contradicting reports concerning the sleep phenotypes of mice lacking NE due to mutation of dopamine β-hydroxylase (dbh). To investigate NE function in an alternative vertebrate model, we generated dbh mutant zebrafish. In contrast to mice, these animals exhibit dramatically increased sleep. Surprisingly, despite an increase in sleep, dbh mutant zebrafish have a reduced arousal threshold. These phenotypes are also observed in zebrafish treated with small molecules that inhibit NE signaling, suggesting that they are caused by the lack of NE. Using genetic overexpression of hypocretin (Hcrt) and optogenetic activation of hcrt-expressing neurons, we also find that NE is important for Hcrt-induced arousal. These results establish a role for endogenous NE in promoting arousal and indicate that NE is a critical downstream effector of Hcrt neurons.

  18. Assessment of the abuse liability of a dual orexin receptor antagonist: a crossover study of almorexant and zolpidem in recreational drug users.

    Science.gov (United States)

    Cruz, Hans G; Hoever, Petra; Chakraborty, Bijan; Schoedel, Kerri; Sellers, Edward M; Dingemanse, Jasper

    2014-04-01

    Dual orexin receptor antagonists (DORAs) enable initiation and maintenance of sleep in patients with primary insomnia. Blockade of the orexin system has shown reduction of drug-seeking behavior in animal studies, supporting the role of orexin antagonism as a novel approach for treating substance abuse. Since hypnotics are traditionally associated with misuse, a lack of abuse liability of DORAs would offer significant benefits over current therapies for sleep disorders. In this randomized, crossover, proof-of-concept study, single oral doses of the DORA almorexant (200, 400, and 1,000 mg) were administered to healthy subjects with previous non-therapeutic experience with central nervous system depressants and were compared with placebo and single oral doses of zolpidem (20 and 40 mg), a benzodiazepine-like drug. Subjective measures of abuse potential (visual analog scales [VAS], Addiction Research Center Inventory, and Subjective Drug Value) and objective measures (divided attention [DA]) were evaluated over 24 h post-dose in 33 evaluable subjects. Drug Liking VAS peak effect (E max; primary endpoint) was significantly higher for all doses of almorexant and zolpidem compared with placebo (p<0.001). Almorexant 200 mg showed significantly less 'Drug Liking' than both zolpidem doses (p<0.01), and almorexant 400 mg had smaller effects than zolpidem 20 mg (p<0.05), while almorexant 1,000 mg was not different from either zolpidem dose. Results were similar for other subjective measures, although almorexant generally showed smaller negative and perceptual effects compared with zolpidem. Almorexant also showed less cognitive impairment compared with zolpidem on most DA endpoints. This study in humans investigating single doses of almorexant is the first to explore and show abuse liability of a DORA, a class of compounds that is not only promising for the treatment of sleep disorders, but also of addiction.

  19. Challenges in the development of therapeutics for narcolepsy.

    Science.gov (United States)

    Black, Sarah Wurts; Yamanaka, Akihiro; Kilduff, Thomas S

    2017-05-01

    Narcolepsy is a neurological disorder that afflicts 1 in 2000 individuals and is characterized by excessive daytime sleepiness and cataplexy-a sudden loss of muscle tone triggered by positive emotions. Features of narcolepsy include dysregulation of arousal state boundaries as well as autonomic and metabolic disturbances. Disruption of neurotransmission through the hypocretin/orexin (Hcrt) system, usually by degeneration of the HCRT-producing neurons in the posterior hypothalamus, results in narcolepsy. The cause of Hcrt neurodegeneration is unknown but thought to be related to autoimmune processes. Current treatments for narcolepsy are symptomatic, including wake-promoting therapeutics that increase presynaptic dopamine release and anticataplectic agents that activate monoaminergic neurotransmission. Sodium oxybate is the only medication approved by the US Food and Drug Administration that alleviates both sleep/wake disturbances and cataplexy. Development of therapeutics for narcolepsy has been challenged by historical misunderstanding of the disease, its many disparate symptoms and, until recently, its unknown etiology. Animal models have been essential to elucidating the neuropathology underlying narcolepsy. These models have also aided understanding the neurobiology of the Hcrt system, mechanisms of cataplexy, and the pharmacology of narcolepsy medications. Transgenic rodent models will be critical in the development of novel therapeutics for the treatment of narcolepsy, particularly efforts directed to overcome challenges in the development of hypocretin replacement therapy. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. [Relationships between sleep and addiction].

    Science.gov (United States)

    Cañellas, Francesca; de Lecea, Luis

    2012-01-01

    While it is well known that there is an interaction between sleep disorders and substance abuse, it is certainly more complex than was previously thought. There is a positive relationship both between having a substance use disorder and suffering from a sleep disorder, and vice versa. The effects on sleep depend on the substance used, but it has been shown that both during use and in withdrawal periods consumers have various sleep problems, and basically more fragmented sleep. We know that sleep problems must be taken into account to prevent addiction relapses. Recent research shows that the hypocretinergic system defined by neuropeptide hypocretin / orexin (Hcrt / ox), located in the lateral hypothalamus and involved in, among other things, the regulation of the sleep-wake cycle, may play an important role in addictive behaviors. Different studies have demonstrated interactions between the hypocretinergic system, acute response to stress circuits and reward systems. We also know that selective optogenetic activation of the hypocretinergic system increases the probability of transition from sleep to wakefulness, and is sufficient for initiating an addictive compulsive behavior relapse. Hypocretinergic system activation could explain the hyperarousal associated with stress and addiction. Improved knowledge of this interaction would help us to understand better the mechanisms of addiction and find new strategies for the treatment of addictions.

  1. Differential expression of appetite-regulating genes in avian models of anorexia and obesity.

    Science.gov (United States)

    Yi, J; Yuan, J; Gilbert, E R; Siegel, P B; Cline, M A

    2017-08-01

    Chickens from lines that have been selected for low (LWS) or high (HWS) juvenile body weight for more than 57 generations provide a unique model by which to research appetite regulation. The LWS display different severities of anorexia, whereas all HWS become obese. In the present study, we measured mRNA abundance of various factors in appetite-associated nuclei in the hypothalamus. The lateral hypothalamus (LHA), paraventricular nucleus (PVN), ventromedial hypothalamus (VMH), dorsomedial nucleus (DMN) and arcuate nucleus (ARC) were collected from 5 day-old chicks that were fasted for 180 minutes or provided with continuous access to food. Fasting increased neuropeptide Y receptor subtype 1 (NPYR1) mRNA in the LHA and c-Fos in the VMH, at the same time as decreasing c-Fos in the LHA, neuropeptide Y receptor subtype 5 and ghrelin in the PVN, and neuropeptide Y receptor subtype 2 in the ARC. Fasting increased melanocortin receptor subtype 3 (MC3R) expression in the DMN and NPY in the ARC of LWS but not HWS chicks. Expression of NPY was greater in LWS than HWS in the DMN. neuropeptide Y receptor subtype 5 mRNA was greater in LWS than HWS in the LHA, PVN and ARC. Expression of orexin was greater in LWS than HWS in the LHA. There was greater expression of NPYR1, melanocortin receptor subtype 4 and cocaine- and amphetamine-regulated transcript in HWS than LWS and mesotocin in LWS than HWS in the PVN. In the ARC, agouti-related peptide and MC3R were greater in LWS than HWS and, in the VMH, orexin receptor 2 and leptin receptor were greater in LWS than HWS. Greater mesotocin in the PVN, orexin in the LHA and ORXR2 in the VMH of LWS may contribute to their increased sympathetic tone and anorexic phenotype. The results of the present study also suggest that an increased hypothalamic anorexigenic tone in the LWS over-rides orexigenic factors such as NPY and AgRP that were more highly expressed in LWS than HWS in several nuclei. Published 2017. This article is a U

  2. Generation of neuropeptidergic hypothalamic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Merkle, Florian T; Maroof, Asif; Wataya, Takafumi; Sasai, Yoshiki; Studer, Lorenz; Eggan, Kevin; Schier, Alexander F

    2015-02-15

    Hypothalamic neurons orchestrate many essential physiological and behavioral processes via secreted neuropeptides, and are relevant to human diseases such as obesity, narcolepsy and infertility. We report the differentiation of human pluripotent stem cells into many of the major types of neuropeptidergic hypothalamic neurons, including those producing pro-opiolemelanocortin, agouti-related peptide, hypocretin/orexin, melanin-concentrating hormone, oxytocin, arginine vasopressin, corticotropin-releasing hormone (CRH) or thyrotropin-releasing hormone. Hypothalamic neurons can be generated using a 'self-patterning' strategy that yields a broad array of cell types, or via a more reproducible directed differentiation approach. Stem cell-derived human hypothalamic neurons share characteristic morphological properties and gene expression patterns with their counterparts in vivo, and are able to integrate into the mouse brain. These neurons could form the basis of cellular models, chemical screens or cellular therapies to study and treat common human diseases. © 2015. Published by The Company of Biologists Ltd.

  3. The hypocretins (orexins mediate the “phasic” components of REM sleep: A new hypothesis

    Directory of Open Access Journals (Sweden)

    Pablo Torterolo

    2014-03-01

    The hypocretinergic neurons are active during wakefulness in conjunction with the presence of motor activity that occurs during survival-related behaviors. These neurons decrease their firing rate during non-REM sleep; however there is still controversy upon the activity and role of these neurons during REM sleep. Hence, in the present report we conducted a critical review of the literature of the hypocretinergic system during REM sleep, and hypothesize a possible role of this system in the generation of REM sleep.

  4. Molecular cloning and characterization of preproorexin in winter skate (Leucoraja ocellata).

    Science.gov (United States)

    MacDonald, Erin E; Volkoff, Hélène

    2010-12-01

    A 815 base pairs (bp) cDNA encoding for preproorexin (preproOX) was cloned in winter skate, a cartilaginous fish. Winter skate preproOX is 159 amino acids (aa) long and contains a 34 aa orexin A and 28 aa orexin B. The amino acid sequence of winter skate preproOX is more similar to tetrapod preproOXs (36-40% identity) than teleost preproOXs (23-33% identity). Whereas orexin B appears relatively well conserved among vertebrates, orexin A displays more variability, in particular due to an "insertion sequence" that is present in teleost fish, but not in skate and tetrapods. RT-PCR studies show that preproOX mRNA has a widespread distribution within the brain and is present in several peripheral tissues, including gastrointestinal tract, heart and testes. Fasting induced increases in preproOX expression in the hypothalamus, suggesting that orexin might play a role in the regulation of food intake in winter skate. Copyright © 2010 Elsevier Inc. All rights reserved.

  5. The orexin component of fasting triggers memory processes underlying conditioned food selection in the rat.

    Science.gov (United States)

    Ferry, Barbara; Duchamp-Viret, Patricia

    2014-03-14

    To test the selectivity of the orexin A (OXA) system in olfactory sensitivity, the present study compared the effects of fasting and of central infusion of OXA on the memory processes underlying odor-malaise association during the conditioned odor aversion (COA) paradigm. Animals implanted with a cannula in the left ventricle received ICV infusion of OXA or artificial cerebrospinal fluid (ACSF) 1 h before COA acquisition. An additional group of intact rats were food-deprived for 24 h before acquisition. Results showed that the increased olfactory sensitivity induced by fasting and by OXA infusion was accompanied by enhanced COA performance. The present results suggest that fasting-induced central OXA release influenced COA learning by increasing not only olfactory sensitivity, but also the memory processes underlying the odor-malaise association.

  6. HLA-DPB1 and HLA class I confer risk of and protection from narcolepsy

    DEFF Research Database (Denmark)

    Ollila, Hanna M; Ravel, Jean-Marie; Han, Fang

    2015-01-01

    Type 1 narcolepsy, a disorder caused by a lack of hypocretin (orexin), is so strongly associated with human leukocyte antigen (HLA) class II HLA-DQA1(∗)01:02-DQB1(∗)06:02 (DQ0602) that very few non-DQ0602 cases have been reported. A known triggering factor for narcolepsy is pandemic 2009 influenza......-class-II-independent associations with HLA-A(∗)11:01 (OR = 1.32 [1.13-1.54], p = 4.92 × 10(-4)), HLA-B(∗)35:03 (OR = 1.96 [1.41-2.70], p = 5.14 × 10(-5)), and HLA-B(∗)51:01 (OR = 1.49 [1.25-1.78], p = 1.09 × 10(-5)) were also seen across ethnic groups in the HLA class I region. These effects might reflect modulation...... of autoimmunity or indirect effects of HLA class I and HLA-DP alleles on response to viral infections such as that of influenza....

  7. Presynaptic Regulation of Leptin in a Defined Lateral Hypothalamus-Ventral Tegmental Area Neurocircuitry Depends on Energy State.

    Science.gov (United States)

    Liu, Jing-Jing; Bello, Nicholas T; Pang, Zhiping P

    2017-12-06

    Synaptic transmission controls brain activity and behaviors, including food intake. Leptin, an adipocyte-derived hormone, acts on neurons located in the lateral hypothalamic area (LHA) to maintain energy homeostasis and regulate food intake behavior. The specific synaptic mechanisms, cell types, and neural projections mediating this effect remain unclear. In male mice, using pathway-specific retrograde tracing, whole-cell patch-clamp recordings and post hoc cell type identification, we found that leptin reduces excitatory synaptic strength onto both melanin-concentrating hormone- and orexin-expressing neurons projecting from the LHA to the ventral tegmental area (VTA), which may affect dopamine signaling and motivation for feeding. A presynaptic mechanism mediated by distinct intracellular signaling mechanisms may account for this regulation by leptin. The regulatory effects of leptin depend on intact leptin receptor signaling. Interestingly, the synaptic regulatory function of leptin in the LHA-to-VTA neuronal pathway is highly sensitive to energy states: both energy deficiency (acute fasting) and excessive energy storage (high-fat diet-induced obesity) blunt the effect of leptin. These data revealed that leptin may regulate synaptic transmission in the LHA-to-VTA neurocircuitry in an inverted "U-shape" fashion dependent on plasma glucose levels and related to metabolic states. SIGNIFICANCE STATEMENT The lateral hypothalamic area (LHA) to ventral tegmental area (VTA) projection is an important neural pathway involved in balancing whole-body energy states and reward. We found that the excitatory synaptic inputs to both orexin- and melanin-concentrating hormone expressing LHA neurons projecting to the VTA were suppressed by leptin, a peptide hormone derived from adipocytes that signals peripheral energy status to the brain. Interestingly, energy states seem to affect how leptin regulates synaptic transmission since both the depletion of energy induced by acute food

  8. Effects of sex and reproductive experience on the number of orexin A-immunoreactive cells in the prairie vole brain.

    Science.gov (United States)

    Donlin, Michael; Cavanaugh, Breyanna L; Spagnuolo, Olivia S; Yan, Lily; Lonstein, Joseph S

    2014-07-01

    Large populations of cells synthesizing the neuropeptide orexin (OX) exist in the caudal hypothalamus of all species examined and are implicated in physiological and behavioral processes including arousal, stress, anxiety and depression, reproduction, and goal-directed behaviors. Hypothalamic OX expression is sexually dimorphic in different directions in laboratory rats (F>M) and mice (M>F), suggesting different roles in male and female physiology and behavior that are species-specific. We here examined if the number of hypothalamic cells immunoreactive for orexin A (OXA) differs between male and female prairie voles (Microtus ochrogaster), a socially monogamous species that pairbonds after mating and in which both sexes care for offspring, and if reproductive experience influences their number of OXA-immunoreactive (OXA-ir) cells. It was found that the total number of OXA-ir cells did not differ between the sexes, but females had more OXA-ir cells than males in anterior levels of the caudal hypothalamus, while males had more OXA-ir cells posteriorly. Sexually experienced females sacrificed 12 days after the birth of their first litter, or one day after birth of a second litter, had more OXA-ir cells in anterior levels but not posterior levels of the caudal hypothalamus compared to females housed with a brother (incest avoidance prevents sibling mating). Male prairie voles showed no effect of reproductive experience but showed an unexpected effect of cohabitation duration regardless of mating. The sex difference in the distribution of OXA-ir cells, and their increased number in anterior levels of the caudal hypothalamus of reproductively experienced female prairie voles, may reflect a sex-specific mechanism involved in pairbonding, parenting, or lactation in this species. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Early improvement in obstructive sleep apnea and increase in orexin levels after bariatric surgery in adolescents and young adults.

    Science.gov (United States)

    Amin, Raouf; Simakajornboon, Narong; Szczesniak, Rhonda; Inge, Thomas

    2017-01-01

    Obstructive sleep apnea (OSA) associated with obesity is known to improve after bariatric surgery, but little is known about early changes in this condition after surgery. To study the clinical course of OSA after bariatric surgery SETTING: Children's hospital in the United States METHODS: Adolescents and young adults with obstructive sleep apnea undergoing vertical sleeve gastrectomy (n = 6) or gastric bypass (n = 1) were enrolled in this prospective study. Participants underwent formal polysomnography before and at 3 and 5 weeks after bariatric surgery. Anthropometric measurements and assay for orexin and leptin were also performed at study visits. Thirty-one adolescents who underwent 2 polysomnography studies that were 4 weeks apart served as control patients. Baseline mean (range) age of participants was 17.8 (15.4-20.7) years, 71% were male, with body mass index of 55.2 (41.3-61.6) kg/m 2 and had a median apnea hypopnea index (AHI) of 15.8 (7.1-23.8) events/hour. Differences in least-square means from longitudinal analysis did not show significant differences in AHI in the control group but showed significant postoperative decline in AHI relative to baseline. AHI declined postoperatively from baseline by 9.2 events/hour (95% confidence interval: 3.8 to 14.5) at 3 weeks (P = .002) and 9.1 events/hour (95% confidence interval: 3.8 to 14.5) at 5 weeks (P = .002); there was no significant change from 3 to 5 weeks in AHI. Leptin decreased and orexin levels increased significantly by 3 weeks postoperatively. These observations suggest that OSA responds early and out of proportion to weight loss after metabolic and or bariatric surgery, thus weight independent factors may at least in part be responsible for early improvement in OSA postoperatively. Copyright © 2016 American Society for Bariatric Surgery. Published by Elsevier Inc. All rights reserved.

  10. Lhx6-positive GABA-releasing neurons of the zona incerta promote sleep

    Science.gov (United States)

    Liu, Kai; Kim, Juhyun; Kim, Dong Won; Zhang, Yi Stephanie; Bao, Hechen; Denaxa, Myrto; Lim, Szu-Aun; Kim, Eileen; Liu, Chang; Wickersham, Ian R.; Pachnis, Vassilis; Hattar, Samer; Song, Juan; Brown, Solange P.; Blackshaw, Seth

    2017-01-01

    Multiple populations of wake-promoting neurons have been characterized in mammals, but few sleep-promoting neurons have been identified1. Wake-promoting cell types include hypocretin and GABA (γ-aminobutyric-acid)-releasing neurons of the lateral hypothalamus, which promote the transition to wakefulness from non-rapid eye movement (NREM) and rapid eye movement (REM) sleep2,3. Here we show that a subset of GABAergic neurons in the mouse ventral zona incerta, which express the LIM homeodomain factor Lhx6 and are activated by sleep pressure, both directly inhibit wake-active hypocretin and GABAergic cells in the lateral hypothalamus and receive inputs from multiple sleep–wake-regulating neurons. Conditional deletion of Lhx6 from the developing diencephalon leads to decreases in both NREM and REM sleep. Furthermore, selective activation and inhibition of Lhx6-positive neurons in the ventral zona incerta bidirectionally regulate sleep time in adult mice, in part through hypocretin-dependent mechanisms. These studies identify a GABAergic subpopulation of neurons in the ventral zona incerta that promote sleep. PMID:28847002

  11. Increased serum brain-derived neurotrophic factor (BDNF) levels in patients with narcolepsy

    DEFF Research Database (Denmark)

    Klein, Anders B; Jennum, Poul; Knudsen, Stine

    2013-01-01

    in hypocretin neurons in hypothalamus in post-mortem tissue. Brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) are important for activity-dependent neuronal function and synaptic modulation and it is considered that these mechanisms are important in sleep regulation. We hypothesised......Narcolepsy is a lifelong sleep disorder characterized by excessive daytime sleepiness, sudden loss of muscle tone (cataplexy), fragmentation of nocturnal sleep and sleep paralysis. The symptoms of the disease strongly correlate with a reduction in hypocretin levels in CSF and a reduction...... that serum levels of these factors are altered in patients with narcolepsy compared to healthy controls without sleep disturbances. Polysomnography data was obtained and serum BDNF and NGF levels measured using ELISA, while hypocretin was measured using RIA. Serum BDNF levels were significantly higher...

  12. Glutamate and GABA as rapid effectors of hypothalamic peptidergic neurons

    Directory of Open Access Journals (Sweden)

    Cornelia eSchöne

    2012-11-01

    Full Text Available Vital hypothalamic neurons regulating hunger, wakefulness, reward-seeking, and body weight are often defined by unique expression of hypothalamus-specific neuropeptides. Gene-ablation studies show that some of these peptides, notably orexin/hypocretin (hcrt/orx, are themselves critical for stable states of consciousness and metabolic health. However, neuron-ablation studies often reveal more severe phenotypes, suggesting key roles for co-expressed transmitters. Indeed, most hypothalamic neurons, including hcrt/orx cells, contain fast transmitters glutamate and GABA, as well as several neuropeptides. What are the roles and relations between different transmitters expressed by the same neuron? Here, we consider signaling codes for releasing different transmitters in relation to transmitter and receptor diversity in behaviorally-defined, widely-projecting peptidergic neurons, such as hcrt/orx cells. We then discuss latest optogenetic studies of endogenous transmitter release from defined sets of axons in situ, which suggest that recently-characterized vital peptidergic neurons (e.g. hcrt/orx, proopiomelanocortin , and agouti-related peptide cells, as well as classical modulatory neurons (e.g. dopamine and acetylcholine cells, all use fast transmitters to control their postsynaptic targets. These optogenetic insights are complemented by recent observations of behavioral deficiencies caused by genetic ablation of fast transmission from specific neuropeptidergic and aminergic neurons. Powerful and fast (millisecond-scale GABAergic and glutamatergic signaling from neurons previously considered to be primarily modulatory raises new questions about the roles of slower co-transmitters they co-express.

  13. The Use of Physiology-Based Pharmacokinetic and Pharmacodynamic Modeling in the Discovery of the Dual Orexin Receptor Antagonist ACT-541468.

    Science.gov (United States)

    Treiber, Alexander; de Kanter, Ruben; Roch, Catherine; Gatfield, John; Boss, Christoph; von Raumer, Markus; Schindelholz, Benno; Muehlan, Clemens; van Gerven, Joop; Jenck, Francois

    2017-09-01

    The identification of new sleep drugs poses particular challenges in drug discovery owing to disease-specific requirements such as rapid onset of action, sleep maintenance throughout major parts of the night, and absence of residual next-day effects. Robust tools to estimate drug levels in human brain are therefore key for a successful discovery program. Animal models constitute an appropriate choice for drugs without species differences in receptor pharmacology or pharmacokinetics. Translation to man becomes more challenging when interspecies differences are prominent. This report describes the discovery of the dual orexin receptor 1 and 2 (OX 1 and OX 2 ) antagonist ACT-541468 out of a class of structurally related compounds, by use of physiology-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling applied early in drug discovery. Although all drug candidates exhibited similar target receptor potencies and efficacy in a rat sleep model, they exhibited large interspecies differences in key factors determining their pharmacokinetic profile. Human PK models were built on the basis of in vitro metabolism and physicochemical data and were then used to predict the time course of OX 2 receptor occupancy in brain. An active ACT-541468 dose of 25 mg was estimated on the basis of OX 2 receptor occupancy thresholds of about 65% derived from clinical data for two other orexin antagonists, almorexant and suvorexant. Modeling predictions for ACT-541468 in man were largely confirmed in a single-ascending dose trial in healthy subjects. PBPK-PD modeling applied early in drug discovery, therefore, has great potential to assist in the identification of drug molecules when specific pharmacokinetic and pharmacodynamic requirements need to be met. Copyright © 2017 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Resuscitation therapy for traumatic brain injury-induced coma in rats: mechanisms of median nerve electrical stimulation

    Directory of Open Access Journals (Sweden)

    Zhen Feng

    2015-01-01

    Full Text Available In this study, rats were put into traumatic brain injury-induced coma and treated with median nerve electrical stimulation. We explored the wake-promoting effect, and possible mechanisms, of median nerve electrical stimulation. Electrical stimulation upregulated the expression levels of orexin-A and its receptor OX1R in the rat prefrontal cortex. Orexin-A expression gradually increased with increasing stimulation, while OX1R expression reached a peak at 12 hours and then decreased. In addition, after the OX1R antagonist, SB334867, was injected into the brain of rats after traumatic brain injury, fewer rats were restored to consciousness, and orexin-A and OXIR expression in the prefrontal cortex was downregulated. Our findings indicate that median nerve electrical stimulation induced an up-regulation of orexin-A and OX1R expression in the prefrontal cortex of traumatic brain injury-induced coma rats, which may be a potential mechanism involved in the wake-promoting effects of median nerve electrical stimulation.

  15. Preclinical assessment of the abuse potential of the orexin receptor antagonist, suvorexant.

    Science.gov (United States)

    Born, Stephanie; Gauvin, David V; Mukherjee, Suman; Briscoe, Richard

    2017-06-01

    Suvorexant (Belsomra ® ) is a dual orexin receptor antagonist approved for the treatment of insomnia. Because of its pharmacology within the central nervous system, intended therapeutic indication, and first-in-class status, an assessment of suvorexant abuse liability potential was required prior to marketing approval. The nonclinical abuse liability potential studies for suvorexant included: 1) rat drug-dependence model to assess physical dependence following abrupt cessation; 2) rat drug-discrimination model to examine the potential similarity of the interoceptive or subjective effects of suvorexant to those elicited by zolpidem and morphine; 3) self-administration model to assess the relative reinforcing efficacy of suvorexant in rhesus monkeys conditioned to self-administer methohexital. No significant signs of spontaneous drug withdrawal or 'discontinuation syndrome' were observed in rats following abrupt discontinuation of suvorexant. Suvorexant did not elicit complete cross-generalization to either a zolpidem or morphine training/reference stimuli in rats, and suvorexant was devoid of behavioral evidence of positive reinforcing efficacy in monkeys. These nonclinical findings suggested that suvorexant will have low abuse potential in humans. In the final regulatory risk assessment, suvorexant was placed into Schedule IV, likely due to its first-in-class status, its sedative properties, and the outcome of the clinical abuse potential assessment. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. The dual orexin receptor antagonist, DORA-22, lowers histamine levels in the lateral hypothalamus and prefrontal cortex without lowering hippocampal acetylcholine.

    Science.gov (United States)

    Yao, Lihang; Ramirez, Andres D; Roecker, Anthony J; Fox, Steven V; Uslaner, Jason M; Smith, Sean M; Hodgson, Robert; Coleman, Paul J; Renger, John J; Winrow, Christopher J; Gotter, Anthony L

    2017-07-01

    Chronic insomnia is defined as a persistent difficulty with sleep initiation maintenance or non-restorative sleep. The therapeutic standard of care for this condition is treatment with gamma-aminobutyric acid (GABA) A receptor modulators, which promote sleep but are associated with a panoply of side effects, including cognitive and memory impairment. Dual orexin receptor antagonists (DORAs) have recently emerged as an alternative therapeutic approach that acts via a distinct and more selective wake-attenuating mechanism with the potential to be associated with milder side effects. Given their distinct mechanism of action, the current work tested the hypothesis that DORAs and GABA A receptor modulators differentially regulate neurochemical pathways associated with differences in sleep architecture and cognitive performance induced by these pharmacological mechanisms. Our findings showed that DORA-22 suppresses the release of the wake neurotransmitter histamine in the lateral hypothalamus, prefrontal cortex, and hippocampus with no significant alterations in acetylcholine levels. In contrast, eszopiclone, commonly used as a GABA A modulator, inhibited acetylcholine secretion across brain regions with variable effects on histamine release depending on the extent of wakefulness induction. In normal waking rats, eszopiclone only transiently suppressed histamine secretion, whereas this suppression was more obvious under caffeine-induced wakefulness. Compared with the GABA A modulator eszopiclone, DORA-22 elicits a neurotransmitter profile consistent with wake reduction that does not impinge on neurotransmitter levels associated with cognition and rapid eye movement sleep. © 2017 International Society for Neurochemistry.

  17. Mechanism of action of narcolepsy medications.

    Science.gov (United States)

    Gowda, Chandan R; Lundt, Leslie P

    2014-12-01

    The medications used to treat narcolepsy are targeted toward alleviating symptoms such as excessive sleepiness and cataplexy. The cause of this neurological sleep disorder is still not completely clear, though a destruction of hypocretin/orexin neurons has been implicated. The destruction of these neurons is linked to inactivity of neurotransmitters including histamine, norepinephrine, acetylcholine, and serotonin, causing a disturbance in the sleep/wake cycles of narcoleptic patients. Stimulants and MAOIs have traditionally been used to counteract excessive daytime sleepiness and sleep attacks by inhibiting the breakdown of catecholamines. Newer drugs, called wake-promoting agents, have recently become first-line agents due to their better side-effect profile, efficacy, and lesser potential for abuse. These agents similarly inhibit reuptake of dopamine, but have a novel mechanism of action, as they have been found to increase neuronal activity in the tuberomamillary nucleus and in orexin neurons. Sodium oxybate, a sodium salt of gamma-hydroxybutyrate (GHB), is another class that is used to treat many symptoms of narcolepsy, and is the only U.S. Food and Drug Administration (FDA)-approved medication for cataplexy. It has a different mechanism of action than either stimulants or wake-promoting agents, as it binds to its own unique receptor. Antidepressants, like selective serotonin re-uptake inhibitors (SSRIs) and tricyclic antidepressants (TCAs), have also been used, as similar to stimulants, they inhibit reuptake of specific catecholamines. In this article, we seek to review the mechanisms behind these classes of drugs in relation to the proposed pathophysiology of narcolepsy. Appropriate clinical strategies will be discussed, including specific combinations of medications that have been shown to be effective.

  18. Plasma orexin A levels in recently menopausal women during and 3 years following use of hormone therapy.

    Science.gov (United States)

    Cintron, Dahima; Beckman, John P; Bailey, Kent R; Lahr, Brian D; Jayachandran, Muthuvel; Miller, Virginia M

    2017-05-01

    Alterations in sleep quality and metabolism during menopause are improved by menopausal hormone therapy (MHT). The mechanisms mediating these effects remain unclear. Orexin A (OxA) is a neuro-peptide that regulates sleep/wakefulness, food intake and metabolism. This study examined changes in plasma OxA levels during and after treatment in women from the Kronos Early Estrogen Prevention Study (KEEPS). KEEPS randomized women within three years of menopause to: oral conjugated equine estrogen (o-CEE, 0.45mg/day), transdermal 17β estradiol (t-E2, 50μg/day), or placebo pills and patches for four years. Plasma OxA levels were measured by enzyme immunoassays in fasting blood samples collected annually from KEEPS participants at Mayo Clinic during and three years after MHT. Changes in menopausal symptoms and plasma OxA levels were assessed for treatment differences. During treatment, OxA levels increased more in women randomized to o-CEE compared with the other groups. Women randomized to either form of MHT demonstrated smaller increases in BMI than those on placebo. Insomnia severity decreased similarly among treatment groups. However, neither changes in sleep nor changes in BMI correlated with changes in plasma OxA levels. Changes in waist circumference correlated positively with changes in plasma OxA levels three years after discontinuation of study treatments. Although OxA levels increased only in women randomized to o-CEE, these changes did not correlate with changes in sleep quality or BMI. The modest correlation of OxA levels with waist circumference once study treatments were discontinued suggests that OxA may be modulated through multiple intermediary pathways affected by metabolites of 17β-estradiol. Clinical Trial Registration for KEEPS: NCT00154180. Copyright © 2017. Published by Elsevier B.V.

  19. Elevated peripheral visfatin levels in narcoleptic patients.

    Directory of Open Access Journals (Sweden)

    Norbert Dahmen

    Full Text Available OBJECTIVE: Narcolepsy is a severe sleep disorder that is characterized by excessive daytime sleepiness, cataplexies and a tendency towards obesity. Recent discoveries indicate that the major pathophysiology is a loss of hypocretin (orexin producing neurons due to immunologically mediated degeneration. Visfatin is a recently described proinflammatory adipokine. It is identical to the immune modulating pre-B-cell colony enhancing factor (PBEF. Our study examines the hypothesis that visfatin levels are altered in narcoleptic patients. METHODS: For the analysis, a total of n = 54 patients (n = 18 males and n = 36 females with the diagnosis of narcolepsy according to DSM-IV and the International Classification of Sleep Disorders were examined (BMI mean 30.3+/-5.5, age mean 52.5+/-16.1 years. As a control group 39 unrelated (n = 12 males and n = 27 females healthy volunteers with no sleep disorder according to DSM-IV were included (BMI mean 28.5+/-4.6, age mean 51.1+/-13.6 years. Peripheral visfatin levels were measured using a commercial enzyme immunoassay kit with a measurement range from 0.1-1000 ng/ml. Narcolepsy symptoms, severity and frequency of symptoms as well as the total duration of various aspects of the symptomatology were assessed by unstructured and structured clinical interviews in including the Stanford Center for Narcolepsy Sleep Inventory. RESULTS: Circulating visfatin was found to be significantly increased in HLA DR2 positive narcoleptic patients compared to controls. CONCLUSION: Taken together, our results add to the evidence of disturbed immunological regulation in patients with narcolepsy.

  20. Effect of anorexinergic peptides, cholecystokinin (CCK) and cocaine and amphetamine regulated transcript (CART) peptide, on the activity of neurons in hypothalamic structures of C57Bl/6 mice involved in the food intake regulation

    Czech Academy of Sciences Publication Activity Database

    Pirnik, Z.; Maixnerová, Jana; Matyšková, Resha; Koutová, Darja; Železná, Blanka; Maletínská, Lenka; Kiss, A.

    2010-01-01

    Roč. 31, č. 1 (2010), s. 139-144 ISSN 0196-9781 R&D Projects: GA ČR GA303/05/0614 Institutional research plan: CEZ:AV0Z40550506 Keywords : cholecystokinin * CART * hypocretin * Fos peptide Subject RIV: CE - Biochemistry Impact factor: 2.654, year: 2010

  1. Localization and expression of Orexin A and its receptor in mouse testis during different stages of postnatal development.

    Science.gov (United States)

    Joshi, Deepanshu; Singh, Shio Kumar

    2017-01-15

    Orexin A (OXA), a hypothalamic neuropeptide, is involved in regulation of various biological functions and its actions are mediated through G-protein-coupled receptor, OX1R. This neuropeptide has emerged as a central neuroendocrine modulator of reproductive functions. Both OXA and OX1R have been shown to be expressed in peripheral organs such as gastrointestinal and genital tracts. In the present study, localization and expression of OXA and OX1R in mouse testis during different stages of postnatal development have been investigated. Immunohistochemical results demonstrated localization of OXA and OX1R in both the interstitial and the tubular compartments of the testis throughout the period of postnatal development. In testicular sections on 0day postpartum (dpp), gonocytes, Sertoli cells and foetal Leydig cells showed OXA and OX1R-immunopositive signals. At 10dpp, Sertoli cells, spermatogonia, early spermatocytes and Leydig cells showed immunopositive signals for both, the ligand and the receptor. On 30 and 90dpp, the spermatogonia, Sertoli cells, spermatocytes, spermatids and Leydig cells showed the OXA and OX1R-immunopositive signals. At 90dpp, strong OXA-positive signals were seen in Leydig cells, primary spermatocytes and spermatogonia, while OX1R-immunopositive intense signals were observed in Leydig cells and elongated spermatids. Further, semiquantitative RT-PCR and immunoblot analyses showed that OXA and OX1R were expressed in the testis both at transcript and protein levels during different stages of postnatal development. The expression of OXA and OX1R increased progressively from day of birth (0dpp) until adulthood (90dpp), with maximal expression at 90 dpp. The results suggest that OXA and OX1R are expressed in the testis and that they may help in proliferation and development of germ cells, Leydig cells and Sertoli cells, and in the spermatogenic process and steroidogenesis. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Angiotensin II Reduces Food Intake by Altering Orexigenic Neuropeptide Expression in the Mouse Hypothalamus

    Science.gov (United States)

    Yoshida, Tadashi; Semprun-Prieto, Laura; Wainford, Richard D.; Sukhanov, Sergiy; Kapusta, Daniel R.

    2012-01-01

    Angiotensin II (Ang II), which is elevated in many chronic disease states such as end-stage renal disease and congestive heart failure, induces cachexia and skeletal muscle wasting by increasing muscle protein breakdown and reducing food intake. Neurohormonal mechanisms that mediate Ang II-induced appetite suppression are unknown. Consequently, we examined the effect of Ang II on expression of genes regulating appetite. Systemic Ang II (1 μg/kg · min) infusion in FVB mice rapidly reduced hypothalamic expression of neuropeptide Y (Npy) and orexin and decreased food intake at 6 h compared with sham-infused controls but did not change peripheral leptin, ghrelin, adiponectin, glucagon-like peptide, peptide YY, or cholecystokinin levels. These effects were completely blocked by the Ang II type I receptor antagonist candesartan or deletion of Ang II type 1a receptor. Ang II markedly reduced phosphorylation of AMP-activated protein kinase (AMPK), an enzyme that is known to regulate Npy expression. Intracerebroventricular Ang II infusion (50 ng/kg · min) caused a reduction of food intake, and Ang II dose dependently reduced Npy and orexin expression in the hypothalamus cultured ex vivo. The reduction of Npy and orexin in hypothalamic cultures was completely prevented by candesartan or the AMPK activator 5-aminoimidazole-4-carboxamide ribonucleoside. Thus, Ang II type 1a receptor-dependent Ang II signaling reduces food intake by suppressing the hypothalamic expression of Npy and orexin, likely via AMPK dephosphorylation. These findings have major implications for understanding mechanisms of cachexia in chronic disease states such as congestive heart failure and end-stage renal disease, in which the renin-angiotensin system is activated. PMID:22234465

  3. Plasma total ghrelin and leptin levels in human narcolepsy and matched healthy controls: Basal concentrations and response to sodium oxybate

    NARCIS (Netherlands)

    Donjacour, C.E.; Pardi, D.; Aziz, N.A.; Frolich, M.; Roelfsema, F.; Overeem, S.; Pijl, H.; Lammers, G.J.

    2013-01-01

    STUDY OBJECTIVES: Narcolepsy is caused by a selective loss of hypocretin neurons and is associated with obesity. Ghrelin and leptin interact with hypocretin neurons to influence energy homeostasis. Here, we evaluated whether human hypocretin deficiency, or the narcolepsy therapeutic agent sodium

  4. Serotonin Coordinates Responses to Social Stress-What We Can Learn from Fish.

    Science.gov (United States)

    Backström, Tobias; Winberg, Svante

    2017-01-01

    Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.

  5. Serotonin Coordinates Responses to Social Stress—What We Can Learn from Fish

    Directory of Open Access Journals (Sweden)

    Tobias Backström

    2017-10-01

    Full Text Available Social interaction is stressful and subordinate individuals are often subjected to chronic stress, which greatly affects both their behavior and physiology. In teleost fish the social position of an individual may have long-term effects, such as effects on migration, age of sexual maturation or even sex. The brain serotonergic system plays a key role in coordinating autonomic, behavioral and neuroendocrine stress responses. Social subordination results in a chronic activation of the brain serotonergic system an effect, which seems to be central in the subordinate phenotype. However, behavioral effects of short-term acute activation of the serotonergic system are less obvious. As in other vertebrates, divergent stress coping styles, often referred to as proactive and reactive, has been described in teleosts. As demonstrated by selective breeding, stress coping styles appear to be partly heritable. However, teleost fish are characterized by plasticity, stress coping style being affected by social experience. Again, the brain serotonergic system appears to play an important role. Studies comparing brain gene expression of fish of different social rank and/or displaying divergent stress coping styles have identified several novel factors that seem important for controlling aggressive behavior and stress coping, e.g., histamine and hypocretin/orexin. These may also interact with brain monoaminergic systems, including serotonin.

  6. A consensus definition of cataplexy in mouse models of narcolepsy.

    Science.gov (United States)

    Scammell, Thomas E; Willie, Jon T; Guilleminault, Christian; Siegel, Jerome M

    2009-01-01

    People with narcolepsy often have episodes of cataplexy, brief periods of muscle weakness triggered by strong emotions. Many researchers are now studying mouse models of narcolepsy, but definitions of cataplexy-like behavior in mice differ across labs. To establish a common language, the International Working Group on Rodent Models of Narcolepsy reviewed the literature on cataplexy in people with narcolepsy and in dog and mouse models of narcolepsy and then developed a consensus definition of murine cataplexy. The group concluded that murine cataplexy is an abrupt episode of nuchal atonia lasting at least 10 seconds. In addition, theta activity dominates the EEG during the episode, and video recordings document immobility. To distinguish a cataplexy episode from REM sleep after a brief awakening, at least 40 seconds of wakefulness must precede the episode. Bouts of cataplexy fitting this definition are common in mice with disrupted orexin/hypocretin signaling, but these events almost never occur in wild type mice. It remains unclear whether murine cataplexy is triggered by strong emotions or whether mice remain conscious during the episodes as in people with narcolepsy. This working definition provides helpful insights into murine cataplexy and should allow objective and accurate comparisons of cataplexy in future studies using mouse models of narcolepsy.

  7. A Relationship between Reduced Nucleus Accumbens Shell and Enhanced Lateral Hypothalamic Orexin Neuronal Activation in Long-Term Fructose Bingeing Behavior

    Science.gov (United States)

    Rorabaugh, Jacki M.; Stratford, Jennifer M.; Zahniser, Nancy R.

    2014-01-01

    Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc) shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM) display signatures of hedonic feeding including bingeing and altered DA receptor (R) numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day) exposure to the IAM, rats given 8–12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR). This activation was negatively correlated with orexin (Orx) neuron activation in the lateral hypothalamus/perifornical area (LH/PeF), a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day) access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p.) equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  8. A relationship between reduced nucleus accumbens shell and enhanced lateral hypothalamic orexin neuronal activation in long-term fructose bingeing behavior.

    Directory of Open Access Journals (Sweden)

    Jacki M Rorabaugh

    Full Text Available Fructose accounts for 10% of daily calories in the American diet. Fructose, but not glucose, given intracerebroventricularly stimulates homeostatic feeding mechanisms within the hypothalamus; however, little is known about how fructose affects hedonic feeding centers. Repeated ingestion of sucrose, a disaccharide of fructose and glucose, increases neuronal activity in hedonic centers, the nucleus accumbens (NAc shell and core, but not the hypothalamus. Rats given glucose in the intermittent access model (IAM display signatures of hedonic feeding including bingeing and altered DA receptor (R numbers within the NAc. Here we examined whether substituting fructose for glucose in this IAM produces bingeing behavior, alters DA Rs and activates hedonic and homeostatic feeding centers. Following long-term (21-day exposure to the IAM, rats given 8-12% fructose solutions displayed fructose bingeing but unaltered DA D1R or D2R number. Fructose bingeing rats, as compared to chow bingeing controls, exhibited reduced NAc shell neuron activation, as determined by c-Fos-immunoreactivity (Fos-IR. This activation was negatively correlated with orexin (Orx neuron activation in the lateral hypothalamus/perifornical area (LH/PeF, a brain region linking homeostatic to hedonic feeding centers. Following short-term (2-day access to the IAM, rats exhibited bingeing but unchanged Fos-IR, suggesting only long-term fructose bingeing increases Orx release. In long-term fructose bingeing rats, pretreatment with the Ox1R antagonist SB-334867 (30 mg/kg; i.p. equally reduced fructose bingeing and chow intake, resulting in a 50% reduction in calories. Similarly, in control rats, SB-334867 reduced chow/caloric intake by 60%. Thus, in the IAM, Ox1Rs appear to regulate feeding based on caloric content rather than palatability. Overall, our results, in combination with the literature, suggest individual monosaccharides activate distinct neuronal circuits to promote feeding behavior

  9. Sleep and metabolism: role of hypothalamic neuronal circuitry.

    Science.gov (United States)

    Rolls, Asya; Schaich Borg, Jana; de Lecea, Luis

    2010-10-01

    Sleep and metabolism are intertwined physiologically and behaviorally, but the neural systems underlying their coordination are still poorly understood. The hypothalamus is likely to play a major role in the regulation sleep, metabolism, and their interaction. And increasing evidence suggests that hypocretin cells in the lateral hypothalamus may provide particularly important contributions. Here we review: 1) direct interactions between biological arousal and metabolic systems in the hypothalamus, and 2) indirect interactions between these two systems mediated by stress or reward, emphasizing the role of hypocretins. An increased understanding of the mechanisms underlying these interactions may provide novel approaches for the treatment of patients with sleep disorders and obesity, as well as suggest new therapeutic strategies for symptoms of aging, stress, or addiction. Copyright © 2010. Published by Elsevier Ltd.

  10. THE NEUROBIOLOGY OF SLEEP AND WAKEFULNESS

    Science.gov (United States)

    Schwartz, Michael D.; Kilduff, Thomas S.

    2015-01-01

    SYNOPSIS Since the discovery of Rapid Eye Movement (REM) sleep in the late 1950s, identification of the neural circuitry underlying wakefulness, sleep onset and the alternation between REM and non-REM (NREM) sleep has been an active area of investigation. Synchronization and desynchronization of cortical activity as detected in the electroencephalogram (EEG) is due to a corticothalamocortical loop, intrinsic cortical oscillators, monoaminergic and cholinergic afferent input to the thalamus, and the basal forebrain cholinergic input directly to the cortex. The monoaminergic and cholinergic systems are largely wake-promoting; the brainstem cholinergic nuclei are also involved in REM sleep regulation. These wake-promoting systems receive excitatory input from the hypothalamic hypocretin/orexin system. Sleep-promoting nuclei are GABAergic in nature and found in the preoptic area, brainstem and lateral hypothalamus. Although the pons is critical for the expression of REM sleep, recent research has suggested that melanin-concentrating hormone/GABAergic cells in the lateral hypothalamus "gate" REM sleep. The temporal distribution of sleep and wakefulness is due to interaction between the circadian system and the sleep homeostatic system. Although the hypothalamic suprachiasmatic nuclei contain the circadian pacemaker, the neural circuitry underlying the sleep homeostat is less clear. Prolonged wakefulness results in the accumulation of extracellular adenosine, possibly from glial sources, which is an important feedback molecule for the sleep homeostatic system. Cortical neuronal nitric oxide (nNOS) neurons may also play a role in propagating slow waves through the cortex in NREM sleep. Several neuropeptides and other neurochemicals likely play important roles in sleep/wake control. Although the control of sleep and wakefulness seemingly involves multiple redundant systems, each of these systems provides a vulnerability that can result in sleep/wake dysfunction that may

  11. Neural Damage in Experimental Trypanosoma brucei gambiense Infection: Hypothalamic Peptidergic Sleep and Wake-Regulatory Neurons

    Directory of Open Access Journals (Sweden)

    Claudia Laperchia

    2018-02-01

    Full Text Available Neuron populations of the lateral hypothalamus which synthesize the orexin (OX/hypocretin or melanin-concentrating hormone (MCH peptides play crucial, reciprocal roles in regulating wake stability and sleep. The disease human African trypanosomiasis (HAT, also called sleeping sickness, caused by extracellular Trypanosoma brucei (T. b. parasites, leads to characteristic sleep-wake cycle disruption and narcoleptic-like alterations of the sleep structure. Previous studies have revealed damage of OX and MCH neurons during systemic infection of laboratory rodents with the non-human pathogenic T. b. brucei subspecies. No information is available, however, on these peptidergic neurons after systemic infection with T. b. gambiense, the etiological agent of 97% of HAT cases. The present study was aimed at the investigation of immunohistochemically characterized OX and MCH neurons after T. b. gambiense or T. b. brucei infection of a susceptible rodent, the multimammate mouse, Mastomysnatalensis. Cell counts and evaluation of OX fiber density were performed at 4 and 8 weeks post-infection, when parasites had entered the brain parenchyma from the periphery. A significant decrease of OX neurons (about 44% reduction and MCH neurons (about 54% reduction was found in the lateral hypothalamus and perifornical area at 8 weeks in T. b. gambiense-infected M. natalensis. A moderate decrease (21% and 24% reduction, respectively, which did not reach statistical significance, was found after T. b. brucei infection. In two key targets of diencephalic orexinergic innervation, the peri-suprachiasmatic nucleus (SCN region and the thalamic paraventricular nucleus (PVT, densitometric analyses showed a significant progressive decrease in the density of orexinergic fibers in both infection paradigms, and especially during T. b. gambiense infection. Altogether the findings provide novel information showing that OX and MCH neurons are highly vulnerable to chronic

  12. New developments in the management of narcolepsy.

    Science.gov (United States)

    Abad, Vivien C; Guilleminault, Christian

    2017-01-01

    Narcolepsy is a life-long, underrecognized sleep disorder that affects 0.02%-0.18% of the US and Western European populations. Genetic predisposition is suspected because of narcolepsy's strong association with HLA DQB1*06-02, and genome-wide association studies have identified polymorphisms in T-cell receptor loci. Narcolepsy pathophysiology is linked to loss of signaling by hypocretin-producing neurons; an autoimmune etiology possibly triggered by some environmental agent may precipitate hypocretin neuronal loss. Current treatment modalities alleviate the main symptoms of excessive daytime somnolence (EDS) and cataplexy and, to a lesser extent, reduce nocturnal sleep disruption, hypnagogic hallucinations, and sleep paralysis. Sodium oxybate (SXB), a sodium salt of γ hydroxybutyric acid, is a first-line agent for cataplexy and EDS and may help sleep disruption, hypnagogic hallucinations, and sleep paralysis. Various antidepressant medications including norepinephrine serotonin reuptake inhibitors, selective serotonin reuptake inhibitors, and tricyclic antidepressants are second-line agents for treating cataplexy. In addition to SXB, modafinil and armodafinil are first-line agents to treat EDS. Second-line agents for EDS are stimulants such as methylphenidate and extended-release amphetamines. Emerging therapies include non-hypocretin-based therapy, hypocretin-based treatments, and immunotherapy to prevent hypocretin neuronal death. Non-hypocretin-based novel treatments for narcolepsy include pitolisant (BF2.649, tiprolisant); JZP-110 (ADX-N05) for EDS in adults; JZP 13-005 for children; JZP-386, a deuterated sodium oxybate oral suspension; FT 218 an extended-release formulation of SXB; and JNJ-17216498, a new formulation of modafinil. Clinical trials are investigating efficacy and safety of SXB, modafinil, and armodafinil in children. γ-amino butyric acid (GABA) modulation with GABA A receptor agonists clarithromycin and flumazenil may help daytime somnolence

  13. Absence of anti-hypocretin receptor 2 autoantibodies in post pandemrix narcolepsy cases.

    Directory of Open Access Journals (Sweden)

    Guo Luo

    Full Text Available A recent publication suggested molecular mimicry of a nucleoprotein (NP sequence from A/Puerto Rico/8/1934 (PR8 strain, the backbone used in the construction of the reassortant strain X-179A that was used in Pandemrix® vaccine, and reported on anti-hypocretin (HCRT receptor 2 (anti-HCRTR2 autoantibodies in narcolepsy, mostly in post Pandemrix® narcolepsy cases (17 of 20 sera. In this study, we re-examined this hypothesis through mass spectrometry (MS characterization of Pandemrix®, and two other pandemic H1N1 (pH1N1-2009 vaccines, Arepanrix® and Focetria®, and analyzed anti-HCRTR2 autoantibodies in narcolepsy patients and controls using three independent strategies.MS characterization of Pandemrix® (2 batches, Arepanrix® (4 batches and Focetria® (1 batch was conducted with mapping of NP 116I or 116M spectrogram. Two sets of narcolepsy cases and controls were used: 40 post Pandemrix® narcolepsy (PP-N cases and 18 age-matched post Pandemrix® controls (PP-C, and 48 recent (≤6 months early onset narcolepsy (EO-N cases and 70 age-matched other controls (O-C. Anti-HCRTR2 autoantibodies were detected using three strategies: (1 Human embryonic kidney (HEK 293T cells with transient expression of HCRTR2 were stained with human sera and then analyzed by flow cytometer; (2 In vitro translation of [35S]-radiolabelled HCRTR2 was incubated with human sera and immune complexes of autoantibody and [35S]-radiolabelled HCRTR2 were quantified using a radioligand-binding assay; (3 Optical density (OD at 450 nm (OD450 of human serum immunoglobulin G (IgG binding to HCRTR2 stably expressed in Chinese hamster ovary (CHO-K1 cell line was measured using an in-cell enzyme-linked immunosorbent assay (ELISA.NP 116M mutations were predominantly present in all batches of Pandemrix®, Arepanrix® and Focetria®. The wild-type NP109-123 (ILYDKEEIRRIWRQA, a mimic to HCRTR234-45 (YDDEEFLRYLWR, was not found to bind to DQ0602. Three or four subjects were found positive

  14. Hypocretinergic and cholinergic contributions to sleep-wake disturbances in a mouse model of traumatic brain injury

    Directory of Open Access Journals (Sweden)

    Hannah E. Thomasy

    2017-01-01

    Full Text Available Disorders of sleep and wakefulness occur in the majority of individuals who have experienced traumatic brain injury (TBI, with increased sleep need and excessive daytime sleepiness often reported. Behavioral and pharmacological therapies have limited efficacy, in part, because the etiology of post-TBI sleep disturbances is not well understood. Severity of injuries resulting from head trauma in humans is highly variable, and as a consequence so are their sequelae. Here, we use a controlled laboratory model to investigate the effects of TBI on sleep-wake behavior and on candidate neurotransmitter systems as potential mediators. We focus on hypocretin and melanin-concentrating hormone (MCH, hypothalamic neuropeptides important for regulating sleep and wakefulness, and two potential downstream effectors of hypocretin actions, histamine and acetylcholine. Adult male C57BL/6 mice (n=6–10/group were implanted with EEG recording electrodes and baseline recordings were obtained. After baseline recordings, controlled cortical impact was used to induce mild or moderate TBI. EEG recordings were obtained from the same animals at 7 and 15 days post-surgery. Separate groups of animals (n=6–8/group were used to determine effects of TBI on the numbers of hypocretin and MCH-producing neurons in the hypothalamus, histaminergic neurons in the tuberomammillary nucleus, and cholinergic neurons in the basal forebrain. At 15 days post-TBI, wakefulness was decreased and NREM sleep was increased during the dark period in moderately injured animals. There were no differences between groups in REM sleep time, nor were there differences between groups in sleep during the light period. TBI effects on hypocretin and cholinergic neurons were such that more severe injury resulted in fewer cells. Numbers of MCH neurons and histaminergic neurons were not altered under the conditions of this study. Thus, we conclude that moderate TBI in mice reduces wakefulness and increases

  15. New developments in the management of narcolepsy

    Directory of Open Access Journals (Sweden)

    Abad VC

    2017-03-01

    Full Text Available Vivien C Abad, Christian Guilleminault Department of Psychiatry and Behavioral Sciences, Division of Sleep Medicine, Stanford University Outpatient Center, Redwood City, CA, USA Abstract: Narcolepsy is a life-long, underrecognized sleep disorder that affects 0.02%–0.18% of the US and Western European populations. Genetic predisposition is suspected because of narcolepsy’s strong association with HLA DQB1*06-02, and genome-wide association studies have identified polymorphisms in T-cell receptor loci. Narcolepsy pathophysiology is linked to loss of signaling by hypocretin-producing neurons; an autoimmune etiology possibly triggered by some environmental agent may precipitate hypocretin neuronal loss. Current treatment modalities alleviate the main symptoms of excessive daytime somnolence (EDS and cataplexy and, to a lesser extent, reduce nocturnal sleep disruption, hypnagogic hallucinations, and sleep paralysis. Sodium oxybate (SXB, a sodium salt of γ hydroxybutyric acid, is a first-line agent for cataplexy and EDS and may help sleep disruption, hypnagogic hallucinations, and sleep paralysis. Various antidepressant medications including norepinephrine serotonin reuptake inhibitors, selective serotonin reuptake inhibitors, and tricyclic antidepressants are second-line agents for treating cataplexy. In addition to SXB, modafinil and armodafinil are first-line agents to treat EDS. Second-line agents for EDS are stimulants such as methylphenidate and extended-release amphetamines. Emerging therapies include non-hypocretin-based therapy, hypocretin-based treatments, and immunotherapy to prevent hypocretin neuronal death. Non-hypocretin-based novel treatments for narcolepsy include pitolisant (BF2.649, tiprolisant; JZP-110 (ADX-N05 for EDS in adults; JZP 13-005 for children; JZP-386, a deuterated sodium oxybate oral suspension; FT 218 an extended-release formulation of SXB; and JNJ-17216498, a new formulation of modafinil. Clinical trials are

  16. Normal Morning MCH Levels and No Association with REM or NREM Sleep Parameters in Narcolepsy Type 1 and Type 2

    DEFF Research Database (Denmark)

    Schrölkamp, Maren; Jennum, Poul J; Gammeltoft, Steen

    2017-01-01

    in rapid eye movement (REM) and nonrapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid...... MCH levels. CONCLUSION: Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH......STUDY OBJECTIVES: Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved...

  17. Normal Morning Melanin-Concentrating Hormone Levels and No Association with Rapid Eye Movement or Non-Rapid Eye Movement Sleep Parameters in Narcolepsy Type 1 and Type 2

    DEFF Research Database (Denmark)

    Schrölkamp, Maren; Jennum, Poul J; Gammeltoft, Steen

    2017-01-01

    in rapid eye movement (REM) and non-rapid eye movement (NREM) sleep regulation. Hypocretin neurons reciprocally interact with MCH neurons. We hypothesized that altered MCH secretion contributes to the symptoms and sleep abnormalities of narcolepsy and that this is reflected in morning cerebrospinal fluid...... MCH levels. CONCLUSIONS: Our study shows that MCH levels in CSF collected in the morning are normal in narcolepsy and not associated with the clinical symptoms, REM sleep abnormalities, nor number of muscle movements during REM or NREM sleep of the patients. We conclude that morning lumbar CSF MCH......STUDY OBJECTIVES: Other than hypocretin-1 (HCRT-1) deficiency in narcolepsy type 1 (NT1), the neurochemical imbalance of NT1 and narcolepsy type 2 (NT2) with normal HCRT-1 levels is largely unknown. The neuropeptide melanin-concentrating hormone (MCH) is mainly secreted during sleep and is involved...

  18. Constructive effects of diversity in a multi-neuron model of the homeostatic regulation of the sleep–wake cycle

    International Nuclear Information System (INIS)

    Patriarca, Marco; Hernández-García, Emilio; Toral, Raúl

    2015-01-01

    As an instance of diversity-induced resonance and of the constructive role of heterogeneity in complex systems, here we study a generalized version of a physiologically-motivated sleep–wake cycle model taking into account the role of orexin [Patriarca et al. (2012) [16]; Postnova et al. (2009) [9

  19. El sistema orexinérgico/hipocretinérgico y su rol en los trastornos del sueño

    Directory of Open Access Journals (Sweden)

    Mauricio H. Valencia A.

    2010-01-01

    Full Text Available Las orexinas o hipocretinas son neuropéptidos recientemente descritos (1998, encontrados en mayor densidad en neuronas de las regiones lateral, posterior y perifornical del hipotálamo, las cuales se han visto implicadas en procesos de modulación de la ingesta alimenticia y del ciclo sueño-vigilia. El sistema orexinérgico tiene amplias proyecciones a todo lo largo y ancho del SNC especialmente a centros monoaminérgicos, tales como el locus coeruleus, núcleo tuberomamilar, núcleos del rafé y el área tegmental ventral. Inicialmente se pensó en un papel fundamental de las orexinas en la regulación de la función alimenticia, sin embargo estudios recientes han implicado a estos neuropéptidos en la regulación del ciclo sueño-vigilia. Estos hallazgos permiten conocer mejor una región como el hipotálamo, al igual que brinda un mejor entendimiento de la patogenia y fisiopatología relacionadas con los trastornos de la alimentación y el sueño. Este artículo pretende presentar una revisión lo más completa posible de lo que se conoce hasta ahora de estos neuromoduladores y su papel en relación con los trastornos del sueño, especialmente su implicación en la narcolepsia.

  20. Layer- and Cell Type-Specific Modulation of Excitatory Neuronal Activity in the Neocortex

    Directory of Open Access Journals (Sweden)

    Gabriele Radnikow

    2018-01-01

    Full Text Available From an anatomical point of view the neocortex is subdivided into up to six layers depending on the cortical area. This subdivision has been described already by Meynert and Brodmann in the late 19/early 20. century and is mainly based on cytoarchitectonic features such as the size and location of the pyramidal cell bodies. Hence, cortical lamination is originally an anatomical concept based on the distribution of excitatory neuron. However, it has become apparent in recent years that apart from the layer-specific differences in morphological features, many functional properties of neurons are also dependent on cortical layer or cell type. Such functional differences include changes in neuronal excitability and synaptic activity by neuromodulatory transmitters. Many of these neuromodulators are released from axonal afferents from subcortical brain regions while others are released intrinsically. In this review we aim to describe layer- and cell-type specific differences in the effects of neuromodulator receptors in excitatory neurons in layers 2–6 of different cortical areas. We will focus on the neuromodulator systems using adenosine, acetylcholine, dopamine, and orexin/hypocretin as examples because these neuromodulator systems show important differences in receptor type and distribution, mode of release and functional mechanisms and effects. We try to summarize how layer- and cell type-specific neuromodulation may affect synaptic signaling in cortical microcircuits.

  1. Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic.

    Directory of Open Access Journals (Sweden)

    Fang Han

    2013-10-01

    Full Text Available Previous studies in narcolepsy, an autoimmune disorder affecting hypocretin (orexin neurons and recently associated with H1N1 influenza, have demonstrated significant associations with five loci. Using a well-characterized Chinese cohort, we refined known associations in TRA@ and P2RY11-DNMT1 and identified new associations in the TCR beta (TRB@; rs9648789 max P = 3.7 × 10(-9 OR 0.77, ZNF365 (rs10995245 max P = 1.2 × 10(-11 OR 1.23, and IL10RB-IFNAR1 loci (rs2252931 max P = 2.2 × 10(-9 OR 0.75. Variants in the Human Leukocyte Antigen (HLA- DQ region were associated with age of onset (rs7744020 P = 7.9×10(-9 beta -1.9 years and varied significantly among cases with onset after the 2009 H1N1 influenza pandemic compared to previous years (rs9271117 P = 7.8 × 10(-10 OR 0.57. These reflected an association of DQB1*03:01 with earlier onset and decreased DQB1*06:02 homozygosity following 2009. Our results illustrate how genetic association can change in the presence of new environmental challenges and suggest that the monitoring of genetic architecture over time may help reveal the appearance of novel triggers for autoimmune diseases.

  2. The role of biological clock in glucose homeostasis 

    Directory of Open Access Journals (Sweden)

    Piotr Chrościcki

    2013-06-01

    Full Text Available The mechanism of the biological clock is based on a rhythmic expression of clock genes and clock-controlled genes. As a result of their transcripto-translational associations, endogenous rhythms in the synthesis of key proteins of various physiological and metabolic processes are created. The major timekeeping mechanism for these rhythms exists in the central nervous system. The master circadian clock, localized in suprachiasmatic nucleus (SCN, regulates multiple metabolic pathways, while feeding behavior and metabolite availability can in turn regulate the circadian clock. It is also suggested that in the brain there is a food entrainable oscillator (FEO or oscillators, resulting in activation of both food anticipatory activity and hormone secretion that control digestion processes. Moreover, most cells and tissues express autonomous clocks. Maintenance of the glucose homeostasis is particularly important for the proper function of the body, as this sugar is the main source of energy for the brain, retina, erythrocytes and skeletal muscles. Thus, glucose production and utilization are synchronized in time. The hypothalamic excited orexin neurons control energy balance of organism and modulate the glucose production and utilization. Deficiency of orexin action results in narcolepsy and weight gain, whereas glucose and amino acids can affect activity of the orexin cells. Large-scale genetic studies in rodents and humans provide evidence for the involvement of disrupted clock gene expression rhythms in the pathogenesis of obesity and type 2 diabetes. In general, the current lifestyle of the developed modern societies disturbs the action of biological clock. 

  3. Food for thought: the role of appetitive peptides in age-related cognitive decline.

    Science.gov (United States)

    Fadel, Jim R; Jolivalt, Corinne G; Reagan, Lawrence P

    2013-06-01

    Through their well described actions in the hypothalamus, appetitive peptides such as insulin, orexin and leptin are recognized as important regulators of food intake, body weight and body composition. Beyond these metabolic activities, these peptides also are critically involved in a wide variety of activities ranging from modulation of immune and neuroendocrine function to addictive behaviors and reproduction. The neurological activities of insulin, orexin and leptin also include facilitation of hippocampal synaptic plasticity and enhancement of cognitive performance. While patients with metabolic disorders such as obesity and diabetes have greater risk of developing cognitive deficits, dementia and Alzheimer's disease (AD), the underlying mechanisms that are responsible for, or contribute to, age-related cognitive decline are poorly understood. In view of the importance of these peptides in metabolic disorders, it is not surprising that there is a greater focus on their potential role in cognitive deficits associated with aging. The goal of this review is to describe the evidence from clinical and pre-clinical studies implicating insulin, orexin and leptin in the etiology and progression of age-related cognitive decline. Collectively, these studies support the hypothesis that leptin and insulin resistance, concepts normally associated with the hypothalamus, are also applicable to the hippocampus. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Orexin–Corticotropin-Releasing Factor Receptor Heteromers in the Ventral Tegmental Area as Targets for Cocaine

    Science.gov (United States)

    Navarro, Gemma; Quiroz, César; Moreno-Delgado, David; Sierakowiak, Adam; McDowell, Kimberly; Moreno, Estefanía; Rea, William; Cai, Ning-Sheng; Aguinaga, David; Howell, Lesley A.; Hausch, Felix; Cortés, Antonio; Mallol, Josefa; Casadó, Vicent; Lluís, Carme; Canela, Enric I.

    2015-01-01

    Release of the neuropeptides corticotropin-releasing factor (CRF) and orexin-A in the ventral tegmental area (VTA) play an important role in stress-induced cocaine-seeking behavior. We provide evidence for pharmacologically significant interactions between CRF and orexin-A that depend on oligomerization of CRF1 receptor (CRF1R) and orexin OX1 receptors (OX1R). CRF1R–OX1R heteromers are the conduits of a negative crosstalk between orexin-A and CRF as demonstrated in transfected cells and rat VTA, in which they significantly modulate dendritic dopamine release. The cocaine target σ1 receptor (σ1R) also associates with the CRF1R–OX1R heteromer. Cocaine binding to the σ1R–CRF1R–OX1R complex promotes a long-term disruption of the orexin-A–CRF negative crosstalk. Through this mechanism, cocaine sensitizes VTA cells to the excitatory effects of both CRF and orexin-A, thus providing a mechanism by which stress induces cocaine seeking. PMID:25926444

  5. Autonomic Function in Neurodegenerative Diseases

    DEFF Research Database (Denmark)

    Sørensen, Gertrud Laura; Jennum, Poul Jørgen

    2013-01-01

    areas, which is consistent with the Braak hypothesis. In the narcolepsy patients, it was shown that a reduced HRR to arousals was primarily predicted by hypocretin deficiency in both rapid-eye-movement (REM) and non-REM sleep, independent of cataplexy and other factors. The results confirm...... that hypocretin deficiency affects the autonomic nervous system of patients with narcolepsy and that the hypocretin system is important for proper heart rate modulation at rest.Furthermore, it was shown that hypocretin deficiency and cataplexy are associated with signs of destabilized sleep-wake and REM sleep...... control, indicating that the disorder may serve as a human model for the sleep-wake and REM sleep flip-flop switches. The increased frequency of transitions may cause increased sympathetic activity during sleep and thereby increased heart rate, or the increased heart rate could be caused by decreased...

  6. Changes in orexinergic immunoreactivity of the piglet hypothalamus and pons after exposure to chronic postnatal nicotine and intermittent hypercapnic hypoxia.

    Science.gov (United States)

    Hunt, Nicholas J; Russell, Benjamin; Du, Man K; Waters, Karen A; Machaalani, Rita

    2016-06-01

    We recently showed that orexin expression in sudden infant death syndrome (SIDS) infants was reduced by 21% in the hypothalamus and by 40-50% in the pons as compared with controls. Orexin maintains wakefulness/sleeping states, arousal, and rapid eye movement sleep, abnormalities of which have been reported in SIDS. This study examined the effects of two prominent risk factors for SIDS, intermittent hypercapnic hypoxia (IHH) (prone-sleeping) and chronic nicotine exposure (cigarette-smoking), on orexin A (OxA) and orexin B (OxB) expression in piglets. Piglets were randomly assigned to five groups: saline control (n = 7), air control (n = 7), nicotine [2 mg/kg per day (14 days)] (n = 7), IHH (6 min of 7% O2 /8% CO2 alternating with 6-min periods of breathing air, for four cycles) (n = 7), and the combination of nicotine and IHH (N + IHH) (n = 7). OxA/OxB expression was quantified in the central tuberal hypothalamus [dorsal medial hypothalamus (DMH), perifornical area (PeF), and lateral hypothalamus], and the dorsal raphe, locus coeruleus of the pons. Nicotine and N + IHH exposures significantly increased: (i) orexin expression in the hypothalamus and pons; and (ii) the total number of neurons in the DMH and PeF. IHH decreased orexin expression in the hypothalamus and pons without changing neuronal numbers. Linear relationships existed between the percentage of orexin-positive neurons and the area of pontine orexin immunoreactivity of control and exposure piglets. These results demonstrate that postnatal nicotine exposure increases the proportion of orexin-positive neurons in the hypothalamus and fibre expression in the pons, and that IHH exposure does not prevent the nicotine-induced increase. Thus, although both nicotine and IHH are risk factors for SIDS, it appears they have opposing effects on OxA and OxB expression, with the IHH exposure closely mimicking what we recently found in SIDS. © 2016 Federation of European Neuroscience Societies and John

  7. Hypocretin-1 Deficiency in a Girl With ROHHAD Syndrome

    NARCIS (Netherlands)

    Dhondt, K.; Verloo, P.; Verhelst, H.; Coster, R. van; Overeem, S.

    2013-01-01

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare and complex pediatric syndrome, essentially caused by dysfunction of 3 vital systems regulating endocrine, respiratory, and autonomic nervous system functioning. The clinical spectrum

  8. Suvorexant: a dual orexin receptor antagonist for the treatment of sleep onset and sleep maintenance insomnia.

    Science.gov (United States)

    Patel, Kunal V; Aspesi, Anthony V; Evoy, Kirk E

    2015-04-01

    To review the efficacy, safety, and pharmacology data available for suvorexant and determine its role in therapy as compared with other agents available for the treatment of insomnia. A PubMed search using the terms suvorexant and MK-4305 (the original name given to suvorexant during early trials) was conducted in December 2014 to identify initial literature sources. No time frame was used for exclusion of older trials. Animal studies and trials written in a language other than English were excluded. Abstracts of the remaining trials were evaluated for determination of relevance to this review. References from these studies along with suvorexant prescriber information were used to identify additional literature. Three randomized, double-blind, placebo-controlled clinical trials were identified showing suvorexant to be safe, effective, and tolerable for the treatment of insomnia. After 4 weeks of therapy, relative to placebo, the 10- and 20-mg doses improved subjective total sleep time (22.3 and 49.9 minutes, respectively), wake after sleep onset (-21.4 and -28.1 minutes), and latency to persistent sleep (-2.3 and -22.3 minutes). Suvorexant is the first dual orexin receptor antagonist approved for the treatment of insomnia. Clinical trials have shown that it is relatively safe and effective for the treatment of both sleep onset and sleep maintenance at doses of 20 mg or less. Higher doses were studied but not approved because of concerns for next-day somnolence and effects on driving. Further studies are needed to assess this medication in patients with a history of addiction, because they were excluded from clinical trials, as well as to compare suvorexant with other insomnia medications available because no head-to-head studies have yet been conducted. However, its novel mechanism of action and theoretically lower addiction liability make suvorexant an appealing new option. © The Author(s) 2015.

  9. Regulation of Breathing and Autonomic Outflows by Chemoreceptors

    Science.gov (United States)

    Guyenet, Patrice G.

    2016-01-01

    Lung ventilation fluctuates widely with behavior but arterial PCO2 remains stable. Under normal conditions, the chemoreflexes contribute to PaCO2 stability by producing small corrective cardiorespiratory adjustments mediated by lower brainstem circuits. Carotid body (CB) information reaches the respiratory pattern generator (RPG) via nucleus solitarius (NTS) glutamatergic neurons which also target rostral ventrolateral medulla (RVLM) presympathetic neurons thereby raising sympathetic nerve activity (SNA). Chemoreceptors also regulate presympathetic neurons and cardiovagal preganglionic neurons indirectly via inputs from the RPG. Secondary effects of chemoreceptors on the autonomic outflows result from changes in lung stretch afferent and baroreceptor activity. Central respiratory chemosensitivity is caused by direct effects of acid on neurons and indirect effects of CO2 via astrocytes. Central respiratory chemoreceptors are not definitively identified but the retrotrapezoid nucleus (RTN) is a particularly strong candidate. The absence of RTN likely causes severe central apneas in congenital central hypoventilation syndrome. Like other stressors, intense chemosensory stimuli produce arousal and activate circuits that are wake- or attention-promoting. Such pathways (e.g., locus coeruleus, raphe, and orexin system) modulate the chemoreflexes in a state-dependent manner and their activation by strong chemosensory stimuli intensifies these reflexes. In essential hypertension, obstructive sleep apnea and congestive heart failure, chronically elevated CB afferent activity contributes to raising SNA but breathing is unchanged or becomes periodic (severe CHF). Extreme CNS hypoxia produces a stereotyped cardiorespiratory response (gasping, increased SNA). The effects of these various pathologies on brainstem cardiorespiratory networks are discussed, special consideration being given to the interactions between central and peripheral chemoreflexes. PMID:25428853

  10. Cerebrospinal fluid biomarkers of neurodegeneration are decreased or normal in narcolepsy

    DEFF Research Database (Denmark)

    Jennum, Poul Jørgen; Pedersen, Lars Østergaard; Bahl, Justyna Maria Czarna

    2017-01-01

    OBJECTIVES: To investigate whether cerebrospinal fluid (CSF) biomarkers of neurodegeneration are altered in narcolepsy in order to evaluate whether the hypocretin deficiency and abnormal sleep-wake pattern in narcolepsy leads to neurodegeneration. METHODS: Twenty-one patients with central...... that hypocretin deficiency and an abnormal sleep-wake pattern alter the turnover of these proteins in CNS....

  11. Traditional biomarkers in narcolepsy: experience of a Brazilian sleep centre

    Directory of Open Access Journals (Sweden)

    Fernando Morgadinho Santos Coelho

    2010-10-01

    Full Text Available This study was thought to characterized clinical and laboratory findings of a narcoleptic patients in an out patients unit at São Paulo, Brazil. METHOD: 28 patients underwent polysomnographic recordings (PSG and Multiple Sleep Latency Test (MSLT were analyzed according to standard criteria. The analysis of HLADQB1*0602 allele was performed by PCR. The Hypocretin-1 in cerebral spinal fluid (CSF was measured using radioimmunoassay. Patients were divided in two groups according Hypocretin-1 level: Normal (N - Hypocretin-1 higher than 110pg/ml and Lower (L Hypocretin-1 lower than 110 pg/ml. RESULTS: Only 4 patients of the N group had cataplexy when compared with 14 members of the L group (p=0.0002. DISCUSSION: This results were comparable with other authors, confirming the utility of using specific biomarkers (HLA-DQB1*0602 allele and Hypocretin-1 CSF level in narcolepsy with cataplexy. However, the HLADQB1*0602 allele and Hypocretin-1 level are insufficient to diagnose of narcolepsy without cataplexy.Este estudo foi idealizado para avaliar as características clinicas e laboratoriais de uma população de narcolépticos atendidos num centro de referência na cidade de São Paulo (Brasil. MÉTODO: 28 pacientes realizaram polissonografia e teste de múltiplas latências do sono segundo critérios internacionais. O alelo HLADQB1*0602 foi identificado por PCR. A Hipocretina-1 no líquido cefalorradiano (LCR foi mensurada por radioimunoensaio. Os pacientes foram divididos em 2 grupos conforme o nível de Hipocretina-1. Normal (N - Hypocretin-1 >110pg/ml e baixa (B - Hypocretina-1 <110pg/ml. RESULTADOS: Somente 4 pacientes do grupo N tinham cataplexia quando comparados com 14 pacientes do grupo B (p=0,0002. DISCUSSÃO: Estes resultados foram comparáveis com outros autores, confirmando a utilidade do uso de biomarcadores específicos (HLA-DQB1*0602 e nível da hipocretina-1 no LCR em narcolepsia com cataplexia. Porém, o alelo HLADQB1*0602 e a dosagem

  12. Lateral hypothalamic thyrotropin-releasing hormone neurons: distribution and relationship to histochemically defined cell populations in the rat.

    Science.gov (United States)

    Horjales-Araujo, E; Hellysaz, A; Broberger, C

    2014-09-26

    The lateral hypothalamic area (LHA) constitutes a large component of the hypothalamus, and has been implicated in several aspects of motivated behavior. The LHA is of particular relevance to behavioral state control and the maintenance of arousal. Due to the cellular heterogeneity of this region, however, only some subpopulations of LHA cells have been properly anatomically characterized. Here, we have focused on cells expressing thyrotropin-releasing hormone (TRH), a peptide found in the LHA that has been implicated as a promoter of arousal. Immunofluorescence and in situ hybridization were used to map the LHA TRH population in the rat, and cells were observed to form a large ventral cluster that extended throughout almost the entire rostro-caudal axis of the hypothalamus. Almost no examples of coexistence were seen when sections were double-stained for TRH and markers of other LHA populations, including the peptides hypocretin/orexin, melanin-concentrating hormone and neurotensin. In the juxtaparaventricular area, however, a discrete group of TRH-immunoreactive cells were also stained with antisera against enkephalin and urocortin 3. Innervation from the metabolically sensitive hypothalamic arcuate nucleus was investigated by double-staining for peptide markers of the two centrally projecting groups of arcuate neurons, agouti gene-related peptide and α-melanocyte-stimulating hormone, respectively; both populations of terminals were observed forming close appositions on TRH cells in the LHA. The present study indicates that TRH-expressing cells form a unique population in the LHA that may serve as a link between metabolic signals and the generation of arousal. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Hubs and spokes of the lateral hypothalamus: cell types, circuits and behaviour

    Science.gov (United States)

    Bonnavion, Patricia; Mickelsen, Laura E.; Fujita, Akie; de Lecea, Luis

    2016-01-01

    Abstract The hypothalamus is among the most phylogenetically conserved regions in the vertebrate brain, reflecting its critical role in maintaining physiological and behavioural homeostasis. By integrating signals arising from both the brain and periphery, it governs a litany of behaviourally important functions essential for survival. In particular, the lateral hypothalamic area (LHA) is central to the orchestration of sleep–wake states, feeding, energy balance and motivated behaviour. Underlying these diverse functions is a heterogeneous assembly of cell populations typically defined by neurochemical markers, such as the well‐described neuropeptides hypocretin/orexin and melanin‐concentrating hormone. However, anatomical and functional evidence suggests a rich diversity of other cell populations with complex neurochemical profiles that include neuropeptides, receptors and components of fast neurotransmission. Collectively, the LHA acts as a hub for the integration of diverse central and peripheral signals and, through complex local and long‐range output circuits, coordinates adaptive behavioural responses to the environment. Despite tremendous progress in our understanding of the LHA, defining the identity of functionally discrete LHA cell types, and their roles in driving complex behaviour, remain significant challenges in the field. In this review, we discuss advances in our understanding of the neurochemical and cellular heterogeneity of LHA neurons and the recent application of powerful new techniques, such as opto‐ and chemogenetics, in defining the role of LHA circuits in feeding, reward, arousal and stress. From pioneering work to recent developments, we review how the interrogation of LHA cells and circuits is contributing to a mechanistic understanding of how the LHA coordinates complex behaviour. PMID:27302606

  14. Internet of Things for Sensing: A Case Study in the Healthcare System

    OpenAIRE

    Syed Aziz Shah; Aifeng Ren; Dou Fan; Zhiya Zhang; Nan Zhao; Xiaodong Yang; Ming Luo; Weigang Wang; Fangming Hu; Masood Ur Rehman; Osamah S. Badarneh; Qammer Hussain Abbasi

    2018-01-01

    Medical healthcare is one of the fascinating applications using Internet of Things (IoTs). The pervasive smart environment in IoTs has the potential to monitor various human activities by deploying smart devices. In our pilot study, we look at narcolepsy, a disorder in which individuals lose the ability to regulate their sleep-wake cycle. An imbalance in the brain chemical called orexin makes the sleep pattern irregular. This sleep disorder in patients suffering from narcolepsy results in the...

  15. The ICSD-3 and DSM-5 guidelines for diagnosing narcolepsy: clinical relevance and practicality.

    Science.gov (United States)

    Ruoff, Chad; Rye, David

    2016-07-20

    Narcolepsy is a chronic neurological disease manifesting as difficulty with maintaining continuous wake and sleep. Clinical presentation varies but requires excessive daytime sleepiness (EDS) occurring alone or together with features of rapid-eye movement (REM) sleep dissociation (e.g., cataplexy, hypnagogic/hypnopompic hallucinations, sleep paralysis), and disrupted nighttime sleep. Narcolepsy with cataplexy is associated with reductions of cerebrospinal fluid (CSF) hypocretin due to destruction of hypocretin peptide-producing neurons in the hypothalamus in individuals with a specific genetic predisposition. Updated diagnostic criteria include the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5) and International Classification of Sleep Disorders Third Edition (ICSD-3). DSM-5 criteria require EDS in association with any one of the following: (1) cataplexy; (2) CSF hypocretin deficiency; (3) REM sleep latency ≤15 minutes on nocturnal polysomnography (PSG); or (4) mean sleep latency ≤8 minutes on multiple sleep latency testing (MSLT) with ≥2 sleep-onset REM-sleep periods (SOREMPs). ICSD-3 relies more upon objective data in addition to EDS, somewhat complicating the diagnostic criteria: 1) cataplexy and either positive MSLT/PSG findings or CSF hypocretin deficiency; (2) MSLT criteria similar to DSM-5 except that a SOREMP on PSG may count as one of the SOREMPs required on MSLT; and (3) distinct division of narcolepsy into type 1, which requires the presence of cataplexy or documented CSF hypocretin deficiency, and type 2, where cataplexy is absent, and CSF hypocretin levels are either normal or undocumented. We discuss limitations of these criteria such as variability in clinical presentation of cataplexy, particularly when cataplexy may be ambiguous, as well as by age; multiple and/or invasive CSF diagnostic test requirements; and lack of normative diagnostic test data (e.g., MSLT) in certain populations. While ICSD-3 criteria

  16. Acid sensing ion channel 1 in lateral hypothalamus contributes to breathing control.

    Directory of Open Access Journals (Sweden)

    Nana Song

    Full Text Available Acid-sensing ion channels (ASICs are present in neurons and may contribute to chemoreception. Among six subunits of ASICs, ASIC1 is mainly expressed in the central nervous system. Recently, multiple sites in the brain including the lateral hypothalamus (LH have been found to be sensitive to extracellular acidification. Since LH contains orexin neurons and innervates the medulla respiratory center, we hypothesize that ASIC1 is expressed on the orexin neuron and contributes to acid-induced increase in respiratory drive. To test this hypothesis, we used double immunofluorescence to determine whether ASIC1 is expressed on orexin neurons in the LH, and assessed integrated phrenic nerve discharge (iPND in intact rats in response to acidification of the LH. We found that ASIC1 was co-localized with orexinA in the LH. Microinjection of acidified artificial cerebrospinal fluid increased the amplitude of iPND by 70% (pH 7.4 v.s. pH 6.5:1.05±0.12 v.s. 1.70±0.10, n = 6, P<0.001 and increased the respiratory drive (peak amplitude of iPND/inspiratory time, PA/Ti by 40% (1.10±0.23 v.s. 1.50±0.38, P<0.05. This stimulatory effect was abolished by blocking ASIC1 with a nonselective inhibitor (amiloride 10 mM, a selective inhibitor (PcTX1, 10 nM or by damaging orexin neurons in the LH. Current results support our hypothesis that the orexin neuron in the LH can exert an excitation on respiration via ASIC1 during local acidosis. Since central acidification is involved in breathing dysfunction in a variety of pulmonary diseases, understanding its underlying mechanism may improve patient management.

  17. Prevention of diet-induced obesity by safflower oil: insights at the levels of PPARalpha, orexin, and ghrelin gene expression of adipocytes in mice.

    Science.gov (United States)

    Zhang, Zhong; Li, Qiang; Liu, Fengchen; Sun, Yuqian; Zhang, Jinchao

    2010-03-15

    The aim of this study was to investigate the prevention of diet-induced obesity by a high safflower oil diet and adipocytic gene expression in mice. Forty 3-week-old C57BL/6 mice were randomly divided into three groups: control group (CON, 5% lard + 5% safflower oil), high lard group (LAR, 45% lard + 5% safflower oil), and high safflower oil group (SAF, 45% safflower oil + 5% lard). After 10 weeks, 10 mice of the LAR group were switched to high safflower oil diet (LAR-SAF). Ten weeks later, glucose tolerance tests were performed by intraperitoneal injection of glucose. Circulating levels of lipid and insulin were measured and white adipose tissues were taken for gene chip and reverse transcriptase-polymerase chain reaction analysis. The LAR group showed higher body weight, adiposity index, insulin, and lipids than the CON group (P<0.05). The body weight in the LAR-SAF group decreased after dietary reversal. The plasma biochemical profiles decreased in the LAR-SAF and SAF groups (P<0.05) compared with those of the LAR group. The blood glucose level of the LAR-SAF group was reduced during intraperitoneal glucose tolerance test compared with that of the LAR group. The LAR-SAF group had lower levels of Orexin and Ghrelin gene expression, whereas the level of PPARalpha gene expression was significantly enhanced compared with that of the LAR group. So, the SAF diet can alter adipocytic adiposity-related gene expression and result in effective amelioration of diet-induced obesity.

  18. Hedonic Eating and the “Delicious Circle”: From Lipid-Derived Mediators to Brain Dopamine and Back

    Directory of Open Access Journals (Sweden)

    Roberto Coccurello

    2018-04-01

    Full Text Available Palatable food can be seductive and hedonic eating can become irresistible beyond hunger and negative consequences. This is witnessed by the subtle equilibrium between eating to provide energy intake for homeostatic functions, and reward-induced overeating. In recent years, considerable efforts have been devoted to study neural circuits, and to identify potential factors responsible for the derangement of homeostatic eating toward hedonic eating and addiction-like feeding behavior. Here, we examined recent literature on “old” and “new” players accountable for reward-induced overeating and possible liability to eating addiction. Thus, the role of midbrain dopamine is positioned at the intersection between selected hormonal signals involved in food reward information processing (namely, leptin, ghrelin, and insulin, and lipid-derived neural mediators such as endocannabinoids. The impact of high fat palatable food and dietary lipids on endocannabinoid formation is reviewed in its pathogenetic potential for the derangement of feeding homeostasis. Next, endocannabinoid signaling that regulates synaptic plasticity is discussed as a key mechanism acting both at hypothalamic and mesolimbic circuits, and affecting both dopamine function and interplay between leptin and ghrelin signaling. Outside the canonical hypothalamic feeding circuits involved in energy homeostasis and the notion of “feeding center,” we focused on lateral hypothalamus as neural substrate able to confront food-associated homeostatic information with food salience, motivation to eat, reward-seeking, and development of compulsive eating. Thus, the lateral hypothalamus-ventral tegmental area-nucleus accumbens neural circuitry is reexamined in order to interrogate the functional interplay between ghrelin, dopamine, orexin, and endocannabinoid signaling. We suggested a pivotal role for endocannabinoids in food reward processing within the lateral hypothalamus, and for orexin

  19. The Ontogeny and Brain Distribution Dynamics of the Appetite Regulators NPY, CART and pOX in Larval Atlantic Cod (Gadus morhua L.).

    Science.gov (United States)

    Le, Hoang T M D; Angotzi, Anna Rita; Ebbesson, Lars O E; Karlsen, Ørjan; Rønnestad, Ivar

    2016-01-01

    Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART) in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph) to juvenile stage (76 dph). Neurons expressing NPY mRNA were detected in the telencephalon (highest expression), diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY), while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in temporal and

  20. Demonstration of an orexinergic central innervation of the pineal gland of the pig

    DEFF Research Database (Denmark)

    Fabris, Chiara; Cozzi, Bruno; Hay-Schmidt, Anders

    2004-01-01

    into the pineal stalk and parenchyma to disperse among the pinealocytes. Immunoelectron microscopy confirmed the presence of orexinergic nerve fibers in the pig pineal gland. After extraction of total mRNA from the hypothalamus and pineal gland, we performed RT-PCR and nested PCR using primers specific...... for porcine orexin receptors. PCR products were sequenced, verifying the presence of both OR-R1 and OR-R2 in the tissues investigated. These findings, supported by previous studies on rodents, suggest a hypothalamic regulation of the pineal gland via central orexinergic nervous inputs....

  1. Integration of reward signalling and appetite regulating peptide systems in the control of food-cue responses.

    Science.gov (United States)

    Reichelt, A C; Westbrook, R F; Morris, M J

    2015-11-01

    Understanding the neurobiological substrates that encode learning about food-associated cues and how those signals are modulated is of great clinical importance especially in light of the worldwide obesity problem. Inappropriate or maladaptive responses to food-associated cues can promote over-consumption, leading to excessive energy intake and weight gain. Chronic exposure to foods rich in fat and sugar alters the reinforcing value of foods and weakens inhibitory neural control, triggering learned, but maladaptive, associations between environmental cues and food rewards. Thus, responses to food-associated cues can promote cravings and food-seeking by activating mesocorticolimbic dopamine neurocircuitry, and exert physiological effects including salivation. These responses may be analogous to the cravings experienced by abstaining drug addicts that can trigger relapse into drug self-administration. Preventing cue-triggered eating may therefore reduce the over-consumption seen in obesity and binge-eating disorder. In this review we discuss recent research examining how cues associated with palatable foods can promote reward-based feeding behaviours and the potential involvement of appetite-regulating peptides including leptin, ghrelin, orexin and melanin concentrating hormone. These peptide signals interface with mesolimbic dopaminergic regions including the ventral tegmental area to modulate reactivity to cues associated with palatable foods. Thus, a novel target for anti-obesity therapeutics is to reduce non-homeostatic, reward driven eating behaviour, which can be triggered by environmental cues associated with highly palatable, fat and sugar rich foods. © 2015 The British Pharmacological Society.

  2. Absence of mutations in HCRT, HCRTR1 and HCRTR2 in patients with ROHHAD.

    Science.gov (United States)

    Barclay, Sarah F; Rand, Casey M; Gray, Paul A; Gibson, William T; Wilson, Richard J A; Berry-Kravis, Elizabeth M; Ize-Ludlow, Diego; Bech-Hansen, N Torben; Weese-Mayer, Debra E

    2016-01-15

    Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) is a rare pediatric disease of unknown cause. Here, in response to a recent case report describing a ROHHAD patient who suffered from secondary narcolepsy confirmed by an absence of hypocretin-1 in the cerebrospinal fluid, we consider whether the ROHHAD phenotype is owing to one or more mutations in genes specific to hypocretin protein signalling. DNA samples from 16 ROHHAD patients were analyzed using a combination of next-generation and Sanger sequencing to identify exonic sequence variations in three genes: HCRT, HCRTR1, and HCRTR2. No rare or novel mutations were identified in the exons of HCRT, HCRTR1, or HCRTR2 genes in a set of 16 ROHHAD patients. ROHHAD is highly unlikely to be caused by mutations in the exons of the genes for hypocretin and its two receptors. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Exercise Influence on Hippocampal Function: Possible Involvement of Orexin-A

    OpenAIRE

    Chieffi, Sergio; Messina, Giovanni; Villano, Ines; Messina, Antonietta; Esposito, Maria; Monda, Vincenzo; Valenzano, Anna; Moscatelli, Fiorenzo; Esposito, Teresa; Carotenuto, Marco; Viggiano, Andrea; Cibelli, Giuseppe; Monda, Marcellino

    2017-01-01

    In the present article, we provide a brief review of current knowledge regarding the effects induced by physical exercise on hippocampus. Research involving animals and humans supports the view that physical exercise, enhancing hippocampal neurogenesis and function, improves cognition, and regulates mood. These beneficial effects depend on the contribute of more factors including the enhancement of vascularization and upregulation of growth factors. Among these, the BDNF seems to play a signi...

  4. Melatonin Absence Leads to Long-Term Leptin Resistance and Overweight in Rats

    Science.gov (United States)

    Buonfiglio, Daniella; Parthimos, Rafaela; Dantas, Rosana; Cerqueira Silva, Raysa; Gomes, Guilherme; Andrade-Silva, Jéssica; Ramos-Lobo, Angela; Amaral, Fernanda Gaspar; Matos, Raphael; Sinésio, José; Motta-Teixeira, Lívia Clemente; Donato, José; Reiter, Russel J.; Cipolla-Neto, José

    2018-01-01

    Melatonin (Mel), a molecule that conveys photoperiodic information to the organisms, is also involved in the regulation of energy homeostasis. Mechanisms of action of Mel in the energy balance remain unclear; herein we investigated how Mel regulates energy intake and expenditure to promote a proper energy balance. Male Wistar rats were assigned to control, control + Mel, pinealectomized (PINX) and PINX + Mel groups. To restore a 24-h rhythm, Mel (1 mg/kg) was added to the drinking water exclusively during the dark phase for 13 weeks. After this treatment period, rats were subjected to a 24-h fasting test, an acute leptin responsiveness test and cold challenge. Mel treatment reduced food intake, body weight, and adiposity. When challenged to 24-h fasting, Mel-treated rats also showed reduced hyperphagia when the food was replaced. Remarkably, PINX rats exhibited leptin resistance; this was likely related to the capacity of leptin to affect body weight, food intake, and hypothalamic signal-transducer and activator of transcription 3 phosphorylation, all of which were reduced. Mel treatment restored leptin sensitivity in PINX rats. An increased hypothalamic expression of agouti-related peptide (Agrp), neuropeptide Y, and Orexin was observed in the PINX group while Mel treatment reduced the expression of Agrp and Orexin. In addition, PINX rats presented lower UCP1 protein levels in the brown adipose tissue and required higher tail vasoconstriction to get a proper thermogenic response to cold challenge. Our findings reveal a previously unrecognized interaction of Mel and leptin in the hypothalamus to regulate the energy balance. These findings may help to explain the high incidence of metabolic diseases in individuals exposed to light at night. PMID:29636725

  5. Drug-induced and genetic alterations in stress-responsive systems: Implications for specific addictive diseases.

    Science.gov (United States)

    Zhou, Yan; Proudnikov, Dmitri; Yuferov, Vadim; Kreek, Mary Jeanne

    2010-02-16

    From the earliest work in our laboratory, we hypothesized, and with studies conducted in both clinical research and animal models, we have shown that drugs of abuse, administered or self-administered, on a chronic basis, profoundly alter stress-responsive systems. Alterations of expression of specific genes involved in stress responsivity, with increases or decreases in mRNA levels, receptor, and neuropeptide levels, and resultant changes in hormone levels, have been documented to occur after chronic intermittent exposure to heroin, morphine, other opiates, cocaine, other stimulants, and alcohol in animal models and in human molecular genetics. The best studied of the stress-responsive systems in humans and mammalian species in general is undoubtedly the HPA axis. In addition, there are stress-responsive systems in other parts in the brain itself, and some of these include components of the HPA axis, such as CRF and CRF receptors, along with POMC gene and gene products. Several other stress-responsive systems are known to influence the HPA axis, such as the vasopressin-vasopressin receptor system. Orexin-hypocretin, acting at its receptors, may effect changes which suggest that it should be properly categorized as a stress-responsive system. However, less is known about the interactions and connectivity of some of these different neuropeptide and receptor systems, and in particular, about the possible connectivity of fast-acting (e.g., glutamate and GABA) and slow-acting (including dopamine, serotonin, and norepinephrine) neurotransmitters with each of these stress-responsive components and the resultant impact, especially in the setting of chronic exposure to drugs of abuse. Several of these stress-responsive systems and components, primarily based on our laboratory-based and human molecular genetics research of addictive diseases, will be briefly discussed in this review. Copyright 2009 Elsevier B.V. All rights reserved.

  6. The Ontogeny and Brain Distribution Dynamics of the Appetite Regulators NPY, CART and pOX in Larval Atlantic Cod (Gadus morhua L..

    Directory of Open Access Journals (Sweden)

    Hoang T M D Le

    Full Text Available Similar to many marine teleost species, Atlantic cod undergo remarkable physiological changes during the early life stages with concurrent and profound changes in feeding biology and ecology. In contrast to the digestive system, very little is known about the ontogeny and the localization of the centers that control appetite and feed ingestion in the developing brain of fish. We examined the expression patterns of three appetite regulating factors (orexigenic: neuropeptide Y, NPY; prepro-orexin, pOX and anorexigenic: cocaine- and amphetamine-regulated transcript, CART in discrete brain regions of developing Atlantic cod using chromogenic and double fluorescent in situ hybridization. Differential temporal and spatial expression patterns for each appetite regulator were found from first feeding (4 days post hatch; dph to juvenile stage (76 dph. Neurons expressing NPY mRNA were detected in the telencephalon (highest expression, diencephalon, and optic tectum from 4 dph onward. CART mRNA expression had a wider distribution along the anterior-posterior brain axis, including both telencephalon and diencephalon from 4 dph. From 46 dph, CART transcripts were also detected in the olfactory bulb, region of the nucleus of medial longitudinal fascicle, optic tectum and midbrain tegmentum. At 4 and 20 dph, pOX mRNA expression was exclusively found in the preoptic region, but extended to the hypothalamus at 46 and 76 dph. Co-expression of both CART and pOX genes were also observed in several hypothalamic neurons throughout larval development. Our results show that both orexigenic and anorexigenic factors are present in the telencephalon, diencephalon and mesencephalon in cod larvae. The telencephalon mostly contains key factors of hunger control (NPY, while the diencephalon, and particularly the hypothalamus may have a more complex role in modulating the multifunctional control of appetite in this species. As the larvae develop, the overall progression in

  7. Reduced expression of TAC1, PENK and SOCS2 in Hcrtr-2 mutated narcoleptic dog brain

    Directory of Open Access Journals (Sweden)

    Mignot Emmanuel

    2007-05-01

    Full Text Available Abstract Background Narcolepsy causes dramatic behavioral alterations in both humans and dogs, with excessive sleepiness and cataplexy triggered by emotional stimuli. Deficiencies in the hypocretin system are well established as the origin of the condition; both from studies in humans who lack the hypocretin ligand (HCRT and in dogs with a mutation in hypocretin receptor 2 (HCRTR2. However, little is known about molecular alterations downstream of the hypocretin signals. Results By using microarray technology we have screened the expression of 29760 genes in the brains of Doberman dogs with a heritable form of narcolepsy (homozygous for the canarc-1 [HCRTR-2-2] mutation, and their unaffected heterozygous siblings. We identified two neuropeptide precursor molecules, Tachykinin precursor 1 (TAC1 and Proenkephalin (PENK, that together with Suppressor of cytokine signaling 2 (SOCS2, showed reduced expression in narcoleptic brains. The difference was particularly pronounced in the amygdala, where mRNA levels of PENK were 6.2 fold lower in narcoleptic dogs than in heterozygous siblings, and TAC1 and SOCS2 showed 4.4 fold and 2.8 fold decrease in expression, respectively. The results obtained from microarray experiments were confirmed by real-time RT-PCR. Interestingly, it was previously shown that a single dose of amphetamine-like stimulants able to increase wakefulness in the dogs, also produce an increase in the expression of both TAC1 and PENK in mice. Conclusion These results suggest that TAC1, PENK and SOCS2 might be intimately connected with the excessive daytime sleepiness not only in dogs, but also in other species, possibly including humans.

  8. Narcolepsy: etiology, clinical features, diagnosis and treatment

    Directory of Open Access Journals (Sweden)

    Jolanta B. Zawilska

    2012-10-01

    Full Text Available [u][/u] Narcolepsy is a chronic hypersomnia characterized by excessive daytime sleepiness (EDS and manifestations of disrupted rapid eye movement sleep stage (cataplexy, sleep paralysis, and hypnagogic/hypnopompic hallucinations. Mechanisms underlying narcolepsy are not fully understood. Experimental data indicate that the disease is caused by a loss of hypocretin neurons in the hypothalamus, likely due to an autoimmune process triggered by environmental factors in susceptible individuals. Most patients with narcolepsy and cataplexy have very low hypocretin-1 levels in the cerebrospinal fluid. An appropriate clinical history, polysomnogram, and multiple sleep latency test are necessary for diagnosis of the disease. Additionally, two biological markers, i.e., cerebrospinal fluid hypocretin-1 levels and expression of the DQB1*0602 gene, are used. The treatment of narcolepsy is aimed at the different symptoms that the patient manifests. Excessive daytime sleepiness is treated with psychostimulants (amphetamine-like, modafinil and armodafinil. Cataplexy is treated with sodium oxybate (GHB, tricyclic antidepressants, or selective serotonin and noradrenaline reuptake inhibitors. Sleep paralysis, hallucinations, and fragmented sleep may be treated with sodium oxybate. Patients with narcolepsy should follow proper sleep hygiene and avoid strong emotions.

  9. Science.gov (United States)

    Monaca, C; Franco, P; Philip, P; Dauvilliers, Y

    In the new international classification of sleep disorders (ICSD-3), narcolepsy is differentiated into two distinct pathologies: type 1 narcolepsy (NT1) and type 2 narcolepsy (NT2). NT1 is characterised by periods of an irrepressible need to sleep, cataplexy (a sudden loss of muscle tone triggered by emotion) and in some cases the presence of symptoms such as hypnagogic hallucinations, sleep paralysis and disturbed night-time sleep. Its physiopathology is based on the loss of hypocretin neurons in the hypothalamus, seemingly connected to an auto-immune process. By definition, cataplexy is absent and the hypocretin levels in the CSF are normal in NT2. Confirming the diagnosis requires polysomnography and multiple sleep latency tests. The choice of further investigations is based on the presence or absence of typical cataplexy. Further investigations include HLA typing, lumbar puncture to measure the hypocretin level in the CSF, or even brain imagery in the case of narcolepsy suspected to be secondary to an underlying pathology. In this consensus we propose recommendations for the work-up to be carried out during diagnosis and follow-up for patients suffering from narcolepsy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  10. Post-Traumatic Narcolepsy Associated with Thalamic/Hypothalamic Injury

    Directory of Open Access Journals (Sweden)

    Kikyoung Yi

    2015-12-01

    Full Text Available The hypothalamus is an important structure that regulates sleep via hypocretin neurotransmission. Central nervous system disorders such as tumors and vascular legions involving the hypothalamus can cause secondary narcolepsy. In addition, brain trauma can contribute to post-traumatic narcolepsy despite lack of any definite brain lesion. Here, we present a case of a 37-year-old man suffering from a hypothalamus-to-thalamus hemorrhage after a traffic accident. After this trauma, he suffered from excessive daytime sleepiness and was diagnosed with post-traumatic narcolepsy by polysomnography and multiple sleep latency tests. He was positive for human leukocyte antigen (HLA-DQB1*03:01 and HLA-DQB1*06:01 antigens.

  11. Circadian rhythm disruption by a novel running wheel: Roles of exercise and arousal in blockade of the luteinizing hormone surge

    Science.gov (United States)

    Duncan, Marilyn J.; Franklin, Kathleen M.; Peng, Xiaoli; Yun, Christopher; Legan, Sandra J.

    2014-01-01

    Exposure of proestrous Syrian hamsters to a new room, cage, and novel running wheel blocks the luteinizing hormone (LH) surge until the next day in ~75% of hamsters (Legan et al, 2010) [1]. The studies described here tested the hypotheses that 1) exercise and/or 2) orexinergic neurotransmission mediate novel wheel blockade of the LH surge and circadian phase advances. Female hamsters were exposed to a 14L:10D photoperiod and activity rhythms were monitored with infra-red detectors. In Expt. 1, to test the effect of exercise, hamsters received jugular cannulae and on the next day, proestrus (Day 1), shortly before zeitgeber time 5 (ZT 5, 7 hours before lights-off) the hamsters were transported to the laboratory. After obtaining a blood sample at ZT 5, the hamsters were transferred to a new cage with a novel wheel that was either freely rotating (unlocked), or locked until ZT 9, and exposed to constant darkness (DD). Blood samples were collected hourly for 2 days from ZT 5–11 under red light for determination of plasma LH levels by radioimmunoassay. Running rhythms were monitored continuously for the next 10–14 days. The locked wheels were as effective as unlocked wheels in blocking LH surges (no Day 1 LH surge in 6/9 versus 8/8 hamsters, P>0.05) and phase advances in the activity rhythms did not differ between the groups (P= 0.28), suggesting that intense exercise is not essential for novel wheel blockade and phase advance of the proestrous LH surge. Expt. 2 tested whether orexin neurotransmission is essential for these effects. Hamsters were treated the same as in Expt. 1 except they were injected (i.p.) at ZT 4.5 and 5 with either the orexin 1 receptor antagonist SB334867 (15 mg/kg per injection) or vehicle (25% DMSO in 2-hydroxypropyl-beta-cyclodextrin (HCD). SB-334867 inhibited novel wheel blockade of the LH surge (surges blocked in 2/6 SB334867-injected animals versus 16/18 vehicle-injected animals, Pwheel running and circadian phase shifts, indicating that

  12. REM sleep modulation by perifornical orexinergic inputs to the pedunculo-pontine tegmental neurons in rats.

    Science.gov (United States)

    Khanday, M A; Mallick, B N

    2015-11-12

    Rapid eye movement sleep (REMS) is regulated by the interaction of the REM-ON and REM-OFF neurons located in the pedunculo-pontine-tegmentum (PPT) and the locus coeruleus (LC), respectively. Many other brain areas, particularly those controlling non-REMS (NREMS) and waking, modulate REMS by modulating these REMS-related neurons. Perifornical (PeF) orexin (Ox)-ergic neurons are reported to increase waking and reduce NREMS as well as REMS; dysfunction of the PeF neurons are related to REMS loss-associated disorders. Hence, we were interested in understanding the neural mechanism of PeF-induced REMS modulation. As a first step we have recently reported that PeF Ox-ergic neurons modulate REMS by influencing the LC neurons (site for REM-OFF neurons). Thereafter, in this in vivo study we have explored the role of PeF inputs on the PPT neurons (site for REM-ON neurons) for the regulation of REMS. Chronic male rats were surgically prepared with implanted bilateral cannulae in PeF and PPT and electrodes for recording sleep-waking patterns. After post-surgical recovery sleep-waking-REMS were recorded when bilateral PeF neurons were stimulated by glutamate and simultaneously bilateral PPT neurons were infused with either saline or orexin receptor1 (OX1R) antagonist. It was observed that PeF stimulation increased waking and decreased NREMS as well as REMS, which were prevented by OX1R antagonist into the PPT. We conclude that the PeF stimulation-induced reduction in REMS was likely to be due to inhibition of REM-ON neurons in the PPT. As waking and NREMS are inversely related, subject to confirmation, the reduction in NREMS could be due to increased waking or vice versa. Based on our findings from this and earlier studies we have proposed a model showing connections between PeF- and PPT-neurons for REMS regulation. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Narcolepsy: a review

    Directory of Open Access Journals (Sweden)

    Akintomide GS

    2011-09-01

    Full Text Available Gbolagade Sunmaila Akintomide1, Hugh Rickards21Department of Neuropsychiatry, University of Birmingham, 2Department of Neuropsychiatry, The Barberry, Edgbaston, Birmingham, UKAbstract: Narcolepsy is a lifelong sleep disorder characterized by a classic tetrad of excessive daytime sleepiness with irresistible sleep attacks, cataplexy (sudden bilateral loss of muscle tone, hypnagogic hallucination, and sleep paralysis. There are two distinct groups of patients, ie, those having narcolepsy with cataplexy and those having narcolepsy without cataplexy. Narcolepsy affects 0.05% of the population. It has a negative effect on the quality of life of its sufferers and can restrict them from certain careers and activities. There have been advances in the understanding of the pathogenesis of narcolepsy. It is thought that narcolepsy with cataplexy is secondary to loss of hypothalamic hypocretin neurons in those genetically predisposed to the disorder by possession of human leukocyte antigen DQB1*0602. The diagnostic criteria for narcolepsy are based on symptoms, laboratory sleep tests, and serum levels of hypocretin. There is no cure for narcolepsy, and the present mainstay of treatment is pharmacological treatment along with lifestyle changes. Some novel treatments are also being developed and tried. This article critically appraises the evidence for diagnosis and treatment of narcolepsy.Keywords: narcolepsy, cataplexy, hypocretin, modafinil, gamma hydroxybutyrate

  14. Connexin 43-Mediated Astroglial Metabolic Networks Contribute to the Regulation of the Sleep-Wake Cycle.

    Science.gov (United States)

    Clasadonte, Jerome; Scemes, Eliana; Wang, Zhongya; Boison, Detlev; Haydon, Philip G

    2017-09-13

    Astrocytes produce and supply metabolic substrates to neurons through gap junction-mediated astroglial networks. However, the role of astroglial metabolic networks in behavior is unclear. Here, we demonstrate that perturbation of astroglial networks impairs the sleep-wake cycle. Using a conditional Cre-Lox system in mice, we show that knockout of the gap junction subunit connexin 43 in astrocytes throughout the brain causes excessive sleepiness and fragmented wakefulness during the nocturnal active phase. This astrocyte-specific genetic manipulation silenced the wake-promoting orexin neurons located in the lateral hypothalamic area (LHA) by impairing glucose and lactate trafficking through astrocytic networks. This global wakefulness instability was mimicked with viral delivery of Cre recombinase to astrocytes in the LHA and rescued by in vivo injections of lactate. Our findings propose a novel regulatory mechanism critical for maintaining normal daily cycle of wakefulness and involving astrocyte-neuron metabolic interactions. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Association between Single Nucleotide Polymorphisms in Gamma-Aminobutyric Acid B Receptor, Insulin Receptor Substrate-1, and Hypocretin Neuropeptide Precursor Genes and Susceptibility to Obstructive Sleep Apnea Hypopnea Syndrome in a Chinese Han Population.

    Science.gov (United States)

    Li, Zhijun; Tang, Tingyu; Du, Jianzong; Wu, Wenjuan; Zhou, Xiaoxi; Qin, Guangyue

    2016-01-01

    To investigate genotype-phenotype changes between rs29230 in γ-aminobutyric acid B receptor (GABBR1), rs1801278 in insulin receptor substrate-1 (IRS-1), and rs9902709 in hypocretin neuropeptide precursor (HCRT) and obstructive sleep apnea hypopnea syndrome (OSAHS) in Chinese Han individuals. A total of 130 patients with OSAHS and 136 age- and gender-matched healthy controls were enrolled in this study. A brief description of DNA extraction and genotyping is given. Multivariate unconditional logistic regression analysis adjusted for gender and age was used to estimate the associations of single nucleotide polymorphisms (SNPs) rs29230 (GABBR1), rs1801278 (IRS-1), and rs9902709 (HCRT) with OSAHS risk. Subgroup analysis was performed to evaluate differences in these SNPs among subgroups according to gender, body mass index (BMI), and severity of disease. Genotype and allele frequencies of rs29230 were significantly different between cases and controls (p = 0.0205 and p = 0.0191, respectively; odds ratio = 0.493, 95% confidence interval = 0.271-0.896), especially for male patients (p = 0.0259 and p = 0.0202, respectively). Subgroup analysis according to BMI also revealed a significant allele difference for rs29230 between cases and controls in the overweight subgroup (p = 0.0333). Furthermore, allele and genotype frequencies of rs1801278 showed significant differences between cases and controls (p = 0.0488 and p = 0.0471, respectively). However, no association was observed between rs9902709 and OSAHS risk (p = 0.2762), and no differences were identified in other subgroups. In this study, there was an association between variants of rs29230 and rs1801278 and OSAHS risk in the Chinese Han population but not for rs9902709. © 2016 S. Karger AG, Basel.

  16. Feeding during the resting phase causes profound changes in physiology and desynchronization between liver and muscle rhythms of rats.

    Science.gov (United States)

    Opperhuizen, Anne-Loes; Wang, Dawei; Foppen, Ewout; Jansen, Remi; Boudzovitch-Surovtseva, Olga; de Vries, Janneke; Fliers, Eric; Kalsbeek, Andries

    2016-11-01

    Shiftworkers run an increased risk of developing metabolic disorders, presumably as a result of disturbed circadian physiology. Eating at a time-of-day that is normally dedicated to resting and fasting, may contribute to this association. The hypothalamus is the key brain area that integrates different inputs, including environmental time information from the central biological clock in the suprachiasmatic nuclei, with peripheral information on energy status to maintain energy homeostasis. The orexin system within the lateral hypothalamus is an important output of the suprachiasmatic nuclei involved in the control of sleep/wake behavior and glucose homeostasis, among other functions. In this study, we tested the hypothesis that feeding during the rest period disturbs the orexin system as a possible underlying contributor to metabolic health problems. Male Wistar rats were exposed to an 8-week protocol in which food was available ad libitum for 24-h, for 12-h during the light phase (i.e., unnatural feeding time) or for 12-h during the dark phase (i.e., restricted feeding, but at the natural time-of-day). Animals forced to eat at an unnatural time, i.e., during the light period, showed no changes in orexin and orexin-receptor gene expression in the hypothalamus, but the rhythmic expression of clock genes in the lateral hypothalamus was absent in these animals. Light fed animals did show adverse changes in whole-body physiology and internal desynchronization of muscle and liver clock and metabolic gene expression. Eating at the 'wrong' time-of-day thus causes internal desynchronization at different levels, which in the long run may disrupt body physiology. © 2016 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  17. Predictive models of glucose control: roles for glucose-sensing neurones

    Science.gov (United States)

    Kosse, C.; Gonzalez, A.; Burdakov, D.

    2018-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the ‘fast’ senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they

  18. Predictive models of glucose control: roles for glucose-sensing neurones.

    Science.gov (United States)

    Kosse, C; Gonzalez, A; Burdakov, D

    2015-01-01

    The brain can be viewed as a sophisticated control module for stabilizing blood glucose. A review of classical behavioural evidence indicates that central circuits add predictive (feedforward/anticipatory) control to the reactive (feedback/compensatory) control by peripheral organs. The brain/cephalic control is constructed and engaged, via associative learning, by sensory cues predicting energy intake or expenditure (e.g. sight, smell, taste, sound). This allows rapidly measurable sensory information (rather than slowly generated internal feedback signals, e.g. digested nutrients) to control food selection, glucose supply for fight-or-flight responses or preparedness for digestion/absorption. Predictive control is therefore useful for preventing large glucose fluctuations. We review emerging roles in predictive control of two classes of widely projecting hypothalamic neurones, orexin/hypocretin (ORX) and melanin-concentrating hormone (MCH) cells. Evidence is cited that ORX neurones (i) are activated by sensory cues (e.g. taste, sound), (ii) drive hepatic production, and muscle uptake, of glucose, via sympathetic nerves, (iii) stimulate wakefulness and exploration via global brain projections and (iv) are glucose-inhibited. MCH neurones are (i) glucose-excited, (ii) innervate learning and reward centres to promote synaptic plasticity, learning and memory and (iii) are critical for learning associations useful for predictive control (e.g. using taste to predict nutrient value of food). This evidence is unified into a model for predictive glucose control. During associative learning, inputs from some glucose-excited neurones may promote connections between the 'fast' senses and reward circuits, constructing neural shortcuts for efficient action selection. In turn, glucose-inhibited neurones may engage locomotion/exploration and coordinate the required fuel supply. Feedback inhibition of the latter neurones by glucose would ensure that glucose fluxes they stimulate

  19. Disease: H01293 [KEGG MEDICUS

    Lifescience Database Archive (English)

    Full Text Available less than 10% of all narcolepsy cases, and causative mutations have not been identified to date. The disc...overy of hypocretin-1 (HCRT) deficiency shed light on the underlying pathophysiolog

  20. A comparative study of methods for automatic detection of rapid eye movement abnormal muscular activity in narcolepsy

    DEFF Research Database (Denmark)

    Olesen, Alexander Neergaard; Cesari, Matteo; Christensen, Julie Anja Engelhard

    2018-01-01

    atonia index (RAI), supra-threshold REM EMG activit ymetric (STREAM), and Frandsen method (FR) were calculated from polysomnography recordings of 20 healthy controls, 18 clinic controls (subjects suspected with narcolepsy but finally diagnosed without any sleep abnormality), 16 narcolepsy type 1 without...... REM sleep behavior disorder (RBD), 9 narcolepsy type 1 with RBD, and 18 narcolepsy type 2. Diagnostic value of metrics in differentiating between groups was quantified by area under the receiver operating characteristic curve (AUC). Correlations among the metrics and cerebrospinal fluid hypocretin-1...... in narcolepsy 1 compared to controls. This finding might play a supportive role in diagnosing narcolepsy and in discriminating narcolepsy subtypes. Moreover, the negative correlation between CSF-hcrt-1 level and REM muscular activity supported a role for hypocretin in the control of motor tone during REM sleep....