WorldWideScience

Sample records for regulates endosome recycling

  1. GGA1 regulates signal-dependent sorting of BACE1 to recycling endosomes, which moderates Aβ production

    Science.gov (United States)

    Toh, Wei Hong; Chia, Pei Zhi Cheryl; Hossain, Mohammed Iqbal; Gleeson, Paul A.

    2018-01-01

    The diversion of the membrane-bound β-site amyloid precursor protein–(APP) cleaving enzyme (BACE1) from the endolysosomal pathway to recycling endosomes represents an important transport step in the regulation of amyloid beta (Aβ) production. However, the mechanisms that regulate endosome sorting of BACE1 are poorly understood. Here we assessed the transport of BACE1 from early to recycling endosomes and have identified essential roles for the sorting nexin 4 (SNX4)-mediated, signal-independent pathway and for a novel signal-mediated pathway. The signal-mediated pathway is regulated by the phosphorylation of the DXXLL-motif sequence DISLL in the cytoplasmic tail of BACE1. The phosphomimetic S498D BACE1 mutant was trafficked to recycling endosomes at a faster rate compared with wild-type BACE1 or the nonphosphorylatable S498A mutant. The rapid transit of BACE1 S498D from early endosomes was coupled with reduced levels of amyloid precursor protein processing and Aβ production, compared with the S498A mutant. We show that the adaptor, GGA1, and retromer are essential to mediate rapid trafficking of phosphorylated BACE1 to recycling endosomes. In addition, the BACE1 DISLL motif is phosphorylated and regulates endosomal trafficking, in primary neurons. Therefore, post-translational phosphorylation of DISLL enhances the exit of BACE1 from early endosomes, a pathway mediated by GGA1 and retromer, which is important in regulating Aβ production. PMID:29142073

  2. Methods of analysis of the membrane trafficking pathway from recycling endosomes to lysosomes.

    Science.gov (United States)

    Matsui, Takahide; Fukuda, Mitsunori

    2014-01-01

    The transferrin receptor (TfR) is responsible for iron uptake through its trafficking between the plasma membrane and recycling endosomes, and as a result it has become a well-known marker for recycling endosomes. Although the molecular basis of the TfR recycling pathway has been thoroughly investigated, the TfR degradation mechanism has been poorly understood. Exposure of cultured cells to two drugs, the protein synthesis inhibitor cycloheximide and the V-ATPase inhibitor bafilomycin A1, recently showed that TfR is not only recycled back to the plasma membrane after endocytosis but is constitutively transported to lysosomes for degradation. The results of genome-wide screening of mouse Rab small GTPases (common regulators of membrane trafficking in all eukaryotes) have indicated that Rab12 regulates TfR trafficking to lysosomes independently of the known membrane trafficking pathways, for example, the conventional endocytic pathway and recycling pathway. This chapter summarizes the methods that the authors used to analyze the membrane trafficking pathway from recycling endosomes to lysosomes that is specifically regulated by Rab12. © 2014 Elsevier Inc. All rights reserved.

  3. Basolateral Endocytic Recycling Requires RAB-10 and AMPH-1 Mediated Recruitment of RAB-5 GAP TBC-2 to Endosomes

    Science.gov (United States)

    Liu, Ou; Grant, Barth D.

    2015-01-01

    The small GTPase RAB-5/Rab5 is a master regulator of the early endosome, required for a myriad of coordinated activities, including the degradation and recycling of internalized cargo. Here we focused on the recycling function of the early endosome and the regulation of RAB-5 by GAP protein TBC-2 in the basolateral C. elegans intestine. We demonstrate that downstream basolateral recycling regulators, GTPase RAB-10/Rab10 and BAR domain protein AMPH-1/Amphiphysin, bind to TBC-2 and help to recruit it to endosomes. In the absence of RAB-10 or AMPH-1 binding to TBC-2, RAB-5 membrane association is abnormally high and recycling cargo is trapped in early endosomes. Furthermore, the loss of TBC-2 or AMPH-1 leads to abnormally high spatial overlap of RAB-5 and RAB-10. Taken together our results indicate that RAB-10 and AMPH-1 mediated down-regulation of RAB-5 is an important step in recycling, required for cargo exit from early endosomes and regulation of early endosome–recycling endosome interactions. PMID:26393361

  4. Retromer guides STxB and CD8-M6PR from early to recycling endosomes, EHD1 guides STxB from recycling endosome to Golgi

    Science.gov (United States)

    McKenzie, Jenna E.; Raisley, Brent; Zhou, Xin; Naslavsky, Naava; Taguchi, Tomohiko; Caplan, Steve; Sheff, David

    2012-01-01

    Retrograde trafficking transports proteins, lipids and toxins from the plasma membrane to the Golgi and ER. To reach the Golgi, these cargos must transit the endosomal system, consisting of early endosomes, recycling endosomes, late endosomes and lysosomes. All cargos pass through early endosomes, but may take different routes to the Golgi. Retromer dependent cargos bypass the late endosomes to reach the Golgi. We compared how two very different retromer dependent cargos negotiate the endosomal sorting system. Shiga toxin B, bound to the external layer of the plasma membrane, and chimeric CD8-Mannose-6-Phosphate Receptor, which is anchored via a transmembrane domain. Both appear to pass through the recycling endosome. Ablation of the recycling endosome diverted both of these cargos to an aberrant compartment and prevented them from reaching the Golgi. Once in the recycling endosome, Shiga toxin required EHD1 to traffic to the TGN, while the CD8-Mannose-6-Phosphate Receptor was not significantly dependent on EHD1. Knockdown of retromer components left cargo in the early endosomes, suggesting that it is required for retrograde exit from this compartment. This work establishes the recycling endosome as a required step in retrograde traffic of at least these two retromer dependent cargos. Along this pathway, retromer is associated with EE to recycling endosome traffic, while EHD1 is associated with recycling endosome to TGN traffic of STxB. PMID:22540229

  5. Unconventional secretion of tissue transglutaminase involves phospholipid-dependent delivery into recycling endosomes.

    Directory of Open Access Journals (Sweden)

    Evgeny A Zemskov

    2011-04-01

    Full Text Available Although endosomal compartments have been suggested to play a role in unconventional protein secretion, there is scarce experimental evidence for such involvement. Here we report that recycling endosomes are essential for externalization of cytoplasmic secretory protein tissue transglutaminase (tTG. The de novo synthesized cytoplasmic tTG does not follow the classical ER/Golgi-dependent secretion pathway, but is targeted to perinuclear recycling endosomes, and is delivered inside these vesicles prior to externalization. On its route to the cell surface tTG interacts with internalized β1 integrins inside the recycling endosomes and is secreted as a complex with recycled β1 integrins. Inactivation of recycling endosomes, blocking endosome fusion with the plasma membrane, or downregulation of Rab11 GTPase that controls outbound trafficking of perinuclear recycling endosomes, all abrogate tTG secretion. The initial recruitment of cytoplasmic tTG to recycling endosomes and subsequent externalization depend on its binding to phosphoinositides on endosomal membranes. These findings begin to unravel the unconventional mechanism of tTG secretion which utilizes the long loop of endosomal recycling pathway and indicate involvement of endosomal trafficking in non-classical protein secretion.

  6. PDGF-regulated rab4-dependent recycling of alphavbeta3 integrin from early endosomes is necessary for cell adhesion and spreading.

    Science.gov (United States)

    Roberts, M; Barry, S; Woods, A; van der Sluijs, P; Norman, J

    2001-09-18

    It has been postulated that the regulation of integrin vesicular traffic facilitates cell migration by internalizing integrins at the rear of the cell and transporting them forward within vesicles for exocytosis at the leading edge to form new contacts with the extracellular matrix. The rab family of GTPases control key targeting events in the endo/exocytic pathway; therefore, these GTPases may be involved in the regulation of cell-matrix contact assembly. The endo/exocytic cycle of alphavbeta3 and alpha5beta1 integrins was studied using mouse 3T3 fibroblast cell lines. In serum-starved cells, internalized integrins were transported through rab4-positive, early endosomes and arrived at the rab11-positive, perinuclear recycling compartment approximately 30 min after endocytosis. From the recycling compartment, integrins were recycled to the plasma membrane in a rab11-dependent fashion. Following treatment with PDGF, alphavbeta3 integrin, but not alpha5beta1, was rapidly recycled directly back to the plasma membrane from the early endosomes via a rab4-dependent mechanism without the involvement of rab11. This rapid recycling pathway directed alphavbeta3 to numerous small puncta distributed evenly across the dorsal surface of the cell, and the integrin only became localized into focal complexes at later times following PDGF addition. Interestingly, inhibition of PDGF-stimulated alphavbeta3 recycling using dominant-negative rab4 mutants compromised cell adhesion and spreading on vitronectin (a ligand for alphavbeta3), but adhesion to fibronectin (a ligand for alpha5beta1 and alphavbeta3) was unchanged. We propose that growth factor-regulated, rab4-dependent recycling of alphavbeta3 integrin from early endosomes to the plasma membrane is a critical upstream event in the assembly of cell-matrix contacts.

  7. Arf6, Rab11 and transferrin receptor define distinct populations of recycling endosomes.

    Science.gov (United States)

    Kobayashi, Hotaka; Fukuda, Mitsunori

    2013-09-01

    Recycling endosomes are key platforms for endocytic recycling that return internalized molecules back to the plasma membrane. To determine how recycling endosomes perform their functions, searching for proteins and lipids that specifically localized at recycling endosomes has often been performed by colocalization analyses between candidate molecules and conventional recycling endosome markers. However, it remains unclear whether all the conventional markers have identical localizations. Here we report finding that three well-known recycling endosome markers, i.e., Arf6, Rab11 and transferrin receptor (TfR), have different intracellular localizations in PC12 cells. The results of immunofluorescence analyses showed that the signals of endogenous Arf6, Rab11 and TfR in nerve growth factor-stimulated PC12 cells generally differed, although there was some overlapping. Our findings provide new information about recycling endosome markers, and they highlight the heterogeneity of recycling endosomes.

  8. Positioning of AMPA Receptor-Containing Endosomes Regulates Synapse Architecture

    Directory of Open Access Journals (Sweden)

    Marta Esteves da Silva

    2015-11-01

    Full Text Available Lateral diffusion in the membrane and endosomal trafficking both contribute to the addition and removal of AMPA receptors (AMPARs at postsynaptic sites. However, the spatial coordination between these mechanisms has remained unclear, because little is known about the dynamics of AMPAR-containing endosomes. In addition, how the positioning of AMPAR-containing endosomes affects synapse organization and functioning has never been directly explored. Here, we used live-cell imaging in hippocampal neuron cultures to show that intracellular AMPARs are transported in Rab11-positive recycling endosomes, which frequently enter dendritic spines and depend on the microtubule and actin cytoskeleton. By using chemically induced dimerization systems to recruit kinesin (KIF1C or myosin (MyosinV/VI motors to Rab11-positive recycling endosomes, we controlled their trafficking and found that induced removal of recycling endosomes from spines decreases surface AMPAR expression and PSD-95 clusters at synapses. Our data suggest a mechanistic link between endosome positioning and postsynaptic structure and composition.

  9. A Role for EHD4 in the Regulation of Early Endosomal Transport

    Science.gov (United States)

    Sharma, Mahak; Naslavsky, Naava; Caplan, Steve

    2009-01-01

    All four of the C-terminal Eps15 homology domain (EHD) proteins have been implicated in the regulation of endocytic trafficking. However, the high level of amino acid sequence identity among these proteins has made it challenging to elucidate the precise function of individual EHD proteins. We demonstrate here with specific peptide antibodies that endogenous EHD4 localizes to Rab5-, early embryonic antigen 1 (EEA1)- and Arf6-containing endosomes and colocalizes with internalized transferrin in the cell periphery. Knock-down of EHD4 expression by both small interfering RNA and short hairpin RNA leads to the generation of enlarged early endosomal structures that contain Rab5 and EEA1 as well as internalized transferrin or major histocompatibility complex class I molecules. In addition, cargo destined for degradation, such as internalized low-density lipoprotein, also accumulates in the enlarged early endosomes in EHD4-depleted cells. Moreover, we have demonstrated that these enlarged early endosomes are enriched in levels of the activated GTP-bound Rab5. Finally, we show that endogenous EHD4 and EHD1 interact in cells, suggesting coordinated involvement in the regulation of receptor transport along the early endosome to endocytic recycling compartment axis. The results presented herein provide evidence that EHD4 is involved in the control of trafficking at the early endosome and regulates exit of cargo toward both the recycling compartment and the late endocytic pathway. PMID:18331452

  10. Synaptic activity regulates AMPA receptor trafficking through different recycling pathways

    Science.gov (United States)

    Zheng, Ning; Jeyifous, Okunola; Munro, Charlotte; Montgomery, Johanna M; Green, William N

    2015-01-01

    Changes in glutamatergic synaptic strength in brain are dependent on AMPA-type glutamate receptor (AMPAR) recycling, which is assumed to occur through a single local pathway. In this study, we present evidence that AMPAR recycling occurs through different pathways regulated by synaptic activity. Without synaptic stimulation, most AMPARs recycled in dynamin-independent endosomes containing the GTPase, Arf6. Few AMPARs recycled in dynamin-dependent endosomes labeled by transferrin receptors (TfRs). AMPAR recycling was blocked by alterations in the GTPase, TC10, which co-localized with Arf6 endosomes. TC10 mutants that reduced AMPAR recycling had no effect on increased AMPAR levels with long-term potentiation (LTP) and little effect on decreased AMPAR levels with long-term depression. However, internalized AMPAR levels in TfR-containing recycling endosomes increased after LTP, indicating increased AMPAR recycling through the dynamin-dependent pathway with synaptic plasticity. LTP-induced AMPAR endocytosis is inconsistent with local recycling as a source of increased surface receptors, suggesting AMPARs are trafficked from other sites. DOI: http://dx.doi.org/10.7554/eLife.06878.001 PMID:25970033

  11. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the Caenorhabditis elegans intestine

    Science.gov (United States)

    Gleason, Adenrele M.; Nguyen, Ken C. Q.; Hall, David H.; Grant, Barth D.

    2016-01-01

    Syndapin/pascin-family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of its effects on the earlier step of endocytic uptake and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only Caenorhabditis elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together, our results provide strong evidence for an in vivo function of syndapin in endocytic recycling and suggest that syndapin promotes transport via endosomal fission. PMID:27630264

  12. CED-10/Rac1 regulates endocytic recycling through the RAB-5 GAP TBC-2.

    Directory of Open Access Journals (Sweden)

    Lin Sun

    Full Text Available Rac1 is a founding member of the Rho-GTPase family and a key regulator of membrane remodeling. In the context of apoptotic cell corpse engulfment, CED-10/Rac1 acts with its bipartite guanine nucleotide exchange factor, CED-5/Dock180-CED-12/ELMO, in an evolutionarily conserved pathway to promote phagocytosis. Here we show that in the context of the Caenorhabditis elegans intestinal epithelium CED-10/Rac1, CED-5/Dock180, and CED-12/ELMO promote basolateral recycling. Furthermore, we show that CED-10 binds to the RAB-5 GTPase activating protein TBC-2, that CED-10 contributes to recruitment of TBC-2 to endosomes, and that recycling cargo is trapped in recycling endosomes in ced-12, ced-10, and tbc-2 mutants. Expression of GTPase defective RAB-5(Q78L also traps recycling cargo. Our results indicate that down-regulation of early endosome regulator RAB-5/Rab5 by a CED-5, CED-12, CED-10, TBC-2 cascade is an important step in the transport of cargo through the basolateral recycling endosome for delivery to the plasma membrane.

  13. L-Type Voltage-Gated Ca2+ Channels Regulate Synaptic-Activity-Triggered Recycling Endosome Fusion in Neuronal Dendrites

    Directory of Open Access Journals (Sweden)

    Brian G. Hiester

    2017-11-01

    Full Text Available The repertoire and abundance of proteins displayed on the surface of neuronal dendrites are tuned by regulated fusion of recycling endosomes (REs with the dendritic plasma membrane. While this process is critical for neuronal function and plasticity, how synaptic activity drives RE fusion remains unexplored. We demonstrate a multistep fusion mechanism that requires Ca2+ from distinct sources. NMDA receptor Ca2+ initiates RE fusion with the plasma membrane, while L-type voltage-gated Ca2+ channels (L-VGCCs regulate whether fused REs collapse into the membrane or reform without transferring their cargo to the cell surface. Accordingly, NMDA receptor activation triggered AMPA-type glutamate receptor trafficking to the dendritic surface in an L-VGCC-dependent manner. Conversely, potentiating L-VGCCs enhanced AMPA receptor surface expression only when NMDA receptors were also active. Thus L-VGCCs play a role in tuning activity-triggered surface expression of key synaptic proteins by gating the mode of RE fusion.

  14. Two novel WD40 domain–containing proteins, Ere1 and Ere2, function in the retromer-mediated endosomal recycling pathway

    Science.gov (United States)

    Shi, Yufeng; Stefan, Christopher J.; Rue, Sarah M.; Teis, David; Emr, Scott D.

    2011-01-01

    Regulated secretion, nutrient uptake, and responses to extracellular signals depend on cell-surface proteins that are internalized and recycled back to the plasma membrane. However, the underlying mechanisms that govern membrane protein recycling to the cell surface are not fully known. Using a chemical-genetic screen in yeast, we show that the arginine transporter Can1 is recycled back to the cell surface via two independent pathways mediated by the sorting nexins Snx4/41/42 and the retromer complex, respectively. In addition, we identify two novel WD40-domain endosomal recycling proteins, Ere1 and Ere2, that function in the retromer pathway. Ere1 is required for Can1 recycling via the retromer-mediated pathway, but it is not required for the transport of other retromer cargoes, such as Vps10 and Ftr1. Biochemical studies reveal that Ere1 physically interacts with internalized Can1. Ere2 is present in a complex containing Ere1 on endosomes and functions as a regulator of Ere1. Taken together, our results suggest that Snx4/41/42 and the retromer comprise two independent pathways for the recycling of internalized cell-surface proteins. Moreover, a complex containing the two novel proteins Ere1 and Ere2 mediates cargo-specific recognition by the retromer pathway. PMID:21880895

  15. Integrin-linked kinase and ELMO2 modulate recycling endosomes in keratinocytes.

    Science.gov (United States)

    Ho, Ernest; Ivanova, Iordanka A; Dagnino, Lina

    2016-12-01

    The formation of tight cell-cell junctions is essential in the epidermis for its barrier properties. In this tissue, keratinocytes follow a differentiation program tightly associated with their movement from the innermost basal to the outer suprabasal layers, and with changes in their cell-cell adhesion profile. Intercellular adhesion in keratinocytes is mediated through cell-cell contacts, including E-cadherin-based adherens junctions. Although the mechanisms that mediate E-cadherin delivery to the plasma membrane have been widely studied in simple epithelia, this process is less well understood in the stratified epidermis. In this study, we have investigated the role of Engulfment and Cell Motility 2 (ELMO2) and integrin-linked kinase (ILK) in the positioning of E-cadherin-containing recycling endosomes during establishment of cell-cell contacts in differentiating keratinocytes. We now show that induction of keratinocyte differentiation by Ca 2+ is accompanied by localization of ELMO2 and ILK to Rab4- and Rab11a-containing recycling endosomes. The positioning of long-loop Rab11a-positive endosomes at areas adjacent to cell-cell contacts is disrupted in ELMO2- or ILK-deficient keratinocytes, and is associated with impaired localization of E-cadherin to cell borders. Our studies show a previously unrecognized role for ELMO2 and ILK in modulation of endosomal positioning, which may play key roles in epidermal sheet maintenance and permeability barrier function. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. dOCRL maintains immune cell quiescence by regulating endosomal traffic.

    Directory of Open Access Journals (Sweden)

    Steven J Del Signore

    2017-10-01

    Full Text Available Lowe Syndrome is a developmental disorder characterized by eye, kidney, and neurological pathologies, and is caused by mutations in the phosphatidylinositol-5-phosphatase OCRL. OCRL plays diverse roles in endocytic and endolysosomal trafficking, cytokinesis, and ciliogenesis, but it is unclear which of these cellular functions underlie specific patient symptoms. Here, we show that mutation of Drosophila OCRL causes cell-autonomous activation of hemocytes, which are macrophage-like cells of the innate immune system. Among many cell biological defects that we identified in docrl mutant hemocytes, we pinpointed the cause of innate immune cell activation to reduced Rab11-dependent recycling traffic and concomitantly increased Rab7-dependent late endosome traffic. Loss of docrl amplifies multiple immune-relevant signals, including Toll, Jun kinase, and STAT, and leads to Rab11-sensitive mis-sorting and excessive secretion of the Toll ligand Spåtzle. Thus, docrl regulation of endosomal traffic maintains hemocytes in a poised, but quiescent state, suggesting mechanisms by which endosomal misregulation of signaling may contribute to symptoms of Lowe syndrome.

  17. The endosomal recycling of FgSnc1 by FgSnx41-FgSnx4 heterodimer is essential for polarized growth and pathogenicity in Fusarium graminearum.

    Science.gov (United States)

    Zheng, Wenhui; Lin, Yahong; Fang, Wenqin; Zhao, Xu; Lou, Yi; Wang, Guanghui; Zheng, Huawei; Liang, Qifu; Abubakar, Yakubu Saddeeq; Olsson, Stefan; Zhou, Jie; Wang, Zonghua

    2018-04-20

    Endosomal sorting machineries regulate the transport of their cargoes among intracellular compartments. However, the molecular nature of such intracellular trafficking processes in pathogenic fungal development and pathogenicity remains unclear. Here, we dissect the roles and molecular mechanisms of two sorting nexin proteins and their cargoes in endosomal recycling in Fusarium graminearum using high-resolution microscopy and high-throughput co-immunoprecipitation strategies. We show that the sorting nexins, FgSnx41 and FgSnx4, interact with each other and assemble into a functionally interdependent heterodimer through their respective BAR domains. Further analyses demonstrate that the dimer localizes to the early endosomal membrane and coordinates endosomal sorting. The small GTPase FgRab5 regulates the correct localization of FgSnx41-FgSnx4 and is consequently required for its trafficking function. The protein FgSnc1 is a cargo of FgSnx41-FgSnx4 and regulates the fusion of secreted vesicles with the fungal growing apex and plasma membrane. In the absence of FgSnx41 or FgSnx4, FgSnc1 is mis-sorted and degraded in the vacuole, and null deletion of either component causes defects in the fungal polarized growth and virulence. Overall, for the first time, our results reveal the mechanism of FgSnc1 endosomal recycling by FgSnx41-FgSnx4 heterodimer which is essential for polarized growth and pathogenicity in F. graminearum. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  18. Recycling endosomes in apical plasma membrane domain formation and epithelial cell polarity

    NARCIS (Netherlands)

    Golachowska, Magdalena R.; Hoekstra, Dick; van IJzendoorn, Sven C. D.

    2010-01-01

    Recycling endosomes have taken central stage in the intracellular sorting and polarized trafficking of apical and basolateral plasma membrane components. Molecular players in the underlying mechanisms are now emerging, including small GTPases, class V myosins and adaptor proteins. In particular,

  19. The functional interplay of Rab11, FIP3 and Rho proteins on the endosomal recycling pathway controls cell shape and symmetry.

    Science.gov (United States)

    Bouchet, Jérôme; McCaffrey, Mary W; Graziani, Andrea; Alcover, Andrés

    2018-07-04

    Several families of small GTPases regulate a variety of fundamental cellular processes, encompassing growth factor signal transduction, vesicular trafficking and control of the cytoskeleton. Frequently, their action is hierarchical and complementary, but much of the detail of their functional interactions remains to be clarified. It is well established that Rab family members regulate a variety of intracellular vesicle trafficking pathways. Moreover, Rho family GTPases are pivotal for the control of the actin and microtubule cytoskeleton. However, the interplay between these 2 types of GTPases has been rarely reported. We discuss here our recent findings showing that Rab11, a key regulator of endosomal recycling, and Rac1, a central actin cytoskeleton regulator involved in lamellipodium formation and cell migration, interplay on endosomes through the Rab11 effector FIP3. In the context of the rapidly reactive T lymphocytes, Rab11-Rac1 endosomal functional interplay is important to control cell shape changes and cell symmetry during lymphocyte spreading and immunological synapse formation and ultimately modulate T cell activation.

  20. Recycling endosomes in human cytotoxic T lymphocytes constitute an auxiliary intracellular trafficking pathway for newly synthesized perforin

    Science.gov (United States)

    Lesteberg, Kelsey E.; Orange, Jordan S.; Makedonas, George

    2018-01-01

    Background Although cytotoxic T lymphocytes (CTLs) store perforin within cytoplasmic secretory granules for immediate use, perforin is synthesized anew within hours of TCR stimulation. Previously, we observed new perforin protein at an immunologic synapse independent of secretory lysosomes; herein we aimed to determine how new perforin transits to the synapse if not via lytic granules. Results We analyzed antigen-specific human CTLs via imaging flow cytometry and high-resolution confocal microscopy, with attention to intracellular trafficking components and new perforin. The recycling endosome compartments identified by rab8, rab11a, rab4, and rab37 co-localized with new perforin, as well as the SNAREs vti1b and VAMP4. After ablating the function of the recycling endosome pathway, we observed a relative accumulation of new perforin in rab8 vesicles. Conclusions The recycling endosome pathway may serve as an auxiliary intracellular route for the delivery of new perforin to an immunologic synapse in order to perpetuate a cytotoxic response. PMID:28822075

  1. Endocytosis and Endosomal Trafficking in Plants.

    Science.gov (United States)

    Paez Valencia, Julio; Goodman, Kaija; Otegui, Marisa S

    2016-04-29

    Endocytosis and endosomal trafficking are essential processes in cells that control the dynamics and turnover of plasma membrane proteins, such as receptors, transporters, and cell wall biosynthetic enzymes. Plasma membrane proteins (cargo) are internalized by endocytosis through clathrin-dependent or clathrin-independent mechanism and delivered to early endosomes. From the endosomes, cargo proteins are recycled back to the plasma membrane via different pathways, which rely on small GTPases and the retromer complex. Proteins that are targeted for degradation through ubiquitination are sorted into endosomal vesicles by the ESCRT (endosomal sorting complex required for transport) machinery for degradation in the vacuole. Endocytic and endosomal trafficking regulates many cellular, developmental, and physiological processes, including cellular polarization, hormone transport, metal ion homeostasis, cytokinesis, pathogen responses, and development. In this review, we discuss the mechanisms that mediate the recognition and sorting of endocytic and endosomal cargos, the vesiculation processes that mediate their trafficking, and their connection to cellular and physiological responses in plants.

  2. The Cdc42 guanine nucleotide exchange factor FGD6 coordinates cell polarity and endosomal membrane recycling in osteoclasts.

    Science.gov (United States)

    Steenblock, Charlotte; Heckel, Tobias; Czupalla, Cornelia; Espírito Santo, Ana Isabel; Niehage, Christian; Sztacho, Martin; Hoflack, Bernard

    2014-06-27

    The initial step of bone digestion is the adhesion of osteoclasts onto bone surfaces and the assembly of podosomal belts that segregate the bone-facing ruffled membrane from other membrane domains. During bone digestion, membrane components of the ruffled border also need to be recycled after macropinocytosis of digested bone materials. How osteoclast polarity and membrane recycling are coordinated remains unknown. Here, we show that the Cdc42-guanine nucleotide exchange factor FGD6 coordinates these events through its Src-dependent interaction with different actin-based protein networks. At the plasma membrane, FGD6 couples cell adhesion and actin dynamics by regulating podosome formation through the assembly of complexes comprising the Cdc42-interactor IQGAP1, the Rho GTPase-activating protein ARHGAP10, and the integrin interactors Talin-1/2 or Filamin A. On endosomes and transcytotic vesicles, FGD6 regulates retromer-dependent membrane recycling through its interaction with the actin nucleation-promoting factor WASH. These results provide a mechanism by which a single Cdc42-exchange factor controlling different actin-based processes coordinates cell adhesion, cell polarity, and membrane recycling during bone degradation. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. HIV-1 Envelope Glycoprotein Trafficking through the Endosomal Recycling Compartment Is Required for Particle Incorporation.

    Science.gov (United States)

    Kirschman, Junghwa; Qi, Mingli; Ding, Lingmei; Hammonds, Jason; Dienger-Stambaugh, Krista; Wang, Jaang-Jiun; Lapierre, Lynne A; Goldenring, James R; Spearman, Paul

    2018-03-01

    The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) encodes specific trafficking signals within its long cytoplasmic tail (CT) that regulate incorporation into HIV-1 particles. Rab11-family interacting protein 1C (FIP1C) and Rab14 are host trafficking factors required for Env particle incorporation, suggesting that Env undergoes sorting from the endosomal recycling compartment (ERC) to the site of particle assembly on the plasma membrane. We disrupted outward sorting from the ERC by expressing a C-terminal fragment of FIP1C (FIP1C 560-649 ) and examined the consequences on Env trafficking and incorporation into particles. FIP1C 560-649 reduced cell surface levels of Env and prevented its incorporation into HIV-1 particles. Remarkably, Env was trapped in an exaggerated perinuclear ERC in a CT-dependent manner. Mutation of either the Yxxϕ endocytic motif or the YW 795 motif in the CT prevented Env trapping in the ERC and restored incorporation into particles. In contrast, simian immunodeficiency virus SIVmac239 Env was not retained in the ERC, while substitution of the HIV-1 CT for the SIV CT resulted in SIV Env retention in this compartment. These results provide the first direct evidence that Env traffics through the ERC and support a model whereby HIV-1 Env is specifically targeted to the ERC prior to FIP1C- and CT-dependent outward sorting to the particle assembly site on the plasma membrane. IMPORTANCE The HIV envelope protein is an essential component of the viral particle. While many aspects of envelope protein structure and function have been established, the pathway it follows in the cell prior to reaching the site of particle assembly is not well understood. The envelope protein has a very long cytoplasmic tail that interacts with the host cell trafficking machinery. Here, we utilized a truncated form of the trafficking adaptor FIP1C protein to arrest the intracellular transport of the envelope protein, demonstrating that it becomes

  4. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  5. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation.

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-07-22

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. The Endosome-associated Deubiquitinating Enzyme USP8 Regulates BACE1 Enzyme Ubiquitination and Degradation*

    Science.gov (United States)

    Yeates, Eniola Funmilayo Aduke; Tesco, Giuseppina

    2016-01-01

    The β-site amyloid precursor protein-cleaving enzyme (BACE1) is the rate-limiting enzyme in the production of amyloid-β, the toxic peptide that accumulates in the brain of subjects affected by Alzheimer disease. Our previous studies have shown that BACE1 is degraded via the lysosomal pathway and that that depletion of the trafficking molecule Golgi-localized γ-ear-containing ARF-binding protein 3 (GGA3) results in increased BACE1 levels and activity because of impaired lysosomal degradation. We also determined that GGA3 regulation of BACE1 levels requires its ability to bind ubiquitin. Accordingly, we reported that BACE1 is ubiquitinated at lysine 501 and that lack of ubiquitination at lysine 501 produces BACE1 stabilization. Ubiquitin conjugation is a reversible process mediated by deubiquitinating enzymes. The ubiquitin-specific peptidase 8 (USP8), an endosome-associated deubiquitinating enzyme, regulates the ubiquitination, trafficking, and lysosomal degradation of several plasma membrane proteins. Here, we report that RNAi-mediated depletion of USP8 reduced levels of both ectopically expressed and endogenous BACE1 in H4 human neuroglioma cells. Moreover, USP8 depletion increased BACE1 ubiquitination, promoted BACE1 accumulation in the early endosomes and late endosomes/lysosomes, and decreased levels of BACE1 in the recycling endosomes. We also found that decreased BACE1 protein levels were accompanied by a decrease in BACE1-mediated amyloid precursor protein cleavage and amyloid-β levels. Our findings demonstrate that USP8 plays a key role in the trafficking and degradation of BACE1 by deubiquitinating lysine 501. These studies suggest that therapies able to accelerate BACE1 degradation (e.g. by increasing BACE1 ubiquitination) may represent a potential treatment for Alzheimer disease. PMID:27302062

  7. Membrane Tethering Complexes in the Endosomal System

    OpenAIRE

    Spang, Anne

    2016-01-01

    Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is...

  8. Endosome-based protein trafficking and Ca2+ homeostasis in the heart

    Directory of Open Access Journals (Sweden)

    Jerry eCurran

    2015-02-01

    Full Text Available The ability to dynamically regulate, traffic, retain, and recycle proteins within the cell membrane is fundamental to life and central to the normal function of the heart and cardiovascular system. In the heart, these systems are essential for the regulation of cardiac calcium, both at the level of the plasma membrane, but also at local domains of the endoplasmic reticulum, sarcoplasmic reticulum, mitochondria, nucleus, and nuclear envelope. One intracellular pathway often overlooked in relation to cardiovascular calcium regulation and signaling is the endosome-based trafficking pathway. Highlighting its importance, this system and its molecular components are evolutionarily conserved across all metazoans. However, remarkably little is known of how endosome-based protein trafficking and recycling functions within mammalian cells systems, especially in the heart. The vast majority of what is known has been derived from heterologous cell systems. However, recently, more appropriate cell and animal models been developed that have allowed researchers to begin to understand how this system functions within the intact physiological environment. All excitable cells, including cardiomyocytes, depend on the proper expression and organization of multiple ion channels, pumps, exchangers, and transporters within the plasma membrane. As the endosomal system acts to regulate the expression and localization of membrane proteins, understanding the in vivo function of this system in the heart is important. This review will focus on endosome-based protein trafficking in the heart in both health and disease. Special emphasis will be given to the role played by the family of endocytic regulatory proteins, C-terminal Eps15 homology domain -containing proteins (EHDs, as recent data demonstrates that this family of proteins is essential for the proper trafficking and localization and of key proteins involved in excitation-contraction coupling.

  9. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment.

    Science.gov (United States)

    Girada, Shravan Babu; Kuna, Ramya S; Bele, Shilpak; Zhu, Zhimeng; Chakravarthi, N R; DiMarchi, Richard D; Mitra, Prasenjit

    2017-10-01

    Upon activation, G protein coupled receptors (GPCRs) associate with heterotrimeric G proteins at the plasma membrane to initiate second messenger signaling. Subsequently, the activated receptor experiences desensitization, internalization, and recycling back to the plasma membrane, or it undergoes lysosomal degradation. Recent reports highlight specific cases of persistent cyclic AMP generation by internalized GPCRs, although the functional significance and mechanistic details remain to be defined. Cyclic AMP generation from internalized Glucagon-Like Peptide-1 Receptor (GLP-1R) has previously been reported from our laboratory. This study aimed at deciphering the molecular mechanism by which internalized GLP-R supports sustained cyclic AMP generation upon receptor activation in pancreatic beta cells. We studied the time course of cyclic AMP generation following GLP-1R activation with particular emphasis on defining the location where cyclic AMP is generated. Detection involved a novel GLP-1 conjugate coupled with immunofluorescence using specific endosomal markers. Finally, we employed co-immunoprecipitation as well as immunofluorescence to assess the protein-protein interactions that regulate GLP-1R mediated cyclic AMP generation at endosomes. Our data reveal that prolonged association of G protein α subunit Gαs with activated GLP-1R contributed to sustained cyclic AMP generation at Rab 5 endosomal compartment. The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex. Copyright © 2017 The Authors. Published by Elsevier GmbH.. All rights reserved.

  10. The ESCRT regulator Did2 maintains the balance between long-distance endosomal transport and endocytic trafficking.

    Directory of Open Access Journals (Sweden)

    Carl Haag

    2017-04-01

    Full Text Available In highly polarised cells, like fungal hyphae, early endosomes function in both endocytosis as well as long-distance transport of various cargo including mRNA and protein complexes. However, knowledge on the crosstalk between these seemingly different trafficking processes is scarce. Here, we demonstrate that the ESCRT regulator Did2 coordinates endosomal transport in fungal hyphae of Ustilago maydis. Loss of Did2 results in defective vacuolar targeting, less processive long-distance transport and abnormal shuttling of early endosomes. Importantly, the late endosomal protein Rab7 and vacuolar protease Prc1 exhibit increased shuttling on these aberrant endosomes suggesting defects in endosomal maturation and identity. Consistently, molecular motors fail to attach efficiently explaining the disturbed processive movement. Furthermore, the endosomal mRNP linker protein Upa1 is hardly present on endosomes resulting in defects in long-distance mRNA transport. In conclusion, the ESCRT regulator Did2 coordinates precise maturation of endosomes and thus provides the correct membrane identity for efficient endosomal long-distance transport.

  11. Differential endosomal sorting of a novel P2Y12 purinoreceptor mutant.

    Science.gov (United States)

    Cunningham, Margaret R; Nisar, Shaista P; Cooke, Alexandra E; Emery, Elizabeth D; Mundell, Stuart J

    2013-05-01

    P2Y12 receptor internalization and recycling play an essential role in ADP-induced platelet activation. Recently, we identified a patient with a mild bleeding disorder carrying a heterozygous mutation of P2Y12 (P341A) whose P2Y12 receptor recycling was significantly compromised. Using human cell line models, we identified key proteins regulating wild-type (WT) P2Y12 recycling and investigated P2Y12 -P341A receptor traffic. Treatment with ADP resulted in delayed Rab5-dependent internalization of P341A when compared with WT P2Y12 . While WT P2Y12 rapidly recycled back to the membrane via Rab4 and Rab11 recycling pathways, limited P341A recycling was observed, which relied upon Rab11 activity. Although minimal receptor degradation was evident, P341A was localized in Rab7-positive endosomes with considerable agonist-dependent accumulation in the trans-Golgi network (TGN). Rab7 activity is known to facilitate recruitment of retromer complex proteins to endosomes to transport cargo to the TGN. Here, we identified that P341A colocalized with Vps26; depletion of which blocked limited recycling and promoted receptor degradation. This study has identified key points of divergence in the endocytic traffic of P341A versus WT-P2Y12 . Given that these pathways are retained in human platelets, this research helps define the molecular mechanisms regulating P2Y12 receptor traffic and explain the compromised receptor function in the platelets of the P2Y12 -P341A-expressing patient. © 2013 John Wiley & Sons A/S.

  12. Two barcodes encoded by the type-1 PDZ and by phospho-Ser312 regulate retromer/WASH-mediated sorting of the ß1-adrenergic receptor from endosomes to the plasma membrane.

    Science.gov (United States)

    Nooh, Mohammed M; Bahouth, Suleiman W

    2017-01-01

    Recycling of the majority of agonist-internalized GPCR is dependent on a type I-PDZ "barcode" in their C-tail. The recycling of wild-type (WT) ß 1 -AR is also dependent on its default "type-1 PDZ barcode", but trafficking of the ß 1 -AR is inhibited when PKA or its substrate serine at position 312 (Ser 312 ) are inactivated. We tested the hypothesis that phospho-Ser 312 provided a second barcode for ß 1 -AR sorting from endosomes to the plasma membrane by determining the role of retromer/WASH complexes in ß 1 -AR trafficking. Recycling of WT ß 1 -AR or WT ß 2 -AR was dependent on targeting the retromer to endosomal membranes via SNX3 and rab7a, and on complexing the retromer to the WASH pentamer via the C-tail of FAM21 (FAM21 C ). These maneuvers however, did not inhibit the recycling of a phospho-Ser 312 ß 1 -AR mimic ((S312D) ß 1 -AR). Knockdown of the trans-acting PDZ protein sorting nexin27 (SNX27) inhibited the recycling of WT ß 1 -AR and WT ß 2 -AR, but had no effect on (S312D) ß 1 -AR∆PDZ or on phosphorylation of WT ß 1 -AR by PKA at Ser 312 . However, depletion of FKBP15, a FAM21 C -binding endosomal protein, selectively inhibited WT ß 1 -AR but not ß 2 -AR recycling, suggesting divergence might exist in GPCR trafficking roadmaps. These results indicate that two barcodes are involved in sorting WT ß 1 -AR out of early endosomes. The first and antecedent "barcode" was the "type-1 PDZ", followed by a second reversible "phospho-Ser 312 " verification "barcode". This organization allows tight regulation of ß 1 -AR density to signaling intensity in conditions associated with aberrant ß 1 -AR signaling such as in hypertension and heart failure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Specific recycling receptors are targeted to the immune synapse by the intraflagellar transport system

    Science.gov (United States)

    Finetti, Francesca; Patrussi, Laura; Masi, Giulia; Onnis, Anna; Galgano, Donatella; Lucherini, Orso Maria; Pazour, Gregory J.; Baldari, Cosima T.

    2014-01-01

    ABSTRACT T cell activation requires sustained signaling at the immune synapse, a specialized interface with the antigen-presenting cell (APC) that assembles following T cell antigen receptor (TCR) engagement by major histocompatibility complex (MHC)-bound peptide. Central to sustained signaling is the continuous recruitment of TCRs to the immune synapse. These TCRs are partly mobilized from an endosomal pool by polarized recycling. We have identified IFT20, a component of the intraflagellar transport (IFT) system that controls ciliogenesis, as a central regulator of TCR recycling to the immune synapse. Here, we have investigated the interplay of IFT20 with the Rab GTPase network that controls recycling. We found that IFT20 forms a complex with Rab5 and the TCR on early endosomes. IFT20 knockdown (IFT20KD) resulted in a block in the recycling pathway, leading to a build-up of recycling TCRs in Rab5+ endosomes. Recycling of the transferrin receptor (TfR), but not of CXCR4, was disrupted by IFT20 deficiency. The IFT components IFT52 and IFT57 were found to act together with IFT20 to regulate TCR and TfR recycling. The results provide novel insights into the mechanisms that control TCR recycling and immune synapse assembly, and underscore the trafficking-related function of the IFT system beyond ciliogenesis. PMID:24554435

  14. Recycling domains in plant cell morphogenesis: small GTPase effectors, plasma membrane signalling and the exocyst.

    Science.gov (United States)

    Zárský, Viktor; Potocký, Martin

    2010-04-01

    The Rho/Rop small GTPase regulatory module is central for initiating exocytotically ACDs (active cortical domains) in plant cell cortex, and a growing array of Rop regulators and effectors are being discovered in plants. Structural membrane phospholipids are important constituents of cells as well as signals, and phospholipid-modifying enzymes are well known effectors of small GTPases. We have shown that PLDs (phospholipases D) and their product, PA (phosphatidic acid), belong to the regulators of the secretory pathway in plants. We have also shown that specific NOXs (NADPH oxidases) producing ROS (reactive oxygen species) are involved in cell growth as exemplified by pollen tubes and root hairs. Most plant cells exhibit several distinct plasma membrane domains (ACDs), established and maintained by endocytosis/exocytosis-driven membrane protein recycling. We proposed recently the concept of a 'recycling domain' (RD), uniting the ACD and the connected endosomal recycling compartment (endosome), as a dynamic spatiotemporal entity. We have described a putative GTPase-effector complex exocyst involved in exocytic vesicle tethering in plants. Owing to the multiplicity of its Exo70 subunits, this complex, along with many RabA GTPases (putative recycling endosome organizers), may belong to core regulators of RD organization in plants.

  15. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    Directory of Open Access Journals (Sweden)

    Miranda Arnold

    2016-09-01

    Full Text Available AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3 and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1. Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD and schizophrenia (SZ; yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines, and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse orthologue of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function.

  16. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    Science.gov (United States)

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  17. LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes.

    Science.gov (United States)

    Takano, Tetsuya; Urushibara, Tomoki; Yoshioka, Nozomu; Saito, Taro; Fukuda, Mitsunori; Tomomura, Mineko; Hisanaga, Shin-Ichi

    2014-06-01

    Neurons extend two types of neurites-axons and dendrites-that differ in structure and function. Although it is well understood that the cytoskeleton plays a pivotal role in neurite differentiation and extension, the mechanisms by which membrane components are supplied to growing axons or dendrites is largely unknown. We previously reported that the membrane supply to axons is regulated by lemur kinase 1 (LMTK1) through Rab11A-positive endosomes. Here we investigate the role of LMTK1 in dendrite formation. Down-regulation of LMTK1 increases dendrite growth and branching of cerebral cortical neurons in vitro and in vivo. LMTK1 knockout significantly enhances the prevalence, velocity, and run length of anterograde movement of Rab11A-positive endosomes to levels similar to those expressing constitutively active Rab11A-Q70L. Rab11A-positive endosome dynamics also increases in the cell body and growth cone of LMTK1-deficient neurons. Moreover, a nonphosphorylatable LMTK1 mutant (Ser34Ala, a Cdk5 phosphorylation site) dramatically promotes dendrite growth. Thus LMTK1 negatively controls dendritic formation by regulating Rab11A-positive endosomal trafficking in a Cdk5-dependent manner, indicating the Cdk5-LMTK1-Rab11A pathway as a regulatory mechanism of dendrite development as well as axon outgrowth. © 2014 Takano et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. The structure and function of presynaptic endosomes

    Energy Technology Data Exchange (ETDEWEB)

    Jähne, Sebastian, E-mail: sebastian.jaehne1@stud.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Neurosciences, 37077 Göttingen (Germany); Rizzoli, Silvio O. [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); Helm, Martin S., E-mail: martin.helm@med.uni-goettingen.de [Department of Neuro- and Sensory Physiology, University of Göttingen Medical Center, Cluster of Excellence Nanoscale Microscopy and Molecular Physiology of the Brain, Humboldtallee 23, 37073 Göttingen (Germany); International Max Planck Research School for Molecular Biology, 37077 Göttingen (Germany)

    2015-07-15

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures.

  19. The structure and function of presynaptic endosomes

    International Nuclear Information System (INIS)

    Jähne, Sebastian; Rizzoli, Silvio O.; Helm, Martin S.

    2015-01-01

    The function of endosomes and of endosome-like structures in the presynaptic compartment is still controversial. This is in part due to the absence of a consensus on definitions and markers for these compartments. Synaptic endosomes are sometimes seen as stable organelles, permanently present in the synapse. Alternatively, they are seen as short-lived intermediates in synaptic vesicle recycling, arising from the endocytosis of large vesicles from the plasma membrane, or from homotypic fusion of small vesicles. In addition, the potential function of the endosome is largely unknown in the synapse. Some groups have proposed that the endosome is involved in the sorting of synaptic vesicle proteins, albeit others have produced data that deny this possibility. In this review, we present the existing evidence for synaptic endosomes, we discuss their potential functions, and we highlight frequent technical pitfalls in the analysis of this elusive compartment. We also sketch a roadmap to definitely determine the role of synaptic endosomes for the synaptic vesicle cycle. Finally, we propose a common definition of synaptic endosome-like structures

  20. Membrane tethering complexes in the endosomal system

    Directory of Open Access Journals (Sweden)

    Anne eSpang

    2016-05-01

    Full Text Available Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the CORVET complex, while fusion of late endosomes with lysosomes depends on the HOPS complex. Recycling through the TGN and to the plasma membrane is facilitated by the GARP and EARP complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, complexes that may be part of novel tethering complexes have been recently identified. Thus it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.

  1. Apolipoprotein E Regulates Amyloid Formation within Endosomes of Pigment Cells

    Directory of Open Access Journals (Sweden)

    Guillaume van Niel

    2015-10-01

    Full Text Available Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.

  2. Molecular assemblies and membrane domains in multivesicular endosome dynamics

    International Nuclear Information System (INIS)

    Falguieres, Thomas; Luyet, Pierre-Philippe; Gruenberg, Jean

    2009-01-01

    Along the degradation pathway, endosomes exhibit a characteristic multivesicular organization, resulting from the budding of vesicles into the endosomal lumen. After endocytosis and transport to early endosomes, activated signaling receptors are incorporated into these intralumenal vesicles through the action of the ESCRT machinery, a process that contributes to terminate signaling. Then, the vesicles and their protein cargo are further transported towards lysosomes for degradation. Evidence also shows that intralumenal vesicles can undergo 'back-fusion' with the late endosome limiting membrane, a route exploited by some pathogens and presumably followed by proteins and lipids that need to be recycled from within the endosomal lumen. This process depends on the late endosomal lipid lysobisphosphatidic acid and its putative effector Alix/AIP1, and is presumably coupled to the invagination of the endosomal limiting membrane at the molecular level via ESCRT proteins. In this review, we discuss the intra-endosomal transport routes in mammalian cells, and in particular the different mechanisms involved in membrane invagination, vesicle formation and fusion in a space inaccessible to proteins known to control intracellular membrane traffic.

  3. Recycling Endosomes and Viral Infection.

    Science.gov (United States)

    Vale-Costa, Sílvia; Amorim, Maria João

    2016-03-08

    Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral-host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.

  4. Yersinia pestis Targets the Host Endosome Recycling Pathway during the Biogenesis of the Yersinia-Containing Vacuole To Avoid Killing by Macrophages

    Science.gov (United States)

    Connor, Michael G.; Pulsifer, Amanda R.; Ceresa, Brian K.

    2018-01-01

    ABSTRACT Yersinia pestis has evolved many strategies to evade the innate immune system. One of these strategies is the ability to survive within macrophages. Upon phagocytosis, Y. pestis prevents phagolysosome maturation and establishes a modified compartment termed the Yersinia-containing vacuole (YCV). Y. pestis actively inhibits the acidification of this compartment, and eventually, the YCV transitions from a tight-fitting vacuole into a spacious replicative vacuole. The mechanisms to generate the YCV have not been defined. However, we hypothesized that YCV biogenesis requires Y. pestis interactions with specific host factors to subvert normal vesicular trafficking. In order to identify these factors, we performed a genome-wide RNA interference (RNAi) screen to identify host factors required for Y. pestis survival in macrophages. This screen revealed that 71 host proteins are required for intracellular survival of Y. pestis. Of particular interest was the enrichment for genes involved in endosome recycling. Moreover, we demonstrated that Y. pestis actively recruits Rab4a and Rab11b to the YCV in a type three secretion system-independent manner, indicating remodeling of the YCV by Y. pestis to resemble a recycling endosome. While recruitment of Rab4a was necessary to inhibit YCV acidification and lysosomal fusion early during infection, Rab11b appeared to contribute to later stages of YCV biogenesis. We also discovered that Y. pestis disrupts global host endocytic recycling in macrophages, possibly through sequestration of Rab11b, and this process is required for bacterial replication. These data provide the first evidence that Y. pestis targets the host endocytic recycling pathway to avoid phagolysosomal maturation and generate the YCV. PMID:29463656

  5. Anterograde trafficking of KCa3.1 in polarized epithelia is Rab1- and Rab8-dependent and recycling endosome-independent.

    Directory of Open Access Journals (Sweden)

    Claudia A Bertuccio

    Full Text Available The intermediate conductance, Ca2+-activated K+ channel (KCa3.1 targets to the basolateral (BL membrane in polarized epithelia where it plays a key role in transepithelial ion transport. However, there are no studies defining the anterograde and retrograde trafficking of KCa3.1 in polarized epithelia. Herein, we utilize Biotin Ligase Acceptor Peptide (BLAP-tagged KCa3.1 to address these trafficking steps in polarized epithelia, using MDCK, Caco-2 and FRT cells. We demonstrate that KCa3.1 is exclusively targeted to the BL membrane in these cells when grown on filter supports. Following endocytosis, KCa3.1 degradation is prevented by inhibition of lysosomal/proteosomal pathways. Further, the ubiquitylation of KCa3.1 is increased following endocytosis from the BL membrane and PR-619, a deubiquitylase inhibitor, prevents degradation, indicating KCa3.1 is targeted for degradation by ubiquitylation. We demonstrate that KCa3.1 is targeted to the BL membrane in polarized LLC-PK1 cells which lack the μ1B subunit of the AP-1 complex, indicating BL targeting of KCa3.1 is independent of μ1B. As Rabs 1, 2, 6 and 8 play roles in ER/Golgi exit and trafficking of proteins to the BL membrane, we evaluated the role of these Rabs in the trafficking of KCa3.1. In the presence of dominant negative Rab1 or Rab8, KCa3.1 cell surface expression was significantly reduced, whereas Rabs 2 and 6 had no effect. We also co-immunoprecipitated KCa3.1 with both Rab1 and Rab8. These results suggest these Rabs are necessary for the anterograde trafficking of KCa3.1. Finally, we determined whether KCa3.1 traffics directly to the BL membrane or through recycling endosomes in MDCK cells. For these studies, we used either recycling endosome ablation or dominant negative RME-1 constructs and determined that KCa3.1 is trafficked directly to the BL membrane rather than via recycling endosomes. These results are the first to describe the anterograde and retrograde trafficking of KCa3

  6. Actin-Sorting Nexin 27 (SNX27)-Retromer Complex Mediates Rapid Parathyroid Hormone Receptor Recycling*

    Science.gov (United States)

    McGarvey, Jennifer C.; Xiao, Kunhong; Bowman, Shanna L.; Mamonova, Tatyana; Zhang, Qiangmin; Bisello, Alessandro; Sneddon, W. Bruce; Ardura, Juan A.; Jean-Alphonse, Frederic; Vilardaga, Jean-Pierre; Puthenveedu, Manojkumar A.; Friedman, Peter A.

    2016-01-01

    The G protein-coupled parathyroid hormone receptor (PTHR) regulates mineral-ion homeostasis and bone remodeling. Upon parathyroid hormone (PTH) stimulation, the PTHR internalizes into early endosomes and subsequently traffics to the retromer complex, a sorting platform on early endosomes that promotes recycling of surface receptors. The C terminus of the PTHR contains a type I PDZ ligand that binds PDZ domain-containing proteins. Mass spectrometry identified sorting nexin 27 (SNX27) in isolated endosomes as a PTHR binding partner. PTH treatment enriched endosomal PTHR. SNX27 contains a PDZ domain and serves as a cargo selector for the retromer complex. VPS26, VPS29, and VPS35 retromer subunits were isolated with PTHR in endosomes from cells stimulated with PTH. Molecular dynamics and protein binding studies establish that PTHR and SNX27 interactions depend on the PDZ recognition motif in PTHR and the PDZ domain of SNX27. Depletion of either SNX27 or VPS35 or actin depolymerization decreased the rate of PTHR recycling following agonist stimulation. Mutating the PDZ ligand of PTHR abolished the interaction with SNX27 but did not affect the overall rate of recycling, suggesting that PTHR may directly engage the retromer complex. Coimmunoprecipitation and overlay experiments show that both intact and mutated PTHR bind retromer through the VPS26 protomer and sequentially assemble a ternary complex with PTHR and SNX27. SNX27-independent recycling may involve N-ethylmaleimide-sensitive factor, which binds both PDZ intact and mutant PTHRs. We conclude that PTHR recycles rapidly through at least two pathways, one involving the ASRT complex of actin, SNX27, and retromer and another possibly involving N-ethylmaleimide-sensitive factor. PMID:27008860

  7. Rab11-FIP3 Regulation of Lck Endosomal Traffic Controls TCR Signal Transduction.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Vázquez-Chávez, Elena; Lasserre, Rémi; Agüera-González, Sonia; Cuche, Céline; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2017-04-01

    The role of endosomes in receptor signal transduction is a long-standing question, which remains largely unanswered. The T cell Ag receptor and various components of its proximal signaling machinery are associated with distinct endosomal compartments, but how endosomal traffic affects T cell signaling remains ill-defined. In this article, we demonstrate in human T cells that the subcellular localization and function of the protein tyrosine kinase Lck depends on the Rab11 effector FIP3 (Rab11 family interacting protein-3). FIP3 overexpression or silencing and its ability to interact with Rab11 modify Lck subcellular localization and its delivery to the immunological synapse. Importantly, FIP3-dependent Lck localization controls early TCR signaling events, such as tyrosine phosphorylation of TCRζ, ZAP70, and LAT and intracellular calcium concentration, as well as IL-2 gene expression. Interestingly, FIP3 controls both steady-state and poststimulation phosphotyrosine and calcium levels. Finally, our findings indicate that FIP3 modulates TCR-CD3 cell surface expression via the regulation of steady-state Lck-mediated TCRζ phosphorylation, which in turn controls TCRζ protein levels. This may influence long-term T cell activation in response to TCR-CD3 stimulation. Therefore, our data underscore the importance of finely regulated endosomal traffic in TCR signal transduction and T cell activation leading to IL-2 production. Copyright © 2017 by The American Association of Immunologists, Inc.

  8. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    Full Text Available BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432 have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y, endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4 and not with late endosomal/lysosomal markers (LAMP-1, Rab7. Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6

  9. A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling

    Science.gov (United States)

    Bai, Zhiyong; Grant, Barth D.

    2015-01-01

    Endosome-to-Golgi transport is required for the function of many key membrane proteins and lipids, including signaling receptors, small-molecule transporters, and adhesion proteins. The retromer complex is well-known for its role in cargo sorting and vesicle budding from early endosomes, in most cases leading to cargo fusion with the trans-Golgi network (TGN). Transport from recycling endosomes to the TGN has also been reported, but much less is understood about the molecules that mediate this transport step. Here we provide evidence that the F-BAR domain proteins TOCA-1 and TOCA-2 (Transducer of Cdc42 dependent actin assembly), the small GTPase CDC-42 (Cell division control protein 42), associated polarity proteins PAR-6 (Partitioning defective 6) and PKC-3/atypical protein kinase C, and the WAVE actin nucleation complex mediate the transport of MIG-14/Wls and TGN-38/TGN38 cargo proteins from the recycling endosome to the TGN in Caenorhabditis elegans. Our results indicate that CDC-42, the TOCA proteins, and the WAVE component WVE-1 are enriched on RME-1–positive recycling endosomes in the intestine, unlike retromer components that act on early endosomes. Furthermore, we find that retrograde cargo TGN-38 is trapped in early endosomes after depletion of SNX-3 (a retromer component) but is mainly trapped in recycling endosomes after depletion of CDC-42, indicating that the CDC-42–associated complex functions after retromer in a distinct organelle. Thus, we identify a group of interacting proteins that mediate retrograde recycling, and link these proteins to a poorly understood trafficking step, recycling endosome-to-Golgi transport. We also provide evidence for the physiological importance of this pathway in WNT signaling. PMID:25775511

  10. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption

    Science.gov (United States)

    Patel, Chirag; Douard, Veronique; Yu, Shiyan; Gao, Nan; Ferraris, Ronaldo P.

    2015-01-01

    Dietary fructose that is linked to metabolic abnormalities can up-regulate its own absorption, but the underlying regulatory mechanisms are not known. We hypothesized that glucose transporter (GLUT) protein, member 5 (GLUT5) is the primary fructose transporter and that fructose absorption via GLUT5, metabolism via ketohexokinase (KHK), as well as GLUT5 trafficking to the apical membrane via the Ras-related protein-in-brain 11 (Rab11)a-dependent endosomes are each required for regulation. Introducing fructose but not lysine and glucose solutions into the lumen increased by 2- to 10-fold the heterogeneous nuclear RNA, mRNA, protein, and activity levels of GLUT5 in adult wild-type mice consuming chow. Levels of GLUT5 were >100-fold that of candidate apical fructose transporters GLUTs 7, 8, and 12 whose expression, and that of GLUT 2 and the sodium-dependent glucose transporter protein 1 (SGLT1), was not regulated by luminal fructose. GLUT5-knockout (KO) mice exhibited no facilitative fructose transport and no compensatory increases in activity and expression of SGLT1 and other GLUTs. Fructose could not up-regulate GLUT5 in GLUT5-KO, KHK-KO, and intestinal epithelial cell-specific Rab11a-KO mice. The fructose-specific metabolite glyceraldehyde did not increase GLUT5 expression. GLUT5 is the primary transporter responsible for facilitative absorption of fructose, and its regulation specifically requires fructose uptake and metabolism and normal GLUT5 trafficking to the apical membrane.—Patel, C., Douard, V., Yu, S., Gao, N., Ferraris, R. P. Transport, metabolism, and endosomal trafficking-dependent regulation of intestinal fructose absorption. PMID:26071406

  11. Apical transport of influenza A virus ribonucleoprotein requires Rab11-positive recycling endosome.

    Directory of Open Access Journals (Sweden)

    Fumitaka Momose

    Full Text Available Influenza A virus RNA genome exists as eight-segmented ribonucleoprotein complexes containing viral RNA polymerase and nucleoprotein (vRNPs. Packaging of vRNPs and virus budding take place at the apical plasma membrane (APM. However, little is known about the molecular mechanisms of apical transport of newly synthesized vRNP. Transfection of fluorescent-labeled antibody and subsequent live cell imaging revealed that punctate vRNP signals moved along microtubules rapidly but intermittently in both directions, suggestive of vesicle trafficking. Using a series of Rab family protein, we demonstrated that progeny vRNP localized to recycling endosome (RE in an active/GTP-bound Rab11-dependent manner. The vRNP interacted with Rab11 through viral RNA polymerase. The localization of vRNP to RE and subsequent accumulation to the APM were impaired by overexpression of Rab binding domains (RBD of Rab11 family interacting proteins (Rab11-FIPs. Similarly, no APM accumulation was observed by overexpression of class II Rab11-FIP mutants lacking RBD. These results suggest that the progeny vRNP makes use of Rab11-dependent RE machinery for APM trafficking.

  12. Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin

    Science.gov (United States)

    Chia, Pei Zhi Cheryl; Gasnereau, Isabelle; Lieu, Zi Zhao; Gleeson, Paul A.

    2011-01-01

    The endopeptidase furin and the trans-Golgi network protein TGN38 are membrane proteins that recycle between the TGN and plasma membrane. TGN38 is transported by a retromer-dependent pathway from early endosomes to the TGN, whereas the intracellular transport of furin is poorly defined. Here we have identified the itinerary and transport requirements of furin. Using internalisation assays, we show that furin transits the early and late endosomes en route to the TGN. The GTPase Rab9 and the TGN golgin GCC185, components of the late endosome-to-TGN pathway, were required for efficient TGN retrieval of furin. By contrast, TGN38 trafficking was independent of Rab9 and GCC185. To identify the sorting signals for the early endosome-to-TGN pathway, the trafficking of furin–TGN38 chimeras was investigated. The diversion of furin from the Rab9-dependent late-endosome-to-TGN pathway to the retromer-dependent early-endosome-to-TGN pathway required both the transmembrane domain and cytoplasmic tail of TGN38. We present evidence to suggest that the length of the transmembrane domain is a contributing factor in endosomal sorting. Overall, these data show that furin uses the Rab9-dependent pathway from late endosomes and that retrograde transport directly from early endosomes is dependent on both the transmembrane domain and the cytoplasmic tail. PMID:21693586

  13. The N-Myc down regulated Gene1 (NDRG1) Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Science.gov (United States)

    Kachhap, Sushant K; Faith, Dennis; Qian, David Z; Shabbeer, Shabana; Galloway, Nathan L; Pili, Roberto; Denmeade, Samuel R; DeMarzo, Angelo M; Carducci, Michael A

    2007-09-05

    Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1) increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  14. The N-Myc down regulated Gene1 (NDRG1 Is a Rab4a effector involved in vesicular recycling of E-cadherin.

    Directory of Open Access Journals (Sweden)

    Sushant K Kachhap

    2007-09-01

    Full Text Available Cell to cell adhesion is mediated by adhesion molecules present on the cell surface. Downregulation of molecules that form the adhesion complex is a characteristic of metastatic cancer cells. Downregulation of the N-myc down regulated gene1 (NDRG1 increases prostate and breast metastasis. The exact function of NDRG1 is not known. Here by using live cell confocal microscopy and in vitro reconstitution, we report that NDRG1 is involved in recycling the adhesion molecule E-cadherin thereby stabilizing it. Evidence is provided that NDRG1 recruits on recycling endosomes in the Trans Golgi network by binding to phosphotidylinositol 4-phosphate and interacts with membrane bound Rab4aGTPase. NDRG1 specifically interacts with constitutively active Rab4aQ67L mutant protein and not with GDP-bound Rab4aS22N mutant proving NDRG1 as a novel Rab4a effector. Transferrin recycling experiments reveals NDRG1 colocalizes with transferrin during the recycling phase. NDRG1 alters the kinetics of transferrin recycling in cells. NDRG1 knockdown cells show a delay in recycling transferrin, conversely NDRG1 overexpressing cells reveal an increase in rate of transferrin recycling. This novel finding of NDRG1 as a recycling protein involved with recycling of E-cadherin will aid in understanding NDRG1 role as a metastasis suppressor protein.

  15. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Directory of Open Access Journals (Sweden)

    Ewoud Bernardus Compeer

    2012-03-01

    Full Text Available The cross-presentation of endocytosed antigen as peptide/class I MHC complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells (APC capable of antigen cross-presentation, description of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC, there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlight DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, recycling and maturation including the sorting of membrane proteins, dynamic remodeling of endosomal structures and cell-surface directed endosomal trafficking. We will conclude with description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  16. Neurotrophin signaling endosomes; biogenesis, regulation, and functions

    Science.gov (United States)

    Yamashita, Naoya; Kuruvilla, Rejji

    2016-01-01

    In the nervous system, communication between neurons and their post-synaptic target cells is critical for the formation, refinement and maintenance of functional neuronal connections. Diffusible signals secreted by target tissues, exemplified by the family of neurotrophins, impinge on nerve terminals to influence diverse developmental events including neuronal survival and axonal growth. Key mechanisms of action of target-derived neurotrophins include the cell biological processes of endocytosis and retrograde trafficking of their Trk receptors from growth cones to cell bodies. In this review, we summarize the molecular mechanisms underlying this endosome-mediated signaling, focusing on the instructive role of neurotrophin signaling itself in directing its own trafficking. Recent studies have linked impaired neurotrophin trafficking to neurodevelopmental disorders, highlighting the relevance of neurotrophin endosomes in human health. PMID:27327126

  17. HIV-1 Nef binds with human GCC185 protein and regulates mannose 6 phosphate receptor recycling

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Manjeet; Kaur, Supinder; Nazir, Aamir; Tripathi, Raj Kamal, E-mail: rajkamalcdri@gmail.com

    2016-05-20

    HIV-1 Nef modulates cellular function that enhances viral replication in vivo which culminate into AIDS pathogenesis. With no enzymatic activity, Nef regulates cellular function through host protein interaction. Interestingly, trans-cellular introduction of recombinant Nef protein in Caenorhabditis elegans results in AIDS like pathogenesis which might share common pathophysiology because the gene sequence of C. elegans and humans share considerable homology. Therefore employing C. elegans based initial screen complemented with sequence based homology search we identified GCC185 as novel host protein interacting with HIV-1 Nef. The detailed molecular characterization revealed N-terminal EEEE{sub 65} acidic domain of Nef as key region for interaction. GCC185 is a tethering protein that binds with Rab9 transport vesicles. Our results show that Nef-GCC185 interaction disrupts Rab9 interaction resulting in delocalization of CI-MPR (cation independent Mannose 6 phosphate receptor) resulting in elevated secretion of hexosaminidase. In agreement with this, our studies identified novel host GCC185 protein that interacts with Nef EEEE65 acidic domain interfering GCC185-Rab9 vesicle membrane fusion responsible for retrograde vesicular transport of CI-MPR from late endosomes to TGN. In light of existing report suggesting critical role of Nef-GCC185 interaction reveals valuable mechanistic insights affecting specific protein transport pathway in docking of late endosome derived Rab9 bearing transport vesicle at TGN elucidating role of Nef during viral pathogenesis. -- Highlights: •Nef, an accessory protein of HIV-1 interacts with host factor and culminates into AIDS pathogenesis. •Using Caenorhabditis elegans based screen system, novel Nef interacting cellular protein GCC185 was identified. •Molecular characterization of Nef and human protein GCC185 revealed Nef EEEE{sub 65} key region interacted with full length GCC185. •Nef impeded the GCC185-Rab 9 interaction and

  18. Drosophila VAMP7 regulates Wingless intracellular trafficking.

    Science.gov (United States)

    Gao, Han; He, Fang; Lin, Xinhua; Wu, Yihui

    2017-01-01

    Drosophila Wingless (Wg) is a morphogen that determines cell fate during development. Previous studies have shown that endocytic pathways regulate Wg trafficking and signaling. Here, we showed that loss of vamp7, a gene required for vesicle fusion, dramatically increased Wg levels and decreased Wg signaling. Interestingly, we found that levels of Dally-like (Dlp), a glypican that can interact with Wg to suppress Wg signaling at the dorsoventral boundary of the Drosophila wing, were also increased in vamp7 mutant cells. Moreover, Wg puncta in Rab4-dependent recycling endosomes were Dlp positive. We hypothesize that VAMP7 is required for Wg intracellular trafficking and the accumulation of Wg in Rab4-dependent recycling endosomes might affect Wg signaling.

  19. αPIX Is a Trafficking Regulator that Balances Recycling and Degradation of the Epidermal Growth Factor Receptor.

    Directory of Open Access Journals (Sweden)

    Fanny Kortüm

    Full Text Available Endosomal sorting is an essential control mechanism for signaling through the epidermal growth factor receptor (EGFR. We report here that the guanine nucleotide exchange factor αPIX, which modulates the activity of Rho-GTPases, is a potent bimodal regulator of EGFR trafficking. αPIX interacts with the E3 ubiquitin ligase c-Cbl, an enzyme that attaches ubiquitin to EGFR, thereby labelling this tyrosine kinase receptor for lysosomal degradation. We show that EGF stimulation induces αPIX::c-Cbl complex formation. Simultaneously, αPIX and c-Cbl protein levels decrease, which depends on both αPIX binding to c-Cbl and c-Cbl ubiquitin ligase activity. Through interaction αPIX sequesters c-Cbl from EGFR and this results in reduced EGFR ubiquitination and decreased EGFR degradation upon EGF treatment. However, quantitatively more decisive for cellular EGFR distribution than impaired EGFR degradation is a strong stimulating effect of αPIX on EGFR recycling to the cell surface. This function depends on the GIT binding domain of αPIX but not on interaction with c-Cbl or αPIX exchange activity. In summary, our data demonstrate a previously unappreciated function of αPIX as a strong promoter of EGFR recycling. We suggest that the novel recycling regulator αPIX and the degradation factor c-Cbl closely cooperate in the regulation of EGFR trafficking: uncomplexed αPIX and c-Cbl mediate a positive and a negative feedback on EGFR signaling, respectively; αPIX::c-Cbl complex formation, however, results in mutual inhibition, which may reflect a stable condition in the homeostasis of EGF-induced signal flow.

  20. Heterotrimeric G protein subunits are located on rat liver endosomes

    Directory of Open Access Journals (Sweden)

    Van Dyke Rebecca W

    2004-01-01

    Full Text Available Abstract Background Rat liver endosomes contain activated insulin receptors and downstream signal transduction molecules. We undertook these studies to determine whether endosomes also contain heterotrimeric G proteins that may be involved in signal transduction from G protein-coupled receptors. Results By Western blotting Gsα, Giα1,2, Giα3 and Gβ were enriched in both canalicular (CM and basolateral (BLM membranes but also readily detectable on three types of purified rat liver endosomes in the order recycling receptor compartment (RRC > compartment for uncoupling of receptor and ligand (CURL > multivesicular bodies (MVB >> purified secondary lysosomes. Western blotting with antibodies to Na, K-ATPase and to other proteins associated with plasma membranes and intracellular organelles indicated this was not due to contamination of endosome preparations by CM or BLM. Adenylate cyclase (AC was also identified on purified CM, BLM, RRC, CURL and MVB. Percoll gradient fractionation of liver postnuclear supernatants demonstrated co-occurrence of endosomes and heterotrimeric G protein subunits in fractions with little plasma membrane markers. By confocal microscopy, punctate staining for Gsα, Giα3 and Gβ corresponded to punctate areas of endocytosed Texas red-dextran in hepatocytes from control and cholera toxin-treated livers. Conclusion We conclude that heterotrimeric G protein subunits as well as AC likely traffic into hepatocytes on endosome membranes, possibly generating downstream signals spatially separate from signalling generated at the plasma membrane, analogous to the role(s of internalized insulin receptors.

  1. Vehicle recycling regulations

    DEFF Research Database (Denmark)

    Smink, Carla

    2007-01-01

    The number of end-of-life vehicles (ELVs) in the EU is increasing continously. Around 75 percent of an ELV are recyclable metals. The forecast growth in the number of ELVs calls for regulation that aims to minimise the environmental impact of a car. Using Denmark as an example, this article...

  2. PIKfyve mediates the motility of late endosomes and lysosomes in neuronal dendrites.

    Science.gov (United States)

    Tsuruta, Fuminori; Dolmetsch, Ricardo E

    2015-09-25

    The endosome/lysosome system in the nervous system is critically important for a variety of neuronal functions such as neurite outgrowth, retrograde transport, and synaptic plasticity. In neurons, the endosome/lysosome system is crucial for the activity-dependent internalization of membrane proteins and contributes to the regulation of lipid level on the plasma membrane. Although homeostasis of membrane dynamics plays important roles in the properties of central nervous systems, it has not been elucidated how endosome/lysosome system is regulated. Here, we report that phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) mediates the motility of late endosomes and lysosomes in neuronal dendrites. Endosomes and lysosomes are highly motile in resting neurons, however knockdown of PIKfyve led to a significant reduction in late endosomes and lysosomes motility. We also found that vesicle acidification is crucial for their motility and PIKfyve is associated with this process indirectly. These data suggest that PIKfyve mediates vesicle motility through the regulation of vesicle integrity in neurons. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. IL4/PGE2 induction of an enlarged early endosomal compartment in mouse macrophages is Rab5-dependent

    International Nuclear Information System (INIS)

    Wainszelbaum, Marisa J.; Proctor, Brandon M.; Pontow, Suzanne E.; Stahl, Philip D.; Barbieri, M. Alejandro

    2006-01-01

    The endosomal compartment and the plasma membrane form a complex partnership that controls signal transduction and trafficking of different molecules. The specificity and functionality of the early endocytic pathway are regulated by a growing number of Rab GTPases, particularly Rab5. In this study, we demonstrate that IL4 (a Th-2 cytokine) and prostaglandin E 2 (PGE 2 ) synergistically induce Rab5 and several Rab effector proteins, including Rin1 and EEA1, and promote the formation of an enlarged early endocytic (EEE) compartment. Endosome enlargement is linked to a substantial induction of the mannose receptor (MR), a well-characterized macrophage endocytic receptor. Both MR levels and MR-mediated endocytosis are enhanced approximately 7-fold. Fluid-phase endocytosis is also elevated in treated cells. Light microscopy and fractionation studies reveal that MR colocalizes predominantly with Rab5a and partially with Rab11, an endosomal recycling pathway marker. Using retroviral expression of Rab5a:S34N, a dominant negative mutant, and siRNA Rab5a silencing, we demonstrate that Rab5a is essential for the large endosome phenotype and for localization of MR in these structures. We speculate that the EEE is maintained by activated Rab5, and that the EEE phenotype is part of some macrophage developmental program such as cell fusion, a characteristic of IL4-stimulated cells

  4. Tetraspanin CD63 Bridges Autophagic and Endosomal Processes To Regulate Exosomal Secretion and Intracellular Signaling of Epstein-Barr Virus LMP1

    Science.gov (United States)

    Hurwitz, Stephanie N; Cheerathodi, Mujeeb R; Nkosi, Dingani; York, Sara B; Meckes, David G

    2018-03-01

    The tetraspanin protein CD63 has been recently described as a key factor in extracellular vesicle (EV) production and endosomal cargo sorting. In the context of Epstein-Barr virus (EBV) infection, CD63 is required for the efficient packaging of the major viral oncoprotein latent membrane protein 1 (LMP1) into exosomes and other EV populations and acts as a negative regulator of LMP1 intracellular signaling. Accumulating evidence has also pointed to intersections of the endosomal and autophagy pathways in maintaining cellular secretory processes and as sites for viral assembly and replication. Indeed, LMP1 can activate the mammalian target of rapamycin (mTOR) pathway to suppress host cell autophagy and facilitate cell growth and proliferation. Despite the growing recognition of cross talk between endosomes and autophagosomes and its relevance to viral infection, little is understood about the molecular mechanisms governing endosomal and autophagy convergence. Here, we demonstrate that CD63-dependent vesicle protein secretion directly opposes intracellular signaling activation downstream of LMP1, including mTOR-associated proteins. Conversely, disruption of normal autolysosomal processes increases LMP1 secretion and dampens signal transduction by the viral protein. Increases in mTOR activation following CD63 knockout are coincident with the development of serum-dependent autophagic vacuoles that are acidified in the presence of high LMP1 levels. Altogether, these findings suggest a key role of CD63 in regulating the interactions between endosomal and autophagy processes and limiting cellular signaling activity in both noninfected and virally infected cells. IMPORTANCE The close connection between extracellular vesicles and viruses is becoming rapidly and more widely appreciated. EBV, a human gamma herpesvirus that contributes to the progression of a multitude of lymphomas and carcinomas in immunocompromised or genetically susceptible populations, packages its major

  5. Post-Golgi anterograde transport requires GARP-dependent endosome-to-TGN retrograde transport

    Science.gov (United States)

    Hirata, Tetsuya; Fujita, Morihisa; Nakamura, Shota; Gotoh, Kazuyoshi; Motooka, Daisuke; Murakami, Yoshiko; Maeda, Yusuke; Kinoshita, Taroh

    2015-01-01

    The importance of endosome-to–trans-Golgi network (TGN) retrograde transport in the anterograde transport of proteins is unclear. In this study, genome-wide screening of the factors necessary for efficient anterograde protein transport in human haploid cells identified subunits of the Golgi-associated retrograde protein (GARP) complex, a tethering factor involved in endosome-to-TGN transport. Knockout (KO) of each of the four GARP subunits, VPS51–VPS54, in HEK293 cells caused severely defective anterograde transport of both glycosylphosphatidylinositol (GPI)-anchored and transmembrane proteins from the TGN. Overexpression of VAMP4, v-SNARE, in VPS54-KO cells partially restored not only endosome-to-TGN retrograde transport, but also anterograde transport of both GPI-anchored and transmembrane proteins. Further screening for genes whose overexpression normalized the VPS54-KO phenotype identified TMEM87A, encoding an uncharacterized Golgi-resident membrane protein. Overexpression of TMEM87A or its close homologue TMEM87B in VPS54-KO cells partially restored endosome-to-TGN retrograde transport and anterograde transport. Therefore GARP- and VAMP4-dependent endosome-to-TGN retrograde transport is required for recycling of molecules critical for efficient post-Golgi anterograde transport of cell-surface integral membrane proteins. In addition, TMEM87A and TMEM87B are involved in endosome-to-TGN retrograde transport. PMID:26157166

  6. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  7. Odin (ANKS1A modulates EGF receptor recycling and stability.

    Directory of Open Access Journals (Sweden)

    Jiefei Tong

    Full Text Available The ANKS1A gene product, also known as Odin, was first identified as a tyrosine-phosphorylated component of the epidermal growth factor receptor network. Here we show that Odin functions as an effector of EGFR recycling. In EGF-stimulated HEK293 cells tyrosine phosphorylation of Odin was induced prior to EGFR internalization and independent of EGFR-to-ERK signaling. Over-expression of Odin increased EGF-induced EGFR trafficking to recycling endosomes and recycling back to the cell surface, and decreased trafficking to lysosomes and degradation. Conversely, Odin knockdown in both HEK293 and the non-small cell lung carcinoma line RVH6849, which expresses roughly 10-fold more EGF receptors than HEK293, caused decreased EGFR recycling and accelerated trafficking to the lysosome and degradation. By governing the endocytic fate of internalized receptors, Odin may provide a layer of regulation that enables cells to contend with receptor cell densities and ligand concentration gradients that are physiologically and pathologically highly variable.

  8. REGULATIONS ON PHOTOVOLTAIC MODULE DISPOSAL AND RECYCLING.

    Energy Technology Data Exchange (ETDEWEB)

    FTHENAKIS,V.

    2001-01-29

    Environmental regulations can have a significant impact on product use, disposal, and recycling. This report summarizes the basic aspects of current federal, state and international regulations which apply to end-of-life photovoltaic (PV) modules and PV manufacturing scrap destined for disposal or recycling. It also discusses proposed regulations for electronics that may set the ground of what is to be expected in this area in the near future. In the US, several states have started programs to support the recycling of electronic equipment, and materials destined for recycling often are excepted from solid waste regulations during the collection, transfer, storage and processing stages. California regulations are described separately because they are different from those of most other states. International agreements on the movement of waste between different countries may pose barriers to cross-border shipments. Currently waste moves freely among country members of the Organization of Economic Cooperation and Development (OECD), and between the US and the four countries with which the US has bilateral agreements. However, it is expected, that the US will adopt the rules of the Basel Convention (an agreement which currently applies to 128 countries but not the US) and that the Convection's waste classification system will influence the current OECD waste-handling system. Some countries adopting the Basel Convention consider end-of-life electronics to be hazardous waste, whereas the OECD countries consider them to be non-hazardous. Also, waste management regulations potentially affecting electronics in Germany and Japan are mentioned in this report.

  9. Huntingtin coordinates the dynein-mediated dynamic positioning of endosomes and lysosomes

    Science.gov (United States)

    Caviston, Juliane P.; Zajac, Allison L.; Tokito, Mariko; Holzbaur, Erika L.F.

    2011-01-01

    Huntingtin (Htt) is a membrane-associated scaffolding protein that interacts with microtubule motors as well as actin-associated adaptor molecules. We examined a role for Htt in the dynein-mediated intracellular trafficking of endosomes and lysosomes. In HeLa cells depleted of either Htt or dynein, early, recycling, and late endosomes (LE)/lysosomes all become dispersed. Despite altered organelle localization, kinetic assays indicate only minor defects in intracellular trafficking. Expression of full-length Htt is required to restore organelle localization in Htt-depleted cells, supporting a role for Htt as a scaffold that promotes functional interactions along its length. In dynein-depleted cells, LE/lysosomes accumulate in tight patches near the cortex, apparently enmeshed by cortactin-positive actin filaments; Latrunculin B-treatment disperses these patches. Peripheral LE/lysosomes in dynein-depleted cells no longer colocalize with microtubules. Htt may be required for this off-loading, as the loss of microtubule association is not seen in Htt-depleted cells or in cells depleted of both dynein and Htt. Inhibition of kinesin-1 relocalizes peripheral LE/lysosomes induced by Htt depletion but not by dynein depletion, consistent with their detachment from microtubules upon dynein knockdown. Together, these data support a model of Htt as a facilitator of dynein-mediated trafficking that may regulate the cytoskeletal association of dynamic organelles. PMID:21169558

  10. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity

    NARCIS (Netherlands)

    van der Kant, Rik; Jonker, Caspar T. H.; Wijdeven, Ruud H.; Bakker, Jeroen; Janssen, Lennert; Klumperman, Judith; Neefjes, Jacques

    2015-01-01

    Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail

  11. Late endosomal cholesterol accumulation leads to impaired intra-endosomal trafficking.

    Directory of Open Access Journals (Sweden)

    Komla Sobo

    Full Text Available BACKGROUND: Pathological accumulation of cholesterol in late endosomes is observed in lysosomal storage diseases such as Niemann-Pick type C. We here analyzed the effects of cholesterol accumulation in NPC cells, or as phenocopied by the drug U18666A, on late endosomes membrane organization and dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cholesterol accumulation did not lead to an increase in the raft to non-raft membrane ratio as anticipated. Strikingly, we observed a 2-3 fold increase in the size of the compartment. Most importantly, properties and dynamics of late endosomal intralumenal vesicles were altered as revealed by reduced late endosomal vacuolation induced by the mutant pore-forming toxin ASSP, reduced intoxication by the anthrax lethal toxin and inhibition of infection by the Vesicular Stomatitis Virus. CONCLUSIONS/SIGNIFICANCE: These results suggest that back fusion of intralumenal vesicles with the limiting membrane of late endosomes is dramatically perturbed upon cholesterol accumulation.

  12. Endosomal protein sorting and autophagy genes contribute to the regulation of yeast life span.

    Science.gov (United States)

    Longo, Valter D; Nislow, Corey; Fabrizio, Paola

    2010-11-01

    Accumulating evidence from various organisms points to a role for autophagy in the regulation of life span. By performing a genome-wide screen to identify novel life span determinants in Saccharomyces cerevisiae, we have obtained further insights into the autophagy-related and -unrelated degradation processes that may be important for preventing cellular senescence. The generation of multivesicular bodies and their fusion with the vacuole in the endosomal pathway emerged as novel cell functions involved in yeast chronological survival and longevity extension.

  13. Chimeric forms of furin and TGN38 are transported with the plasma membrane in the trans-Golgi network via distinct endosomal pathways.

    Science.gov (United States)

    Mallet, W G; Maxfield, F R

    1999-07-26

    Furin and TGN38 are menbrane proteins that cycle between the plasma membrane and the trans-Golgi network (TGN), each maintaining a predominant distribution in the TGN. We have used chimeric proteins with an extracellular Tac domain and the cytoplasmic domain of TGN38 or furin to study the trafficking of these proteins in endosomes. Previously, we demonstrated that the postendocytic trafficking of Tac-TGN38 to the TGN is via the endocytic recycling pathway (Ghosh, R.N.,W.G. Mallet,T.T. Soe,T.E.McGraw, and F.R. Maxfield.1998.J. Cell Biol.142:923-936). Here we show that internalized Tac-furin is delivered to the TGN through late endosomes, bypassing the endocytic recycling compartment. The transport of Tac-furin from late endosomes to the TGN appears to proceed via an efficient, single-pass mechanism. Delivery of Tac-furin but not Tac-TGN38 to the TGN is blocked by nocodazole, and the two pathways are also differentially affected by wortmannin. These studies demonstrate the existence of two independentpathways for endosomal transport of proteins to the TGN from the plasma membrane.

  14. ER network homeostasis is critical for plant endosome streaming and endocytosis

    Science.gov (United States)

    Stefano, Giovanni; Renna, Luciana; Lai, YaShiuan; Slabaugh, Erin; Mannino, Nicole; Buono, Rafael A; Otegui, Marisa S; Brandizzi, Federica

    2015-01-01

    Eukaryotic cells internalize cargo at the plasma membrane via endocytosis, a vital process that is accomplished through a complex network of endosomal organelles. In mammalian cells, the ER is in close association with endosomes and regulates their fission. Nonetheless, the physiological role of such interaction on endocytosis is yet unexplored. Here, we probed the existence of ER–endosome association in plant cells and assayed its physiological role in endocytosis. Through live-cell imaging and electron microscopy studies, we established that endosomes are extensively associated with the plant ER, supporting conservation of interaction between heterotypic organelles in evolutionarily distant kingdoms. Furthermore, by analyzing ER–endosome dynamics in genetic backgrounds with defects in ER structure and movement, we also established that the ER network integrity is necessary for homeostasis of the distribution and streaming of various endosome populations as well as for efficient endocytosis. These results support a novel model that endocytosis homeostasis depends on a spatiotemporal control of the endosome dynamics dictated by the ER membrane network. PMID:27462431

  15. An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking

    Directory of Open Access Journals (Sweden)

    Ximing Du

    2012-01-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.

  16. TLR2 ligands induce NF-κB activation from endosomal compartments of human monocytes.

    Directory of Open Access Journals (Sweden)

    Karim J Brandt

    Full Text Available Localization of Toll-like receptors (TLR in subcellular organelles is a major strategy to regulate innate immune responses. While TLR4, a cell-surface receptor, signals from both the plasma membrane and endosomal compartments, less is known about the functional role of endosomal trafficking upon TLR2 signaling. Here we show that the bacterial TLR2 ligands Pam3CSK4 and LTA activate NF-κB-dependent signaling from endosomal compartments in human monocytes and in a NF-κB sensitive reporter cell line, despite the expression of TLR2 at the cell surface. Further analyses indicate that TLR2-induced NF-κB activation is controlled by a clathrin/dynamin-dependent endocytosis mechanism, in which CD14 serves as an important upstream regulator. These findings establish that internalization of cell-surface TLR2 into endosomal compartments is required for NF-κB activation. These observations further demonstrate the need of endocytosis in the activation and regulation of TLR2-dependent signaling pathways.

  17. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  18. Snapin-regulated late endosomal transport is critical for efficient autophagy-lysosomal function in neurons.

    Science.gov (United States)

    Cai, Qian; Lu, Li; Tian, Jin-Hua; Zhu, Yi-Bing; Qiao, Haifa; Sheng, Zu-Hang

    2010-10-06

    Neuron maintenance and survival require late endocytic transport from distal processes to the soma where lysosomes are predominantly localized. Here, we report a role for Snapin in attaching dynein to late endosomes through its intermediate chain (DIC). snapin(-/-) neurons exhibit aberrant accumulation of immature lysosomes, clustering and impaired retrograde transport of late endosomes along processes, reduced lysosomal proteolysis due to impaired delivery of internalized proteins and hydrolase precursors from late endosomes to lysosomes, and impaired clearance of autolysosomes, combined with reduced neuron viability and neurodegeneration. The phenotypes are rescued by expressing the snapin transgene, but not the DIC-binding-defective Snapin-L99K mutant. Snapin overexpression in wild-type neurons enhances late endocytic transport and lysosomal function, whereas expressing the mutant defective in Snapin-DIC coupling shows a dominant-negative effect. Altogether, our study highlights new mechanistic insights into how Snapin-DIC coordinates retrograde transport and late endosomal-lysosomal trafficking critical for autophagy-lysosomal function, and thus neuronal homeostasis. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Histone deacetylase-mediated regulation of endolysosomal pH.

    Science.gov (United States)

    Prasad, Hari; Rao, Rajini

    2018-05-04

    The pH of the endolysosomal system is tightly regulated by a balance of proton pump and leak mechanisms that are critical for storage, recycling, turnover, and signaling functions in the cell. Dysregulation of endolysosomal pH has been linked to aging, amyloidogenesis, synaptic dysfunction, and various neurodegenerative disorders, including Alzheimer's disease. Therefore, understanding the mechanisms that regulate luminal pH may be key to identifying new targets for managing these disorders. Meta-analysis of yeast microarray databases revealed that nutrient-limiting conditions inhibited the histone deacetylase (HDAC) Rpd3 and thereby up-regulated transcription of the endosomal Na + /H + exchanger Nhx1, resulting in vacuolar alkalinization. Consistent with these findings, Rpd3 inhibition by the HDAC inhibitor and antifungal drug trichostatin A induced Nhx1 expression and vacuolar alkalinization. Bioinformatics analysis of Drosophila and mouse databases revealed that caloric control of the Nhx1 orthologs DmNHE3 and NHE6, respectively, is also mediated by HDACs. We show that NHE6 is a target of the transcription factor cAMP-response element-binding protein (CREB), a known regulator of cellular responses to low-nutrient conditions, providing a molecular mechanism for nutrient- and HDAC-dependent regulation of endosomal pH. Of note, pharmacological targeting of the CREB pathway to increase NHE6 expression helped regulate endosomal pH and correct defective clearance of amyloid Aβ in an apoE4 astrocyte model of Alzheimer's disease. These observations from yeast, fly, mouse, and cell culture models point to an evolutionarily conserved mechanism for HDAC-mediated regulation of endosomal NHE expression. Our insights offer new therapeutic strategies for modulation of endolysosomal pH in fungal infection and human disease. © 2018 Prasad and Rao.

  20. An Inside Job: How Endosomal Na+/H+ Exchangers Link to Autism and Neurological Disease

    Directory of Open Access Journals (Sweden)

    Kalyan C. Kondapalli

    2014-06-01

    Full Text Available Autism imposes a major impediment to childhood development and a huge emotional and financial burden on society. In recent years, there has been rapidly accumulating genetic evidence that links the eNHE, a subset of Na+/H+ exchangers that localize to intracellular vesicles, to a variety of neurological conditions including autism, attention deficit hyperactivity disorder, intellectual disability and epilepsy. By providing a leak pathway for protons pumped by the V-ATPase, eNHE determine luminal pH and regulate cation (Na+, K+ content in early and recycling endosomal compartments. Loss-of-function mutations in eNHE cause hyperacidification of endosomal lumen, as a result of imbalance in pump and leak pathways. Two isoforms, NHE6 and NHE9 are highly expressed in brain, including hippocampus and cortex. Here, we summarize evidence for the importance of luminal cation content and pH on processing, delivery and fate of cargo and on the surface expression and function of membrane receptors and neurotransmitter transporters, drawing upon insights from model organisms and mammalian cells. These studies lead to cellular models of eNHE activity in pre- and post-synaptic neurons and astrocytes, where they could impact synapse development and plasticity. The study of eNHE has provided new insight on the mechanism of autism and other debilitating neurological disorders and opened up new possibilities for therapeutic intervention.

  1. Neuron specific Rab4 effector GRASP-1 coordinates membrane specialization and maturation of recycling endosomes

    NARCIS (Netherlands)

    C.C. Hoogenraad (Casper); I. Popa (Ioana); K. Futai (Kensuke); E. Sanchez-Martinez (Emma); P. Wulf (Phebe); T. van Vlijmen (Thijs); B.R. Dortland (Bjorn); V. Oorschot (Viola); R. Govers (Robert); M. Monti (Maria); A.J.R. Heck (Albert); M. Sheng (Morgan); J. Klumperman (Judith); H. Rehmann (Holger); D. Jaarsma (Dick); L.C. Kapitein (Lukas); P. van der Sluijs

    2010-01-01

    textabstractThe endosomal pathway in neuronal dendrites is essential for membrane receptor trafficking and proper synaptic function and plasticity. However, the molecular mechanisms that organize specific endocytic trafficking routes are poorly understood. Here, we identify GRIP-associated protein-1

  2. The sorting protein PACS-2 promotes ErbB signalling by regulating recycling of the metalloproteinase ADAM17

    DEFF Research Database (Denmark)

    Dombernowsky, Sarah Louise; Samsøe-Petersen, Jacob; Petersen, Camilla Hansson

    2015-01-01

    The metalloproteinase ADAM17 activates ErbB signalling by releasing ligands from the cell surface, a key step underlying epithelial development, growth and tumour progression. However, mechanisms acutely controlling ADAM17 cell-surface availability to modulate the extent of ErbB ligand release....... PACS-2 co-localizes with ADAM17 on early endosomes and PACS-2 knockdown decreases the recycling and stability of internalized ADAM17. Hence, PACS-2 sustains ADAM17 cell-surface activity by diverting ADAM17 away from degradative pathways. Interestingly, Pacs2-deficient mice display significantly reduced...

  3. Integration of two RAB5 groups during endosomal transport in plants

    Science.gov (United States)

    Ebine, Kazuo; Choi, Seung-won; Ichinose, Sakura; Uemura, Tomohiro; Nakano, Akihiko

    2018-01-01

    RAB5 is a key regulator of endosomal functions in eukaryotic cells. Plants possess two different RAB5 groups, canonical and plant-unique types, which act via unknown counteracting mechanisms. Here, we identified an effector molecule of the plant-unique RAB5 in Arabidopsis thaliana, ARA6, which we designated PLANT-UNIQUE RAB5 EFFECTOR 2 (PUF2). Preferential colocalization with canonical RAB5 on endosomes and genetic interaction analysis indicated that PUF2 coordinates vacuolar transport with canonical RAB5, although PUF2 was identified as an effector of ARA6. Competitive binding of PUF2 with GTP-bound ARA6 and GDP-bound canonical RAB5, together interacting with the shared activating factor VPS9a, showed that ARA6 negatively regulates canonical RAB5-mediated vacuolar transport by titrating PUF2 and VPS9a. These results suggest a unique and unprecedented function for a RAB effector involving the integration of two RAB groups to orchestrate endosomal trafficking in plant cells. PMID:29749929

  4. Stargazin regulates AMPA receptor trafficking through adaptor protein complexes during long-term depression

    Science.gov (United States)

    Matsuda, Shinji; Kakegawa, Wataru; Budisantoso, Timotheus; Nomura, Toshihiro; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-11-01

    Long-term depression (LTD) underlies learning and memory in various brain regions. Although postsynaptic AMPA receptor trafficking mediates LTD, its underlying molecular mechanisms remain largely unclear. Here we show that stargazin, a transmembrane AMPA receptor regulatory protein, forms a ternary complex with adaptor proteins AP-2 and AP-3A in hippocampal neurons, depending on its phosphorylation state. Inhibiting the stargazin-AP-2 interaction disrupts NMDA-induced AMPA receptor endocytosis, and inhibiting that of stargazin-AP-3A abrogates the late endosomal/lysosomal trafficking of AMPA receptors, thereby upregulating receptor recycling to the cell surface. Similarly, stargazin’s interaction with AP-2 or AP-3A is necessary for low-frequency stimulus-evoked LTD in CA1 hippocampal neurons. Thus, stargazin has a crucial role in NMDA-dependent LTD by regulating two trafficking pathways of AMPA receptors—transport from the cell surface to early endosomes and from early endosomes to late endosomes/lysosomes—through its sequential binding to AP-2 and AP-3A.

  5. Adiponectin release and insulin receptor targeting share trans-Golgi-dependent endosomal trafficking routes

    Directory of Open Access Journals (Sweden)

    Maria Rödiger

    2018-02-01

    Full Text Available Objective: Intracellular vesicle trafficking maintains cellular structures and functions. The assembly of cargo-laden vesicles at the trans-Golgi network is initiated by the ARF family of small GTPases. Here, we demonstrate the role of the trans-Golgi localized monomeric GTPase ARFRP1 in endosomal-mediated vesicle trafficking of mature adipocytes. Methods: Control (Arfrp1flox/flox and inducible fat-specific Arfrp1 knockout (Arfrp1iAT−/− mice were metabolically characterized. In vitro experiments on mature 3T3-L1 cells and primary mouse adipocytes were conducted to validate the impact of ARFRP1 on localization of adiponectin and the insulin receptor. Finally, secretion and transferrin-based uptake and recycling assays were performed with HeLa and HeLa M-C1 cells. Results: We identified the ARFRP1-based sorting machinery to be involved in vesicle trafficking relying on the endosomal compartment for cell surface delivery. Secretion of adiponectin from fat depots was selectively reduced in Arfrp1iAT−/− mice, and Arfrp1-depleted 3T3-L1 adipocytes revealed an accumulation of adiponectin in Rab11-positive endosomes. Plasma adiponectin deficiency of Arfrp1iAT−/− mice resulted in deteriorated hepatic insulin sensitivity, increased gluconeogenesis and elevated fasting blood glucose levels. Additionally, the insulin receptor, undergoing endocytic recycling after ligand binding, was less abundant at the plasma membrane of adipocytes lacking Arfrp1. This had detrimental effects on adipose insulin signaling, followed by insufficient suppression of basal lipolytic activity and impaired adipose tissue expansion. Conclusions: Our findings suggest that adiponectin secretion and insulin receptor surface targeting utilize the same post-Golgi trafficking pathways that are essential for an appropriate systemic insulin sensitivity and glucose homeostasis. Keywords: Adiponectin, ARFRP1, Exocytosis, Insulin receptor, trans-Golgi

  6. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    Science.gov (United States)

    Bowman, Shanna L.; Soohoo, Amanda L.; Shiwarski, Daniel J.; Schulz, Stefan; Pradhan, Amynah A.; Puthenveedu, Manojkumar A.

    2015-01-01

    SUMMARY How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP), a neuropep-tide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R) receptor, increases the post-endocytic recycling of the muopioid receptor (MOR) in trigeminal ganglion (TG) neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC) activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeo-static interaction between the pain and analgesic systems. PMID:25801029

  7. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster.

    Science.gov (United States)

    Sriram, V; Krishnan, K S; Mayor, Satyajit

    2003-05-12

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defective endosomal degradation in mutant alleles of dor results from a failure of Golgi-derived vesicles to fuse with morphologically arrested Rab7-positive large sized endosomes, which are, however, normally acidified and mature with wild-type kinetics. This locates the site of Dor function to fusion of Golgi-derived vesicles with the large Rab7-positive endocytic compartments. In contrast, endosomal degradation is not considerably affected in car1 mutant; fusion of Golgi-derived vesicles and maturation of large sized endosomes is normal. However, removal of Dor from small sized Car-positive endosomes is slowed, and subsequent fusion with tubular lysosomes is abolished. Overexpression of Dor in car1 mutant aggravates this defect, implicating Car in the removal of Dor from endosomes. This suggests that, in addition to an independent role in fusion with tubular lysosomes, the Sec1p homologue, Car, regulates Dor function.

  8. Cell-Autonomous Regulation of Mu-Opioid Receptor Recycling by Substance P

    Directory of Open Access Journals (Sweden)

    Shanna L. Bowman

    2015-03-01

    Full Text Available How neurons coordinate and reprogram multiple neurotransmitter signals is an area of broad interest. Here, we show that substance P (SP, a neuropeptide associated with inflammatory pain, reprograms opioid receptor recycling and signaling. SP, through activation of the neurokinin 1 (NK1R receptor, increases the post-endocytic recycling of the mu-opioid receptor (MOR in trigeminal ganglion (TG neurons in an agonist-selective manner. SP-mediated protein kinase C (PKC activation is both required and sufficient for increasing recycling of exogenous and endogenous MOR in TG neurons. The target of this cross-regulation is MOR itself, given that mutation of either of two PKC phosphorylation sites on MOR abolishes the SP-induced increase in recycling and resensitization. Furthermore, SP enhances the resensitization of fentanyl-induced, but not morphine-induced, antinociception in mice. Our results define a physiological pathway that cross-regulates opioid receptor recycling via direct modification of MOR and suggest a mode of homeostatic interaction between the pain and analgesic systems.

  9. Novel functions for the endocytic regulatory proteins MICAL-L1 and EHD1 in mitosis.

    Science.gov (United States)

    Reinecke, James B; Katafiasz, Dawn; Naslavsky, Naava; Caplan, Steve

    2015-01-01

    During interphase, recycling endosomes mediate the transport of internalized cargo back to the plasma membrane. However, in mitotic cells, recycling endosomes are essential for the completion of cytokinesis, the last phase of mitosis that promotes the physical separation the two daughter cells. Despite recent advances, our understanding of the molecular determinants that regulate recycling endosome dynamics during cytokinesis remains incomplete. We have previously demonstrated that Molecule Interacting with CasL Like-1 (MICAL-L1) and C-terminal Eps15 Homology Domain protein 1 (EHD1) coordinately regulate receptor transport from tubular recycling endosomes during interphase. However, their potential roles in controlling cytokinesis had not been addressed. In this study, we show that MICAL-L1 and EHD1 regulate mitosis. Depletion of either protein resulted in increased numbers of bi-nucleated cells. We provide evidence that bi-nucleation in MICAL-L1- and EHD1-depleted cells is a consequence of impaired recycling endosome transport during late cytokinesis. However, depletion of MICAL-L1, but not EHD1, resulted in aberrant chromosome alignment and lagging chromosomes, suggesting an EHD1-independent function for MICAL-L1 earlier in mitosis. Moreover, we provide evidence that MICAL-L1 and EHD1 differentially influence microtubule dynamics during early and late mitosis. Collectively, our new data suggest several unanticipated roles for MICAL-L1 and EHD1 during the cell cycle. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Cell polarity and patterning by PIN trafficking through early endosomal compartments in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Hirokazu Tanaka

    2013-05-01

    Full Text Available PIN-FORMED (PIN proteins localize asymmetrically at the plasma membrane and mediate intercellular polar transport of the plant hormone auxin that is crucial for a multitude of developmental processes in plants. PIN localization is under extensive control by environmental or developmental cues, but mechanisms regulating PIN localization are not fully understood. Here we show that early endosomal components ARF GEF BEN1 and newly identified Sec1/Munc18 family protein BEN2 are involved in distinct steps of early endosomal trafficking. BEN1 and BEN2 are collectively required for polar PIN localization, for their dynamic repolarization, and consequently for auxin activity gradient formation and auxin-related developmental processes including embryonic patterning, organogenesis, and vasculature venation patterning. These results show that early endosomal trafficking is crucial for cell polarity and auxin-dependent regulation of plant architecture.

  11. Shoc2 is targeted to late endosomes and required for Erk1/2 activation in EGF-stimulated cells.

    Directory of Open Access Journals (Sweden)

    Emilia Galperin

    Full Text Available Shoc2 is the putative scaffold protein that interacts with RAS and RAF, and positively regulates signaling to extracellular signal-regulated protein kinases 1 and 2 (ERK1/2. To elucidate the mechanism by which Shoc2 regulates ERK1/2 activation by the epidermal growth factor (EGF receptor (EGFR, we studied subcellular localization of Shoc2. Upon EGFR activation, endogenous Shoc2 and red fluorescent protein tagged Shoc2 were translocated from the cytosol to a subset of late endosomes containing Rab7. The endosomal recruitment of Shoc2 was blocked by overexpression of a GDP-bound H-RAS (N17S mutant and RNAi knockdown of clathrin, suggesting the requirement of RAS activity and clathrin-dependent endocytosis. RNAi depletion of Shoc2 strongly inhibited activation of ERK1/2 by low, physiological EGF concentrations, which was rescued by expression of wild-type recombinant Shoc2. In contrast, the Shoc2 (S2G mutant, that is myristoylated and found in patients with the Noonan-like syndrome, did not rescue ERK1/2 activation in Shoc2-depleted cells. Shoc2 (S2G was not located in late endosomes but was present on the plasma membrane and early endosomes. These data suggest that targeting of Shoc2 to late endosomes may facilitate EGFR-induced ERK activation under physiological conditions of cell stimulation by EGF, and therefore, may be involved in the spatiotemporal regulation of signaling through the RAS-RAF module.

  12. Internal structure of magnetic endosomes

    Science.gov (United States)

    Rivière, C.; Wilhelm, C.; Cousin, F.; Dupuis, V.; Gazeau, F.; Perzynski, R.

    2007-01-01

    The internal structure of biological vesicles filled with magnetic nanoparticles is investigated using the following complementary analyses: electronic transmission microscopy, dynamic probing by magneto-optical birefringence and structural probing by Small Angle Neutron Scattering (SANS). These magnetic vesicles are magnetic endosomes obtained via a non-specific interaction between cells and anionic magnetic iron oxide nanoparticles. Thanks to a magnetic purification process, they are probed at two different stages of their formation within HeLa cells: (i) adsorption of nanoparticles onto the cellular membrane and (ii) their subsequent internalisation within endosomes. Differences in the microenvironment of the magnetic nanoparticles at those two different stages are highlighted here. The dynamics of magnetic nanoparticles adsorbed onto cellular membranes and confined within endosomes is respectively 3 and 5 orders of magnitude slower than for isolated magnetic nanoparticles in aqueous media. Interestingly, SANS experiments show that magnetic endosomes have an internal structure close to decorated vesicles, with magnetic nanoparticles locally decorating the endosome membrane, inside their inner-sphere. These results, important for future biomedical applications, suggest that multiple fusions of decorated vesicles are the biological processes underlying the endocytosis of that kind of nanometric materials.

  13. Endocytosis of wheat germ agglutinin binding sites from the cell surface into a tubular endosomal network.

    Science.gov (United States)

    Raub, T J; Koroly, M J; Roberts, R M

    1990-04-01

    By using fluorescence and electron microscopy, the endocytic pathway encountered by cell surface components after they had bound wheat germ agglutinin (WGA) was visualized. The majority of these components are thought to consist of sialylated glycoproteins (HMWAG) that represent a subpopulation of the total cell surface proteins but most of the externally disposed plasma membrane proteins of the cell. Examination of semi-thin sections by medium- and high-voltage electron microscopy revealed the three-dimensional organization of vesicular and tubular endosomes. Binding of either fluorescein isothiocyanate-, horseradish peroxidase-, or ferritin-conjugated WGA to cells at 4 degrees C showed that the HMWAG were distributed uniformly over the cell surface. Warming of surface-labeled cells to 37 degrees C resulted in the endocytosis of WGA into peripheral endosomes via invagination of regions of both coated and uncoated membrane. The peripheral endosome appeared as isolated complexes comprising a vesicular element (300-400 nm diam.) surrounded by and continuous with tubular cisternae (45-60 nm diam.), which did not interconnect the endosomes. After 30 min or more label also became localized in a network of anastomosing tubules (45-60 nm diam.) that were located in the centrosomal region of the cell. Endocytosed WGA-HMWAG complexes did not become associated with cisternae of the Golgi apparatus, although tubular and vesicular endosomes were noted in the vicinity of the trans-Golgi region. The accumulation of WGA-HMWAG in the endosomes within the centrosomal region was inhibited when cells were incubated at 18 degrees C. None of these compartments contained acid phosphatase activity, a result that is consistent with other data that the HMWAG do not pass through lysosomes initially. The kinetics of labeling were consistent with the interpretation that recycling of most of the WGA binding surface glycoproteins occurred rapidly from early peripheral endosomes followed by the

  14. Gαs regulates Glucagon-Like Peptide 1 Receptor-mediated cyclic AMP generation at Rab5 endosomal compartment

    Directory of Open Access Journals (Sweden)

    Shravan Babu Girada

    2017-10-01

    Conclusions: The findings provide the mechanism of endosomal cyclic AMP generation following GLP-1R activation. We identified the specific compartment that serves as an organizing center to generate endosomal cyclic AMP by internalized activated receptor complex.

  15. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar Cells.

    Science.gov (United States)

    Messenger, Scott W; Thomas, Diana Dh; Cooley, Michelle M; Jones, Elaina K; Falkowski, Michelle A; August, Benjamin K; Fernandez, Luis A; Gorelick, Fred S; Groblewski, Guy E

    2015-11-01

    Pancreatic acinar cells have an expanded apical endosomal system, the physiological and pathophysiological significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) is an essential phospholipid generated by PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI(3)P). PI(3,5)P 2 is necessary for maturation of early endosomes (EE) to late endosomes (LE). Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE) intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Inhibition of EE to LE trafficking was achieved using pharmacological inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1), and trypsinogen activation in response to high-dose CCK-8, bile acids and cigarette toxin was determined. PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to high CCK-8, tobacco toxin, and bile salts in both rodent and human acini. These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular activation of zymogens leading to the pathogenicity of acute pancreatitis.

  16. Economic impacts of the BC recycling regulation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-08-31

    Extended producer responsibility (EPR) is an environmental approach used in British Columbia (BC) to consider the entire life cycle of a product from the selection and materials and design to the post-consumer stage. This paper discussed EPR strategies that are currently being used to help the BC government remove toxins from its waste stream and develop recycling programs that contribute to the sustainable use of BC's resources. BC's recycling regulation was designed to ensure that producers of designated materials take responsibility for managing products at end-of-life under approved product stewardship plans. The stewardship management recycling program has provided an estimated 1600 full-time equivalent jobs in the province. Overall employment rates are expected to reach over 2100. A waste reduction model (WARM) analysis showed that BC stewardships provide an estimated reduction of 73,000 metric tonnes of carbon equivalent (MTCE). Aluminum can and tire recycling programs account for 82 per cent of the reductions. Diverting the wastes from landfill has helped to avoid the costs of remedial clean-ups as well as avoid the costs of handling hazardous materials. It was concluded that total revenues of $109 million were earned in 2007 from fees, deposits, and the sale of recovered materials. Separate data were provided for stewardship programs for beverage containers; beer containers; tires; used oil; electronics; paint, flammables, and pesticides; tree paint; and pharmaceuticals. 28 tabs., 5 figs.

  17. Vps33b pathogenic mutations preferentially affect VIPAS39/SPE-39-positive endosomes.

    Science.gov (United States)

    Tornieri, Karine; Zlatic, Stephanie A; Mullin, Ariana P; Werner, Erica; Harrison, Robert; L'hernault, Steven W; Faundez, Victor

    2013-12-20

    Mutations in Vps33 isoforms cause pigment dilution in mice (Vps33a, buff) and Drosophila (car) and the neurogenic arthrogryposis, renal dysfunction and cholestasis syndrome in humans (ARC1, VPS33B). The later disease is also caused by mutations in VIPAS39, (Vps33b interacting protein, apical-basolateral polarity regulator, SPE-39 homolog; ARC2), a protein that interacts with the HOmotypic fusion and Protein Sorting (HOPS) complex, a tether necessary for endosome-lysosome traffic. These syndromes offer insight into fundamental endosome traffic processes unique to metazoans. However, the molecular and cellular mechanisms underlying these mutant phenotypes remain poorly understood. Here we investigate interactions of wild-type and disease-causing mutations in VIPAS39/SPE-39 and Vps33b by yeast two hybrid, immunoprecipitation and quantitative fluorescent microscopy. We find that although few mutations prevent interaction between VIPAS39/SPE-39 and Vps33b, some mutants fragment VIPAS39/SPE-39-positive endosomes, but all mutants alter the subcellular localization of Vps33b to VIPAS39/SPE-39-positive endosomes. Our data suggest that the ARC syndrome may result through impaired VIPAS39/SPE-39 and Vps33b-dependent endosomal maturation or fusion.

  18. Recycling of electric appliances. Utilization of the new EU regulation; Recycling von Elektrogeraeten. Nutzen der neuen EU-Richtlinie

    Energy Technology Data Exchange (ETDEWEB)

    Friege, Henning [Awista GmbH, Duesseldorf (Germany)

    2012-10-15

    In the light of a shortage of resources the recycling of secondary raw materials and especially of metals from electric appliances is increasingly gaining importance. If one is to believe the announcements, everything is regulated in the best way. But when one considers closer the data from the recycling of resources and especially the non-ferric (NF) metals from electric and electronic appliances, this still is not a success story - we ought to write it.

  19. The V-ATPase a2-subunit as a putative endosomal pH-sensor.

    Science.gov (United States)

    Marshansky, V

    2007-11-01

    V-ATPase (vesicular H(+)-ATPase)-driven intravesicular acidification is crucial for vesicular trafficking. Defects in vesicular acidification and trafficking have recently been recognized as essential determinants of various human diseases. An important role of endosomal acidification in receptor-ligand dissociation and in activation of lysosomal hydrolytic enzymes is well established. However, the molecular mechanisms by which luminal pH information is transmitted to the cytosolic small GTPases that control trafficking events such as budding, coat formation and fusion are unknown. Here, we discuss our recent discovery that endosomal V-ATPase is a pH-sensor regulating the degradative pathway. According to our model, V-ATPase is responsible for: (i) the generation of a pH gradient between vesicular membranes; (ii) sensing of intravesicular pH; and (iii) transmitting this information to the cytosolic side of the membrane. We also propose the hypothetical molecular mechanism involved in function of the V-ATPase a2-subunit as a putative pH-sensor. Based on extensive experimental evidence on the crucial role of histidine residues in the function of PSPs (pH-sensing proteins) in eukaryotic cells, we hypothesize that pH-sensitive histidine residues within the intra-endosomal loops and/or C-terminal luminal tail of the a2-subunit could also be involved in the pH-sensing function of V-ATPase. However, in order to identify putative pH-sensitive histidine residues and to test this hypothesis, it is absolutely essential that we increase our understanding of the folding and transmembrane topology of the a-subunit isoforms of V-ATPase. Thus the crucial role of intra-endosomal histidine residues in pH-dependent conformational changes of the V-ATPase a2-isoform, its interaction with cytosolic small GTPases and ultimately in its acidification-dependent regulation of the endosomal/lysosomal protein degradative pathway remain to be determined.

  20. FAM21 directs SNX27–retromer cargoes to the plasma membrane by preventing transport to the Golgi apparatus

    Science.gov (United States)

    Lee, Seongju; Chang, Jaerak; Blackstone, Craig

    2016-01-01

    The endosomal network maintains cellular homeostasis by sorting, recycling and degrading endocytosed cargoes. Retromer organizes the endosomal sorting pathway in conjunction with various sorting nexin (SNX) proteins. The SNX27–retromer complex has recently been identified as a major endosomal hub that regulates endosome-to-plasma membrane recycling by preventing lysosomal entry of cargoes. Here, we show that SNX27 directly interacts with FAM21, which also binds retromer, within the Wiskott–Aldrich syndrome protein and SCAR homologue (WASH) complex. This interaction is required for the precise localization of SNX27 at an endosomal subdomain as well as for recycling of SNX27-retromer cargoes. Furthermore, FAM21 prevents cargo transport to the Golgi apparatus by controlling levels of phosphatidylinositol 4-phosphate, which facilitates cargo dissociation at the Golgi. Together, our results demonstrate that the SNX27–retromer–WASH complex directs cargoes to the plasma membrane by blocking their transport to lysosomes and the Golgi. PMID:26956659

  1. Rab14 and its exchange factor FAM116 link endocytic recycling and adherens junction stability in migrating cells.

    Science.gov (United States)

    Linford, Andrea; Yoshimura, Shin-ichiro; Nunes Bastos, Ricardo; Langemeyer, Lars; Gerondopoulos, Andreas; Rigden, Daniel J; Barr, Francis A

    2012-05-15

    Rab GTPases define the vesicle trafficking pathways underpinning cell polarization and migration. Here, we find that Rab4, Rab11, and Rab14 and the candidate Rab GDP-GTP exchange factors (GEFs) FAM116A and AVL9 are required for cell migration. Rab14 and its GEF FAM116A localize to and act on an intermediate compartment of the transferrin-recycling pathway prior to Rab11 and after Rab5 and Rab4. This Rab14 intermediate recycling compartment has specific functions in migrating cells discrete from early and recycling endosomes. Rab14-depleted cells show increased N-cadherin levels at junctional complexes and cannot resolve cell-cell junctions. This is due to decreased shedding of cell-surface N-cadherin by the ADAM family protease ADAM10/Kuzbanian. In FAM116A- and Rab14-depleted cells, ADAM10 accumulates in a transferrin-positive endocytic compartment, and the cell-surface level of ADAM10 is correspondingly reduced. FAM116 and Rab14 therefore define an endocytic recycling pathway needed for ADAM protease trafficking and regulation of cell-cell junctions. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. Bicaudal-D1 regulates the intracellular sorting and signalling of neurotrophin receptors.

    Science.gov (United States)

    Terenzio, Marco; Golding, Matthew; Russell, Matthew R G; Wicher, Krzysztof B; Rosewell, Ian; Spencer-Dene, Bradley; Ish-Horowicz, David; Schiavo, Giampietro

    2014-07-17

    We have identified a new function for the dynein adaptor Bicaudal D homolog 1 (BICD1) by screening a siRNA library for genes affecting the dynamics of neurotrophin receptor-containing endosomes in motor neurons (MNs). Depleting BICD1 increased the intracellular accumulation of brain-derived neurotrophic factor (BDNF)-activated TrkB and p75 neurotrophin receptor (p75(NTR)) by disrupting the endosomal sorting, reducing lysosomal degradation and increasing the co-localisation of these neurotrophin receptors with retromer-associated sorting nexin 1. The resulting re-routing of active receptors increased their recycling to the plasma membrane and altered the repertoire of signalling-competent TrkB isoforms and p75(NTR) available for ligand binding on the neuronal surface. This resulted in attenuated, but more sustained, AKT activation in response to BDNF stimulation. These data, together with our observation that Bicd1 expression is restricted to the developing nervous system when neurotrophin receptor expression peaks, indicate that BICD1 regulates neurotrophin signalling by modulating the endosomal sorting of internalised ligand-activated receptors. © 2014 The Authors.

  3. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  4. Biomechanics and Thermodynamics of Nanoparticle Interactions with Plasma and Endosomal Membrane Lipids in Cellular Uptake and Endosomal Escape

    Science.gov (United States)

    2015-01-01

    To be effective for cytoplasmic delivery of therapeutics, nanoparticles (NPs) taken up via endocytic pathways must efficiently transport across the cell membrane and subsequently escape from the secondary endosomes. We hypothesized that the biomechanical and thermodynamic interactions of NPs with plasma and endosomal membrane lipids are involved in these processes. Using model plasma and endosomal lipid membranes, we compared the interactions of cationic NPs composed of poly(d,l-lactide-co-glycolide) modified with the dichain surfactant didodecyldimethylammonium bromide (DMAB) or the single-chain surfactant cetyltrimethylammonium bromide (CTAB) vs anionic unmodified NPs of similar size. We validated our hypothesis in doxorubicin-sensitive (MCF-7, with relatively fluid membranes) and resistant breast cancer cells (MCF-7/ADR, with rigid membranes). Despite their cationic surface charges, DMAB- and CTAB-modified NPs showed different patterns of biophysical interaction: DMAB-modified NPs induced bending of the model plasma membrane, whereas CTAB-modified NPs condensed the membrane, thereby resisted bending. Unmodified NPs showed no effects on bending. DMAB-modified NPs also induced thermodynamic instability of the model endosomal membrane, whereas CTAB-modified and unmodified NPs had no effect. Since bending of the plasma membrane and destabilization of the endosomal membrane are critical biophysical processes in NP cellular uptake and endosomal escape, respectively, we tested these NPs for cellular uptake and drug efficacy. Confocal imaging showed that in both sensitive and resistant cells DMAB-modified NPs exhibited greater cellular uptake and escape from endosomes than CTAB-modified or unmodified NPs. Further, paclitaxel-loaded DMAB-modified NPs induced greater cytotoxicity even in resistant cells than CTAB-modified or unmodified NPs or drug in solution, demonstrating the potential of DMAB-modified NPs to overcome the transport barrier in resistant cells. In

  5. 40 CFR 260.41 - Procedures for case-by-case regulation of hazardous waste recycling activities.

    Science.gov (United States)

    2010-07-01

    ... of hazardous waste recycling activities. 260.41 Section 260.41 Protection of Environment... Rulemaking Petitions § 260.41 Procedures for case-by-case regulation of hazardous waste recycling activities... hazardous waste recycling activities described in § 261.6(a)(2)(iii) under the provisions of § 261.6 (b) and...

  6. Cellular regulation of the dopamine transporter

    DEFF Research Database (Denmark)

    Eriksen, Jacob

    2010-01-01

    -membrane spanning protein Tac, thereby creating an extracellular antibody epitope. Upon expression in HEK293 cells this TacDAT fusion protein displayed functional properties similar to the wild type transporter. In an ELISA based internalization assay, TacDAT intracellular accumulation was increased by inhibitors...... of lysosomal degradation and moreover TacDAT colocalized with the late endosomal marker Rab7. In the DA cell line 1Rb3An27 TacDAT also co-localized with EGFP-Rab7 and not with the recycling endosomal marker EGFP-Rab11. To assess whether sorting to late endosomes/lysosomes was a property also inherent...... to natively expressed transporter, DAT was visualized directly in cultured DA neurons using the fluorescent cocaine analog JHC 1-64. These data showed pronounced colocalization upon constitutive internalization with Lysotracker, a late endosomal/lysosomal marker; however only little cololization was observed...

  7. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways-Novel Insight into the Origins of Enamel Pathologies.

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L; Hacia, Joseph G; Paine, Michael L

    2017-03-13

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3'-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI.

  8. MiR-153 Regulates Amelogenesis by Targeting Endocytotic and Endosomal/lysosomal Pathways–Novel Insight into the Origins of Enamel Pathologies

    Science.gov (United States)

    Yin, Kaifeng; Lin, Wenting; Guo, Jing; Sugiyama, Toshihiro; Snead, Malcolm L.; Hacia, Joseph G.; Paine, Michael L.

    2017-01-01

    Amelogenesis imperfecta (AI) is group of inherited disorders resulting in enamel pathologies. The involvement of epigenetic regulation in the pathogenesis of AI is yet to be clarified due to a lack of knowledge about amelogenesis. Our previous genome-wide microRNA and mRNA transcriptome analyses suggest a key role for miR-153 in endosome/lysosome-related pathways during amelogenesis. Here we show that miR-153 is significantly downregulated in maturation ameloblasts compared with secretory ameloblasts. Within ameloblast-like cells, upregulation of miR-153 results in the downregulation of its predicted targets including Cltc, Lamp1, Clcn4 and Slc4a4, and a number of miRNAs implicated in endocytotic pathways. Luciferase reporter assays confirmed the predicted interactions between miR-153 and the 3′-UTRs of Cltc, Lamp1 (in a prior study), Clcn4 and Slc4a4. In an enamel protein intake assay, enamel cells transfected with miR-153 show a decreased ability to endocytose enamel proteins. Finally, microinjection of miR-153 in the region of mouse first mandibular molar at postnatal day 8 (PN8) induced AI-like pathologies when the enamel development reached maturity (PN12). In conclusion, miR-153 regulates maturation-stage amelogenesis by targeting key genes involved in the endocytotic and endosomal/lysosomal pathways, and disruption of miR-153 expression is a potential candidate etiologic factor contributing to the occurrence of AI. PMID:28287144

  9. Early to Late Endosome Trafficking Controls Secretion and Zymogen Activation in Rodent and Human Pancreatic Acinar CellsSummary

    Directory of Open Access Journals (Sweden)

    Scott W. Messenger

    2015-11-01

    Full Text Available Background & Aims: Pancreatic acinar cells have an expanded apical endosomal system, the physiologic and pathophysiologic significance of which is still emerging. Phosphatidylinositol-3,5-bisphosphate [PI(3,5P2] is an essential phospholipid generated by phosphatidylinositol 3-phosphate 5-kinase (PIKfyve, which phosphorylates phosphatidylinositol-3-phosphate (PI3P. PI(3,5P2 is necessary for maturation of early endosomes (EE to late endosomes (LE. Inhibition of EE to LE trafficking enhances anterograde endosomal trafficking and secretion at the plasma membrane by default through a recycling endosome (RE intermediate. We assessed the effects of modulating PIKfyve activity on apical trafficking and pancreatitis responses in pancreatic acinar cells. Methods: Inhibition of EE to LE trafficking was achieved using pharmacologic inhibitors of PIKfyve, expression of dominant negative PIKfyve K1877E, or constitutively active Rab5-GTP Q79L. Anterograde endosomal trafficking was manipulated by expression of constitutively active and dominant negative Rab11a mutants. The effects of these agents on secretion, endolysosomal exocytosis of lysosome associated membrane protein (LAMP1, and trypsinogen activation in response to supramaximal cholecystokinin (CCK-8, bile acids, and cigarette toxin was determined. Results: PIKfyve inhibition increased basal and stimulated secretion. Adenoviral overexpression of PIKfyve decreased secretion leading to cellular death. Expression of Rab5-GTP Q79L or Rab11a-GTP Q70L enhanced secretion. Conversely, dominant-negative Rab11a-GDP S25N reduced secretion. High-dose CCK inhibited endolysosomal exocytosis that was reversed by PIKfyve inhibition. PIKfyve inhibition blocked intracellular trypsin accumulation and cellular damage responses to supramaximal CCK-8, tobacco toxin, and bile salts in both rodent and human acini. Conclusions: These data demonstrate that EE-LE trafficking acutely controls acinar secretion and the intracellular

  10. Spatio-temporal regulation of Hsp90-ligand complex leads to immune activation.

    Directory of Open Access Journals (Sweden)

    Yasuaki eTamura

    2016-05-01

    Full Text Available Hsp90 is the most abundant cytosolic HSP and is known to act as a molecular chaperone. We found that an Hsp90-cancer antigen peptide complex was efficiently cross-presented by human monocyte-derived dendritic cells and induced peptide-specific cytotoxic T lymphocytes. Furthermore, we observed that the internalized Hsp90-peptide complex was strictly sorted to the Rab5+, EEA1+ static early endosome and the Hsp90-chaperoned peptide was processed and bound to MHC class I molecules through a endosome-recycling pathway. We also found that extracellular Hsp90 complexed with CpG-A or self-DNA stimulates production of a large amount of IFN-α from pDCs via static early endosome targeting. Thus, extracellular Hsp90 can target the antigen or nucleic acid to a static early endosome by spatio-temporal regulation. Moreover, we showed that Hsp90 associates with and delivers TLR7/9 from the ER to early endosomes for ligand recognition. Hsp90 inhibitor, geldanamycin derivative inhibited the Hsp90 association with TLR7/9, resulting in inhibition IFN-α production, leading to improvement of SLE symptoms. Interstingly, we observed that serum Hsp90 is clearly increased in patients with active SLE compared with that in patients with inactive disease. Serum Hsp90 detected in SLE patients binds to self-DNA and/or anti-DNA Ab, thus leading to stimulation of pDCs to produce IFN-α. Thus, Hsp90 plays a crucial role in the pathogenesis of SLE and that an Hsp90 inhibitor will therefore provide a new therapeutic approach to SLE and other nucleic acid-related autoimmune diseases. We will discuss how spatio-temporal regulation of Hsp90-ligand complexes within antigen-presenting cells affects the innate immunity and adaptive immunity.

  11. A Rab11A/myosin Vb/Rab11-FIP2 complex frames two late recycling steps of langerin from the ERC to the plasma membrane.

    Science.gov (United States)

    Gidon, Alexandre; Bardin, Sabine; Cinquin, Bertrand; Boulanger, Jerome; Waharte, François; Heliot, Laurent; de la Salle, Henri; Hanau, Daniel; Kervrann, Charles; Goud, Bruno; Salamero, Jean

    2012-06-01

    A large body of knowledge relating to the constitution of Rab GTPase/Rab effector complexes and their impact on both membrane domain organization and overall membrane trafficking has been built up in recent years. However in the context of the live cell there are still many questions that remain to be answered, such as where and when these complexes assemble and where they perform their primary function(s). We describe here the dynamic processes that take place in the final steps of the Rab11A dependent recycling pathway, in the context of the membrane platform constituted by Myosin Vb, Rab11A, and Rab11-FIP2. We first confirm that a series of previously reported observations obtained during the study of a number of trafficking cargoes also apply to langerin. Langerin is a cargo molecule that traffics through Rab11A-positive membrane domains of the endosomal recycling pathway. In order to explore the relative dynamics of this set of partners, we make extensive use of a combinatory approach of Live-FRET, fast FRAP video, fast confocal and TIRF microscopy modalities. Our data show that the Myosin Vb/Rab11A/Rab11-FIP2 platform is spatially involved in the regulation of langerin trafficking at two distinct sites within live cells, first at the sorting site in the endosomal recycling compartment (ERC) where transport vesicles are formed, and subsequently, in a strict time-defined order, at the very late stage of docking/tethering and fusion of these langerin recycling vesicles to the plasma membrane. © 2012 John Wiley & Sons A/S.

  12. Effect of diphtheria toxin T-domain on endosomal pH

    Directory of Open Access Journals (Sweden)

    A. J. Labyntsev

    2015-08-01

    Full Text Available A key step in the mode of cytotoxic action of diphtheria toxin (DT is the transfer of its catalytic domain (Cd from endosomes into the cytosol. The main activity in this process is performed by the transport domain (Td, but the molecular mechanism of its action remains unknown. We have previously shown that Td can have some influence on the endosomal transport of DT. The aim of this work was to study the effect of diphtheria toxin on the toxin compartmentalization in the intracellular transporting pathway and endosomal pH. We used recombinant fragments of DT, which differed only by the presence of Td in their structure, fused with fluorescent proteins. It was shown that the toxin fragment with Td moved slower by the pathway early-late endosomes-lysosomes, and had a slightly different pattern of colocalization with endosomal markers than DT fragment without Td. In addition, endosomes containing DT fragments with Td had a constant pH of about 6.5 from the 10th to 50th minute of observation, for the same time endosomes containing DT fragments without Td demons­trated a decrease in pH from 6.3 to 5.5. These results indicate that Td inhibits acidification of endosomal medium. One of possible explanations for this may be the effect of the ion channel formed by the T-domain on the process of the endosomal acidification. This property of Td may not only inhibit maturation of endosomes but also inhibit activation of endosomal pH-dependent proteases, and this promotes successful transport of Cd into the cell cytosol.

  13. Enhanced Endosomal Escape by Light-Fueled Liquid-Metal Transformer.

    Science.gov (United States)

    Lu, Yue; Lin, Yiliang; Chen, Zhaowei; Hu, Quanyin; Liu, Yang; Yu, Shuangjiang; Gao, Wei; Dickey, Michael D; Gu, Zhen

    2017-04-12

    Effective endosomal escape remains as the "holy grail" for endocytosis-based intracellular drug delivery. To date, most of the endosomal escape strategies rely on small molecules, cationic polymers, or pore-forming proteins, which are often limited by the systemic toxicity and lack of specificity. We describe here a light-fueled liquid-metal transformer for effective endosomal escape-facilitated cargo delivery via a chemical-mechanical process. The nanoscale transformer can be prepared by a simple approach of sonicating a low-toxicity liquid-metal. When coated with graphene quantum dots (GQDs), the resulting nanospheres demonstrate the ability to absorb and convert photoenergy to drive the simultaneous phase separation and morphological transformation of the inner liquid-metal core. The morphological transformation from nanospheres to hollow nanorods with a remarkable change of aspect ratio can physically disrupt the endosomal membrane to promote endosomal escape of payloads. This metal-based nanotransformer equipped with GQDs provides a new strategy for facilitating effective endosomal escape to achieve spatiotemporally controlled drug delivery with enhanced efficacy.

  14. The NKG2D ligand ULBP2 is specifically regulated through an invariant chain-dependent endosomal pathway

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; Hagemann-Jensen, Michael Henrik; Kehlet, Stephanie

    2014-01-01

    by affecting endosomal/lysosomal integrity and protein kinase C activity. The invariant chain was further essential for endosomal transport of ULBP2. This novel pathway was identified through screening experiments by which methylselenic acid was found to possess notable NKG2D ligand regulatory properties....... The protein kinase C inhibitor methylselenic acid induced MICA/B surface expression but dominantly blocked ULBP2 surface transport. Remarkably, by targeting this novel pathway we could specifically block the production of soluble ULBP2 from different, primary melanomas. Our findings strongly suggest...

  15. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  16. Myo1c regulates lipid raft recycling to control cell spreading, migration and Salmonella invasion.

    Science.gov (United States)

    Brandstaetter, Hemma; Kendrick-Jones, John; Buss, Folma

    2012-04-15

    A balance between endocytosis and membrane recycling regulates the composition and dynamics of the plasma membrane. Internalization and recycling of cholesterol- and sphingolipid-enriched lipid rafts is an actin-dependent process that is mediated by a specialized Arf6-dependent recycling pathway. Here, we identify myosin1c (Myo1c) as the first motor protein that drives the formation of recycling tubules emanating from the perinuclear recycling compartment. We demonstrate that the single-headed Myo1c is a lipid-raft-associated motor protein that is specifically involved in recycling of lipid-raft-associated glycosylphosphatidylinositol (GPI)-linked cargo proteins and their delivery to the cell surface. Whereas Myo1c overexpression increases the levels of these raft proteins at the cell surface, in cells depleted of Myo1c function through RNA interference or overexpression of a dominant-negative mutant, these tubular transport carriers of the recycling pathway are lost and GPI-linked raft markers are trapped in the perinuclear recycling compartment. Intriguingly, Myo1c only selectively promotes delivery of lipid raft membranes back to the cell surface and is not required for recycling of cargo, such as the transferrin receptor, which is mediated by parallel pathways. The profound defect in lipid raft trafficking in Myo1c-knockdown cells has a dramatic impact on cell spreading, cell migration and cholesterol-dependent Salmonella invasion; processes that require lipid raft transport to the cell surface to deliver signaling components and the extra membrane essential for cell surface expansion and remodeling. Thus, Myo1c plays a crucial role in the recycling of lipid raft membrane and proteins that regulate plasma membrane plasticity, cell motility and pathogen entry.

  17. Saccharomyces boulardii CNCM I-745 Restores intestinal Barrier Integrity by Regulation of E-cadherin Recycling.

    Science.gov (United States)

    Terciolo, Chloé; Dobric, Aurélie; Ouaissi, Mehdi; Siret, Carole; Breuzard, Gilles; Silvy, Françoise; Marchiori, Bastien; Germain, Sébastien; Bonier, Renaté; Hama, Adel; Owens, Roisin; Lombardo, Dominique; Rigot, Véronique; André, Frédéric

    2017-08-01

    Alteration in intestinal permeability is the main factor underlying the pathogenesis of many diseases affecting the gut, such as inflammatory bowel disease [IBD]. Characterization of molecules targeting the restoration of intestinal barrier integrity is therefore vital for the development of alternative therapies. The yeast Saccharomyces boulardii CNCM I-745 [Sb], used to prevent and treat antibiotic-associated infectious and functional diarrhea, may have a beneficial effect in the treatment of IBD. We analyzed the impact of Sb supernatant on tissue integrity and components of adherens junctions using cultured explants of colon from both IBD and healthy patients. To evaluate the pathways by which Sb regulates the expression of E-cadherin at the cell surface, we developed in vitro assays using human colonic cell lines, including cell aggregation, a calcium switch assay, real-time measurement of transepithelial electrical resistance [TEER] and pulse-chase experiments. We showed that Sb supernatant treatment of colonic explants protects the epithelial morphology and maintains E-cadherin expression at the cell surface. In vitro experiments revealed that Sb supernatant enhances E-cadherin delivery to the cell surface by re-routing endocytosed E-cadherin back to the plasma membrane. This process, involving Rab11A-dependent recycling endosome, leads to restoration of enterocyte adherens junctions, in addition to the overall restoration and strengthening of intestinal barrier function. These findings open new possibilities of discovering novel options for prevention and therapy of diseases that affect intestinal permeability. Copyright © 2017 European Crohn's and Colitis Organisation (ECCO). Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com

  18. Intracellular Transport of Vaccinia Virus in HeLa Cells Requires WASH-VPEF/FAM21-Retromer Complexes and Recycling Molecules Rab11 and Rab22

    Science.gov (United States)

    Hsiao, Jye-Chian; Chu, Li-Wei; Lo, Yung-Tsun; Lee, Sue-Ping; Chen, Tzu-Jung; Huang, Cheng-Yen

    2015-01-01

    ABSTRACT Vaccinia virus, the prototype of the Orthopoxvirus genus in the family Poxviridae, infects a wide range of cell lines and animals. Vaccinia mature virus particles of the WR strain reportedly enter HeLa cells through fluid-phase endocytosis. However, the intracellular trafficking process of the vaccinia mature virus between cellular uptake and membrane fusion remains unknown. We used live imaging of single virus particles with a combination of various cellular vesicle markers, to track fluorescent vaccinia mature virus particle movement in cells. Furthermore, we performed functional interference assays to perturb distinct vesicle trafficking processes in order to delineate the specific route undertaken by vaccinia mature virus prior to membrane fusion and virus core uncoating in cells. Our results showed that vaccinia virus traffics to early endosomes, where recycling endosome markers Rab11 and Rab22 are recruited to participate in subsequent virus trafficking prior to virus core uncoating in the cytoplasm. Furthermore, we identified WASH-VPEF/FAM21-retromer complexes that mediate endosome fission and sorting of virus-containing vesicles prior to virus core uncoating in the cytoplasm. IMPORTANCE Vaccinia mature virions of the WR strain enter HeLa cells through fluid phase endocytosis. We previously demonstrated that virus-containing vesicles are internalized into phosphatidylinositol 3-phosphate positive macropinosomes, which are then fused with Rab5-positive early endosomes. However, the subsequent process of sorting the virion-containing vesicles prior to membrane fusion remains unclear. We dissected the intracellular trafficking pathway of vaccinia mature virions in cells up to virus core uncoating in cytoplasm. We show that vaccinia mature virions first travel to early endosomes. Subsequent trafficking events require the important endosome-tethered protein VPEF/FAM21, which recruits WASH and retromer protein complexes to the endosome. There, the complex

  19. The PDZ protein GIPC regulates trafficking of the LPA1 receptor from APPL signaling endosomes and attenuates the cell's response to LPA.

    Directory of Open Access Journals (Sweden)

    Tal Varsano

    Full Text Available Lysophosphatidic acid (LPA mediates diverse cellular responses through the activation of at least six LPA receptors--LPA(1-6, but the interacting proteins and signaling pathways that mediate the specificity of these receptors are largely unknown. We noticed that LPA(1 contains a PDZ binding motif (SVV identical to that present in two other proteins that interact with the PDZ protein GIPC. GIPC is involved in endocytic trafficking of several receptors including TrkA, VEGFR2, lutropin and dopamine D2 receptors. Here we show that GIPC binds directly to the PDZ binding motif of LPA(1 but not that of other LPA receptors. LPA(1 colocalizes and coimmunoprecipitates with GIPC and its binding partner APPL, an activator of Akt signaling found on APPL signaling endosomes. GIPC depletion by siRNA disturbed trafficking of LPA(1 to EEA1 early endosomes and promoted LPA(1 mediated Akt signaling, cell proliferation, and cell motility. We propose that GIPC binds LPA(1 and promotes its trafficking from APPL-containing signaling endosomes to EEA1 early endosomes and thus attenuates LPA-mediated Akt signaling from APPL endosomes.

  20. Extracellular anti-angiogenic proteins augment an endosomal protein trafficking pathway to reach mitochondria and execute apoptosis in HUVECs.

    Science.gov (United States)

    Chen, Mo; Qiu, Tao; Wu, Jiajie; Yang, Yang; Wright, Graham D; Wu, Min; Ge, Ruowen

    2018-03-09

    Classic endocytosis destinations include the recycling endosome returning to the plasma membrane or the late endosome (LE) merging with lysosomes for cargo degradation. However, the anti-angiogenic proteins angiostatin and isthmin, are endocytosed and trafficked to mitochondria (Mito) to execute apoptosis of endothelial cells. How these extracellular proteins reach mitochondria remains a mystery. Through confocal and super-resolution fluorescent microscopy, we demonstrate that angiostatin and isthmin are trafficked to mitochondria through the interaction between LE and Mito. Using purified organelles, the LE-Mito interaction is confirmed through in vitro lipid-fusion assay, as well as single vesicle total internal reflection fluorescent microscopy. LE-Mito interaction enables the transfer of not only lipids but also proteins from LE to Mito. Angiostatin and isthmin augment this endosomal protein trafficking pathway and make use of it to reach mitochondria to execute apoptosis. Cell fractionation and biochemical analysis identified that the cytosolic scaffold protein Na+/H+ exchanger regulatory factor 1 (NHERF1) associated with LE and the t-SNARE protein synaptosome-associated protein 25 kDa (SNAP25) associated with Mito form an interaction complex to facilitate LE-Mito interaction. Proximity ligation assay coupled with fluorescent microscopy showed that both NHERF1 and SNAP25 are located at the contacting face between LE and Mito. RNAi knockdown of either NHERF1 or SNAP25 suppressed not only the mitochondrial trafficking of angiostatin and isthmin but also their anti-angiogenic and pro-apoptotic functions. Hence, this study reveals a previously unrealized endosomal protein trafficking pathway from LE to Mito that allows extracellular proteins to reach mitochondria and execute apoptosis.

  1. Kinesin Khc-73/KIF13B modulates retrograde BMP signaling by influencing endosomal dynamics at the Drosophila neuromuscular junction.

    Science.gov (United States)

    Liao, Edward H; Gray, Lindsay; Tsurudome, Kazuya; El-Mounzer, Wassim; Elazzouzi, Fatima; Baim, Christopher; Farzin, Sarah; Calderon, Mario R; Kauwe, Grant; Haghighi, A Pejmun

    2018-01-01

    Retrograde signaling is essential for neuronal growth, function and survival; however, we know little about how signaling endosomes might be directed from synaptic terminals onto retrograde axonal pathways. We have identified Khc-73, a plus-end directed microtubule motor protein, as a regulator of sorting of endosomes in Drosophila larval motor neurons. The number of synaptic boutons and the amount of neurotransmitter release at the Khc-73 mutant larval neuromuscular junction (NMJ) are normal, but we find a significant decrease in the number of presynaptic release sites. This defect in Khc-73 mutant larvae can be genetically enhanced by a partial genetic loss of Bone Morphogenic Protein (BMP) signaling or suppressed by activation of BMP signaling in motoneurons. Consistently, activation of BMP signaling that normally enhances the accumulation of phosphorylated form of BMP transcription factor Mad in the nuclei, can be suppressed by genetic removal of Khc-73. Using a number of assays including live imaging in larval motor neurons, we show that loss of Khc-73 curbs the ability of retrograde-bound endosomes to leave the synaptic area and join the retrograde axonal pathway. Our findings identify Khc-73 as a regulator of endosomal traffic at the synapse and modulator of retrograde BMP signaling in motoneurons.

  2. Barcoding of GPCR trafficking and signaling through the various trafficking roadmaps by compartmentalized signaling networks.

    Science.gov (United States)

    Bahouth, Suleiman W; Nooh, Mohammed M

    2017-08-01

    Proper signaling by G protein coupled receptors (GPCR) is dependent on the specific repertoire of transducing, enzymatic and regulatory kinases and phosphatases that shape its signaling output. Activation and signaling of the GPCR through its cognate G protein is impacted by G protein-coupled receptor kinase (GRK)-imprinted "barcodes" that recruit β-arrestins to regulate subsequent desensitization, biased signaling and endocytosis of the GPCR. The outcome of agonist-internalized GPCR in endosomes is also regulated by sequence motifs or "barcodes" within the GPCR that mediate its recycling to the plasma membrane or retention and eventual degradation as well as its subsequent signaling in endosomes. Given the vast number of diverse sequences in GPCR, several trafficking mechanisms for endosomal GPCR have been described. The majority of recycling GPCR, are sorted out of endosomes in a "sequence-dependent pathway" anchored around a type-1 PDZ-binding module found in their C-tails. For a subset of these GPCR, a second "barcode" imprinted onto specific GPCR serine/threonine residues by compartmentalized kinase networks was required for their efficient recycling through the "sequence-dependent pathway". Mutating the serine/threonine residues involved, produced dramatic effects on GPCR trafficking, indicating that they played a major role in setting the trafficking itinerary of these GPCR. While endosomal SNX27, retromer/WASH complexes and actin were required for efficient sorting and budding of all these GPCR, additional proteins were required for GPCR sorting via the second "barcode". Here we will review recent developments in GPCR trafficking in general and the human β 1 -adrenergic receptor in particular across the various trafficking roadmaps. In addition, we will discuss the role of GPCR trafficking in regulating endosomal GPCR signaling, which promote biochemical and physiological effects that are distinct from those generated by the GPCR signal transduction

  3. Myosin 1g Contributes to CD44 Adhesion Protein and Lipid Rafts Recycling and Controls CD44 Capping and Cell Migration in B Lymphocytes

    Directory of Open Access Journals (Sweden)

    Orestes López-Ortega

    2017-12-01

    Full Text Available Cell migration and adhesion are critical for immune system function and involve many proteins, which must be continuously transported and recycled in the cell. Recycling of adhesion molecules requires the participation of several proteins, including actin, tubulin, and GTPases, and of membrane components such as sphingolipids and cholesterol. However, roles of actin motor proteins in adhesion molecule recycling are poorly understood. In this study, we identified myosin 1g as one of the important motor proteins that drives recycling of the adhesion protein CD44 in B lymphocytes. We demonstrate that the lack of Myo1g decreases the cell-surface levels of CD44 and of the lipid raft surrogate GM1. In cells depleted of Myo1g, the recycling of CD44 was delayed, the delay seems to be caused at the level of formation of recycling complex and entry into recycling endosomes. Moreover, a defective lipid raft recycling in Myo1g-deficient cells had an impact both on the capping of CD44 and on cell migration. Both processes required the transportation of lipid rafts to the cell surface to deliver signaling components. Furthermore, the extramembrane was essential for cell expansion and remodeling of the plasma membrane topology. Therefore, Myo1g is important during the recycling of lipid rafts to the membrane and to the accompanied proteins that regulate plasma membrane plasticity. Thus, Myosin 1g contributes to cell adhesion and cell migration through CD44 recycling in B lymphocytes.

  4. Regulation of P2Y1 receptor traffic by sorting Nexin 1 is retromer independent.

    Science.gov (United States)

    Nisar, Shaista; Kelly, Eamonn; Cullen, Pete J; Mundell, Stuart J

    2010-04-01

    The activity and traffic of G-protein coupled receptors (GPCRs) is tightly controlled. Recent work from our laboratory has shown that P2Y(1) and P2Y(12) responsiveness is rapidly and reversibly modulated in human platelets and that the underlying mechanism requires receptor trafficking as an essential part of this process. However, little is known about the molecular mechanisms underlying P2Y receptor traffic. Sorting nexin 1 (SNX1) has been shown to regulate the endosomal sorting of cell surface receptors either to lysosomes where they are downregulated or back to the cell surface. These functions may in part be due to interactions of SNX1 with the mammalian retromer complex. In this study, we investigated the role of SNX1 in P2Y receptor trafficking. We show that P2Y(1) receptors recycle via a slow recycling pathway that is regulated by SNX1, whereas P2Y(12) receptors return to the cell surface via a rapid route that is SNX1 independent. SNX1 inhibition caused a dramatic increase in the rate of P2Y(1) receptor recycling, whereas inhibition of Vps26 and Vps35 known to be present in retromer had no effect, indicating that SNX1 regulation of P2Y(1) receptor recycling is retromer independent. In addition, inhibition of SNX4, 6 and 17 proteins did not affect P2Y(1) receptor recycling. SNX1 has also been implicated in GPCR degradation; however, we provide evidence that P2Y receptor degradation is SNX1 independent. These data describe a novel function of SNX1 in the regulation of P2Y(1) receptor recycling and suggest that SNX1 plays multiple roles in endocytic trafficking of GPCRs.

  5. The translocon protein Sec61 mediates antigen transport from endosomes in the cytosol for cross-presentation to CD8(+) T cells.

    Science.gov (United States)

    Zehner, Matthias; Marschall, Andrea L; Bos, Erik; Schloetel, Jan-Gero; Kreer, Christoph; Fehrenschild, Dagmar; Limmer, Andreas; Ossendorp, Ferry; Lang, Thorsten; Koster, Abraham J; Dübel, Stefan; Burgdorf, Sven

    2015-05-19

    The molecular mechanisms regulating antigen translocation into the cytosol for cross-presentation are under controversial debate, mainly because direct data is lacking. Here, we have provided direct evidence that the activity of the endoplasmic reticulum (ER) translocon protein Sec61 is essential for endosome-to-cytosol translocation. We generated a Sec61-specific intrabody, a crucial tool that trapped Sec61 in the ER and prevented its recruitment into endosomes without influencing Sec61 activity and antigen presentation in the ER. Expression of this ER intrabody inhibited antigen translocation and cross-presentation, demonstrating that endosomal Sec61 indeed mediates antigen transport across endosomal membranes. Moreover, we showed that the recruitment of Sec61 toward endosomes, and hence antigen translocation and cross-presentation, is dependent on dendritic cell activation by Toll-like receptor (TLR) ligands. These data shed light on a long-lasting question regarding antigen cross-presentation and point out a role of the ER-associated degradation machinery in compartments distinct from the ER. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling.

    Science.gov (United States)

    Pastor-Soler, Nuria; Beaulieu, Valerie; Litvin, Tatiana N; Da Silva, Nicolas; Chen, Yanqiu; Brown, Dennis; Buck, Jochen; Levin, Lonny R; Breton, Sylvie

    2003-12-05

    Modulation of environmental pH is critical for the function of many biological systems. However, the molecular identity of the pH sensor and its interaction with downstream effector proteins remain poorly understood. Using the male reproductive tract as a model system in which luminal acidification is critical for sperm maturation and storage, we now report a novel pathway for pH regulation linking the bicarbonate activated soluble adenylyl cyclase (sAC) to the vacuolar H+ATPase (V-ATPase). Clear cells of the epididymis and vas deferens contain abundant V-ATPase in their apical pole and are responsible for acidifying the lumen. Proton secretion is regulated via active recycling of V-ATPase. Here we demonstrate that this recycling is regulated by luminal pH and bicarbonate. sAC is highly expressed in clear cells, and apical membrane accumulation of V-ATPase is triggered by a sAC-dependent rise in cAMP in response to alkaline luminal pH. As sAC is expressed in other acid/base transporting epithelia, including kidney and choroid plexus, this cAMP-dependent signal transduction pathway may be a widespread mechanism that allows cells to sense and modulate extracellular pH.

  7. Cooperative endocytosis of the endosomal SNARE protein syntaxin-8 and the potassium channel TASK-1

    Science.gov (United States)

    Renigunta, Vijay; Fischer, Thomas; Zuzarte, Marylou; Kling, Stefan; Zou, Xinle; Siebert, Kai; Limberg, Maren M.; Rinné, Susanne; Decher, Niels; Schlichthörl, Günter; Daut, Jürgen

    2014-01-01

    The endosomal SNARE protein syntaxin-8 interacts with the acid-sensitive potassium channel TASK-1. The functional relevance of this interaction was studied by heterologous expression of these proteins (and mutants thereof) in Xenopus oocytes and in mammalian cell lines. Coexpression of syntaxin-8 caused a fourfold reduction in TASK-1 current, a corresponding reduction in the expression of TASK-1 at the cell surface, and a marked increase in the rate of endocytosis of the channel. TASK-1 and syntaxin-8 colocalized in the early endosomal compartment, as indicated by the endosomal markers 2xFYVE and rab5. The stimulatory effect of the SNARE protein on the endocytosis of the channel was abolished when both an endocytosis signal in TASK-1 and an endocytosis signal in syntaxin-8 were mutated. A syntaxin-8 mutant that cannot assemble with other SNARE proteins had virtually the same effect as wild-type syntaxin-8. Total internal reflection fluorescence microscopy showed formation and endocytosis of vesicles containing fluorescence-tagged clathrin, TASK-1, and/or syntaxin-8. Our results suggest that the unassembled form of syntaxin-8 and the potassium channel TASK-1 are internalized via clathrin-mediated endocytosis in a cooperative manner. This implies that syntaxin-8 regulates the endocytosis of TASK-1. Our study supports the idea that endosomal SNARE proteins can have functions unrelated to membrane fusion. PMID:24743596

  8. Eps homology domain endosomal transport proteins differentially localize to the neuromuscular junction

    Directory of Open Access Journals (Sweden)

    Mate Suzanne E

    2012-09-01

    Full Text Available Abstract Background Recycling of endosomes is important for trafficking and maintenance of proteins at the neuromuscular junction (NMJ. We have previously shown high expression of the endocytic recycling regulator Eps15 homology domain-containing (EHD1 proteinin the Torpedo californica electric organ, a model tissue for investigating a cholinergic synapse. In this study, we investigated the localization of EHD1 and its paralogs EHD2, EHD3, and EHD4 in mouse skeletal muscle, and assessed the morphological changes in EHD1−/− NMJs. Methods Localization of the candidate NMJ protein EHD1 was assessed by confocal microscopy analysis of whole-mount mouse skeletal muscle fibers after direct gene transfer and immunolabeling. The potential function of EHD1 was assessed by specific force measurement and α-bungarotoxin-based endplate morphology mapping in EHD1−/− mouse skeletal muscle. Results Endogenous EHD1 localized to primary synaptic clefts of murine NMJ, and this localization was confirmed by expression of recombinant green fluorescent protein labeled-EHD1 in murine skeletal muscle in vivo. EHD1−/− mouse skeletal muscle had normal histology and NMJ morphology, and normal specific force generation during muscle contraction. The EHD 1–4 proteins showed differential localization in skeletal muscle: EHD2 to muscle vasculature, EHD3 to perisynaptic regions, and EHD4 to perinuclear regions and to primary synaptic clefts, but at lower levels than EHD1. Additionally, specific antibodies raised against mammalian EHD1-4 recognized proteins of the expected mass in the T. californica electric organ. Finally, we found that EHD4 expression was more abundant in EHD1−/− mouse skeletal muscle than in wild-type skeletal muscle. Conclusion EHD1 and EHD4 localize to the primary synaptic clefts of the NMJ. Lack of obvious defects in NMJ structure and muscle function in EHD1−/− muscle may be due to functional compensation by other EHD paralogs.

  9. Actin polymerization in the endosomal pathway, but not on the Coxiella-containing vacuole, is essential for pathogen growth.

    Directory of Open Access Journals (Sweden)

    Heather E Miller

    2018-04-01

    Full Text Available Coxiella burnetii is an intracellular bacterium that replicates within an expansive phagolysosome-like vacuole. Fusion between the Coxiella-containing vacuole (CCV and late endosomes/multivesicular bodies requires Rab7, the HOPS tethering complex, and SNARE proteins, with actin also speculated to play a role. Here, we investigated the importance of actin in CCV fusion. Filamentous actin patches formed around the CCV membrane that were preferred sites of vesicular fusion. Accordingly, the mediators of endolysosomal fusion Rab7, VAMP7, and syntaxin 8 were concentrated in CCV actin patches. Generation of actin patches required C. burnetii type 4B secretion and host retromer function. Patches decorated with VPS29 and VPS35, components of the retromer, FAM21 and WASH, members of the WASH complex that engage the retromer, and Arp3, a component of the Arp2/3 complex that generates branched actin filaments. Depletion by siRNA of VPS35 or VPS29 reduced CCV actin patches and caused Rab7 to uniformly distribute in the CCV membrane. C. burnetii grew normally in VPS35 or VPS29 depleted cells, as well as WASH-knockout mouse embryo fibroblasts, where CCVs are devoid of actin patches. Endosome recycling to the plasma membrane and trans-Golgi of glucose transporter 1 (GLUT1 and cationic-independent mannose-6-phosphate receptor (CI-M6PR, respectively, was normal in infected cells. However, siRNA knockdown of retromer resulted in aberrant trafficking of GLUT1, but not CI-M6PR, suggesting canonical retrograde trafficking is unaffected by retromer disruption. Treatment with the specific Arp2/3 inhibitor CK-666 strongly inhibited CCV formation, an effect associated with altered endosomal trafficking of transferrin receptor. Collectively, our results show that CCV actin patches generated by retromer, WASH, and Arp2/3 are dispensable for CCV biogenesis and stability. However, Arp2/3-mediated production of actin filaments required for cargo transport within the

  10. The Annexin A1 Receptor FPR2 Regulates the Endosomal Export of Influenza Virus

    Directory of Open Access Journals (Sweden)

    Fryad Rahman

    2018-05-01

    Full Text Available The Formyl Peptide Receptor 2 (FPR2 is a novel promising target for the treatment of influenza. During viral infection, FPR2 is activated by annexinA1, which is present in the envelope of influenza viruses; this activation promotes virus replication. Here, we investigated whether blockage of FPR2 would affect the genome trafficking of influenza virus. We found that, upon infection and cell treatment with the specific FPR2 antagonist WRW4 or the anti-FPR2 monoclonal antibody, FN-1D6-AI, influenza viruses were blocked into endosomes. This effect was independent on the strain and was observed for H1N1 and H3N2 viruses. In addition, blocking FPR2signaling in alveolar lung A549 epithelial cells with the monoclonal anti-FPR2 antibody significantly inhibited virus replication. Altogether, these results show that FPR2signaling interferes with the endosomal trafficking of influenza viruses and provides, for the first time, the proof of concept that monoclonal antibodies directed against FPR2 inhibit virus replication. Antibodies-based therapeutics have emerged as attractive reagents in infectious diseases. Thus, this study suggests that the use of anti-FPR2 antibodies against influenza hold great promise for the future.

  11. Imaging endosomes and autophagosomes in whole mammalian cells using correlative cryo-fluorescence and cryo-soft X-ray microscopy (cryo-CLXM)

    International Nuclear Information System (INIS)

    Duke, Elizabeth M.H.; Razi, Minoo; Weston, Anne; Guttmann, Peter; Werner, Stephan; Henzler, Katja; Schneider, Gerd; Tooze, Sharon A.; Collinson, Lucy M.

    2014-01-01

    Cryo-soft X-ray tomography (cryo-SXT) is a powerful imaging technique that can extract ultrastructural information from whole, unstained mammalian cells as close to the living state as possible. Subcellular organelles including the nucleus, the Golgi apparatus and mitochondria have been identified by morphology alone, due to the similarity in contrast to transmission electron micrographs. In this study, we used cryo-SXT to image endosomes and autophagosomes, organelles that are particularly susceptible to chemical fixation artefacts during sample preparation for electron microscopy. We used two approaches to identify these compartments. For early and recycling endosomes, which are accessible to externally-loaded markers, we used an anti-transferrin receptor antibody conjugated to 10 nm gold particles. For autophagosomes, which are not accessible to externally-applied markers, we developed a correlative cryo-fluorescence and cryo-SXT workflow (cryo-CLXM) to localise GFP-LC3 and RFP-Atg9. We used a stand-alone cryo-fluorescence stage in the home laboratory to localise the cloned fluorophores, followed by cryo-soft X-ray tomography at the synchrotron to analyse cellular ultrastructure. We mapped the 3D ultrastructure of the endocytic and autophagic structures, and discovered clusters of omegasomes arising from ‘hotspots’ on the ER. Thus, immunogold markers and cryo-CLXM can be used to analyse cellular processes that are inaccessible using other imaging modalities. - Highlights: • We image whole, unstained mammalian cells using cryo-soft X-ray tomography. • Endosomes are identified using a gold marker for the transferrin receptor. • A new workflow for correlative cryo-fluorescence and cryo-SXT is used to locate early autophagosomes. • Interactions between endosomes, endoplasmic reticulum and forming autophagosomes are mapped in 3D. • Multiple omegasomes are shown to form at ‘hotspots’ on the endoplasmic reticulum

  12. GGA3 mediates TrkA endocytic recycling to promote sustained Akt phosphorylation and cell survival

    Science.gov (United States)

    Li, Xuezhi; Lavigne, Pierre; Lavoie, Christine

    2015-01-01

    Although TrkA postendocytic sorting significantly influences neuronal cell survival and differentiation, the molecular mechanism underlying TrkA receptor sorting in the recycling or degradation pathways remains poorly understood. Here we demonstrate that Golgi-localized, γ adaptin-ear–containing ADP ribosylation factor-binding protein 3 (GGA3) interacts directly with the TrkA cytoplasmic tail through an internal DXXLL motif and mediates the functional recycling of TrkA to the plasma membrane. We find that GGA3 depletion by siRNA delays TrkA recycling, accelerates TrkA degradation, attenuates sustained NGF-induced Akt activation, and reduces cell survival. We also show that GGA3’s effect on TrkA recycling is dependent on the activation of Arf6. This work identifies GGA3 as a key player in a novel DXXLL-mediated endosomal sorting machinery that targets TrkA to the plasma membrane, where it prolongs the activation of Akt signaling and survival responses. PMID:26446845

  13. Stochastic acidification, activation of hemagglutinin and escape of influenza viruses from an endosome

    Science.gov (United States)

    Lagache, Thibault; Sieben, Christian; Meyer, Tim; Herrmann, Andreas; Holcman, David

    2017-06-01

    Influenza viruses enter the cell inside an endosome. During the endosomal journey, acidification triggers a conformational change of the virus spike protein hemagglutinin (HA) that results in escape of the viral genome from the endosome into the cytoplasm. It is still unclear how the interplay between acidification and HA conformation changes affects the kinetics of the viral endosomal escape. We develop here a stochastic model to estimate the change of conformation of HAs inside the endosome nanodomain. Using a Markov process, we model the arrival of protons to HA binding sites and compute the kinetics of their accumulation. We compute the Mean First Passage Time (MFPT) of the number of HA bound sites to a threshold, which is used to estimate the HA activation rate for a given pH concentration. The present analysis reveals that HA proton binding sites possess a high chemical barrier, ensuring a stability of the spike protein at sub-acidic pH. We predict that activating more than 3 adjacent HAs is necessary to trigger endosomal fusion and this configuration prevents premature release of viruses from early endosomes

  14. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Junko Y., E-mail: yama_jun@aoni.waseda.jp [Faculty of Science and Engineering, Waseda University, Wakamatsu-cho 2-2, Shinjuku-ku, Tokyo 162-8480 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Toshima, Jiro, E-mail: jtosiscb@rs.noda.tus.ac.jp [Department of Biological Science and Technology, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan); Research Center for RNA Science, RIST, Tokyo University of Science, Niijuku 6-3-1, Katsushika-ku, Tokyo 125-8585 (Japan)

    2014-01-10

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V{sub o} subunit of vacuolar-type H{sup +}-ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling.

  15. V-ATPase-dependent luminal acidification is required for endocytic recycling of a yeast cell wall stress sensor, Wsc1p

    International Nuclear Information System (INIS)

    Ueno, Kazuma; Saito, Mayu; Nagashima, Makiko; Kojima, Ai; Nishinoaki, Show; Toshima, Junko Y.; Toshima, Jiro

    2014-01-01

    Highlights: •A targeted genome screen identified 5 gene groups affecting Wsc1p recycling. •V-ATPase-dependent luminal acidification is required for Wsc1p recycling. •Activity of V-ATPase might be required for cargo recognition by the retromer complex. -- Abstract: Wsc1p is a major cell wall sensor protein localized at the polarized cell surface. The localization of Wsc1p is maintained by endocytosis and recycling from endosomes back to the cell surface, but changes to the vacuole when cells are subjected to heat stress. Exploiting this unique property of Wsc1p, we screened for yeast single-gene deletion mutants exhibiting defects in Wsc1p trafficking. By expressing 3GFP-tagged Wsc1p in mutants with deleted genes whose function is related to intracellular trafficking, we identified 5 gene groups affecting Wsc1p trafficking, impaired respectively in endocytic internalization, multivesicular body sorting, the GARP complex, endosomal maturation/vacuolar fusion, and V-ATPase. Interestingly, deletion of the VPH1 gene, encoding the V o subunit of vacuolar-type H + -ATPase (V-ATPase), led to mis-localization of Wsc1p from the plasma membrane to the vacuole. In addition, disruption of other V-ATPase subunits (vma mutants) also caused defects of Wsc1p trafficking and vacuolar acidification similar to those seen in the vph1Δ mutant. Moreover, we found that deletion of the VPS26 gene, encoding a subunit of the retromer complex, also caused a defect in Wsc1p recycling and mis-localization of Wsc1p to the vacuole. These findings clarified the previously unidentified Wsc1p recycling pathway and requirement of V-ATPase-dependent luminal acidification for Wsc1p recycling

  16. The Plasma Membrane Sialidase NEU3 Regulates the Malignancy of Renal Carcinoma Cells by Controlling β1 Integrin Internalization and Recycling*

    Science.gov (United States)

    Tringali, Cristina; Lupo, Barbara; Silvestri, Ilaria; Papini, Nadia; Anastasia, Luigi; Tettamanti, Guido; Venerando, Bruno

    2012-01-01

    The human plasma membrane sialidase NEU3 is a key enzyme in the catabolism of membrane gangliosides, is crucial in the regulation of cell surface processes, and has been demonstrated to be significantly up-regulated in renal cell carcinomas (RCCs). In this report, we show that NEU3 regulates β1 integrin trafficking in RCC cells by controlling β1 integrin recycling to the plasma membrane and controlling activation of the epidermal growth factor receptor (EGFR) and focal adhesion kinase (FAK)/protein kinase B (AKT) signaling. NEU3 silencing in RCC cells increased the membrane ganglioside content, in particular the GD1a content, and changed the expression of key regulators of the integrin recycling pathway. In addition, NEU3 silencing up-regulated the Ras-related protein RAB25, which directs internalized integrins to lysosomes, and down-regulated the chloride intracellular channel protein 3 (CLIC3), which induces the recycling of internalized integrins to the plasma membrane. In this manner, NEU3 silencing enhanced the caveolar endocytosis of β1 integrin, blocked its recycling and reduced its levels at the plasma membrane, and, consequently, inhibited EGFR and FAK/AKT. These events had the following effects on the behavior of RCC cells: they (a) decreased drug resistance mediated by the block of autophagy and the induction of apoptosis; (b) decreased metastatic potential mediated by down-regulation of the metalloproteinases MMP1 and MMP7; and (c) decreased adhesion to collagen and fibronectin. Therefore, our data identify NEU3 as a key regulator of the β1 integrin-recycling pathway and FAK/AKT signaling and demonstrate its crucial role in RCC malignancy. PMID:23139422

  17. Arf6-Dependent Intracellular Trafficking of Pasteurella multocida Toxin and pH-Dependent Translocation from Late Endosomes

    Directory of Open Access Journals (Sweden)

    Tracy P. M. Chong

    2011-03-01

    Full Text Available The potent mitogenic toxin from Pasteurella multocida (PMT is the major virulence factor associated with a number of epizootic and zoonotic diseases caused by infection with this respiratory pathogen. PMT is a glutamine-specific protein deamidase that acts on its intracellular G-protein targets to increase intracellular calcium, cytoskeletal, and mitogenic signaling. PMT enters cells through receptor-mediated endocytosis and then translocates into the cytosol through a pH-dependent process that is inhibited by NH4Cl or bafilomycin A1. However, the detailed mechanisms that govern cellular entry, trafficking, and translocation of PMT remain unclear. Co-localization studies described herein revealed that while PMT shares an initial entry pathway with transferrin (Tfn and cholera toxin (CT, the trafficking pathways of Tfn, CT, and PMT subsequently diverge, as Tfn is trafficked to recycling endosomes, CT is trafficked retrograde to the ER, and PMT is trafficked to late endosomes. Our studies implicate the small regulatory GTPase Arf6 in the endocytic trafficking of PMT. Translocation of PMT from the endocytic vesicle occurs through a pH-dependent process that is also dependent on both microtubule and actin dynamics, as evidenced by inhibition of PMT activity in our SRE-based reporter assay, with nocodazole and cytochalasin D, respectively, suggesting that membrane translocation and cytotoxicity of PMT is dependent on its transfer to late endosomal compartments. In contrast, disruption of Golgi-ER trafficking with brefeldin A increased PMT activity, suggesting that inhibiting PMT trafficking to non-productive compartments that do not lead to translocation, while promoting formation of an acidic tubulovesicle system more conducive to translocation, enhances PMT translocation and activity.

  18. Exploration of Charge Recycling DC-DC Conversion Using a Switched Capacitor Regulator

    Directory of Open Access Journals (Sweden)

    Mircea R. Stan

    2013-07-01

    Full Text Available The increasing popularity of DVFS (dynamic voltage frequency scaling schemes for portable low power applications demands highly efficient on-chip DC-DC converters. The primary aim of this work is to enable increased efficiency of on-chip DC-DC conversion for near-threshold operation of multicore chips. The idea is to supply nominal (high off-chip voltage to the cores which are then “voltage-stacked” to generate the near-threshold (low voltages based on Kirchhoff’s voltage law through charge recycling. However, the effectiveness of this implicit down-conversion is affected by the current imbalance among the cores. The paper presents a design methodology and optimization strategy for highly efficient charge recycling on-chip regulation using a push-pull switched capacitor (SC circuit. A dual-boundary hysteretic feedback control circuit has been designed for stacked loads. A stacked-voltage domain with its self-regulation capability combined with a SC converter has shown average efficiency of 78%–93% for 2:1 down-conversion with ILoad (max of 200 mA and workload imbalance varying from 0–100%.

  19. Mouse polyomavirus enters early endosomes, requires their acidic pH for productive infection, and meets transferrin cargo in rab11-positive endosomes

    Czech Academy of Sciences Publication Activity Database

    Liebl, D.; Difato, F.; Horníková, L.; Mannová, P.; Štokrová, Jitka; Forstová, J.

    2006-01-01

    Roč. 80, č. 9 (2006), s. 4610-4622 ISSN 0022-538X R&D Projects: GA ČR(CZ) GA204/03/0593; GA MŠk(CZ) LC545 Institutional research plan: CEZ:AV0Z50520514 Keywords : Polyomavirus internalization and trafficking * Early endosomes * Dependence of infection on endosomal pH Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.341, year: 2006

  20. Recycling of epidermal growth factor-receptor complexes in A431 cells: Identification of dual pathways

    International Nuclear Information System (INIS)

    Sorkin, A.; Krolenko, S.; Kudrjavtceva, N.; Lazebnik, J.; Teslenko, L.; Soderquist, A.M.; Nikolsky, N.

    1991-01-01

    The intracellular sorting of EGF-receptor complexes (EGF-RC) has been studied in human epidermoid carcinoma A431 cells. Recycling of EGF was found to occur rapidly after internalization at 37 degrees C. The initial rate of EGF recycling was reduced at 18 degrees C. A significant pool of internalized EGF was incapable of recycling at 18 degrees C but began to recycle when cells were warmed to 37 degrees C. The relative rate of EGF outflow at 37 degrees C from cells exposed to an 18 degrees C temperature block was slower (t1/2 approximately 20 min) than the rate from cells not exposed to a temperature block (t1/2 approximately 5-7 min). These data suggest that there might be both short- and long-time cycles of EGF recycling in A431 cells. Examination of the intracellular EGF-RC dissociation and dynamics of short- and long-time recycling indicated that EGF recycled as EGF-RC. Moreover, EGF receptors that were covalently labeled with a photoactivatable derivative of 125 I-EGF recycled via the long-time pathway at a rate similar to that of 125 I-EGF. Since EGF-RC degradation was also blocked at 18 degrees C, we propose that sorting to the lysosomal and long-time recycling pathway may occur after a highly temperature-sensitive step, presumably in the late endosomes

  1. The Serotonin Transporter Undergoes Constitutive Internalization and Is Primarily Sorted to Late Endosomes and Lysosomal Degradation*

    Science.gov (United States)

    Rahbek-Clemmensen, Troels; Bay, Tina; Eriksen, Jacob; Gether, Ulrik; Jørgensen, Trine Nygaard

    2014-01-01

    The serotonin transporter (SERT) plays a critical role in regulating serotonin signaling by mediating reuptake of serotonin from the extracellular space. The molecular and cellular mechanisms controlling SERT levels in the membrane remain poorly understood. To study trafficking of the surface resident SERT, two functional epitope-tagged variants were generated. Fusion of a FLAG-tagged one-transmembrane segment protein Tac to the SERT N terminus generated a transporter with an extracellular epitope suited for trafficking studies (TacSERT). Likewise, a construct with an extracellular antibody epitope was generated by introducing an HA (hemagglutinin) tag in the extracellular loop 2 of SERT (HA-SERT). By using TacSERT and HA-SERT in antibody-based internalization assays, we show that SERT undergoes constitutive internalization in a dynamin-dependent manner. Confocal images of constitutively internalized SERT demonstrated that SERT primarily co-localized with the late endosomal/lysosomal marker Rab7, whereas little co-localization was observed with the Rab11, a marker of the “long loop” recycling pathway. This sorting pattern was distinct from that of a prototypical recycling membrane protein, the β2-adrenergic receptor. Furthermore, internalized SERT co-localized with the lysosomal marker LysoTracker and not with transferrin. The sorting pattern was further confirmed by visualizing internalization of SERT using the fluorescent cocaine analog JHC1-64 and by reversible and pulse-chase biotinylation assays showing evidence for lysosomal degradation of the internalized transporter. Finally, we found that SERT internalized in response to stimulation with 12-myristate 13-acetate co-localized primarily with Rab7- and LysoTracker-positive compartments. We conclude that SERT is constitutively internalized and that the internalized transporter is sorted mainly to degradation. PMID:24973209

  2. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation.

    Science.gov (United States)

    Compeer, Ewoud Bernardus; Flinsenberg, Thijs Willem Hendrik; van der Grein, Susanna Geertje; Boes, Marianne

    2012-01-01

    Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8(+) T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.

  3. Erythroid cell mitochondria receive endosomal iron by a "kiss-and-run" mechanism.

    Science.gov (United States)

    Hamdi, Amel; Roshan, Tariq M; Kahawita, Tanya M; Mason, Anne B; Sheftel, Alex D; Ponka, Prem

    2016-12-01

    In erythroid cells, more than 90% of transferrin-derived iron enters mitochondria where ferrochelatase inserts Fe 2+ into protoporphyrin IX. However, the path of iron from endosomes to mitochondrial ferrochelatase remains elusive. The prevailing opinion is that, after its export from endosomes, the redox-active metal spreads into the cytosol and mysteriously finds its way into mitochondria through passive diffusion. In contrast, this study supports the hypothesis that the highly efficient transport of iron toward ferrochelatase in erythroid cells requires a direct interaction between transferrin-endosomes and mitochondria (the "kiss-and-run" hypothesis). Using a novel method (flow sub-cytometry), we analyze lysates of reticulocytes after labeling these organelles with different fluorophores. We have identified a double-labeled population definitively representing endosomes interacting with mitochondria, as demonstrated by confocal microscopy. Moreover, we conclude that this endosome-mitochondrion association is reversible, since a "chase" with unlabeled holotransferrin causes a time-dependent decrease in the size of the double-labeled population. Importantly, the dissociation of endosomes from mitochondria does not occur in the absence of holotransferrin. Additionally, mutated recombinant holotransferrin, that cannot release iron, significantly decreases the uptake of 59 Fe by reticulocytes and diminishes 59 Fe incorporation into heme. This suggests that endosomes, which are unable to provide iron to mitochondria, cause a "traffic jam" leading to decreased endocytosis of holotransferrin. Altogether, our results suggest that a molecular mechanism exists to coordinate the iron status of endosomal transferrin with its trafficking. Besides its contribution to the field of iron metabolism, this study provides evidence for a new intracellular trafficking pathway of organelles. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Impaired degradation followed by enhanced recycling of epidermal growth factor receptor caused by hypo-phosphorylation of tyrosine 1045 in RBE cells

    International Nuclear Information System (INIS)

    Gui, Anping; Kobayashi, Akira; Motoyama, Hiroaki; Kitazawa, Masato; Takeoka, Michiko; Miyagawa, Shinichi

    2012-01-01

    Since cholangiocarcinoma has a poor prognosis, several epidermal growth factor receptor (EGFR)-targeted therapies with antibody or small molecule inhibitor treatment have been proposed. However, their effect remains limited. The present study sought to understand the molecular genetic characteristics of cholangiocarcinoma related to EGFR, with emphasis on its degradation and recycling. We evaluated EGFR expression and colocalization by immunoblotting and immunofluorescence, cell surface EGFR expression by fluorescence-activated cell sorting (FACS), and EGFR ubiquitination and protein binding by immunoprecipitation in the human cholangiocarcinoma RBE and immortalized cholangiocyte MMNK-1 cell lines. Monensin treatment and Rab11a depletion by siRNA were adopted for inhibition of EGFR recycling. Upon stimulation with EGF, ligand-induced EGFR degradation was impaired and the expression of phospho-tyrosine 1068 and phospho-p44/42 MAPK was sustained in RBE cells as compared with MMNK-1 cells. In RBE cells, the process of EGFR sorting for lysosomal degradation was blocked at the early endosome stage, and non-degradated EGFR was recycled to the cell surface. A disrupted association between EGFR and the E3 ubiquitin ligase c-Cbl, as well as hypo-phosphorylation of EGFR at tyrosine 1045 (Tyr1045), were also observed in RBE cells. In RBE cells, up-regulation of EGFR Tyr1045 phosphorylation is a potentially useful molecular alteration in EGFR-targeted therapy. The combination of molecular-targeted therapy determined by the characteristics of individual EGFR phosphorylation events and EGFR recycling inhibition show promise in future treatments of cholangiocarcinoma

  5. Bcl-xL regulates CD1d-mediated antigen presentation to NKT cells by altering CD1d trafficking through the endocytic pathway.

    Science.gov (United States)

    Subrahmanyam, Priyanka B; Carey, Gregory B; Webb, Tonya J

    2014-09-01

    NKT cells are a unique subset of T cells that recognize glycolipid Ags presented in the context of CD1d molecules. NKT cells mount strong antitumor responses and are a major focus in developing effective cancer immunotherapy. It is known that CD1d molecules are constantly internalized from the cell surface, recycled through the endocytic compartments, and re-expressed on the cell surface. However, little is known about the regulation of CD1d-mediated Ag processing and presentation in B cell lymphoma. Prosurvival factors of the Bcl-2 family, such as Bcl-xL, are often upregulated in B cell lymphomas and are intimately linked to sphingolipid metabolism, as well as the endocytic compartments. We hypothesized that Bcl-xL can regulate CD1d-mediated Ag presentation to NKT cells. We found that overexpression or induction of Bcl-xL led to increased Ag presentation to NKT cells. Conversely, the inhibition or knockdown of Bcl-xL led to decreased NKT cell activation. Furthermore, knockdown of Bcl-xL resulted in the loss of CD1d trafficking to lysosome-associated membrane protein 1(+) compartments. Rab7, a late endosomal protein, was upregulated and CD1d molecules accumulated in the Rab7(+) late endosomal compartment. These results demonstrate that Bcl-xL regulates CD1d-mediated Ag processing and presentation to NKT cells by altering the late endosomal compartment and changing the intracellular localization of CD1d. Copyright © 2014 by The American Association of Immunologists, Inc.

  6. Aggregation of endosomal-vacuolar compartments in the Aovps24-deleted strain in the filamentous fungus Aspergillus oryzae

    International Nuclear Information System (INIS)

    Tatsumi, Akinori; Shoji, Jun-ya; Kikuma, Takashi; Arioka, Manabu; Kitamoto, Katsuhiko

    2007-01-01

    Previously, we found that deletion of Aovps24, an ortholog of Saccharomyces cerevisiae VPS24, that encodes an ESCRT (endosomal sorting complex required for transport)-III component required for late endosomal function results in fragmented and aggregated vacuoles. Although defective late endosomal function is likely responsible for this phenotype, critical lack of our knowledge on late endosomes in filamentous fungi prevented us from further characterization. In this study, we identified late endosomes of Aspergillus oryzae, by expressing a series of fusion proteins of fluorescent proteins with orthologs of late endosomal proteins. Using these fusion proteins as markers, we observed late endosomes in the wild type strain and the Aovps24 disruptant and demonstrated that late endosomes are aberrantly aggregated in the Aovps24 disruptant. Moreover, we revealed that the aggregated late endosomes have features of vacuoles as well. As deletion of another ESCRT-III component-encoding gene, Aovps2, resulted in similar phenotypes to that in the Aovps24 disruptant, phenotypes of the Aovps24 disruptant are probably due to defective late endosomal function

  7. Structural Basis for Endosomal Targeting by the Bro1 Domain

    Science.gov (United States)

    Kim, Jaewon; Sitaraman, Sujatha; Hierro, Aitor; Beach, Bridgette M.; Odorizzi, Greg; Hurley, James H.

    2010-01-01

    Summary Proteins delivered to the lysosome or the yeast vacuole via late endosomes are sorted by the ESCRT complexes and by associated proteins, including Alix and its yeast homolog Bro1. Alix, Bro1, and several other late endosomal proteins share a conserved 160 residue Bro1 domain whose boundaries, structure, and function have not been characterized. The crystal structure of the Bro1 domain of Bro1 reveals a folded core of 367 residues. The extended Bro1 domain is necessary and sufficient for binding to the ESCRT-III subunit Snf7 and for the recruitment of Bro1 to late endosomes. The structure resembles a boomerang with its concave face filled in and contains a triple tetratricopeptide repeat domain as a substructure. Snf7 binds to a conserved hydrophobic patch on Bro1 that is required for protein complex formation and for the protein-sorting function of Bro1. These results define a conserved mechanism whereby Bro1 domain-containing proteins are targeted to endosomes by Snf7 and its orthologs. PMID:15935782

  8. Requirements for the recycling of hazardous waste

    International Nuclear Information System (INIS)

    Petts, M.

    1990-09-01

    The regulatory status of materials destined to be recycled is not always clear. There have been numerous questions from DOE Field Elements regarding the applicability of the Resource Conservation and Recovery Act (RCRA) to certain materials that can be recycled. The Office of Environmental Guidance, RCRA/CERCLA Division, has responded to questions relating to the RCRA regulations as they apply to materials that are recycled or are destined for recycling. Additional regulatory requirements for these materials may be promulgated upon the reauthorization of RCRA (e.g., regulation of used oil). Additional EH-23 information Briefs will be issued as these regulations develop. The Office of Environment, Safety and Health has convened a workshop to establish DOE's position on a number of issues associated with mixed waste and materials management, several relative to recycling

  9. The p25 Subunit of the Dynactin Complex is Required for Dynein-Early Endosome Interaction

    Science.gov (United States)

    2011-01-01

    early endosome movement. In filamentous hyphae , dynein powers the minus end–directed movement of early endosomes (Steinberg and Schuster 2011...observed in time-lapse sequences (Video 1; Abenza et al., 2009). In still images, early endosomes were seen to distribute along the hyphae (Fig. 2 A...nuclear distribution along elongated hyphae and also for the microtubule minus end–directed movement of early endosomes away from the tip (Morris

  10. α-Taxilin interacts with sorting nexin 4 and participates in the recycling pathway of transferrin receptor.

    Directory of Open Access Journals (Sweden)

    Hiroshi Sakane

    Full Text Available Membrane traffic plays a crucial role in delivering proteins and lipids to their intracellular destinations. We previously identified α-taxilin as a binding partner of the syntaxin family, which is involved in intracellular vesicle traffic. α-Taxilin is overexpressed in tumor tissues and interacts with polymerized tubulin, but the precise function of α-taxilin remains unclear. Receptor proteins on the plasma membrane are internalized, delivered to early endosomes and then either sorted to the lysosome for degradation or recycled back to the plasma membrane. In this study, we found that knockdown of α-taxilin induced the lysosomal degradation of transferrin receptor (TfnR, a well-known receptor which is generally recycled back to the plasma membrane after internalization, and impeded the recycling of transferrin. α-Taxilin was immunoprecipitated with sorting nexin 4 (SNX4, which is involved in the recycling of TfnR. Furthermore, knockdown of α-taxilin decreased the number and length of SNX4-positive tubular structures. We report for the first time that α-taxilin interacts with SNX4 and plays a role in the recycling pathway of TfnR.

  11. Charcot-Marie-Tooth disease-linked protein SIMPLE functions with the ESCRT machinery in endosomal trafficking

    OpenAIRE

    Lee, Samuel M.; Chin, Lih-Shen; Li, Lian

    2012-01-01

    Mutations in small integral membrane protein of lysosome/late endosome (SIMPLE) cause autosomal dominant, Charcot-Marie-Tooth disease (CMT) type 1C. The cellular function of SIMPLE is unknown and the pathogenic mechanism of SIMPLE mutations remains elusive. Here, we report that SIMPLE interacted and colocalized with endosomal sorting complex required for transport (ESCRT) components STAM1, Hrs, and TSG101 on early endosomes and functioned with the ESCRT machinery in the control of endosome-to...

  12. Developmentally regulated GTP-binding protein 2 is required for stabilization of Rac1-positive membrane tubules.

    Science.gov (United States)

    Mani, Muralidharan; Lee, Unn Hwa; Yoon, Nal Ae; Yoon, Eun Hye; Lee, Byung Ju; Cho, Wha Ja; Park, Jeong Woo

    2017-11-04

    Previously we have reported that developmentally regulated GTP-binding protein 2 (DRG2) localizes on Rab5 endosomes and plays an important role in transferrin (Tfn) recycling. We here identified DRG2 as a key regulator of membrane tubule stability. At 30 min after Tfn treatment, DRG2 localized to membrane tubules which were enriched with phosphatidylinositol 4-monophosphate [PI(4)P] and did not contain Rab5. DRG2 interacted with Rac1 more strongly with GTP-bound Rac1 and tubular localization of DRG2 depended on Rac1 activity. DRG2 depletion led to destabilization of membrane tubules, while ectopic expression of DRG2 rescued the stability of the membrane tubules in DRG2-depleted cells. Our results reveal a novel mechanism for regulation of membrane tubule stability mediated by DRG2. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. NEU3 Sialidase Protein Interactors in the Plasma Membrane and in the Endosomes*

    Science.gov (United States)

    Cirillo, Federica; Ghiroldi, Andrea; Fania, Chiara; Piccoli, Marco; Torretta, Enrica; Tettamanti, Guido; Gelfi, Cecilia; Anastasia, Luigi

    2016-01-01

    NEU3 sialidase has been shown to be a key player in many physio- and pathological processes, including cell differentiation, cellular response to hypoxic stress, and carcinogenesis. The enzyme, peculiarly localized on the outer leaflet of the plasma membrane, has been shown to be able to remove sialic acid residues from the gangliosides present on adjacent cells, thus creating cell to cell interactions. Nonetheless, herein we report that the enzyme localization is dynamically regulated between the plasma membrane and the endosomes, where a substantial amount of NEU3 is stored with low enzymatic activity. However, under opportune stimuli, NEU3 is shifted from the endosomes to the plasma membrane, where it greatly increases the sialidase activity. Finally, we found that NEU3 possesses also the ability to interact with specific proteins, many of which are different in each cell compartment. They were identified by mass spectrometry, and some selected ones were also confirmed by cross-immunoprecipitation with the enzyme, supporting NEU3 involvement in the cell stress response, protein folding, and intracellular trafficking. PMID:26987901

  14. α1B-Adrenergic Receptors Differentially Associate with Rab Proteins during Homologous and Heterologous Desensitization

    Science.gov (United States)

    Castillo-Badillo, Jean A.; Sánchez-Reyes, Omar B.; Alfonzo-Méndez, Marco A.; Romero-Ávila, M. Teresa; Reyes-Cruz, Guadalupe; García-Sáinz, J. Adolfo

    2015-01-01

    Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs

  15. 40 CFR 141.76 - Recycle provisions.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Recycle provisions. 141.76 Section 141...) NATIONAL PRIMARY DRINKING WATER REGULATIONS Filtration and Disinfection § 141.76 Recycle provisions. (a... recycle spent filter backwash water, thickener supernatant, or liquids from dewatering processes must meet...

  16. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L., E-mail: rodney.rouse@fda.hhs.gov

    2012-10-15

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  17. Oleic acid and glucose regulate glucagon-like peptide 1 receptor expression in a rat pancreatic ductal cell line

    International Nuclear Information System (INIS)

    Zhang, Leshuai W.; McMahon Tobin, Grainne A.; Rouse, Rodney L.

    2012-01-01

    The glucagon-like peptide 1 receptor (GLP1R) plays a critical role in glucose metabolism and has become an important target for a growing class of drugs designed to treat type 2 diabetes. In vitro studies were designed to investigate the effect of the GLP1R agonist, exenatide (Ex4), in “on-target” RIN-5mF (islet) cells as well as in “off-target” AR42J (acinar) and DSL-6A/C1 (ductal) cells in a diabetic environment. Ex4 increased islet cell proliferation but did not affect acinar cells or ductal cells at relevant concentrations. A high caloric, high fat diet is a risk factor for impaired glucose tolerance and type-2 diabetes. An in vitro Oleic acid (OA) model was used to investigate the effect of Ex4 in a high calorie, high fat environment. At 0.1 and 0.4 mM, OA mildly decreased the proliferation of all pancreatic cell types. Ex4 did not potentiate the inhibitory effect of OA on cell proliferation. Akt phosphorylation in response to Ex4 was diminished in OA-treated ductal cells. GLP1R protein detected by western blot was time and concentration dependently decreased after glucose stimulation in OA-treated ductal cells. In ductal cells, OA treatment altered the intracellular localization of GLP1R and its co-localization with early endosome and recycling endosomes. Chloroquine (lysosomal inhibitor), N-acetyl-L-cysteine (reactive oxygen species scavenger) and wortmannin (a phosphatidylinositol-3-kinase inhibitor), fully or partially, rescued GLP1R protein in OA-pretreated, glucose-stimulated ductal cells. The impact of altered regulation on phenotype/function is presently unknown. However, these data suggest that GLP1R regulation in ductal cells can be altered by a high fat, high calorie environment. -- Highlights: ► Exenatide did not inhibit islet, acinar or ductal cell proliferation. ► GLP1R protein decreased after glucose stimulation in oleic acid-treated ductal cells. ► Oleic acid treatment altered localization of GLP1R with early and recycling

  18. Retrogradely Transported TrkA Endosomes Signal Locally within Dendrites to Maintain Sympathetic Neuron Synapses

    Directory of Open Access Journals (Sweden)

    Kathryn M. Lehigh

    2017-04-01

    Full Text Available Sympathetic neurons require NGF from their target fields for survival, axonal target innervation, dendritic growth and formation, and maintenance of synaptic inputs from preganglionic neurons. Target-derived NGF signals are propagated retrogradely, from distal axons to somata of sympathetic neurons via TrkA signaling endosomes. We report that a subset of TrkA endosomes that are transported from distal axons to cell bodies translocate into dendrites, where they are signaling competent and move bidirectionally, in close proximity to synaptic protein clusters. Using a strategy for spatially confined inhibition of TrkA kinase activity, we found that distal-axon-derived TrkA signaling endosomes are necessary within sympathetic neuron dendrites for maintenance of synapses. Thus, TrkA signaling endosomes have unique functions in different cellular compartments. Moreover, target-derived NGF mediates circuit formation and synapse maintenance through TrkA endosome signaling within dendrites to promote aggregation of postsynaptic protein complexes.

  19. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking.

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-05-18

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes.

  20. Conformational biosensors reveal GPCR signalling from endosomes

    DEFF Research Database (Denmark)

    Irannejad, R; Tomshine, Jin C; Tomshine, Jon R

    2013-01-01

    A long-held tenet of molecular pharmacology is that canonical signal transduction mediated by G-protein-coupled receptor (GPCR) coupling to heterotrimeric G proteins is confined to the plasma membrane. Evidence supporting this traditional view is based on analytical methods that provide limited...... or no subcellular resolution. It has been subsequently proposed that signalling by internalized GPCRs is restricted to G-protein-independent mechanisms such as scaffolding by arrestins, or GPCR activation elicits a discrete form of persistent G protein signalling, or that internalized GPCRs can indeed contribute...... in the early endosome membrane, and that internalized receptors contribute to the overall cellular cyclic AMP response within several minutes after agonist application. These findings provide direct support for the hypothesis that canonical GPCR signalling occurs from endosomes as well as the plasma membrane...

  1. PTP1B targets the endosomal sorting machinery

    DEFF Research Database (Denmark)

    Stuible, Matthew; Abella, Jasmine V; Feldhammer, Matthew

    2010-01-01

    Dephosphorylation and endocytic down-regulation are distinct processes that together control the signaling output of a variety of receptor tyrosine kinases (RTKs). PTP1B can directly dephosphorylate several RTKs, but it can also promote activation of downstream pathways through largely unknown...... mechanisms. These positive signaling functions likely contribute to the tumor-promoting effect of PTP1B in mouse cancer models. Here, we have identified STAM2, an endosomal protein involved in sorting activated RTKs for lysosomal degradation, as a substrate of PTP1B. PTP1B interacts with STAM2 at defined...... phosphotyrosine sites, and knockdown of PTP1B expression augments STAM2 phosphorylation. Intriguingly, manipulating the expression and phosphorylation state of STAM2 did not have a general effect on epidermal growth factor (EGF)-induced EGF receptor trafficking, degradation, or signaling. Instead, phosphorylated...

  2. Rabies virus co-localizes with early (Rab5) and late (Rab7) endosomal proteins in neuronal and SH-SY5Y cells.

    Science.gov (United States)

    Ahmad, Waqas; Li, Yingying; Guo, Yidi; Wang, Xinyu; Duan, Ming; Guan, Zhenhong; Liu, Zengshan; Zhang, Maolin

    2017-06-01

    Rabies virus (RABV) is a highly neurotropic virus that follows clathrin-mediated endocytosis and pH-dependent pathway for trafficking and invasion into endothelial cells. Early (Rab5, EEA1) and late (Rab7, LAMP1) endosomal proteins play critical roles in endosomal sorting, maturity and targeting various molecular cargoes, but their precise functions in the early stage of RABV neuronal infection remain elusive. In this study, the relationship between enigmatic entry of RABV with these endosomal proteins into neuronal and SH-SY5Y cells was investigated. Immunofluorescence, TCID 50 titers, electron microscopy and western blotting were carried out to determine the molecular interaction of the nucleoprotein (N) of RABV with early or late endosomal proteins in these cell lines. The expression of N was also determined by down-regulating Rab5 and Rab7 in both cell lines through RNA interference. The results were indicative that N proficiently colocalized with Rab5/EEA1 and Rab7/LAMP1 in both cell lines at 24 and 48 h post-infection, while N titers significantly decreased in early infection of RABV. Down-regulation of Rab5 and Rab7 did not inhibit N expression, but it prevented productive infection via blocking the normal trafficking of RABV in a low pH environment. Ultrathin sections of cells studied by electron microscope also verified the close association of RABV with Rab5 and Rab7 in neurons. From the data it was concluded that primary entry of RABV strongly correlates with the kinetics of Rab-proteins present on early and late vesicles, which provides helpful clues to explain the early events of RABV in nerve cells.

  3. COMMD1 is linked to the WASH complex and regulates endosomal trafficking of the copper transporter ATP7A

    NARCIS (Netherlands)

    Phillips-Krawczak, Christine A.; Singla, Amika; Starokadomskyy, Petro; Deng, Zhihui; Osborne, Douglas G.; Li, Haiying; Dick, Christopher J.; Gomez, Timothy S.; Koenecke, Megan; Zhang, Jin-San; Dai, Haiming; Sifuentes-Dominguez, Luis F.; Geng, Linda N.; Kaufmann, Scott H.; Hein, Marco Y.; Wallis, Mathew; McGaughran, Julie; Gecz, Jozef; De Sluis, Bart van; Billadeau, Daniel D.; Burstein, Ezra

    2015-01-01

    COMMD1 deficiency results in defective copper homeostasis, but the mechanism for this has remained elusive. Here we report that COMMD1 is directly linked to early endosomes through its interaction with a protein complex containing CCDC22, CCDC93, and C16orf62. This COMMD/CCDC22/CCDC93 (CCC) complex

  4. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  5. A FYVE zinc finger domain protein specifically links mRNA transport to endosome trafficking

    Science.gov (United States)

    Pohlmann, Thomas; Baumann, Sebastian; Haag, Carl; Albrecht, Mario; Feldbrügge, Michael

    2015-01-01

    An emerging theme in cellular logistics is the close connection between mRNA and membrane trafficking. A prominent example is the microtubule-dependent transport of mRNAs and associated ribosomes on endosomes. This coordinated process is crucial for correct septin filamentation and efficient growth of polarised cells, such as fungal hyphae. Despite detailed knowledge on the key RNA-binding protein and the molecular motors involved, it is unclear how mRNAs are connected to membranes during transport. Here, we identify a novel factor containing a FYVE zinc finger domain for interaction with endosomal lipids and a new PAM2-like domain required for interaction with the MLLE domain of the key RNA-binding protein. Consistently, loss of this FYVE domain protein leads to specific defects in mRNA, ribosome, and septin transport without affecting general functions of endosomes or their movement. Hence, this is the first endosomal component specific for mRNP trafficking uncovering a new mechanism to couple mRNPs to endosomes. DOI: http://dx.doi.org/10.7554/eLife.06041.001 PMID:25985087

  6. Role of the Small GTPase Rho3 in Golgi/Endosome trafficking through functional interaction with adaptin in Fission Yeast.

    Directory of Open Access Journals (Sweden)

    Ayako Kita

    Full Text Available BACKGROUND: We had previously identified the mutant allele of apm1(+ that encodes a homolog of the mammalian µ1A subunit of the clathrin-associated adaptor protein-1 (AP-1 complex, and we demonstrated the role of Apm1 in Golgi/endosome trafficking, secretion, and vacuole fusion in fission yeast. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we isolated rho3(+, which encodes a Rho-family small GTPase, an important regulator of exocystosis, as a multicopy-suppressor of the temperature-sensitive growth of the apm1-1 mutant cells. Overexpression of Rho3 suppressed the Cl(- sensitivity and immunosuppressant sensitivity of the apm1-1 mutant cells. Overexpression of Rho3 also suppressed the fragmentation of vacuoles, and the accumulation of v-SNARE Syb1 in Golgi/endosomes and partially suppressed the defective secretion associated with apm1-deletion cells. Notably, electron microscopic observation of the rho3-deletion cells revealed the accumulation of abnormal Golgi-like structures, vacuole fragmentation, and accumulation of secretory vesicles; these phenotypes were very similar to those of the apm1-deletion cells. Furthermore, the rho3-deletion cells and apm1-deletion cells showed very similar phenotypic characteristics, including the sensitivity to the immunosuppressant FK506, the cell wall-damaging agent micafungin, Cl(-, and valproic acid. Green fluorescent protein (GFP-Rho3 was localized at Golgi/endosomes as well as the plasma membrane and division site. Finally, Rho3 was shown to form a complex with Apm1 as well as with other subunits of the clathrin-associated AP-1 complex in a GTP- and effector domain-dependent manner. CONCLUSIONS/SIGNIFICANCE: Taken together, our findings reveal a novel role of Rho3 in the regulation of Golgi/endosome trafficking and suggest that clathrin-associated adaptor protein-1 and Rho3 co-ordinate in intracellular transport in fission yeast. To the best of our knowledge, this study provides the first evidence

  7. Overexpression of Rab22a hampers the transport between endosomes and the Golgi apparatus

    International Nuclear Information System (INIS)

    Mesa, Rosana; Magadan, Javier; Barbieri, Alejandro; Lopez, Cecilia; Stahl, Philip D.; Mayorga, Luis S.

    2005-01-01

    The transport and sorting of soluble and membrane-associated macromolecules arriving at endosomal compartments require a complex set of Rab proteins. Rab22a has been localized to the endocytic compartment; however, very little is known about the function of Rab22a and inconsistent results have been reported in studies performed in different cell lines. To characterize the function of Rab22a in endocytic transport, the wild-type protein (Rab22a WT), a hydrolysis-deficient mutant (Rab22a Q64L), and a mutant with reduced affinity for GTP (Rab22a S19N) were expressed in CHO cells. None of the three Rab22a constructs affected the transport of rhodamine-dextran to lysosomes, the digestion of internalized proteins, or the lysosomal localization of cathepsin D. In contrast with the mild effect of Rab22a on the endosome-lysosome route, cells expressing Rab22a WT and Rab22a Q64L presented a strong delay in the retrograde transport of cholera toxin from endosomes to the Golgi apparatus. Moreover, these cells accumulated the cation independent mannose 6-phosphate receptor in endosomes. These observations indicate that Rab22a can affect the trafficking from endosomes to the Golgi apparatus probably by promoting fusion among endosomes and impairing the proper segregation of membrane domains required for targeting to the trans-Golgi network (TGN)

  8. Example of establishing the recycling of scrap metal as a waste management option within German regulations

    International Nuclear Information System (INIS)

    Bodenstein, Matthias; Delfs, Johannes; Karschnick, Oliver

    2014-01-01

    The German Atomic Energy Act (Atomgesetz, AtG) specifies the German nuclear licensing and supervising regulations. On that basis the German federal states are responsible for licensing and supervising of nuclear power plants (NPPs) located in that state. The Ministry of Energy, Agriculture, the Environment and Rural Areas (MELUR) is the authority responsible for the state Schleswig-Holstein, in which the NPPs Brokdorf, Brunsbuettel, Kruemmel and the research reactor HZG are located. In the licensing and supervisory procedures the authority may consult authorized experts. In addition to the AtG, the German Radiation Protection Ordinance (Strahlenschutzverordnung, StrlSchV) specifies regulations for clearance according to the 10 μSv-concept. The clearance of metal by recycling / melting is one option within the regulations of the StrlSchV. For a clearance an additional license given by the MELUR is necessary. In that license and the application documents as well as in the supervisory procedures very specific regulations are implemented. This includes regulations for clearance at third parties in foreign countries. In this talk a short introduction to the German regulations focussed on clearance according to the 10 μSv-concept will be given. The specific regulations in the license of clearance will be presented and also the application documents for NPPs in Schleswig-Holstein will be discussed. Furthermore it will be illustrated on what terms the MELUR decided to agree upon the recycling of scrap metal with the aim of clearance according to Radiation Protection 89 in foreign countries along with the German regulatory framework. (authors)

  9. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    Svensson, Joens Petter

    2014-01-01

    7 times the total emissions from Sweden are saved each year by the recycling industry. It reduces CO 2 emissions and saves the environment. In fact it annually reduces global CO 2 emissions by 500 million tons, which is more than what is being emitted by the world wide aviation industry. Recycling of iron and steel saves 74% energy and reduces water and air pollution by respectively 76% and 86%, compared to primary production. It provides new raw materials and contributes to save energy. There's no sense in producing goods in a permanent material like plastics, that's supposed to be used only once. It's a huge waste of resources. Today the recycling industry provides half of the world's raw materials and this figure is set to increase. It's about environmentally sound management of resources. It's about plain common sense. There has to be a political willingness to facilitate recycling in every way. And from a corporate perspective social responsibility is becoming an increasingly important competitive edge. This is also a communication issue, it has to be a fact that is well known to the market when a company is doing valuable environmental work. We also need a well functioning global market with easy to understand regulations to facilitate global trade. The global demand for recycled materials should influence their collection and use. Fraud and theft has also to be kept at bay which calls for a close collaboration between organizations such as The International Chamber of Commerce, The International Trade Council and the International Maritime Bureau of the commercial crime services. Increasing recycling is the only way to go if we want to minimize our effect on the environment. We have to remember that recycling is essential for the environment. An increase would be a tremendous help to reduce the green house effect. Increasing recycling is not rocket science. We know how to do it, we just have to decide to go through with it

  10. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Okada, Masato, E-mail: okadam@biken.osaka-u.ac.jp [Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. Black-Right-Pointing-Pointer We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. Black-Right-Pointing-Pointer The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. Black-Right-Pointing-Pointer Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. Black-Right-Pointing-Pointer The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome-lysosome fusion, which is required for processing of various macromolecules.

  11. Endocytosis regulates membrane localization and function of the fusogen EFF-1.

    Science.gov (United States)

    Smurova, Ksenia; Podbilewicz, Benjamin

    2017-07-03

    Cell fusion is essential for sexual reproduction and formation of muscles, bones, and placenta. Two families of cell fusion proteins (Syncytins and FFs) have been identified in eukaryotes. Syncytins have been shown to form the giant syncytial trophoblasts in the placenta. The FFs are essential to fuse cells in the skin, reproductive, excretory, digestive and nervous systems in nematodes. EFF-1 (Epithelial Fusion Failure 1), a member of the FF family, is a type I membrane glycoprotein that is essential for most cell fusions in C. elegans. The crystal structure of EFF-1 ectodomain reveals striking structural similarity to class II fusion glycoproteins from enveloped viruses (e.g. dengue and rubella) that mediate virus to cell fusion. We found EFF-1 to be present on the plasma membrane and in RAB-5-positive early endosomes, with EFF-1 recycling between these 2 cell compartments. Only when EFF-1 proteins transiently arrive to the surfaces of 2 adjacent cells do they dynamically interact in trans and mediate membrane fusion. EFF-1 is continuously internalized by receptor-mediated endocytosis via the activity of 2 small GTPases: RAB-5 and Dynamin. Here we propose a model that explains how EFF-1 endocytosis together with interactions in trans can control cell-cell fusion. Kontani et al. showed that vacuolar ATPase (vATPase) mutations result in EFF-1-dependent hyperfusion. 1 We propose that vATPase is required for normal degradation of EFF-1. Failure to degrade EFF-1 results in delayed hyperfusion and mislocalization to organelles that appear to be recycling endosomes. EFF-1 is also required to fuse neurons as part of the repair mechanism following injury and to prune dendrites. We speculate that EFF-1 may regulate neuronal tree like structures via endocytosis. Thus, endocytosis of cell-cell fusion proteins functions to prevent merging of cells and to sculpt organs and neurons.

  12. Endosomal gene expression: a new indicator for prostate cancer patient prognosis?

    LENUS (Irish Health Repository)

    Johnson, Ian R D

    2015-11-10

    Prostate cancer continues to be a major cause of morbidity and mortality in men, but a method for accurate prognosis in these patients is yet to be developed. The recent discovery of altered endosomal biogenesis in prostate cancer has identified a fundamental change in the cell biology of this cancer, which holds great promise for the identification of novel biomarkers that can predict disease outcomes. Here we have identified significantly altered expression of endosomal genes in prostate cancer compared to non-malignant tissue in mRNA microarrays and confirmed these findings by qRT-PCR on fresh-frozen tissue. Importantly, we identified endosomal gene expression patterns that were predictive of patient outcomes. Two endosomal tri-gene signatures were identified from a previously published microarray cohort and had a significant capacity to stratify patient outcomes. The expression of APPL1, RAB5A, EEA1, PDCD6IP, NOX4 and SORT1 were altered in malignant patient tissue, when compared to indolent and normal prostate tissue. These findings support the initiation of a case-control study using larger cohorts of prostate tissue, with documented patient outcomes, to determine if different combinations of these new biomarkers can accurately predict disease status and clinical progression in prostate cancer patients.

  13. Increased expression of endosomal members of toll-like receptor family abrogates wound healing in patients with type 2 diabetes mellitus.

    Science.gov (United States)

    Singh, Kanhaiya; Agrawal, Neeraj K; Gupta, Sanjeev K; Mohan, Gyanendra; Chaturvedi, Sunanda; Singh, Kiran

    2016-10-01

    The inflammatory phase of wound healing cascade is an important determinant of the fate of the wound. Acute inflammation is necessary to initiate proper wound healing, while chronic inflammation abrogates wound healing. Different endosomal members of toll-like receptor (TLR) family initiate inflammatory signalling via a range of different inflammatory mediators such as interferons, internal tissue damaged-associated molecular patterns (DAMPs) and hyperactive effector T cells. Sustained signalling of TLR9 and TLR7 contributes to chronic inflammation by activating the plasmacytoid dendritic cells. Diabetic wounds are also characterised by sustained inflammatory phase. The objective of this study was to analyse the differential expression of endosomal TLRs in human diabetic wounds compared with control wounds. We analysed the differential expression of TLR7 and TLR9 both at transcriptional and translational levels in wounds of 84 patients with type 2 diabetes mellitus (T2DM) and 6 control subjects without diabetes using quantitative real-time polymerase chain reaction (RT-PCR), western blot and immunohistochemistry. TLR7 and TLR9 were significantly up-regulated in wounds of the patients with T2DM compared with the controls and were dependent on the infection status of the diabetic wounds, and wounds with microbial infection exhibited lower expression levels of endosomal TLRs. Altered endosomal TLR expression in T2DM subjects might be associated with wound healing impairment. © 2015 Medicalhelplines.com Inc and John Wiley & Sons Ltd.

  14. Human Papillomavirus 16 Infection Induces VAP-Dependent Endosomal Tubulation.

    Science.gov (United States)

    Siddiqa, Abida; Massimi, Paola; Pim, David; Broniarczyk, Justyna; Banks, Lawrence

    2018-03-15

    Human papillomavirus (HPV) infection involves complex interactions with the endocytic transport machinery, which ultimately facilitates the entry of the incoming viral genomes into the trans -Golgi network (TGN) and their subsequent nuclear entry during mitosis. The endosomal pathway is a highly dynamic intracellular transport system, which consists of vesicular compartments and tubular extensions, although it is currently unclear whether incoming viruses specifically alter the endocytic machinery. In this study, using MICAL-L1 as a marker for tubulating endosomes, we show that incoming HPV-16 virions induce a profound alteration in global levels of endocytic tubulation. In addition, we also show a critical requirement for the endoplasmic reticulum (ER)-anchored protein VAP in this process. VAP plays an essential role in actin nucleation and endosome-to-Golgi transport. Indeed, the loss of VAP results in a dramatic decrease in the level of endosomal tubulation induced by incoming HPV-16 virions. This is also accompanied by a marked reduction in virus infectivity. In VAP knockdown cells, we see that the defect in virus trafficking occurs after capsid disassembly but prior to localization at the trans -Golgi network, with the incoming virion-transduced DNA accumulating in Vps29/TGN46-positive hybrid vesicles. Taken together, these studies demonstrate that infection with HPV-16 virions induces marked alterations of endocytic transport pathways, some of which are VAP dependent and required for the endosome-to-Golgi transport of the incoming viral L2/DNA complex. IMPORTANCE Human papillomavirus infectious entry involves multiple interactions with the endocytic transport machinery. In this study, we show that incoming HPV-16 virions induce a dramatic increase in endocytic tubulation. This tubulation requires ER-associated VAP, which plays a critical role in ensuring the delivery of cargoes from the endocytic compartments to the trans -Golgi network. Indeed, the loss of

  15. Proceedings of the waste recycling workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, R.E.; Thomas, A.F.; Ries, M.A. [eds.] [Ohio State Univ., Columbus, OH (United States)

    1993-12-31

    Recorded are seventeen talks from five sessions at the workshop. FERMCO`s recycling program, state of the art recycling technology, and an integrated demonstration of deactivation, decommissioning and decommissioning are presented in the plenary session. In the concrete session, decontamination and recycling are discussed. In the transite session, regulations are considered along with recycling and decontamination. In the metals session, radioactive scrap metals are emphasized. And in the regulatory considerations and liabilities session, DOE and EPA viewpoints are discussed. (GHH)

  16. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro.

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A; Busto, Rebeca

    2016-03-18

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes' internal milieu induced by haloperidol affects lysosomal functionality.

  17. Natural Modulators of Endosomal Toll-Like Receptor-Mediated Psoriatic Skin Inflammation

    Directory of Open Access Journals (Sweden)

    Chao-Yang Lai

    2017-01-01

    Full Text Available Psoriasis is a chronic inflammatory autoimmune disease that can be initiated by excessive activation of endosomal toll-like receptors (TLRs, particularly TLR7, TLR8, and TLR9. Therefore, inhibitors of endosomal TLR activation are being investigated for their ability to treat this disease. The currently approved biological drugs adalimumab, etanercept, infliximab, ustekinumab, ixekizumab, and secukizumab are antibodies against effector cytokines that participate in the initiation and development of psoriasis. Several immune modulatory oligonucleotides and small molecular weight compounds, including IMO-3100, IMO-8400, and CPG-52364, that block the interaction between endosomal TLRs and their ligands are under clinical investigation for their effectiveness in the treatment of psoriasis. In addition, several chemical compounds, including AS-2444697, PF-05387252, PF-05388169, PF-06650833, ML120B, and PHA-408, can inhibit TLR signaling. Although these compounds have demonstrated anti-inflammatory activity in animal models, their therapeutic potential for the treatment of psoriasis has not yet been tested. Recent studies demonstrated that natural compounds derived from plants, fungi, and bacteria, including mustard seed, Antrodia cinnamomea extract, curcumin, resveratrol, thiostrepton, azithromycin, and andrographolide, inhibited psoriasis-like inflammation induced by the TLR7 agonist imiquimod in animal models. These natural modulators employ different mechanisms to inhibit endosomal TLR activation and are administered via different routes. Therefore, they represent candidate psoriasis drugs and might lead to the development of new treatment options.

  18. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Directory of Open Access Journals (Sweden)

    Alberto Canfrán-Duque

    2016-03-01

    Full Text Available First- and second-generation antipsychotics (FGAs and SGAs, respectively, have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2 and LBPA (lysobisphosphatidic acid, which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1 and coatomer subunit β (β-COP were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality.

  19. First-Generation Antipsychotic Haloperidol Alters the Functionality of the Late Endosomal/Lysosomal Compartment in Vitro

    Science.gov (United States)

    Canfrán-Duque, Alberto; Barrio, Luis C.; Lerma, Milagros; de la Peña, Gema; Serna, Jorge; Pastor, Oscar; Lasunción, Miguel A.; Busto, Rebeca

    2016-01-01

    First- and second-generation antipsychotics (FGAs and SGAs, respectively), have the ability to inhibit cholesterol biosynthesis and also to interrupt the intracellular cholesterol trafficking, interfering with low-density lipoprotein (LDL)-derived cholesterol egress from late endosomes/lysosomes. In the present work, we examined the effects of FGA haloperidol on the functionality of late endosomes/lysosomes in vitro. In HepG2 hepatocarcinoma cells incubated in the presence of 1,1′-dioctadecyl-3,3,3,3′-tetramethylindocarbocyanineperchlorate (DiI)-LDL, treatment with haloperidol caused the enlargement of organelles positive for late endosome markers lysosome-associated membrane protein 2 (LAMP-2) and LBPA (lysobisphosphatidic acid), which also showed increased content of both free-cholesterol and DiI derived from LDL. This indicates the accumulation of LDL-lipids in the late endosomal/lysosomal compartment caused by haloperidol. In contrast, LDL traffic through early endosomes and the Golgi apparatus appeared to be unaffected by the antipsychotic as the distribution of both early endosome antigen 1 (EEA1) and coatomer subunit β (β-COP) were not perturbed. Notably, treatment with haloperidol significantly increased the lysosomal pH and decreased the activities of lysosomal protease and β-d-galactosidase in a dose-dependent manner. We conclude that the alkalinization of the lysosomes’ internal milieu induced by haloperidol affects lysosomal functionality. PMID:26999125

  20. Delayed internalization and lack of recycling in a beta2-adrenergic receptor fused to the G protein alpha-subunit

    Directory of Open Access Journals (Sweden)

    Floridi Aristide

    2008-10-01

    Full Text Available Abstract Background Chimeric proteins obtained by the fusion of a G protein-coupled receptor (GPCR sequence to the N-terminus of the G protein α-subunit have been extensively used to investigate several aspects of GPCR signalling. Although both the receptor and the G protein generally maintain a fully functional state in such polypeptides, original observations made using a chimera between the β2-adrenergic receptor (β2AR and Gαs indicated that the fusion to the α-subunit resulted in a marked reduction of receptor desensitization and down-regulation. To further investigate this phenomenon, we have compared the rates of internalization and recycling between wild-type and Gαs-fused β2AR. Results The rate of agonist-induced internalization, measured as the disappearance of cell surface immunofluorescence in HEK293 cells permanently expressing N-terminus tagged receptors, was reduced three-fold by receptor-G protein fusion. However, both fused and non-fused receptors translocated to the same endocytic compartment, as determined by dual-label confocal analysis of cells co-expressing both proteins and transferrin co-localization. Receptor recycling, determined as the reversion of surface immunofluorescence following the addition of antagonist to cells that were previously exposed to agonist, markedly differed between wild-type and fused receptors. While most of the internalized β2AR returned rapidly to the plasma membrane, β2AR-Gαs did not recycle, and the observed slow recovery for the fusion protein immunofluorescence was entirely accounted for by protein synthesis. Conclusion The covalent linkage between β2AR and Gαs does not appear to alter the initial endocytic translocation of the two proteins, although there is reduced efficiency. It does, however, completely disrupt the process of receptor and G protein recycling. We conclude that the physical separation between receptor and Gα is not necessary for the transit to early endosomes

  1. Promyelocytic leukemia bodies tether to early endosomes during mitosis.

    Science.gov (United States)

    Palibrk, Vuk; Lång, Emma; Lång, Anna; Schink, Kay Oliver; Rowe, Alexander D; Bøe, Stig Ove

    2014-01-01

    During mitosis the nuclear envelope breaks down, leading to potential interactions between cytoplasmic and nuclear components. PML bodies are nuclear structures with tumor suppressor and antiviral functions. Early endosomes, on the other hand, are cytoplasmic vesicles involved in transport and growth factor signaling. Here we demonstrate that PML bodies form stable interactions with early endosomes immediately following entry into mitosis. The 2 compartments remain stably associated throughout mitosis and dissociate in the cytoplasm of newly divided daughter cells. We also show that a minor subset of PML bodies becomes anchored to the mitotic spindle poles during cell division. The study demonstrates a stable mitosis-specific interaction between a cytoplasmic and a nuclear compartment.

  2. The late endosome/lysosome-anchored p18-mTORC1 pathway controls terminal maturation of lysosomes

    International Nuclear Information System (INIS)

    Takahashi, Yusuke; Nada, Shigeyuki; Mori, Shunsuke; Soma-Nagae, Taeko; Oneyama, Chitose; Okada, Masato

    2012-01-01

    Highlights: ► p18 is a membrane adaptor that anchors mTORC1 to late endosomes/lysosomes. ► We examine the role of the p18-mTORC1 pathway in lysosome biogenesis. ► The loss of p18 causes accumulation of intact late endosomes by arresting lysosome maturation. ► Inhibition of mTORC1 activity with rapamycin phenocopies the defects of p18 loss. ► The p18-mTORC1 pathway plays crucial roles in the terminal maturation of lysosomes. -- Abstract: The late endosome/lysosome membrane adaptor p18 (or LAMTOR1) serves as an anchor for the mammalian target of rapamycin complex 1 (mTORC1) and is required for its activation on lysosomes. The loss of p18 causes severe defects in cell growth as well as endosome dynamics, including membrane protein transport and lysosome biogenesis. However, the mechanisms underlying these effects on lysosome biogenesis remain unknown. Here, we show that the p18-mTORC1 pathway is crucial for terminal maturation of lysosomes. The loss of p18 causes aberrant intracellular distribution and abnormal sizes of late endosomes/lysosomes and an accumulation of late endosome specific components, including Rab7, RagC, and LAMP1; this suggests that intact late endosomes accumulate in the absence of p18. These defects are phenocopied by inhibiting mTORC1 activity with rapamycin. Loss of p18 also suppresses the integration of late endosomes and lysosomes, resulting in the defective degradation of tracer proteins. These results suggest that the p18-mTORC1 pathway plays crucial roles in the late stages of lysosomal maturation, potentially in late endosome–lysosome fusion, which is required for processing of various macromolecules.

  3. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  4. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-01-01

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds’ escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds’ cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier. PMID:26123532

  5. Rapid endosomal escape of prickly nanodiamonds: implications for gene delivery.

    Science.gov (United States)

    Chu, Zhiqin; Miu, Kaikei; Lung, Pingsai; Zhang, Silu; Zhao, Saisai; Chang, Huan-Cheng; Lin, Ge; Li, Quan

    2015-06-30

    The prickly nanodiamonds easily entered cells via endocytosis followed by unique intracellular translocation characteristics—quick endosomal escape followed by stable residence in cytoplasm. Endosomal membrane rupturing is identified as the major route of nanodiamonds' escaping the vesicle confinement and to the cytoplasm. Little cytotoxicity is observed to associate with the nanodiamonds' cytosolic release. Such features enable its application for gene delivery, which requires both effective cellular uptake and cytosolic release of the gene. Taking green fluorescent protein gene as an example, we demonstrate the successful cytosolic delivery and expression of such a gene using the prickly nanodiamonds as carrier.

  6. Compartment-Specific Biosensors Reveal a Complementary Subcellular Distribution of Bioactive Furin and PC7

    Directory of Open Access Journals (Sweden)

    Pierpaolo Ginefra

    2018-02-01

    Full Text Available Furin trafficking, and that of related proprotein convertases (PCs, may regulate which substrates are accessible for endoproteolysis, but tools to directly test this hypothesis have been lacking. Here, we develop targeted biosensors that indicate Furin activity in endosomes is 10-fold less inhibited by decanoyl-RVKR-chloromethylketone and enriched >3-fold in endosomes compared to the trans-Golgi network (TGN. Endogenous PC7, which resists this inhibitor, was active in distinct vesicles. Only overexpressed PC7 activity reached the cell surface, endosomes, and the TGN. A PLC motif in the cytosolic tail of PC7 was dispensable for endosomal activity, but it was specifically required for TGN recycling and to rescue proActivin-A cleavage in Furin-depleted B16F1 melanoma cells. In sharp contrast, PC7 complemented Furin in cleaving Notch1 independently of PLC-mediated TGN access. Our study provides a proof in principle that compartment-specific biosensors can be used to gain insight into the regulation of PC trafficking and to map the tropism of PC-specific inhibitors.

  7. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Directory of Open Access Journals (Sweden)

    Kevin Mellert

    Full Text Available Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  8. Enhancing endosomal escape of transduced proteins by photochemical internalisation.

    Science.gov (United States)

    Mellert, Kevin; Lamla, Markus; Scheffzek, Klaus; Wittig, Rainer; Kaufmann, Dieter

    2012-01-01

    Induced internalisation of functional proteins into cultured cells has become an important aspect in a rising number of in vitro and in vivo assays. The endo-lysosomal entrapment of the transduced proteins remains the major problem in all transduction protocols. In this study we compared the efficiency, cytotoxicity and protein targeting of different commercially available transduction reagents by transducing a well-studied fluorescently labelled protein (Atto488-bovine serum albumin) into cultured human sarcoma cells. The amount of internalised protein and toxicity differed between the different reagents, but the percentage of transduced cells was consistently high. Furthermore, in all protocols the signals of the transduced Atto488-BSA were predominantly punctual consistent with an endosomal localisation. To overcome the endosomal entrapment, the transduction protocols were combined with a photochemical internalisation (PCI) treatment. Using this combination revealed that an endosomal disruption is highly effective in cell penetrating peptide (CPP) mediated transduction, whereas lipid-mediated transductions lead to a lower signal spreading throughout the cytosol. No change in the signal distribution could be achieved in treatments using non-lipid polymers as a transduction reagent. Therefore, the combination of protein transduction protocols based on CPPs with the endosomolytic treatment PCI can facilitate protein transduction experiments in vitro.

  9. Recycling in the 90's - a shared responsibility

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Recycling means different things to different people. To consumers, recycling can mean putting out bottles and cans for curbside collection. To a product maker - a manufacturer of raw materials, fabricator of goods or products, or brand owner - recycling can mean reformulating goods to include recycled materials. To recycling service providers, recycling can mean providing cost-efficient collection services. To public policy makers in all levels of government recycling can mean establishing collection and utilization regulations. For recycling to work successfully, these diverse groups must work together and share responsibility for its success. Also, if recycling is to succeed on a large scale and over the long term, three critical points must be first addressed: These points are: approach, economics, and markets. These points are discussed

  10. Disturbed vesicular trafficking of membrane proteins in prion disease.

    Science.gov (United States)

    Uchiyama, Keiji; Miyata, Hironori; Sakaguchi, Suehiro

    2013-01-01

    The pathogenic mechanism of prion diseases remains unknown. We recently reported that prion infection disturbs post-Golgi trafficking of certain types of membrane proteins to the cell surface, resulting in reduced surface expression of membrane proteins and abrogating the signal from the proteins. The surface expression of the membrane proteins was reduced in the brains of mice inoculated with prions, well before abnormal symptoms became evident. Prions or pathogenic prion proteins were mainly detected in endosomal compartments, being particularly abundant in recycling endosomes. Some newly synthesized membrane proteins are delivered to the surface from the Golgi apparatus through recycling endosomes, and some endocytosed membrane proteins are delivered back to the surface through recycling endosomes. These results suggest that prions might cause neuronal dysfunctions and cell loss by disturbing post-Golgi trafficking of membrane proteins via accumulation in recycling endosomes. Interestingly, it was recently shown that delivery of a calcium channel protein to the cell surface was impaired and its function was abrogated in a mouse model of hereditary prion disease. Taken together, these results suggest that impaired delivery of membrane proteins to the cell surface is a common pathogenic event in acquired and hereditary prion diseases.

  11. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod

    2017-05-19

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  12. Thermoresponsive pegylated bubble liposome nanovectors for efficient siRNA delivery via endosomal escape

    KAUST Repository

    Alamoudi, Kholod; Martins, Patricia; Croissant, Jonas G.; Patil, Sachin; Omar, Haneen; Khashab, Niveen M.

    2017-01-01

    Improving the delivery of siRNA into cancer cells via bubble liposomes. Designing a thermoresponsive pegylated liposome through the introduction of ammonium bicarbonate salt into liposomes so as to control their endosomal escape for gene therapy.A sub-200 nm nanovector was fully characterized and examined for cellular uptake, cytotoxicity, endosomal escape and gene silencing.The siRNA-liposomes were internalized into cancer cells within 5 min and then released siRNAs in the cytosol prior to lysosomal degradation upon external temperature elevation. This was confirmed by confocal bioimaging and gene silencing reaching up to 90% and further demonstrated by the protein inhibition of both target genes.The thermoresponsiveness of ammonium bicarbonate containing liposomes enabled the rapid endosomal escape of the particles and resulted in an efficient gene silencing.

  13. Rab GTPases Regulate Endothelial Cell Protein C Receptor-Mediated Endocytosis and Trafficking of Factor VIIa

    Science.gov (United States)

    Nayak, Ramesh C.; Keshava, Shiva; Esmon, Charles T.; Pendurthi, Usha R.; Rao, L. Vijaya Mohan

    2013-01-01

    Recent studies have established that factor VIIa (FVIIa) binds to the endothelial cell protein C receptor (EPCR). FVIIa binding to EPCR may promote the endocytosis of this receptor/ligand complex. Rab GTPases are known to play a crucial role in the endocytic and exocytic pathways of receptors or receptor/ligand complexes. The present study was undertaken to investigate the role of Rab GTPases in the intracellular trafficking of EPCR and FVIIa. CHO-EPCR cells and human umbilical vein endothelial cells (HUVEC) were transduced with recombinant adenoviral vectors to express wild-type, constitutively active, or dominant negative mutant of various Rab GTPases. Cells were exposed to FVIIa conjugated with AF488 fluorescent probe (AF488-FVIIa), and intracellular trafficking of FVIIa, EPCR, and Rab proteins was evaluated by immunofluorescence confocal microscopy. In cells expressing wild-type or constitutively active Rab4A, internalized AF488-FVIIa accumulated in early/sorting endosomes and its entry into the recycling endosomal compartment (REC) was inhibited. Expression of constitutively active Rab5A induced large endosomal structures beneath the plasma membrane where EPCR and FVIIa accumulated. Dominant negative Rab5A inhibited the endocytosis of EPCR-FVIIa. Expression of constitutively active Rab11 resulted in retention of accumulated AF488-FVIIa in the REC, whereas expression of a dominant negative form of Rab11 led to accumulation of internalized FVIIa in the cytoplasm and prevented entry of internalized FVIIa into the REC. Expression of dominant negative Rab11 also inhibited the transport of FVIIa across the endothelium. Overall our data show that Rab GTPases regulate the internalization and intracellular trafficking of EPCR-FVIIa. PMID:23555015

  14. Cystatin F as a regulator of immune cell cytotoxicity.

    Science.gov (United States)

    Kos, Janko; Nanut, Milica Perišić; Prunk, Mateja; Sabotič, Jerica; Dautović, Esmeralda; Jewett, Anahid

    2018-05-10

    Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

  15. COMMD1 regulates the delta epithelial sodium channel (δENaC) through trafficking and ubiquitination

    International Nuclear Information System (INIS)

    Chang, Tina; Ke, Ying; Ly, Kevin; McDonald, Fiona J.

    2011-01-01

    Highlights: → The COMM domain of COMMD1 mediates binding to δENaC. → COMMD1 reduces the cell surface population of δENaC. → COMMD1 increases the population of δENaC-ubiquitin. → Both endogenous and transfected δENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel (δENaC) is a member of the ENaC/degenerin family of ion channels. δENaC is distinct from the related α-, β- and γENaC subunits, known for their role in sodium homeostasis and blood pressure control, as δENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate δENaC activity. Here, we show that COMMD1 interacts with δENaC through its COMM domain. Co-expression of δENaC with COMMD1 significantly reduced δENaC surface expression, and led to an increase in δENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of δENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates δENaC activity by reducing δENaC surface expression through promoting internalization of surface δENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  16. COMMD1 regulates the delta epithelial sodium channel ({delta}ENaC) through trafficking and ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tina; Ke, Ying; Ly, Kevin [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand); McDonald, Fiona J., E-mail: fiona.mcdonald@otago.ac.nz [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand)

    2011-08-05

    Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  17. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    Science.gov (United States)

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  18. Characterization of PEBBLEs as a Tool for Real-Time Measurement of Dictyostelium discoideum Endosomal pH

    Directory of Open Access Journals (Sweden)

    Everett Moding

    2009-01-01

    Full Text Available The measurement of intracellular ion concentration change is important for understanding the cellular mechanisms for communication. Recently developed nanosensors, (Photonic Explorers for Biomedical use with Biologically Localized Embedding PEBBLEs, have a number of advantages for measuring ions in cells over established methods using microelectrodes, unbound fluorescent dyes, or NMR. PEBBLE sensors have been shown to work in principle for measuring dynamic ion changes, but few in vivo applications have been demonstrated. We modified the protocol for the fabrication of pH sensing PEBBLEs and developed a protocol for the utilization of these sensors for the monitoring of dynamic pH changes in the endosomes of slime mold Dictyostelium discoideum (D. discoideum. Oregon Green 514-CdSe Quantum Dot PEBBLEs were used to measure real-time pH inside D. discoideum endosomes during cAMP stimulation. Endosomal pH was shown to decrease during cAMP signaling, demonstrating a movement of protons into the endosomes of D. discoideum amoebae.

  19. deep-orange and carnation define distinct stages in late endosomal biogenesis in Drosophila melanogaster

    OpenAIRE

    Sriram, V.; Krishnan, K.S.; Mayor, Satyajit

    2003-01-01

    Endosomal degradation is severely impaired in primary hemocytes from larvae of eye color mutants of Drosophila. Using high resolution imaging and immunofluorescence microscopy in these cells, products of eye color genes, deep-orange (dor) and carnation (car), are localized to large multivesicular Rab7-positive late endosomes containing Golgi-derived enzymes. These structures mature into small sized Dor-negative, Car-positive structures, which subsequently fuse to form tubular lysosomes. Defec...

  20. A fluorescence resonance energy transfer-based approach for investigating late endosome-lysosome retrograde fusion events.

    Science.gov (United States)

    Kaufmann, A M; Goldman, S D B; Krise, J P

    2009-03-01

    Traditionally, lysosomes have been considered to be a terminal endocytic compartment. Recent studies suggest that lysosomes are quite dynamic, being able to fuse with other late endocytic compartments as well as with the plasma membrane. Here we describe a quantitative fluorescence energy transfer (FRET)-based method for assessing rates of retrograde fusion between terminal lysosomes and late endosomes in living cells. Late endosomes were specifically labeled with 800-nm latex beads that were conjugated with streptavidin and Alexa Fluor 555 (FRET donor). Terminal lysosomes were specifically labeled with 10,000-MW dextran polymers conjugated with biotin and Alexa Fluor 647 (FRET acceptor). Following late endosome-lysosome fusion, the strong binding affinity between streptavidin and biotin brought the donor and acceptor fluorophore molecules into close proximity, thereby facilitating the appearance of a FRET emission signal. Because apparent size restrictions in the endocytic pathway do not permit endocytosed latex beads from reaching terminal lysosomes in an anterograde fashion, the appearance of the FRET signal is consistent with retrograde transport of lysosomal cargo back to late endosomes. We assessed the efficiency of this transport step in fibroblasts affected by different lysosome storage disorders-Niemann-Pick type C, mucolipidosis type IV, and Sandhoff's disease, all of which have a similar lysosomal lipid accumulation phenotype. We report here, for the first time, that these disorders can be distinguished by their rate of transfer of lysosome cargos to late endosomes, and we discuss the implications of these findings for developing new therapeutic strategies.

  1. Small Molecules for Early Endosome-Specific Patch Clamping.

    Science.gov (United States)

    Chen, Cheng-Chang; Butz, Elisabeth S; Chao, Yu-Kai; Grishchuk, Yulia; Becker, Lars; Heller, Stefan; Slaugenhaupt, Susan A; Biel, Martin; Wahl-Schott, Christian; Grimm, Christian

    2017-07-20

    To resolve the subcellular distribution of endolysosomal ion channels, we have established a novel experimental approach to selectively patch clamp Rab5 positive early endosomes (EE) versus Rab7/LAMP1-positive late endosomes/lysosomes (LE/LY). To functionally characterize ion channels in endolysosomal membranes with the patch-clamp technique, it is important to develop techniques to selectively enlarge the respective organelles. We found here that two small molecules, wortmannin and latrunculin B, enlarge Rab5-positive EE when combined but not Rab7-, LAMP1-, or Rab11 (RE)-positive vesicles. The two compounds act rapidly, specifically, and are readily applicable in contrast to genetic approaches or previously used compounds such as vacuolin, which enlarges EE, RE, and LE/LY. We apply this approach here to measure currents mediated by TRPML channels, in particular TRPML3, which we found to be functionally active in both EE and LE/LY in overexpressing cells as well as in endogenously expressing CD11b+ lung-tissue macrophages. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Recycle flow rate control device

    International Nuclear Information System (INIS)

    Sumida, Susumu; Mizuno, Hiroshi; Oka, Yoko.

    1984-01-01

    Purpose: To attain stable low hydraulic power operation with no abnormal changes in the reactor water level by smoothly varying the speed control for the recycling pump for regulating the reactor core flowrate in BWR type reactors. Constitution: In a recycling control system equipped with an internal pump having a response characteristic higher by ten and several times or more than that of prior pump, a previously programed recycling run-back signal is inputted to a speed regulator upon load interruption of the electric generator to thereby control the operation of the internal pump driving motor such that the speed is decreased rapidly at the initial state and smoothly thereafter. The run-back singal is passed through a primary delay circuit so that the interruption of the motor operation does not directly performed by the signal interruption upon failure. As the result, the amount of void produced is also made smooth and the reactor water level varies smoothly as well, whereby the reactor power can be reduced with a sufficient margin. (Kamimura, M.)

  3. Phosphatidylinositol 3,5-Bisphosphate-Rich Membrane Domains in Endosomes and Lysosomes.

    Science.gov (United States)

    Takatori, Sho; Tatematsu, Tsuyako; Cheng, Jinglei; Matsumoto, Jun; Akano, Takuya; Fujimoto, Toyoshi

    2016-02-01

    Phosphatidylinositol 3,5-bisphosphate (PtdIns(3,5)P2 ) has critical functions in endosomes and lysosomes. We developed a method to define nanoscale distribution of PtdIns(3,5)P2 using freeze-fracture electron microscopy. GST-ATG18-4×FLAG was used to label PtdIns(3,5)P2 and its binding to phosphatidylinositol 3-phosphate (PtdIns(3)P) was blocked by an excess of the p40(phox) PX domain. In yeast exposed to hyperosmotic stress, PtdIns(3,5)P2 was concentrated in intramembrane particle (IMP)-deficient domains in the vacuolar membrane, which made close contact with adjacent membranes. The IMP-deficient domain was also enriched with PtdIns(3)P, but was deficient in Vph1p, a liquid-disordered domain marker. In yeast lacking either PtdIns(3,5)P2 or its effector, Atg18p, the IMP-deficient, PtdIns(3)P-rich membranes were folded tightly to make abnormal tubular structures, thus showing where the vacuolar fragmentation process is arrested when PtdIns(3,5)P2 metabolism is defective. In HeLa cells, PtdIns(3,5)P2 was significantly enriched in the vesicular domain of RAB5- and RAB7-positive endosome/lysosomes of the tubulo-vesicular morphology. This biased distribution of PtdIns(3,5)P2 was also observed using fluorescence microscopy, which further showed enrichment of a retromer component, VPS35, in the tubular domain. This is the first report to show segregation of PtdIns(3,5)P2 -rich and -deficient domains in endosome/lysosomes, which should be important for endosome/lysosome functionality. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. G protein-coupled receptor (GPCR) signaling via heterotrimeric G proteins from endosomes.

    Science.gov (United States)

    Tsvetanova, Nikoleta G; Irannejad, Roshanak; von Zastrow, Mark

    2015-03-13

    Some G protein-coupled receptors (GPCRs), in addition to activating heterotrimeric G proteins in the plasma membrane, appear to elicit a "second wave" of G protein activation after ligand-induced internalization. We briefly summarize evidence supporting this view and then discuss what is presently known about the functional significance of GPCR-G protein activation in endosomes. Endosomal activation can shape the cellular response temporally by prolonging its overall duration, and may shape the response spatially by moving the location of intracellular second messenger production relative to effectors. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. The N-terminal domains of Vps3 and Vps8 are critical for localization and function of the CORVET tethering complex on endosomes.

    Directory of Open Access Journals (Sweden)

    Nadine Epp

    Full Text Available Endosomal biogenesis depends on multiple fusion and fission events. For fusion, the heterohexameric CORVET complex as an effector of the endosomal Rab5/Vps21 GTPase has a central function in the initial tethering event. Here, we show that the CORVET-specific Vps3 and Vps8 subunits, which interact with Rab5/Vps21, require their N-terminal domains for localization and function. Surprisingly, CORVET may lack either one of the two N-terminal domains, but not both, to promote protein sorting via the endosome. The dually truncated complex mislocalizes to the cytosol and is impaired in endocytic protein sorting, but not in assembly. Furthermore, the endosomal localization can be rescued by overexpression of Vps21 or one of the truncated CORVET subunits, even though CORVET assembly is not impaired by loss of the N-terminal domains or in strains lacking all endosomal Rab5s and Ypt7. We thus conclude that CORVET requires only its C-terminal domains for assembly and has beyond its putative β-propeller domains additional binding sites for endosomes, which could be important to bind Vps21 and other endosome-specific factors for efficient endosome tethering.

  6. Lysosomal and endosomal heterogeneity in the liver: A comparison of the intracellular pathways of endocytosis in rat liver cells

    International Nuclear Information System (INIS)

    Kindberg, G.M.; Tolleshaug, H.; Gjoen, T.; Berg, T.

    1991-01-01

    Air-filled albumin microspheres, asialoorosomucoid and formaldehyde-treated serum albumin are selectively taken up by endocytosis in rat liver Kupffer cells, parenchymal cells and endothelial cells, respectively. Intracellular transport and degradation of endocytosed material were studied by subcellular fractionation in sucrose and Nycodenz gradients after intravenous injection of the ligand. By using ligands labeled with 125I-tyramine-cellobiose, the subcellular distribution of labeled degradation products can be studied because they are trapped at the site of formation. The results show that the kinetics of intracellular transport are different in hepatic parenchymal, endothelial and Kupffer cells. In endothelial cells, the ligand is associated with two types of endosomes during the first minutes after internalization and then is transferred rapidly to the lysosomes. In parenchymal cells, 125I-tyramine-cellobiose-asialoorosomucoid was located in a relatively slowly sedimenting vesicle during the first minute after internalization and subsequently in denser endosomes. Degradation of 125I-tyramine-cellobiose-asialoorosomucoid in parenchymal cells started later than that of 125I-tyramine-cellobiose-formaldehyde-treated serum albumin in endothelial cells. Furthermore, the ligand seemed to be transferred relatively slowly from endosomes to lysosomes, and most of the undegraded ligand was in the endosomes. The rate-limiting step of proteolysis in parenchymal cells is probably the transport from endosomes to lysosomes. In Kupffer cells, most 125I-tyramine-cellobiose-microspheres are found as undegraded material in very dense endosomes up to 3 hr after injection. After 20 hr, most of the ligand is degraded in lysosomes distributed at a lower density than the endosomes in Nycodenz and sucrose gradients

  7. Case studies in rural recycling. Public service report series

    Energy Technology Data Exchange (ETDEWEB)

    Cosper, S.D.; Hallenbeck, W.H.; Brenniman, G.R.

    1994-02-01

    Due to state planning requirements and federal landfill regulations, solid waste management in rural areas (particularly recycling) has received much attention in recent years. The growth of recycling during the 1980s occurred mainly in urban and suburban areas. Therefore, rural recycling is still a relatively new enterprise. This report presents several rural recycling case studies from Colorado, Illinois, Indiana, Iowa, Minnesota, Tennessee, and Ontario, Canada to provide examples of successes and problems. This report also discusses the current issues of cooperative marketing of recyclables and municipal solid waste flow control. With respect to recycling, a rural region does not have ready access to markets for collected materials and has difficulty in generating easily marketable quantities of recyclables. (Copyright (c) 1994 The Board of Trustees of the University of Illinois.)

  8. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  9. Rac1-Rab11-FIP3 regulatory hub coordinates vesicle traffic with actin remodeling and T-cell activation.

    Science.gov (United States)

    Bouchet, Jérôme; Del Río-Iñiguez, Iratxe; Lasserre, Rémi; Agüera-Gonzalez, Sonia; Cuche, Céline; Danckaert, Anne; McCaffrey, Mary W; Di Bartolo, Vincenzo; Alcover, Andrés

    2016-06-01

    The immunological synapse generation and function is the result of a T-cell polarization process that depends on the orchestrated action of the actin and microtubule cytoskeleton and of intracellular vesicle traffic. However, how these events are coordinated is ill defined. Since Rab and Rho families of GTPases control intracellular vesicle traffic and cytoskeleton reorganization, respectively, we investigated their possible interplay. We show here that a significant fraction of Rac1 is associated with Rab11-positive recycling endosomes. Moreover, the Rab11 effector FIP3 controls Rac1 intracellular localization and Rac1 targeting to the immunological synapse. FIP3 regulates, in a Rac1-dependent manner, key morphological events, like T-cell spreading and synapse symmetry. Finally, Rab11-/FIP3-mediated regulation is necessary for T-cell activation leading to cytokine production. Therefore, Rac1 endosomal traffic is key to regulate T-cell activation. © 2016 The Authors.

  10. Concerted regulation of npc2 binding to endosomal/lysosomal membranes by bis(monoacylglycero)phosphate and sphingomyelin

    DEFF Research Database (Denmark)

    Enkavi, Giray; Mikkolainen, Heikki; Güngör, Burçin

    2017-01-01

    remained elusive. Here, based on an extensive set of atomistic simulations and free energy calculations, we clarify the mechanism and energetics of npc2-membrane binding and characterize the roles of physiologically relevant key lipids associated with the binding process. Our results capture in atomistic......Niemann-Pick Protein C2 (npc2) is a small soluble protein critical for cholesterol transport within and from the lysosome and the late endosome. Intriguingly, npc2-mediated cholesterol transport has been shown to be modulated by lipids, yet the molecular mechanism of npc2-membrane interactions has......). This mode is associated with cholesterol uptake and release. On the other hand, the second mode (Supine) places the cholesterol binding pocket away from the membrane surface, but has overall higher membrane binding affinity. We determined that bis(monoacylglycero)phosphate (bmp) is specifically required...

  11. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  12. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  13. Direct binding of retromer to human papillomavirus type 16 minor capsid protein L2 mediates endosome exit during viral infection.

    Directory of Open Access Journals (Sweden)

    Andreea Popa

    2015-02-01

    Full Text Available Trafficking of human papillomaviruses to the Golgi apparatus during virus entry requires retromer, an endosomal coat protein complex that mediates the vesicular transport of cellular transmembrane proteins from the endosome to the Golgi apparatus or the plasma membrane. Here we show that the HPV16 L2 minor capsid protein is a retromer cargo, even though L2 is not a transmembrane protein. We show that direct binding of retromer to a conserved sequence in the carboxy-terminus of L2 is required for exit of L2 from the early endosome and delivery to the trans-Golgi network during virus entry. This binding site is different from known retromer binding motifs and can be replaced by a sorting signal from a cellular retromer cargo. Thus, HPV16 is an unconventional particulate retromer cargo, and retromer binding initiates retrograde transport of viral components from the endosome to the trans-Golgi network during virus entry. We propose that the carboxy-terminal segment of L2 protein protrudes through the endosomal membrane and is accessed by retromer in the cytoplasm.

  14. Aircraft de-icer: Recycling can cut carbon emissions in half

    International Nuclear Information System (INIS)

    Johnson, Eric P.

    2012-01-01

    Flight-safety regulations in most countries require aircraft to be ice-free upon takeoff. In icy weather, this means that the aircraft usually must be de-iced (existing ice is removed) and sometimes anti-iced (to protect against ice-reformation). For both processes, aircraft typically are sprayed with an ‘antifreeze’ solution, consisting mainly of glycol diluted with water. This de/anti-icing creates an impact on the environment, of which environmental regulators have grown increasingly conscious. The US Environmental Protection Agency (EPA), for example, recently introduced stricter rules that require airports above minimum size to collect de-icing effluents and send them to wastewater treatment. De-icer collection and treatment is already done at most major airports, but a few have gone one step further: rather than putting the effluent to wastewater, they recycle it. This study examines the carbon savings that can be achieved by recycling de-icer. There are two key findings. One, recycling, as opposed to not recycling, cuts the footprint of aircraft de-icing by 40–50% — and even more, in regions where electricity-generation is cleaner. Two, recycling petrochemical-based de-icer generates a 15–30% lower footprint than using ‘bio’ de-icer without recycling. - Highlights: ► Carbon footprint of aircraft de-icing can be measured. ► Recycling aircraft de-icer cuts the footprint of aircraft de-icing by 40–50%. ► Recycling ‘fossil’ de-icer is lower carbon than not recycling ‘bio’ de-icer.

  15. An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport

    NARCIS (Netherlands)

    Jongsma, Marlieke L. M.; Berlin, Ilana; Wijdeven, Ruud H. M.; Janssen, Lennert; Janssen, George M. C.; Garstka, Malgorzata A.; Janssen, Hans; Mensink, Mark; van Veelen, Peter A.; Spaapen, Robbert M.; Neefjes, Jacques

    2016-01-01

    Through a network of progressively maturing vesicles, the endosomal system connects the cell's interior with extracellular space. Intriguingly, this network exhibits a bilateral architecture, comprised of a relatively immobile perinuclear vesicle "cloud" and a highly dynamic peripheral contingent.

  16. Analysis of occludin trafficking, demonstrating continuous endocytosis, degradation, recycling and biosynthetic secretory trafficking.

    Directory of Open Access Journals (Sweden)

    Sarah J Fletcher

    Full Text Available Tight junctions (TJs link adjacent cells and are critical for maintenance of apical-basolateral polarity in epithelial monolayers. The TJ protein occludin functions in disparate processes, including wound healing and Hepatitis C Virus infection. Little is known about steady-state occludin trafficking into and out of the plasma membrane. Therefore, we determined the mechanisms responsible for occludin turnover in confluent Madin-Darby canine kidney (MDCK epithelial monolayers. Using various biotin-based trafficking assays we observed continuous and rapid endocytosis of plasma membrane localised occludin (the majority internalised within 30 minutes. By 120 minutes a significant reduction in internalised occludin was observed. Inhibition of lysosomal function attenuated the reduction in occludin signal post-endocytosis and promoted co-localisation with the late endocytic system. Using a similar method we demonstrated that ∼20% of internalised occludin was transported back to the cell surface. Consistent with these findings, significant co-localisation between internalised occludin and recycling endosomal compartments was observed. We then quantified the extent to which occludin synthesis and transport to the plasma membrane contributes to plasma membrane occludin homeostasis, identifying inhibition of protein synthesis led to decreased plasma membrane localised occludin. Significant co-localisation between occludin and the biosynthetic secretory pathway was demonstrated. Thus, under steady-state conditions occludin undergoes turnover via a continuous cycle of endocytosis, recycling and degradation, with degradation compensated for by biosynthetic exocytic trafficking. We developed a mathematical model to describe the endocytosis, recycling and degradation of occludin, utilising experimental data to provide quantitative estimates for the rates of these processes.

  17. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    This paper is a study of the past and present recycling efforts on the Hanford site and options for future improvements in the recycling program. Until 1996, recycling goals were voluntarily set by the waste generators: this year, DOE has imposed goals for all its sites to accomplish by 1999. Hanford is presently meeting the voluntary site goals, but may not be able to meet all the new DOE goals without changes to the program. Most of these new DOE goals are recycling goals: * Reduce the generation of radioactive (low-level) waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of low-level mixed waste from routine operations 50 percent through source reduction and recycling. * Reduce the generation of hazardous waste from routine operations 50 percent through source reduction and recycling. * Recycle 33 percent of the sanitary waste from all operations. * Increase affirmative procurement of EPA-designated recycled items to 100 percent. The Hanford recycling program has made great strides-there has been a 98 percent increase in the amount of paper recycled since its inception in 1990. Hanford recycles paper, chemicals cardboard, tires, oil, batteries, rags, lead weights, fluorescent tubes, aerosol products, concrete, office furniture, computer software, drums, toner cartridges, and scrap metal. Many other items are recycled or reused by individual groups on a one time basis without a formal contract. Several contracts are closed-loop contracts which involve all parts of the recycle loop. Considerable savings are generated from recycling, and much more is possible with increased attention and improvements to this program. General methods for improving the recycling program to ensure that the new goals can be met are: a Contract and financial changes 0 Tracking database and methods improvements 0 Expanded recycling efforts. Specifically, the Hanford recycling program would be improved by: 0 Establishing one overall

  18. Pre-sorting endosomal transport of the GPI-anchored protein, CD59, is regulated by EHD1

    Czech Academy of Sciences Publication Activity Database

    Cai, B.; Katafiasz, D.; Hořejší, Václav; Naslavsky, N.

    2011-01-01

    Roč. 12, č. 1 (2011), s. 102-120 ISSN 1398-9219 Institutional research plan: CEZ:AV0Z50520514 Keywords : canine kidney cells * recycling compartment * receptor Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.919, year: 2011

  19. Augmenting the Efficacy of Immunotoxins and Other Targeted Protein Toxins by Endosomal Escape Enhancers

    Directory of Open Access Journals (Sweden)

    Hendrik Fuchs

    2016-07-01

    Full Text Available The toxic moiety of almost all protein-based targeted toxins must enter the cytosol of the target cell to mediate its fatal effect. Although more than 500 targeted toxins have been investigated in the past decades, no antibody-targeted protein toxin has been approved for tumor therapeutic applications by the authorities to date. Missing efficacy can be attributed in many cases to insufficient endosomal escape and therefore subsequent lysosomal degradation of the endocytosed toxins. To overcome this drawback, many strategies have been described to weaken the membrane integrity of endosomes. This comprises the use of lysosomotropic amines, carboxylic ionophores, calcium channel antagonists, various cell-penetrating peptides of viral, bacterial, plant, animal, human and synthetic origin, other organic molecules and light-induced techniques. Although the efficacy of the targeted toxins was typically augmented in cell culture hundred or thousand fold, in exceptional cases more than million fold, the combination of several substances harbors new problems including additional side effects, loss of target specificity, difficulties to determine the therapeutic window and cell type-dependent variations. This review critically scrutinizes the chances and challenges of endosomal escape enhancers and their potential role in future developments.

  20. Proteolytic processing of epidermal growth factor within endosomes

    International Nuclear Information System (INIS)

    Gorman, R.M.; Savage, C.R. Jr.; Poretz, R.D.; Schaudies, R.P.

    1986-01-01

    The authors have reported previously that EGF enters 3 biochemically distinct non-lysosomal intracellular compartments prior to detection within lysosomes. Earlier studies have demonstrated that EGF is processes by sequential removal of 1, 4 and 1 aminoacyl residues at the C-terminus. The final form, which lacks the 6 residues, accumulates in secondary lysosomes. After subcellular fractionation of fibroblasts exposed to 125 I-EGF, ligand is detected with 3 non-lysosomal endocytic compartments and is fully processed prior to entrance into secondary lysosome. Following internalization, EGF enters an early endosomal compartment (E 1 ). The composition of the ligand (60%, -1 form; 40%, native form) represents an enhancement of the -1 form relative to that on the plasma membrane following the 90 min, 0 0 binding period. The proportion of different EGF forms in E 1 remains constant through the 2 min pulse and chase periods up to 30 min. However, in the ultimate endosomal compartment, E 4 , the proportion of the -6 form increases from 25% at 15 min to greater than 75% in 30 min, with a concomitant decrease of the -1 and -5 forms. Secondary lysosomes contain an EGF composition similar to that found in E 4 at 30 min. Accordingly, it appears that EGF is processed to the -6 form following passage through E 1 and during its tenure in E 4

  1. The Processed Amino-Terminal Fragment of Human TLR7 Acts as a Chaperone To Direct Human TLR7 into Endosomes

    Science.gov (United States)

    Shepherd, Dawn; Booth, Sarah; Waithe, Dominic; Reis e Sousa, Caetano

    2015-01-01

    TLR7 mediates innate immune responses to viral RNA in endocytic compartments. Mouse and human (h)TLR7 undergo proteolytic cleavage, resulting in the generation of a C-terminal fragment that accumulates in endosomes and associates with the signaling adaptor MyD88 upon receptor triggering by TLR7 agonists. Although mouse TLR7 is cleaved in endosomes by acidic proteases, hTLR7 processing can occur at neutral pH throughout the secretory pathway through the activity of furin-like proprotein convertases. However, the mechanisms by which cleaved hTLR7 reaches the endosomal compartment remain unclear. In this study, we demonstrate that, after hTLR7 proteolytic processing, the liberated amino (N)-terminal fragment remains bound to the C terminus through disulfide bonds and provides key trafficking information that ensures correct delivery of the complex to endosomal compartments. In the absence of the N-terminal fragment, the C-terminal fragment is redirected to the cell surface, where it is functionally inactive. Our data reveal a novel role for the N terminus of hTLR7 as a molecular chaperone that provides processed hTLR7 with the correct targeting instructions to reach the endosomal compartment, hence ensuring its biological activity and preventing inadvertent cell surface responses to self-RNA. PMID:25917086

  2. Evaluation of the costs and benefits of recycling radioactively contaminated scrap metal

    International Nuclear Information System (INIS)

    Durman, E.C.; Tsirigotis, P.; MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is evaluating the economic and technical issues associated with the potential recycling of radioactive scrap metals (RSM). These metals, usually only slightly contaminated, originate primarily from the decommissioning and decontamination (D and D) of federal facilities, licensees of the Nuclear Regulatory Commission, and certain unlicensed industries. EPA conducted a study entitled Analysis of the Potential Recycling of Department of Energy Radioactive Scrap Metal, September 6, 1994, for the U.S. Department of Energy (DOE) to provide information and tools to DOE for assessing DOE's problem with RSM from the D and D of their sites. EPA is now initiating an evaluation of RSM recycling to support a recycling regulation. Although the study prepared for DOE will provide a useful start for the regulatory analysis, additional information must be gathered to analyze the impacts of a recycling regulation that will apply to all potential generators of RSM. This paper summarizes cost-benefit issues related to an RSM recycling regulatory analysis, including: the quantity of potentially recyclable contaminated metals; costs of disposal at federal and private waste repositories; all potential environmental, health, and safety, and market impacts; and the potential for adverse effects on radio-sensitive industries. (author)

  3. A voltage-gated calcium channel regulates lysosomal fusion with endosomes and autophagosomes and is required for neuronal homeostasis.

    Directory of Open Access Journals (Sweden)

    Xuejun Tian

    2015-03-01

    Full Text Available Autophagy helps deliver sequestered intracellular cargo to lysosomes for proteolytic degradation and thereby maintains cellular homeostasis by preventing accumulation of toxic substances in cells. In a forward mosaic screen in Drosophila designed to identify genes required for neuronal function and maintenance, we identified multiple cacophony (cac mutant alleles. They exhibit an age-dependent accumulation of autophagic vacuoles (AVs in photoreceptor terminals and eventually a degeneration of the terminals and surrounding glia. cac encodes an α1 subunit of a Drosophila voltage-gated calcium channel (VGCC that is required for synaptic vesicle fusion with the plasma membrane and neurotransmitter release. Here, we show that cac mutant photoreceptor terminals accumulate AV-lysosomal fusion intermediates, suggesting that Cac is necessary for the fusion of AVs with lysosomes, a poorly defined process. Loss of another subunit of the VGCC, α2δ or straightjacket (stj, causes phenotypes very similar to those caused by the loss of cac, indicating that the VGCC is required for AV-lysosomal fusion. The role of VGCC in AV-lysosomal fusion is evolutionarily conserved, as the loss of the mouse homologues, Cacna1a and Cacna2d2, also leads to autophagic defects in mice. Moreover, we find that CACNA1A is localized to the lysosomes and that loss of lysosomal Cacna1a in cerebellar cultured neurons leads to a failure of lysosomes to fuse with endosomes and autophagosomes. Finally, we show that the lysosomal CACNA1A but not the plasma-membrane resident CACNA1A is required for lysosomal fusion. In summary, we present a model in which the VGCC plays a role in autophagy by regulating the fusion of AVs with lysosomes through its calcium channel activity and hence functions in maintaining neuronal homeostasis.

  4. Strategic guidance based on the concept of cleaner production to improve the ship recycling industry

    NARCIS (Netherlands)

    Jain, K.P.; Pruijn, J.F.J.; Hopman, J.J.

    2017-01-01

    The implementation of international ship recycling regulations and international standards of health, safety and environment on a ship recycling yard improves environmental protection, occupational health and safety of the workers. However, it results in increased costs of the ship recycling

  5. Chemical Shift Assignments of the C-terminal Eps15 Homology Domain-3 EH Domain*

    Science.gov (United States)

    Caplan, Steve; Sorgen, Paul L.

    2013-01-01

    The C-terminal Eps15 homology (EH) domain 3 (EHD3) belongs to a eukaryotic family of endocytic regulatory proteins and is involved in the recycling of various receptors from the early endosome to the endocytic recycling compartment or in retrograde transport from the endosomes to the Golgi. EH domains are highly conserved in the EHD family and function as protein-protein interaction units that bind to Asn-Pro-Phe (NPF) motif-containing proteins. The EH domain of EHD1 was the first C-terminal EH domain from the EHD family to be solved by NMR. The differences observed between this domain and proteins with N-terminal EH domains helped describe a mechanism for the differential binding of NPF-containing proteins. Here, structural studies were expanded to include the EHD3 EH domain. While the EHD1 and EHD3 EH domains are highly homologous, they have different protein partners. A comparison of these structures will help determine the selectivity in protein binding between the EHD family members and lead to a better understanding of their unique roles in endocytic regulation. PMID:23754701

  6. Decoupling Internalization, Acidification and Phagosmal-Endosomal/Iysosomal Phagocytosis of Internalin A coated Beads in epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, C D; Woo, Y; Thomas, C; Shen, N; Sulchek, T A; Hiddessen, A L

    2008-12-22

    Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established, and in several cases, it was treated as a one-step process. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells, such as epithelial cells. Therefore, in this study, we developed a simple and novel method to decouple and accurately measure particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK) and Caco-2 epithelial cells. Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA), a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated internalization. We achieved independent measurements of the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads) with antibody quenching, pH sensitive dyes and endosomal/lysosomal dyes, as follows: the rate of InlA bead internalization was measured via antibody quenching of a pH independent dye (Alexa488) conjugated to InlA-beads, the rate at which phagosomes containing internalized InlA beads became acidified was measured using a pH dependent dye (FITC) conjugated to the beads and the rate of phagosomal-endosomal/lysosomal fusion was measured using a combination of unlabeled InlA-beads and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we also exploited the phagosomal acidification

  7. Ceramide-induced TCR up-regulation

    DEFF Research Database (Denmark)

    Menné, C; Lauritsen, Jens Peter Holst; Dietrich, J

    2000-01-01

    to increase T cell responsiveness. The purpose of this study was to identify and characterize potential pathways for TCR up-regulation. We found that ceramide affected TCR recycling dynamics and induced TCR up-regulation in a concentration- and time-dependent manner. Experiments applying phosphatase......The TCR is a constitutively recycling receptor meaning that a constant fraction of TCR from the plasma membrane is transported inside the cell at the same time as a constant fraction of TCR from the intracellular pool is transported to the plasma membrane. TCR recycling is affected by protein...... kinase C activity. Thus, an increase in protein kinase C activity affects TCR recycling kinetics leading to a new TCR equilibrium with a reduced level of TCR expressed at the T cell surface. Down-regulation of TCR expression compromises T cell activation. Conversely, TCR up-regulation is expected...

  8. Emulsified industrial oils recycling

    Energy Technology Data Exchange (ETDEWEB)

    Gabris, T.

    1982-04-01

    The industrial lubricant market has been analyzed with emphasis on current and/or developing recycling and re-refining technologies. This task has been performed for the United States and other industrialized countries, specifically France, West Germany, Italy and Japan. Attention has been focused at emulsion-type fluids regardless of the industrial application involved. It was found that emulsion-type fluids in the United States represent a much higher percentage of the total fluids used than in other industrialized countries. While recycling is an active matter explored by the industry, re-refining is rather a result of other issues than the mere fact that oil can be regenerated from a used industrial emulsion. To extend the longevity of an emulsion is a logical step to keep expenses down by using the emulsion as long as possible. There is, however, another important factor influencing this issue: regulations governing the disposal of such fluids. The ecological question, the respect for nature and the natural balances, is often seen now as everybody's task. Regulations forbid dumping used emulsions in the environment without prior treatment of the water phase and separation of the oil phase. This is a costly procedure, so recycling is attractive since it postpones the problem. It is questionable whether re-refining of these emulsions - as a business - could stand on its own if these emulsions did not have to be taken apart for disposal purposes. Once the emulsion is separated into a water and an oil phase, however, re-refining of the oil does become economical.

  9. Environmental, health, and safety issues of sodium-sulfur batteries for electric and hybrid vehicles. Volume 2, Battery recycling and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Corbus, D

    1992-09-01

    Recycling and disposal of spent sodium-sulfur (Na/S) batteries are important issues that must be addressed as part of the commercialization process of Na/S battery-powered electric vehicles. The use of Na/S batteries in electric vehicles will result in significant environmental benefits, and the disposal of spent batteries should not detract from those benefits. In the United States, waste disposal is regulated under the Resource Conservation and Recovery Act (RCRA). Understanding these regulations will help in selecting recycling and disposal processes for Na/S batteries that are environmentally acceptable and cost effective. Treatment processes for spent Na/S battery wastes are in the beginning stages of development, so a final evaluation of the impact of RCRA regulations on these treatment processes is not possible. The objectives of tills report on battery recycling and disposal are as follows: Provide an overview of RCRA regulations and requirements as they apply to Na/S battery recycling and disposal so that battery developers can understand what is required of them to comply with these regulations; Analyze existing RCRA regulations for recycling and disposal and anticipated trends in these regulations and perform a preliminary regulatory analysis for potential battery disposal and recycling processes. This report assumes that long-term Na/S battery disposal processes will be capable of handling large quantities of spent batteries. The term disposal includes treatment processes that may incorporate recycling of battery constituents. The environmental regulations analyzed in this report are limited to US regulations. This report gives an overview of RCRA and discusses RCRA regulations governing Na/S battery disposal and a preliminary regulatory analysis for Na/S battery disposal.

  10. Solo/Trio8, a membrane-associated short isoform of Trio, modulates endosome dynamics and neurite elongation.

    Science.gov (United States)

    Sun, Ying-Jie; Nishikawa, Kaori; Yuda, Hideki; Wang, Yu-Lai; Osaka, Hitoshi; Fukazawa, Nobuna; Naito, Akira; Kudo, Yoshihisa; Wada, Keiji; Aoki, Shunsuke

    2006-09-01

    With DNA microarrays, we identified a gene, termed Solo, that is downregulated in the cerebellum of Purkinje cell degeneration mutant mice. Solo is a mouse homologue of rat Trio8-one of multiple Trio isoforms recently identified in rat brain. Solo/Trio8 contains N-terminal sec14-like and spectrin-like repeat domains followed by a single guanine nucleotide exchange factor 1 (GEF1) domain, but it lacks the C-terminal GEF2, immunoglobulin-like, and kinase domains that are typical of Trio. Solo/Trio8 is predominantly expressed in Purkinje neurons of the mouse brain, and expression begins following birth and increases during Purkinje neuron maturation. We identified a novel C-terminal membrane-anchoring domain in Solo/Trio8 that is required for enhanced green fluorescent protein-Solo/Trio8 localization to early endosomes (positive for both early-endosome antigen 1 [EEA1] and Rab5) in COS-7 cells and primary cultured neurons. Solo/Trio8 overexpression in COS-7 cells augmented the EEA1-positive early-endosome pool, and this effect was abolished via mutation and inactivation of the GEF domain or deletion of the C-terminal membrane-anchoring domain. Moreover, primary cultured neurons transfected with Solo/Trio8 showed increased neurite elongation that was dependent on these domains. These results suggest that Solo/Trio8 acts as an early-endosome-specific upstream activator of Rho family GTPases for neurite elongation of developing Purkinje neurons.

  11. Protecting groundwater resources at biosolids recycling sites.

    Science.gov (United States)

    McFarland, Michael J; Kumarasamy, Karthik; Brobst, Robert B; Hais, Alan; Schmitz, Mark D

    2013-01-01

    In developing the national biosolids recycling rule (Title 40 of the Code of Federal Regulation Part 503 or Part 503), the USEPA conducted deterministic risk assessments whose results indicated that the probability of groundwater impairment associated with biosolids recycling was insignificant. Unfortunately, the computational capabilities available for performing risk assessments of pollutant fate and transport at that time were limited. Using recent advances in USEPA risk assessment methodology, the present study evaluates whether the current national biosolids pollutant limits remain protective of groundwater quality. To take advantage of new risk assessment approaches, a computer-based groundwater risk characterization screening tool (RCST) was developed using USEPA's Multimedia, Multi-pathway, Multi-receptor Exposure and Risk Assessment program. The RCST, which generates a noncarcinogenic human health risk estimate (i.e., hazard quotient [HQ] value), has the ability to conduct screening-level risk characterizations. The regulated heavy metals modeled in this study were As, Cd, Ni, Se, and Zn. Results from RCST application to biosolids recycling sites located in Yakima County, Washington, indicated that biosolids could be recycled at rates as high as 90 Mg ha, with no negative human health effects associated with groundwater consumption. Only under unrealistically high biosolids land application rates were public health risks characterized as significant (HQ ≥ 1.0). For example, by increasing the biosolids application rate and pollutant concentrations to 900 Mg ha and 10 times the regulatory limit, respectively, the HQ values varied from 1.4 (Zn) to 324.0 (Se). Since promulgation of Part 503, no verifiable cases of groundwater contamination by regulated biosolids pollutants have been reported. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  12. ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments.

    Science.gov (United States)

    Wu, Yu; Pons, Valérie; Goudet, Amélie; Panigai, Laetitia; Fischer, Annette; Herweg, Jo-Ana; Kali, Sabrina; Davey, Robert A; Laporte, Jérôme; Bouclier, Céline; Yousfi, Rahima; Aubenque, Céline; Merer, Goulven; Gobbo, Emilie; Lopez, Roman; Gillet, Cynthia; Cojean, Sandrine; Popoff, Michel R; Clayette, Pascal; Le Grand, Roger; Boulogne, Claire; Tordo, Noël; Lemichez, Emmanuel; Loiseau, Philippe M; Rudel, Thomas; Sauvaire, Didier; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien

    2017-11-14

    Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.

  13. From wastewater to fertilisers--Technical overview and critical review of European legislation governing phosphorus recycling.

    Science.gov (United States)

    Hukari, Sirja; Hermann, Ludwig; Nättorp, Anders

    2016-01-15

    The present paper is based on an analysis of the EU legislation regulating phosphorus recovery and recycling from wastewater stream, in particular as fertiliser. To recover phosphorus, operators need to deal with market regulations, health and environment protection laws. Often, several permits and lengthy authorisation processes for both installation (e.g. environmental impact assessment) and the recovered phosphorus (e.g. End-of-Waste, REACH) are required. Exemptions to certain registration processes for recoverers are in place but rarely applied. National solutions are often needed. Emerging recovery and recycling sectors are affected by legislation in different ways: Wastewater treatment plants are obliged to remove phosphorus but may also recover it in low quantities for operational reasons. Permit processes allowing recovery and recycling operations next to water purification should thus be rationalised. In contrast, the fertiliser industry relies on legal quality requirements, ensuring their market reputation. For start-ups, raw-material sourcing and related legislation will be the key. Phosphorus recycling is governed by fragmented decision-making in regional administrations. Active regulatory support, such as recycling obligation or subsidies, is lacking. Legislation harmonisation, inclusion of recycled phosphorus in existing fertiliser regulations and support of new operators would speed up market penetration of novel technologies, reduce phosphorus losses and safeguard European quality standards.

  14. The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells

    Science.gov (United States)

    Cerny, Alexander C.; Altendorfer, André; Schopf, Krystina; Baltner, Karla; Maag, Nathalie; Sehn, Elisabeth; Wolfrum, Uwe; Huber, Armin

    2015-01-01

    Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP) and TRP-like (TRPL) and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1) and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14), which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L) in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3)P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14 P75L mutant. The ttd14 P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14 P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane. PMID:26509977

  15. The GTP- and Phospholipid-Binding Protein TTD14 Regulates Trafficking of the TRPL Ion Channel in Drosophila Photoreceptor Cells.

    Directory of Open Access Journals (Sweden)

    Alexander C Cerny

    2015-10-01

    Full Text Available Recycling of signaling proteins is a common phenomenon in diverse signaling pathways. In photoreceptors of Drosophila, light absorption by rhodopsin triggers a phospholipase Cβ-mediated opening of the ion channels transient receptor potential (TRP and TRP-like (TRPL and generates the visual response. The signaling proteins are located in a plasma membrane compartment called rhabdomere. The major rhodopsin (Rh1 and TRP are predominantly localized in the rhabdomere in light and darkness. In contrast, TRPL translocates between the rhabdomeral plasma membrane in the dark and a storage compartment in the cell body in the light, from where it can be recycled to the plasma membrane upon subsequent dark adaptation. Here, we identified the gene mutated in trpl translocation defective 14 (ttd14, which is required for both TRPL internalization from the rhabdomere in the light and recycling of TRPL back to the rhabdomere in the dark. TTD14 is highly conserved in invertebrates and binds GTP in vitro. The ttd14 mutation alters a conserved proline residue (P75L in the GTP-binding domain and abolishes binding to GTP. This indicates that GTP binding is essential for TTD14 function. TTD14 is a cytosolic protein and binds to PtdIns(3P, a lipid enriched in early endosome membranes, and to phosphatidic acid. In contrast to TRPL, rhabdomeral localization of the membrane proteins Rh1 and TRP is not affected in the ttd14P75L mutant. The ttd14P75L mutation results in Rh1-independent photoreceptor degeneration and larval lethality suggesting that other processes are also affected by the ttd14P75L mutation. In conclusion, TTD14 is a novel regulator of TRPL trafficking, involved in internalization and subsequent sorting of TRPL into the recycling pathway that enables this ion channel to return to the plasma membrane.

  16. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease.

    Science.gov (United States)

    Nixon, Ralph A

    2017-07-01

    Abnormalities of the endosomal-lysosomal network (ELN) are a signature feature of Alzheimer's disease (AD). These include the earliest known cytopathology that is specific to AD and that affects endosomes and induces the progressive failure of lysosomes, each of which are directly linked by distinct mechanisms to neurodegeneration. The origins of ELN dysfunction and β-amyloidogenesis closely overlap, which reflects their common genetic basis, the established early involvement of endosomes and lysosomes in amyloid precursor protein (APP) processing and clearance, and the pathologic effect of certain APP metabolites on ELN functions. Genes that promote β-amyloidogenesis in AD (APP, PSEN1/2, and APOE4) have primary effects on ELN function. The importance of primary ELN dysfunction to pathogenesis is underscored by the mutations in more than 35 ELN-related genes that, thus far, are known to cause familial neurodegenerative diseases even though different pathogenic proteins may be involved. In this article, I discuss growing evidence that implicates AD gene-driven ELN disruptions as not only the antecedent pathobiology that underlies β-amyloidogenesis but also as the essential partner with APP and its metabolites that drive the development of AD, including tauopathy, synaptic dysfunction, and neurodegeneration. The striking amelioration of diverse deficits in animal AD models by remediating ELN dysfunction further supports a need to integrate APP and ELN relationships, including the role of amyloid-β, into a broader conceptual framework of how AD arises, progresses, and may be effectively therapeutically targeted.-Nixon, R. A. Amyloid precursor protein and endosomal-lysosomal dysfunction in Alzheimer's disease: inseparable partners in a multifactorial disease. © FASEB.

  17. Altered neurological function in mice immunized with early endosome antigen 1

    Directory of Open Access Journals (Sweden)

    Fritzler Marvin J

    2004-01-01

    Full Text Available Abstract Background Autoantibodies directed against the 160 kDa endosome protein early endosome antigen 1 (EEA1 are seen in patients with neurological diseases. To determine if antibodies to EEA1 have a neuropathological effect, mice from three major histocompatability haplotype backgrounds (H2q, H2b and H2d were immunized with EEA1 (amino acids 82–1411 that was previously shown to contain the target EEA1 epitopes. The mice were then subjected to five neuro-behavioural tests: grid walking, forelimb strength, open field, reaching and rotarod. Results The immunized SWR/J mice with sustained anti-EEA1 antibodies had significantly reduced forelimb strength than the control non-immune mice of the same strain, and BALB/CJ immune mice demonstrated significantly more forelimb errors on the grid walk test than the control group. Conclusions Antibodies to recombinant EEA1 in mice may mediate neurological deficits that are consistent with clinical features of some humans that spontaneously develop anti-EEA1 autoantibodies.

  18. A-RAF kinase functions in ARF6 regulated endocytic membrane traffic.

    Directory of Open Access Journals (Sweden)

    Elena Nekhoroshkova

    Full Text Available BACKGROUND: RAF kinases direct ERK MAPK signaling to distinct subcellular compartments in response to growth factor stimulation. METHODOLOGY/PRINCIPAL FINDINGS: Of the three mammalian isoforms A-RAF is special in that one of its two lipid binding domains mediates a unique pattern of membrane localization. Specific membrane binding is retained by an N-terminal fragment (AR149 that corresponds to a naturally occurring splice variant termed DA-RAF2. AR149 colocalizes with ARF6 on tubular endosomes and has a dominant negative effect on endocytic trafficking. Moreover actin polymerization of yeast and mammalian cells is abolished. AR149/DA-RAF2 does not affect the internalization step of endocytosis, but trafficking to the recycling compartment. CONCLUSIONS/SIGNIFICANCE: A-RAF induced ERK activation is required for this step by activating ARF6, as A-RAF depletion or inhibition of the A-RAF controlled MEK-ERK cascade blocks recycling. These data led to a new model for A-RAF function in endocytic trafficking.

  19. Mercury recycling in the United States in 2000

    Science.gov (United States)

    Brooks, William E.; Matos, Grecia R.

    2005-01-01

    Reclamation and recycling of mercury from used mercury- containing products and treatment of byproduct mercury from gold mining is vital to the continued, though declining, use of this metal. Mercury is reclaimed from mercury-containing waste by treatment in multistep high-temperature retorts-the mercury is volatized and then condensed for purification and sale. Some mercury-containing waste, however, may be landfilled, and landfilled material represents loss of a recyclable resource and a threat to the environment. Related issues include mercury disposal and waste management, toxicity and human health, and regulation of mercury releases in the environment. End-users of mercury-containing products may face fines and prosecution if these products are improperly recycled or not recycled. Local and State environmental regulations require adherence to the Resource Conservation and Recovery Act and the Comprehensive Environmental Response, Compensation, and Liability Act to regulate generation, treatment, and disposal of mercury-containing products. In the United States, several large companies and a number of smaller companies collect these products from a variety of sources and then reclaim and recycle the mercury. Because mercury has not been mined as a principal product in the United States since 1992, mercury reclamation from fabricated products has become the main source of mercury. Principal product mercury and byproduct mercury from mining operations are considered to be primary materials. Mercury may also be obtained as a byproduct from domestic or foreign gold-processing operations. In the early 1990s, U.S. manufacturers used an annual average that ranged from 500 to 600 metric tons of recycled and imported mercury for fabrication of automobile convenience switches, dental amalgam, fluorescent lamps, medical uses and thermometers, and thermostats. The amount now used for fabrication is estimated to be 200 metric tons per year or less. Much of the data on

  20. Optimizing of the recycling of contaminated concrete debris. Final report

    International Nuclear Information System (INIS)

    Kloeckner, J.; Rasch, H.; Schloesser, K.H.; Schon, T.

    1999-01-01

    1. Latest research: So far concrete debris from nuclear facilities has been free released or was treated as radioactive waste. 2. Objective: The objective of this study is to develop solutions and methods for recycling concrete debris. The amount of materials used in nuclear facilities should be limited and the contamination of new materials should be avoided. 3. Methods: The status of recycling was presented using examples of operating or completed decommissioning as well as available studies and literature. The quality requirements for the production of new concrete products using recycled materials has been discussed. The expected amounts of concrete debris for the next 12 years was estimated. For the proposed recycling examples, radiological and economic aspects have been considered. 4. Results: The production of qualified concrete products from concrete debris is possible by using modified receptions. Technical regulations to this are missing. There is no need for the utilization of large amounts of concrete debris for shielding walls. For the production of new shielding-containers for radioactive waste, concrete debris can be applied. Regarding the distance to a central recycling facility the use of mobile equipment can be economical. By using the concrete for filling the cavity or space in a final storage, it is possible to dispose the whole radioactive debris. 5. Application possibilities: The use of concrete debris as an inner concrete shielding in waste-containers today is already possible. For the manufacture of qualified concrete products by using recycling products, further developments and regulations are necessary. (orig.) [de

  1. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  2. Nuclear recycling

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This paper discusses two aspects of the economics of recycling nuclear fuel: the actual costs and savings of the recycling operation in terms of money spent, made, and saved; and the impact of the recycling on the future cost of uranium. The authors review the relevant physical and chemical processes involved in the recycling process. Recovery of uranium and plutonium is discussed. Fuel recycling in LWRs is examined and a table presents the costs of reprocessing and not reprocessing. The subject of plutonium in fast reactors is addressed. Safeguards and weapons proliferation are discussed

  3. Molecular determinants of the interaction between Doa1 and Hse1 involved in endosomal sorting.

    Science.gov (United States)

    Han, Seungsu; Shin, Donghyuk; Choi, Hoon; Lee, Sangho

    2014-03-28

    Yeast Doa1/Ufd3 is an adaptor protein for Cdc48 (p97 in mammal), an AAA type ATPase associated with endoplasmic reticulum-associated protein degradation pathway and endosomal sorting into multivesicular bodies. Doa1 functions in the endosomal sorting by its association with Hse1, a component of endosomal sorting complex required for transport (ESCRT) system. The association of Doa1 with Hse1 was previously reported to be mediated between PFU domain of Doa1 and SH3 of Hse1. However, it remains unclear which residues are specifically involved in the interaction. Here we report that Doa1/PFU interacts with Hse1/SH3 with a moderate affinity of 5 μM. Asn-438 of Doa1/PFU and Trp-254 of Hse1/SH3 are found to be critical in the interaction while Phe-434, implicated in ubiquitin binding via a hydrophobic interaction, is not. Small-angle X-ray scattering measurements combined with molecular docking and biochemical analysis yield the solution structure of the Doa1/PFU:Hse1/SH3 complex. Taken together, our results suggest that hydrogen bonding is a major determinant in the interaction of Doa1/PFU with Hse1/SH3. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules

    DEFF Research Database (Denmark)

    van Weering, Jan R.T.; Sessions, Richard B.; Traer, Colin J.

    2012-01-01

    that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective 'tip...... and organizes the tubular endosomal network....

  5. Augmented internalisation of ferroportin to late endosomes impairs iron uptake by enterocyte-like IEC-6 cells.

    Science.gov (United States)

    Oates, Phillip S; Thomas, Carla

    2005-08-01

    Absorption of iron occurs by duodenal enterocytes, involving uptake by the divalent metal transporter-1 (DMT1) and release by ferroportin. Ferroportin responds to the hepatocyte-produced 25-amino-acid-peptide hepcidin-25 by undergoing internalisation to late endosomes that impair iron release. Ferroportin is also expressed on the apical membrane of polarised Caco-2 cells, rat intestinal cells and in IEC-6 cells (an intestinal epithelial cell line). A blocking antibody to ferroportin also impairs the uptake, but not the release, of iron. In this study IEC-6 cells were used to study the mechanism of impairment or recovery from impairment produced by the blocking antibody and the fate of DMT1 and ferroportin. Uptake of 1 muM Fe(II) was studied by adding the antibody from time 0 and after adding or removing the antibody once a steady state had been reached. Surface binding, maximum iron transport rate V(max) and transporter affinity (K(m)) were measured after impairment of iron uptake. Ferroportin and DMT1 distribution were assessed by immunofluorescence microscopy. Antibody-mediated impairment, or recovery from impairment, of Fe(II) uptake occurred within minutes. Impairment was lost when the antibody was combined with the immunizing peptide. DMT1 and ferroportin undergo internalisation to late endosomes and, in the presence of the antibody, augmented internalisation of DMT1 and ferroportin caused swelling of late endosomes. Surface binding of Fe(II) and iron transport V(max) were reduced by 50%, indicating that the antibody removed membrane-bound DMT1. The ferroportin antibody induced rapid turnover of membrane ferroportin and DMT1 and its internalisation to late endosomes, resulting in impaired Fe(II) uptake.

  6. Infectious Entry Pathway of Enterovirus B Species

    Directory of Open Access Journals (Sweden)

    Varpu Marjomäki

    2015-12-01

    Full Text Available Enterovirus B species (EV-B are responsible for a vast number of mild and serious acute infections. They are also suspected of remaining in the body, where they cause persistent infections contributing to chronic diseases such as type I diabetes. Recent studies of the infectious entry pathway of these viruses revealed remarkable similarities, including non-clathrin entry of large endosomes originating from the plasma membrane invaginations. Many cellular factors regulating the efficient entry have recently been associated with macropinocytic uptake, such as Rac1, serine/threonine p21-activated kinase (Pak1, actin, Na/H exchanger, phospholipace C (PLC and protein kinase Cα (PKCα. Another characteristic feature is the entry of these viruses to neutral endosomes, independence of endosomal acidification and low association with acidic lysosomes. The biogenesis of neutral multivesicular bodies is crucial for their infection, at least for echovirus 1 (E1 and coxsackievirus A9 (CVA9. These pathways are triggered by the virus binding to their receptors on the plasma membrane, and they are not efficiently recycled like other cellular pathways used by circulating receptors. Therefore, the best “markers” of these pathways may be the viruses and often their receptors. A deeper understanding of this pathway and associated endosomes is crucial in elucidating the mechanisms of enterovirus uncoating and genome release from the endosomes to start efficient replication.

  7. Acid-sensing ion channel (ASIC) 4 predominantly localizes to an early endosome-related organelle upon heterologous expression.

    Science.gov (United States)

    Schwartz, Verena; Friedrich, Katharina; Polleichtner, Georg; Gründer, Stefan

    2015-12-15

    Acid-sensing ion channels (ASICs) are voltage-independent proton-gated amiloride sensitive sodium channels, belonging to the DEG/ENaC gene family. Six different ASICs have been identified (ASIC1a, ASIC1b, ASIC2a, ASIC2b, ASIC3, ASIC4) that are activated by a drop in extracellular pH, either as homo- or heteromers. An exception is ASIC4, which is not activated by protons as a homomer and which does not contribute to functional heteromeric ASICs. Insensitivity of ASIC4 to protons and its comparatively low sequence identity to other ASICs (45%) raises the question whether ASIC4 may have different functions than other ASICs. In this study, we therefore investigated the subcellular localization of ASIC4 in heterologous cell lines, which revealed a surprising accumulation of the channel in early endosome-related vacuoles. Moreover, we identified an unique amino-terminal motif as important for forward-trafficking from the ER/Golgi to the early endosome-related compartment. Collectively, our results show that heterologously expressed ASIC4 predominantly resides in an intracellular endosomal compartment.

  8. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  9. Unconventional recycling

    Energy Technology Data Exchange (ETDEWEB)

    White, K.M.

    1996-05-01

    Despite advances made in recycling technology and markets for materials over the past few years, recycling at convention centers, particularly on the show floor itself, can be a vexing problem. Part of the problem lies in the fact that recycling at convention centers has more to do with logistics than it does with these industry trends. However, given the varied nature of convention centers, and the shows they book, a rigid approach to recycling at convention centers is not always feasible. Like the numerous different curbside programs serving communities across the country, what works for one convention center--and one show--many not work for another. These difficulties notwithstanding, more convention centers are offering recycling programs today, and more groups booking conventions these days have begun requesting recycling services.

  10. REGULATED VESICULAR TRAFFICKING OF SPECIFIC PCDH15 AND VLGR1 VARIANTS IN AUDITORY HAIR CELLS

    Science.gov (United States)

    Zallocchi, Marisa; Delimont, Duane; Meehan, Daniel T.; Cosgrove, Dominic

    2012-01-01

    Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal co-localization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular sub-pools. The apically trafficked pool co-localized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associates with membrane microdomains and SNAP25. Moreover, co-immunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions. PMID:23035094

  11. Structure and Function of Vps15 in the Endosomal G Protein Signaling Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Heenan, Erin J.; Vanhooke, Janeen L.; Temple, Brenda R.; Betts, Laurie; Sondek, John E.; Dohlman, Henrik G.; (UNC)

    2009-09-11

    G protein-coupled receptors mediate cellular responses to a wide variety of stimuli, including taste, light, and neurotransmitters. In the yeast Saccharomyces cerevisiae, activation of the pheromone pathway triggers events leading to mating. The view had long been held that the G protein-mediated signal occurs principally at the plasma membrane. Recently, it has been shown that the G protein {alpha} subunit Gpa1 can promote signaling at endosomes and requires two components of the sole phosphatidylinositol-3-kinase in yeast, Vps15 and Vps34. Vps15 contains multiple WD repeats and also binds to Gpa1 preferentially in the GDP-bound state; these observations led us to hypothesize that Vps15 may function as a G protein {beta} subunit at the endosome. Here we show an X-ray crystal structure of the Vps15 WD domain that reveals a seven-bladed propeller resembling that of typical G{beta} subunits. We show further that the WD domain is sufficient to bind Gpa1 as well as to Atg14, a potential G{gamma} protein that exists in a complex with Vps15. The Vps15 kinase domain together with the intermediate domain (linking the kinase and WD domains) also contributes to Gpa1 binding and is necessary for Vps15 to sustain G protein signaling. These findings reveal that the Vps15 G{beta}-like domain serves as a scaffold to assemble Gpa1 and Atg14, whereas the kinase and intermediate domains are required for proper signaling at the endosome.

  12. Recycling Lesson Plan

    Science.gov (United States)

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  13. Recycling of radioactively contaminated materials: Public policy issues

    International Nuclear Information System (INIS)

    Hocking, E.K.

    1994-01-01

    Recycling radioactively contaminated materials requires varying degrees of interaction among Federal regulatory agencies such as the Nuclear Regulatory Commission (NRC) and the Environmental Protection Agency (EPA), State governments and regulators, the public, and the Department of Energy. The actions of any of these parties can elicit reactions from the other parties and will raise issues that must be addressed in order to achieve a coherent policy on recycling. The paper discusses potential actions and reactions of Federal regulatory agencies (defined as NRC and EPA), the States, and the Department and the policy issues they raise

  14. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... detrimental to their recycling. Finally, a material flow analysis (MFA) approach revealed the potential for accumulation and spreading of contaminants in material recycling, on the example of the European paper cycle. Assessment of potential mitigation measures indicated that prevention of chemical use...

  15. Membrane raft association is a determinant of plasma membrane localization.

    Science.gov (United States)

    Diaz-Rohrer, Blanca B; Levental, Kandice R; Simons, Kai; Levental, Ilya

    2014-06-10

    The lipid raft hypothesis proposes lateral domains driven by preferential interactions between sterols, sphingolipids, and specific proteins as a central mechanism for the regulation of membrane structure and function; however, experimental limitations in defining raft composition and properties have prevented unequivocal demonstration of their functional relevance. Here, we establish a quantitative, functional relationship between raft association and subcellular protein sorting. By systematic mutation of the transmembrane and juxtamembrane domains of a model transmembrane protein, linker for activation of T-cells (LAT), we generated a panel of variants possessing a range of raft affinities. These mutations revealed palmitoylation, transmembrane domain length, and transmembrane sequence to be critical determinants of membrane raft association. Moreover, plasma membrane (PM) localization was strictly dependent on raft partitioning across the entire panel of unrelated mutants, suggesting that raft association is necessary and sufficient for PM sorting of LAT. Abrogation of raft partitioning led to mistargeting to late endosomes/lysosomes because of a failure to recycle from early endosomes. These findings identify structural determinants of raft association and validate lipid-driven domain formation as a mechanism for endosomal protein sorting.

  16. Leishmania donovani resides in modified early endosomes by upregulating Rab5a expression via the downregulation of miR-494

    Science.gov (United States)

    Verma, Jitender Kumar; Rastogi, Ruchir

    2017-01-01

    Several intracellular pathogens arrest the phagosome maturation in the host cells to avoid transport to lysosomes. In contrast, the Leishmania containing parasitophorous vacuole (PV) is shown to recruit lysosomal markers and thus Leishmania is postulated to be residing in the phagolysosomes in macrophages. Here, we report that Leishmania donovani specifically upregulates the expression of Rab5a by degrading c-Jun via their metalloprotease gp63 to downregulate the expression of miR-494 in THP-1 differentiated human macrophages. Our results also show that miR-494 negatively regulates the expression of Rab5a in cells. Subsequently, L. donovani recruits and retains Rab5a and EEA1 on PV to reside in early endosomes and inhibits transport to lysosomes in human macrophages. Similarly, we have also observed that Leishmania PV also recruits Rab5a by upregulating its expression in human PBMC differentiated macrophages. However, the parasite modulates the endosome by recruiting Lamp1 and inactive pro-CathepsinD on PV via the overexpression of Rab5a in infected cells. Furthermore, siRNA knockdown of Rab5a or overexpression of miR-494 in human macrophages significantly inhibits the survival of the parasites. These results provide the first mechanistic insights of parasite-mediated remodeling of endo-lysosomal trafficking to reside in a specialized early endocytic compartment. PMID:28650977

  17. Role of the AP-5 adaptor protein complex in late endosome-to-Golgi retrieval.

    Directory of Open Access Journals (Sweden)

    Jennifer Hirst

    2018-01-01

    Full Text Available The AP-5 adaptor protein complex is presumed to function in membrane traffic, but so far nothing is known about its pathway or its cargo. We have used CRISPR-Cas9 to knock out the AP-5 ζ subunit gene, AP5Z1, in HeLa cells, and then analysed the phenotype by subcellular fractionation profiling and quantitative mass spectrometry. The retromer complex had an altered steady-state distribution in the knockout cells, and several Golgi proteins, including GOLIM4 and GOLM1, were depleted from vesicle-enriched fractions. Immunolocalisation showed that loss of AP-5 led to impaired retrieval of the cation-independent mannose 6-phosphate receptor (CIMPR, GOLIM4, and GOLM1 from endosomes back to the Golgi region. Knocking down the retromer complex exacerbated this phenotype. Both the CIMPR and sortilin interacted with the AP-5-associated protein SPG15 in pull-down assays, and we propose that sortilin may act as a link between Golgi proteins and the AP-5/SPG11/SPG15 complex. Together, our findings suggest that AP-5 functions in a novel sorting step out of late endosomes, acting as a backup pathway for retromer. This provides a mechanistic explanation for why mutations in AP-5/SPG11/SPG15 cause cells to accumulate aberrant endolysosomes, and highlights the role of endosome/lysosome dysfunction in the pathology of hereditary spastic paraplegia and other neurodegenerative disorders.

  18. Membrane fusion by VAMP3 and plasma membrane t-SNAREs

    International Nuclear Information System (INIS)

    Hu Chuan; Hardee, Deborah; Minnear, Fred

    2007-01-01

    Pairing of SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins on vesicles (v-SNAREs) and SNARE proteins on target membranes (t-SNAREs) mediates intracellular membrane fusion. VAMP3/cellubrevin is a v-SNARE that resides in recycling endosomes and endosome-derived transport vesicles. VAMP3 has been implicated in recycling of transferrin receptors, secretion of α-granules in platelets, and membrane trafficking during cell migration. Using a cell fusion assay, we examined membrane fusion capacity of the ternary complexes formed by VAMP3 and plasma membrane t-SNAREs syntaxin1, syntaxin4, SNAP-23 and SNAP-25. VAMP3 forms fusogenic pairing with t-SNARE complexes syntaxin1/SNAP-25, syntaxin1/SNAP-23 and syntaxin4/SNAP-25, but not with syntaxin4/SNAP-23. Deletion of the N-terminal domain of syntaxin4 enhanced membrane fusion more than two fold, indicating that the N-terminal domain negatively regulates membrane fusion. Differential membrane fusion capacities of the ternary v-/t-SNARE complexes suggest that transport vesicles containing VAMP3 have distinct membrane fusion kinetics with domains of the plasma membrane that present different t-SNARE proteins

  19. Ebola Viral Glycoprotein Bound to Its Endosomal Receptor Niemann-Pick C1.

    Science.gov (United States)

    Wang, Han; Shi, Yi; Song, Jian; Qi, Jianxun; Lu, Guangwen; Yan, Jinghua; Gao, George F

    2016-01-14

    Filoviruses, including Ebola and Marburg, cause fatal hemorrhagic fever in humans and primates. Understanding how these viruses enter host cells could help to develop effective therapeutics. An endosomal protein, Niemann-Pick C1 (NPC1), has been identified as a necessary entry receptor for this process, and priming of the viral glycoprotein (GP) to a fusion-competent state is a prerequisite for NPC1 binding. Here, we have determined the crystal structure of the primed GP (GPcl) of Ebola virus bound to domain C of NPC1 (NPC1-C) at a resolution of 2.3 Å. NPC1-C utilizes two protruding loops to engage a hydrophobic cavity on head of GPcl. Upon enzymatic cleavage and NPC1-C binding, conformational change in the GPcl further affects the state of the internal fusion loop, triggering membrane fusion. Our data therefore provide structural insights into filovirus entry in the late endosome and the molecular basis for design of therapeutic inhibitors of viral entry. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Producer responsibility and recycling solar photovoltaic modules

    International Nuclear Information System (INIS)

    McDonald, N.C.; Pearce, J.M.

    2010-01-01

    Rapid expansion of the solar photovoltaic (PV) industry is quickly causing solar to play a growing importance in the energy mix of the world. Over the full life cycle, although to a smaller degree than traditional energy sources, PV also creates solid waste. This paper examines the potential need for PV recycling policies by analyzing existing recycling protocols for the five major types of commercialized PV materials. The amount of recoverable semiconductor material and glass in a 1 m 2 area solar module for the five types of cells is quantified both physically and the profit potential of recycling is determined. The cost of landfill disposal of the whole solar module, including the glass and semiconductor was also determined for each type of solar module. It was found that the economic motivation to recycle most PV modules is unfavorable without appropriate policies. Results are discussed on the need to regulate for appropriate energy and environmental policy in the PV manufacturing industry particularly for PV containing hazardous materials. The results demonstrate the need to encourage producer responsibility not only in the PV manufacturing sector but also in the entire energy industry.

  1. Vps33B is required for delivery of endocytosed cargo to lysosomes

    NARCIS (Netherlands)

    Galmes, Romain; ten Brink, Corlinda; Oorschot, Viola; Veenendaal, Tineke; Jonker, Caspar; van der Sluijs, Peter; Klumperman, Judith

    2015-01-01

    In mammalian cells Vps33B forms a complex with VIPAS-39 that is recruited to recycling endosomes. Here we show that when Vps33B is expressed together with Rab7-interacting lysosomal protein (RILP) it is recruited to late endosomes-lysosomes and that depletion of Vps33B impairs late

  2. Marine shale and the Hazwaste recycling debate

    International Nuclear Information System (INIS)

    Bishop, J.

    1988-01-01

    This paper reports that Marine Shale Processors, Inc. (St. Rose, La.), and the Hazardous Waste Treatment Council (Washington, D.C.), an industry trade association, are at the focus of a controversy whose resolution has significant implications for the respective definitions, concepts and legal statuses of hazardous-waste incineration and recycling. Marine Shale Processors (MSP) claims it recycles hazardous wastes from a variety of government and commercial sources by blending it and treating it thermally in a large rotary kiln to produce non-hazardous aggregate material, which is sold for construction, road-building or other purposes. The Hazardous Waste Treatment Council (HWTC) and others allege that, under the provisions of the Resource Conservation and Recovery Act (RCRA), MSP is operating an unpermitted hazardous-waste incinerator. According to HWTC officials, MSP's identification as a recycler is inappropriate and has allowed the company unfairly to avoid permitting costs and formal compliance with RCRA standards and regulations. Recently, the Louisiana legislature passed laws declaring that hazardous-waste recyclers in the state must meet the same standards as permitted hazardous-waste incinerators. At press time, a hearing before the Louisiana Department of Environmental Quality to determine MSP's status as a recycler under the new laws was set for Sept. 29. Since all parties in the debate over Marine Shale's industry role appear to agree that the controversy is central to the emerging issue of establishing clear distinctions between recycling and hazardous-waste destruction, this article describes the arguments on both sides as these stood in mid-September

  3. Decoupling internalization, acidification and phagosomal-endosomal/lysosomal fusion during phagocytosis of InlA coated beads in epithelial cells.

    Directory of Open Access Journals (Sweden)

    Craig D Blanchette

    Full Text Available BACKGROUND: Phagocytosis has been extensively examined in 'professional' phagocytic cells using pH sensitive dyes. However, in many of the previous studies, a separation between the end of internalization, beginning of acidification and completion of phagosomal-endosomal/lysosomal fusion was not clearly established. In addition, very little work has been done to systematically examine phagosomal maturation in 'non-professional' phagocytic cells. Therefore, in this study, we developed a simple method to measure and decouple particle internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in Madin-Darby Canine Kidney (MDCK and Caco-2 epithelial cells. METHODOLOGY/PRINCIPAL FINDINGS: Our method was developed using a pathogen mimetic system consisting of polystyrene beads coated with Internalin A (InlA, a membrane surface protein from Listeria monocytogenes known to trigger receptor-mediated phagocytosis. We were able to independently measure the rates of internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion in epithelial cells by combining the InlA-coated beads (InlA-beads with antibody quenching, a pH sensitive dye and an endosomal/lysosomal dye. By performing these independent measurements under identical experimental conditions, we were able to decouple the three processes and establish time scales for each. In a separate set of experiments, we exploited the phagosomal acidification process to demonstrate an additional, real-time method for tracking bead binding, internalization and phagosomal acidification. CONCLUSIONS/SIGNIFICANCE: Using this method, we found that the time scales for internalization, phagosomal acidification and phagosomal-endosomal/lysosomal fusion ranged from 23-32 min, 3-4 min and 74-120 min, respectively, for MDCK and Caco-2 epithelial cells. Both the static and real-time methods developed here are expected to be readily and broadly applicable, as they simply

  4. Simulation analysis of globally integrated logistics and recycling strategies

    Energy Technology Data Exchange (ETDEWEB)

    Song, S.J.; Hiroshi, K. [Hiroshima Inst. of Tech., Graduate School of Mechanical Systems Engineering, Dept. of In formation and Intelligent Systems Engineering, Hiroshima (Japan)

    2004-07-01

    This paper focuses on the optimal analysis of world-wide recycling activities associated with managing the logistics and production activities in global manufacturing whose activities stretch across national boundaries. Globally integrated logistics and recycling strategies consist of the home country and two free trading economic blocs, NAFTA and ASEAN, where significant differences are found in production and disassembly cost, tax rates, local content rules and regulations. Moreover an optimal analysis of globally integrated value-chain was developed by applying simulation optimization technique as a decision-making tool. The simulation model was developed and analyzed by using ProModel packages, and the results help to identify some of the appropriate conditions required to make well-performed logistics and recycling plans in world-wide collaborated manufacturing environment. (orig.)

  5. Agonist-induced down-regulation of endogenous protein kinase c α through an endolysosomal mechanism.

    Science.gov (United States)

    Lum, Michelle A; Pundt, Krista E; Paluch, Benjamin E; Black, Adrian R; Black, Jennifer D

    2013-05-03

    Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.

  6. Open-loop recycling: A LCA case study of PET bottle-to-fibre-recycling

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling

  7. Ligand-induced internalization of neurotensin in transfected COS-7 cells: differential intracellular trafficking of ligand and receptor.

    Science.gov (United States)

    Vandenbulcke, F; Nouel, D; Vincent, J P; Mazella, J; Beaudet, A

    2000-09-01

    The neuropeptide neurotensin (NT) is known to be internalized in a receptor-mediated fashion into its target cells. To gain insight into the mechanisms underlying this process, we monitored in parallel the migration of the NT1 neurotensin receptor subtype and a fluorescent analog of NT (fluo-NT) in COS-7 cells transfected with a tagged NT1 construct. Fluo-NT internalization was prevented by hypertonic sucrose, potassium depletion and cytosol acidification, demonstrating that it proceeded via clathrin-coated pits. Within 0-30 minutes, fluo-NT accumulated together with its receptor in Acridine Orange-positive, acidic organelles. These organelles concentrated transferrin and immunostained positively for rab 5A, therefore they were early endosomes. After 30-45 minutes, the ligand and its receptor no longer colocalized. Fluo-NT was first found in rab 7-positive late endosomes and later in a nonacidic juxtanuclear compartment identified as the Trans-Golgi Network (TGN) by virtue of its staining for syntaxin 6. This juxtanuclear compartment also stained positively for rab 7 and for the TGN/pericentriolar recycling endosome marker rab 11, suggesting that the ligand could have been recruited to the TGN from either late or recycling endosomes. By that time, internalized receptors were detected in Lamp-1-immunoreactive lysosomes. These results demonstrate that neurotensin/NT1 receptor complexes follow a recycling cycle that is unique among the G protein-coupled receptors studied to date, and provide the first evidence for the targeting of a nonendogenous protein from endosomes to the TGN.

  8. Modeling the signaling endosome hypothesis: Why a drive to the nucleus is better than a (random walk

    Directory of Open Access Journals (Sweden)

    Howe Charles L

    2005-10-01

    Full Text Available Abstract Background Information transfer from the plasma membrane to the nucleus is a universal cell biological property. Such information is generally encoded in the form of post-translationally modified protein messengers. Textbook signaling models typically depend upon the diffusion of molecular signals from the site of initiation at the plasma membrane to the site of effector function within the nucleus. However, such models fail to consider several critical constraints placed upon diffusion by the cellular milieu, including the likelihood of signal termination by dephosphorylation. In contrast, signaling associated with retrogradely transported membrane-bounded organelles such as endosomes provides a dephosphorylation-resistant mechanism for the vectorial transmission of molecular signals. We explore the relative efficiencies of signal diffusion versus retrograde transport of signaling endosomes. Results Using large-scale Monte Carlo simulations of diffusing STAT-3 molecules coupled with probabilistic modeling of dephosphorylation kinetics we found that predicted theoretical measures of STAT-3 diffusion likely overestimate the effective range of this signal. Compared to the inherently nucleus-directed movement of retrogradely transported signaling endosomes, diffusion of STAT-3 becomes less efficient at information transfer in spatial domains greater than 200 nanometers from the plasma membrane. Conclusion Our model suggests that cells might utilize two distinct information transmission paradigms: 1 fast local signaling via diffusion over spatial domains on the order of less than 200 nanometers; 2 long-distance signaling via information packets associated with the cytoskeletal transport apparatus. Our model supports previous observations suggesting that the signaling endosome hypothesis is a subset of a more general hypothesis that the most efficient mechanism for intracellular signaling-at-a-distance involves the association of signaling

  9. Vps33B is required for delivery of endocytosed cargo to lysosomes.

    Science.gov (United States)

    Galmes, Romain; ten Brink, Corlinda; Oorschot, Viola; Veenendaal, Tineke; Jonker, Caspar; van der Sluijs, Peter; Klumperman, Judith

    2015-12-01

    Lysosomes are the main degradative compartments of eukaryotic cells. The CORVET and HOPS tethering complexes are well known for their role in membrane fusion in the yeast endocytic pathway. Yeast Vps33p is part of both complexes, and has two mammalian homologues: Vps33A and Vps33B. Vps33B is required for recycling of apical proteins in polarized cells and a causative gene for ARC syndrome. Here, we investigate whether Vps33B is also required in the degradative pathway. By fluorescence and electron microscopy we show that Vps33B depletion in HeLa cells leads to significantly increased numbers of late endosomes that together with lysosomes accumulate in the perinuclear region. Degradation of endocytosed cargo is impaired in these cells. By electron microscopy we show that endocytosed BSA-gold reaches late endosomes, but is decreased in lysosomes. The increase in late endosome numbers and the lack of internalized cargo in lysosomes are indicative for a defect in late endosomal-lysosomal fusion events, which explains the observed decrease in cargo degradation. A corresponding phenotype was found after Vps33A knock down, which in addition also resulted in decreased lysosome numbers. We conclude that Vps33B, in addition to its role in endosomal recycling, is required for late endosomal-lysosomal fusion events. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Scrap uranium recycling via electron beam melting

    International Nuclear Information System (INIS)

    McKoon, R.

    1993-11-01

    A program is underway at the Lawrence Livermore National Laboratory (LLNL) to recycle scrap uranium metal. Currently, much of the material from forging and machining processes is considered radioactive waste and is disposed of by oxidation and encapsulation at significant cost. In the recycling process, uranium and uranium alloys in various forms will be processed by electron beam melting and continuously cast into ingots meeting applicable specifications for virgin material. Existing vacuum processing facilities at LLNL are in compliance with all current federal and state environmental, safety and health regulations for the electron beam melting and vaporization of uranium metal. One of these facilities has been retrofitted with an auxiliary electron beam gun system, water-cooled hearth, crucible and ingot puller to create an electron beam melt furnace. In this furnace, basic process R ampersand D on uranium recycling will be performed with the goal of eventual transfer of this technology to a production facility

  11. On the prevailing construction waste recycling practices: a South East Queensland study.

    Science.gov (United States)

    Tam, Vivian W Y; Kotrayothar, Duangthidar; Loo, Yew-Chaye

    2009-03-01

    Waste generated from construction and building demolition work constitutes about 68% of all solid waste generated each year in South East Queensland. Consequently, it has created a serious waste management problem. The State Governments of Victoria and New South Wales have been encouraging the use of recycled materials from construction and related waste; they have also promulgated specifications for their use. In Queensland, however, similar regulations are not anticipated in the near future, which explains the lack of funded research conducted in this important arena. This paper presents an evaluation of the prevailing waste recycling practices in Queensland. Nine sites were visited, including two construction sites, three demolition sites, three recycling plants and one landfill in South East Queensland. The difficulties encountered by the recycling programme operators and their associates at these sites are described and the benefits of recycling construction materials are presented. One of the major barriers is that the local councils disallow the use of recycled materials in new construction work. To help rectify these impediments to recycling, recommendations are given to increase the use of recycled construction waste in South East Queensland.

  12. Introduction on the recycling of spent and disused radioactive sources

    International Nuclear Information System (INIS)

    Zhao Mingqiang; Zang Ruihua

    2011-01-01

    It is not only a stress of environment safety, but also a waste of huge resources to send directly to store spent and disused radioactive sources. This article reviews some important aspects of management suggestions recommended by IAEA and requirements of regulations in China for disposing the spent and disused radioactive sources. The present condition and benefit of recycling spent and disused sources are analyzed. Some suggestions on carrying out recycling in China are put forward too. (authors)

  13. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  14. Disposing and recycling waste printed circuit boards: disconnecting, resource recovery, and pollution control.

    Science.gov (United States)

    Wang, Jianbo; Xu, Zhenming

    2015-01-20

    Over the past decades, China has been suffering from negative environmental impacts from distempered e-waste recycling activities. After a decade of effort, disassembly and raw materials recycling of environmentally friendly e-waste have been realized in specialized companies, in China, and law enforcement for illegal activities of e-waste recycling has also been made more and more strict. So up to now, the e-waste recycling in China should be developed toward more depth and refinement to promote industrial production of e-waste resource recovery. Waste printed circuit boards (WPCBs), which are the most complex, hazardous, and valuable components of e-waste, are selected as one typical example in this article that reviews the status of related regulations and technologies of WPCBs recycling, then optimizes, and integrates the proper approaches in existence, while the bottlenecks in the WPCBs recycling system are analyzed, and some preliminary experiments of pinch technologies are also conducted. Finally, in order to provide directional guidance for future development of WPCBs recycling, some key points in the WPCBs recycling system are proposed to point towards a future trend in the e-waste recycling industry.

  15. Exosomes derived from human macrophages suppress endothelial cell migration by controlling integrin trafficking.

    Science.gov (United States)

    Lee, Hee Doo; Kim, Yeon Hyang; Kim, Doo-Sik

    2014-04-01

    Integrin trafficking, including internalization, recycling, and lysosomal degradation, is crucial for the regulation of cellular functions. Exosomes, nano-sized extracellular vesicles, are believed to play important roles in intercellular communications. This study demonstrates that exosomes released from human macrophages negatively regulate endothelial cell migration through control of integrin trafficking. Macrophage-derived exosomes promote internalization of integrin β1 in primary HUVECs. The internalized integrin β1 persistently accumulates in the perinuclear region and is not recycled back to the plasma membrane. Experimental results indicate that macrophage-derived exosomes stimulate trafficking of internalized integrin β1 to lysosomal compartments with a corresponding decrease in the integrin destined for recycling endosomes, resulting in proteolytic degradation of the integrin. Moreover, ubiquitination of HUVEC integrin β1 is enhanced by the exosomes, and exosome-mediated integrin degradation is blocked by bafilomycin A, a lysosomal degradation inhibitor. Macrophage-derived exosomes were also shown to effectively suppress collagen-induced activation of the mitogen-activated protein kinase/extracellular signal-regulated kinase signaling pathway and HUVEC migration, which are both dependent on integrin β1. These observations provide new insight into the functional significance of exosomes in the regulation of integrin trafficking. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Recycling strategy of the end-of-life rolling stock in China

    Science.gov (United States)

    Guo, L.; Wang, X. W.; Lin, Y.; Shen, X. F.; Liu, Y. Q.

    2018-03-01

    China's high-speed railway industry is growing fast, the side effect is that plenty of rolling stock come to the end of life each year. However, there are not relevant standards nor regulations for the recycling of rolling stock in China, which causes pollution and a waste of resources. In this paper, the basic meaning and characteristics of the circular economy is reviewed and applied to the rolling stock industry. The recycling steps are elaborated in detail according to the characteristics of rolling stock. The result proves that circular economy has both the theoretical and practical meaning in the rolling stock recycling industry in China.

  17. Involvement of Gβγ subunits of Gi protein coupled with S1P receptor on multivesicular endosomes in F-actin formation and cargo sorting into exosomes.

    Science.gov (United States)

    Kajimoto, Taketoshi; Mohamed, Nesma Nabil Ibrahim; Badawy, Shaymaa Mohamed Mohamed; Matovelo, Shubi Ambwene; Hirase, Mitsuhiro; Nakamura, Shunsuke; Yoshida, Daisuke; Okada, Taro; Ijuin, Takeshi; Nakamura, Shun-Ichi

    2018-01-05

    Exosomes play a critical role in cell-to-cell communication by delivering cargo molecules to recipient cells. However, the mechanism underlying the generation of the exosomal multivesicular endosome (MVE) is one of the mysteries in the field of endosome research. Although sphingolipid metabolites such as ceramide and sphingosine 1-phosphate (S1P) are known to play important roles in MVE formation and maturation, the detailed molecular mechanisms are still unclear. Here, we show that Rho family GTPases, including Cdc42 and Rac1, are constitutively activated on exosomal MVEs and are regulated by S1P signaling as measured by fluorescence resonance energy transfer (FRET)-based conformational changes. Moreover, we detected S1P signaling-induced filamentous actin (F-actin) formation. A selective inhibitor of Gβγ subunits, M119, strongly inhibited both F-actin formation on MVEs and cargo sorting into exosomal intralumenal vesicles of MVEs, both of which were fully rescued by the simultaneous expression of constitutively active Cdc42 and Rac1. Our results shed light on the mechanism underlying exosomal MVE maturation and inform the understanding of the physiological relevance of continuous activation of the S1P receptor and subsequent downstream G protein signaling to Gβγ subunits/Rho family GTPases-regulated F-actin formation on MVEs for cargo sorting into exosomal intralumenal vesicles. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The ArfGAP2/3 Glo3 and ergosterol collaborate in transport of a subset of cargoes

    Directory of Open Access Journals (Sweden)

    Alejandro F. Estrada

    2015-07-01

    Full Text Available Proteins reach the plasma membrane through the secretory pathway in which the trans Golgi network (TGN acts as a sorting station. Transport from the TGN to the plasma membrane is maintained by a number of different pathways that act either directly or via the endosomal system. Here we show that a subset of cargoes depends on the ArfGAP2/3 Glo3 and ergosterol to maintain their proper localization at the plasma membrane. While interfering with neither ArfGAP2/3 activity nor ergosterol biosynthesis individually significantly altered plasma membrane localization of the tryptophan transporter Tat2, the general amino acid permease Gap1 and the v-SNARE Snc1, in a Δglo3 Δerg3 strain those proteins accumulated in internal endosomal structures. Export from the TGN to the plasma membrane and recycling from early endosomes appeared unaffected as the chitin synthase Chs3 that travels along these routes was localized normally. Our data indicate that a subset of proteins can reach the plasma membrane efficiently but after endocytosis becomes trapped in endosomal structures. Our study supports a role for ArfGAP2/3 in recycling from endosomes and in transport to the vacuole/lysosome.

  19. TRPML3.

    Science.gov (United States)

    Grimm, Christian; Barthmes, Maria; Wahl-Schott, Christian

    2014-01-01

    TRPML3 belongs to the MCOLN (TRPML) subfamily of transient receptor potential (TRP) channels comprising three genes in mammals. Since the discovery of the pain sensing, capsaicin- and heat-activated vanilloid receptor (TRPV1), TRP channels have been found to be involved in regulating almost all kinds of our sensory modalities. Thus, TRP channel members are sensitive to heat or cold; they are involved in pain or osmosensation, vision, hearing, or taste sensation. Loss or mutation of TRPML1 can cause retina degeneration and eventually blindness in mice and men (mucolipidosis type IV). Gain-of-function mutations in TRPML3 cause deafness and circling behavior in mice. A special feature of TRPML channels is their intracellular expression. They mostly reside in membranes of organelles of the endolysosomal system such as early and late endosomes, recycling endosomes, lysosomes, or lysosome-related organelles. Although the physiological roles of TRPML channels within the endolysosomal system are far from being fully understood, it is speculated that they are involved in the regulation of endolysosomal pH, fusion/fission processes, trafficking, autophagy, and/or (hormone) secretion and exocytosis.

  20. Effective photo-enhancement of cellular activity of fluorophore-octaarginine antisense PNA conjugates correlates with singlet oxygen formation, endosomal escape and chromophore lipophilicity

    DEFF Research Database (Denmark)

    Yarani, Reza; Shiraishi, Takehiko; Nielsen, Peter E.

    2018-01-01

    Photochemical internalization (PCI) is a cellular drug delivery method based on the generation of light-induced reactive oxygen species (ROS) causing damage to the endosomal membrane and thereby resulting in drug release to the cytoplasm. In our study a series of antisense fluorophore octaarginin...... indicate that efficient photodynamic endosomal escape is strongly dependent on the quantum yield for photochemical singlet oxygen formation, photostability as well as the lipophilicity of the chromophore....

  1. Evaluation of filtration and distillation methods for recycling automotive coolant

    International Nuclear Information System (INIS)

    Randall, P.M.; Gavaskar, A.R.

    1992-01-01

    Government regulations and high waste disposal cost of spent automotive coolant have driven the vehicle maintenance industry to explore on-site recycling. The USEPA in cooperation with the New Jersey Department of Environmental Protection (NJDEP) and the New Jersey Department of Transportation (NJDOT) evaluated two commercially available technologies that have potential for reducing the volume of spent automotive coolant. The objective of this study was to evaluate the quality of the recycled coolant, the pollution prevention potential, and the economic feasibility of the technologies

  2. Inactive Mineral Filler as a Stiffness Modulus Regulator in Foamed Bitumen-Modified Recycled Base Layers

    Science.gov (United States)

    Buczyński, Przemyslaw; Iwański, Marek

    2017-10-01

    The article presents the results of a cold recycled mix test with a foam bitumen including the addition of the inactive mineral filler as a dust of basalt. Basalt dust was derived from dedusting system by extraction of aggregates in the mine. Assessment of the impact of a basalt dust on the properties of a recycled base layer was carried out in terms of the amount of mineral filler (basalt) in the composition of the mineral mixture. This experiment involved a dosing of mineral filler in range from 5 to 20% with steps of 7.5% in the mineral mixture composition. The foamed bitumen was performed at optimum foaming process settings (ie. bitumen temperature, air pressure) and at 2.5% of the water content. The amount of a hydraulic binder as a Portland cement was 2.0%. The evaluation of rheological properties allowed to determine whether the addition of inactive mineral fillers can act as a stiffness modulus controller in the recycled base layer. The analysis of the rheological properties of a recycled base layer in terms of the amount of inactive fillers was performed in accordance with given standard EN 12697-26 Annex D. The study was carried out according to the direct tension-compression test methodology on cylindrical samples. The sample was subjected to the oscillatory sinusoidal strain ε0 < 25με. Studies carried out at a specific temperature set-points: - 7°C, 5°C, 13°C, 25°C and 40°C and at the frequency 0.1 Hz, 0.3 Hz, 1 Hz, 3 Hz, 10 Hz and 20 Hz. The obtained results allow to conclude that the use of an inactive filler can reduce the stiffness of an appropriate designed mixes of the cold recycled foundation. In addition, the analysis of the relation E‧-E″ showed a similar behaviour of a recycled base, regardless of the amount of inactive fillers in the mix composition, at high temperatures/high frequency of induced load.

  3. Soil contamination from lead battery manufacturing and recycling in seven African countries.

    Science.gov (United States)

    Gottesfeld, Perry; Were, Faridah Hussein; Adogame, Leslie; Gharbi, Semia; San, Dalila; Nota, Manti Michael; Kuepouo, Gilbert

    2018-02-01

    Lead battery recycling is a growing hazardous industry throughout Africa. We investigated potential soil contamination inside and outside formal sector recycling plants in seven countries. We collected 118 soil samples at 15 recycling plants and one battery manufacturing site and analyzed them for total lead. Lead levels in soils ranged from battery industry in Africa continues to expand, it is expected that the number and size of lead battery recycling plants will grow to meet the forecasted demand. There is an immediate need to address ongoing exposures in surrounding communities, emissions from this industry and to regulate site closure financing procedures to ensure that we do not leave behind a legacy of lead contamination that will impact millions in communities throughout Africa. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Expanded recycling at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Betschart, J.F.; Malinauskas, L.; Burns, M.

    1996-01-01

    The Pollution Prevention Program Office has increased recycling activities, reuse, and options to reduce the solid waste streams through streamlining efforts that applied best management practices. The program has prioritized efforts based on volume and economic considerations and has greatly increased Los Alamos National Laboratory's (LANL's) recycle volumes. The Pollution Prevention Program established and chairs a Solid Waste Management Solutions Group to specifically address and solve problems in nonradioactive, Resource Conservation and Recovery Act (RCRA), state-regulated, and sanitary and industrial waste streams (henceforth referred to as sanitary waste in this paper). By identifying materials with recycling potential, identifying best management practices and pathways to return materials for reuse, and introducing the concept and practice of open-quotes asset management,open-quotes the Group will divert much of the current waste stream from disposal. This Group is developing procedures, agreements, and contracts to stage, collect, sort, segregate, transport and process materials, and is also garnering support for the program through the involvement of upper management, facility managers, and generators

  5. Safety evaluation of a conceptual fuel recycle complex

    International Nuclear Information System (INIS)

    Hodges, M.E.

    1980-01-01

    A conceptual design integration study for an integrated Fuel Recycle Complex (FRC) has been completed. A safety evaluation of the radiation shielding, fire precautions, handling of nonradioactive hazardous materials, criticality hazards, operating errors, and the influence of natural phenomena on the FRC shows that all federal regulations are met or exceeded

  6. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  7. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  8. Correlation analysis between sulphate content and leaching of sulphates in recycled aggregates from construction and demolition wastes.

    Science.gov (United States)

    Barbudo, Auxi; Galvín, Adela P; Agrela, Francisco; Ayuso, Jesús; Jiménez, Jose Ramón

    2012-06-01

    In some recycled aggregates applications, such as component of new concrete or roads, the total content of soluble sulphates should be measured and controlled. Restrictions are usually motivated by the resistance or stability of the new structure, and in most cases, structural concerns can be remedied by the use of techniques such as sulphur-resistant cements. However, environmental risk assessment from recycling and reuse construction products is often forgotten. The purpose of this study is to analyse the content of soluble sulphate on eleven recycled aggregates and six samples prepared in laboratory by the addition of different gypsum percentages. As points of reference, two natural aggregates were tested. An analysis of the content of the leachable amount of heavy metals regulated by European regulation was included. As a result, the correlation between solubility and leachability data allow suggest a limiting gypsum amount of 4.4% on recycled aggregates. This limit satisfies EU Landfill Directive criteria, which is currently used as reference by public Spanish Government for recycled aggregates in construction works. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  10. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses

    Directory of Open Access Journals (Sweden)

    Asako eUchiyama

    2014-11-01

    Full Text Available Synaptotagmins are a large gene family in animals that have been extensively characterized due to their role as calcium sensors to regulate synaptic vesicle exocytosis and endocytosis in neurons, and dense core vesicle exocytosis for hormone secretion from neuroendocrine cells. Thought to be exclusive to animals, synaptotagmins have recently been characterized in Arabidopsis thaliana, in which they comprise a five gene family. Using infectivity and leaf-based functional assays, we have shown that Arabidopsis SYTA regulates endocytosis and marks an endosomal vesicle recycling pathway to regulate movement protein-mediated trafficking of the Begomovirus Cabbage leaf curl virus (CaLCuV and the Tobamovirus Tobacco mosaic virus (TMV through plasmodesmata (Lewis and Lazarowitz, 2010. To determine whether SYTA has a central role in regulating the cell-to-cell trafficking of a wider range of diverse plant viruses, we extended our studies here to examine the role of SYTA in the cell-to-cell movement of additional plant viruses that employ different modes of movement, namely the Potyvirus Turnip mosaic virus (TuMV, the Caulimovirus Cauliflower mosaic virus (CaMV and the Tobamovirus Turnip vein clearing virus (TVCV, which in contrast to TMV does efficiently infect Arabidopsis. We found that both TuMV and TVCV systemic infection, and the cell-to-cell trafficking of the their movement proteins, were delayed in the Arabidopsis Col-0 syta-1 knockdown mutant. In contrast, CaMV systemic infection was not inhibited in syta-1. Our studies show that SYTA is a key regulator of plant virus intercellular movement, being necessary for the ability of diverse cell-to-cell movement proteins encoded by Begomoviruses (CaLCuV MP, Tobamoviruses (TVCV and TMV 30K protein and Potyviruses (TuMV P3N-PIPO to alter PD and thereby mediate virus cell-to-cell spread.

  11. 40 CFR 260.43 - Legitimate recycling of hazardous secondary materials regulated under § 260.34, § 261.2(a)(2)(ii...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Legitimate recycling of hazardous... (CONTINUED) HAZARDOUS WASTE MANAGEMENT SYSTEM: GENERAL Rulemaking Petitions § 260.43 Legitimate recycling of... demonstrate that the recycling is legitimate. Hazardous secondary material that is not legitimately recycled...

  12. A Structural Scale for the Factors of Waste Sensors and Transducers Recycling Based on Consumer Satisfaction

    Directory of Open Access Journals (Sweden)

    Ming Ke

    2014-01-01

    Full Text Available This article first introduced the research results of both domestic and foreign scholars on the factors of waste sensors and transducers recycling, and in consideration of the four main bodies in waste sensors and transducers recycling, 14 influencing indicators of waste sensors and transducers recycling are extracted. Then this paper designed a questionnaire according to the 15 indicators of waste home appliance recycling, and put it on a research website. After verification of reliability and validity of the questionnaire, this paper analyzed the influencing factors of waste sensors and transducers recycling by using SPSS 13.0. Finally this article used factor analysis method to identify the representative factors. Two factors are concluded: Factor 1 mainly represents laws and regulations of government, governmental subsidy, governmental technology support, governmental market guidance, governmental monitor and control, recycling knowledge publication by government, social responsibilities of producers and recyclers, technique disposition ability of producers and recyclers, recyclers' service, therefore it could be summarized as government and enterprise disposition capability; while Factor 2 mainly represents consumers' benefit from recycling, convenience of consumers' recycling, mental satisfaction of consumers from recycling, consumers' recycling knowledge, social recycling environment, and thus they could be summarized as consumer incentive factor. This paper would provide some references for the analysis and research on influencing factors of waste sensors and transducers recycling.

  13. Kinetic imaging of NPC1L1 and sterol trafficking between plasma membrane and recycling endosomes in hepatoma cells

    DEFF Research Database (Denmark)

    Hartwig Petersen, Nicole; Færgeman, Nils J; Yu, Liqing

    2008-01-01

    fluorescent protein (NPC1L1-EGFP) and cholesterol analogues in hepatoma cells. At steady state about 42% of NPC1L1 resided in the transferrin (Tf) positive, sterol enriched endocytic recycling compartment (ERC), while time-lapse microscopy demonstrated NPC1L1 traffic between plasma membrane and ERC...... the ERC to the plasma membrane. NPC1L1-EGFP facilitated transport of fluorescent sterols from the plasma membrane to the ERC. Insulin induced translocation of vesicles containing NPC1L1 and fluorescent sterol from the ERC to the cell membrane. Upon polarization of hepatoma cells NPC1L1 resided almost...... exclusively in the canalicular membrane, where the protein is highly mobile. Our study demonstrates dynamic trafficking of NPC1L1 between cell surface and intracellular compartments and suggests that this transport is involved in NPC1L1 mediated cellular sterol uptake....

  14. 49 CFR Appendix E to Part 512 - Consumer Assistance to Recycle and Save (CARS) Class Determinations

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Consumer Assistance to Recycle and Save (CARS) Class Determinations E Appendix E to Part 512 Transportation Other Regulations Relating to... CONFIDENTIAL BUSINESS INFORMATION Pt. 512, App. E Appendix E to Part 512—Consumer Assistance to Recycle and...

  15. Mutational analysis of the yeast TRAPP subunit Trs20p identifies roles in endocytic recycling and sporulation.

    Directory of Open Access Journals (Sweden)

    Hichem Mahfouz

    Full Text Available Trs20p is a subunit of the evolutionarily conserved TRAPP (TRAnsport Protein Particle complex that mediates various aspects of membrane trafficking. Three TRAPP complexes have been identified in yeast with roles in ER-to-Golgi trafficking, post-Golgi and endosomal-to-Golgi transport and in autophagy. The role of Trs20p, which is essential for viability and a component of all three complexes, and how it might function within each TRAPP complex, has not been clarified to date. To begin to address the role of Trs20p we generated different mutants by random mutagenesis but, surprisingly, no defects were observed in diverse anterograde transport pathways or general secretion in Trs20 temperature-sensitive mutants. Instead, mutation of Trs20 led to defects in endocytic recycling and a block in sporulation/meiosis. The phenotypes of different mutants appear to be separable suggesting that the mutations affect the function of Trs20 in different TRAPP complexes.

  16. Caveolin targeting to late endosome/lysosomal membranes is induced by perturbations of lysosomal pH and cholesterol content

    Science.gov (United States)

    Mundy, Dorothy I.; Li, Wei Ping; Luby-Phelps, Katherine; Anderson, Richard G. W.

    2012-01-01

    Caveolin-1 is an integral membrane protein of plasma membrane caveolae. Here we report that caveolin-1 collects at the cytosolic surface of lysosomal membranes when cells are serum starved. This is due to an elevation of the intralysosomal pH, since ionophores and proton pump inhibitors that dissipate the lysosomal pH gradient also trapped caveolin-1 on late endosome/lysosomes. Accumulation is both saturable and reversible. At least a portion of the caveolin-1 goes to the plasma membrane upon reversal. Several studies suggest that caveolin-1 is involved in cholesterol transport within the cell. Strikingly, we find that blocking cholesterol export from lysosomes with progesterone or U18666A or treating cells with low concentrations of cyclodextrin also caused caveolin-1 to accumulate on late endosome/lysosomal membranes. Under these conditions, however, live-cell imaging shows cavicles actively docking with lysosomes, suggesting that these structures might be involved in delivering caveolin-1. Targeting of caveolin-1 to late endosome/lysosomes is not observed normally, and the degradation rate of caveolin-1 is not altered by any of these conditions, indicating that caveolin-1 accumulation is not a consequence of blocked degradation. We conclude that caveolin-1 normally traffics to and from the cytoplasmic surface of lysosomes during intracellular cholesterol trafficking. PMID:22238363

  17. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  18. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    Science.gov (United States)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  19. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger.

    Science.gov (United States)

    Oude Blenke, E; Sleszynska, M; Evers, M J W; Storm, G; Martin, N I; Mastrobattista, E

    2017-02-15

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high membranolytic activity. However, such lytic peptides also impose a significant safety risk when applied in vivo as they often have similar activity against red blood cells and other nontarget cell membranes. Our aim is to control the membrane-disrupting capacity of these peptides in time and space by physically constraining them to a nanocarrier surface in such a way that they only become activated when delivered inside acidic endosomes. To this end, a variety of chemical approaches for the coupling of lytic peptides to liposomes via functionalized PEG-lipids were explored, including maleimide-thiol chemistry, click-chemistry, and aldehyde-hydrazide chemistry. The latter enables reversible conjugation via a hydrazone bond, allowing for release of the peptide under endosomal conditions. By carefully choosing the conjugation site and by using a pH activated analog of the melittin peptide, lytic activity toward a model membrane is completely inhibited at physiological pH. At endosomal pH the activity is restored by hydrolysis of the acid-labile hydrazone bond, releasing the peptide in its most active, free form. Furthermore, using an analogue containing a nonhydrolyzable bond as a control, it was shown that the activity observed can be completely attributed to release of the peptide, validating dynamic covalent conjugation as a suitable strategy to maintain safety during circulation.

  20. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  1. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  2. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  3. 40 CFR 261.6 - Requirements for recyclable materials.

    Science.gov (United States)

    2010-07-01

    ..., following its original use, for any purpose (including the purpose for which the oil was originally used...)) for purpose of recovery is subject to the requirements of 40 CFR part 262, subpart H, if it is subject... recycling process itself is exempt from regulation except as provided in § 261.6(d).) (2) Owners or...

  4. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  5. The study on recycle scheme of the metallic radioactive wastes (II)

    International Nuclear Information System (INIS)

    Shin, J. I.; Park, J. H.; Jung, K. J.

    2003-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  6. Endocytic recycling via the TGN underlies the polarized hyphal mode of life.

    Science.gov (United States)

    Hernández-González, Miguel; Bravo-Plaza, Ignacio; Pinar, Mario; de Los Ríos, Vivian; Arst, Herbert N; Peñalva, Miguel A

    2018-04-01

    Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central

  7. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  8. The late endosomal HOPS complex anchors active G-protein signaling essential for pathogenesis in magnaporthe oryzae.

    Directory of Open Access Journals (Sweden)

    Ravikrishna Ramanujam

    Full Text Available In Magnaporthe oryzae, the causal ascomycete of the devastating rice blast disease, the conidial germ tube tip must sense and respond to a wide array of requisite cues from the host in order to switch from polarized to isotropic growth, ultimately forming the dome-shaped infection cell known as the appressorium. Although the role for G-protein mediated Cyclic AMP signaling in appressorium formation was first identified almost two decades ago, little is known about the spatio-temporal dynamics of the cascade and how the signal is transmitted through the intracellular network during cell growth and morphogenesis. In this study, we demonstrate that the late endosomal compartments, comprising of a PI3P-rich (Phosphatidylinositol 3-phosphate highly dynamic tubulo-vesicular network, scaffold active MagA/GαS, Rgs1 (a GAP for MagA, Adenylate cyclase and Pth11 (a non-canonical GPCR in the likely absence of AKAP-like anchors during early pathogenic development in M. oryzae. Loss of HOPS component Vps39 and consequently the late endosomal function caused a disruption of adenylate cyclase localization, cAMP signaling and appressorium formation. Remarkably, exogenous cAMP rescued the appressorium formation defects associated with VPS39 deletion in M. oryzae. We propose that sequestration of key G-protein signaling components on dynamic late endosomes and/or endolysosomes, provides an effective molecular means to compartmentalize and control the spatio-temporal activation and rapid downregulation (likely via vacuolar degradation of cAMP signaling amidst changing cellular geometry during pathogenic development in M. oryzae.

  9. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry.

    Science.gov (United States)

    Tam, Vivian W Y; Tam, Leona; Le, Khoa N

    2010-02-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that "increasing overall business competitiveness and strategic business opportunities" was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while "rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations" was considered as the major benefit from Australian respondents. However, "lack of clients' support", "increase in management cost" and "increase in documentation workload, such as working documents, procedures and tools" were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, "inclusion of concrete recycling evaluation in tender appraisal" and "defining clear legal evaluation of concrete recycling" were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  10. Cross-cultural comparison of concrete recycling decision-making and implementation in construction industry

    International Nuclear Information System (INIS)

    Tam, Vivian W.Y.; Tam, Leona; Le, Khoa N.

    2010-01-01

    Waste management is pressing very hard with alarming signals in construction industry. Concrete waste constituents major proportions of construction and demolition waste of 81% in Australia. To minimize concrete waste generated from construction activities, recycling concrete waste is one of the best methods to conserve the environment. This paper investigates concrete recycling implementation in construction. Japan is a leading country in recycling concrete waste, which has been implementing 98% recycling and using it for structural concrete applications. Hong Kong is developing concrete recycling programs for high-grade applications. Australia is making relatively slow progress in implementing concrete recycling in construction. Therefore, empirical studies in Australia, Hong Kong, and Japan were selected in this paper. A questionnaire survey and structured interviews were conducted. Power spectrum was used for analysis. It was found that 'increasing overall business competitiveness and strategic business opportunities' was considered as the major benefit for concrete recycling from Hong Kong and Japanese respondents, while 'rising concrete recycling awareness such as selecting suitable resources, techniques and training and compliance with regulations' was considered as the major benefit from Australian respondents. However, 'lack of clients' support', 'increase in management cost' and 'increase in documentation workload, such as working documents, procedures and tools' were the major difficulties encountered from Australian, Hong Kong, and Japanese respondents, respectively. To improve the existing implementation, 'inclusion of concrete recycling evaluation in tender appraisal' and 'defining clear legal evaluation of concrete recycling' were major recommendations for Australian and Hong Kong, and Japanese respondents, respectively.

  11. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material

    Energy Technology Data Exchange (ETDEWEB)

    López, María del Mar Castro, E-mail: quimcl02@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Ares Pernas, Ana Isabel, E-mail: aares@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Abad López, Ma José, E-mail: mjabad@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); and others

    2014-10-15

    Keeping rheological, mechanical and thermal properties of virgin poly(ethylene terephthalate), PET, is necessary to assure the quality of second-market applications. A comparative study of these properties has been undertaken in virgin, mechanical recycled and commercial recycled PET samples. Viscoelastic characterization was carried out by rheological measurements. Mechanical properties were estimated by tensile and Charpy impact strength tests. Thermal properties and crystallinity were evaluated by differential scanning calorimetry and a deconvolution procedure was applied to study the population of the different crystals. Molecular conformational changes related to crystallinity values were studied by FTIR spectroscopy. Variations in average molecular weight were predicted from rheology. Besides, the presence-absence of linear and cyclic oligomeric species was measured by mass spectrometry techniques, as MALDI-TOF. Mechanical recycled PET undergoes a significant decline in rheological, mechanical and thermal properties upon increasing the number of reprocessing steps. This is due to the cleavage of the ester bonds with reduction in molar mass and raise in cyclic oligomeric species, in particular [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G type. Chain shortening plus enrichment in trans conformers favour the crystallization process which occurs earlier and faster with modification in crystal populations. Additional physicochemical steps are necessary to preserve the main benefits of PET. - Highlights: • Combination of multiple techniques to characterize the effects of recycling in PET. • Cleavage of ester bonds reduced viscosity, Mw, toughness in mechanical recycled PET. • Virgin, mechanical recycled and commercial recycled PET differ in crystal populations. • Cyclic oligomers [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G increase from the fourth extrusion cycle onwards.

  12. Dual recycling for GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Freise, A; Malec, M; Heinzel, G; Willke, B; Lueck, H; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer

  13. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    Science.gov (United States)

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  14. Evaluation of sites for the location of WEEE recycling plants in Spain.

    Science.gov (United States)

    Queiruga, Dolores; Walther, Grit; González-Benito, Javier; Spengler, Thomas

    2008-01-01

    As a consequence of new European legal regulations for treatment of waste electrical and electronic equipment (WEEE), recycling plants have to be installed in Spain. In this context, this contribution describes a method for ranking of Spanish municipalities according to their appropriateness for the installation of these plants. In order to rank the alternatives, the discrete multi-criteria decision method PROMETHEE (Preference Ranking Organisation METHod for Enrichment Evaluations), combined with a surveys of experts, is applied. As existing plants are located in North and East Spain, a significant concentration of top ranking municipalities can be observed in South and Central Spain. The method does not present an optimal structure of the future recycling system, but provides a selection of good alternatives for potential locations of recycling plants.

  15. Recycle Alaska: Reduce, Reuse, Recycle. Activities Handbook, Teacher's Guide, and Student Worksheets.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau.

    Recycling is a very important aspect of conserving the environment for future generations. This guide addresses the topic of litter prevention for the Alaskan environment and contains 42 activities. Activity topics covered include Natural Cycles, Human Interruption of Natural Cycles, Reduce, Reuse, Recycle and Recycled Classroom. Grade level,…

  16. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  17. The study on the overseas recycling technology of the radioactive metallic wastes

    International Nuclear Information System (INIS)

    Kim, H. R.; Jung, Y. S.; Sin, J. I.

    2002-01-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  18. Flotation separation of waste plastics for recycling-A review.

    Science.gov (United States)

    Wang, Chong-qing; Wang, Hui; Fu, Jian-gang; Liu, You-nian

    2015-07-01

    The sharp increase of plastic wastes results in great social and environmental pressures, and recycling, as an effective way currently available to reduce the negative impacts of plastic wastes, represents one of the most dynamic areas in the plastics industry today. Froth flotation is a promising method to solve the key problem of recycling process, namely separation of plastic mixtures. This review surveys recent literature on plastics flotation, focusing on specific features compared to ores flotation, strategies, methods and principles, flotation equipments, and current challenges. In terms of separation methods, plastics flotation is divided into gamma flotation, adsorption of reagents, surface modification and physical regulation. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; Van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    2016-01-01

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  20. CCC- and WASH-mediated endosomal sorting of LDLR is required for normal clearance of circulating LDL

    NARCIS (Netherlands)

    Bartuzi, Paulina; Billadeau, Daniel D.; Favier, Robert; Rong, Shunxing; Dekker, Daphne; Fedoseienko, Alina; Fieten, Hille; Wijers, Melinde; Levels, Johannes H.; Huijkman, Nicolette; Kloosterhuis, Niels; van der Molen, Henk; Brufau, Gemma; Groen, Albert K.; Elliott, Alison M.; Kuivenhoven, Jan Albert; Plecko, Barbara; Grangl, Gernot; McGaughran, Julie; Horton, Jay D.; Burstein, Ezra; Hofker, Marten H.; van de Sluis, Bart

    The low-density lipoprotein receptor (LDLR) plays a pivotal role in clearing atherogenic circulating low-density lipoprotein (LDL) cholesterol. Here we show that the COMMD/CCDC22/CCDC93 (CCC) and the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complexes are both crucial for endosomal

  1. Kinesin-3 and dynein cooperate in long-range retrograde endosome motility along a nonuniform microtubule array

    NARCIS (Netherlands)

    Schuster, M.; Kilaru, S.; Fink, G.; Collemare, J.A.R.; Roger, Y.; Steinberg, G.

    2011-01-01

    The polarity of microtubules (MTs) determines the motors for intracellular motility, with kinesins moving to plus ends and dynein to minus ends. In elongated cells of Ustilago maydis, dynein is thought to move early endosomes (EEs) toward the septum (retrograde), whereas kinesin-3 transports them to

  2. Renal type a intercalated cells contain albumin in organelles with aldosterone-regulated abundance.

    Directory of Open Access Journals (Sweden)

    Thomas Buus Jensen

    Full Text Available Albumin has been identified in preparations of renal distal tubules and collecting ducts by mass spectrometry. This study aimed to establish whether albumin was a contaminant in those studies or actually present in the tubular cells, and if so, identify the albumin containing cells and commence exploration of the origin of the intracellular albumin. In addition to the expected proximal tubular albumin immunoreactivity, albumin was localized to mouse renal type-A intercalated cells and cells in the interstitium by three anti-albumin antibodies. Albumin did not colocalize with markers for early endosomes (EEA1, late endosomes/lysosomes (cathepsin D or recycling endosomes (Rab11. Immuno-gold electron microscopy confirmed the presence of albumin-containing large spherical membrane associated bodies in the basal parts of intercalated cells. Message for albumin was detected in mouse renal cortex as well as in a wide variety of other tissues by RT-PCR, but was absent from isolated connecting tubules and cortical collecting ducts. Wild type I MDCK cells showed robust uptake of fluorescein-albumin from the basolateral side but not from the apical side when grown on permeable support. Only a subset of cells with low peanut agglutinin binding took up albumin. Albumin-aldosterone conjugates were also internalized from the basolateral side by MDCK cells. Aldosterone administration for 24 and 48 hours decreased albumin abundance in connecting tubules and cortical collecting ducts from mouse kidneys. We suggest that albumin is produced within the renal interstitium and taken up from the basolateral side by type-A intercalated cells by clathrin and dynamin independent pathways and speculate that the protein might act as a carrier of less water-soluble substances across the renal interstitium from the capillaries to the tubular cells.

  3. RAB-10-Dependent Membrane Transport Is Required for Dendrite Arborization

    Science.gov (United States)

    Zou, Wei; Yadav, Smita; DeVault, Laura; Jan, Yuh Nung; Sherwood, David R.

    2015-01-01

    Formation of elaborately branched dendrites is necessary for the proper input and connectivity of many sensory neurons. Previous studies have revealed that dendritic growth relies heavily on ER-to-Golgi transport, Golgi outposts and endocytic recycling. How new membrane and associated cargo is delivered from the secretory and endosomal compartments to sites of active dendritic growth, however, remains unknown. Using a candidate-based genetic screen in C. elegans, we have identified the small GTPase RAB-10 as a key regulator of membrane trafficking during dendrite morphogenesis. Loss of rab-10 severely reduced proximal dendritic arborization in the multi-dendritic PVD neuron. RAB-10 acts cell-autonomously in the PVD neuron and localizes to the Golgi and early endosomes. Loss of function mutations of the exocyst complex components exoc-8 and sec-8, which regulate tethering, docking and fusion of transport vesicles at the plasma membrane, also caused proximal dendritic arborization defects and led to the accumulation of intracellular RAB-10 vesicles. In rab-10 and exoc-8 mutants, the trans-membrane proteins DMA-1 and HPO-30, which promote PVD dendrite stabilization and branching, no longer localized strongly to the proximal dendritic membranes and instead were sequestered within intracellular vesicles. Together these results suggest a crucial role for the Rab10 GTPase and the exocyst complex in controlling membrane transport from the secretory and/or endosomal compartments that is required for dendritic growth. PMID:26394140

  4. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  5. The recycling and disposal of electrical and electronic waste in China-legislative and market responses

    International Nuclear Information System (INIS)

    Hicks, C.; Dietmar, R.; Eugster, M.

    2005-01-01

    The development of new legislation on collection, recycling and disposal of waste electrical and electronic equipment (WEEE) as well as the scaling-up and privatisation of the WEEE processing industry, are indications of major changes for WEEE management in China. However, China's attempts to regulate the industry and establish a financially viable, environmentally benign and safe WEEE management system are facing significant challenges. The existence of an extensive informal sector, combined with a lack of environmental awareness among WEEE collectors, recyclers and consumers, are contributing to China's difficulties in developing a financially and environmentally sound recycling and disposal system. This paper discusses the current status of WEEE recycling and disposal in China, and its impacts on the environment, human health, and the economy. It also examines the legislative and market responses to the WEEE issue, and how these will be affected by Chinese attitudes and practices towards WEEE recycling

  6. Identification of a Novel Recycling Sequence in the C-tail of FPR2/ALX Receptor

    Science.gov (United States)

    Thompson, Dawn; McArthur, Simon; Hislop, James N.; Flower, Roderick J.; Perretti, Mauro

    2014-01-01

    Formyl-peptide receptor type 2 (FPR2; also called ALX because it is the receptor for lipoxin A4) sustains a variety of biological responses relevant to the development and control of inflammation, yet the cellular regulation of this G-protein-coupled receptor remains unexplored. Here we report that, in response to peptide agonist activation, FPR2/ALX undergoes β-arrestin-mediated endocytosis followed by rapid recycling to the plasma membrane. We identify a transplantable recycling sequence that is both necessary and sufficient for efficient receptor recycling. Furthermore, removal of this C-terminal recycling sequence alters the endocytic fate of FPR2/ALX and evokes pro-apoptotic effects in response to agonist activation. This study demonstrates the importance of endocytic recycling in the anti-apoptotic properties of FPR2/ALX and identifies the molecular determinant required for modulation of this process fundamental for the control of inflammation. PMID:25326384

  7. Munc13-4 Is a Rab11-binding Protein That Regulates Rab11-positive Vesicle Trafficking and Docking at the Plasma Membrane.

    Science.gov (United States)

    Johnson, Jennifer L; He, Jing; Ramadass, Mahalakshmi; Pestonjamasp, Kersi; Kiosses, William B; Zhang, Jinzhong; Catz, Sergio D

    2016-02-12

    The small GTPase Rab11 and its effectors control trafficking of recycling endosomes, receptor replenishment and the up-regulation of adhesion and adaptor molecules at the plasma membrane. Despite recent advances in the understanding of Rab11-regulated mechanisms, the final steps mediating docking and fusion of Rab11-positive vesicles at the plasma membrane are not fully understood. Munc13-4 is a docking factor proposed to regulate fusion through interactions with SNAREs. In hematopoietic cells, including neutrophils, Munc13-4 regulates exocytosis in a Rab27a-dependent manner, but its possible regulation of other GTPases has not been explored in detail. Here, we show that Munc13-4 binds to Rab11 and regulates the trafficking of Rab11-containing vesicles. Using a novel Time-resolved Fluorescence Resonance Energy Transfer (TR-FRET) assay, we demonstrate that Munc13-4 binds to Rab11a but not to dominant negative Rab11a. Immunoprecipitation analysis confirmed the specificity of the interaction between Munc13-4 and Rab11, and super-resolution microscopy studies support the interaction of endogenous Munc13-4 with Rab11 at the single molecule level in neutrophils. Vesicular dynamic analysis shows the common spatio-temporal distribution of Munc13-4 and Rab11, while expression of a calcium binding-deficient mutant of Munc13-4 significantly affected Rab11 trafficking. Munc13-4-deficient neutrophils showed normal endocytosis, but the trafficking, up-regulation, and retention of Rab11-positive vesicles at the plasma membrane was significantly impaired. This correlated with deficient NADPH oxidase activation at the plasma membrane in response to Rab11 interference. Our data demonstrate that Munc13-4 is a Rab11-binding partner that regulates the final steps of Rab11-positive vesicle docking at the plasma membrane. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Is recycling the best policy option? Insights from life cycle analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gaines, L.L.; Stodolsky, F.

    1996-03-01

    The public perceives that the more we recycle, the better off we are. However, both the concept of recycling and the benefits to be achieved from recycling are somewhat vague. To determine the best option for disposition of a material at the end of its first use, we need to first define the available options and then clarify the possible goals that can be achieved by them. The best option will depend on the material, goals to be achieved, and location-dependent factors, such as costs, resources, and regulations. This paper presents the results of a life-cycle energy analysis of kraft paper and newsprint by Argonne National Laboratory. They indicate that under some circumstances, the option of fiber-energy recovery will maximize the benefits that can. be realized from the U.S. used paper resource.

  9. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  10. Genetic reconstitution of the human Adenovirus type 2 temperature-sensitive 1 mutant defective in endosomal escape

    Directory of Open Access Journals (Sweden)

    Gastaldelli Michele

    2009-10-01

    Full Text Available Abstract Human Adenoviruses infect the upper and lower respiratory tracts, the urinary and digestive tracts, lymphoid systems and heart, and give rise to epidemic conjunctivitis. More than 51 human serotypes have been identified to-date, and classified into 6 species A-F. The species C Adenoviruses Ad2 and Ad5 (Ad2/5 cause upper and lower respiratory disease, but how viral structure relates to the selection of particular infectious uptake pathways is not known. An adenovirus mutant, Ad2-ts1 had been isolated upon chemical mutagenesis in the past, and shown to have unprocessed capsid proteins. Ad2-ts1 fails to package the viral protease L3/p23, and Ad2-ts1 virions do not efficiently escape from endosomes. It had been suggested that the C22187T point mutation leading to the substitution of the conserved proline 137 to leucine (P137L in the L3/p23 protease was at least in part responsible for this phenotype. To clarify if the C22187T mutation is necessary and sufficient for the Ad2-ts1 phenotype, we sequenced the genes encoding the structural proteins of Ad2-ts1, and confirmed that the Ad2-ts1 DNA carries the point mutation C22187T. Introduction of C22187T to the wild-type Ad2 genome in a bacterial artificial chromosome (Ad2-BAC gave Ad2-BAC46 virions with the full Ad2-ts1 phenotype. Reversion of Ad2-BAC46 gave wild-type Ad2 particles indicating that P137L is necessary and sufficient for the Ad2-ts1 phenotype. The kinetics of Ad2-ts1 uptake into cells were comparable to Ad2 suggesting similar endocytic uptake mechanisms. Surprisingly, infectious Ad2 or Ad5 but not Ad2-ts1 uptake required CALM (clathrin assembly lymphoid myeloid protein, which controls clathrin-mediated endocytosis and membrane transport between endosomes and the trans-Golgi-network. The data show that no other mutations than P137L in the viral protease are necessary to give rise to particles that are defective in capsid processing and endosomal escape. This provides a basis for

  11. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    Science.gov (United States)

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Accumulation of dsRNA in endosomes contributes to inefficient RNA interference in the fall armyworm, Spodoptera frugiperda.

    Science.gov (United States)

    Yoon, June-Sun; Gurusamy, Dhandapani; Palli, Subba Reddy

    2017-11-01

    RNA interference (RNAi) efficiency varies among insects studied. The barriers for successful RNAi include the presence of double-stranded ribonucleases (dsRNase) in the lumen and hemolymph that could potentially digest double-stranded RNA (dsRNA) and the variability in the transport of dsRNA into and within the cells. We recently showed that the dsRNAs are transported into lepidopteran cells, but they are not processed into small interference RNAs (siRNAs) because they are trapped in acidic bodies. In the current study, we focused on the identification of acidic bodies in which dsRNAs accumulate in Sf9 cells. Time-lapse imaging studies showed that dsRNAs enter Sf9 cells and accumulate in acidic bodies within 20 min after their addition to the medium. CypHer-5E-labeled dsRNA also accumulated in the midgut and fat body dissected from Spodoptera frugiperda larvae with similar patterns observed in Sf9 cells. Pharmacological inhibitor assays showed that the dsRNAs use clathrin mediated endocytosis pathway for transport into the cells. We investigated the potential dsRNA accumulation sites employing LysoTracker and double labeling experiments using the constructs to express a fusion of green fluorescence protein with early or late endosomal marker proteins and CypHer-5E-labeled dsRNA. Interestingly, CypHer-5E-labeled dsRNA accumulated predominantly in early and late endosomes. These data suggest that entrapment of internalized dsRNA in endosomes is one of the major factors contributing to inefficient RNAi response in lepidopteran insects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  14. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  15. Project in fiscal 2000 of developing international standards for supporting new industries. Standardization of method for calculating recycling rate of automotive products; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Jidosha seihin no recycle ritsu no santei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With international standardization as a target, research has been performed for three years since fiscal 1998 on a method for calculating the recycling rate of automotive products. This paper summarizes the achievements thereof. In fiscal 1998, studies were conducted on major automobile materials, state of recycling in Japan and Europe, and trial monitoring on recycling execution rate in the dismantling and shredding stages. Despite uncertainties that remain in recycling, the importance of standardization has been affirmed. Beginning in fiscal 1999, discussions have been given on requirements for establishing the recycling possibility by means of dismantling automobiles. In the requirements for establishing thermal recycling, discussions were given, taking into account the state of legal regulations in Germany and the trial execution of the container and packaging recycling law in Japan. As a result, the standard draft for the method for calculating the recycling rate was established for automotive products, including the method for calculating the recycling possibility rate, and the requirements for establishing thermal recycling. For international standardization of the method for calculating the recycling possibility rate, discussions have begun at ISO/TC22/WG10. (NEDO)

  16. Reusing and recycling in Saskatchewan: Environmental benefits of reusing and recycling

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    After an introduction explaining the environmental benefits of reusing and recycling, as well as providing suggestions on minimizing waste and conserving energy, a directory of recyclers and handlers of various kinds of waste in Saskatchewan is presented. Names, addresses/telephone numbers, and types of materials accepted are given for recyclers of animal products, clothing or textiles, glass, compostable materials, industrial hardware, metals, office products, paper, plastic, and tires. Collection depots in the SARCAN recycling program for beverage containers are listed, giving town name, address, hours of operation, and telephone number. Receivers of waste dangerous goods are listed under the categories of ozone-depleting substances, waste batteries, solvents, lubricating oils and oil filters, paint, flammable liquids, antifreeze, drycleaning waste, and miscellaneous.

  17. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  18. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  19. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  20. Recycling carbon dioxide during xylose fermentation by engineered Saccharomyces cerevisiae

    Science.gov (United States)

    In this study, we introduced the ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and phosphoribulokinase (PRK) into an engineered S. cerevisiae (SR8) harboring the XR/XDH pathway and up-regulated PPP 10, to enable CO2 recycling through a synthetic rPPP during xylose fermentation (Fig. 1). ...

  1. Aluminium beverage can recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lewinski, A von

    1985-08-01

    Canned beverages have become a controversial issue in this era of ecological sensitivity. METALL has already discussed the problem of can recycling. The present article discusses the technical aspects of aluminium can recycling. Two further articles will follow on aluminium can recycling in North America and on the results of European pilot projects.

  2. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  3. Localization of the AP-3 adaptor complex defines a novel endosomal exit site for lysosomal membrane proteins

    NARCIS (Netherlands)

    Peden, A.A.; Oorschot, V.; Hesser, B.A.; Austin, C.D.; Scheller, R.H.; Klumperman, J.

    2004-01-01

    The adaptor protein (AP) 3 adaptor complex has been implicated in the transport of lysosomal membrane proteins, but its precise site of action has remained controversial. Here, we show by immuno-electron microscopy that AP-3 is associated with budding profiles evolving from a tubular endosomal

  4. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  5. Sustainable recycling of automotive products in China: Technology and regulation

    Science.gov (United States)

    Chen, Ming

    2006-08-01

    The Chinese economy is growing rapidly, but accompanyingsuch growth are issues of environmental protection and social inequity which must be addressed. With the Automobile Industry Development Policy and the Motor Vehicle Product Recovery Technology Policy, an automobile products recoverability target has been established and will be incorporated into an automobile products authentication management system in China. By 2010, for all end-of-life automobile products, reuse and recovery shall be increased to a minimum of 85% by average weight per vehicle, and the use of lead, mercury, cadmium, and hexavalent chromium is prohibited. This paper will address the sustainable recycling of Chinese automobile products within the period of 2006 2010.

  6. Present status of recycling waste mobile phones in China: a review.

    Science.gov (United States)

    Li, Jingying; Ge, Zhongying; Liang, Changjin; An, Ni

    2017-07-01

    A large number of waste mobile phones have already been generated and are being generated. Various countries around the world have all been positively exploring the way of recycling and reuse when facing such a large amount of waste mobile phones. In some countries, processing waste mobile phones has been forming a complete industrial chain, which can not only recycle waste mobile phones to reduce their negative influence on the environment but also turn waste into treasure to acquire economic benefits dramatically. However, the situation of recycling waste mobile phones in China is not going well. Waste mobile phones are not formally covered by existing regulations and policies for the waste electric and electronic equipment in China. In order to explore an appropriate system to recover waste mobile phones, the mobile phone production and the amount of waste mobile phones are introduced in this paper, and status of waste mobile phones recycling is described; then, the disposal technology of electronic waste that would be most likely to be used for processing of electronic waste in industrial applications in the near future is reviewed. Finally, rationalization proposals are put forward based on the current recovery status of waste mobile phones for the purpose of promoting the development of recycling waste mobile phones in developing countries with a special emphasis on China.

  7. How can a successful multi-family residential recycling programme be initiated within Baltimore City, Maryland?

    Science.gov (United States)

    Schwebel, Michael B

    2012-07-01

    Baltimore City formally began recycling in 1989 with all neighbourhoods having residential collection by 1992. Although the city of 637 000 has recycled for approximately 20 years, almost all residents in multi-family residential (MFR) housing have been and are still barred from participating at their residences. Discussions with City officials and residents have verified this antiquated policy of exclusion within MFR housing. Yet, the policy is still observed by the Department of Public Works even though the updated single-stream Code states that the 'Director of Public Works must collect all. . .recyclable materials. . .from all dwellings, including multiple-family dwellings'. The purpose of this study's is to provide policies, regulations, and recommendations for implementing requisite MFR recycling within Baltimore City. The study's methodology follows a case study approach by examining three cities in the United States that currently mandate MFR recycling: Chicago, Illinois; Boston, Massachusetts; and Arlington, Virginia. Post-analysis suggests that while some cities' MFR programmes perform poorly, each city's strengths aid in creating specific proposals that can produce a successful MFR recycling program in Baltimore City. These tenets of a future MFR recycling program form the basis of a successful MFR recycling program that will allow all city residents to participate via initiatives in the categories of both programme, accessibility, and informing and self-review.

  8. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  9. The small G protein Arl5 contributes to endosome-to-Golgi traffic by aiding the recruitment of the GARP complex to the Golgi

    Directory of Open Access Journals (Sweden)

    Cláudia Rosa-Ferreira

    2015-03-01

    Full Text Available The small G proteins of the Arf family play critical roles in membrane trafficking and cytoskeleton organization. However, the function of some members of the family remains poorly understood including Arl5 which is widely conserved in eukaryotes. Humans have two closely related Arl5 paralogues (Arl5a and Arl5b, and both Arl5a and Arl5b localize to the trans-Golgi with Arl5b being involved in retrograde traffic from endosomes to the Golgi apparatus. To investigate the function of Arl5, we have used Drosophila melanogaster as a model system. We find that the single Arl5 orthologue in Drosophila also localizes to the trans-Golgi, but flies lacking the Arl5 gene are viable and fertile. By using both liposome and column based affinity chromatography methods we find that Arl5 interacts with the Golgi-associated retrograde protein (GARP complex that acts in the tethering of vesicles moving from endosomes to the trans-Golgi network (TGN. In Drosophila tissues the GARP complex is partially displaced from the Golgi when Arl5 is absent, and the late endosomal compartment is enlarged. In addition, in HeLa cells GARP also becomes cytosolic upon depletion of Arl5b. These phenotypes are consistent with a role in endosome-to-Golgi traffic, but are less severe than loss of GARP itself. Thus it appears that Arl5 is one of the factors that directs the recruitment of the GARP complex to the trans-Golgi, and this function is conserved in both flies and humans.

  10. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  11. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  12. The Vici Syndrome Protein EPG5 Is a Rab7 Effector that Determines the Fusion Specificity of Autophagosomes with Late Endosomes/Lysosomes.

    Science.gov (United States)

    Wang, Zheng; Miao, Guangyan; Xue, Xue; Guo, Xiangyang; Yuan, Chongzhen; Wang, Zhaoyu; Zhang, Gangming; Chen, Yingyu; Feng, Du; Hu, Junjie; Zhang, Hong

    2016-09-01

    Mutations in the human autophagy gene EPG5 cause the multisystem disorder Vici syndrome. Here we demonstrated that EPG5 is a Rab7 effector that determines the fusion specificity of autophagosomes with late endosomes/lysosomes. EPG5 is recruited to late endosomes/lysosomes by direct interaction with Rab7 and the late endosomal/lysosomal R-SNARE VAMP7/8. EPG5 also binds to LC3/LGG-1 (mammalian and C. elegans Atg8 homolog, respectively) and to assembled STX17-SNAP29 Qabc SNARE complexes on autophagosomes. EPG5 stabilizes and facilitates the assembly of STX17-SNAP29-VAMP7/8 trans-SNARE complexes, and promotes STX17-SNAP29-VAMP7-mediated fusion of reconstituted proteoliposomes. Loss of EPG5 activity causes abnormal fusion of autophagosomes with various endocytic vesicles, in part due to elevated assembly of STX17-SNAP25-VAMP8 complexes. SNAP25 knockdown partially suppresses the autophagy defect caused by EPG5 depletion. Our study reveals that EPG5 is a Rab7 effector involved in autophagosome maturation, providing insight into the molecular mechanism underlying Vici syndrome. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  14. Nuclear reactor recyclation device

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Chuma, Kazuto

    1987-01-01

    Purpose: To prevent the unevenness for the coolant flow rate even when abnormality occurs to one of recycling pumps. Constitution: A plurality of jet pumps disposed at an interval around the reactor core are divided circumferentially into two sets, and a pipeway is disposed to the outside of each pair including recycling pumps corresponding to each of the sets. The pipeway is connected to the recycling inlet of the jet pump by way of a manifold. The discharge portion of the recycling pumps of the loop pipeway are connected with each other by way of communication pipes, and a normally closed valve is disposed to the communication pipe and the normally closed valve of the communication pipe is opened upon detecting abnormality for one of the recycling pumps. Thus, if either one of the pair of recycling pumps shows abnormal state, coolants flows from the other of pipeway to the outside of the loop pipeway and coolants are supplied from all the jet pumps to the reactor core portion and, accordingly, the not-uniform flow rate can be prevented to eliminate undesired effect on the reactor core. (Kamimura, M.)

  15. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  16. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities.

    Science.gov (United States)

    Gräf, Christian; Thüring, André; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman

    2013-03-11

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

  17. Recycling boosts profits and saves resources

    Energy Technology Data Exchange (ETDEWEB)

    Searle, D

    1980-05-01

    Current government regulations in the United Kingdom designed to protect the environment are discussed with regard to commercial wastes. It is pointed out that increasing cost and scarcity of raw materials, coupled with the stringent anti-dumping regulations, has made the recycling of waste economically viable. Energy from waste projects are discussed as well as processes for the reclaiming of organic solvents (e.g. point and printing ink manufacturers). Recovery of ammonia, wash solvents, industrial oils and chlorinated solvents are described briefly. The Bioenergy process for the treatment of effluents from brewing, food, and general distilling industry is discussed. Separation of solid from liquid is possible in a few days and a methane-rich fuel gas is obtained. The shredding and rubber recovery from tires is mentioned briefly. (MJJ)

  18. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease

    DEFF Research Database (Denmark)

    Kovács, Gábor G; Gelpi, Ellen; Ströbel, Thomas

    2007-01-01

    The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes...... correlate with regional pathology. Overloading of this system might impair the function of lysosomal enzymes and thus may mimic some features of lysosomal storage disorders. Udgivelsesdato: 2007-Jul...

  19. Nuclear recycling: costs, savings, and safeguards

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses the economics, physical and chemical processes, and safety of nuclear fuel recycling. The spent fuel must be chemically reprocessed in order to recover uranium and plutonium. Topics considered include indifference costs, recycling in light water reactors (LWRs), plutonium in fast reactors, the choice between recycling and storage, safeguards, and weapons proliferation. It is shown that the economics of recycling nuclear fuel involves the actual costs and savings of the recycling operation in terms of money spent, made, and saved, and the impact of the recycling on the future cost of uranium

  20. Intrinsically disordered region of influenza A NP regulates viral genome packaging via interactions with viral RNA and host PI(4,5)P2.

    Science.gov (United States)

    Kakisaka, Michinori; Yamada, Kazunori; Yamaji-Hasegawa, Akiko; Kobayashi, Toshihide; Aida, Yoko

    2016-09-01

    To be incorporated into progeny virions, the viral genome must be transported to the inner leaflet of the plasma membrane (PM) and accumulate there. Some viruses utilize lipid components to assemble at the PM. For example, simian virus 40 (SV40) targets the ganglioside GM1 and human immunodeficiency virus type 1 (HIV-1) utilizes phosphatidylinositol (4,5) bisphosphate [PI(4,5)P2]. Recent studies clearly indicate that Rab11-mediated recycling endosomes are required for influenza A virus (IAV) trafficking of vRNPs to the PM but it remains unclear how IAV vRNP localized or accumulate underneath the PM for viral genome incorporation into progeny virions. In this study, we found that the second intrinsically disordered region (IDR2) of NP regulates two binding steps involved in viral genome packaging. First, IDR2 facilitates NP oligomer binding to viral RNA to form vRNP. Secondly, vRNP assemble by interacting with PI(4,5)P2 at the PM via IDR2. These findings suggest that PI(4,5)P2 functions as the determinant of vRNP accumulation at the PM. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Syndecan-4 Phosphorylation Is a Control Point for Integrin Recycling

    Science.gov (United States)

    Morgan, Mark R.; Hamidi, Hellyeh; Bass, Mark D.; Warwood, Stacey; Ballestrem, Christoph; Humphries, Martin J.

    2013-01-01

    Summary Precise spatiotemporal coordination of integrin adhesion complex dynamics is essential for efficient cell migration. For cells adherent to fibronectin, differential engagement of α5β1 and αVβ3 integrins is used to elicit changes in adhesion complex stability, mechanosensation, matrix assembly, and migration, but the mechanisms responsible for receptor regulation have remained largely obscure. We identify phosphorylation of the membrane-intercalated proteoglycan syndecan-4 as an essential switch controlling integrin recycling. Src phosphorylates syndecan-4 and, by driving syntenin binding, leads to suppression of Arf6 activity and recycling of αVβ3 to the plasma membrane at the expense of α5β1. The resultant elevation in αVβ3 engagement promotes stabilization of focal adhesions. Conversely, abrogation of syndecan-4 phosphorylation drives surface expression of α5β1, destabilizes adhesion complexes, and disrupts cell migration. These data identify the dynamic spatiotemporal regulation of Src-mediated syndecan-4 phosphorylation as an essential switch controlling integrin trafficking and adhesion dynamics to promote efficient cell migration. PMID:23453597

  2. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  3. Assessment of opportunities to increase the recovery and recycling rates of waste oils

    Energy Technology Data Exchange (ETDEWEB)

    Graziano, D.J.; Daniels, E.J.

    1995-08-01

    Waste oil represents an important energy resource that, if properly managed and reused, would reduce US dependence on imported fuels. Literature and current practice regarding waste oil generation, regulations, collection, and reuse were reviewed to identify research needs and approaches to increase the recovery and recycling of this resource. The review revealed the need for research to address the following three waste oil challenges: (1) recover and recycle waste oil that is currently disposed of or misused; (2) identify and implement lubricating oil source and loss reduction opportunities; and (3) develop and foster an effective waste oil recycling infrastructure that is based on energy savings, reduced environment at impacts, and competitive economics. The United States could save an estimated 140 {times} 1012 Btu/yr in energy by meeting these challenges.

  4. A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance.

    Science.gov (United States)

    Scheinberg, Anne; Simpson, Michael

    2015-11-01

    'Recycling' is a source of much confusion, particularly when comparing solid waste systems in high-income countries with those in low- and middle-income countries. Few analysts can explain why the performance and structure of recycling appears to be so different in rich countries from poor ones, nor why well-meaning efforts to implement recycling so often fail. The analysis of policy drivers, and the Integrated Sustainable Waste Management (ISWM) framework, come close to an explanation.This article builds on these earlier works, focusing in on five cities profiled in the 2010 UN-Habitat publication (Scheinberg A, Wilson DC and Rodic L (2010) Solid Waste Management in the World's Cities. UN-Habitat's Third Global Report on the State of Water and Sanitation in the World's Cities. Newcastle-on-Tyne, UK: Earthscan Publications). Data from these cities and others provides the basis for developing a new tool to analyse inclusive recycling performance. The points of departure are the institutional and economic relationships between the service chain, the public obligation to remove waste, pollution, and other forms of disvalue, and the value chain, a system of private enterprises trading valuable materials and providing markets for recyclables. The methodological innovation is to use flows of materials and money as indicators of institutional relationships, and is an extension of process flow diagramming.The authors are using the term 'recycling framework analysis' to describe this new form of institutional analysis. The diagrams increase our understanding of the factors that contribute to high-performance inclusive recycling. By focusing on institutional relationships, the article seeks to improve analysis, planning, and ultimately, outcomes, of recycling interventions. © The Author(s) 2015.

  5. Resource Efficient Metal and Material Recycling

    Science.gov (United States)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  6. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes.

    Science.gov (United States)

    Karademir, Arif; Aydemir, Cem; Tutak, Dogan; Aravamuthan, Raja

    2018-04-01

    In our contemporary world, while part of the fibers used in the paper industry is obtained from primary fibers such as wood and agricultural plants, the rest is obtained from secondary fibers from waste papers. To manufacture paper with high optical quality from fibers of recycled waste papers, these papers require deinking and bleaching of fibers at desired levels. High efficiency in removal of ink from paper mass during recycling, and hence deinkability, are especially crucial for the optical and printability quality of the ultimate manufactured paper. In the present study, deinkability and printability performance of digitally printed paper with toner or inkjet ink were compared for the postrecycling product. To that end, opaque 80 g/m 2 office paper was digitally printed under standard printing conditions with laser toner or inkjet ink; then these sheets of paper were deinked by a deinking process based on the INGEDE method 11 p. After the deinking operation, the optical properties of the obtained recycled handsheets were compared with unprinted (reference) paper. Then the recycled paper was printed on once again under the same conditions as before with inkjet and laser printers, to monitor and measure printing color change before and after recycling, and differences in color universe. Recycling and printing performances of water-based inkjet and toner-based laser printed paper were obtained. The outcomes for laser-printed recycled paper were better than those for inkjet-printed recycled paper. Compared for luminosity Y, brightness, CIE a* and CIE b* values, paper recycled from laser-printed paper exhibited higher value than paper recycled from inkjet-printed paper.

  7. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  8. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael

    2015-01-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews...... scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical...... sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics...

  9. Migration of residual nonvolatile and inorganic compounds from recycled post-consumer PET and HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Camila; Reyes, Felix G.R., E-mail: reyesfgr@fea.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Escola de Engenharia dos Alimentos. Dept. de Ciencias dos Alimentos; Freire, Maria Teresa de A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Ciencia Animal e Engenharia dos Alimentos. Dept. de Engenharia dos Alimentos; Nerin, Cristina; Bentayeb, Karim; Rodriguez-Lafuente, Angel; Aznar, Margarita [Dept. of Analytical Chemistry, Arago Inst. of Engineering Research, University of Zaragoza (Spain)

    2014-04-15

    Migration of nonvolatile and inorganic residual compounds from post-consumer recycled polyethylene terephthalate (PET) submitted to cleaning processes for subsequent production of materials intended to food contact, as well as from multilayer packaging material containing post-consumer recycled high-density polyethylene (HDPE) was determined. Tests were carried out using food simulant. Nonvolatile organic contaminants from PET, determined by liquid chromatography-mass spectrometry (UPLC-QqQ/MS), showed significant migration reduction as consequence of the more complex cleaning technologies applied. However, contaminants not allowed by Brazilian and European Union regulations were identified even in deep cleaning samples. Results from multilayer HDPE showed a greater number of contaminants when compared to recycled pellets. Inorganic contaminants, determined by inductively coupled plasma mass spectrometry were below the acceptable levels. Additional studies for identification and quantitation of unknown molecules which were not possible to identify in this study by UPLC-QqQ/MS are required to ascertain the safety of using post-consumer recycled packaging material. (author)

  10. You're a "What"? Recycling Coordinator

    Science.gov (United States)

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  11. WATER RESISTANCE OF RECYCLED PAPER PANEL

    Directory of Open Access Journals (Sweden)

    Alexander Rani Suryandono

    2017-06-01

    Alice Wisler (2015 Facts about Recycling Paper. http://greenliving.lovetoknow.com/Facts_About_Recycling_Paper. Accessed 2 April 2016 Clay Miller (2011 5 Benefits of Recycling Paper. http://www.ways2gogreenblog.com/2011/09/28/5-benefits-of-recycling-paper/. Accessed 10 May 2016 Hari Goyal (2015 Grades of Paper. http://www.paperonweb.com/grade.htm. Accessed 2 April 2016 Hari Goyal (2015 Properties of Paper. http://www.paperonweb.com/paperpro.htm. Accessed 2 April 2016 Kathryn Sukalich (2016 Everything You Need to Know about Paper Recycling. http://earth911.com/business-policy/business/paper-recycling-details-basics/. Accessed 15 July 2016 [U1] Larry West (2015 Why Recycle Paper. http://environment.about.com/od/recycling/a/The-Benefits-Of-Paper-Recycling-Why-Recycle-Paper.htm. Accesed 15 June 2016 Marie-Luise Blue (2008 The Advantages of Recycling Paper. http://education.seattlepi.com/advantages-recycling-paper-3440.html. Accessed 15 June 2016 Nina Spitzer (2009 http://www.sheknows.com/home-and-gardening/articles/810025/the-impact-of-disposable-coffee-cups-on-the-environment. Accessed 15 June 2016 Radio New Zealand (2010 Iwi not Giving Up Fight against Tasman Mill Discharges. http://www.radionz.co.nz/news/regional/64521/iwi-not-giving-up-fight-against-tasman-mill-discharges. Accessed 15 July 2016 Rick LeBlanc (2016 Paper Recycling Facts, Figures and Information Sources. https://www.thebalance.com/paper-recycling-facts-figures-and-information-sources-2877868?_ga=1.192832942.544061388.1477446686. Accesed 2 April 2016 Robinson Meyer (2016 Will More Newspapers Go Nonprofit? http://www.theatlantic.com/technology/archive/2016/01/newspapers-philadelphia-inquirer-daily-news-nonprofit-lol-taxes/423960/. Accessed 3 August 2016 School of Engineering at Darthmouth (2010 Forest and Paper Industry. http://engineering.dartmouth.edu/~d30345d/courses/engs171/Paper.pdf. Accessed 2 April 2016 T. Subramani, V. Angappan. (2015. Experimental Investigation of Papercrete Concrete

  12. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2001-01-01

    Recycling of nuclear material is indispensable, not only for using valuable resources but also for reducing the debt which we may leave to the next generations. Advanced reprocessing technologies have been developed in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field conducted in some countries including Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future recycling policy. (author)

  13. The nonlinear relationship between paper recycling and primary pulp requirements : modeling paper production and recycling in Europe

    NARCIS (Netherlands)

    Schenk, Niels J.; Moll, Henri C.; Potting, Josepha

    Waste paper is suitable for recycling back into paper or for incineration for energy recovery. If waste paper is used for recycling, secondary pulp replaces virgin pulp. Fiber recycling is limited, however, because of physical constraints—particularly the breakage of fiber in the recycling

  14. The Three Rs: Reduce, Reuse, Recycle.

    Science.gov (United States)

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  15. WASH and WAVE actin regulators of the Wiskott-Aldrich syndrome protein (WASP) family are controlled by analogous structurally related complexes.

    Science.gov (United States)

    Jia, Da; Gomez, Timothy S; Metlagel, Zoltan; Umetani, Junko; Otwinowski, Zbyszek; Rosen, Michael K; Billadeau, Daniel D

    2010-06-08

    We recently showed that the Wiskott-Aldrich syndrome protein (WASP) family member, WASH, localizes to endosomal subdomains and regulates endocytic vesicle scission in an Arp2/3-dependent manner. Mechanisms regulating WASH activity are unknown. Here we show that WASH functions in cells within a 500 kDa core complex containing Strumpellin, FAM21, KIAA1033 (SWIP), and CCDC53. Although recombinant WASH is constitutively active toward the Arp2/3 complex, the reconstituted core assembly is inhibited, suggesting that it functions in cells to regulate actin dynamics through WASH. FAM21 interacts directly with CAPZ and inhibits its actin-capping activity. Four of the five core components show distant (approximately 15% amino acid sequence identify) but significant structural homology to components of a complex that negatively regulates the WASP family member, WAVE. Moreover, biochemical and electron microscopic analyses show that the WASH and WAVE complexes are structurally similar. Thus, these two distantly related WASP family members are controlled by analogous structurally related mechanisms. Strumpellin is mutated in the human disease hereditary spastic paraplegia, and its link to WASH suggests that misregulation of actin dynamics on endosomes may play a role in this disorder.

  16. Reuse, Reduce, Recycle.

    Science.gov (United States)

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  17. What can recycling in thermal reactors accomplish?

    International Nuclear Information System (INIS)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  18. What can Recycling in Thermal Reactors Accomplish?

    International Nuclear Information System (INIS)

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives

  19. Implementing a campus wide recycling program

    International Nuclear Information System (INIS)

    Alvarez, L.

    2002-01-01

    'Full text:' The University of Windsor is currently expanding its recycling program to include all buildings on campus, but faces two challenges: 1) uncertainty about the current waste composition and distribution on campus; and 2) uncertainty about the effectiveness of increased recycling. This project assesses the current waste composition and the attitudes of the students towards recycling, and evaluates the effectiveness of proposed recycling activities. At present, paper is the only material that is collected throughout the entire campus. Except for two buildings, all other potentially recyclable materials within buildings, such as metal, glass, and plastic beverage containers, are discarded. The main focus of this research is on beverage containers as they represent clearly identifiable materials, but other materials were examined as well. To quantify the waste, different buildings on campus were classified according to their function: academic,operational and administrative. The waste composition study indicated that approximately 33% of the campus waste which is landfilled is composed of potentially recyclable material. A survey was then conducted to gauge the campus population's views on recycling issues that could affect the design of a recycling program. Interestingly, 97% of the respondents indicated a high willingness to recycle, but were uncertain as to how and where to recycle on campus. The project is currently assessing potential diversion rates using new, clearly identifiable recycling receptacles placed within selected classrooms for all major materials. There is a significant tradeoff however because the cost for new receptacles is considerable: multiple materials containers are often placed in high pedestrian traffic locations (e.g., hallways) and not always in classrooms,of which there are often many. This project will evaluate the basic benefits and costs of implementing a more comprehensive recycling program, and recommend how other

  20. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    Yamachita, Roberto Akira; Gama, Paulo Henrique R. Pereira; Haddad, Jamil; Santos, Afonso H. Moreira; Guardia, Eduardo C.

    1999-01-01

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  1. Induction of nonapoptotic cell death by activated Ras requires inverse regulation of Rac1 and Arf6.

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M; Overmeyer, Jean H; Maltese, William A

    2010-10-01

    Methuosis is a unique form of nonapoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or coexpression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in the recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to the activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by short hairpin RNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together, the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1 combined with reciprocal inactivation of Arf6. The latter seems to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for the induction of methuosis in cancers that are resistant to apoptotic cell death.

  2. An industry response to recycle 2000

    International Nuclear Information System (INIS)

    Motl, G.P.; Loiselle, V.

    1996-01-01

    The US DOE is expected to issue a policy early this year articulating DOE's position on the recycle of DOE radioactive scrap metal. In anticipation of this 'Recycle 2000' initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality

  3. Uncovering the Recycling Potential of "New" WEEE in China.

    Science.gov (United States)

    Zeng, Xianlai; Gong, Ruying; Chen, Wei-Qiang; Li, Jinhui

    2016-02-02

    Newly defined categories of WEEE have increased the types of China's regulated WEEE from 5 to 14. Identification of the amounts and valuable-resource components of the "new" WEEE generated is critical to solving the e-waste problem, for both governmental policy decisions and recycling enterprise expansions. This study first estimates and predicts China's new WEEE generation for the period of 2010-2030 using material flow analysis and the lifespan model of the Weibull distribution, then determines the amounts of valuable resources (e.g., base materials, precious metals, and rare-earth minerals) encased annually in WEEE, and their dynamic transfer from in-use stock to waste. Main findings include the following: (i) China will generate 15.5 and 28.4 million tons WEEE in 2020 and 2030, respectively, and has already overtaken the U.S. to become the world's leading producer of e-waste; (ii) among all the types of WEEE, air conditioners, desktop personal computers, refrigerators, and washing machines contribute over 70% of total WEEE by weight. The two categories of EEE-electronic devices and electrical appliances-each contribute about half of total WEEE by weight; (iii) more and more valuable resources have been transferred from in-use products to WEEE, significantly enhancing the recycling potential of WEEE from an economic perspective; and (iv) WEEE recycling potential has been evolving from ∼16 (10-22) billion US$ in 2010, to an anticipated ∼42 (26-58) billion US$ in 2020 and ∼73.4 (44.5-103.4) billion US$ by 2030. All the obtained results can improve the knowledge base for closing the loop of WEEE recycling, and contribute to governmental policy making and the recycling industry's business development.

  4. Structure of the LDL receptor extracellular domain at endosomalpH

    Energy Technology Data Exchange (ETDEWEB)

    Rudenko, Gabby; Henry, Lisa; Henderson, Keith; Ichtchenko,Konstantin; Brown, Michael S.; Goldstein, Joseph L.; Deisenhofer, Johann

    2002-09-05

    The structure of the low-density lipoprotein receptor extracellular portion has been determined. The document proposes a mechanism for the release of lipoprotein in the endosome. Without this release, the mechanism of receptor recycling cannot function.

  5. Recycling Behavior: A Multidimensional Approach

    Science.gov (United States)

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  6. Attributes to facilitate e-waste recycling behaviour

    Directory of Open Access Journals (Sweden)

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  7. Recycling of used oil

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Ghurye, G.

    1992-01-01

    This paper reports on used oil which is a valuable resource that should be recycled. Recycling used oil saves energy and natural resources. Used oil can be reprocessed and used as fuel in industrial burners and boilers. Unfortunately, more than 400 million gallons/year of used oil is lost through widespread dumping, partly due to lack of effective recycling procedures. Although used oil is not currently a federally listed hazardous waste, the U.S. EPA has proposed to list it as a hazardous waste, which will make recycling of used oil even more attractive. Laboratory samples, representing used oil, were used for detailed parametric studies and to determine the limitation of extending some of the current physical separation techniques such as sedimentation and centrifuging developed for oil-water and solid-liquid separation

  8. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  9. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  10. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  11. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  12. Regulation of B cell differentiation by intracellular membrane associated proteins and microRNAs: role in the antibody response

    Directory of Open Access Journals (Sweden)

    Zheng eLou

    2015-10-01

    Full Text Available B cells are central to adaptive immunity and their functions in antibody responses are exquisitely regulated. As suggested by recent findings, B cell differentiation is mediated by intracellular membrane structures (including endosomes, lysosomes and autophagosomes and protein factors specifically associated with these membranes, including Rab7, Atg5 and Atg7. These factors participate in vesicle formation/trafficking, signal transduction and induction of gene expression to promote antigen presentation, CSR/SHM, and generation/maintenance of plasma cells and memory B cells. Their expression is induced in B cells activated to differentiate and further fine-tuned by immune-modulating microRNAs, which coordinates CSR/SHM, plasma cell differentiation and memory B cell differentiation. These short non-coding RNAs would individually target multiple factors associated with the same intracellular membrane compartments and collaboratively target a single factor in addition to regulate AID and Blimp-1. These, together with regulation of microRNA biogenesis and activities by endosomes and autophagosomes, show that intracellular membranes and microRNAs, two broadly relevant cell constituents, play important roles in balancing gene expression to specify B cell differentiation processes for optimal antibody responses.

  13. The Compressor Recycle System

    OpenAIRE

    Barstad, Bjørn Ove

    2010-01-01

    The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...

  14. Induction of Non-Apoptotic Cell Death by Activated Ras Requires Inverse Regulation of Rac1 and Arf6

    Science.gov (United States)

    Bhanot, Haymanti; Young, Ashley M.; Overmeyer, Jean H.; Maltese, William A.

    2010-01-01

    Methuosis is a unique form of non-apoptotic cell death triggered by alterations in the trafficking of clathrin-independent endosomes, ultimately leading to extreme vacuolization and rupture of the cell. Methuosis can be induced in glioblastoma cells by expression of constitutively active Ras. This study identifies the small GTPases, Rac1 and Arf6, and the Arf6 GTPase-activating-protein, GIT1, as key downstream components of the signaling pathway underlying Ras-induced methuosis. The extent to which graded expression of active H-Ras(G12V) triggers cytoplasmic vacuolization correlates with the amount of endogenous Rac1 in the active GTP state. Blocking Rac1 activation with the specific Rac inhibitor, EHT 1864, or co-expression of dominant-negative Rac1(T17N), prevents the accumulation of vacuoles induced by H-Ras(G12V). Coincident with Rac1 activation, H-Ras(G12V) causes a decrease in the amount of active Arf6, a GTPase that functions in recycling of clathrin-independent endosomes. The effect of H-Ras(G12V) on Arf6 is blocked by EHT 1864, indicating that the decrease in Arf6-GTP is directly linked to activation of Rac1. Constitutively active Rac1(G12V) interacts with GIT1 in immunoprecipitation assays. Ablation of GIT1 by shRNA prevents the decrease in active Arf6, inhibits vacuolization, and prevents loss of cell viability in cells expressing Rac1(G12V). Together the results suggest that perturbations of endosome morphology associated with Ras-induced methuosis are due to downstream activation of Rac1, combined with reciprocal inactivation of Arf6. The latter appears to be mediated through Rac1 stimulation of GIT1. Further insights into this pathway could suggest opportunities for induction of methuosis in cancers that are resistant to apoptotic cell death. PMID:20713492

  15. A postsynaptic PI3K-cII dependent signaling controller for presynaptic homeostatic plasticity

    Science.gov (United States)

    Hauswirth, Anna G; Ford, Kevin J; Wang, Tingting; Fetter, Richard D; Tong, Amy

    2018-01-01

    Presynaptic homeostatic plasticity stabilizes information transfer at synaptic connections in organisms ranging from insect to human. By analogy with principles of engineering and control theory, the molecular implementation of PHP is thought to require postsynaptic signaling modules that encode homeostatic sensors, a set point, and a controller that regulates transsynaptic negative feedback. The molecular basis for these postsynaptic, homeostatic signaling elements remains unknown. Here, an electrophysiology-based screen of the Drosophila kinome and phosphatome defines a postsynaptic signaling platform that includes a required function for PI3K-cII, PI3K-cIII and the small GTPase Rab11 during the rapid and sustained expression of PHP. We present evidence that PI3K-cII localizes to Golgi-derived, clathrin-positive vesicles and is necessary to generate an endosomal pool of PI(3)P that recruits Rab11 to recycling endosomal membranes. A morphologically distinct subdivision of this platform concentrates postsynaptically where we propose it functions as a homeostatic controller for retrograde, trans-synaptic signaling. PMID:29303480

  16. Atg9 is required for intraluminal vesicles in amphisomes and autolysosomes

    Directory of Open Access Journals (Sweden)

    C. A. Bader

    2015-11-01

    Full Text Available Autophagy is an intracellular recycling and degradation process, which is important for energy metabolism, lipid metabolism, physiological stress response and organism development. During Drosophila development, autophagy is up-regulated in fat body and midgut cells, to control metabolic function and to enable tissue remodelling. Atg9 is the only transmembrane protein involved in the core autophagy machinery and is thought to have a role in autophagosome formation. During Drosophila development, Atg9 co-located with Atg8 autophagosomes, Rab11 endosomes and Lamp1 endosomes-lysosomes. RNAi silencing of Atg9 reduced both the number and the size of autophagosomes during development and caused morphological changes to amphisomes/autolysosomes. In control cells there was compartmentalised acidification corresponding to intraluminal Rab11/Lamp-1 vesicles, but in Atg9 depleted cells there were no intraluminal vesicles and the acidification was not compartmentalised. We concluded that Atg9 is required to form intraluminal vesicles and for localised acidification within amphisomes/autolysosomes, and consequently when depleted, reduced the capacity to degrade and remodel gut tissue during development.

  17. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  18. ZZ WPPR, Pu Recycling Benchmark Results

    International Nuclear Information System (INIS)

    Lutz, D.; Mattes, M.; Delpech, Marc; Juanola, Marc

    2002-01-01

    Description of program or function: The NEA NSC Working Party on Physics of Plutonium Recycling has commissioned a series of benchmarks covering: - Plutonium recycling in pressurized-water reactors; - Void reactivity effect in pressurized-water reactors; - Fast Plutonium-burner reactors: beginning of life; - Plutonium recycling in fast reactors; - Multiple recycling in advanced pressurized-water reactors. The results have been published (see references). ZZ-WPPR-1-A/B contains graphs and tables relative to the PWR Mox pin cell benchmark, representing typical fuel for plutonium recycling, one corresponding to a first cycle, the second for a fifth cycle. These computer readable files contain the complete set of results, while the printed report contains only a subset. ZZ-WPPR-2-CYC1 are the results from cycle 1 of the multiple recycling benchmarks

  19. Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries.

    Science.gov (United States)

    Tue, Nguyen Minh; Takahashi, Shin; Subramanian, Annamalai; Sakai, Shinichi; Tanabe, Shinsuke

    2013-07-01

    E-waste recycling using uncontrolled processes is a major source of dioxin-related compounds (DRCs), including not only the regulated polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/Fs) and dioxin-like polychlorinated biphenyls (DL-PCBs) but also non-regulated brominated and mixed halogenated compounds (PBDD/Fs and PXDD/Fs). Various studies at informal e-waste recycling sites (EWRSs) in Asian developing countries found the soil contamination levels of PCDD/Fs from tens to ten thousand picogram TCDD-equivalents (TEQ) per gram and those of DL-PCBs up to hundreds of picogram TEQ per gram. The air concentration of PCDD/Fs was reported as high as 50 pg TEQ per m(3) in Guiyu, the largest Chinese EWRS. Non-regulated compounds also contributed substantially to the total DL toxicity of the DRC mixtures from e-waste, as evidenced by the high TEQ levels estimated for the currently identifiable PBDD/Fs as well as the large portion of unexplained bioassay-derived TEQ levels in soils/dusts from EWRSs. Considering the high exposure levels estimated for EWRS residents, especially children, comprehensive emission inventories of DRCs from informal e-waste recycling, the identities and toxic potencies of unidentified DRCs released, and their impacts on human health need to be investigated in future studies.

  20. Frequent Questions on Recycling

    Science.gov (United States)

    This is a list of frequent questions on recycling, broken down into five categories. These are answers to common questions that EPA has received from press and web inquiries. This list is located on the Reduce, Reuse, Recycle website.

  1. Recycled concrete with coarse recycled aggregate. An overview and analysis

    Directory of Open Access Journals (Sweden)

    B. González-Fonteboa

    2018-04-01

    Full Text Available The construction field has contributed to environmental degradation, producing a high amount of construction and demolition waste (C&D waste and consuming large volumes of natural resources. In this context, recycled concrete (RC has been recognised as a means to preserve natural resources and reduce space for waste storage. During the last decades, many researchers have developed works studying different recycled concrete properties. This review focuses on structural RC made with coarse recycled aggregate from concrete waste. The main objective is to provide a state of the art report on RC’s properties and an analysis on how to predict them taking into account relevant research works. Moreover, the study tries to collect and update RC findings, proposing equations to define RC’s performance, in terms of mechanical strength, modulus of elasticity, stress-strain, creep and shrinkage.

  2. Solid waste recycling in Rajshahi city of Bangladesh.

    Science.gov (United States)

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Carambola optics for recycling of light.

    Science.gov (United States)

    Leutz, Ralf; Fu, Ling; Ries, Harald

    2006-04-20

    Recycling of light allows the luminance (radiance) emitted by a light source to be increased at the cost of reducing the total luminous flux (radiant power). Recycling of light means returning part of the emitted light to the source, where part of it will escape absorption. An optical design that is suitable for multiple and controlled recycling is described. Carambola optics is named for its resemblance to star fruit. Several pairs of mirrors or prisms redirect light repeatedly onto the source, thus achieving multiple transits of the light through the source. This recycled light exits the carambola in the same phase space as light directly emitted and not recycled.

  4. Text recycling: acceptable or misconduct?

    Science.gov (United States)

    Harriman, Stephanie; Patel, Jigisha

    2014-08-16

    Text recycling, also referred to as self-plagiarism, is the reproduction of an author's own text from a previous publication in a new publication. Opinions on the acceptability of this practice vary, with some viewing it as acceptable and efficient, and others as misleading and unacceptable. In light of the lack of consensus, journal editors often have difficulty deciding how to act upon the discovery of text recycling. In response to these difficulties, we have created a set of guidelines for journal editors on how to deal with text recycling. In this editorial, we discuss some of the challenges of developing these guidelines, and how authors can avoid undisclosed text recycling.

  5. Occupational exposure in the fluorescent lamp recycling sector in France.

    Science.gov (United States)

    Zimmermann, François; Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-07-01

    The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m(3), 15.4 μg/m(3), 14.0 μg/m(3), 247.6 μg/m(3), respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1mg/m(3), 9.0 μg/m(3), 9.0 μg/m(3), 219.2 μg/m(3), respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees' skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Structural recycled concrete: utilization of recycled aggregate from construction and demolition wastes

    International Nuclear Information System (INIS)

    Alaejos Gutierrez, P.; Sanchez de Juan, M.

    2015-01-01

    This paper aims to present the main results of CEDEX research works concerning the use of recycled aggregates for structural concretes. By way of conclusion, recommendations on the requirements of the recycled aggregates have been established, providing information about the influence of these aggregates on the properties of structural concrete. (Author)

  7. Plastics recycling: challenges and opportunities.

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-07-27

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3-4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  8. Plastics recycling: challenges and opportunities

    Science.gov (United States)

    Hopewell, Jefferson; Dvorak, Robert; Kosior, Edward

    2009-01-01

    Plastics are inexpensive, lightweight and durable materials, which can readily be moulded into a variety of products that find use in a wide range of applications. As a consequence, the production of plastics has increased markedly over the last 60 years. However, current levels of their usage and disposal generate several environmental problems. Around 4 per cent of world oil and gas production, a non-renewable resource, is used as feedstock for plastics and a further 3–4% is expended to provide energy for their manufacture. A major portion of plastic produced each year is used to make disposable items of packaging or other short-lived products that are discarded within a year of manufacture. These two observations alone indicate that our current use of plastics is not sustainable. In addition, because of the durability of the polymers involved, substantial quantities of discarded end-of-life plastics are accumulating as debris in landfills and in natural habitats worldwide. Recycling is one of the most important actions currently available to reduce these impacts and represents one of the most dynamic areas in the plastics industry today. Recycling provides opportunities to reduce oil usage, carbon dioxide emissions and the quantities of waste requiring disposal. Here, we briefly set recycling into context against other waste-reduction strategies, namely reduction in material use through downgauging or product reuse, the use of alternative biodegradable materials and energy recovery as fuel. While plastics have been recycled since the 1970s, the quantities that are recycled vary geographically, according to plastic type and application. Recycling of packaging materials has seen rapid expansion over the last decades in a number of countries. Advances in technologies and systems for the collection, sorting and reprocessing of recyclable plastics are creating new opportunities for recycling, and with the combined actions of the public, industry and governments it

  9. Spatiotemporal dynamics of membrane remodeling and fusion proteins during endocytic transport.

    Science.gov (United States)

    Arlt, Henning; Auffarth, Kathrin; Kurre, Rainer; Lisse, Dominik; Piehler, Jacob; Ungermann, Christian

    2015-04-01

    Organelles of the endolysosomal system undergo multiple fission and fusion events to combine sorting of selected proteins to the vacuole with endosomal recycling. This sorting requires a consecutive remodeling of the organelle surface in the course of endosomal maturation. Here we dissect the remodeling and fusion machinery on endosomes during the process of endocytosis. We traced selected GFP-tagged endosomal proteins relative to exogenously added fluorescently labeled α-factor on its way from the plasma membrane to the vacuole. Our data reveal that the machinery of endosomal fusion and ESCRT proteins has similar temporal localization on endosomes, whereas they precede the retromer cargo recognition complex. Neither deletion of retromer nor the fusion machinery with the vacuole affects this maturation process, although the kinetics seems to be delayed due to ESCRT deletion. Of importance, in strains lacking the active Rab7-like Ypt7 or the vacuolar SNARE fusion machinery, α-factor still proceeds to late endosomes with the same kinetics. This indicates that endosomal maturation is mainly controlled by the early endosomal fusion and remodeling machinery but not the downstream Rab Ypt7 or the SNARE machinery. Our data thus provide important further understanding of endosomal biogenesis in the context of cargo sorting. © 2015 Arlt et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  10. Compressive strength improvement for recycled concrete aggregate

    Directory of Open Access Journals (Sweden)

    Mohammed Dhiyaa

    2018-01-01

    Full Text Available Increasing amount of construction waste and, concrete remnants, in particular pose a serious problem. Concrete waste exist in large amounts, do not decay and need long time for disintegration. Therefore, in this work old demolished concrete is crashed and recycled to produce recycled concrete aggregate which can be reused in new concrete production. The effect of using recycled aggregate on concrete compressive strength has been experimentally investigated; silica fume admixture also is used to improve recycled concrete aggregate compressive strength. The main parameters in this study are recycled aggregate and silica fume admixture. The percent of recycled aggregate ranged from (0-100 %. While the silica fume ranged from (0-10 %. The experimental results show that the average concrete compressive strength decreases from 30.85 MPa to 17.58 MPa when the recycled aggregate percentage increased from 0% to 100%. While, when silica fume is used the concrete compressive strength increase again to 29.2 MPa for samples with 100% of recycled aggregate.

  11. Cost effectiveness of recycling: A systems model

    Energy Technology Data Exchange (ETDEWEB)

    Tonjes, David J., E-mail: david.tonjes@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States); Waste Reduction and Management Institute, School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000 (United States); Center for Bioenergy Research and Development, Advanced Energy Research and Technology Center, Stony Brook University, 1000 Innovation Rd., Stony Brook, NY 11794-6044 (United States); Mallikarjun, Sreekanth, E-mail: sreekanth.mallikarjun@stonybrook.edu [Department of Technology and Society, College of Engineering and Applied Sciences, Stony Brook University, Stony Brook, NY 11794-3560 (United States)

    2013-11-15

    Highlights: • Curbside collection of recyclables reduces overall system costs over a range of conditions. • When avoided costs for recyclables are large, even high collection costs are supported. • When avoided costs for recyclables are not great, there are reduced opportunities for savings. • For common waste compositions, maximizing curbside recyclables collection always saves money. - Abstract: Financial analytical models of waste management systems have often found that recycling costs exceed direct benefits, and in order to economically justify recycling activities, externalities such as household expenses or environmental impacts must be invoked. Certain more empirically based studies have also found that recycling is more expensive than disposal. Other work, both through models and surveys, have found differently. Here we present an empirical systems model, largely drawn from a suburban Long Island municipality. The model accounts for changes in distribution of effort as recycling tonnages displace disposal tonnages, and the seven different cases examined all show that curbside collection programs that manage up to between 31% and 37% of the waste stream should result in overall system savings. These savings accrue partially because of assumed cost differences in tip fees for recyclables and disposed wastes, and also because recycling can result in a more efficient, cost-effective collection program. These results imply that increases in recycling are justifiable due to cost-savings alone, not on more difficult to measure factors that may not impact program budgets.

  12. Reusing recycled aggregates in structural concrete

    Science.gov (United States)

    Kou, Shicong

    The utilization of recycled aggregates in concrete can minimize environmental impact and reduce the consumption of natural resources in concrete applications. The aim of this thesis is to provide a scientific basis for the possible use of recycled aggregates in structure concrete by conducting a comprehensive programme of laboratory study to gain a better understanding of the mechanical, microstructure and durability properties of concrete produced with recycled aggregates. The study also explored possible techniques to of improve the properties of recycled aggregate concrete that is produced with high percentages (≧ 50%) of recycled aggregates. These techniques included: (a) using lower water-to-cement ratios in the concrete mix design; (b) using fly ash as a cement replacement or as an additional mineral admixture in the concrete mixes, and (c) precasting recycled aggregate concrete with steam curing regimes. The characteristics of the recycled aggregates produced both from laboratory and a commercially operated pilot construction and demolition (C&D) waste recycling plant were first studied. A mix proportioning procedure was then established to produce six series of concrete mixtures using different percentages of recycled coarse aggregates with and without the use of fly ash. The water-to-cement (binder) ratios of 0.55, 0.50, 0.45 and 0.40 were used. The fresh properties (including slump and bleeding) of recycled aggregate concrete (RAC) were then quantified. The effects of fly ash on the fresh and hardened properties of RAC were then studied and compared with those RAC prepared with no fly ash addition. Furthermore, the effects of steam curing on the hardened properties of RAC were investigated. For micro-structural properties, the interfacial transition zones of the aggregates and the mortar/cement paste were analyzed by SEM and EDX-mapping. Moreover, a detailed set of results on the fracture properties for RAC were obtained. Based on the experimental

  13. A novel chimeric cell-penetrating peptide with membrane-disruptive properties for efficient endosomal escape.

    Science.gov (United States)

    Salomone, Fabrizio; Cardarelli, Francesco; Di Luca, Mariagrazia; Boccardi, Claudia; Nifosì, Riccardo; Bardi, Giuseppe; Di Bari, Lorenzo; Serresi, Michela; Beltram, Fabio

    2012-11-10

    Efficient endocytosis into a wide range of target cells and low toxicity make the arginine-rich Tat peptide (Tat(11): YGRKKRRQRRR, residues 47-57 of HIV-1 Tat protein) an excellent transporter for delivery purposes. Unfortunately, molecules taken up by endocytosis undergo endosomal entrapment and possible metabolic degradation. Escape from the endosome is therefore actively researched. In this context, antimicrobial peptides (AMPs) provide viable templates for the design of new membrane-disruptive motifs. In particular the Cecropin-A and Melittin hybrids (CMs) are among the smallest and most effective peptides with membrane-perturbing abilities. Here we present a novel chimeric peptide in which the Tat(11) motif is fused to the CM(18) hybrid (KWKLFKKIGAVLKVLTTG, residues 1-7 of Cecropin-A and 2-12 of Melittin). When administered to cells, CM(18)-Tat(11) combines the two desired functionalities: efficient uptake and destabilization of endocytotic-vesicle membranes. We show that this chimeric peptide effectively increases cargo-molecule cytoplasm availability and allows the subsequent intracellular localization of diverse membrane-impermeable molecules (i.e. Tat(11)-EGFP fusion protein, calcein, dextrans, and plasmidic DNA) with no detectable cytotoxicity. The present results open the way to the rational engineering of "modular" cell-penetrating peptides (CPPs) that combine (i) efficient translocation from the extracellular milieu into vesicles and (ii) efficient release of molecules from vesicles into the cytoplasm. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. The Diffusion Effect of MSW Recycling

    OpenAIRE

    Yi-Tui Chen; Fu-Chiang Yang; Shih-Heng Yu

    2017-01-01

    The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator t...

  15. Coolant clean-up and recycle systems

    International Nuclear Information System (INIS)

    Ito, Takao.

    1979-01-01

    Purpose: To increase the service life of mechanical seals in a shaft sealing device, eliminate leakages and improve the safety by providing a recycle pump for feeding coolants to a coolant clean-up device upon reactor shut-down and adapting the pump treat only low temperature and low pressure coolants. Constitution: The system is adapted to partially take out coolants from the pipeways of a recycling pump upon normal operation and feed them to a clean-up device. Upon reactor shut-down, the recycle pump is stopped and coolants are extracted by the recycle pump for shut-down into the clean-up device. Since the coolants are not fed to the clean-up device by the recycle pump during normal operation as conducted so far, high temperature and high pressure coolants are not directly fed to the recycle pump, thereby enabling to avoid mechanical problems in the pump. (Kamimura, M.)

  16. Occurrence and fate of acrylamide in water-recycling systems and sludge in aggregate industries.

    Science.gov (United States)

    Junqua, Guillaume; Spinelli, Sylvie; Gonzalez, Catherine

    2015-05-01

    Acrylamide is a hazardous substance having irritant and toxic properties as well as carcinogen, mutagen, and impaired fertility possible effects. Acrylamide might be found in the environment as a consequence of the use of polyacrylamides (PAMs) widely added as a flocculant for water treatment. Acrylamide is a monomer used to produce polyacrylamide (PAM) polymers. This reaction of polymerization can be incomplete, and acrylamide molecules can be present as traces in the commercial polymer. Thus, the use of PAMs may generate a release of acrylamide in the environment. In aggregate industries, PAM is widely involved in recycling process and water reuse (aggregate washing). Indeed, these industries consume large quantities of water. Thus, European and French regulations have favored loops of recycling of water in order to reduce water withdrawals. The main goal of this article is to study the occurrence and fate of acrylamide in water-recycling process as well as in the sludge produced by the flocculation treatment process in aggregate production plants. Moreover, to strengthen the relevance of this article, the objective is also to demonstrate if the recycling system leads to an accumulation effect in waters and sludge and if free acrylamide could be released by sludge during their storage. To reach this objective, water sampled at different steps of recycling water process has been analyzed as well as different sludge corresponding to various storage times. The obtained results reveal no accumulation effect in the water of the water-recycling system nor in the sludge.

  17. Japan's fuel recycling policy

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    The Atomic Energy Commission (AEC) has formulated Japanese nuclear fuel recycling plan for the next 20 years, based on the idea that the supply and demand of plutonium should be balanced mainly through the utilization of plutonium for LWRs. The plan was approved by AEC, and is to be incorporated in the 'Long term program for development and utilization of nuclear energy' up for revision next year. The report on 'Nuclear fuel recycling in Japan' by the committee is characterized by Japanese nuclear fuel recycling plan and the supply-demand situation for plutonium, the principle of the possession of plutonium not more than the demand in conformity with nuclear nonproliferation attitude, and the establishment of a domestic fabrication system of uranium-plutonium mixed oxide fuel. The total plutonium supply up to 2010 is estimated to be about 85 t, on the other hand, the demand will be 80-90 t. The treatment of plutonium is the key to the recycling and utilization of nuclear fuel. By around 2000, the private sector will commercialize the fabrication of the MOX fuel for LWRs at the annual rate of about 100 t. Commitment to nuclear nonproliferation, future nuclear fuel recycling program in Japan, MOX fuel fabrication system in Japan and so on are reported. (K.I.)

  18. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  19. Design study of advanced nuclear fuel recycle system. Conceptual study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kakehi, I.; Shirai, N.; Hatano, M.; Kajitani, M.; Yonezawa, S.; Kawai, T.; Kawamura, F.; Tobe, K.; Takahashi, K.

    1996-12-01

    For the purpose of developing the future nuclear fuel recycle system, the design study of the advanced nuclear fuel recycle system is being conducted. This report describes intermediate accomplishments in the conceptual system study of the advanced nuclear fuel recycle system. Fundamental concepts of this system is the recycle system using molten salt which intend to break through the conventional concepts of purex and pellet fuel system. Contents of studies in this period are as follows, 1)feasibility study of the process by Cd-cathode for nitride fuel, 2)application study for the molten salt of low melting point (AlCl3+organic salt), 3)research for decladding (advantage of decladding by heat treatment), 4)behavior of FPs in electrorefining (behavior of iodine and volatile FP chlorides, FPs behavior in chlorination), 5)criticality analysis in electrorefiner, 6)drawing of off-gas flow diagram, 7)drawing of process machinery concept (cathode processor, vibration packing), 8)evaluation for the amounts of the high level radioactive wastes, 9)quality of the recycle fuels (FPs contamination of recycle fuel), 10)conceptual study of in-cell handling system, 11)meaning of the advanced nuclear fuel recycle system. The conceptual system study will be completed in describing concepts of the system and discussing issues for the developments. (author)

  20. ROTUNDA3 function in plant development by phosphatase 2A-mediated regulation of auxin transporter recycling.

    Science.gov (United States)

    Karampelias, Michael; Neyt, Pia; De Groeve, Steven; Aesaert, Stijn; Coussens, Griet; Rolčík, Jakub; Bruno, Leonardo; De Winne, Nancy; Van Minnebruggen, Annemie; Van Montagu, Marc; Ponce, María Rosa; Micol, José Luis; Friml, Jiří; De Jaeger, Geert; Van Lijsebettens, Mieke

    2016-03-08

    The shaping of organs in plants depends on the intercellular flow of the phytohormone auxin, of which the directional signaling is determined by the polar subcellular localization of PIN-FORMED (PIN) auxin transport proteins. Phosphorylation dynamics of PIN proteins are affected by the protein phosphatase 2A (PP2A) and the PINOID kinase, which act antagonistically to mediate their apical-basal polar delivery. Here, we identified the ROTUNDA3 (RON3) protein as a regulator of the PP2A phosphatase activity in Arabidopsis thaliana. The RON3 gene was map-based cloned starting from the ron3-1 leaf mutant and found to be a unique, plant-specific gene coding for a protein with high and dispersed proline content. The ron3-1 and ron3-2 mutant phenotypes [i.e., reduced apical dominance, primary root length, lateral root emergence, and growth; increased ectopic stages II, IV, and V lateral root primordia; decreased auxin maxima in indole-3-acetic acid (IAA)-treated root apical meristems; hypergravitropic root growth and response; increased IAA levels in shoot apices; and reduced auxin accumulation in root meristems] support a role for RON3 in auxin biology. The affinity-purified PP2A complex with RON3 as bait suggested that RON3 might act in PIN transporter trafficking. Indeed, pharmacological interference with vesicle trafficking processes revealed that single ron3-2 and double ron3-2 rcn1 mutants have altered PIN polarity and endocytosis in specific cells. Our data indicate that RON3 contributes to auxin-mediated development by playing a role in PIN recycling and polarity establishment through regulation of the PP2A complex activity.

  1. Renew or die: The molecular mechanisms of peptidoglycan recycling and antibiotic resistance in Gram-negative pathogens.

    Science.gov (United States)

    Domínguez-Gil, Teresa; Molina, Rafael; Alcorlo, Martín; Hermoso, Juan A

    2016-09-01

    Antimicrobial resistance is one of the most serious health threats. Cell-wall remodeling processes are tightly regulated to warrant bacterial survival and in some cases are directly linked to antibiotic resistance. Remodeling produces cell-wall fragments that are recycled but can also act as messengers for bacterial communication, as effector molecules in immune response and as signaling molecules triggering antibiotic resistance. This review is intended to provide state-of-the-art information about the molecular mechanisms governing this process and gather structural information of the different macromolecular machineries involved in peptidoglycan recycling in Gram-negative bacteria. The growing body of literature on the 3D structures of the corresponding macromolecules reveals an extraordinary complexity. Considering the increasing incidence and widespread emergence of Gram-negative multidrug-resistant pathogens in clinics, structural information on the main actors of the recycling process paves the way for designing novel antibiotics disrupting cellular communication in the recycling-resistance pathway. Copyright © 2016. Published by Elsevier Ltd.

  2. Regional or global WEEE recycling. Where to go?

    International Nuclear Information System (INIS)

    Li, Jinhui; Lopez N, Brenda N.; Liu, Lili; Zhao, Nana; Yu, Keli; Zheng, Lixia

    2013-01-01

    Highlights: ► Source and Destination countries involved in the movement of WEEE have been studied. ► Legislation, facilities and EPR are presented in Source and Destination countries. ► Mostly Destination countries do not have EPR established and have informal facilities. ► Source countries: good technology, EPR established and mostly WEEE regulation enacted. ► Regional WEEE recycling should be under global standards for Sources and Destinations. - Abstract: If we consider Waste Electrical and Electronic Equipment (WEEE) management, we can see the development of different positions in developed and developing countries. This development started with the movement of WEEE from developed countries to the developing countries. However, when the consequences for health and the environment were observed, some developing countries introduced a ban on the import of this kind of waste under the umbrella of the Basel Convention, while some developed countries have been considering a regional or global WEEE recycling approach. This paper explores the current movements between Source and Destination countries, or the importers and exporters, and examines whether it is legal and why illegal traffic is still rife; how global initiatives could support a global WEEE management scheme; the recycling characteristics of the source an destination countries and also to ascertain whether the principle of Extended Producer Responsibility (EPR) has been established between the different stakeholders involved in WEEE management. Ultimately, the Full Extended Producer Responsibility is presented as a possible solution because the compensation of the environmental capacity for WEEE recycling or treatment could be made by the contribution of extra responsibility; and also generating an uniform standard for processing WEEE in an environmentally sound manner could support the regional or international solution of WEEE and also improve the performance of the informal sector

  3. Influence of recycled aggregate quality and proportioning criteria on recycled concrete properties.

    Science.gov (United States)

    López-Gayarre, F; Serna, P; Domingo-Cabo, A; Serrano-López, M A; López-Colina, C

    2009-12-01

    This paper presents the results of experimental research using concrete produced by substituting part of the natural coarse aggregates with recycled aggregates from concrete demolition. The influence of the quality of the recycled aggregate (amount of declassified and source of aggregate), the percentage of replacement on the targeted quality of the concrete to be produced (strength and workability) has been evaluated. The granular structure of concrete and replacement criteria were analyzed in this study, factors which have not been analyzed in other studies. The following properties of recycled concretes were analyzed: density, absorption, compressive strength, elastic modulus, amount of occluded air, penetration of water under pressure and splitting tensile strength. A simplified test program was designed to control the costs of the testing while still producing sufficient data to develop reliable conclusions in order to make the number of tests viable whilst guaranteeing the reliability of the conclusions. Several factors were analyzed including the type of aggregate, the percentage of replacement, the type of sieve curve, the declassified content, the strength of concrete and workability of concrete and the replacement criteria. The type of aggregate and the percentage of replacement were the only factors that showed a clear influence on most of the properties. Compressive strength is clearly affected by the quality of recycled aggregates. If the water-cement ratio is kept constant and the loss of workability due to the effect of using recycled aggregate is compensated for with additives, the percentage of replacement of the recycled aggregate will not affect the compressive strength. The elastic modulus is affected by the percentage of replacement. If the percentage of replacement does not exceed 50%, the elastic modulus will only change slightly.

  4. Occupational exposure in the fluorescent lamp recycling sector in France

    International Nuclear Information System (INIS)

    Zimmermann, François; Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-01-01

    Highlights: • Chemical risks were assessed in the five fluorescent lamp recycling facilities. • The main hazardous agents are mercury vapors and dust containing lead and yttrium. • Exposure and pollutant levels were correlated with steps and processes. • All the stages and processes are concerned by worrying levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m 3 , 15.4 μg/m 3 , 14.0 μg/m 3 , 247.6 μg/m 3 , respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1 mg/m 3 , 9.0 μg/m 3 , 9.0 μg/m 3 , 219.2 μg/m 3 , respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees’ skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures

  5. Occupational exposure in the fluorescent lamp recycling sector in France

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, François, E-mail: francois.zimmermann@inrs.fr; Lecler, Marie-Thérèse; Clerc, Frédéric; Chollot, Alain; Silvente, Eric; Grosjean, Jérome

    2014-07-15

    Highlights: • Chemical risks were assessed in the five fluorescent lamp recycling facilities. • The main hazardous agents are mercury vapors and dust containing lead and yttrium. • Exposure and pollutant levels were correlated with steps and processes. • All the stages and processes are concerned by worrying levels of pollutants. • We suggest recommendations to reduce chemical risk. - Abstract: The fluorescent lamp recycling sector is growing considerably in Europe due to increasingly strict regulations aimed at inciting the consumption of low energy light bulbs and their end-of-life management. Chemical risks were assessed in fluorescent lamp recycling facilities by field measurement surveys in France, highlighting that occupational exposure and pollutant levels in the working environment were correlated with the main recycling steps and processes. The mean levels of worker exposure are 4.4 mg/m{sup 3}, 15.4 μg/m{sup 3}, 14.0 μg/m{sup 3}, 247.6 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The mean levels of airborne pollutants are 3.1 mg/m{sup 3}, 9.0 μg/m{sup 3}, 9.0 μg/m{sup 3}, 219.2 μg/m{sup 3}, respectively, for total inhalable dust, mercury, lead and yttrium. The ranges are very wide. Surface samples from employees’ skin and granulometric analysis were also carried out. The overview shows that all the stages and processes involved in lamp recycling are concerned by the risk of hazardous substances penetrating into the bodies of employees, although exposure of the latter varies depending on the processes and tasks they perform. The conclusion of this study strongly recommends the development of a new generation of processes in parallel with more information sharing and regulatory measures.

  6. Reorganization of the Endosomal System in Salmonella-Infected Cells: The Ultrastructure of Salmonella-Induced Tubular Compartments

    Science.gov (United States)

    Krieger, Viktoria; Liebl, David; Zhang, Yuying; Rajashekar, Roopa; Chlanda, Petr; Giesker, Katrin; Chikkaballi, Deepak; Hensel, Michael

    2014-01-01

    During the intracellular life of Salmonella enterica, a unique membrane-bound compartment termed Salmonella-containing vacuole, or SCV, is formed. By means of translocated effector proteins, intracellular Salmonella also induce the formation of extensive, highly dynamic membrane tubules termed Salmonella-induced filaments or SIF. Here we report the first detailed ultrastructural analyses of the SCV and SIF by electron microscopy (EM), EM tomography and live cell correlative light and electron microscopy (CLEM). We found that a subset of SIF is composed of double membranes that enclose portions of host cell cytosol and cytoskeletal filaments within its inner lumen. Despite some morphological similarities, we found that the formation of SIF double membranes is independent from autophagy and requires the function of the effector proteins SseF and SseG. The lumen of SIF network is accessible to various types of endocytosed material and our CLEM analysis of double membrane SIF demonstrated that fluid phase markers accumulate only between the inner and outer membrane of these structures, a space continual with endosomal lumen. Our work reveals how manipulation of the endosomal membrane system by an intracellular pathogen results in a unique tubular membrane compartmentalization of the host cell, generating a shielded niche permissive for intracellular proliferation of Salmonella. PMID:25254663

  7. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  8. Rab22a enhances CD147 recycling and is required for lung cancer cell migration and invasion.

    Science.gov (United States)

    Zhou, Yang; Wu, Bo; Li, Jiang-Hua; Nan, Gang; Jiang, Jian-Li; Chen, Zhi-Nan

    2017-08-01

    Rab22a is a member of the Ras-related small GTPase family, which plays a key role in regulating the recycling of cargo proteins entering cells through clathrin-independent endocytosis (CIE). Rab22a is overexpressed in different cancer types, including liver cancer, malignant melanoma, ovarian cancer and osteosarcoma. However, its oncogenic role remains unknown. In this study, we found that silencing of Rab22a suppressed the migration and invasion of lung cancer cells. Furthermore, Rab22a interacts with CD147, and knockdown of Rab22a blocks CD147 recycling and promotes CD147 degradation. Taken together, our findings indicate that Rab22a enhances recycling of CD147, which is required for lung cancer cell migration and invasion,and targeting CD147 recycling may be a rational strategy for lung cancer therapy. Copyright © 2017. Published by Elsevier Inc.

  9. Changing patterns in the use, recycling, and material substitution of mercury in the United States

    Science.gov (United States)

    Wilburn, David R.

    2013-01-01

    Environmental concerns have led to numerous regulations that have dramatically decreased the reported production and use of mercury in the United States since the 1980s. Government legislation and subsequent industry actions have led to increased collection of mercury-containing materials and the recovery of mercury through recycling. Mercury emissions have been reduced and effective alternatives to mercury products have been developed for many applications. This study updates and quantifies the changes in demand, supply, use, and material flow for mercury in various sectors in the United States that have taken place since 1996. Nearly all primary mercury produced in the United States is derived as a byproduct of processing of gold and silver ore in Nevada. Since 2001, annual production of mercury from gold and silver mining in Nevada has decreased by 22 percent overall because ore from greater depths containing low grade mercury is recovered, and mercury emissions from this source have decreased by 95 percent as a result of increased regulation and improved collection and suppression technology. The distribution of consumption of mercury in the United States has changed as a result of regulation (elimination of large-scale mercury use in the paint and battery sectors), reduction by consumers (decommissioning of mercury-cell chloralkali manufacturing capacity), and technological advances (improvements in dental, lighting, and wiring sectors). Mercury use in the chloralkali sector, the leading end-use sector in the United States in 1996, has declined by 98 percent from 136 metric tons (t) in 1996 to about 0.3 t in 2010 because of increased processing and recycling efficiencies and plant closures or conversion to other technologies. As plants were closed, mercury recovered from the infrastructure of decommissioned plants has been exported, making the United States a net exporter of mercury, even though no mercury has been produced as the primary product from mines in

  10. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription*

    Science.gov (United States)

    E, Guangqi; Cao, Ying; Bhattacharya, Santanu; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis. PMID:22167188

  11. Auditing Operating Room Recycling: A Management Case Report.

    Science.gov (United States)

    McGain, Forbes; Jarosz, Katherine Maria; Nguyen, Martin Ngoc Hoai Huong; Bates, Samantha; O'Shea, Catherine Jane

    2015-08-01

    Much waste arises from operating rooms (ORs). We estimated the practical and financial feasibility of an OR recycling program, weighing all waste from 6 ORs in Melbourne, Australia. Over 1 week, 237 operations produced 1265 kg in total: general waste 570 kg (45%), infectious waste 410 kg (32%), and recyclables 285 kg (23%). The achieved recycling had no infectious contamination. The achieved recycling/potential recycling rate was 285 kg/517 kg (55%). The average waste disposal costs were similar for general waste and recycling. OR recycling rates of 20%-25% total waste were achievable without compromising infection control or financial constraints.

  12. TUSC5 regulates insulin-mediated adipose tissue glucose uptake by modulation of GLUT4 recycling

    Directory of Open Access Journals (Sweden)

    Nigel Beaton

    2015-11-01

    Conclusions: Collectively, these findings establish TUSC5 as an adipose tissue-specific protein that enables proper protein recycling, linking the ubiquitous vesicle traffic machinery with tissue-specific insulin-mediated glucose uptake into adipose tissue and the maintenance of a healthy metabolic phenotype in mice and humans.

  13. Resource and waste taxation in the theory of the firm with recycling activities

    International Nuclear Information System (INIS)

    Conrad, K.

    1999-01-01

    The management of solid waste has become an urgent problem in nations with a great population density. Accordingly, waste reduction through source reduction and recycling has become increasingly important. Our purpose is to show how prevention, recycling and disposal of waste could be part of a theory of the firm. We first derive efficient production functions from production processes with waste as a by-product. Waste obtained as new scrap can partially be recycled by using additional inputs in order to cut back the purchase of virgin material. Waste not completely recyclable will leave the firm as disposal which also entails cost to the firm. We use the dual cost function approach to develop a theory of the firm under solid residual management. Since the producer does not bear the full cost of disposal, there will be a bias toward virgin materials and away from recycling. The goal of the government is to stimulate the firms to recycle with respect to the preservation of exhaustible resources. An incentive to recycle is a tax on resources or on waste. In order to determine the tax levels the government maximizes welfare subject to the dynamic constraint for decumulation of land fill for waste deposits. This gives the user cost and its time profile for taxing waste disposal or virgin material. In a comparative statistics analysis we compare the effect of taxes on waste vs. virgin material on effort to produce in a resource saving manner, on the quantity of recycled material, on output, and on the reduction of waste. Since the impact of environmental regulation on employment is important, our model detects seven effects on labor demand as part of resource conservation policy. We finally carry out a comparative statistics analysis of waste intensive firms operating in different market structures. Of interest is the impact of a resource or waste taxation on market volume, on the number of firms, on resource saving effort, and on profit. 36 refs

  14. The analysis on the current status of the overseas recycle technology of the metallic radioactive wastes

    International Nuclear Information System (INIS)

    Shin, Jae In; Kim, Hee Reyoung; Jung, Kee Jung

    2002-05-01

    It was understood that regulation criteria for material release varied with countries and that international standards were not setup. But, most advanced countries are continuously studying on the recycling of metallic wastes for the purpose of the reuse of resources and disposal cost reduction. Practically, the advanced countries make a lot of cost profits compared with disposal as their metallic wastes are recycled and reused through technology like melting. The reasonable international standards are also expected to be set in the near future because of the aggressive cooperation between international agencies such as IAEA and NEA toward recycling these wastes. In our case, the recycle criteria for radioactive waste containing radioactive nuclide with long half-life such as Cs-137(half-life: 30y) and Co-60(half-life: 5.26y) including others, which are generated from the nuclear fission or dismantling of nuclear facilities, are not yet established. Therefore, it is required that the recommendation and legalization of the regulatory criteria be carried out for the recycle and reuse of metallic wastes to be generated from the dismantling of domestic nuclear facilities in the future

  15. Pep3p/Pep5p complex: a putative docking factor at multiple steps of vesicular transport to the vacuole of Saccharomyces cerevisiae.

    OpenAIRE

    Srivastava, A; Woolford, C A; Jones, E W

    2000-01-01

    Pep3p and Pep5p are known to be necessary for trafficking of hydrolase precursors to the vacuole and for vacuolar biogenesis. These proteins are present in a hetero-oligomeric complex that mediates transport at the vacuolar membrane. PEP5 interacts genetically with VPS8, implicating Pep5p in the earlier Golgi to endosome step and/or in recycling from the endosome to the Golgi. To understand further the cellular roles of Pep3p and Pep5p, we isolated and characterized a set of pep3 conditional ...

  16. Electric vehicle recycling 2020: Key component power electronics.

    Science.gov (United States)

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  17. Feedwater recycling system in BWR type reactor

    International Nuclear Information System (INIS)

    Shimamoto, Yoshiharu.

    1980-01-01

    Purpose: To improve the reactor safety by preventing thermal stresses and cracks generated in structural materials due to the fluctuations in the temperature for high temperature water - low temperature water mixture near the feedwater nozzle. Method: Feedwater pipes are connected to a pressure vessel not directly but by way of a flow control valve. While the recycled water is circulated from an inlet nozzle to an outlet nozzle through a recycle pump, flow control valve and recycling pipeways, feedwater is fed from the feedwater pipes to the recycling pipeways by way of the flow control valve. More specifically, since the high temperature recycle water and the low temperature recycle water are mixed within the pipeways, the temperature fluctuations resulted from the temperature difference between the recycle water and the feedwater is reduced to prevent thermal fatigue and generation of cracks thereby securing the reactor safety. (Furukawa, Y.)

  18. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2000-01-01

    It goes without saying that recycling of nuclear material is indispensable, not only for the effective use of valuable resources but also to reduce the debt which we may leave to the next generations. Many developments in advanced reprocessing technologies have been carried out in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field, which has been conducted in Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future policy. (authors)

  19. Management options for recycling radioactive scrap metals

    Energy Technology Data Exchange (ETDEWEB)

    Dehmel, J.C.; MacKinney, J.; Bartlett, J.

    1997-02-01

    The feasibility and advantages of recycling radioactive scrap metals (RSM) have yet to be assessed, given the unique technical, regulatory, safety, and cost-benefit issues that have already been raised by a concerned recycling industry. As is known, this industry has been repeatedly involved with the accidental recycling of radioactive sources and, in some cases, with costly consequences. If recycling were deemed to be a viable option, it might have to be implemented with regulatory monitoring and controls. Its implementation may have to consider various and complex issues and address the requirements and concerns of distinctly different industries. There are three basic options for the recycling of such scraps. They are: (1) recycling through the existing network of metal-scrap dealers and brokers, (2) recycling directly and only with specific steelmills, or (3) recycling through regional processing centers. Under the first option, scrap dealers and brokers would receive material from RSM generators and determine at which steelmills such scraps would be recycled. For the second option, RSM generators would deal directly with selected steelmills under specific agreements. For the third option, generators would ship scraps only to regional centers for processing and shipment to participating steelmills. This paper addresses the potential advantages of each option, identifies the types of arrangements that would need to be secured among all parties, and attempts to assess the receptivity of the recycling industry to each option.

  20. Strategies for the Activation and Release of the Membranolytic Peptide Melittin from Liposomes Using Endosomal pH as a Trigger

    NARCIS (Netherlands)

    Oude Blenke, E.; Sleszynska, M.; Evers, M. J W; Storm, G.; Martin, N. I.; Mastrobattista, E.

    2017-01-01

    Endosomolytic peptides are often coupled to drug delivery systems to enhance endosomal escape, which is crucial for the delivery of macromolecular drugs that are vulnerable to degradation in the endolysosomal pathway. Melittin is a 26 amino acid peptide derived from bee venom that has a very high

  1. Recycling of reprocessed uranium

    International Nuclear Information System (INIS)

    Randl, R.P.

    1987-01-01

    Since nuclear power was first exploited in the Federal Republic of Germany, the philosophy underlying the strategy of the nuclear fuel cycle has been to make optimum use of the resource potential of recovered uranium and plutonium within a closed fuel cycle. Apart from the weighty argument of reprocessing being an important step in the treatment and disposal of radioactive wastes, permitting their optimum ecological conditioning after the reprocessing step and subsequent storage underground, another argument that, no doubt, carried weight was the possibility of reducing the demand of power plants for natural uranium. In recent years, strategies of recycling have emerged for reprocessed uranium. If that energy potential, too, is to be exploited by thermal recycling, it is appropriate to choose a slightly different method of recycling from the one for plutonium. While the first generation of reprocessed uranium fuel recycled in the reactor cuts down natural uranium requirement by some 15%, the recycling of a second generation of reprocessed, once more enriched uranium fuel helps only to save a further three per cent of natural uranium. Uranium of the second generation already carries uranium-232 isotope, causing production disturbances, and uranium-236 isotope, causing disturbances of the neutron balance in the reactor, in such amounts as to make further fabrication of uranium fuel elements inexpedient, even after mixing with natural uranium feed. (orig./UA) [de

  2. Characterization of quality recycled gypsum and plasterboard with maximized recycled content

    International Nuclear Information System (INIS)

    Jiménez-Rivero, J.; García-Navarro, J.

    2017-01-01

    The quality of secondary materials is imperative to promote a circular economy. In order to improve the way in which the quality of recycled gypsum is assessed, European guidelines on recycled gypsum (RG) quality criteria have been outlined in the framework of the Life+ Gypsum to Gypsum (GtoG) project. Such GtoG guidelines, along with the European Standard on gypsum plasterboard EN 520, provided the basis for this study. During the GtoG project, gypsum recycling and plasterboard manufacturing processes were monitored by testing the gypsum feedstock and the plasterboard produced. The aim of this paper is to discuss the results obtained on relevant parameters that characterize gypsum as a secondary raw material, as well as the resulting product. The minimum requirements were fulfilled by 56% of the RG samples and 86% of the plasterboard with increased RG. [es

  3. Synthesis and chemical recycling of high polymers using C1 compounds; C1 kagobutsu ni yoru kobunshi no chemical recycle

    Energy Technology Data Exchange (ETDEWEB)

    Masuda, T. [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1997-09-01

    The paper outlined a study of the synthesis of high polymers using C1 compounds which are continuously usable chemical materials and the related compounds such as the derivatives, and also the chemical recycle. In the case of waste plastics mixed in urban refuse, effective is the chemical recycle where C1 compounds obtained by gasifying the mixed waste are used as high polymer material. For the synthesis and recycle of high polymers using C1 compounds, there are three routes: Route A (recycle via high polymer materials), Route B (recycle via C1 compounds and high polymer materials), and Route C including global-scale carbon recycle (recycle via carbon dioxide from biodegradable plastics using microorganism). Among high polymers, those that can be synthesized from C1 compounds, for example, polymethylene, polyacetal and polyketone can be chemically recycled by Route B. 30 refs., 2 figs., 1 tab.

  4. Analysis of chromium and sulphate origins in construction recycled materials based on leaching test results.

    Science.gov (United States)

    Del Rey, I; Ayuso, J; Galvín, A P; Jiménez, J R; López, M; García-Garrido, M L

    2015-12-01

    Twenty samples of recycled aggregates from construction and demolition waste (CDW) with different compositions collected at six recycling plants in the Andalusia region (south of Spain) were characterised according to the Landfill Directive criteria. Chromium and sulphate were identified as the most critical compounds in the leachates. To detect the sources of these two pollutant constituents in recycled aggregate, environmental assessments were performed on eight construction materials (five unused ceramic materials, two old crushed concretes and one new mortar manufactured in the laboratory). The results confirmed that leached sulphate and Cr were mainly released by the ceramic materials (bricks and tiles). To predict the toxicological consequences, the oxidation states of Cr (III) and Cr (VI) were measured in the leachates of recycled aggregates and ceramic materials classified as non-hazardous. The bricks and tiles mainly released total Cr as Cr (III). However, the recycled aggregates classified as non-hazardous according to the Landfill Directive criteria mainly released Cr (VI), which is highly leachable and extremely toxic. The obtained results highlight the need for legislation that distinguishes the oxidative state in which chromium is released into the environment. Leaching level regulations must not be based solely on total Cr, which can lead to inaccurate predictions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. A UK perspective on recycling

    International Nuclear Information System (INIS)

    Williams, T.

    1991-01-01

    The United Kingdom, through the recycling of depleted uranium from Magnox reactors into Advanced Gas-cooled Reactor (AGR) fuel, has already recycled significant quantities of reprocessed material in reactors owned by Nuclear Electric plc and Scottish Nuclear Limited. This AGR fuel has been satisfactorily irradiated and discharged over a decade or more, and will be reprocessed in the new Thermal Oxide Reprocessing Plant (THORP), currently under construction in the UK. British Nuclear Fuels plc (BNFL) and the UK Atomic Energy Authority (UKAEA) have also been exploiting the potential of plutonium recycled in mixed oxide (MOX) fuel, which they have been making since 1963. All of the UK nuclear companies are committed to further recycling of Magnox depleted uranium during the 1990s, and it is anticipated that oxide recycling will also become firmly established during the next decade. British Nuclear Fuels and Urenco Ltd, as the providers of fuel cycle services, are developing an infrastructure to close the fuel cycle for oxide nuclear fuel, using both the uranium and plutonium arising from reprocessing. (author)

  6. Cell-wall recycling and synthesis in Escherichia coli and Pseudomonas aeruginosa - their role in the development of resistance.

    Science.gov (United States)

    Dhar, Supurna; Kumari, Hansi; Balasubramanian, Deepak; Mathee, Kalai

    2018-01-01

    The bacterial cell-wall that forms a protective layer over the inner membrane is called the murein sacculus - a tightly cross-linked peptidoglycan mesh unique to bacteria. Cell-wall synthesis and recycling are critical cellular processes essential for cell growth, elongation and division. Both de novo synthesis and recycling involve an array of enzymes across all cellular compartments, namely the outer membrane, periplasm, inner membrane and cytoplasm. Due to the exclusivity of peptidoglycan in the bacterial cell-wall, these players are the target of choice for many antibacterial agents. Our current understanding of cell-wall biochemistry and biogenesis in Gram-negative organisms stems mostly from studies of Escherichia coli. An incomplete knowledge on these processes exists for the opportunistic Gram-negative pathogen, Pseudomonas aeruginosa. In this review, cell-wall synthesis and recycling in the various cellular compartments are compared and contrasted between E. coli and P. aeruginosa. Despite the fact that there is a remarkable similarity of these processes between the two bacterial species, crucial differences alter their resistance to β-lactams, fluoroquinolones and aminoglycosides. One of the common mediators underlying resistance is the amp system whose mechanism of action is closely associated with the cell-wall recycling pathway. The activation of amp genes results in expression of AmpC β-lactamase through its cognate regulator AmpR which further regulates multi-drug resistance. In addition, other cell-wall recycling enzymes also contribute to antibiotic resistance. This comprehensive summary of the information should spawn new ideas on how to effectively target cell-wall processes to combat the growing resistance to existing antibiotics.

  7. Transfer Rates of Enteric Microorganisms in Recycled Water during Machine Clothes Washing▿

    Science.gov (United States)

    O'Toole, Joanne; Sinclair, Martha; Leder, Karin

    2009-01-01

    Approximately 15% of overall Australian household water usage is in the laundry; hence, a significant reduction in household drinking water demand could be achieved if potable-quality water used for clothes washing is replaced with recycled water. To investigate the microbiological safety of using recycled water in washing machines, bacteriophages MS-2 and PRD-1, Escherichia coli, and Cryptosporidium parvum oocysts were used in a series of experiments to investigate the transfer efficiency of enteric microorganisms from washing machine water to objects including hands, environmental surfaces, air, and fabric swatches. By determining the transference efficiency, it is possible to estimate the numbers of microorganisms that the user will be exposed to if recycled water with various levels of residual microorganisms is used in washing machines. Results, expressed as transfer rates to a given surface area per object, showed that the mean transfer efficiency of E. coli, bacteriophages MS-2 and PRD-1, and C. parvum oocysts from seeded water to fabric swatches ranged from 0.001% to 0.090%. Greatest exposure to microorganisms occurred through direct contact of hands with seeded water and via hand contact with contaminated fabric swatches. No microorganisms were detected in the air samples during the washing machine spin cycle, and transfer rates of bacteriophages from water to environmental surfaces were 100-fold less than from water directly to hands. Findings from this study provide relevant information that can be used to refine regulations governing recycled water and to allay public concerns about the use of recycled water. PMID:19124592

  8. Recycling Pressure-Sensitive Products

    Science.gov (United States)

    Jihui Guo; Larry Gwin; Carl Houtman; Mark Kroll; Steven J. Severtson

    2012-01-01

    The efficient control of contaminants such as metals, plastics, inks and adhesives during the processing of recovered paper products determines the profitability of recycling mills. In fact, it is arguably the most important technical obstacle in expanding the use of recycled paper.1-4 An especially challenging category of contaminants to manage...

  9. DWPF Recycle Evaporator Simulant Tests

    International Nuclear Information System (INIS)

    Stone, M

    2005-01-01

    Testing was performed to determine the feasibility and processing characteristics of an evaporation process to reduce the volume of the recycle stream from the Defense Waste Processing Facility (DWPF). The concentrated recycle would be returned to DWPF while the overhead condensate would be transferred to the Effluent Treatment Plant. Various blends of evaporator feed were tested using simulants developed from characterization of actual recycle streams from DWPF and input from DWPF-Engineering. The simulated feed was evaporated in laboratory scale apparatus to target a 30X volume reduction. Condensate and concentrate samples from each run were analyzed and the process characteristics (foaming, scaling, etc) were visually monitored during each run. The following conclusions were made from the testing: Concentration of the ''typical'' recycle stream in DWPF by 30X was feasible. The addition of DWTT recycle streams to the typical recycle stream raises the solids content of the evaporator feed considerably and lowers the amount of concentration that can be achieved. Foaming was noted during all evaporation tests and must be addressed prior to operation of the full-scale evaporator. Tests were conducted that identified Dow Corning 2210 as an antifoam candidate that warrants further evaluation. The condensate has the potential to exceed the ETP WAC for mercury, silicon, and TOC. Controlling the amount of equipment decontamination recycle in the evaporator blend would help meet the TOC limits. The evaporator condensate will be saturated with mercury and elemental mercury will collect in the evaporator condensate collection vessel. No scaling on heating surfaces was noted during the tests, but splatter onto the walls of the evaporation vessels led to a buildup of solids. These solids were difficult to remove with 2M nitric acid. Precipitation of solids was not noted during the testing. Some of the aluminum present in the recycle streams was converted from gibbsite to

  10. A dominant negative mutant of rab5 inhibits infection of cells by foot-and-mouth disease virus; implications for virus entry

    DEFF Research Database (Denmark)

    Johns, Helen; Berryman, Stephen; Monaghan, Paul

    2009-01-01

    Foot-and-mouth disease virus (FMDV) can use a number of different integrins (alphavβ1, alphavβ3, alphavβ6, and alphavβ8) as receptors to initiate infection. Infection mediated by alphavβ6 is known to occur by clathrin-mediated endocytosis and is dependent on the acidic pH within endosomes....... On internalization, virus is detected rapidly in early endosomes (EE) and subsequently in perinuclear recycling endosomes (PNRE), but not in late endosomal compartments. Due to the extreme sensitivity of FMDV to acidic pH, it is thought that EE can provide a pH low enough for infection to occur; however, definitive...... proof that infection takes place from within these compartments is still lacking. Here we have investigated the intracellular transport steps required for FMDV infection of IBRS-2 cells, which express vβ8 as their FMDV receptor. These experiments confirmed that FMDV infection mediated by alphavβ8...

  11. Investigating the feasibility of using recycled processed water

    Energy Technology Data Exchange (ETDEWEB)

    Harkness, J. [Urban Systems, Kelowna, BC (Canada)

    2009-07-01

    By the year 2025, 52 countries, with two-thirds of the world's population, are expected to have water shortages. Approximately 3,800 cubic kilometres of fresh water is withdrawn annually from the world's lakes, river and aquifers, which is twice the volume extracted 50 years ago. Water use considerations, alternative water sources, and considerations when using recycled water were discussed in this presentation. A case study of the city of Dawson Creek was provided as it pertained to water reuse in the oil and gas industry. Considerations for recycled water use include health concerns; perception of sewage versus effluent; industrial workers' concerns; and the end product concept. Quality issues were also discussed along with access to water sources, regulations and risks. The case study included a discussion of guiding principles; Dawson Creek's water system; industrial water uses; wastewater system; effluent characteristics; and effluent reuse opportunities. It was concluded that concerns regarding water reuse are not insurmountable providing the driving factors are strong. figs.

  12. Recycling ampersand incineration: Evaluating the choices

    International Nuclear Information System (INIS)

    Denison, R.A.; Ruston, J.

    1993-01-01

    Conflicts between proponents of municipal solid waste incineration and advocates of recycling have escalated with efforts to reduce the volume of waste that ends up in landfills. Central to this debate is competition for materials that are both combustible and recyclable. Environmental and economic concerns also play a major role. This book, produced by the Environmental Defense Fund, compares recycling and incineration. It is intended for 'citizens, government officials, and business people who want to help resolve the solid-waste crisis.' The book is divided into three parts: recycling and incineration; health and environmental risk of incineration; and planning, public participation, and environmental review requirements. The book does an excellent job of discussing the benefits of recycling and the pitfalls of incineration. It provides helpful information for identifying questions that should be raised about incineration, but it does not raise similar queries about recycling. There is much worthwhile information here, but the book would be more useful if it identified critical issues for all waste reduction and management options

  13. Application of NIR hyperspectral imaging for post-consumer polyolefins recycling

    Science.gov (United States)

    Serranti, Silvia; Gargiulo, Aldo; Bonifazi, Giuseppe

    2012-06-01

    An efficient large-scale recycling approach of particulate solid wastes is always accomplished according to the quality of the materials fed to the recycling plant and/or to any possible continuous and reliable control of the different streams inside the processing plants. Processing technologies addressed to recover plastics need to be extremely powerful, since they must be relatively simple to be cost-effective, but also accurate enough to create high-purity products and able to valorize a substantial fraction of the plastic waste materials into useful products of consistent quality in order to be economical. On the other hand, the potential market for such technologies is large and the boost of environmental regulations, and the oil price increase, has made many industries interested both in "general purpose" waste sorting technologies, as well as in developing more specialized sensing devices and/or inspection logics for a better quality assessment of plastic products. In this perspective recycling strategies have to be developed taking into account some specific aspects as i) mixtures complexity: the valuable material has to be extracted from the residue, ii) overall production: the profitability of plastic can be achieved only with mass production and iii) costs: low-cost sorting processes are required. In this paper new analytical strategies, based on hyperspectral imaging in the near infrared field (1000-1700 nm), have been investigated and set up in order to define sorting and/or quality control logics that could be profitably applied, at industrial plant level, for polyolefins recycling.

  14. Study on safety evaluation for unrestricted recycling criteria of radioactive waste from dismantling operation

    International Nuclear Information System (INIS)

    Yoshimori, Michiro; Ohkoshi, Minoru; Abe, Masayoshi

    1995-01-01

    The study on safety evaluation was done, under contracting with the Science and Technology Agency, for recycling scrap metal arising from dismantling of reactor facilities. An object of this study is to contribute to the examination of establishing criteria and safety regulation for unrestricted recycling steel scrap. To define amount of market flow of iron material in Japan and the amount of radioactive waste generated from dismantling of reactor facilities, investigation had been carried out. On basis of these investigation results and data in several literature, individual doses to workers and to the members of the public have been calculated as well as collective doses. (author)

  15. Encouraging Vietnamese Household Recycling Behavior: Insights and Implications

    Directory of Open Access Journals (Sweden)

    The Ninh Nguyen

    2017-01-01

    Full Text Available This research aims to provide new insights into various determinants affecting household recycling. By focusing on Vietnam, this research also extends knowledge about sustainable behavior in emerging markets, which are the major culprits in terms of greenhouse gas emissions. Hypotheses were developed as a result of the critical review of relevant studies in the fields of marketing, psychology, and economics, and then tested using a quantitative survey data. Structured questionnaires were administered to Vietnamese respondents which yielded 486 usable responses. Multivariate statistics reveal that all the determinants influenced their recycling behavior except for moral norms. Attitude towards the importance of recycling exerted the strongest influence, followed by subjective norms and warm glow respectively. On the other hand, attitude towards the inconvenience of recycling significantly reduced recycling behavior. The research findings have important implications for strategies aimed at promoting recycling behavior. Communication and education programs should emphasize how household recycling contributes to environmental protection, as well as stress intrinsic rewards when recycling. Public media campaigns should feature opinion leaders and attractive communicators, who can effectively apply social pressure to perform recycling behavior. Organizations should also make every effort to make recycling more convenient.

  16. Enrichment of Phosphatidylethanolamine in Viral Replication Compartments via Co-opting the Endosomal Rab5 Small GTPase by a Positive-Strand RNA Virus.

    Directory of Open Access Journals (Sweden)

    Kai Xu

    2016-10-01

    Full Text Available Positive-strand RNA viruses build extensive membranous replication compartments to support replication and protect the virus from antiviral responses by the host. These viruses require host factors and various lipids to form viral replication complexes (VRCs. The VRCs built by Tomato bushy stunt virus (TBSV are enriched with phosphatidylethanolamine (PE through a previously unknown pathway. To unravel the mechanism of PE enrichment within the TBSV replication compartment, in this paper, the authors demonstrate that TBSV co-opts the guanosine triphosphate (GTP-bound active form of the endosomal Rab5 small GTPase via direct interaction with the viral replication protein. Deletion of Rab5 orthologs in a yeast model host or expression of dominant negative mutants of plant Rab5 greatly decreases TBSV replication and prevents the redistribution of PE to the sites of viral replication. We also show that enrichment of PE in the viral replication compartment is assisted by actin filaments. Interestingly, the closely related Carnation Italian ringspot virus, which replicates on the boundary membrane of mitochondria, uses a similar strategy to the peroxisomal TBSV to hijack the Rab5-positive endosomes into the viral replication compartments. Altogether, usurping the GTP-Rab5-positive endosomes allows TBSV to build a PE-enriched viral replication compartment, which is needed to support peak-level replication. Thus, the Rab family of small GTPases includes critical host factors assisting VRC assembly and genesis of the viral replication compartment.

  17. Antimony recycling in the United States in 2000

    Science.gov (United States)

    Carlin, James F.

    2006-01-01

    The importance of recycling has become more obvious as concerns about the environment and import dependence have grown in recent years. When materials are recycled, fewer natural resources are consumed, and less waste products go to landfills or pollute the water and air. This study, one of a series of reports on metals recycling in 2000, discusses the flow of antimony from mining through its uses and disposal with emphasis on recycling. In 2000, the recycling efficiency for antimony was estimated to be 89 percent, and the recycling rate was about 20 percent.

  18. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan.

    Science.gov (United States)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-Ichi

    2008-04-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g.,televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  19. Life-cycle flow of mercury and recycling scenario of fluorescent lamps in Japan

    International Nuclear Information System (INIS)

    Asari, Misuzu; Fukui, Kazuki; Sakai, Shin-ichi

    2008-01-01

    We summarized the mercury flow of mercury-containing products from their manufacture to their disposal in Japan and discussed the current management of mercury-containing hazardous household waste (HHW). The mercury flow originating from these products was estimated to be about 10-20 tonnes annually, about 5 tonnes of which was attributable to fluorescent lamps, the major mercury-containing product in Japan. The recent rapid increase in digital home electronics with liquid crystal displays (e.g., televisions, personal computers, mobile phones, and digital cameras) has led to a marked increase in the production of backlights, which are also fluorescent and contain mercury. Most of the annual flow was disposed of as waste, with only 0.6 tonnes Hg recovered. The mercury flow for end-of-life fluorescent lamps (excluding backlights) was analyzed under three scenarios for Kyoto, Japan for 2003: the present condition scenario, the improved recycling scenario, and the complete recycling scenario. Under the present condition scenario, mercury flow was calculated to be 34 kg Hg for incineration, 21 kg Hg for landfill, and only 4 kg Hg for recycling. The complete recycling scenario shows a simple flow, with all mercury recycled. Under this scenario for Kyoto, we calculated that a cyclic system having 47 kg of mercury (3.5 tonnes Hg in Japan) could be established if all fluorescent lamps (excluding those stored in residences) were collected and recycled. Mercury is a HHW priority chemical, and we need to limit its use and establish a closed-loop system. There are currently no regulations to achieve this, and the management of most HHWs is left to local governments. Therefore, products are disposed of in landfills or incinerated, except for some that are voluntarily collected and recycled. In order to recycle all of the waste fluorescent lamps, we must have a complete recycling system that has a high rate of public participation in collection. We also must have a closed

  20. Design study on advanced nuclear fuel recycle system. Conceptual design study of recycle system using molten salt

    International Nuclear Information System (INIS)

    Kasai, Y.; Kakehi, I.; Moro, T.; Higashi, T.; Tobe, K.; Kawamura, F.; Yonezawa, S.; Yoshiuji, T.

    1998-10-01

    Advanced recycle system engineering group of OEC (Oarai Engineering Center) has being carried out a design study of the advanced nuclear fuel recycle system using molten salt (electro-metallurgical process). This system is aiming for improvements of fuel cycle economy and reduction of environmental burden (MA recycles, Minimum of radioactive waste disposal), and also improvement of safety and nuclear non-proliferation. This report describes results of the design study that has been continued since December 1996. (1) A design concept of the advanced nuclear fuel recycle system, that is a module type recycles system of pyrochemical reprocessing and fuel re-fabrication was studied. The module system has advantage in balance of Pu recycle where modules are constructed in coincidence with the construction plan of nuclear power plants, and also has flexibility for technology progress. A demonstration system, minimum size of the above module, was studies. This system has capacity of 10 tHM/y and is able to demonstrate recycle technology of MOX fuel, metal fuel and nitride fuel. (2) Each process of the system, which are pyrochemical electrorefining system, cathode processor, de-cladding system, waste disposal system, etc., were studied. In this study, capacity of an electrorefiner was discussed, and vitrification experiment of molten salt using lead-boric acid glass was conducted. (3) A hot cell system and material handling system of the demonstration system was studied. A robot driven by linear motor was studied for the handling system, and an arrangement plan of the cell system was made. Criticality analysis in the cell system and investigation of material accountancy system of the recycle plant were also made. This design study will be continued in coincidence with design study of reactor and fuel, aiming to establish the concept of FBR recycle system. (author)

  1. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling.

    Science.gov (United States)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael; Pretz, Thomas; Wenzel, Henrik

    2015-06-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical and geographical perspective. Physical processing and sorting technology has reached a high level of maturity, and many quality issues linked to cross-contamination by commingling have been successfully addressed to date. New sorting plants tend to benefit from economies of scale, and innovations in automation and process control, which are targeted at curtailing process inefficiencies shown by operational practice. Technology developed for the sorting of commingled recyclables from separate collection is also being successfully used to upgrade residual MSW processing plants. The strongest motivation for central sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics and metals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Mechanical and chemical recycling of solid plastic waste.

    Science.gov (United States)

    Ragaert, Kim; Delva, Laurens; Van Geem, Kevin

    2017-11-01

    This review presents a comprehensive description of the current pathways for recycling of polymers, via both mechanical and chemical recycling. The principles of these recycling pathways are framed against current-day industrial reality, by discussing predominant industrial technologies, design strategies and recycling examples of specific waste streams. Starting with an overview on types of solid plastic waste (SPW) and their origins, the manuscript continues with a discussion on the different valorisation options for SPW. The section on mechanical recycling contains an overview of current sorting technologies, specific challenges for mechanical recycling such as thermo-mechanical or lifetime degradation and the immiscibility of polymer blends. It also includes some industrial examples such as polyethylene terephthalate (PET) recycling, and SPW from post-consumer packaging, end-of-life vehicles or electr(on)ic devices. A separate section is dedicated to the relationship between design and recycling, emphasizing the role of concepts such as Design from Recycling. The section on chemical recycling collects a state-of-the-art on techniques such as chemolysis, pyrolysis, fluid catalytic cracking, hydrogen techniques and gasification. Additionally, this review discusses the main challenges (and some potential remedies) to these recycling strategies and ground them in the relevant polymer science, thus providing an academic angle as well as an applied one. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Filter Backwash Recycling Rule Documents

    Science.gov (United States)

    The purpose of the FBRR is to require (PWSs) to review their recycle practices and, where appropriate, work with the state Primacy Agency to make any necessary changes to recycle practices that may compromise microbial control.

  4. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  5. Overview of HTGR fuel recycle

    International Nuclear Information System (INIS)

    Notz, K.J.

    1976-01-01

    An overview of HTGR fuel recycle is presented, with emphasis placed on reprocessing and fuel kernel refabrication. Overall recycle operations include (1) shipment and storage, (2) reprocessing, (3) refabrication, (4) waste handling, and (5) accountability and safeguards

  6. Sustaining the environment through recycling: an empirical study.

    Science.gov (United States)

    Ramayah, T; Lee, Jason Wai Chow; Lim, Shuwen

    2012-07-15

    This paper examines the determinants of recycling behaviour among 200 university students from the perspective of the theory of planned behaviour (TPB). Data was analysed using Structural Equation Modelling technique. Findings indicate that environmental awareness was significantly related to attitude towards recycling, whilst attitude and social norms had significant impact on recycling behaviour. However, convenience and cost of recycling were not significant reasons for recycling. The study has enhanced the understanding of the determinants of recycling behaviour and has implications for schools and governmental agencies in educating and encouraging positive recycling behaviour. It also confirms the appropriateness of the TPB in examining studies of this nature. Further suggestions for future research are offered. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Recycling fusion materials

    International Nuclear Information System (INIS)

    Ooms, L.

    2005-01-01

    The inherent safety and environmental advantages of fusion power in comparison with other energy sources play an important role in the public acceptance. No waste burden for future generations is therefore one of the main arguments to decide for fusion power. The waste issue has thus been studied in several documents and the final conclusion of which it is stated that there is no permanent disposal waste needed if recycling is applied. But recycling of fusion reactor materials is far to be obvious regarding mostly the very high specific activity of the materials to be handled, the types of materials and the presence of tritium. The main objective of research performed by SCK-CEN is to study the possible ways of recycling fusion materials and analyse the challenges of the materials management from fusion reactors, based on current practices used in fission reactors and the requirements for the manufacture of fusion equipment

  8. Extracellular delivery induced by ultrasound and microbubbles in cells

    Science.gov (United States)

    Hussein, Farah; Antonescu, Costin; Karshafian, Raffi

    2017-03-01

    Ultrasound and microbubble treatment (USMB) can enhance the intracellular uptake of molecules, which otherwise would be excluded from the cell, through USMB-mediated transient membrane disruption and through enhanced endocytosis. However, the effect of USMB on the outward movement of molecules from cells is not well understood. This study investigates the effects of USMB on the release of molecules from various cellular compartments including cytoplasm, lysosomes, and recycling endosomes. In vitro ARPE-19 (RPE henceforth) cells were loaded with Alexa fluor-labeled transferrin as a marker for recycling endosomes, LAMP-1 antibody was used to detect the fusion of lysosomes with the plasma membrane, GFP-transfected RPE cells were used to examine the release of GFP from the cytoplasm, and 7-AAD was used to assess cell viability. Subsequently, cells were exposed to USMB (106 cells/mL, 300 kPa peak negative pressure, 1 min treatment duration, and 20 µL/mL Definity microbubbles). Following USMB, the release of the fluorescent markers was examined at 1.5, 11.5, and 21.5 minutes from the start of USMB. The mean fluorescent intensity (MFI) of untreated and USMB treated samples were measured using flow cytometry. USMB increased the extracellular delivery of GFP molecules from the cytoplasm; the MFI in USMB treated GFP-transfected RPE cells decreased by 17% in viable cells and this MFI decreased by 70% in non-viable cells. This could be due to diffusion of GFP through the membrane disruptions induced by USMB. Additionally, the MFI of viable cells stained with LAMP-1 antibody increased by 50% and this increase was 15 folds in the non-viable cells indicating lysosome exocytosis as a mechanism for membrane repair. Furthermore, the MFI of cells loaded with fluorescent transferrin decreased by 22% after USMB treatment in viable cells, indicating a significant increase in transferrin recycling to the cell membrane. However, the increased recycling was not statistically significant

  9. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Differential requirements of arrestin-3 and clathrin for ligand-dependent and -independent internalization of human G protein-coupled receptor 40.

    Science.gov (United States)

    Qian, Jing; Wu, Chun; Chen, Xiaopan; Li, Xiangmei; Ying, Guoyuan; Jin, Lili; Ma, Qiang; Li, Guo; Shi, Ying; Zhang, Guozheng; Zhou, Naiming

    2014-11-01

    G protein-coupled receptor 40 (GPR40) is believed to be an attractive target to enhance insulin secretion in patients with type 2 diabetes. GPR40 has been found to couple to Gq protein, leading to the activation of phospholipase C and subsequent increases in the intracellular Ca(2+) level. However, the underlying mechanisms that regulate the internalization and desensitization of GPR40 remain to be elucidated. In the present study, a construct of GPR40 fused with enhanced green fluorescent protein (EGFP) at its C-terminus was constructed for direct imaging of the localization and internalization of GPR40 by confocal microscopy. In stably transfected HEK-293 cells, GPR40 receptors underwent rapid agonist-induced internalization and constitutive ligand-independent internalization. Our data demonstrated that the agonist-mediated internalization of GPR40 was significantly blocked by hypertonic sucrose treatment and by siRNA mediated depletion of the heavy chain of clathrin. In contrast, constitutive GPR40 internalization was not affected by hypertonic sucrose or by knock-down of clathrin expression, but it was affected by treatment with methyl-β-cyclodextrin (MβCD) and nystatin. Furthermore, our results using an arrestin-3-EGFP redistribution assay and siRNA-mediated knock-down of arrestin-3 and GRK2 expression revealed that arrestin-3 and GRK2 play an essential role in the regulation of agonist-mediated GPR40 internalization, but are not involved in the regulation of constitutive GPR40 internalization. Additionally, our observation showed that upon activation by agonist, the internalized GPR40 receptors were rapidly recycled back to the plasma membrane via Rab4/Rab5 positive endosomes, whereas the constitutively internalized GPR40 receptors were recycled back to the cell surface through Rab5 positive endosomes. Because FFA receptors exhibit a high level of homology, our observations could be applicable to other members of this family. Copyright © 2014 Elsevier Inc

  11. Long-term aging of recycled binders : [summary].

    Science.gov (United States)

    2015-10-01

    At 80 million tons a year representing more than 80% of all milled asphalt pavement : asphalt paving is Americas most recycled material. Asphalt can be recycled in place, which is : very cost effective; however, aging of recycled binder ca...

  12. Multi-layered nanoparticles for penetrating the endosome and nuclear membrane via a step-wise membrane fusion process.

    Science.gov (United States)

    Akita, Hidetaka; Kudo, Asako; Minoura, Arisa; Yamaguti, Masaya; Khalil, Ikramy A; Moriguchi, Rumiko; Masuda, Tomoya; Danev, Radostin; Nagayama, Kuniaki; Kogure, Kentaro; Harashima, Hideyoshi

    2009-05-01

    Efficient targeting of DNA to the nucleus is a prerequisite for effective gene therapy. The gene-delivery vehicle must penetrate through the plasma membrane, and the DNA-impermeable double-membraned nuclear envelope, and deposit its DNA cargo in a form ready for transcription. Here we introduce a concept for overcoming intracellular membrane barriers that involves step-wise membrane fusion. To achieve this, a nanotechnology was developed that creates a multi-layered nanoparticle, which we refer to as a Tetra-lamellar Multi-functional Envelope-type Nano Device (T-MEND). The critical structural elements of the T-MEND are a DNA-polycation condensed core coated with two nuclear membrane-fusogenic inner envelopes and two endosome-fusogenic outer envelopes, which are shed in stepwise fashion. A double-lamellar membrane structure is required for nuclear delivery via the stepwise fusion of double layered nuclear membrane structure. Intracellular membrane fusions to endosomes and nuclear membranes were verified by spectral imaging of fluorescence resonance energy transfer (FRET) between donor and acceptor fluorophores that had been dually labeled on the liposome surface. Coating the core with the minimum number of nucleus-fusogenic lipid envelopes (i.e., 2) is essential to facilitate transcription. As a result, the T-MEND achieves dramatic levels of transgene expression in non-dividing cells.

  13. An energy-efficient, adiabatic electrode stimulator with inductive energy recycling and feedback current regulation.

    Science.gov (United States)

    Arfin, Scott K; Sarpeshkar, Rahul

    2012-02-01

    In this paper, we present a novel energy-efficient electrode stimulator. Our stimulator uses inductive storage and recycling of energy in a dynamic power supply. This supply drives an electrode in an adiabatic fashion such that energy consumption is minimized. It also utilizes a shunt current-sensor to monitor and regulate the current through the electrode via feedback, thus enabling flexible and safe stimulation. Since there are no explicit current sources or current limiters, wasteful energy dissipation across such elements is naturally avoided. The dynamic power supply allows efficient transfer of energy both to and from the electrode and is based on a DC-DC converter topology that we use in a bidirectional fashion in forward-buck or reverse-boost modes. In an exemplary electrode implementation intended for neural stimulation, we show how the stimulator combines the efficiency of voltage control and the safety and accuracy of current control in a single low-power integrated-circuit built in a standard .35 μm CMOS process. This stimulator achieves a 2x-3x reduction in energy consumption as compared to a conventional current-source-based stimulator operating from a fixed power supply. We perform a theoretical analysis of the energy efficiency that is in accord with experimental measurements. This theoretical analysis reveals that further improvements in energy efficiency may be achievable with better implementations in the future. Our electrode stimulator could be widely useful for neural, cardiac, retinal, cochlear, muscular and other biomedical implants where low power operation is important.

  14. Waste management considerations in HTGR recycle operations

    International Nuclear Information System (INIS)

    Pence, D.T.; Shefcik, J.J.; Heath, C.A.

    1975-01-01

    Waste management considerations in the recycle of HTGR fuel are different from those encountered in the recycle of LWR fuel. The types of waste associated with HTGR recycle operations are discussed, and treatment methods for some of the wastes are described

  15. Genetic Control of Ascorbic Acid Biosynthesis and Recycling in Horticultural Crops

    Directory of Open Access Journals (Sweden)

    Ifigeneia Mellidou

    2017-07-01

    Full Text Available Ascorbic acid (AsA is an essential compound present in almost all living organisms that has important functions in several aspects of plant growth and development, hormone signaling, as well as stress defense networks. In recent years, the genetic regulation of AsA metabolic pathways has received much attention due to its beneficial role in human diet. Despite the great variability within species, genotypes, tissues and developmental stages, AsA accumulation is considered to be controlled by the fine orchestration of net biosynthesis, recycling, degradation/oxidation, and/or intercellular and intracellular transport. To date, several structural genes from the AsA metabolic pathways and transcription factors are considered to significantly affect AsA in plant tissues, either at the level of activity, transcription or translation via feedback inhibition. Yet, all the emerging studies support the notion that the steps proceeding through GDP-L-galactose phosphorylase and to a lesser extent through GDP-D-mannose-3,5-epimerase are control points in governing AsA pool size in several species. In this mini review, we discuss the current consensus of the genetic regulation of AsA biosynthesis and recycling, with a focus on horticultural crops. The aspects of AsA degradation and transport are not discussed herein. Novel insights of how this multifaceted trait is regulated are critical to prioritize candidate genes for follow-up studies toward improving the nutritional value of fruits and vegetables.

  16. Concrete Waste Recycling Process for High Quality Aggregate

    International Nuclear Information System (INIS)

    Ishikura, Takeshi; Fujii, Shin-ichi

    2008-01-01

    Large amount of concrete waste generates during nuclear power plant (NPP) dismantling. Non-contaminated concrete waste is assumed to be disposed in a landfill site, but that will not be the solution especially in the future, because of decreasing tendency of the site availability and natural resources. Concerning concrete recycling, demand for roadbeds and backfill tends to be less than the amount of dismantled concrete generated in a single rural site, and conventional recycled aggregate is limited of its use to non-structural concrete, because of its inferior quality to ordinary natural aggregate. Therefore, it is vital to develop high quality recycled aggregate for general uses of dismantled concrete. If recycled aggregate is available for high structural concrete, the dismantling concrete is recyclable as aggregate for industry including nuclear field. Authors developed techniques on high quality aggregate reclamation for large amount of concrete generated during NPP decommissioning. Concrete of NPP buildings has good features for recycling aggregate; large quantity of high quality aggregate from same origin, record keeping of the aggregate origin, and little impurities in dismantled concrete such as wood and plastics. The target of recycled aggregate in this development is to meet the quality criteria for NPP concrete as prescribed in JASS 5N 'Specification for Nuclear Power Facility Reinforced Concrete' and JASS 5 'Specification for Reinforced Concrete Work'. The target of recycled aggregate concrete is to be comparable performance with ordinary aggregate concrete. The high quality recycled aggregate production techniques are assumed to apply for recycling for large amount of non-contaminated concrete. These techniques can also be applied for slightly contaminated concrete dismantled from radiological control area (RCA), together with free release survey. In conclusion: a technology on dismantled concrete recycling for high quality aggregate was developed

  17. What do we know about metal recycling rates?

    Science.gov (United States)

    Graedel, T.E.; Allwood, J.; Birat, J.-P.; Buchert, M.; Hageluken, C.; Reck, B.K.; Sibley, S.F.; Sonnemann, G.

    2011-01-01

    The recycling of metals is widely viewed as a fruitful sustainability strategy, but little information is available on the degree to which recycling is actually taking place. This article provides an overview on the current knowledge of recycling rates for 60 metals. We propose various recycling metrics, discuss relevant aspects of recycling processes, and present current estimates on global end-of-life recycling rates (EOL-RR; i.e., the percentage of a metal in discards that is actually recycled), recycled content (RC), and old scrap ratios (OSRs; i.e., the share of old scrap in the total scrap flow). Because of increases in metal use over time and long metal in-use lifetimes, many RC values are low and will remain so for the foreseeable future. Because of relatively low efficiencies in the collection and processing of most discarded products, inherent limitations in recycling processes, and the fact that primary material is often relatively abundant and low-cost (which thereby keeps down the price of scrap), many EOL-RRs are very low: Only for 18 metals (silver, aluminum, gold, cobalt, chromium, copper, iron, manganese, niobium, nickel, lead, palladium, platinum, rhenium, rhodium, tin, titanium, and zinc) is the EOL-RR above 50% at present. Only for niobium, lead, and ruthenium is the RC above 50%, although 16 metals are in the 25% to 50% range. Thirteen metals have an OSR greater than 50%. These estimates may be used in considerations of whether recycling efficiencies can be improved; which metric could best encourage improved effectiveness in recycling; and an improved understanding of the dependence of recycling on economics, technology, and other factors. ?? 2011 by Yale University.

  18. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    Directory of Open Access Journals (Sweden)

    T. Marpaung

    2012-08-01

    Full Text Available In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS, due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle

  19. Reduction of Radioactive Waste Through the Reuse and Recycle Policy of the Sealed Radioactive Sources Management

    International Nuclear Information System (INIS)

    Marpaung, T.

    2012-01-01

    In the past few years, the utilization of sealed source for medical, industrial and research purposes has shown an accelerating increase. This situation will lead to increases in the amount of sealed radioactive. During its use, a sealed radioactive waste will eventually become either a spent sealed source or disused sealed radioactive source (DSRS), due to certain factors. The reduction of the amount of radioactive waste can be executed through the application of reuse and recycle of sealed source. The reuse and recycle policy for spent and disused sealed sources are not already specified yet. The reuse of spent sealed sources can be applied only for the sources which had been used in the medical field for radiotherapy, namely the reuse of a teletherapy Co-60 source in a calibration facility. The recycle of a spent sealed source can be performed for radioactive sources with relatively high activities and long half-lives; however, the recycling activity may only be performed by the manufacturer. To avoid legal conflicts, in the amendment to the Government Regulation No.27 Year 2002 on Management of Radioactive Waste, there will be a recommendation for a new scheme in the management of radioactive waste to facilitate the application of the principles of reduce, reuse, and recycle (author)

  20. Energetic conditions of effective recycling of composite castings

    OpenAIRE

    J. Jackowski

    2009-01-01

    The most reasonable way of recycling the metal composite materials consists in separation of the components. In case of the composites with saturated reinforcement it is the only recycling method. The process of separation of the components always undergoes in the presence of an additional liquid phase called a recycling medium. In a three-phase system including the material of composite reinforcement – liquid composite matrix – liquid recycling medium, an important role for the recycling pro...

  1. Is Municipal Solid Waste Recycling Economically Efficient?

    Science.gov (United States)

    Lavee, Doron

    2007-12-01

    It has traditionally been argued that recycling municipal solid waste (MSW) is usually not economically viable and that only when externalities, long-term dynamic considerations, and/or the entire product life cycle are taken into account, recycling becomes worthwhile from a social point of view. This article explores the results of a wide study conducted in Israel in the years 2000 2004. Our results reveal that recycling is optimal more often than usually claimed, even when externality considerations are ignored. The study is unique in the tools it uses to explore the efficiency of recycling: a computer-based simulation applied to an extensive database. We developed a simulation for assessing the costs of handling and treating MSW under different waste-management systems and used this simulation to explore possible cost reductions obtained by designating some of the waste (otherwise sent to landfill) to recycling. We ran the simulation on data from 79 municipalities in Israel that produce over 60% of MSW in Israel. For each municipality, we were able to arrive at an optimal method of waste management and compare the costs associated with 100% landfilling to the costs born by the municipality when some of the waste is recycled. Our results indicate that for 51% of the municipalities, it would be efficient to adopt recycling, even without accounting for externality costs. We found that by adopting recycling, municipalities would be able to reduce direct costs by an average of 11%. Through interviews conducted with representatives of municipalities, we were also able to identify obstacles to the utilization of recycling, answering in part the question of why actual recycling levels in Israel are lower than our model predicts they should be.

  2. India's ship recycling trade-off

    NARCIS (Netherlands)

    Worrell, E.; Athanasopoulou, V.

    2014-01-01

    The special nature of India's steel industry lends particular importance to ship recycling as a source of scrap. Ship recycling in upgraded 'green' facilities can substitute other 'dirty' ironmaking processes, resulting in energy savings and air pollutant emission reductions for the Indian steel

  3. A methodology for estimating potential doses and risks from recycling U.S. Department of Energy radioactive scrap metals

    International Nuclear Information System (INIS)

    MacKinney, J.A.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) is considering writing regulations for the controlled use of materials originating from radioactively contaminated zones which may be recyclable. These materials include metals, such as steel (carbon and stainless), nickel, copper, aluminum and lead, from the decommissioning of federal, and non-federal facilities. To develop criteria for the release of such materials, a risk analysis of all potential exposure pathways should be conducted. These pathways include direct exposure to the recycled material by the public and workers, both individual and collective, as well as numerous other potential exposure pathways in the life of the material. EPA has developed a risk assessment methodology for estimating doses and risks associated with recycling radioactive scrap metals. This methodology was applied to metal belonging to the U.S. Department of Energy. This paper will discuss the draft EPA risk assessment methodology as a tool for estimating doses and risks from recycling. (author)

  4. Mox fuels recycling

    International Nuclear Information System (INIS)

    Gay, A.

    1998-01-01

    This paper will firstly emphasis that the first recycling of plutonium is already an industrial reality in France thanks to the high degree of performance of La Hague and MELOX COGEMA's plants. Secondly, recycling of spent Mixed OXide fuel, as a complete MOX fuel cycle, will be demonstrated through the ability of the existing plants and services which have been designed to proceed with such fuels. Each step of the MOX fuel cycle concept will be presented: transportation, reception and storage at La Hague and steps of spent MOX fuel reprocessing. (author)

  5. Recycling of Reinforced Plastics

    Science.gov (United States)

    Adams, R. D.; Collins, Andrew; Cooper, Duncan; Wingfield-Digby, Mark; Watts-Farmer, Archibald; Laurence, Anna; Patel, Kayur; Stevens, Mark; Watkins, Rhodri

    2014-02-01

    This work has shown is that it is possible to recycle continuous and short fibre reinforced thermosetting resins while keeping almost the whole of the original material, both fibres and matrix, within the recyclate. By splitting, crushing hot or cold, and hot forming, it is possible to create a recyclable material, which we designate a Remat, which can then be used to remanufacture other shapes, examples of plates and tubes being demonstrated. Not only can remanufacturing be done, but it has been shown that over 50 % of the original mechanical properties, such as the E modulus, tensile strength, and interlaminar shear strength, can be retained. Four different forms of composite were investigated, a random mat Glass Fibre Reinforced Plastic (GFRP) bathroom component and boat hull, woven glass and carbon fibre cloth impregnated with an epoxy resin, and unidirectional carbon fibre pre-preg. One of the main factors found to affect composite recyclability was the type of resin matrix used in the composite. Thermoset resins tested were shown to have a temperature range around the Glass Transition Temperature (Tg) where they exhibit ductile behaviour, hence aiding reforming of the material. The high-grade carbon fibre prepreg was found to be less easy to recycle than the woven of random fibre laminates. One method of remanufacturing was by heating the Remat to above its glass transition temperature, bending it to shape, and then cooling it. However, unless precautions are taken, the geometric form may revert. This does not happen with the crushed material.

  6. Recycling and reuse of chosen kinds of waste materials in a building industry

    Science.gov (United States)

    Ferek, B.; Harasymiuk, J.; Tyburski, J.

    2016-08-01

    The article describes the current state of knowledge and practice in Poland concerning recycling as a method of reuse of chosen groups of waste materials in building industry. The recycling of building scraps is imposed by environmental, economic and technological premises. The issue of usage of sewage residues is becoming a problem of ever -growing gravity as the presence of the increasing number of pernicious contaminants makes their utilization for agricultural purposes more and more limited. The strategies of using waste materials on Polish building sites were analyzed. The analysis of predispositions to salvage for a group of traditional materials, such as: timber, steel, building debris, insulation materials, plastics, and on the example of new materials, such as: artificial light aggregates made by appropriate mixing of siliceous aggregates, glass refuses and sewage residues in order to obtain a commodity which is apt for economic usage also was made in the article. The issue of recycling of waste materials originating from building operations will be presented in the context of the binding home and EU legal regulations. It was proved that the level of recycling of building wastes in Poland is considerably different from one which is achieved in the solid market economies, both in quantity and in assortment. The method of neutralization of building refuses in connection with special waste materials, which are sewage sludge that is presented in the article may be one of the alternative solutions to the problem of recycling of these wastes not only on the Polish scale.

  7. NORM regulations

    Energy Technology Data Exchange (ETDEWEB)

    Gray, P. [ed.

    1997-02-01

    The author reviews the question of regulation for naturally occuring radioactive material (NORM), and the factors that have made this a more prominent concern today. Past practices have been very relaxed, and have often involved very poor records, the involvment of contractors, and the disposition of contaminated equipment back into commercial service. The rationale behind the establishment of regulations is to provide worker protection, to exempt low risk materials, to aid in scrap recycling, to provide direction for remediation and to examine disposal options. The author reviews existing regulations at federal and state levels, impending legislation, and touches on the issue of site remediation and potential liabilities affecting the release of sites contaminated by NORM.

  8. 76 FR 71861 - America Recycles Day, 2011

    Science.gov (United States)

    2011-11-18

    ... electronics annually, and without following proper recycling and management practices, the disposal of our old..., and prevent the recovery and reuse of valuable resources. For the well- being of our people and our..., management, and recycling that will accelerate our burgeoning electronics recycling market and create jobs...

  9. On the logistics of recycling : an introduction

    NARCIS (Netherlands)

    Flapper, S.D.P.

    1993-01-01

    An overview is given of the different logistic aspects of recycling, where recycling denotes "All the activities required for the reuse of materials and (semi-)finished products after they are no longer used by their last user." Special attention is paid to the forced recycling of durable

  10. Hydrogen recycle modeling in transport codes

    International Nuclear Information System (INIS)

    Howe, H.C.

    1979-01-01

    The hydrogen recycling models now used in Tokamak transport codes are reviewed and the method by which realistic recycling models are being added is discussed. Present models use arbitrary recycle coefficients and therefore do not model the actual recycling processes at the wall. A model for the hydrogen concentration in the wall serves two purposes: (1) it allows a better understanding of the density behavior in present gas puff, pellet, and neutral beam heating experiments; and (2) it allows one to extrapolate to long pulse devices such as EBT, ISX-C and reactors where the walls are observed or expected to saturate. Several wall models are presently being studied for inclusion in transport codes

  11. Methods to estimate the transfer of contaminants into recycling products - A case study from Austria.

    Science.gov (United States)

    Knapp, Julika; Allesch, Astrid; Müller, Wolfgang; Bockreis, Anke

    2017-11-01

    Recycling of waste materials is desirable to reduce the consumption of limited primary resources, but also includes the risk of recycling unwanted, hazardous substances. In Austria, the legal framework demands secondary products must not present a higher risk than comparable products derived from primary resources. However, the act provides no definition on how to assess this risk potential. This paper describes the development of different quantitative and qualitative methods to estimate the transfer of contaminants in recycling processes. The quantitative methods comprise the comparison of concentrations of harmful substances in recycling products to corresponding primary products and to existing limit values. The developed evaluation matrix, which considers further aspects, allows for the assessment of the qualitative risk potential. The results show that, depending on the assessed waste fraction, particular contaminants can be critical. Their concentrations were higher than in comparable primary materials and did not comply with existing limit values. On the other hand, the results show that a long-term, well-established quality control system can assure compliance with the limit values. The results of the qualitative assessment obtained with the evaluation matrix support the results of the quantitative assessment. Therefore, the evaluation matrix can be suitable to quickly screen waste streams used for recycling to estimate their potential environmental and health risks. To prevent the transfer of contaminants into product cycles, improved data of relevant substances in secondary resources are necessary. In addition, regulations for material recycling are required to assure adequate quality control measures, including limit values. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Essential role of STX6 in esophageal squamous cell carcinoma growth and migration

    Energy Technology Data Exchange (ETDEWEB)

    Du, Jin [Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China); Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028 (China); Liu, Xiang [Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China); Wu, Yanhu, E-mail: wuyanhu@njmu.edu.cn [Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China); Zhu, Jinfu; Tang, Yihu [Department of Cardiothoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing 210029 (China)

    2016-03-25

    Abnormalities in endosomes, or dysregulation in their trafficking, play an important role directly in many diseases including oncogenesis. Syntaxin-6 (STX6) is involved in diverse cellular functions in a variety of cell types and has been shown to regulate many intracellular membrane trafficking events such as endocytosis, recycling and anterograde and retrograde trafficking. However, its expression pattern and biological functions in esophageal squamous cell carcinoma (ESCC) remained unknown. Here, we have found that the expression of STX6 was up-regulated in ESCC samples, its expression was significantly correlated with tumor size, histological differentiation, lymph node metastasis and depth. On one hand, STX6 silencing inhibited ESCC cells viability and proliferation in a p53-dependent manner. On the other hand, STX6 effect integrin trafficking and regulate ESCC cells migration. Taken together, our study revealed the oncogenic roles of STX6 in the progression of ESCC, and it might be a valuable target for ESCC therapy.

  13. Recycling of nonferrous metals from waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Urban, A

    1982-02-01

    Recycling of metals was one of the 9 central subjects of the international symposium on 'Materials and Energy from Refuse', held in Antwerpen on October 20 to 22, 1981. Six of 65 poster sessions papers were on metal recycling; four of them discussed the recycling of nonferrous metals.

  14. Recycling behaviour in healthcare: waste handling at work.

    Science.gov (United States)

    Vogt, Joachim; Nunes, Katia R A

    2014-01-01

    This article reviews the motivational factors for environmental behaviour in general, presenting a case study on recycling disposable plastics in hospitals. Results show that 90% of over 600 employees from six analysed hospitals in Germany reported that the recycling of disposable plastics on the wards makes sense from an environmental and economic point of view. The case study reports an assessment of recycling attitudes and problems of hospital staff, mainly nurses. Employees in eco-certified hospitals were much more satisfied and reported fewer problems with the recycling system. The gender effect was significant only for saving energy, while age correlated with nearly all reported pro-environmental behaviour at home. At work, the mere introduction of a recycling system was insufficient to achieve good recycling results. Based on the study findings, recommendations are given aimed at improving the safety and sustainability of the recycling system.

  15. Space Plastic Recycling System, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Techshot's proposed Space Plastic Recycler (SPR) is an automated closed loop plastic recycling system that allows the automated conversion of disposable ISS...

  16. Probabilistic Analysis of Structural Member from Recycled Aggregate Concrete

    Science.gov (United States)

    Broukalová, I.; Šeps, K.

    2017-09-01

    The paper aims at the topic of sustainable building concerning recycling of waste rubble concrete from demolition. Considering demands of maximising recycled aggregate use and minimising of cement consumption, composite from recycled concrete aggregate was proposed. The objective of the presented investigations was to verify feasibility of the recycled aggregate cement based fibre reinforced composite in a structural member. Reliability of wall from recycled aggregate fibre reinforced composite was assessed in a probabilistic analysis of a load-bearing capacity of the wall. The applicability of recycled aggregate fibre reinforced concrete in structural applications was demonstrated. The outcomes refer to issue of high scatter of material parameters of recycled aggregate concretes.

  17. Bottle & Can Recycling in Denmark: addressing issues and optimizing the recycling rate

    OpenAIRE

    Carnevale, Alessandro; Larsen, Lucas; Tetens, Simon W.

    2015-01-01

    The research is conducted in the landscape of environmental care and consumer behaviour. This paper explores the different dynamics revolving around the recycling of plastic bottles and aluminium cans in Denmark. The aim is to shed light on the possible impediments people might encounter when attempting to hand back their deposit marked bottle to the allocated facilities as well as illuminating what the main forces involved in encouraging or inhibiting people from recycling are. The ultimate ...

  18. Economics and recycling

    Energy Technology Data Exchange (ETDEWEB)

    Butlin, J A

    1977-06-01

    The current state of recycling technology could appear to be a question of supply and demand, first for storage, disposal, and reclamation facilities, and secondly, for reclaimed materials. If supply and demand are to be relied upon as an environmental policy tool, several conditions need to exist within the economy: supply data for storage and disposal facilities should reflect the full social cost of their use for this purpose relative to any other; demand data for the use of storage facilities must reflect the full social benefit of having waste go through one channel rather than some other; demand for and supply of reclaimed materials for recycling must reflect the full costs and benefits of rechanneling them back into production or consumption; and the markets for products competitive to recycled raw materials (mainly virgin raw materials) should reflect full social costs and benefits, as should the markets for the alternative uses of storage and disposal facilities. If these conditions are met (in addition to a few technical ones), then the problem of waste management will not arise. (MCW)

  19. The Recycler Electron Cooler

    Energy Technology Data Exchange (ETDEWEB)

    Shemyakin, A. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Prost, L. R. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2013-03-19

    The Recycler Electron cooler was the first (and so far, the only) cooler working at a relativistic energy (γ = 9.5). It was successfully developed in 1995-2004 and was in operation at Fermilab in 2005-2011, providing cooling of antiprotons in the Recycler ring. This paper describes the cooler, difficulties in achieving the required electron beam parameters and the ways to overcome them, cooling measurements, and details of operation.

  20. Tire recycling technologies: What is the future?

    NARCIS (Netherlands)

    Saiwari, Sitisaiyidah; van Hoek, Johannes Wilhelmus; Dierkes, Wilma K.; Noordermeer, Jacobus W.M.; Blume, Anke; Heideman, G.

    2016-01-01

    Recycling is a heavily discussed topic nowadays, and recycled tire material to be re-used for the same application is one of the spear points of current R&D activities. Regarding the immense amount of used tires, more than just one outlet for the recycled material is needed. Besides the commonly