WorldWideScience

Sample records for regulates cytotoxic activities

  1. All-trans retinoic acid negatively regulates cytotoxic activities of nature killer cell line 92

    International Nuclear Information System (INIS)

    Li Ang; He Meilan; Wang Hui; Qiao Bin; Chen Ping; Gu Hua; Zhang Mengjie; He Shengxiang

    2007-01-01

    NK cells are key components of innate immune systems and their activities are regulated by cytokines and hormones. All-trans retinoic acid (ATRA), as a metabolite of vitamin A and an immunomodulatory hormone, plays an important role in regulating immune responses. In the present study, we investigated the effect of ATRA on human NK cell line NK92. We found that ATRA dose-dependently suppressed cytotoxic activities of NK92 cells without affecting their proliferation. To explore the mechanisms underlying the ATRA influence on NK92 cells, we examined the production of cytokines (TNF-α, IFN-γ), gene expression of cytotoxic-associated molecules (perforin, granzyme B, nature killer receptors (NCRs), and NKG2D), and the activation of NF-κB pathways related with immune response. Our results demonstrated that ATRA suppressed NF-κB activity and prevented IκBα degradation in a dose-dependent way, inhibited IFN-γ production and gene expression of granzyme B and NKp46. Our findings suggest that ATRA is a negative regulator of NK92 cell activation and may act as a potential regulator of anti-inflammatory functions in vivo

  2. Cystatin F as a regulator of immune cell cytotoxicity.

    Science.gov (United States)

    Kos, Janko; Nanut, Milica Perišić; Prunk, Mateja; Sabotič, Jerica; Dautović, Esmeralda; Jewett, Anahid

    2018-05-10

    Cysteine cathepsins are lysosomal peptidases involved in the regulation of innate and adaptive immune responses. Among the diverse processes, regulation of granule-dependent cytotoxicity of cytotoxic T-lymphocytes (CTLs) and natural killer (NK) cells during cancer progression has recently gained significant attention. The function of cysteine cathepsins is regulated by endogenous cysteine protease inhibitors-cystatins. Whereas other cystatins are generally cytosolic or extracellular proteins, cystatin F is present in endosomes and lysosomes and is thus able to regulate the activity of its target directly. It is delivered to endosomal/lysosomal vesicles as an inactive, disulphide-linked dimer. Proteolytic cleavage of its N-terminal part leads to the monomer, the only form that is a potent inhibitor of cathepsins C, H and L, involved in the activation of granzymes and perforin. In NK cells and CTLs the levels of active cathepsin C and of granzyme B are dependent on the concentration of monomeric, active cystatin F. In tumour microenvironment, inactive dimeric cystatin F can be secreted from tumour cells or immune cells and further taken up by the cytotoxic cells. Subsequent monomerization and inhibition of cysteine cathepsins within the endosomal/lysosomal vesicles impairs granzyme and perforin activation, and provokes cell anergy. Further, the glycosylation pattern has been shown to be important in controlling secretion of cystatin F from target cells, as well as internalization by cytotoxic cells and trafficking to endosomal/lysosomal vesicles. Cystatin F is therefore an important mediator used by bystander cells to reduce NK and T-cell cytotoxicity.

  3. Activating Transcription Factor 3 regulates in part the enhanced tumour cell cytotoxicity of the histone deacetylase inhibitor M344 and cisplatin in combination

    Directory of Open Access Journals (Sweden)

    St Germain Carly

    2010-09-01

    Full Text Available Abstract Background Activating Transcription Factor (ATF 3 is a key regulator of the cellular integrated stress response whose expression has also been correlated with pro-apoptotic activities in tumour cell models. Combination treatments with chemotherapeutic drugs, such as cisplatin, and histone deacetylase (HDAC inhibitors have been demonstrated to enhance tumour cell cytotoxicity. We recently demonstrated a role for ATF3 in regulating cisplatin-induced apoptosis and others have shown that HDAC inhibition can also induce cellular stress. In this study, we evaluated the role of ATF3 in regulating the co-operative cytotoxicity of cisplatin in combination with an HDAC inhibitor. Results The HDAC inhibitor M344 induced ATF3 expression at the protein and mRNA level in a panel of human derived cancer cell lines as determined by Western blot and quantitative RT-PCR analyses. Combination treatment with M344 and cisplatin lead to increased induction of ATF3 compared with cisplatin alone. Utilizing the MTT cell viability assay, M344 treatments also enhanced the cytotoxic effects of cisplatin in these cancer cell lines. The mechanism of ATF3 induction by M344 was found to be independent of MAPKinase pathways and dependent on ATF4, a known regulator of ATF3 expression. ATF4 heterozygote (+/- and knock out (-/- mouse embryonic fibroblast (MEF as well as chromatin immunoprecipitation (ChIP assays were utilized in determining the mechanistic induction of ATF3 by M344. We also demonstrated that ATF3 regulates the enhanced cytotoxicity of M344 in combination with cisplatin as evidenced by attenuation of cytotoxicity in shRNAs targeting ATF3 expressing cells. Conclusion This study identifies the pro-apoptotic factor, ATF3 as a novel target of M344, as well as a mediator of the co-operative effects of cisplatin and M344 induced tumour cell cytotoxicity.

  4. Pseudomonas aeruginosa invasion and cytotoxicity are independent events, both of which involve protein tyrosine kinase activity.

    Science.gov (United States)

    Evans, D J; Frank, D W; Finck-Barbançon, V; Wu, C; Fleiszig, S M

    1998-04-01

    Pseudomonas aeruginosa clinical isolates exhibit invasive or cytotoxic phenotypes. Cytotoxic strains acquire some of the characteristics of invasive strains when a regulatory gene, exsA, that controls the expression of several extracellular proteins, is inactivated. exsA mutants are not cytotoxic and can be detected within epithelial cells by gentamicin survival assays. The purpose of this study was to determine whether epithelial cell invasion precedes and/or is essential for cytotoxicity. This was tested by measuring invasion (gentamicin survival) and cytotoxicity (trypan blue staining) of PA103 mutants deficient in specific exsA-regulated proteins and by testing the effect of drugs that inhibit invasion for their effect on cytotoxicity. A transposon mutant in the exsA-regulated extracellular factor exoU was neither cytotoxic nor invasive. Furthermore, several of the drugs that inhibited invasion did not prevent cytotoxicity. These results show that invasion and cytotoxicity are mutually exclusive events, inversely regulated by an exsA-encoded invasion inhibitor(s). Both involve host cell protein tyrosine kinase (PTK) activity, but they differ in that invasion requires Src family tyrosine kinases and calcium-calmodulin activity. PTK inhibitor drugs such as genistein may have therapeutic potential through their ability to block both invasive and cytotoxicity pathways via an action on the host cell.

  5. Cysteine Cathepsins as Regulators of the Cytotoxicity of NK and T Cells

    Science.gov (United States)

    Perišić Nanut, Milica; Sabotič, Jerica; Jewett, Anahid; Kos, Janko

    2014-01-01

    Cysteine cathepsins are lysosomal peptidases involved at different levels in the processes of the innate and adaptive immune responses. Some, such as cathepsins B, L, and H are expressed constitutively in most immune cells. In cells of innate immunity they play a role in cell adhesion and phagocytosis. Other cysteine cathepsins are expressed more specifically. Cathepsin X promotes dendritic cell maturation, adhesion of macrophages, and migration of T cells. Cathepsin S is implicated in major histocompatibility complex class II antigen presentation, whereas cathepsin C, expressed in cytotoxic T lymphocytes and natural killer (NK) cells, is involved in processing pro-granzymes into proteolytically active forms, which trigger cell death in their target cells. The activity of cysteine cathepsins is controlled by endogenous cystatins, cysteine protease inhibitors. Of these, cystatin F is the only cystatin that is localized in endosomal/lysosomal vesicles. After proteolytic removal of its N-terminal peptide, cystatin F becomes a potent inhibitor of cathepsin C with the potential to regulate pro-granzyme processing and cell cytotoxicity. This review is focused on the role of cysteine cathepsins and their inhibitors in the molecular mechanisms leading to the cytotoxic activity of T lymphocytes and NK cells in order to address new possibilities for regulation of their function in pathological processes. PMID:25520721

  6. Cisplatin Induces Cytotoxicity through the Mitogen-Activated Protein Kinase Pathways ana Activating Transcription Factor 3

    Directory of Open Access Journals (Sweden)

    Carly St. Germain

    2010-07-01

    Full Text Available The mechanisms underlying the proapoptotic effect of the chemotherapeutic agent, cisplatin, are largely undefined. Understanding the mechanisms regulating cisplatin cytotoxicity may uncover strategies to enhance the efficacy of this important therapeutic agent. This study evaluates the role of activating transcription factor 3 (ATF3 as a mediator of cisplatin-induced cytotoxicity. Cytotoxic doses of cisplatin and carboplatin treatments consistently induced ATF3 expression in five tumor-derived cell lines. Characterization of this induction revealed a p53, BRCA1, and integrated stress response-independent mechanism, all previously implicated in stress-mediated ATF3 induction. Analysis of mitogenactivated protein kinase (MAPK pathway involvement in ATF3 induction by cisplatin revealed a MAPK-dependent mechanism. Cisplatin treatment combined with specific inhibitors to each MAPK pathway (c-Jun N-terminal kinase, extracellularsignal-regulated kinase, and p38 resulted in decreasedATF3 induction at the protein level. MAPK pathway inhibition led to decreased ATF3 messenger RNA expression and reduced cytotoxic effects of cisplatin as measured by the 3-(4,5-dimethylthiazol-2-ylF2,5-diphenyltetrazolium bromide cell viability assay. In A549 lung carcinoma cells, targeting ATF3 with specific small hairpin RNA also attenuated the cytotoxic effects of cisplatin. Similarly, ATF3-/murine embryonic fibroblasts (MEFs were shown to be less sensitive to cisplatin-induced cytotoxicity compared with ATF3+/+ MEFs. This study identifies cisplatin as a MAPK pathway-dependent inducer of ATF3, whose expression influences cisplatin’s cytotoxic effects.

  7. Role of T-bet, the master regulator of Th1 cells, in the cytotoxicity of murine CD4+ T cells.

    Science.gov (United States)

    Eshima, Koji; Misawa, Kana; Ohashi, Chihiro; Iwabuchi, Kazuya

    2018-05-01

    Although CD4 + T cells are generally regarded as helper T cells, some activated CD4 + T cells have cytotoxic properties. Given that CD4 + cytotoxic T lymphocytes (CTLs) often secrete IFN-γ, CTL activity among CD4 + T cells may be attributable to Th1 cells, where a T-box family molecule, T-bet serves as the "master regulator". However, although the essential contribution of T-bet to expression of IFN-γ has been well-documented, it remains unclear whether T-bet is involved in CD4 + T cell-mediated cytotoxicity. In this study, to investigate the ability of T-bet to confer cytolytic activity on CD4 + T cells, the T-bet gene (Tbx21) was introduced into non-cytocidal CD4 + T cell lines and their cytolytic function analyzed. Up-regulation of FasL (CD178), which provided the transfectant with cytotoxicity, was observed in Tbx21transfected CD4 + T cells but not in untransfected parental cells. In one cell line, T-bet transduction also induced perforin gene (Prf1) expression and Tbx21 transfectants efficiently killed Fas - target cells. Although T-bet was found to repress up-regulation of CD40L (CD154), which controls FasL-mediated cytolysis, the extent of CD40L up-regulation on in vitro-differentiated Th1 cells was similar to that on Th2 cells, suggesting the existence of a compensatory mechanism. These results collectively indicate that T-bet may be involved in the expression of genes, such as FasL and Prf1, which confer cytotoxicity on Th1 cells. © 2018 The Societies and John Wiley & Sons Australia, Ltd.

  8. miR-146a down-regulation alleviates H2O2-induced cytotoxicity of PC12 cells by regulating MCL1/JAK/STAT pathway : miR-146a down-regulation relieves H2O2-induced PC12 cells cytotoxicity by MCL1/JAK/STAT.

    Science.gov (United States)

    Yang, Xuecheng; Mao, Xin; Ding, Xuemei; Guan, Fengju; Jia, Yuefeng; Luo, Lei; Li, Bin; Tan, Hailin; Cao, Caixia

    2018-02-26

    Oxidative stress and miRNAs have been confirmed to play an important role in neurological diseases. The study aimed to explore the underlying effect and mechanisms of miR-146a in H 2 O 2 -induced injury of PC12 cells. Here, PC12 cells were stimulated with 200 μM of H 2 O 2 to construct oxidative injury model. Cell injury was evaluated on the basis of the changes in cell viability, migration, invasion, apoptosis, and DNA damage. Results revealed that miR-146a expression was up-regulated in H 2 O 2 -induced PC12 cells. Functional analysis showed that down-regulation of miR-146a alleviated H 2 O 2 -induced cytotoxicity in PC12 cells. Dual-luciferase reporter and western blot assay verified that MCL1 was a direct target gene of miR-146a. Moreover, anti-miR-146a-mediated suppression on cell cytotoxicity was abated following MCL1 knockdown in H 2 O 2 -induced PC12 cells. Furthermore, MCL1 activated JAK/STAT signaling pathway and MCL1 overexpression attenuated H 2 O 2 -induced cytotoxicity in PC12 cells by JAK/STAT signaling pathway. In conclusion, this study suggested that suppression of miR-146a abated H 2 O 2 -induced cytotoxicity in PC12 cells via regulating MCL1/JAK/STAT pathway.

  9. Interleukin-2 activation of cytotoxic cells in postmastectomy seroma.

    Science.gov (United States)

    Gercel-Taylor, C; Hoffman, J P; Taylor, D D; Owens, K J; Eisenberg, B L

    1996-02-15

    Lymphocytes were isolated from breast seroma fluids and used to study the mechanism of activation of cytotoxic lymphocytes and possible role of immunological potentiation following surgery in breast cancer patients. Single or serial samples were obtained from patients who had undergone mastectomy or lumpectomy with axillary node dissection. Lymphocytes were activated with rIL-2 (interleukin-2) and their cytotoxic activity was studied against Daudi and K562 cells and against a breast tumor line (SKBr-3). All of the patients (21/21) responded to IL-2 stimulation by significant activation of cytotoxic activity. The unstimulated cytotoxic activity of these cells against NK targets was low with less than 10% specific release in cytotoxicity assays. In simultaneous experiments, autologous seroma fluid was included during activation of lymphocytes to study possible regulatory molecules that may be present. In 17/21 patients, the presence of their seroma fluid, during the activation period, enhanced or did not effect the cytotoxic potential of their lymphocytes; inhibition was observed when seroma fluids from 4/21 patients were included. Analysis of the cytotoxic population derived from combined IL-2 and seroma treatments indicates the presence of cells with increased expression of CD56, and CD2, as well as in some cases CD16 expression. Cytotoxic lymphocytes derived from IL-2 and seroma treatments appeared to be more effective killers. Modulation of CD2 expression with seroma alone appeared to result in the generation of this highly cytotoxic population. This study demonstrates the role of CD2 expression in the effectiveness of LAK cell killing and also potential benefit of an immunotherapeutic approach to the postoperative treatment of carcinoma of the breast.

  10. Anti-inflammatory and cytotoxic activities of five Veronica species.

    Science.gov (United States)

    Harput, U Sebnem; Saracoglu, Iclal; Inoue, Makoto; Ogihara, Yukio

    2002-04-01

    Biological activities of five Veronica species (Scrophulariaceae), V. cymbalaria, V. hederifolia, V. pectinata var. glandulosa, V. persica and V. polita were studied for their anti-inflammatory and cytotoxic activities. Their methanol extracts showed both the inhibitory activity of nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated macrophages and cytotoxic activity against KB epidermoid carcinoma and B16 melanoma. When the methanol extracts were fractionated between water and chloroform, water fractions significantly inhibited NO production without any cytotoxicity, while chloroform fractions showed cytotoxicity dose-dependently. When the radical scavenging activity was determined using 2,2-diphenyl-1-picryl-hydrazyl (DPPH), water fractions of the five Veronica species scavenged free radicals effectively, suggesting that the inhibitory effect of this species on NO production was due to their radical scavenging activity. On the other hand, chloroform fractions of Veronica species except for V. cymbalaria showed similar cytotoxic activity against KB and B16 melanoma cells.

  11. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Silymarin attenuated paraquat-induced cytotoxicity in macrophage by regulating Trx/TXNIP complex, inhibiting NLRP3 inflammasome activation and apoptosis.

    Science.gov (United States)

    Liu, Zhenning; Sun, Mingli; Wang, Yu; Zhang, Lichun; Zhao, Hang; Zhao, Min

    2018-02-01

    Oxidative stress and inflammation are involved in paraquat-induced cytotoxicity. Silymarin can exert a potent antioxidative and anti-inflammatory effect in various pathophysiological processes. The aim of this current study is to explore the protective effect and potential mechanism of silymarin in paraquat-induced macrophage injury. Cells were pretreated with different doses of silymarin for 3h before exposure to paraquat. At 24h after exposure to paraquat, the paraquat-induced cytotoxicity to macrophage was measured via the MTT assay and LDH release. The levels of intracellular reactive oxygen species, GSH-Px, SOD, and lipid peroxidation product malondialdehyde were measured to evaluate the oxidative effect of paraquat. NLRP3 inflammasome and cytokines secretion in macrophage exposed to paraquat at 24h were measured via immunofluorescence microscopy, western blot or Elisa. Our results revealed that paraquat could dramatically cause cytotoxicity and reactive oxygen species generation, enhance TXNIP expression, and induce NLRP3 inflammasome activation and cytokines secretion. The pretreatment with silymarin could remarkably reduce the cytotoxicity, promote the expression of Trx and antioxidant enzymes, and suppress the TXNIP and NLRP3 inflammasome activation. In conclusion, silymarin attenuated paraquat-induced cytotoxicity in macrophage by inhibiting oxidative stress, NLRP3 inflammasome activation, cytokines secretion and apoptosis. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Cytotoxic activity of Agave lechuguilla Torr | Casillas | African ...

    African Journals Online (AJOL)

    The cytotoxic activity of extract and isolated saponin from leaves of Agave lechuguilla was investigated. Ethanol extract from leaves of A. lechuguilla exhibited cytotoxic activity against HeLa cells in vitro (50% inhibitory concentration (IC50) = 89 μg/ml). Bioassay-guided fractionation of this extract had led to the isolation of 5-β ...

  14. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Ramana, K V; Srivastava, Satish K

    2013-12-01

    Aldose reductase (AR), a glucose-metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30 µM) relative to glucose. Acrolein, a major endogenous lipid peroxidation product as well as a component of environmental pollutants and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders, but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells (SAECs). Exposure of SAECs to varying concentrations of acrolein caused cell death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low-dose (5-10 µM) but not the high-dose (>10 µM) acrolein-induced SAEC death. AR inhibition protected SAECs from low-dose (5 µM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail moment, and annexin V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of the proapoptotic proteins Bax and Bad from the cytosol to the mitochondria and that of Bcl2 and BclXL from the mitochondria to the cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPKs), such as extracellular signal-regulated kinases 1 and 2, stress-activated protein kinase/c-Jun NH2-terminal kinase, and p38MAPK, and c-Jun were transiently activated in airway epithelial cells by acrolein in a concentration- and time-dependent fashion, which was significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. Copyright © 2013 Elsevier Inc. All rights

  15. Aldose reductase regulates acrolein-induced cytotoxicity in human small airway epithelial cells

    Science.gov (United States)

    Yadav, Umesh CS; Ramana, KV; Srivastava, SK

    2013-01-01

    Aldose reductase (AR), a glucose metabolizing enzyme, reduces lipid aldehydes and their glutathione conjugates with more than 1000-fold efficiency (Km aldehydes 5-30μM) than glucose. Acrolein, a major endogenous lipid peroxidation product as well as component of environmental pollutant and cigarette smoke, is known to be involved in various pathologies including atherosclerosis, airway inflammation, COPD, and age-related disorders but the mechanism of acrolein-induced cytotoxicity is not clearly understood. We have investigated the role of AR in acrolein-induced cytotoxicity in primary human small airway epithelial cells SAECs. Exposure of SAECs to varying concentrations of acrolein caused cell-death in a concentration- and time-dependent manner. AR inhibition by fidarestat prevented the low (5 to 10 μM) but not high (>10 μM) concentrations of acrolein-induced SAECs cell death. AR inhibition protected SAECs from low dose (5 μM) acrolein-induced cellular reactive oxygen species (ROS). Inhibition of acrolein-induced apoptosis by fidarestat was confirmed by decreased condensation of nuclear chromatin, DNA fragmentation, comet tail-moment, and annexin-V fluorescence. Further, fidarestat inhibited acrolein-induced translocation of pro-apoptotic proteins Bax and Bad from cytosol to the mitochondria, and that of Bcl2 and BclXL from mitochondria to cytosol. Acrolein-induced cytochrome c release from mitochondria was also prevented by AR inhibition. The mitogen-activated protein kinases (MAPK) such as extracellular signal-regulated kinases 1 and 2 (ERK1/2), stress-activated protein kinases/c-jun NH2-terminal kinases (SAPK/JNK) and p38MAPK, and c-jun were transiently activated in airway epithelial cells by acrolein in a concentration and time-dependent fashion, which were significantly prevented by AR inhibition. These results suggest that AR inhibitors could prevent acrolein-induced cytotoxicity in the lung epithelial cells. PMID:23770200

  16. Antiviral and cytotoxic activities of some Indonesian plants.

    Science.gov (United States)

    Lohézic-Le Dévéhat, F; Bakhtiar, A; Bézivin, C; Amoros, M; Boustie, J

    2002-08-01

    Ten methanolic extracts from eight Indonesian medicinal plants were phytochemically screened and evaluated for antiviral (HSV-1 and Poliovirus) and cytotoxic activities on murine and human cancer lines (3LL, L1210, K562, U251, DU145, MCF-7). Besides Melastoma malabathricum (Melastomataceae), the Indonesian Loranthaceae species among which Elytranthe tubaeflora, E. maingayi, E. globosa and Scurrula ferruginea exhibited attractive antiviral and cytotoxic activities. Piper aduncum (Piperaceae) was found active on Poliovirus. S. ferruginea was selected for further studies because of its activity on the U251 glioblastoma cells.

  17. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    that had maximum bactericidal activity against all the tested isolates, but showed < 30 % host cell cytotoxicity. Conclusion: The lysate of Acacia nilotica ... cytotoxic effects on human cells. EXPERIMENTAL. Plant material. Acacia nilotica Lam .... a detergent that permeabilizes eukaryotic cells and results in HBMEC damage.

  18. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity.

    Science.gov (United States)

    Boulenouar, Selma; Michelet, Xavier; Duquette, Danielle; Alvarez, David; Hogan, Andrew E; Dold, Christina; O'Connor, Donal; Stutte, Suzanne; Tavakkoli, Ali; Winters, Desmond; Exley, Mark A; O'Shea, Donal; Brenner, Michael B; von Andrian, Ulrich; Lynch, Lydia

    2017-02-21

    Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Cytotoxic activity of plants from East Azarbaijan province, Iran

    Directory of Open Access Journals (Sweden)

    M. Irani

    2017-11-01

    Full Text Available Background and objectives: Due to the high cancer mortality rates and side effects of different types of cancer treatments, discovering effective treatments without or with fewer side effects is the main purpose of many researchers all around the world. Plants play an important role in the discovery of new drugs. Iran owns rich and varied vegetation but the majority of these plants have not yet undergone chemical, pharmacological and toxicological studies. In the present study, some species from East Azarbaijan province of Iran were evaluated for cytotoxicity effects. Methods: Total methanol extract of 29 plants from 18 families were screened for their cytotoxic activities. The inhibition of cell growth for these extracts was evaluated against MCF-7, A-549, Hep-G2, HT-29 and MDBK cell lines. Their 50% inhibitions of growth (IC50 were determined by MTT assay. Moreover, cytotoxic evaluation of different fractions (ether de petrol, chloroform and methanol of the most potent species was performed. Results: Total extracts and fractions of Bryonia aspera, Centaurea salicifolia, Cuscuta chinensis, Ecbalium elaterium, Gypsophila ruscifolia, Ononis spinosa exhibited potent cytotoxic activity against one or more of the cell lines. Three of the mentioned total extracts presented cytotoxicity effects exclusively against HT-29 cells. Also three fractions (one ether de petrol and two chloroform fractions demonstrated selective cytotoxicity effects against MCF-7cells. Conclusion: It was concluded that these 6 potent species were proper candidates for identification and isolation of active ingredients with cytotoxic effects  and further studies about these species are recommended.

  20. Comparison of Cytotoxic Activity in Leukemic Lineages Reveals Important Features of β-Hairpin Antimicrobial Peptides.

    Science.gov (United States)

    Buri, Marcus V; Torquato, Heron F Vieira; Barros, Carlos Castilho; Ide, Jaime S; Miranda, Antonio; Paredes-Gamero, Edgar J

    2017-07-01

    Several reports described different modes of cell death triggered by antimicrobial peptides (AMPs) due to direct effects on membrane disruption, and more recently by apoptosis and necrosis-like patterns. Cytotoxic curves of four β-hairpin AMPs (gomesin, protegrin, tachyplesin, and polyphemusin) were obtained from several human leukemic lineages and normal monocytes and Two cell lines were then selected based on their cytotoxic sensitivity. One was sensitive to AMPs (K562) and the other resistant (KG-1) and their effect compared between these lineages. Thus, these lineages were chosen to further investigate biological features related with their cytotoxicities to AMPs. Stimulation with AMPs produced cell death, with activation of caspase-3, in K562 lineage. Increase on the fluidity of plasmatic membrane by reducing cholesterol potentiated cytotoxicity of AMPs in both lineages. Quantification of internal and external gomesin binding to the cellular membrane of both K562 and KG-1 cells showed that more peptide is accumulated inside of K562 cells. Additionally, evaluation of multi-drug resistant pumps activity showed that KG-1 has more activity than K562 lineage. A comparison of intrinsic gene patterns showed great differences between K562 and KG-1, but stimulation with gomesin promoted few changes in gene expression patterns. Differences in internalization process through the plasma membrane, multidrug resistance pumps activity, and gene expression pattern are important features to AMPs regulated cell death. J. Cell. Biochem. 118: 1764-1773, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. Cytotoxic activity of four Mexican medicinal plants.

    Science.gov (United States)

    Vega-Avila, Elisa; Espejo-Serna, Adolfo; Alarcón-Aguilar, Francisco; Velasco-Lezama, Rodolfo

    2009-01-01

    Ibervillea sonorae Greene, Cucurbita ficifolia Bouché, Tagetes lucida Cav and Justicia spicigera Scheltdd are Mexican native plants used in the treatment of different illnesses. The ethanolic extract of J. spicigera and T. lucida as well as aqueous extracts from I. sonorae, C. ficifolia, T. lucida and J. spicigera were investigated using sulforhodamine B assay. These extracts were assessed using two cell line: T47D (Human Breast cancer) and HeLa (Human cervix cancer). Colchicine was used as the positive control. Data are presented as the dose that inhibited 50% control growth (ED50). All of the assessed extracts were cytotoxic (ED50 < 20 microg/ml) against T47D cell line, meanwhile only the aqueous extract from T. lucida and the ethanolic extract from J. spicigera were cytotoxic to HeLa cell line. Ethanolic extract from J. spicigera presented the best cytotoxic effect. The cytotoxic activity of J. spicigera correlated with one of the popular uses, the treatment of cancer.

  2. CHARACTERISTICS OF SIGNALING PATHWAYS MEDIATING A CYTOTOXIC EFFECT OF DENDRITIC CELLS UPON ACTIVATED Т LYMPHOCYTES AND NK CELLS

    Directory of Open Access Journals (Sweden)

    T. V. Tyrinova

    2012-01-01

    Full Text Available Abstract. Cytotoxic/pro-apoptogenic effects of IFNα-induced dendritic cells (IFN-DCs directed against Т-lymphocytes and NK cells were investigated in healthy donors. Using an allogenic MLC system, it was revealed that IFN-DCs induce apoptosis of both activated CD4+ and CD8+ T-lymphocytes, and NK cells. Apoptosis of CD4+ and CD8+ T-lymphocytes induced by their interaction with IFN-DCs was mediated by various signaling pathways. In particular, activated CD4+Т-lymphocytes were most sensitive to TRAIL- и Fas/ FasL-transduction pathways, whereas activated CD8+ T-lymphocytes were induced to apoptosis via TNFα-mediated pathway. PD-1/B7-H1-signaling pathway also played a distinct role in cytotoxic activity of IFNDCs towards both types of T lymphocytes and activated NK cells. The pro-apoptogenic/cytotoxic activity of IFN-DC against activated lymphocytes may be regarded as a mechanism of a feedback regulation aimed at restriction of immune response and maintenance of immune homeostasis. Moreover, upregulation of proapoptogenic molecules on DCs under pathological conditions may lead to suppression of antigen-specific response, thus contributing to the disease progression.

  3. Phytochemistry, cytotoxicity and antiviral activity of Eleusine indica (sambau)

    Science.gov (United States)

    Iberahim, Rashidah; Yaacob, Wan Ahmad; Ibrahim, Nazlina

    2015-09-01

    Goose grass also known as Eleusine indica (EI) is a local medicinal plant that displays antioxidant, antimicrobial and anticancer activities. The present study is to determine the phytochemical constituents, cytotoxicity and antiviral activities for both crude extract and fraction obtained from the plant. The crude extract contained more secondary metabolites compared to the hexane fraction as gauged using standard phytochemical tests. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract and hexane fraction were 2.07 and 5.62 mg/ml respectively. The antiviral activity towards Herpes Simplex Virus type 1 (HSV-1) was determined using plaque reduction assay. The selective indices (SI = CC50 / EC50) for both methanol extract and hexane fraction were 12.2 and 6.2 respectively. These results demonstrate that the extract prepared from E. indica possesses phytochemical compound that was non cytotoxic to the cell with potential antiviral activity.

  4. Antioxidant, Antitubercular and Cytotoxic Activities of Piper imperiale

    Directory of Open Access Journals (Sweden)

    Sanjib Bhakta

    2012-04-01

    Full Text Available Phenolic compounds are widely distributed in Nature and act as pharmacologically active constituents in many herbal medicines. They have multiple biological properties, most notably antioxidant, antibacterial and cytotoxic activities. In the present study an attempt to correlate the phenolic composition of leaf, flower and wood extracts of Piper imperiale, with antioxidant, antitubercular and cytotoxic activities was undertaken. The total phenol content ranged from 1.98 to 6.94 mg GAE/gDW among ethanolic extracts, and gallic acid, catechin, epicatechin, ferulic acid, resveratrol and quercetin were identified and quantified by HPLC. DPPH and ABTS assays showed high antioxidant activity of the leaf extract (EC50ABTS = 15.6 µg/mL, EC50DPPH = 27.3 µg/mL with EC50 in the same order of magnitude as the hydroxyquinone (EC50ABTS = 10.2 µg/mL, EC50DPPH = 15.7 µg/mL. The flower extract showed strong antimicrobial activity against Mycobacterium tuberculosis H37Rv. All the extracts exhibited dose-dependent cytotoxic effects against MCF-7 cancer cells. This is the first time that a Piper extract has been found to be highly active against M. tuberculosis. This study shows the biological potential of Piper imperiale extracts and gives way to bio-guided studies with well-defined biological activities.

  5. CYTOTOXIC AND ANTIOXIDANT ACTIVITY OF BUCKWHEAT HULL EXTRACTS

    Directory of Open Access Journals (Sweden)

    Martina Danihelová

    2013-02-01

    Full Text Available Buckwheat contains many prophylactic compounds that are concentrated mainly in outer layers of buckwheat grain. The aim of this study was to prepare buckwheat hull extracts. Ten buckwheat cultivars were screened for their antioxidant and anticancer properties. Total polyphenol content was determined using Folin-Ciocalteau's reagent. Antioxidant activity was established by the method of binding free radical DPPH. Cytotoxic properties were measured on human cervical cancer cells HeLa using mitochondrial cytotoxic test (MTT. Total polyphenol content ranged from 166.67 to 635.31 mg GAE/100 g DW. The highest content displayed tartary buckwheat cultivar Madawaska (0.64% of hulls weight. Among common buckwheat the richest in polyphenols were cultivars Bamby and KASHO-2. The best free radical binding antioxidant activity was found for cultivars with highest polyphenol content. This relationship was not observed for cytotoxic action on human cervical cancer cells. The best growth inhibitory activity on HeLa cancer cells displayed common buckwheat cultivars Bamby and KASHO-2 (up to 50%, extract concentration 100 µg/ml. This was not found for tartary buckwheat cultivar Madawaska.

  6. Antibacterial and cytotoxic activities of the sesquiterpene lactones cnicin and onopordopicrin.

    Science.gov (United States)

    Bach, Sandra M; Fortuna, Mario A; Attarian, Rodgoun; de Trimarco, Juliana T; Catalán, César A N; Av-Gay, Yossef; Bach, Horacio

    2011-02-01

    The antimicrobial and cytotoxic activities of chloroform extracts from the weeds Centaurea tweediei and C. diffusa, and the main sesquiterpene lactones isolated from these species, onopordopicrin and cnicin, respectively, were assayed. Results show that the chloroform extracts from both Centaurea species possess antibacterial activities against a panel of Gram-positive and Gram-negative bacteria. Remarkable antibacterial activity against methicillin-resistant Staphylococcus aureus was also measured. Both the extracts and the purified sesquiterpene lactones show high cytotoxicity against human-derived macrophages. Despite this cytotoxicity, C. diffusa chloroform extract and cnicin are attractive candidates for evaluation as antibiotics in topical preparations against skin-associated pathogens.

  7. Involvement of ER stress and activation of apoptotic pathways in fisetin induced cytotoxicity in human melanoma.

    Science.gov (United States)

    Syed, Deeba N; Lall, Rahul K; Chamcheu, Jean Christopher; Haidar, Omar; Mukhtar, Hasan

    2014-12-01

    The prognosis of malignant melanoma remains poor in spite of recent advances in therapeutic strategies for the deadly disease. Fisetin, a dietary flavonoid is currently being investigated for its growth inhibitory properties in various cancer models. We previously showed that fisetin inhibited melanoma growth in vitro and in vivo. Here, we evaluated the molecular basis of fisetin induced cytotoxicity in metastatic human melanoma cells. Fisetin treatment induced endoplasmic reticulum (ER) stress in highly aggressive A375 and 451Lu human melanoma cells, as revealed by up-regulation of ER stress markers including IRE1α, XBP1s, ATF4 and GRP78. Time course analysis indicated that the ER stress was associated with activation of the extrinsic and intrinsic apoptotic pathways. Fisetin treated 2-D melanoma cultures displayed autophagic response concomitant with induction of apoptosis. Prolonged treatment (16days) with fisetin in a 3-D reconstituted melanoma model resulted in inhibition of melanoma progression with significant apoptosis, as evidenced by increased staining of cleaved Caspase-3 in the treated constructs. However, no difference in the expression of autophagic marker LC-3 was noted between treated and control groups. Fisetin treatment to 2-D melanoma cultures resulted in phosphorylation and activation of the multifunctional AMP-activated protein kinase (AMPK) involved in the regulation of diverse cellular processes, including autophagy and apoptosis. Silencing of AMPK failed to prevent cell death indicating that fisetin induced cytotoxicity is mediated through both AMPK-dependent and -independent mechanisms. Taken together, our studies confirm apoptosis as the primary mechanism through which fisetin inhibits melanoma cell growth and that activation of both extrinsic and intrinsic pathways contributes to fisetin induced cytotoxicity.

  8. IGF-1 promotes the development and cytotoxic activity of human NK cells

    Science.gov (United States)

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression leads to disparate cytotoxicity in human primary natural killer cells. Moreover, miR-483-3p is identified as a critical regulator of IGF-1 expression in natural killer cells. Overexpression of miR-483-3p has an effect similar to IGF-1 blockade and decreased natural killer cell cytotoxicity, whereas inhibition of miR-483-3p has the opposite effect, which is reversible with IGF-1 neutralizing antibody. These findings indicate that IGF-1 and miR-483-3p belong to a new class of natural killer cell functional modulators and strengthen the prominent role of IGF-1 in innate immunity. PMID:23403580

  9. Mind Bomb Regulates Cell Death during TNF Signaling by Suppressing RIPK1’s Cytotoxic Potential

    Directory of Open Access Journals (Sweden)

    Rebecca Feltham

    2018-04-01

    Full Text Available Summary: Tumor necrosis factor (TNF is an inflammatory cytokine that can signal cell survival or cell death. The mechanisms that switch between these distinct outcomes remain poorly defined. Here, we show that the E3 ubiquitin ligase Mind Bomb-2 (MIB2 regulates TNF-induced cell death by inactivating RIPK1 via inhibitory ubiquitylation. Although depletion of MIB2 has little effect on NF-κB activation, it sensitizes cells to RIPK1- and caspase-8-dependent cell death. We find that MIB2 represses the cytotoxic potential of RIPK1 by ubiquitylating lysine residues in the C-terminal portion of RIPK1. Our data suggest that ubiquitin conjugation of RIPK1 interferes with RIPK1 oligomerization and RIPK1-FADD association. Disruption of MIB2-mediated ubiquitylation, either by mutation of MIB2’s E3 activity or RIPK1’s ubiquitin-acceptor lysines, sensitizes cells to RIPK1-mediated cell death. Together, our findings demonstrate that Mind Bomb E3 ubiquitin ligases can function as additional checkpoint of cytokine-induced cell death, selectively protecting cells from the cytotoxic effects of TNF. : Feltham et al. show that MIB2 directly ubiquitylates RIPK1 upon TNF stimulation, suppressing the cytotoxic potential of RIPK1 and acting as a checkpoint within the TNF signaling pathway. Keywords: MIB2, RIPK1, TNF, cell death, caspase-8, IAPs, ubiquitin

  10. Modification of the cytotoxic activity of mitomycin C

    International Nuclear Information System (INIS)

    Marshall, R.S.; Rauth, A.M.

    1985-01-01

    Utilizing a system in which oxygen levels could be altered and monitored during acute drug exposures, the authors have begun to characterize the cellular and molecular damage produced by MMC in CHO cells. The cytotoxic activity of MMC decreases sharply from 0 to 0.1% oxygen in solution, while from 0.1 to 20.0% there is little change. DNA crosslinking in cells was examined under these conditions by alkaline elution and found to be directly correlated with cell killing. While hypoxia increased crosslinking, significant levels were still observed under aerobic conditions. A cell-free assay for alkylation confirmed that overall levels increase in the absence of oxygen; however, negligible alkylation was observed under aerobic conditions. It was also noted that ascorbic acid present in the exposure medium (0.284 mM) increased the aerobic cytotoxicity without altering the hypoxic cytotoxicity. The present data suggest that MMC can be activated to an alkylating species by two mechanisms, one oxygen sensitive and one oxygen insensitive and that these two mechanisms may be independently modified

  11. Cytotoxicity of diacetoxyscirpenol is associated with apoptosis by activation of caspase-8 and interruption of cell cycle progression by down-regulation of cdk4 and cyclin B1 in human Jurkat T cells

    International Nuclear Information System (INIS)

    Jun, Do Youn; Kim, Jun Seok; Park, Hae Sun; Song, Woo Sun; Bae, Young Seuk; Kim, Young Ho

    2007-01-01

    To understand the mechanism underlying T-cell toxicity of diacetoxyscirpenol (DAS) from Fusarium sambucinum, its apoptogenic as well as growth retardation activity was investigated in human Jurkat T cells. Exposure to DAS (0.01-0.15 μM) caused apoptotic DNA fragmentation along with caspase-8 activation, Bid cleavage, mitochondrial cytochrome c release, activation of caspase-9 and caspase-3, and PARP degradation, without any alteration in the levels of Fas or FasL. Under these conditions, necrosis was not accompanied. The cytotoxicity of DAS was not blocked by the anti-Fas neutralizing antibody ZB-4. Although the DAS-induced apoptotic events were completely prevented by overexpression of Bcl-xL, the cells overexpressing Bcl-xL were unable to divide in the presence of DAS, resulting from the failure of cell cycle progression possibly due to down-regulation in the protein levels of cdk4 and cyclin B1. The DAS-mediated apoptosis and activation of caspase-8, -9, and -3 were abrogated by either pan-caspase inhibitor (z-VAD-fmk) or caspase-8 inhibitor (z-IETD-fmk). While the DAS-mediated apoptosis and activation of caspase-9 and caspase-3 were slightly suppressed by the mitochondrial permeability transition pore inhibitor (CsA), both caspase-8 activation and Bid cleavage were not affected by CsA. The activated normal peripheral T cells possessed a similar susceptibility to the cytotoxicity of DAS. These results demonstrate that the T-cell toxicity of DAS is attributable to not only apoptosis initiated by caspase-8 activation and subsequent mitochondrion-dependent or -independent activation of caspase cascades, which can be regulated by Bcl-xL, but also interruption of cell cycle progression caused by down-regulation of cdk4 and cyclin B1 proteins

  12. Cytotoxic Activity of Coagulase-Negative Staphylococci in Bovine Mastitis

    Science.gov (United States)

    Zhang, Songlin; Maddox, Carol W.

    2000-01-01

    Secreted toxins play important roles in the pathogenesis of bacterial infections. In this study, we examined the presence of secreted cytotoxic factors of coagulase-negative staphylococci (CoNS) from bovine clinical and subclinical mastitis. A 34- to 36-kDa protein with cell-rounding cytotoxic activity was found in many CoNS strains, especially in Staphylococcus chromogenes strains. The protein caused cell detachment and cell rounding in several cell lines, including HEp-2, Int 407, CHO-K1, and Y-1 cells. Native protein recovered from nondenatured polyacrylamide gel electrophoresis showed both cytotoxic activity and casein hydrolysis activity. The purified protein had a pH optimal at 7.2 to 7.5 and a pI of 5.1 and was heat labile. The proteolytic activity could be inhibited by zinc and metal specific inhibitors such as 1,10-phenanthroline and EDTA, indicating that it is a metalloprotease. Protein mass analysis and peptide sequencing indicated that the protein is a novel metalloprotease. Different bacterial strains expressed variable levels of 34- to 36-kDa protease, which may provide an indication of strain virulence. PMID:10678913

  13. Cytotoxic activity of some medicinal plants from hamedan district of iran.

    Science.gov (United States)

    Behzad, Sahar; Pirani, Atefeh; Mosaddegh, Mahmoud

    2014-01-01

    Medicinal plants have been investigated for possible anti-cancer effects. The aim of the present study was to examine the cytotoxic activity of several medicinal plants on different tumor cell lines. 11 selected plant species which have been used in folkloric prescriptions were collected from different sites of Hamedan district of Iran. The methanolic extracts of the plants were prepared and their cytotoxic effects on four human cancer cell lines (A549, human lung adenocarcinoma; MCF7, human breast adenocarcinoma; HepG2, hepatocellular carcinoma and HT-29, human colon carcinoma) and one normal cell line (MDBK, bovine kidney) were examined using the MTT assay. Three of these were exhibited antiproliferative activity against one or more of the cell lines. The extract from Primula auriculata demonstrated the highest cytotoxicity with IC50 of 25.79, 35.79 and 43.34 μg.mL-1 against MCF7, HepG2 and HT- 29 cells, respectively. For some of the plants, their traditional use was correlated with the cytotoxic results, whereas for others the results may support the non-cytotoxicity of species used traditionally as natural remedies. The cytotoxic species could be considered as potential of anticancer compounds.

  14. Antimycobacterial and cytotoxic activities of extracts from fungal ...

    African Journals Online (AJOL)

    Antimycobacterial and cytotoxic activities of extracts from fungal isolates of Lake Magadi. Keno David Kowanga, Joan John Eliona Munissi, Rose Masalu, Stephen Samwel Nyandoro, Pax Masimba, Erastus Gatebe ...

  15. Cytotoxic activity of methanol extracts from Basidiomycete mushrooms on murine cancer cell lines.

    Science.gov (United States)

    Tomasi, S; Lohézic-Le Dévéhat, F; Sauleau, P; Bézivin, C; Boustie, J

    2004-04-01

    Crude methanol extracts of 58 mushroom species were screened for their cytotoxic activities against two murine cancer cell lines, L1210 and 3LL, using the tetrazolium assay. A majority of extracts (74%) exhibited IC50 > 100 microg/ml against both cell lines. A most marked activity against one of the cell lines was noted for nine species (14% of the tested species). While Amanitales and Russulales tested were not found active, Polyporales and Boletales gave better results. Four species exhibited a significant cytotoxic activity (IC50 Suillus granulatus, S. luteus). The last one had never been investigated for its cytotoxic compounds before.

  16. Enhancement of human natural cytotoxicity by Plasmodium falciparum antigen activated lymphocytes

    DEFF Research Database (Denmark)

    Theander, T G; Pedersen, B K; Bygbjerg, I C

    1987-01-01

    Mononuclear cells (MNC) isolated from malaria immune donors and from donors never exposed to malaria were stimulated in vitro with soluble purified Plasmodium falciparum antigens (SPag) or PPD. After 7 days of culture the proliferative response and the cytotoxic activity against the natural killer...... were preincubated with interleukin 2 (IL-2) for one hour before the start of the cytotoxic assay. SPag activation did not enhance the cytotoxic activity of MNC which did not respond to the antigen in the proliferation assay, and preincubation of these cells with IL-2 did not increase the activity. PPD...

  17. In Vitro antibacterial and in Vivo cytotoxic activities of Grewia paniculata

    Directory of Open Access Journals (Sweden)

    Mahmuda Nasrin

    2015-02-01

    Full Text Available Objectives: Grewia paniculata (Family: Malvaceae has been used to treat inflammation, respiratory disorders and fever. It is additionally employed for other health conditions including colds, diarrhea and as an insecticide in Bangladesh. The aim of the present study was to investigate the antibacterial and cytotoxic activities of different extracts of Grewia paniculata. Materials and Methods: The antibacterial activity was evaluated against both gram negative and gram positive bacteria using disc diffusion method by determination of the diameter of zone of inhibition. Cytotoxic activity was performed by brine shrimp (Artemia salina lethality bioassay. Results: In disc diffusion method, all the natural products (400 μg/disc showed moderate to potent activity against all the tested bacteria. The ethanol extract of bark (EEB and ethanol fraction of bark (EFB (400 μg/disc exhibited highest activity against Shigella dysenteriae with a zone of inhibition of 23±1.63 mm and  23±1.77 mm respectively. In the brine shrimp lethality bioassay all the extracts showed moderate cytotoxic activity when compared with the standard drug vincristin sulphate. For example, LC50 value of the ethanol fraction of bark (EFB was 3.01 μg/ml while the LC50 of vincristine sulphate was 0.52 μg/ml. Conclusions: The results suggest that all the natural products possess potent antibacterial and moderate cytotoxic.

  18. BTK inhibitor ibrutinib is cytotoxic to myeloma and potently enhances bortezomib and lenalidomide activities through NF-κB.

    Science.gov (United States)

    Rushworth, Stuart A; Bowles, Kristian M; Barrera, Lawrence N; Murray, Megan Y; Zaitseva, Lyubov; MacEwan, David J

    2013-01-01

    Ibrutinib (previously known as PCI-32765) has recently shown encouraging clinical activity in chronic lymphocytic leukaemia (CLL) effecting cell death through inhibition of Bruton's tyrosine kinase (BTK). In this study we report for the first time that ibrutinib is cytotoxic to malignant plasma cells from patients with multiple myeloma (MM) and furthermore that treatment with ibrutinib significantly augments the cytotoxic activity of bortezomib and lenalidomide chemotherapies. We describe that the cytotoxicity of ibrutinib in MM is mediated via an inhibitory effect on the nuclear factor-κB (NF-κB) pathway. Specifically, ibrutinib blocks the phosphorylation of serine-536 of the p65 subunit of NF-κB, preventing its nuclear translocation, resulting in down-regulation of anti-apoptotic proteins Bcl-xL, FLIP(L) and survivin and culminating in caspase-mediated apoptosis within the malignant plasma cells. Taken together these data provide a platform for clinical trials of ibrutinib in myeloma and a rationale for its use in combination therapy, particularly with bortezomib. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa (Scheff.) Boerl) Leaves

    International Nuclear Information System (INIS)

    Katrin, E.; Winarno, H.; Selvie

    2011-01-01

    Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC 50 ) value of 10.3 μg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC 50 value of 1.9 μg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC) spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1) on HPLC chromatograms decreased with increasing the

  20. Chromatogram Profiles and Cytotoxic Activity of Irradiated Mahkota Dewa (Phaleria Macrocarpa Scheff. Boerl Leaves

    Directory of Open Access Journals (Sweden)

    E. Katrin1

    2011-04-01

    Full Text Available Gamma irradiation has been used by the industries for preservation of herbal medicine, but it has not been studied the effect of gamma irradiation on their efficacy, especially their bioactivity as anticancer substances. The purpose of this research was to study the effect of gamma irradiation on the mahkota dewa leaves which has been claimed to contain potent anticancer substances. Maceration of dried mahkota dewa leaves successively with n-hexane, ethyl acetate, and ethanol gave crude extracts which the ethyl acetate was the most cytotoxic extract against leukemia L1210 cells with an inhibition concentration fifty (IC50 value of 10.3 µg/ml. Further separation of ethyl acetate extract by column chromatograph gave 7 fractions, and fraction 2 showed the most cytotoxic fraction exhibited the most cytotoxic extract against leukemia L1210 cells with an IC50 value of 1.9 µg/ml. Since, the fraction 2 of ethyl acetate extract was the most potent fraction, the irradiated samples were treated with the same procedure as treatment of fraction 2 from control sample. Cytotoxic activity test of fractions 2 from irradiated samples showed that the cytotoxic activity decreased depending on increasing of irradiation dose. Gamma irradiation dose up to 7.5 kGy on mahkota dewa leaves could decreased the cytotoxic activity of fraction 2 as the most cytotoxic-potential fraction against leukemia L1210 cells, but decreasing the cytotoxic activity has not exceeded the limit of the fraction declared inactive. So that the irradiation dose up to 7.5 kGy can be used for decontamination of bacteria and fungus/yeast without eliminating the cytotoxic activity. Gamma irradiation also caused changes in the thin layer chromatograph (TLC spots and HPLC chromatograms profiles of fraction 2 which was the most cytotoxic fraction in ethyl acetate extract of mahkota dewa leaves against leukemia L1210 cells. One of the main peaks (peak 1 on HPLC chromatograms decreased with increasing

  1. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell (Scrophulariaceae).

    Science.gov (United States)

    Katoch, Meenu; Singh, Gurpreet; Sharma, Sadhna; Gupta, Nidhi; Sangwan, Payare Lal; Saxena, Ajit Kumar

    2014-02-11

    Endophytes, which reside in plant tissues, have the potential to produce novel metabolites with immense benefits for health industry. Cytotoxic and antimicrobial activities of endophytic fungi isolated from Bacopa monnieri (L.) Pennell were investigated. Endophytic fungi were isolated from the Bacopa monnieri. Extracts from liquid cultures were tested for cytotoxicity against a number of cancer cell lines using the MTT assay. Antimicrobial activity was determined using the micro dilution method. 22% of the examined extracts showed potent (IC50 of <20 μg/ml) cytotoxic activity against HCT-116 cell line. 5.5%, 11%, 11% of the extracts were found to be cytotoxic for MCF-7, PC-3, and A-549 cell lines respectively. 33% extracts displayed antimicrobial activity against at least one test organism with MIC value 10-100 μg/ml. The isolate B9_Pink showed the most potent cytotoxic activity for all the cell lines examined and maximum antimicrobial activity against the four pathogens examined which was followed by B19. Results indicated the potential for production of bioactive agents from endophytes of Bacopa monnieri.

  2. Evaluation of phytochemical content, antimicrobial, cytotoxic and antitumor activities of extract from Rumex hastatus D. Don roots.

    Science.gov (United States)

    Sahreen, Sumaira; Khan, Muhammad Rashid; Khan, Rahmat Ali; Hadda, Taibi Ben

    2015-07-03

    Being a part of Chinese as well as ayurdic herbal system, roots of Rumex hastatus D. Don (RH) is highly medicinal, used to regulated blood pressure. It is also reported that the plant is diuretic, laxative, tonic, used against microbial skin diseases, bilious complaints and jaundice. The present study is conducted to evaluate phytochemical, antimicrobial, antitumor and cytotoxic activities of extract obtained from R. hastatus roots. RH roots were powdered and extracted with methanol to get crude extract. Crude extract was further fractioned on the basis of increasing polarity, with n-hexane (HRR), chloroform (CRR), ethyl acetate (ERR), n-butanol (BRR) and residual aqueous fraction (ARR). Methanol extract and its derived fractions were subjected to phytochemical screening and assayed for antibacterial activities via agar well diffusion method. Antifungal activities were checked through agar tube dilution method whereas potato disc assay was employed for the determination of antitumor activity. On the other hand cytotoxic activities were conducted using brine shrimps procedures. The results obtained from phytochemical analysis indicate the presence of alkaloids, anthraquinones, flavonoids and saponins in all the fractions. Most of the plant fractions showed substantial antimicrobial activities, which is in accordance with the spacious use of tested plant samples in primary healthcare center. Fractions of R. hastatus roots for cytotoxicity were tested as an effective cytotoxic was found as BRR > MRR > CRR > ARR > ERR > HRR. Ranking order of fractions of R. hastatus roots for effective antitumor screening was found as MRR > BRR > ARR > CRR > ERR > HRR. These results showed that R. hastatus appeared as an important source for the discovery of new antimicrobial drugs and antitumor agents; verify its traditional uses and its exploitation as therapeutic agent.

  3. In vitro Cytotoxic Activity of Four Plants Used in Persian Traditional Medicine

    Directory of Open Access Journals (Sweden)

    Fatemeh Zare Shahneh

    2013-08-01

    Full Text Available Purpose: The aim of this study was to investigate in vitro cytotoxic activity of four methanolic crude plant extracts against panel cell lines. Methods: Methanolic extracts were tested for their possible antitumor activity and cytotoxicity using the 3-(4,5-dimetylthiazol-2-yl-2,5- diphenyltetrazolium bromide (MTT assay on six cancer cell lines; non-Hodgkin’s B-cell lymphoma (Raji, human leukemic monocyte lymphoma (U937, human acute myelocytic leukemia (KG-1A, human breast carcinoma (MCF-7 cells, human Prostate Cancer (PC3 and mouse fibrosarcoma (WEHI-164 cell lines and one normal cell line; Human Umbilical Vein Endothelial Cells (HUVEC. Results: All species showed dose dependent inhibition of cell proliferation. IC50 values ranging from 25.66±1.2 to 205.11±1.3 μg/ml. The highest cytotoxic activity Chelidonium majus L> Ferulago Angulata DC> Echinophora platyloba DC> Salvia officinalis L, respectively. Conclusion: all extracts demonstrate promising cytotoxicity activity as a natural resource for future bio-guided fractionation and isolation of potential antitumor agents.

  4. Pentachlorophenol-Induced Cytotoxic, Mitogenic, and Endocrine-Disrupting Activities in Channel Catfish, Ictalurus punctatus

    Directory of Open Access Journals (Sweden)

    Paul B. Tchounwou

    2004-09-01

    Full Text Available Pentachlorophenol (PCP is an organochlorine compound that has been widely used as a biocide in several industrial, agricultural, and domestic applications. Although it has been shown to induce systemic toxicity and carcinogenesis in several experimental studies, the literature is scarce regarding its toxic mechanisms of action at the cellular and molecular levels. Recent investigations in our laboratory have shown that PCP induces cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2 cells [1]. In this research, we hypothesize that environmental exposure to PCP may trigger cytotoxic, mitogenic, and endocrine-disrupting activities in aquatic organisms including fish. To test this hypothesis, we carried out in vitro cultures of male channel catfish hepatocytes, and performed the fluorescein diacetate assay (FDA to assess for cell viability, and the Western Blot analysis to assess for vitellogenin expression following exposure to PCP. Data obtained from FDA experiments indicated a strong dose-response relationship with respect to PCP cytotoxicity. Upon 48 hrs of exposure, the chemical dose required to cause 50% reduction in cell viability (LD50 was computed to be 1,987.0 + 9.6 μg PCP/mL. The NOAEL and LOAEL were 62.5 + 10.3 μg PCP/mL and 125.0+15.2 μg PCP/mL, respectively. At lower levels of exposure, PCP was found to be mitogenic, showing a strong dose- and time-dependent response with regard to cell proliferation. Western Blot analysis demonstrated the potential of PCP to cause endocrine-disrupting activity, as evidenced by the up regulation of the 125-kDa vitellogenin protein the hepatocytes of male channel catfish.

  5. Fisetin Enhances the Cytotoxicity of Gemcitabine by Down-regulating ERK-MYC in MiaPaca-2 Human Pancreatic Cancer Cells.

    Science.gov (United States)

    Kim, Nayoung; Kang, Min-Jung; Lee, Sang Hyub; Son, Jun Hyuk; Lee, Ji Eun; Paik, Woo Hyun; Ryu, Ji Kon; Kim, Yong-Tae

    2018-06-01

    Pancreatic cancer is a highly lethal malignancy with a poor prognosis. This study was set up to investigate the combined effect of gemcitabine and fisetin, a natural flavonoid from plants, on human pancreatic cancer cells. Meterials and Methods: Cytotoxic effect of fisetin in combination with gemcitabine on MiaPaca-2 cells was evaluated by the MTT assay, caspase 3/7 assay and propidium iodide/Annexin V. Extracellular signal-regulated kinase (ERK)-v-myc avian myelocytomatosis viral oncogene homolog (MYC) pathway was investigated by western blotting and quantitative real-time polymerase chain reaction. Combination treatment with fisetin and gemcitabine inhibited the proliferation of pancreatic cancer cells within 72 h and induced apoptosis, as indicated by activation of caspase 3/7. Fisetin down-regulated ERK at the protein and mRNA levels, and reduced ERK-induced MYC instability at the protein level. Fisetin sensitized human pancreatic cancer cells to gemcitabine-induced cytotoxicity through inhibition of ERK-MYC signaling. These results suggest that the combination of fisetin and gemcitabine could be developed as a novel potent therapeutic. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  6. Cytotoxicity and Radiosensitising Activity of Synthesized Dinitrophenyl Derivatives of 5-Fluorouracil

    Directory of Open Access Journals (Sweden)

    Khosrou Abdi

    2012-07-01

    Full Text Available Background and the purpose of the study: Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In thepresent investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide,and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions wasinvestigated.Methods: 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substitutedbenzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking,group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively.Results and major conclusion: Findings of the present study showed that

  7. Putrescine-Dependent Re-Localization of TvCP39, a Cysteine Proteinase Involved in Trichomonas vaginalis Cytotoxicity

    OpenAIRE

    Carvajal-Gamez, Bertha Isabel; Quintas-Granados, Laura Itzel; Arroyo, Rossana; Vázquez-Carrillo, Laura Isabel; Ramón-Luing, Lucero De los Angeles; Carrillo-Tapia, Eduardo; Alvarez-Sánchez, María Elizbeth

    2014-01-01

    Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP) involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB) (an inhibitor of putrescine biosynthesis), diminished the amount and proteolytic activity...

  8. Antioxidant, phytotoxic and cytotoxic activity of methanolic extract of Trigonella foenum-graecum

    Directory of Open Access Journals (Sweden)

    Amin Ullah

    2016-05-01

    Full Text Available Objective: To analyze the methanol extract of Trigonella foenum-graecum (T. foenumgraecum for antioxidant, phytotoxic and cytotoxic activity. Methods: The powder of T. foenum-graecum was extracted in diluted methanol with the help of random shaking method. All extracts of the plant were measured for cytotoxic activity (beside brine shrimp and antioxidant activity vs. 1, 1-diphenyl-2-picrylhydrazyl free radical. Results: Various concentrations of methanolic extract of T. foenum-graecum were observed as 36.16% to 54.12% with rising concentrations of 50 to 1000 μg/mL. Significantly phytotoxic activity (100 and 1000 μg/mL reduced the growth of roots (radicals and shoots (hypocotyls of rice when compared to control after 3 and 7 days’ treatment. At a concentration of 10 μg/ mL, the survival rate of cytotoxic activity of brine shrimp was maximum and at a concentration of 250 μg/mL, the death rate of brine shrimp was maximum. Conclusions: T. foenum-graecum has potential activity against free radical mediated sickness and thus it is possible to treat cancer.

  9. Cytotoxic active constituents of essential oils of Curcuma longa and Curcuma zanthorrhiza.

    Science.gov (United States)

    Schmidt, Erich; Ryabchenko, Boris; Wanner, Juergen; Jäger, Walter; Jirovetz, Leopold

    2015-01-01

    The polar and apolar fractions of Curcuma longa and C. zanthorriza enriched by ar-turmerone, ar-curcumene and xanthorrizol were screened for cytotoxic activity against the HeLa cell line. Actinomycin D and curcumin were used as reference samples, both known for their cytotoxic properties. Amongst all fractions tested, the xanthorrizol fraction (CC50: 26.1 ± 1.9 μM) showed the strongest cytotoxic properties similar to those of curcumin (CC50: 8.1 ± 1.7 μM). Further studies also revealed that the cytotoxic effects of the extracts and pure compounds are caused by apoptosis induction identified by the cleaved form of PARP protein.

  10. Trypanocide, cytotoxic, and antifungal activities of Momordica charantia.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Sobral-Souza, Celestina E; Tintino, Saulo R; Morais-Braga, Maria F B; Guedes, Glaucia M M; Santos, Francisco A V; Sousa, Ana Carla A; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-02-01

    Chagas disease, caused by Trypanosoma cruzi, is a public health problem. Currently, chemotherapy is the only available treatment for this disease, and the drugs used, nifurtimox and benzonidazol, present high toxicity levels. An alternative for replacing these drugs are natural extracts from Momordica charantia L. (Cucurbitaceae) used in traditional medicine because of their antimicrobial and biological activities. In this study, we evaluated the extract of M. charantia for its antiepimastigote, antifungal, and cytotoxic activities. An ethanol extract of leaves from M. charantia was prepared. To research in vitro antiepimastigote activity, T. cruzi CL-B5 clone was used. Epimastigotes were inoculated at a concentration of 1 × 10(5) cells/mL in 200 µl tryptose-liver infusion. For the cytotoxicity assay, J774 macrophages were used. The antifungal activity was evaluated by microdilution using strains of Candida albicans, Candida tropicalis, and Candida krusei. The effective concentration capable of killing 50% of parasites (IC(50)) was 46.06 µg/mL. The minimum inhibitory concentration (MIC) was ≤ 1024 µg/mL. Metronidazole showed a potentiation of its antifungal effect when combined with an extract of M. charantia. Our results indicate that M. charantia could be a source of plant-derived natural products with antiepimastigote and antifungal-modifying activity with moderate toxicity.

  11. Activity-guided isolation of cytotoxic bis-bibenzyl constituents from Dumortiera hirsuta.

    Science.gov (United States)

    Toyota, Masao; Ikeda, Risa; Kenmoku, Hiromichi; Asakawa, Yoshinori

    2013-01-01

    Activity-guided fractionation of the ether extract of Dumortiera hirsute (Japanese liverwort), using cytotoxicity testing with cultured HL 60 and KB cells, resulted in the isolation of a new cytotoxic bis-bibenzyl compound, along with the two known bis-bibenzyls: isomarchantin C and isoriccardin C. The structural determination of the new bis-bibenzyl through extensive NMR spectral data indicated a derivative of marchantin A, which has been isolated from the liverwort Marchantia polymorpha. The cytotoxicity of the bis-bibenzyls was evaluated by the MTT (3-(4,5-di-methylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay using cultured HL 60 and KB cells.

  12. Leishmanicidal and cytotoxic activity of extracts and saponins from ...

    African Journals Online (AJOL)

    ISSN: 1596-5996 (print); 1596-9827 (electronic) ... Purpose: To evaluate the leishmanicidal and cytotoxic activity of alcohol and non-alcohol extracts and .... each) in a percolator at room temperature and ..... nitric oxide-dependent mechanism.

  13. Cytotoxic activity and phytochemical analysis of Arum palaestinum Boiss.

    Directory of Open Access Journals (Sweden)

    Mai Mohammed Farid

    2015-11-01

    Conclusions: The present study is considered to be the first report on the cytotoxic activities carried out on different selected fractions and pure compounds of A. palaestinum to provide evidences for its strong antitumor activities. In addition, chrysoeriol and isovitexin compounds were isolated for the first time from the studied taxa.

  14. Betulinic Acid Exerts Cytotoxic Activity Against Multidrug-Resistant Tumor Cells via Targeting Autocrine Motility Factor Receptor (AMFR

    Directory of Open Access Journals (Sweden)

    Mohamed E. M. Saeed

    2018-05-01

    Full Text Available Betulinic acid (BetA is a naturally occurring pentacyclic triterpene isolated from the outer bark of white-barked birch trees and many other medicinal plants. Here, we studied betulinic acid's cytotoxic activity against drug-resistant tumor cell lines. P-glycoprotein (MDR1/ABCB1 and BCRP (ABCG2 are known ATP-binding cassette (ABC drug transporters that mediating MDR. ABCB5 is a close relative to ABCB1, which also mediates MDR. Constitutive activation of the EGF receptor is tightly linked to the development of chemotherapeutic resistance. BetA inhibited P-gp, BCRP, ABCB5 and mutation activated EGFR overexpressing cells with similar efficacy as their drug-sensitive parental counterparts. Furthermore, the mRNA expressions of ABCB1, BCRP, ABCB5 and EGFR were not related to the 50% inhibition concentrations (IC50 for BetA in a panel of 60 cell lines of the National Cancer Institute (NCI, USA. In addition to well-established MDR mechanisms, we attempted to identify other molecular mechanisms that play a role in mediating BetA's cytotoxic activity. For this reason, we performed COMPARE and hierarchical cluster analyses of the transcriptome-wide microarray-based mRNA expression of the NCI cell lines panel. Various genes significantly correlating to BetA's activity were involved in different biological processes, e.g., cell cycle regulation, microtubule formation, signal transduction, transcriptional regulation, chromatin remodeling, cell adhesion, tumor suppression, ubiquitination and proteasome degradation. Immunoblotting and in silico analyses revealed that the inhibition of AMFR activity might be one of the mechanisms for BetA to overcome MDR phenotypes. In conclusion, BetA may have therapeutic potential for the treatment of refractory tumors.

  15. Antinociceptive, cytotoxic and antibacterial activities of Cleome viscosa leaves

    Directory of Open Access Journals (Sweden)

    Utpal Bose

    2011-02-01

    Full Text Available The methanol extract of the dried leaves of Cleome viscosa L., Cleomaceae, was investigated for its possible antinociceptive, cytotoxic and antibacterial activities in animal models. The extract produced significant writhing inhibition in acetic acid-induced writhing in mice at the oral doses of 250 and 500 mg/kg body weight (p<0.001 comparable to the standard drug diclofenac sodium at the dose of 25 mg/kg of body weight (p<0.001. The crude extract produced the most prominent cytotoxic activity against brine shrimp Artemia salina (LC50 28.18 μg/mL and LC90 112.20 μg/mL. The extract of C. viscosa L. exhibited significant in vitro antibacterial activity against Staphylococcus saprophyticus, Shigella sonnie, Salmonella typhi, Vibrio cholera, Streptococcus epidermidis, Shigella flexneri and Staphylococcus aureus with the zones of inhibition ranging from 10.76 to 16.34 mm. The obtained results provide a support for the use of this plant in traditional medicine and its further investigation.

  16. In vitro anthelmintic and cytotoxicity activities the Digitaria insularis (Poaceae).

    Science.gov (United States)

    Santos, Francianne Oliveira; de Lima, Hélimar Gonçalves; de Souza Santos, Nathália Silva; Serra, Taiane Menezes; Uzeda, Rosângela Soares; Reis, Isabella Mary Alves; Botura, Mariana Borges; Branco, Alexsandro; Batatinha, Maria José Moreira

    2017-10-15

    This study aimed to evaluate the in vitro activity of D. insularis extracts and fractions against gastrointestinal nematodes of goats and its cytotoxicity on Vero cells. The egg hatch (EHT) and larval motility (LMT) tests were conducted to investigate the anthelmintic effects of the crude hydroethanolic (CH), ethyl acetate (EA), butanolic (BT) and residual hydroethanolic (RH) extracts. The elution of the active extract (EA) on column chromatography (SiO 2 ) using organic solvents furnished six fractions (FR1 to FR6), which were also tested. Cytotoxicity was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Trypan Blue exclusion assays. All extracts, FR2 and FR3, inhibited egg hatching in a concentration-dependent manner. The EHT led to EC 50 values (effective concentration 50%) of 0.64; 0.69; 0.77; 0.96; 0.27 and 0.65mg/mL for CH, EA, BT, RH, FR2 and FR3, respectively. However, the extracts exhibited low effect on the motility of L 3. In the cytotoxicity evaluation (MTT assay), the IC 50 (inhibitory concentration 50%) was 1.18 (EA), 1.65 (FR2) and 1.59mg/mL (FR3), which was relatively high (low toxicity) in comparison to the EC 50 values in EHT, mainly for FR2. The chemical analyses of most active fractions (FR2) by Liquid Chromatography coupled to Mass Spectrometry (LC-MS) led the characterization of the flavones tricin and diosmetin. These results showed the high anthelmintic effect and low cytotoxicity of D. insularis and also that the flavones can be probably responsible for the nematocidal activity of this plant. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Design, Synthesis and Cytotoxic Activities of Novel Aliphatic Amino-Substituted Flavonoids

    Directory of Open Access Journals (Sweden)

    Guannan Liu

    2013-11-01

    Full Text Available A series of flavonoids 9a–f, 13b, 13d, 13e and 14a–f bearing diverse aliphatic amino moieties were designed, synthesized and evaluated for their cytotoxic activities against the ECA-109, A-549, HL-60, and PC-3 cancer cell lines. Most of the compounds exhibited moderate to good activities. The structure-activity relationships were studied, revealing that the chalcone skeleton is the most preferable for cytotoxic activities. Chalcone 9d was the most promising compound due to its high potency against the examined cancer cell lines (its IC50 values against ECA-109, A549, HL-60 and PC-3 cells were 1.0, 1.5, 0.96 and 3.9 μM, respectively.

  18. Microglia in Glia-Neuron Co-cultures Exhibit Robust Phagocytic Activity Without Concomitant Inflammation or Cytotoxicity.

    Science.gov (United States)

    Adams, Alexandra C; Kyle, Michele; Beaman-Hall, Carol M; Monaco, Edward A; Cullen, Matthew; Vallano, Mary Lou

    2015-10-01

    A simple method to co-culture granule neurons and glia from a single brain region is described, and microglia activation profiles are assessed in response to naturally occurring neuronal apoptosis, excitotoxin-induced neuronal death, and lipopolysaccharide (LPS) addition. Using neonatal rat cerebellar cortex as a tissue source, glial proliferation is regulated by omission or addition of the mitotic inhibitor cytosine arabinoside (AraC). After 7-8 days in vitro, microglia in AraC(-) cultures are abundant and activated based on their amoeboid morphology, expressions of ED1 and Iba1, and ability to phagocytose polystyrene beads and the majority of neurons undergoing spontaneous apoptosis. Microglia and phagocytic activities are sparse in AraC(+) cultures. Following exposure to excitotoxic kainate concentrations, microglia in AraC(-) cultures phagocytose most dead neurons within 24 h without exacerbating neuronal loss or mounting a strong or sustained inflammatory response. LPS addition induces a robust inflammatory response, based on microglial expressions of TNF-α, COX-2 and iNOS proteins, and mRNAs, whereas these markers are essentially undetectable in control cultures. Thus, the functional effector state of microglia is primed for phagocytosis but not inflammation or cytotoxicity even after kainate exposure that triggers death in the majority of neurons. This model should prove useful in studying the progressive activation states of microglia and factors that promote their conversion to inflammatory and cytotoxic phenotypes.

  19. Cytotoxicity and radiosensitising activity of synthesized dinitrophenyl derivatives of 5-fluorouracil

    Directory of Open Access Journals (Sweden)

    Khoshayand Mohammad

    2012-07-01

    Full Text Available Abstract Background and the purpose of the study Dual functional agents in which nitroaromatic or nitroheterocyclic compounds are attached through a linker unit to mustards and aziridines have shown higher cytotoxicities than the corresponding counterparts to both aerobic and hypoxic cells and enhanced radiosensitizing activity. In the present investigation cytotoxicity and radiosensitizing activity of 2,4-dinitrobenzyl, 2,4-dinitrobenzoyl, and 2,4-dinitrophenacetyl derivatives of 5-fluorouracil which was assumed to release cytotoxic active quinone methidide and 5-fluorouracil under hypoxic conditions on HT-29 cell line under both aerobic and hypoxic conditions was investigated. Methods 5-fluorouracil derivative X-XIII were prepared by the reaction of the corresponding di-nitro substituted benzyl, benzoyl and phenacetyl halides with 5-fluorouracil protected at N-1 with di-t-butoxydicarbonate (BOC in dimethyl formamide (DMF in the presence of the potassium carbonate followed by hydrolysis of the blocking group by potassium carbonate in methanol. Cytotoxicity of fluorouracil VIII and tested compounds X-XIII against HT-29 cell line under both aerobic and hypoxic conditions after 48 hrs incubation were measured by determination of the percent of the survival cells using 3-(4,5-Dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and percent of the dead cells using propidium iodide(PI-digitonine assay and results were used to calculate the corresponding IC50 values. Radiosensitization experiments were carried out by irradiation of the incubations with a 60Co source and clonogenic assay was performed to determine the cell viabilities following treatment with the tested compounds and/or radiation. Sensitization Enhancement Ratio (SER of each tested compound was obtained from the radiation survival curves in the absence and presence of each sensitizer for 37% survival respectively. Results and major conclusion Findings of the present study

  20. Cytotoxic activity of abietane diterpenoids from roots of Salvia sahendica by HPLC-based activity profiling

    Directory of Open Access Journals (Sweden)

    Fahimeh Moradi-Afrapoli

    Full Text Available ABSTRACT Screening of medicinal plants from Iranian flora against human cancer cell-lines have shown that an hexane extract from roots of Salvia sahendica Boiss. & Buhse, Lamiaceae, is active against human cervical cancer (HeLa and colorectal adenocarcinoma (Caco-2 cell-lines at the test concentration of 100 µg/ml (100% inhibition. Cytotoxicity of the extract was localized with the aid of HPLC-time-based activity profiling adapted to the tetrazolium colorimetric bioassay. Four abietane-type diterpenoids in active time-windows were identified as cytotoxic compounds namely: sahandone (1, sahandol (2, 12-deoxy-salvipisone (3 and sahandinone (4. Compound 1 showed the highest toxicity against HeLa cells (IC50 = 5.6 ± 0.1 µg/ml, which was comparable with betulinic acid (IC50 = 4.3 ± 1.2 µg/ml, the positive control. Compound 2 was active against the HeLa cells (IC50 = 8.9 ± 0.7 µg/ml but not the Caco-2 cell-line. Compounds 1, 3 and 4 exhibited moderate activity (IC50 = 22.9–41.4 µg/ml against the Caco-2 cells. This study reveals that the HeLa cells are more sensitive to all tested compounds than the Caco-2 cells. In silico molecular docking study showed a rigid binding of the compounds to tyrosine kinase pp60src, and proved their cytotoxic activity.

  1. ANTIFUNGAL AND CYTOTOXIC ACTIVITIES OF FIVE TRADITIONALLY USED INDIAN MEDICINAL PLANTS

    Directory of Open Access Journals (Sweden)

    Adhikarimayum Haripyaree

    2013-02-01

    Full Text Available Hexane, Methanol and Distilled water extracts of five Indian Medicinal plants viz., Mimosa pudica L, Vitex trifolia Linn, Leucas aspera Spreng, Centella asiatica (L Urban and Plantago major Linn belonging to different families were subjected to preliminary antimicrobial screening against six standard organisms viz., Ceratocystis paradoxa, Aspergillus niger, Penicillium citrinum, Macrophomina phaseoli, Trichoderma viride and Rhizopus nigricans. To evaluate antifungal activity agar well diffusion method was used. In addition LD50 of the same plant extracts were determined by using Range test on Mus musculus for cytotoxic activity. Methanolic extract of M. pudica showed the highest and significant inhibitory effect against some fungal species. Again, methanolic extract of M. pudica displayed the greatest cytotoxic activity.

  2. Co-activation of AMPK and mTORC1 Induces Cytotoxicity in Acute Myeloid Leukemia

    Directory of Open Access Journals (Sweden)

    Pierre Sujobert

    2015-06-01

    Full Text Available AMPK is a master regulator of cellular metabolism that exerts either oncogenic or tumor suppressor activity depending on context. Here, we report that the specific AMPK agonist GSK621 selectively kills acute myeloid leukemia (AML cells but spares normal hematopoietic progenitors. This differential sensitivity results from a unique synthetic lethal interaction involving concurrent activation of AMPK and mTORC1. Strikingly, the lethality of GSK621 in primary AML cells and AML cell lines is abrogated by chemical or genetic ablation of mTORC1 signaling. The same synthetic lethality between AMPK and mTORC1 activation is established in CD34-positive hematopoietic progenitors by constitutive activation of AKT or enhanced in AML cells by deletion of TSC2. Finally, cytotoxicity in AML cells from GSK621 involves the eIF2α/ATF4 signaling pathway that specifically results from mTORC1 activation. AMPK activation may represent a therapeutic opportunity in mTORC1-overactivated cancers.

  3. Chemodiversity Associated with Cytotoxicity and Antimicrobial Activity of Piper aduncum var. ossanum.

    Science.gov (United States)

    Gutiérrez, Yamilet; Montes, Rodny; Scull, Ramón; Sánchez, Arturo; Cos, Paul; Monzote, Lianet; Setzer, William N

    2016-12-01

    Chemical analysis, antimicrobial activity and cytotoxic effects of essential oils (EOs) from leaves of Piper aduncum var. ossanum from two localities Bauta (EO-B) and Ceiba (EO-C), Artemisa Province, Cuba, were determined. EOs were obtained by hydrodistillation and analyzed by gas chromatography/mass spectrometry. EO-B demonstrated higher activity against S. aureus and L. amazonensis; while a lower cytotoxicity on mammalian cells was observed. Both EOs displayed the same activity against Plasmodium falciparum, Trypanosoma cruzi, Trypanosoma brucei, and Leishmania infantum. Both EOs were inactive against Escherichia coli and Candida albicans. © 2016 Wiley-VHCA AG, Zurich, Switzerland.

  4. Natural mutations in a Staphylococcus aureus virulence regulator attenuate cytotoxicity but permit bacteremia and abscess formation

    Science.gov (United States)

    Das, Sudip; Lindemann, Claudia; Young, Bernadette C.; Muller, Julius; Österreich, Babett; Ternette, Nicola; Winkler, Ann-Cathrin; Paprotka, Kerstin; Reinhardt, Richard; Allen, Elizabeth; Flaxman, Amy; Yamaguchi, Yuko; Rollier, Christine S.; van Diemen, Pauline; Blättner, Sebastian; Remmele, Christian W.; Selle, Martina; Dittrich, Marcus; Müller, Tobias; Vogel, Jörg; Ohlsen, Knut; Crook, Derrick W.; Massey, Ruth; Wilson, Daniel J.; Rudel, Thomas; Wyllie, David H.; Fraunholz, Martin J.

    2016-01-01

    Staphylococcus aureus is a major bacterial pathogen, which causes severe blood and tissue infections that frequently emerge by autoinfection with asymptomatically carried nose and skin populations. However, recent studies report that bloodstream isolates differ systematically from those found in the nose and skin, exhibiting reduced toxicity toward leukocytes. In two patients, an attenuated toxicity bloodstream infection evolved from an asymptomatically carried high-toxicity nasal strain by loss-of-function mutations in the gene encoding the transcription factor repressor of surface proteins (rsp). Here, we report that rsp knockout mutants lead to global transcriptional and proteomic reprofiling, and they exhibit the greatest signal in a genome-wide screen for genes influencing S. aureus survival in human cells. This effect is likely to be mediated in part via SSR42, a long-noncoding RNA. We show that rsp controls SSR42 expression, is induced by hydrogen peroxide, and is required for normal cytotoxicity and hemolytic activity. Rsp inactivation in laboratory- and bacteremia-derived mutants attenuates toxin production, but up-regulates other immune subversion proteins and reduces lethality during experimental infection. Crucially, inactivation of rsp preserves bacterial dissemination, because it affects neither formation of deep abscesses in mice nor survival in human blood. Thus, we have identified a spontaneously evolving, attenuated-cytotoxicity, nonhemolytic S. aureus phenotype, controlled by a pleiotropic transcriptional regulator/noncoding RNA virulence regulatory system, capable of causing S. aureus bloodstream infections. Such a phenotype could promote deep infection with limited early clinical manifestations, raising concerns that bacterial evolution within the human body may contribute to severe infection. PMID:27185949

  5. IGF-1 promotes the development and cytotoxic activity of human NK cells

    OpenAIRE

    Ni, Fang; Sun, Rui; Fu, Binqing; Wang, Fuyan; Guo, Chuang; Tian, Zhigang; Wei, Haiming

    2013-01-01

    Insulin-like growth factor 1 (IGF-1) is a critical regulator of many physiological functions, ranging from longevity to immunity. However, little is known about the role of IGF-1 in natural killer cell development and function. Here, we identify an essential role for IGF-1 in the positive regulation of human natural killer cell development and cytotoxicity. Specifically, we show that human natural killer cells have the ability to produce IGF-1 and that differential endogenous IGF-1 expression...

  6. Molecular characterization of protease activity in Serratia sp. strain SCBI and its importance in cytotoxicity and virulence.

    Science.gov (United States)

    Petersen, Lauren M; Tisa, Louis S

    2014-11-01

    A newly recognized Serratia species, termed South African Caenorhabditis briggsae isolate (SCBI), is both a mutualist of the nematode Caenorhabditis briggsae KT0001 and a pathogen of lepidopteran insects. Serratia sp. strain SCBI displays high proteolytic activity, and because secreted proteases are known virulence factors for many pathogens, the purpose of this study was to identify genes essential for extracellular protease activity in Serratia sp. strain SCBI and to determine what role proteases play in insect pathogenesis and cytotoxicity. A bank of 2,100 transposon mutants was generated, and six SCBI mutants with defective proteolytic activity were identified. These mutants were also defective in cytotoxicity. The mutants were found defective in genes encoding the following proteins: alkaline metalloprotease secretion protein AprE, a BglB family transcriptional antiterminator, an inosine/xanthosine triphosphatase, GidA, a methyl-accepting chemotaxis protein, and a PIN domain protein. Gene expression analysis on these six mutants showed significant downregulation in mRNA levels of several different types of predicted protease genes. In addition, transcriptome sequencing (RNA-seq) analysis provided insight into how inactivation of AprE, GidA, and a PIN domain protein influences motility and virulence, as well as protease activity. Using quantitative reverse transcription-PCR (qRT-PCR) to further characterize expression of predicted protease genes in wild-type Serratia sp. SCBI, the highest mRNA levels for the alkaline metalloprotease genes (termed prtA1 to prtA4) occurred following the death of an insect host, while two serine protease and two metalloprotease genes had their highest mRNA levels during active infection. Overall, these results indicate that proteolytic activity is essential for cytotoxicity in Serratia sp. SCBI and that its regulation appears to be highly complex. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  7. Cytotoxic and antibacterial activity of the mixture of olive oil and lime cream in vitro conditions.

    Science.gov (United States)

    Sumer, Zeynep; Yildirim, Gulay; Sumer, Haldun; Yildirim, Sahin

    2013-01-01

    The mixture of olive oil and lime cream has been traditionally used to treat external burns in the region of Hatay/Antakya and middle Anatolia. Olive oil and lime cream have been employed by many physicians to treat many ailments in the past. A limited number of studies have shown the antibacterial effect of olive oil and that it does not have any toxic effect on the skin. But we did not find any reported studies on the mixture of olive oil and lime cream. The aim of this paper is to investigate the cytotoxic and antibacterial activity of olive oil and lime cream individually or/and in combination in vitro conditions, by using disk-diffusion method and in cell culture. The main purpose in using this mixture is usually to clear burns without a trace. Agar overlay, MTT (Cytotoxicity assay) and antibacterial susceptibility tests were used to investigate the cytotoxic and antibacterial activity of olive oil and lime cream. We found that lime cream has an antibacterial activity but also cytotoxic on the fibroblasts. On the other hand olive oil has limited or no antibacterial effect and it has little or no cytotoxic on the fibroblasts. When we combined lime cream and olive oil, olive oil reduced its cytotoxic impact. These results suggest that mixture of olive oil and lime cream is not cytotoxic and has antimicrobial activity.

  8. Activation of cytotoxic lymphocytes in patients with scrub typhus

    NARCIS (Netherlands)

    de Fost, Maaike; Chierakul, Wirongrong; Pimda, Kriangsak; Dondorp, Arjen M.; White, Nicholas J.; van der Poll, Tom

    2005-01-01

    Thai patients with scrub typhus caused by the intracellular pathogen Orientia tsutsugamushi displayed elevated plasma concentrations of granzymes A and B, interferon-gamma (IFN)-gamma-inducible protein 10, and monokine induced by IFN-gamma. These data suggest that activation of cytotoxic lymphocytes

  9. Synthesis and Cytotoxic Activity of Some New 2,6-Substituted Purines

    Directory of Open Access Journals (Sweden)

    Nageswara Rao Kode

    2011-07-01

    Full Text Available A seriesof twenty four acyclic unsaturated 2,6-substututed purines 5a-20b were synthesized. These compounds were evaluated for cytotoxic activity against NCI-60 DTP human tumor cell line screen at 10µMconcentration. N9-[(Z-4'-chloro-2'-butenyl-1'-yl]-2,6-dichloropurine(5a, N9-[4'-chloro-2'-butynyl-1'-yl]-2,6-dichloropurine(10a, N9-[(E-2',3'-dibromo-4'-chloro-2'-butenyl-1'-yl]-6-methoxypurine(14and N9-[4'-chloro-2'-butynyl-1'-yl]-6-(4-methoxyphenyl-purine(19exhibited highly potent cytotoxic activity with GI50 values in the 1–5 µM range for most human tumor cell lines. Other compounds exhibited moderate activity.

  10. In vitro Cytotoxic and Antioxidant Activity of Leaf Extracts of ...

    African Journals Online (AJOL)

    plant were tested for cytotoxicity against four cancer cells, viz, MCF-7 (oestrogen ... Results: The methanol extract showed the highest antioxidant activity (DPPH, half maximal inhibitory .... Total flavonoid content was determined using the.

  11. Serine esterase and hemolytic activity in human cloned cytotoxic T lymphocytes

    OpenAIRE

    1988-01-01

    Target cell lysis by most murine cytotoxic T lymphocytes appears to be mediated by a complement (C9)-like protein called perforin, contained in high-density cytoplasmic granules. These granules also contain high levels of serine esterase activity, which may also play a role in cytolysis. Analysis of 17 cloned human cytotoxic T lymphocytes revealed the presence of serine esterase that is very similar to its murine counterpart in substrate and inhibitor specificities, pH optimum, and molecular ...

  12. Cytotoxic Activity of Selected Iranian Traditional Medicinal Plants on Colon, Colorectal and Breast Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Leila Mohammad Taghizadeh Kashani

    2014-11-01

    Full Text Available Background: Many natural products from plants have been recognized to exert anticancer activity. In this study, ethanolic extracts of selected medicinal herbs from Iranian flora including Alyssum homolocarpum Fisch. (from seeds, Urtica dioica L. (from aerial parts, Cichorium intybus L. (from roots and Solanum nigrum L. (from fruits, were evaluated for their cytotoxic effect on different cell lines.Methods: Cytotoxic effect of these extracts was studied on three different cancer cell lines; colon carcinoma (HT-29, colorectal adenocarcinoma (Caco-2 and breast ductal carcinoma (T47D. In addition, Swiss mouse embryo fibroblasts (NIH 3T3 were used as normal nonmalignant cells. MTT assay (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide was utilized for calculating the cytotoxicity of extracts on cell lines.Results: Results showed the potent cytotoxic activity of U. dioica ethanolic extract against T47D cell line with IC50 value of 46.14±4.55 µg/ml. Other extracts showed poor activity with IC50>100 µg/ml.Conclusions: Cytotoxic activity recorded in the present study revealed high potential antiproliferative activity of U. dioica ethanolic extract against T47D cell line. The real IC50 values of this extract may be considerably lower than the IC50 measured in our study if its pharmacological active compounds become pure. The results emphasize the importance of studies on U. dioica ethanolic extract to characterize potential components as cytotoxic natural medicines.

  13. Cytotoxic activity of water extracts of Trichilia hirta leaves on human tumor cells

    International Nuclear Information System (INIS)

    Hernandez Sosa, Edgar; Mora Gonzalez, Nestor; Morris Quevedo, Humberto J

    2013-01-01

    Trichilia hirta L. (Meliaceae) is traditionally used by patients suffering from cancer as an antitumoral resource. Therefore, the objectives of this study were to evaluate the cytotoxic activity of water extracts of Trichilia hirta leaves on tumour cells and identify through a phytochemical screening the principal families of phytocomponents contained in these extracts. The cytotoxic activity of these extracts was also evaluated on human melanoma cells (SK-mel-3) and human breast carcinoma (T-47D). The African green monkey kidney (AGMK) cells Cercopithecus aethiops (Vero) were used as a non-tumour cells control. The results showed the presence of triterpenes/steroids, saponins, coumarins, reductor sugars, phenols and tannins, flavonoids and carbohydrates/glycosides in the extracts. The water leaf extracts showed cytotoxic activity mainly on tumour cells, which contributes to explain the referred recovery by patients suffering form cancer that traditionally consume these extracts

  14. Cytotoxicity and antiviral activity of electrochemical - synthesized silver nanoparticles against poliovirus.

    Science.gov (United States)

    Huy, Tran Quang; Hien Thanh, Nguyen Thi; Thuy, Nguyen Thanh; Chung, Pham Van; Hung, Pham Ngoc; Le, Anh-Tuan; Hong Hanh, Nguyen Thi

    2017-03-01

    Silver nanoparticles (AgNPs) have been proven to have noticeable cytotoxicity in vitro and antiviral activity against some types of enveloped viruses. This paper presents the cytotoxicity and antiviral activity of pure AgNPs synthesized by the electrochemical method, towards cell culture and poliovirus (a non-enveloped virus). Prepared AgNPs were characterized by ultraviolet-visible spectroscopy, energy-dispersive X-ray spectroscopy and transmission electron microscopy. Before incubation with poliovirus, different concentrations of AgNPs were added to human rhabdomyosarcoma (RD) cell monolayers seeded in 96 well plates for testing their cytotoxicity. The in vitro cytotoxicity and anti-poliovirus activity of AgNPs were daily assessed for cytopathic effect (CPE) through inverted light microscopy. CPE in the tested wells was determined in comparison with those in wells of negative and positive control. Structure analysis showed that AgNPs were formed with a quasi-spherical shape with mean size about 7.1nm and high purity. No CPE of RD cells was seen in wells at the time point of 48h post-incubation with AgNPs at concentration up to 100ppm. The anti-poliovirus activity of AgNPs was determined at 3.13ppm corresponding to the viral concentration of 1TCID 50 (Tissue Culture Infective Dose) after 30min, and 10TCID 50 after 60min, the cell viability was found up to 98% at 48h post-infection, with no CPE found. Whereas, a strong CPE of RD cells was found at 48h post-infection with the mixture of AgNPs and poliovirus at concentration of 100TCID 50 , and in wells of positive controls. With mentioned advantages, electrochemical-synthesized AgNPs are promising candidate for advanced biomedical and disinfection applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Cytotoxic constituents of propolis from Myanmar and their structure-activity relationship.

    Science.gov (United States)

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2009-12-01

    Thirteen cycloartane-type tritepenes (1-13) and four prenylated flavanones (14-17) isolated from propolis collected in Myanmar, were evaluated for their cytotoxic activity against a panel of six different cancer cell lines; three murine cancer cell lines (colon 26-L5 carcinoma, B16-BL6 melanoma, and Lewis lung carcinoma) and three human cancer cell lines (lung A549 adenocarcinoma, cervix HeLa adenocarcinoma and HT-1080 fibrosarcoma). Among them, a cycloartane-type triterpene, 3alpha,27-dihydroxycycloart-24E-en-26-oic acid (3), showed the most potent cytotoxicity against B16-BL6 cells with an IC(50) value of 5.91 microM, comparable to those of positive controls, doxorubicin (IC(50), 5.66 microM) and 5-fluorouracil (IC(50), 4.88 microM). In addition, (2S)-5,7-dihydroxy-4'-methoxy-8,3'-diprenylflavanone (14) exhibited strong cytotoxicity against all the tested cancer cell lines with the IC(50) values ranging from 14.0 to 26.4 microM. Based on the observed results, the structure-activity relationships are discussed.

  16. SYNTHESIS AND CYTOTOXIC ACTIVITY OF CHALCONE DERIVATIVES ON HUMAN BREAST CANCER CELL LINES

    Directory of Open Access Journals (Sweden)

    Nuraini Harmastuti

    2012-12-01

    Full Text Available Chalcone, an α,β-unsaturated ketone, has been shown have many biological activities such as anticancer and antifungi. This research was conducted to synthesize the chalcone derivatives and to obtain their cytotoxic activity on human cervix cancer cell lines. Synthesis of chalcone and its derivatives, 4II-methylchalcone, 4II-methoxychalcone, and 3II,4II-dichlorochalcone was carried out using starting materials of benzaldehide and acetofenon, p-methylacetophenone, p-methoxyacetophenone, as well as m,p-dichloroacetophenone through Claisen Schmidt condensation catalized by NaOH in ethanol at 15 °C. The purity of synthesized compounds were analyzed by thin layer chromatography, melting range, and gas chromatography. Structure elucidations were conducted by UV spectrophotometer, IR spectrometer, 1H-NMR spectrometer, as well as mass spectrometer. Cytotoxic activities were determined by 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT microculture tetrazolium viability assay. The results showed that chalcone and derivatives compounds have been able to be synthesized and purified and had the same structure as a predicted structure. Chalcone had highest cytotoxic activity compared to that of its derivatives, with the IC50 values of chalcone, 4II-methylchalcone, 4II-methoxychalcone, and 3II,4II-dichlorochalcone were 9.49, 14.79, 11.48, and 24.26 µg/mL respectively. It was concluded that methyl, methoxy as well as chlorine substitution at 3 II and 4II position decrease the cytotoxic activity of chalcone.

  17. Topological estimation of cytotoxic activity of some anti-HIV agents ...

    Indian Academy of Sciences (India)

    Unknown

    2Research Division, Laxmi Fumigation and Pest Control Pvt. Ltd., 3, Khatipura, Indore 452 007, ... Structural details and cytotoxic activity (pCC50) of the compounds (HEPT analogues) ..... The regression parameters and the quality of corre-.

  18. In vitro cytotoxic activity of Brazilian Middle West plant extracts

    Directory of Open Access Journals (Sweden)

    Talal Suleiman Mahmoud

    2011-06-01

    Full Text Available Cytotoxic activity of eight plant extracts, native from the Mid-West of Brazil comprising Cerrado, Pantanal and semideciduous forest, was evaluated for MDA-MB-435, SF-295, and HCT-8 cancer cell strains. A single 100 µg.mL-1 dose of each extract was employed with 72 h of incubation for all tests. Doxorubicin (1 µg.mL-1 was used as the positive control and the MTT method was used to detect the activity. Cytotoxicity of distinct polarities was observed in thirty extracts (46%, from different parts of the following species: Tabebuia heptaphylla (Vell. Toledo, Bignoniaceae, Tapirira guianensis Aubl., Anacardiaceae, Myracrodruon urundeuva Allemão, Anacardiaceae, Schinus terebinthifolius Raddi, Anacardiaceae, Gomphrena elegans Mart., Amaranthaceae, Attalea phalerata Mart. ex Spreng., Arecaceae, Eugenia uniflora L., Myrtaceae, and Annona dioica A. St.-Hil., Annonaceae. Extracts of at least two tested cell strains were considered to be highly active since their inhibition rate was over 75%.

  19. Antioxidant and cytotoxic activity of new di- and polyamine caffeine analogues.

    Science.gov (United States)

    Jasiewicz, Beata; Sierakowska, Arleta; Jankowski, Wojciech; Hoffmann, Marcin; Piorońska, Weronika; Górnicka, Agnieszka; Bielawska, Anna; Bielawski, Krzysztof; Mrówczyńska, Lucyna

    2018-04-18

    A series of new di- and polyamine-caffeine analogues were synthesized and characterized by NMR, FT-IR and MS spectroscopic methods. To access stability of the investigated caffeine analogues Molecular Dynamic simulations were performed in NAMD 2.9 assuming CHARMM36 force field. To evaluate the antioxidant capacity of new compounds, three different antioxidant assays were used, namely 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH • ) scavenging activity, ferrous ions (Fe 2+ ) chelating activity and Fe 3+ →Fe 2+ reducing ability. In vitro, the ability of new derivatives to protect human erythrocytes against oxidative haemolysis induced by free radical from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH) was estimated. The cytotoxic activity was tested using MCF-7 breast cancer cells and human erythrocytes. All compounds showed the antioxidant capacity depending mostly on their ferrous ions chelating activity. In the presence of AAPH, some derivatives were able to effectively inhibit the oxidative haemolysis. Two derivatives, namely 8-(methyl(2-(methylamino)ethyl)-amino)caffeine and 8-(methyl(3-(methylamino)propyl)amino)caffeine, showed cytotoxic activity against MCF-7 breast cancer cells but not against human erythrocytes. Therefore, it is concluded that the selected di- and polyamine caffeine analogues, depending on their chemical structure, were able to minimize the oxidative stress and to inhibit the tumour cell grow. The confirmed antioxidant and cytotoxic properties of some caffeine derivatives make them attractive for potential applications in food or pharmaceutical industries.

  20. Antimicrobial and Cytotoxic Activities of Extracts from Laurus nobilis Leaves

    KAUST Repository

    Felemban, Shaza

    2011-05-01

    The cytotoxic activity and antimicrobial properties of crude extracts from Laurus nobilis were investigated. With the use of the organic solvents, methanol and ethanol, crude extracts were obtained. To determine the availability of active bio‐compounds, an analysis using liquid chromatography was conducted. The crude extract was also tested for antimicrobial activity. The disc diffusion method was used against the bacterium Escherichia coli. The results showed a weak antimicrobial activity against E. coli. For cytotoxicity testing, the crude extract was studied on four cell-­lines: human breast adenocarcinoma, human embryonic kidney, HeLa (human cervical adenocarcinoma), and human lung fibroblast. From the alamarBlue® assay results, the extracts most potently affected the cell-­lines of human breast adenocarcinoma and human embryonic kidney. Using the lactate dehydrogenase (LDH) assay, an effect on human embryonic kidney was most prominent. With these findings, a suggestion that the crude extract of Laurus nobilis may have antiproliferative properties is put forth, with the possibility of this mechanism being induction of apoptosis with the involvement of Nuclear Factor Kappa κB (NF κB).

  1. Antiradical and cytotoxic activity of different Helichrysum plicatum flower extracts.

    Science.gov (United States)

    Bigović, Dubravka; Savikin, Katarina; Janković, Teodora; Menković, Nebojsa; Zdunić, Gordana; Stanojković, Tatjana; Djurić, Zorica

    2011-06-01

    Flowers of Helichrysum plicatum were extracted under different experimental conditions, and their antioxidant activity was determined by DPPH radical scavenging assay. Extracts obtained with higher concentration of ethyl acetate (90% or 100%) were found to contain the greatest amount of total phenolics (> 250 mg gallic acid equivalents/g of dried extract), and high correlation between total phenolic content and antiradical activity was observed (r = -0.79). Based on the total phenolic content and antiradical activity, some extracts were selected for investigation of cytotoxic activity toward PC3, HeLa and K562 human cancer cell lines in vitro. All tested extracts exhibited moderate activity against HeLa cells (41.9-42.1 microg/mL), whereas the extract obtained with 100% ethyl acetate was the most active against K562 and PC3 cell lines (25.9 and 39.2 microg/mL, respectively). Statistical analysis revealed significant correlation between total phenolic content and cytotoxic activity against PC3 and K562 cells. HPLC identification of phenolic compounds from the extracts indicated the presence of apigenin, naringenin and kaempferol as free aglycones, and glycosides of apigenin, naringenin, quercetin and kaempferol. Among aglycones, kaempferol displayed moderate cytostatic activity against all cell lines (24.8-64.7 microM).

  2. Cytotoxic activity of vitamins K1, K2 and K3 against human oral tumor cell lines.

    Science.gov (United States)

    Okayasu, H; Ishihara, M; Satoh, K; Sakagami, H

    2001-01-01

    Vitamin K1, K2 and K3 were compared for their cytotoxic activity, radical generation and O2- scavenging activity. Among these compounds, vitamin K3 showed the highest cytotoxic activity against human oral tumor cell lines (HSC-2, HSG), human promyelocytic leukemic cell line (HL-60) and human gingival fibroblast (HGF). Vitamin K3 induced internucleosomal DNA fragmentation in HL-60 cells, but not in HSC-2 or HSG cells. The cytotoxic activity of vitamins K2 and K1 was one and two orders lower, respectively, than K3. Vitamin K2, but not vitamin K3, showed tumor-specific cytotoxic action. ESR spectroscopy showed that only vitamin K3 produced radical(s) under alkaline condition and most potently enhanced the radical intensity of sodium ascorbate and scavenged O2- (generated by hypoxanthine-xanthine oxidase reaction system); vitamin K2 was much less active whereas vitamin K1 was inactive. These data suggest that the cytotoxic activity of vitamin K3 is generated by radical-mediated oxidation mechanism and that this vitamin has two opposing actions (that is, antioxidant and prooxidant), depending on the experimental conditions.

  3. DETECTION OF BACTERIAL CYTOTOXIC ACTIVITIES FROM WATER-DAMAGED CEILING TILE MATERIAL FOLLOWING INCUBATION ON BLOOD AGAR

    Science.gov (United States)

    Samples of ceiling tiles with high levels of bacteria exhibited cytotoxic activities on a HEP-2 tissue culture assay. Ceiling tiles containing low levels of bacterial colonization did not show cytotoxic activities on the HEP-2 tissue culture assay. Using a spread plate procedure ...

  4. Cytotoxicity, Total Phenolic Contents and Antioxidant Activity of the ...

    African Journals Online (AJOL)

    The leaves of Annona muricata were extracted using ethanol and the extracts were evaluated for cytotoxicity using Brine Shrimp Lethality Assay, total phenolic content (TPC) and antioxidant activity using DPPH radical scavenging assay. The crude extract showed 73.33 % mortality at 1000 μg/mL concentration and its ...

  5. Antimycobacterial and cytotoxicity activity of synthetic and natural compounds

    Directory of Open Access Journals (Sweden)

    Ana O. de Souza

    2007-01-01

    Full Text Available Antimycobacterial and cytotoxicity activity of synthetic and natural compounds. Secondary metabolites from Curvularia eragrostidis and Drechslera dematioidea, Clusia sp. floral resin, alkaloids from Pilocarpus alatus, salicylideneanilines, piperidine amides, the amine 1-cinnamylpiperazine and chiral pyridinium salts were assayed on Mycobacterium tuberculosis H37Rv. N-(salicylidene-2-hydroxyaniline was the most effective compound with a minimal inhibitory concentration (MIC of 8 µmol/L. Dihydrocurvularin was moderately effective with a MIC of 40 µmol/L. Clusia sp. floral resin and a gallocatechin-epigallocatechin mixture showed MIC of 0.02 g/L and 38 µmol/L, respectively. The cytotoxicity was evaluated for N-(salicylidene-2-hydroxyaniline, curvularin, dihydrocurvularin and Clusia sp. floral resin, and the selectivity indexes were > 125, 0.47, 0.75 and 5, respectively.

  6. Antioxidant, Anti-Inflammatory, and Cytotoxic Activities of Garcinia nervosa (Clusiaceae

    Directory of Open Access Journals (Sweden)

    N. M. U. Seruji

    2013-01-01

    Full Text Available In our continuing interest on Sarawak Garcinia species, we carried out the evaluation of antioxidant, anti-inflammatory and cytotoxic activities on the methanolic extracts of Garcinia nervosa. The extracts were prepared from its air-dried grounded leaves and barks. The evaluation of antioxidant activities was done using the (2,2-diphenyl-1-picrylhydrazyl DPPH radical scavenging assay and the result showed high radical scavenging activities. Meanwhile, the anti-inflammatory evaluation was performed using the lipoxygenase assay, hyaluronidase assay, and xanthine oxidase assay which showed, both of these extracts exhibited high anti-inflammatory properties. The lipoxygenase assay showed a high inhibition of enzyme activity for the barks extracts and a moderate enzyme activity for the leaves extracts. However, there were low inhibitions for both extracts in the hyaluronidase assay and only the barks extracts exhibited moderate antigout properties in the xanthine oxidase assay. For the cytotoxic assay, the extracts exhibited positive responses against the three cancer cell lines, the HeLa cell lines, MCF-7 cell lines, and HT-29 cell lines. Thus, Garcinia nervosa contains high antioxidativeand anti-inflammation properties, which have great potential in the development of pharmaceutical and dermatological products.

  7. Low-Cytotoxic Synthetic Bromorutaecarpine Exhibits Anti-Inflammation and Activation of Transient Receptor Potential Vanilloid Type 1 Activities

    Directory of Open Access Journals (Sweden)

    Chi-Ming Lee

    2013-01-01

    Full Text Available Rutaecarpine (RUT, the major bioactive ingredient isolated from the Chinese herb Evodia rutaecarpa, possesses a wide spectrum of biological activities, including anti-inflammation and preventing cardiovascular diseases. However, its high cytotoxicity hampers pharmaceutical development. We designed and synthesized a derivative of RUT, bromo-dimethoxyrutaecarpine (Br-RUT, which showed no cytotoxicity at 20 μM. Br-RUT suppressed nitric oxide (NO production and tumor necrosis factor-α release in concentration-dependent (0~20 μM manners in lipopolysaccharide (LPS-treated RAW 264.7 macrophages; protein levels of inducible NO synthase (iNOS and cyclooxygenase-2 induced by LPS were downregulated. Br-RUT inhibited cell migration and invasion of ovarian carcinoma A2780 cells with 0~48 h of treatment. Furthermore, Br-RUT enhanced the expression of transient receptor potential vanilloid type 1 and activated endothelial NOS in human aortic endothelial cells. These results suggest that the synthetic Br-RUT possesses very low cytotoxicity but retains its activities against inflammation and vasodilation that could be beneficial for cardiovascular disease therapeutics.

  8. Cytotoxic activity and apoptotic induction of some edible Thai local ...

    African Journals Online (AJOL)

    inverted microscopy and DNA fragmentation using agarose gel electrophoresis. Results: P. ... However, further studies are needed to isolate the active compounds responsible for the cytotoxic ..... D-E: TL at 500 and 4,000 μg/mL. Arrows ...

  9. Silver nanoparticles: Antimicrobial activity, cytotoxicity, and synergism with N-acetyl cysteine.

    Science.gov (United States)

    Hamed, Selwan; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Youssef, Tareq

    2017-08-01

    The fast progression of nanotechnology has led to novel therapeutic interventions. Antimicrobial activities of silver nanoparticles (Ag NPs) were tested against standard ATCC strains of Staphylococcus aureus (ATCC 9144), Escherichia coli (O157:H7), Pseudomonas aeruginosa (ATCC 27853), and Candida albicans (ATCC 90028) in addition to 60 clinical isolates collected from cancer patients. Antimicrobial activity was tested by disk diffusion method and MIC values for Ag NPs alone and in combination with N-acetylcysteine (NAC) against tested pathogens were determined by broth microdilution method. Ag NPs showed a robust antimicrobial activity against all tested pathogens and NAC substantially enhanced the antimicrobial activity of Ag NPs against all tested pathogens. Synergism between Ag NPs and NAC has been confirmed by checkerboard assay. The effect of Ag NPs on tested pathogens was further scrutinized by Transmission Electron Microscope (TEM) which showed disruption of cell wall in both bacteria and fungi. Ag NPs abrogated the activity of respiratory chain dehydrogenase of all tested pathogens and released muramic acid content from S. aureus in culture. The cytotoxic effect of Ag NPs alone and in combination with NAC was examined using human HepG2 cells and this revealed no cytotoxicity at MIC values of Ag NPs and interestingly, NAC reduced the cytotoxic effect of Ag NPs at concentrations higher than their MIC values. Taken together, Ag NPs have robust antimicrobial activity and NAC substantially enhances their antimicrobial activities against MDR pathogens which would provide a novel safe, effective, and inexpensive therapeutic approach to control the prevalence of MDR pathogens. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Antimicrobial and Cytotoxic Activity of Three Bitter Plants-Enhydra fluctuans, Andrographis Peniculata and Clerodendrum Viscosum.

    Directory of Open Access Journals (Sweden)

    M. Ruhul Amin

    2012-08-01

    Full Text Available Purpose: In this study, three important medicinal plants (Enhydra fluctuans Lour, Clerodendrum viscosum Vent and Andrographis peniculata Wall of Bangladesh were investigated to analyze their antimicrobial and cytotoxic activities against some pathogenic microorganisms and Artemia salina (brine shrimp nauplii. Methods: The coarse powder material of leaves of each plant was extracted separately with methanol and acetone to yield methanol extracts of leaves of Enhydra fluctuans (MLE, Clerodendrum viscosum (MLC and Andrographis peniculata (MLA, and acetone extracts of leaves of Enhydra fluctuans (ALE, Clerodendrum viscosum (ALC and Andrographis peniculata (ALA. The disc diffusion method and the method described by Meyer were used to determine the antimicrobial and cytotoxic activities of each plant extract. Results: Among the test samples, MLE and ALE showed comparatively better antimicrobial activity against a number of bacteria and fungi with inhibition zones in the range of 06-15 mm and according to the intensity of activity, the efficacy against microorganisms were found in the order of Enhydra fluctuans> Andrographi speniculata> Clerodendrum viscosum. In cytotoxicity assay, all samples were found to be active against brine shrimp nauplii (Artemia salina and ALA produced lowest LC50 value (7.03 μg/ml. Conclusion: Enhydra fluctuans and Andrographi speniculata possesses significant antimicrobial and cytotoxic activities.

  11. Annona muricata leaves have strongest cytotoxic activity against breast cancer cells

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2014-12-01

    Full Text Available Background Plant-derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. Plants have been the basis of traditional medicine throughout the world for thousands of years and are providing mankind with new remedies. The objective of this study was to determine the cytotoxicity of soursop (Anona muricata Linn leaves and pearl grass (Hedyotis corymbosa (L. Lam. on the hormone-dependent human breast carcinoma Michigan Cancer Foundation-7 (MCF-7 cell line. Methods This study used two types of solvents (water and ethanol in the extraction process and two incubation times (24 hours and 48 hours in the MTT assays to analyze the cytotoxic effects of both plants. Results Preliminary results showed that the ethanolic extract of soursop leaves (SE displayed cytotoxic effects against MCF-7 on 24- and 48-hour incubation times with IC50 values of 88.788 ìg/ml and 14.678 mg/ml, respectively. Ethanolic pearl grass extract (PE showed similar results, with IC50 values of 65.011 mg/ml on 24-hour incubation time and 52.329 mg/ml on 48-hour incubation time against MCF-7 cell line. However, the water extract of both plants displayed lower cytotoxic effect against MCF-7 cell line. Conclusion The ethanolic extract of both plants displayed cytotoxic effect against MCF-7. Soursop (Anona muricata Linn leaves have the strongest cytotoxic activity against MCF-7 breast cancer cell line.

  12. Annona muricata leaves have strongest cytotoxic activity against breast cancer cells

    Directory of Open Access Journals (Sweden)

    Susi Endrini

    2015-12-01

    Full Text Available BACKGROUND Plant-derived herbal compounds have a long history of clinical use, better patient tolerance and acceptance. They are freely available natural compounds that can be safely used to prevent various ailments. Plants have been the basis of traditional medicine throughout the world for thousands of years and are providing mankind with new remedies. The objective of this study was to determine the cytotoxicity of soursop (Anona muricata Linn leaves and pearl grass (Hedyotis corymbosa (L. Lam. on the hormone-dependent human breast carcinoma Michigan Cancer Foundation-7 (MCF-7 cell line. METHODS This study used two types of solvents (water and ethanol in the extraction process and two incubation times (24 hours and 48 hours in the MTT assays to analyze the cytotoxic effects of both plants. RESULTS Preliminary results showed that the ethanolic extract of soursop leaves (SE displayed cytotoxic effects against MCF-7 on 24- and 48-hour incubation times with IC50 values of 88.788 μg/ml and 14.678 μg/ml, respectively. Ethanolic pearl grass extract (PE showed similar results, with IC50 values of 65.011 μg/ ml on 24-hour incubation time and 52.329 μg/ml on 48-hour incubation time against MCF-7 cell line. However, the water extract of both plants displayed lower cytotoxic effect against MCF-7 cell line. CONCLUSION The ethanolic extract of both plants displayed cytotoxic effect against MCF-7. Soursop (Anona muricata Linn leaves have the strongest cytotoxic activity against MCF-7 breast cancer cell line.

  13. Phenolic content, antioxidant effect and cytotoxic activity of Leea indica leaves

    Directory of Open Access Journals (Sweden)

    Reddy Nidyaletchmy

    2012-08-01

    Full Text Available Abstract Background The leaves of Leea indica (Vitaceae, commonly known as ‘Huo Tong Shu’ in Malaysia, have been traditionally used as natural remedy in folk medicine by the locals. The current study reports the outcome of antioxidant and cytotoxic investigation of L. indica leaves. To the best of our knowledge, this is the first report of L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water for evaluation of total phenolic content, antioxidant effect and cytotoxic activity against colon cancer cell lines. Methods In the present study, L. indica leaf crude ethanol and its fractionated extracts (hexane, ethyl acetate and water were firstly prepared prior to phenolic content, antioxidant effect and cytotoxic activity assessment. Folin-Ciocalteau’s method was used for the measurement of total phenolic content of the extracts. The antioxidant activity was measured by employing three different established testing systems, such as scavenging activity on DPPH (1,1-diphenyl-2-picrylhydrazyl radicals, reducing power assay and SOD (superoxide dismutase activity assay. The cytotoxic activity of the extracts were evaluated against three colon cancer cell lines with varying molecular characteristics (HT-29, HCT-15 and HCT-116 by MTT [3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide] assay. Results The total phenolic content and antioxidant capabilities differed significantly among the L. indica leaf extracts. A strong correlation between total phenolic content and antioxidant properties was found, indicating that phenolic compounds are the major contributor to the antioxidant properties of these extracts. Among the crude ethanol and its fractionated extracts, fractionated water extract showed significantly the highest total phenolic content and strongest antioxidant effect in all the antioxidant testing systems employed in this study. All the four extracts exert no damage to the selected colon cancer

  14. Direct Microbicidal Activity of Cytotoxic T-Lymphocytes

    Directory of Open Access Journals (Sweden)

    Paul Oykhman

    2010-01-01

    Full Text Available Cytotoxic T-lymphocytes (CTL are famous for their ability to kill tumor, allogeneic and virus-infected cells. However, an emerging literature has now demonstrated that CTL also possess the ability to directly recognize and kill bacteria, parasites, and fungi. Here, we review past and recent findings demonstrating the direct microbicidal activity of both CD4+ and CD8+ CTL against various microbial pathogens. Further, this review will outline what is known regarding the mechanisms of direct killing and their underlying signalling pathways.

  15. Assessment of Antioxidant and Cytotoxicity Activities of Saponin and Crude Extracts of Chlorophytum borivilianum

    Science.gov (United States)

    Abd Aziz, Maheran; Stanslas, Johnson; Abdul Kadir, Mihdzar

    2013-01-01

    The present paper focused on antioxidant and cytotoxicity assessment of crude and total saponin fraction of Chlorophytum borivilianum as an important medicinal plant. In this study, three different antioxidant activities (2,2-diphenyl-1-picrylhydrazyl radical scavenging (DPPH), ferrous ion chelating (FIC), and β-carotene bleaching (BCB) activity) of crude extract and total saponin fraction of C. borivilianum tubers were performed. Crude extract was found to possess higher free radical scavenging activity (ascorbic acid equivalents 2578 ± 111 mg AA/100 g) and bleaching activity (IC50 = 0.7 mg mL−1), while total saponin fraction displayed higher ferrous ion chelating (EC50 = 1 mg mL−1). Cytotoxicity evaluation of crude extract and total saponin fraction against MCF-7, PC3, and HCT-116 cancer cell lines using 3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide (MTT) cell viability assay indicated a higher cytotoxicity activity of the crude extract than the total saponin fraction on all cell lines, being most effective and selective on MCF-7 human breast cancer cell line. PMID:24223502

  16. Leishmanicidal and cytotoxic activity from plants used in Tacana traditional medicine (Bolivia).

    Science.gov (United States)

    Arévalo-Lopéz, Diandra; Nina, Nélida; Ticona, Juan C; Limachi, Ivan; Salamanca, Efrain; Udaeta, Enrique; Paredes, Crispin; Espinoza, Boris; Serato, Alcides; Garnica, David; Limachi, Abigail; Coaquira, Dayana; Salazar, Sarah; Flores, Ninoska; Sterner, Olov; Giménez, Alberto

    2018-04-24

    Thirty-eight Tacana medicinal plant species used to treat skin problems, including leishmania ulcers, skin infections, inflammation and wound healing, were collected in the community of Buena Vista, Bolivia, with the Tacana people. Twenty two species are documented for the first time as medicinal plants for this ethnic group living in the northern area of the Department of La Paz. To evaluate the leishmanicidal effect (IC 50 ) and cytotoxicity (LD 50 ) of the selected plants. To carry out bioguided studies on the active extracts. To assess the potential of Bolivian plant biodiversity associated with traditional knowledge in the discovery of alternative sources to fight leishmaniasis. Seventy three ethanol extracts were prepared from 38 species by maceration and were evaluated in vitro against promastigotes of Leishmania amazonensis and L. braziliensis. Active extracts (IC 50 ≤ 50 μg/mL) were fractionated by chromatography on Silica gel column and the fractions were assessed against the two Leishmania strains. The most active fractions and the crude extracts were evaluated against reference strains of L. amazonensis, L. braziliensis, L. aethiopica, two native strains (L. Lainsoni and L. braziliensis) and for cytotoxicity against HeLa cells. The chromatographic profile of the active fractions was obtained by reverse phase chromatography using HPLC. From the 73 extracts, 39 extracts (53.4%) were inactive and 34 showed activity. Thirteen species were sselected for bioguided studies. The crude extracts and their 36 fractions were evaluated against two Leishmania strains. The most active fraction were tested in a panel of five leishmania strains and for cytotoxicity. The Selective Index (SI = LD 50 /IC 50 ) was calculated, and were generally low. Retention time and UV spectra were recorded for the active fractions by HPLC-DAD using a reverse phase column. Profiles were very different from each other, showing the presence of different compounds. Bolivian traditional

  17. Chemical composition and cytotoxicity activity of the essential oil of Pterodon emarginatus

    Directory of Open Access Journals (Sweden)

    Rafael C. Dutra

    2012-10-01

    Full Text Available Pterodon emarginatus Vogel, Fabaceae, is a native aromatic tree distributed by central region of Brazil. Hydroalcoholic infusions of the seeds are used in folk medicine for their anti-rheumatic and anti-inflammatory properties. The objective of this work was identified the chemical components and verify the cytotoxic effect of the essential oil (EO from P. emarginatus seeds. Thus, the EO of P. emarginatus seeds was analyzed by GC/MS analysis followed by brine shrimp lethality test and cytotoxic activity against tumor cell lines and human peripheral mononuclear blood cells (PBMC. The cancer cell lines tested were C6 (rat glioma, MeWo (human melanoma, CT26.WT (mouse colon carcinoma, MDA (human breast cancer, A549 (human lung carcinoma, B16-F1 (mouse melanoma, CHO-K1 (hamster ovary cell and BHK-21 (hamster kidney fibroblast. Eleven compounds were identified by GC and CG/MS analyses. The main compounds with concentrations higher than 5% were β-elemene (15.3%, trans-caryophyllene (35.9%, α-humulene (6.8%, germacrene-D (9.8%, bicyclo germacrene (5.5% and spathulenol (5.9%. The EO of P. emarginatus seeds showed toxicity to Artemia salina (LC50 1.63 µg/mL and was active against all the cell lines tested. The potent cytotoxic activity had IC50 values ranging from 24.9 to 47 µg/mL. However, EO (1-100 µg/mL had less cytotoxicity in PBMCs isolated from a healthy subject. In summary, the present study showed the potential antiproliferative of the EO of P. emarginatus seeds.

  18. Cytotoxic activities of amentoflavone against human breast and cervical cancers are mediated by increasing of PTEN expression levels due to peroxisomes proliferate-activated receptor {gamma} activation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eunjung; Shin, Soyoung; Lee, Jeeyoung; Lee, So Jung; Kim, Jinkyoung; Yoon, Doyoung; Kim, Yangmee [Konkuk Univ., Seoul (Korea, Republic of); Woo, Eunrhan [Chosun Univ., Gwangju (Korea, Republic of)

    2012-07-15

    Human peroxisomes proliferate-activated receptor gamma (hPPAR{gamma}) has been implicated in numerous pathologies, including obesity, diabetes, and cancer. Previously, we verified that amentoflavone is an activator of hPPAR{gamma} and probed the molecular basis of its action. In this study, we investigated the mechanism of action of amentoflavone in cancer cells and demonstrated that amentoflavone showed strong cytotoxicity against MCF-7 and HeLa cancer cell lines. We showed that hPPAR{gamma} expression in MCF-7 and HeLa cells is specifically stimulated by amentoflavone, and suggested that amentoflavone-induced cytotoxic activities are mediated by activation of hPPAR{gamma} in these two cancer cell lines. Moreover, amentoflavone increased PTEN levels in these two cancer cell lines, indicating that the cytotoxic activities of amentoflavone are mediated by increasing of PTEN expression levels due to hPPAR{gamma} activation.

  19. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  20. Synthesis, Leishmanicidal and Cytotoxic Activity of Triclosan-Chalcone, Triclosan-Chromone and Triclosan-Coumarin Hybrids

    Directory of Open Access Journals (Sweden)

    Elver Otero

    2014-08-01

    Full Text Available Twelve hybrids derived from triclosan were obtained via Williamson etherification of O-triclosan alkyl bromide plus chalcone and O-coumarin or O-chromone alkyl bromide plus triclosan, respectively. Structures of the products were elucidated by spectroscopic analysis. The synthesized compounds were evaluated for antileishmanial activity against L. (V panamensis amastigotes. Cytotoxic activity was also evaluated against mammalian U-937 cells. Compounds 7–9 and 17, were active against Leishmania parasites (EC50 = 9.4; 10.2; 13.5 and 27.5 µg/mL, respectively and showed no toxicity toward mammalian cells (>200 µg/mL. They are potential candidates for antileishmanial drug development. Compounds 25–27, were active and cytotoxic. Further studies using other cell types are needed in order to discriminate whether the toxicity shown by these compounds is against tumor or non-tumor cells. The results indicate that compounds containing small alkyl chains show better selectivity indices. Moreover, Michael acceptor moieties may modify both the leishmanicidal activity and cytotoxicity. Further studies are required to evaluate if the in vitro activity against Leishmania panamensis demonstrated here is also observed in vivo.

  1. Cathelicidin-like helminth defence molecules (HDMs: absence of cytotoxic, anti-microbial and anti-protozoan activities imply a specific adaptation to immune modulation.

    Directory of Open Access Journals (Sweden)

    Karine Thivierge

    Full Text Available Host defence peptides (HDPs are expressed throughout the animal and plant kingdoms. They have multifunctional roles in the defence against infectious agents of mammals, possessing both bactericidal and immune-modulatory activities. We have identified a novel family of molecules secreted by helminth parasites (helminth defence molecules; HDMs that exhibit similar structural and biochemical characteristics to the HDPs. Here, we have analyzed the functional activities of four HDMs derived from Schistosoma mansoni and Fasciola hepatica and compared them to human, mouse, bovine and sheep HDPs. Unlike the mammalian HDPs the helminth-derived HDMs show no antimicrobial activity and are non-cytotoxic to mammalian cells (macrophages and red blood cells. However, both the mammalian- and helminth-derived peptides suppress the activation of macrophages by microbial stimuli and alter the response of B cells to cytokine stimulation. Therefore, we hypothesise that HDMs represent a novel family of HDPs that evolved to regulate the immune responses of their mammalian hosts by retaining potent immune modulatory properties without causing deleterious cytotoxic effects.

  2. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    International Nuclear Information System (INIS)

    Peng, Hui; Wang, Huihui; Xue, Peng; Hou, Yongyong; Dong, Jian; Zhou, Tong; Qu, Weidong; Peng, Shuangqing; Li, Jin; Carmichael, Paul L.; Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E.; Pi, Jingbo

    2016-01-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As 2 O 3 ), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As 2 O 3 -challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As 2 O 3 -induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As 2 O 3 -induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As 2 O 3 in AML cells. • Sensitization of THP-1 cells to As 2 O 3 toxicity by ethionamide is NRF2-dependent.

  3. Antimicrobial, antioxidant and cytotoxic activities of propolis from Melipona orbignyi (Hymenoptera, Apidae).

    Science.gov (United States)

    Campos, Jaqueline Ferreira; dos Santos, Uilson Pereira; Macorini, Luis Fernando Benitez; de Melo, Adriana Mary Mestriner Felipe; Balestieri, José Benedito Perrella; Paredes-Gamero, Edgar Julian; Cardoso, Claudia Andrea Lima; de Picoli Souza, Kely; dos Santos, Edson Lucas

    2014-03-01

    Propolis from stingless bees is well known for its biologic properties; however, few studies have demonstrated these effects. Therefore, this study aimed to investigate the chemical composition and antimicrobial, antioxidant and cytotoxic activities of propolis from the stingless bee Melipona orbignyi, found in Mato Grosso do Sul, Brazil. The chemical composition of the ethanol extract of propolis (EEP) indicated the presence of aromatic acids, phenolic compounds, alcohols, terpenes and sugars. The EEP was active against the bacterium Staphylococcus aureus and the fungus Candida albicans. The EEP showed antioxidant activity by scavenging free radicals and inhibiting hemolysis and lipid peroxidation in human erythrocytes incubated with an oxidizing agent. Additionally, EEP promoted cytotoxic activity and primarily necrotic death in K562 erythroleukemia cells. Taken together, these results indicate that propolis from M. orbignyi has therapeutic potential for the treatment and/or prevention of diseases related to microorganism activity, oxidative stress and tumor cell proliferation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Concanavalin A-mediated in vitro activation of a secondary cytotoxic T-cell response in virus-primed splenocytes

    DEFF Research Database (Denmark)

    Thomsen, Allan Randrup; Jensen, B L

    1980-01-01

    In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt to chara......In a recent report it was shown that what appeared to be secondary cytotoxic T cells could be obtained from lymphocytic choriomeningitis virus (LCMV)-primed splenocytes after stimulation in vitro with the non-specific T cell mitogen concanavalin A (Con A). The present experiments attempt...... to characterize further these effector cells and, in particular, to establish whether the Con A-activated cytotoxic effectors are qualitatively different from the secondary cytotoxic T cells induced by restimulation with the homologous antigen. It was found that: (1) in vitro activation with Con A could......, since no evidence was found to indicate a role for other cell types or soluble (cytotoxic or arming) factors; (4) cytotoxicity was specific with regard to both virus and 'self'. By comparison with previous data on LCMV-induced cytotoxic T cells, it is concluded that Con A induces the generation...

  5. In vitro cytotoxic and in silico activity of piperine isolated from Piper nigrum fruits Linn.

    Science.gov (United States)

    Paarakh, Padmaa M; Sreeram, Dileep Chandra; D, Shruthi S; Ganapathy, Sujan P S

    2015-12-01

    Piper nigrum [Piperaceae], commonly known as black pepper is used as medicine fairly throughout the greater part of India and as a spice globally. To isolate piperine and evaluate in vitro cytotoxic [antiproliferative] activity and in silico method. Piperine was isolated from the fruits of P.nigrum. Piperine was characterized by UV,IR, (1)H-NMR, (13)C-NMR and Mass spectrum. Standardization of piperine was done also by HPTLC fingerprinting. In vitro cytotoxic activity was done using HeLa cell lines by MTT assay at different concentrations ranging from 20 to 100 μg/ml in triplicate and in silico docking studies using enzyme EGFR tyrosine kinase. Fingerprinting of isolated piperine were done by HPTLC method. The IC50 value was found to be 61.94 ± 0.054 μg/ml in in vitro cytotoxic activity in HeLa Cell lines. Piperine was subjected to molecular docking studies for the inhibition of the enzyme EGFR tyrosine kinase, which is one of the targets for inhibition of cancer cells. It has shown -7.6 kJ mol(-1) binding and 7.06 kJ mol(-1) docking energy with two hydrogen bonds. piperine has shown to possess in vitro cytotoxic activity and in silico studies.

  6. Flavonoids from Heliotropium subulatum exudate and their evaluation for antioxidant, antineoplastic and cytotoxic activities II.

    Science.gov (United States)

    Singh, Bharat; Sahu, Pooran M; Sharma, Ram A

    2017-02-01

    The flavonoids are the largest group of phenolic compounds isolated from a wide range of higher plants. These compounds work as antimicrobials, anti-insect agents and protect plants from other types of biotic and abiotic stresses. Various researchers have suggested that flavonoids possessed antioxidant, antineoplastic and cytotoxic activities. The main objective of this study was to test dichloromethane fraction of resinous exudate of Heliotropium subulatum for their antioxidant, antineoplastic and cytotoxic activities, as well as to search new antioxidant and antineoplastic agents for pharmaceutical formulations. Five flavonoids were isolated from resinous exudate of this plant species and screened for their in vitro and in vivo antioxidant models (DPPH radical scavenging, reducing power, superoxide anion scavenging, metal chelating scavenging systems, catalase and lipid peroxidation), antineoplastic (Sarcoma 180), and cytotoxic (Chinese hamster V79 cells) activities. Tricetin demonstrated maximum antioxidant activity against both in vitro and in vivo experimental systems while galangin exhibited maximum inhibition (78.35%) at a dose of 10 µg/kg/day against Sarcoma 180. Similarly, it was found that galangin also showed highest activity (21.1 ± 0.15%) at a concentration of 70 µg/ml to Chinese hamster V79 cells. The observed results suggest that tricetin has a potential to scavenge free radicals in both in vitro and in vivo models while the galangin could be considered as antitumor and cytotoxic agent.

  7. Chemical Composition, Antioxidant, Antimicrobial and Cytotoxic Activities of Essential Oil from Premna microphylla Turczaninow.

    Science.gov (United States)

    Zhang, Han-Yu; Gao, Yang; Lai, Peng-Xiang

    2017-02-28

    Premna microphylla Turczaninow, an erect shrub, was widely used in Chinese traditional medicine to treat dysentery, appendicitis, and infections. In this study, the essential oil from P. microphylla Turcz. was obtained by hydrodistillation and analyzed by GC (Gas Chromatography) and GC-MS (Gas Chromatography-Mass Spectrometer). Fifty-six compounds were identified in the oil which comprised about 97.2% of the total composition of the oil. Major components of the oil were blumenol C (49.7%), β-cedrene (6.1%), limonene (3.8%), α-guaiene (3.3%), cryptone (3.1%), and α-cyperone (2.7%). Furthermore, we assessed the in vitro biological activities displayed by the oil obtained from the aerial parts of P. microphylla, namely the antioxidant, antimicrobial, and cytotoxic activities. The antioxidant activity of the essential oil was evaluated by 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity. For this, the IC50 value was estimated to be 0.451 mg/mL. The essential oil of P. microphylla exhibited considerable antibacterial capacity against Escherichia coli with an MIC (Minimum Inhibitory Concentration) value of 0.15 mg/mL, along with noticeable antibacterial ability against Bacillus subtilis and Staphylococcus aureus with an MIC value of 0.27 mg/mL. However, the essential oil did not show significant activity against fungus. The oil was tested for its cytotoxic activity towards HepG2 (liver hepatocellular cells) and MCF-7 Cells (human breast adenocarcinoma cell line) using the MTT (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide) assay, and exerted cytotoxic activity with an IC50 of 0.072 and 0.188 mg/mL for 72 h. In conclusion, the essential oil from P. microphylla is an inexpensive but favorable resource with strong antibacterial capacity as well as cytotoxic activity. Thus, it has the potential for utilization in the cosmetics and pharmaceutical industries.

  8. In vitro cytotoxic activity of medicinal plants from Nigeria ethnomedicine on Rhabdomyosarcoma cancer cell line and HPLC analysis of active extracts.

    Science.gov (United States)

    Ogbole, Omonike O; Segun, Peter A; Adeniji, Adekunle J

    2017-11-22

    Cancer is a leading cause of death world-wide, with approximately 17.5 million new cases and 8.7 million cancer related deaths in 2015. The problems of poor selectivity and severe side effects of the available anticancer drugs, have demanded the need for the development of safer and more effective chemotherapeutic agents. The present study was aimed at determining the cytotoxicities of 31 medicinal plants extracts, used in Nigerian ethnomedicine for the treatment of cancer. The plant extracts were screened for cytotoxicity, using the brine shrimp lethality assay (BSLA) and MTT cytotoxicity assay. Rhabdomyosarcoma (RD) cell line, normal Vero cell line and the normal prostate (PNT2) cell line were used for the MTT assay, while Artemia salina nauplii was used for the BSLA. The phytochemical composition of the active plant extracts was determined by high performance liquid chromatography (HPLC) analysis. The extract of Eluesine indica (L.) Gaertn (Poaceae), with a LC 50 value of 76.3 μg/mL, had the highest cytotoxicity on the brine shrimp larvae compared to cyclophosphamide (LC 50  = 101.3 μg/mL). Two plants extracts, Macaranga barteri Mull. Arg. (Euphorbiaceae) and Calliandra portoricensis (Jacq.) Benth (Leguminosae) exhibited significant cytotoxic activity against the RD cell line and had comparable lethal activity on the brine shrimps. Further cytotoxic investigation showed that the dichloromethane fraction of Macaranga barteri (DMB) and the ethyl acetate fraction of Calliandra portoricensis (ECP), exhibited approximately 6-fold and 4-fold activity, respectively, compared to cyclophosphamide on RD cell line. Determination of selective index (SI) using Vero and PNT2 cell line indicated that DMB and ECP displayed a high degree of selectivity against the cancer cell under investigation. HPLC analysis showed that 3,5dicaffeoylquinic acid, acteoside, kampferol-7-O-glucoside and bastadin 11 were the major components of DMB while the major components of ECP were

  9. Effect of combustion condition on cytotoxic and inflammatory activity of residential wood combustion particles

    Science.gov (United States)

    Jalava, Pasi I.; Salonen, Raimo O.; Nuutinen, Kati; Pennanen, Arto S.; Happo, Mikko S.; Tissari, Jarkko; Frey, Anna; Hillamo, Risto; Jokiniemi, Jorma; Hirvonen, Maija-Riitta

    2010-05-01

    Residential heating is an important local source of fine particles and may cause significant exposure and health effects in populations. We investigated the cytotoxic and inflammatory activity of particulate emissions from normal (NC) and smouldering (SC) combustion in one masonry heater. The PM 1-0.2 and PM 0.2 samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). Mouse RAW 264.7 macrophages were exposed to the PM-samples for 24 h. Inflammatory mediators, (IL-6, TNFα and MIP-2), and cytotoxicity (MTT-test), were measured. Furthermore, apoptosis and cell cycle of macrophages were analyzed. The HVCI particulate samples were characterized for ions, elements and PAH compounds. Assays of elemental and organic carbon were conducted from parallel low volume samples. All the samples displayed mostly dose-dependent inflammatory and cytotoxic activity. SC samples were more potent than NC samples at inducing cytotoxicity and MIP-2 production, while the order of potency was reversed in TNFα production. SC-PM 1-0.2 sample was a significantly more potent inducer of apoptosis than the respective NC sample. After adjustment for the relative toxicity with emission factor (mg MJ -1), the SC-PM emissions had clearly higher inflammatory and cytotoxic potential than the NC-PM emissions. Thus, operational practice in batch burning of wood and the resultant combustion condition clearly affect the toxic potential of particulate emissions.

  10. In vitro antioxidant, anti-inflammatory, cytotoxic activities against prostate cancer of extracts from Hibiscus sabdariffa leaves.

    Science.gov (United States)

    Worawattananutai, Patsorn; Itharat, Arunporn; Ruangnoo, Srisopa

    2014-08-01

    Hibiscus sabdariffa (HS) leaves are a vegetable, which is used as a healthy sour soup for protection against chronic diseases in Thai traditional medicine. To investigate antioxidant, anti-inflammatory and cytotoxic activities of Hibiscus sabdariffa leave extracts from diferent extraction methods. Fresh and dry Hibiscus sabdariffa leaves were extracted by various methods such as maceration with 95% and 50% ethanol, squeeze, and boiling with water or decoction. All extracts were testedfor antioxidant activity by using DPPH radical scavenging assay, anti-inflammatory activity by determination on inhibitory effect of nitric oxide production on RAW264. 7 cell. Cytotoxic activity also tested against human prostate cancer cell line (PC-3) by using sulforhodamine B (SRB) assay. Total phenolic content determined by the Folin-Ciocalteu colorimetric method. The results found that the 95% ethanolic extract of Hibiscus sabdariffa dried leaves (HSDE95) showed the highest antioxidant activity with an EC50 of 34.51±2.62 μg/ml and had the highest phenolic content (57.00±3.73 mg GAE/g). HSDE95 also showed potent cytotoxicity against prostate cancer cell line with an IC50 of 8.58±0.68 μg/ml whereas HSDE95 and all of extracts ofHibiscus sabdariffa leaves had no anti-inflammatory activity. The obtained results revealed that HSDE95 extract showedpotent cytotoxic activity against prostate cancer cells but low antioxidant and anti-inflammatory activities. This extract should be further isolated as active compounds against prostate cancer.

  11. Antibacterial and Cytotoxic Activity of Compounds Isolated from Flourensia oolepis

    Directory of Open Access Journals (Sweden)

    Mariana Belén Joray

    2015-01-01

    Full Text Available The antibacterial and cytotoxic effects of metabolites isolated from an antibacterial extract of Flourensia oolepis were evaluated. Bioguided fractionation led to five flavonoids, identified as 2′,4′-dihydroxychalcone (1, isoliquiritigenin (2, pinocembrin (3, 7-hydroxyflavanone (4, and 7,4′-dihydroxy-3′-methoxyflavanone (5. Compound 1 showed the highest antibacterial effect, with minimum inhibitory concentration (MIC values ranging from 31 to 62 and 62 to 250 μg/mL, against Gram-positive and Gram-negative bacteria, respectively. On further assays, the cytotoxic effect of compounds 1–5 was determined by MTT assay on acute lymphoblastic leukemia (ALL and chronic myeloid leukemia (CML cell lines including their multidrug resistant (MDR phenotypes. Compound 1 induced a remarkable cytotoxic activity toward ALL cells (IC50 = 6.6–9.9 μM and a lower effect against CML cells (IC50 = 27.5–30.0 μM. Flow cytometry was used to analyze cell cycle distribution and cell death by PI-labeled cells and by Annexin V/PI staining, respectively. Upon treatment, 1 induced cell cycle arrest in the G2/M phase accompanied by a strong induction of apoptosis. These results describe for the first time the antibacterial metabolites of F. oolepis extract, with 1 being the most effective. This chalcone also emerges as a selective cytotoxic agent against sensitive and resistant leukemic cells, highlighting its potential as a lead compound.

  12. Attenuation of everolimus-induced cytotoxicity by a protective autophagic pathway involving ERK activation in renal cell carcinoma cells

    Science.gov (United States)

    Zeng, Yizhou; Tian, Xiaofang; Wang, Quan; He, Weiyang; Fan, Jing; Gou, Xin

    2018-01-01

    Aim The mammalian target of rapamycin (mTOR) pathway is a critical target for cancer treatment and the mTOR inhibitor everolimus (RAD001) has been approved for treatment of renal cell carcinoma (RCC). However, the limited efficacy of RAD001 has led to the development of drug resistance. Autophagy is closely related to cell survival and death, which may be activated under RAD001 stimulation. The aim of the present study was to identify the underlying mechanisms of RAD001 resistance in RCC cells through cytoprotective autophagy involving activation of the extracellular signal-regulated kinase (ERK) pathway. Methods and results: RAD001 strongly induced autophagy of RCC cells in a dose- and time-dependent manner, as confirmed by Western blot analysis. Importantly, suppression of autophagy by the pharmacological inhibitor chloroquine effectively enhanced RAD001-induced apoptotic cytotoxicity, as demonstrated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Western blot analysis, indicating a cytoprotective role for RAD001-induced autophagy. In addition, as was shown by the MTT assay, flow cytometry, and Western blot analysis, RAD001 robustly activated ERK, but not c-Jun N-terminal kinase and p38. Activation of ERK was inhibited by the pharmacological inhibitor selumetinib (AZD6244), which effectively promoted RAD001-induced cell death. Moreover, employing AZD6244 markedly attenuated RAD001-induced autophagy and enhanced RAD001-induced apoptosis, which play a central role in RAD001-induced cell death. Furthermore, RAD001-induced autophagy is regulated by ERK-mediated phosphorylation of Beclin-1 and B-cell lymphoma 2, as confirmed by Western blot analysis. Conclusion These results suggest that RAD001-induced autophagy involves activation of the ERK, which may impair cytotoxicity of RAD001 in RCC cells. Thus, inhibition of the activation of ERK pathway-mediated autophagy may be useful to overcome chemoresistance to RAD001. PMID:29719377

  13. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  14. TRX-ASK1-JNK signaling regulation of cell density-dependent cytotoxicity in cigarette smoke-exposed human bronchial epithelial cells.

    Science.gov (United States)

    Lee, Yong Chan; Chuang, Chun-Yu; Lee, Pak-Kei; Lee, Jin-Soo; Harper, Richart W; Buckpitt, Alan B; Wu, Reen; Oslund, Karen

    2008-05-01

    Cigarette smoke is a major environmental air pollutant that injures airway epithelium and incites subsequent diseases including chronic obstructive pulmonary disease. The lesion that smoke induces in airway epithelium is still incompletely understood. Using a LIVE/DEAD cytotoxicity assay, we observed that subconfluent cultures of bronchial epithelial cells derived from both human and monkey airway tissues and an immortalized normal human bronchial epithelial cell line (HBE1) were more susceptible to injury by cigarette smoke extract (CSE) and by direct cigarette smoke exposure than cells in confluent cultures. Scraping confluent cultures also caused an enhanced cell injury predominately in the leading edge of the scraped confluent cultures by CSE. Cellular ATP levels in both subconfluent and confluent cultures were drastically reduced after CSE exposure. In contrast, GSH levels were significantly reduced only in subconfluent cultures exposed to smoke and not in confluent cultures. Western blot analysis demonstrated ERK activation in both confluent and subconfluent cultures after CSE. However, activation of apoptosis signal-regulating kinase 1 (ASK1), JNK, and p38 were demonstrated only in subconfluent cultures and not in confluent cultures after CSE. Using short interfering RNA (siRNA) to JNK1 and JNK2 and a JNK inhibitor, we attenuated CSE-mediated cell death in subconfluent cultures but not with an inhibitor of the p38 pathway. Using the tetracycline (Tet)-on inducible approach, overexpression of thioredoxin (TRX) attenuated CSE-mediated cell death and JNK activation in subconfluent cultures. These results suggest that the TRX-ASK1-JNK pathway may play a critical role in mediating cell density-dependent CSE cytotoxicity.

  15. Adenosine, but not guanosine, protects vaginal epithelial cells from Trichomonas vaginalis cytotoxicity.

    Science.gov (United States)

    Menezes, Camila Braz; Frasson, Amanda Piccoli; Meirelles, Lucia Collares; Tasca, Tiana

    2017-02-01

    Trichomonas vaginalis causes the most common non-viral sexually transmitted disease worldwide. The cytoadherence and cytotoxicity upon the vaginal epithelial cells are crucial for the infection. Extracellular nucleotides are released during cell damage and, along with their nucleosides, can activate purinoceptors. The opposing effects of nucleotides versus nucleosides are regulated by ectonucleotidases. Herein we evaluated the hemolysis and cytolysis induced by T. vaginalis, as well as the extracellular nucleotide hydrolysis along with the effects mediated by nucleotides and nucleosides on cytotoxicity. In addition, the gene expression of purinoceptors in host cells was determined. The hemolysis and cytolysis exerted by all T. vaginalis isolates presented positive Pearson correlation. All T. vaginalis isolates were able to hydrolyze nucleotides, showing higher NTPDase than ecto-5'-nucleotidase activity. The most cytotoxic isolate, TV-LACM6, hydrolyzes ATP, GTP with more efficiency than AMP and GMP. The vaginal epithelial cell line (HMVII) expressed the genes for all subtypes of P1, P2X and P2Y receptors. Finally, when nucleotides and nucleosides were tested, the cytotoxic effect elicited by TV-LACM6 was increased with nucleotides. In contrast, the cytotoxicity was reversed by adenosine in presence of EHNA, but not by guanosine, contributing to the understanding of the purinergic signaling role on T. vaginalis cytotoxicity. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  16. Leishmanicidal, antiplasmodial and cytotoxic activity of indole alkaloids from Corynanthe pachyceras

    DEFF Research Database (Denmark)

    Staerk, D; Lemmich, E; Christensen, J

    2000-01-01

    -NMR resonances by COSY and NOESY experiments. These and related alkaloids showed pronounced activity against Leishmania major promastigotes (IC50 at the micromolar level) but no significant in vitro antiplasmodial activity (against chloroquine-sensitive Plasmodium falciparum). Cytotoxicity assessed with drug...

  17. Melatonin Cytotoxicity Is Associated to Warburg Effect Inhibition in Ewing Sarcoma Cells.

    Directory of Open Access Journals (Sweden)

    Ana M Sanchez-Sanchez

    Full Text Available Melatonin kills or inhibits the proliferation of different cancer cell types, and this is associated with an increase or a decrease in reactive oxygen species, respectively. Intracellular oxidants originate mainly from oxidative metabolism, and cancer cells frequently show alterations in this metabolic pathway, such as the Warburg effect (aerobic glycolysis. Thus, we hypothesized that melatonin could also regulate differentially oxidative metabolism in cells where it is cytotoxic (Ewing sarcoma cells and in cells where it inhibits proliferation (chondrosarcoma cells. Ewing sarcoma cells but not chondrosarcoma cells showed a metabolic profile consistent with aerobic glycolysis, i.e. increased glucose uptake, LDH activity, lactate production and HIF-1α activation. Melatonin reversed Ewing sarcoma metabolic profile and this effect was associated with its cytotoxicity. The differential regulation of metabolism by melatonin could explain why the hormone is harmless for a wide spectrum of normal and only a few tumoral cells, while it kills specific tumor cell types.

  18. A novel method for producing target cells and assessing cytotoxic T lymphocyte activity in outbred hosts

    Directory of Open Access Journals (Sweden)

    Bendinelli Mauro

    2009-03-01

    Full Text Available Abstract Background Cytotoxic T lymphocytes play a crucial role in the immunological control of microbial infections and in the design of vaccines and immunotherapies. Measurement of cytotoxic T lymphocyte activity requires that the test antigen is presented by target cells having the same or compatible class I major hystocompatibility complex antigens as the effector cells. Conventional assays use target cells labeled with 51chromium and infer cytotoxic T lymphocyte activity by measuring the isotope released by the target cells lysed following incubation with antigen-specific cytotoxic T lymphocytes. This assay is sensitive but needs manipulation and disposal of hazardous radioactive reagents and provides a bulk estimate of the reporter released, which may be influenced by spontaneous release of the label and other poorly controllable variables. Here we describe a novel method for producing target in outbred hosts and assessing cytotoxic T lymphocyte activity by flow cytometry. Results The method consists of culturing skin fibroblasts, immortalizing them with a replication defective clone of simian virus 40, and finally transducing them with a bicistronic vector encoding the target antigen and the reporter green fluorescent protein. When used in a flow cytometry-based assay, the target cells obtained with this method proved valuable for assessing the viral envelope protein specific cytotoxic T lymphocyte activity in domestic cats acutely or chronically infected with feline immunodeficiency virus, a lentivirus similar to human immunodeficiency virus and used as animal model for AIDS studies. Conclusion Given the versatility of the bicistronic vector used, its ability to deliver multiple and large transgenes in target cells, and its extremely wide cell specificity when pseudotyped with the vesicular stomatitis virus envelope protein, the method is potentially exploitable in many animal species.

  19. Suppression of cytotoxic T lymphocytes by carrageenan-activated macrophage-like cells

    International Nuclear Information System (INIS)

    Yung, Y.P.; Cudkowicz, G.

    1978-01-01

    In the presence of 100 μg/ml of carrageenans (CAR), B6D2F 1 responder spleen cells failed to generate antiparent or anti-allogeneic cytotoxic T lymphocytes in vitro, but instead generated suppressor cells. Cultured CAR-treated cells added to mixtures of B6D2F 1 anti-B6 or B6D2F 1 anti-C3H cytotoxic effectors (induced in vitro) and the appropriate 51 Cr-labeled lymphoma targets reduced or abolished cytolysis (measured as 51 Cr release) depending on the ratio of suppressor to effector cells. Cultured spleen cells not exposed to CAR failed to inhibit both types of cytotoxicity. Presuppressor cells were associated with a splenic subpopulation independent of the thymus (i.e., present in spleens of athymic nude mice), were moderately adherent to Sephadex G-10 columns, but were not phagocytic or ''sticky'' to carbonyl iron particles. Activation of such cells by CAR was not prevented by in vitro exposure to 2000 rads of γ-rays before culture, nor facilitated by antigenic stimulation. The matured suppressor cells remained radioresistant and became strongly adherent to Sephadex G-10. The suppressors lacked surface Thy-1 alloantigen detectable by antibody and rabbit complement. Suppressor cell activity was not restricted by the immunologic specificity and major histocompatibility type of effectors

  20. CYTOTOXIC, α-CHYMOTRYPSIN AND UREASE INHIBITION ACTIVITIES OF THE PLANT Heliotropium dasycarpum L.

    Science.gov (United States)

    Ghaffari, Muhammad Abuzar; Chaudhary, Bashir Ahmed; Uzair, Muhammad; Ashfaq, Khuram

    2016-01-01

    The aim of this study was to investigate Cytotoxic, α-Chymotrypsin and Urease inhibition activities of the plant Heliotropium dasycarpum . Dichloromethane and methanol extracts of the plant were evaluated for cytotoxic, α-Chymotrypsin and Urease inhibition by using in vivo Brine Shrimp lethality bioassay and in vitro enzymatic inhibition assays respectively. The methanol extract of the plant exhibited significant cytotoxic activity. Out of 30 brine shrimp larvae, 2 (6%), 26 (86%) and 28 (93%) larvae were survived at concentration of 1000μg/ml, 100μg/ml and 10μg/ml respectively with LD50; 215.837. Similarly 21 (70%), 25 (83%), 29 (96%) larvae were survived of dichloromethane plant extract with LD50; 6170.64. The methanol and dichloromethane extract exhibited 10.50±0.18% and 41.51±0.15% α-chymotrypsin enzyme inhibition respectively with IC 50 values of greater than 500 μmol. The methanol extract showed 24.39±0.21% Urease enzyme inhibition with IC 50 values of greater than 400 μmol While dichloromethane extract has 11.46±0.09% enzyme inhibition with IC 50 values of greater than 500 μmol. The results clearly indicated that Heliotropium dasycarpum has cytotoxic potential and enzyme inhibition properties. Further study is needed to screen out antitumor and anti-ulcerative agents.

  1. Structure-activity relationship analysis of cytotoxic cyanoguanidines: selection of CHS 828 as candidate drug

    Directory of Open Access Journals (Sweden)

    Gullbo Joachim

    2009-06-01

    Full Text Available Abstract Background N-(6-(4-chlorophenoxyhexyl-N'-cyano-N''-4-pyridyl guanidine (CHS 828 is the first candidate drug from a novel group of anti-tumour agents – the pyridyl cyanoguanidines, shown to be potent compounds interfering with cellular metabolism (inhibition of nicotinamide phosphoribosyl transferase and NF-κB signalling. Substituted cyanoguanidines are also found in anti-hypertensive agents such as the potassium channel opener pinacidil (N-cyano-N'-(4-pyridyl-N''-(1,2,2-trimethylpropylguanidine and histamine-II receptor antagonists (e.g. cimetidine, N-cyano-N'-methyl-N''-[2-[[(5-methylimidazol-4-yl]methyl]thio]ethylguanidine. In animal studies, CHS 828 has shown very promising activity, and phase I and II studies resulted in further development of a with a water soluble prodrug. Findings To study the structural requirements for cyanoguanidine cytotoxicity a set of 19 analogues were synthesized. The cytotoxic effects were then studied in ten cell lines selected for different origins and mechanisms of resistance, using the fluorometric microculture cytotoxicity assay (FMCA. The compounds showed varying cytotoxic activity even though the dose-response curves for some analogues were very shallow. Pinacidil and cimetidine were found to be non-toxic in all ten cell lines. Starting with cyanoguanidine as the crucial core it was shown that 4-pyridyl substitution was more efficient than was 3-pyridyl substitution. The 4-pyridyl cyanoguanidine moiety should be linked by an alkyl chain, optimally a hexyl, heptyl or octyl chain, to a bulky end group. The exact composition of this end group did not seem to be of crucial importance; when the end group was a mono-substituted phenyl ring it was shown that the preferred position was 4-substitution, followed by 3- and, finally, 2-substitution as the least active. Whether the substituent was a chloro, nitro or methoxy substituent seemed to be of minor importance. Finally, the activity patterns in the

  2. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents.

    Science.gov (United States)

    Coté, Héloïse; Boucher, Marie-Anne; Pichette, André; Legault, Jean

    2017-05-25

    Background: Tanacetum vulgare L. (Asteraceae) is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean), Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  3. Anti-Inflammatory, Antioxidant, Antibiotic, and Cytotoxic Activities of Tanacetum vulgare L. Essential Oil and Its Constituents

    Directory of Open Access Journals (Sweden)

    Héloïse Coté

    2017-05-01

    Full Text Available Background: Tanacetum vulgare L. (Asteraceae is a perennial herb that has been used to treat multiple ailments. Regional variability of the chemical composition of T. vulgare essential oils is well-known. Despite these regional chemotypes, most relevant studies did not analyze the complete chemical composition of the T. vulgare essential oil and its constituents in relation to their biological activities. Here, we assess the anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities of T. vulgare collected from northern Quebec (Saguenay-Lac-St-Jean, Canada. Methods: Essential oil was extracted from plants by steam distillation and analyzed using GC-FID. Biological activities of essential oil and its main constituents were evaluated in vitro. Results: We identified the major compounds as camphor, borneol, and 1,8-cineole. The oil possesses anti-inflammatory activity inhibiting NO production. It also inhibits intracellular DCFH oxidation induced by tert-butylhydroperoxide. Anti-inflammatory activity of essential oil appears driven mainly by α-humulene while antioxidant activity is provided by α-pinene and caryophyllene oxide. Essential oil from T vulgare was active against both Escherichia coli and Staphylococcus aureus with camphor and caryophyllene oxide responsible for antibacterial activity. Finally, T. vulgare essential oil was slightly cytotoxic against the human healthy cell line WS1 while α-humulene and caryophyllene oxide were moderately cytotoxic against A-549, DLD-1, and WS1. Conclusion: We report, for the first time, links between the specific compounds found in T. vulgare essential oil and anti-inflammatory, antioxidant, antibacterial, and cytotoxic activities. T. vulgare essential oil possesses interesting biological properties.

  4. Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of industrial effluents originated from different industrial activities.

    Science.gov (United States)

    Pathiratne, Asoka; Hemachandra, Chamini K; De Silva, Nimal

    2015-12-01

    Efficacy of Allium cepa test system for screening cytotoxicity and genotoxicity of treated effluents originated from four types of industrial activities (two textile industries, three rubber based industries, two common treatment plants of industrial zones, and two water treatment plants) was assessed. Physico-chemical parameters including the heavy metal/metalloid levels of the effluents varied depending on the industry profile, but most of the measured parameters in the effluents were within the specified tolerance limits of Sri Lankan environmental regulations for discharge of industrial effluents into inland surface waters. In the A. cepa test system, the undiluted effluents induced statistically significant root growth retardation, mitosis depression, and chromosomal aberrations in root meristematic cells in most cases in comparison to the dilution water and upstream water signifying effluent induced cytotoxicity and genotoxicity. Ethyl methane sulphonate (a mutagen, positive control) and all the effluents under 1:8 dilution significantly induced total chromosomal aberrations in root meristematic cells in comparison to the dilution water and upstream water indicating inadequacy of expected 1:8 dilutions in the receiving waters for curtailing genotoxic impacts. The results support the use of a practically feasible A. cepa test system for rapid screening of cytotoxicity and genotoxicity of diverse industrial effluents discharging into inland surface waters.

  5. Acetaldehyde Induces Cytotoxicity of SH-SY5Y Cells via Inhibition of Akt Activation and Induction of Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Tingting Yan

    2016-01-01

    Full Text Available Excessive alcohol consumption can lead to brain tissue damage and cognitive dysfunction. It has been shown that heavy drinking is associated with an earlier onset of neurodegenerative diseases such as Alzheimer’s disease. Acetaldehyde, the most toxic metabolite of ethanol, is speculated to mediate the brain tissue damage and cognitive dysfunction induced by the chronic excessive consumption of alcohol. However, the exact mechanisms by which acetaldehyde induces neurotoxicity are not totally understood. In this study, we investigated the cytotoxic effects of acetaldehyde in SH-SY5Y cells and found that acetaldehyde induced apoptosis of SH-SY5Y cells by downregulating the expression of antiapoptotic Bcl-2 and Bcl-xL and upregulating the expression of proapoptotic Bax. Acetaldehyde treatment led to a significant decrease in the levels of activated Akt and cyclic AMP-responsive element binding protein (CREB. In addition, acetaldehyde induced the activation of p38 mitogen-activated protein kinase (MAPK while inhibiting the activation of extracellular signal-regulated kinases (ERKs, p44/p42MAPK. Meanwhile, acetaldehyde treatment caused an increase in the production of reactive oxygen species and elevated the oxidative stress in SH-SY5Y cells. Therefore, acetaldehyde induces cytotoxicity of SH-SY5Y cells via promotion of apoptotic signaling, inhibition of cell survival pathway, and induction of oxidative stress.

  6. PDL1 Signals through Conserved Sequence Motifs to Overcome Interferon-Mediated Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Maria Gato-Cañas

    2017-08-01

    Full Text Available PDL1 blockade produces remarkable clinical responses, thought to occur by T cell reactivation through prevention of PDL1-PD1 T cell inhibitory interactions. Here, we find that PDL1 cell-intrinsic signaling protects cancer cells from interferon (IFN cytotoxicity and accelerates tumor progression. PDL1 inhibited IFN signal transduction through a conserved class of sequence motifs that mediate crosstalk with IFN signaling. Abrogation of PDL1 expression or antibody-mediated PDL1 blockade strongly sensitized cancer cells to IFN cytotoxicity through a STAT3/caspase-7-dependent pathway. Moreover, somatic mutations found in human carcinomas within these PDL1 sequence motifs disrupted motif regulation, resulting in PDL1 molecules with enhanced protective activities from type I and type II IFN cytotoxicity. Overall, our results reveal a mode of action of PDL1 in cancer cells as a first line of defense against IFN cytotoxicity.

  7. Calcium Contributes to the Cytotoxic Interaction Between Diclofenac and Cytokines.

    Science.gov (United States)

    Maiuri, Ashley R; Breier, Anna B; Turkus, Jonathan D; Ganey, Patricia E; Roth, Robert A

    2016-02-01

    Diclofenac (DCLF) is a widely used non-steroidal anti-inflammatory drug that is associated with idiosyncratic, drug-induced liver injury (IDILI) in humans. The mechanisms of DCLF-induced liver injury are unknown; however, patients with certain inflammatory diseases have an increased risk of developing IDILI, which raises the possibility that immune mediators play a role in the pathogenesis. DCLF synergizes with the cytokines tumor necrosis factor-alpha (TNF) and interferon-gamma (IFN) to cause hepatocellular apoptosis in vitro by a mechanism that involves activation of the endoplasmic reticulum (ER) stress response pathway and of the mitogen-activated protein kinases, c-Jun N-terminal kinase (JNK), and extracellular signal-regulated kinase (ERK). DCLF also causes an increase in intracellular calcium (Ca(++)) in hepatocytes, but the role of this in the cytotoxic synergy between DCLF and cytokines is unknown. We tested the hypothesis that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy. Treatment of HepG2 cells with DCLF led to an increase in intracellular Ca(++) at 6 and 12 h, and this response was augmented in the presence of TNF and IFN at 12 h. The intracellular Ca(++) chelator BAPTA/AM reduced cytotoxicity and caspase-3 activation caused by DCLF/cytokine cotreatment. BAPTA/AM also significantly reduced DCLF-induced activation of the ER stress sensor, protein kinase RNA-like ER kinase (PERK), as well as activation of JNK and ERK. Treatment of cells with an inositol trisphosphate receptor antagonist almost completely eliminated DCLF/cytokine-induced cytotoxicity and decreased DCLF-induced activation of PERK, JNK, and ERK. These findings indicate that Ca(++) contributes to DCLF/cytokine-induced cytotoxic synergy by promoting activation of the ER stress-response pathway and JNK and ERK. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Cytotoxic activity of isolated constituents from leaves of Premna serratifolia on MCF-7 and HT-29 cell lines

    Directory of Open Access Journals (Sweden)

    Mahesh Biradi

    2015-03-01

    Full Text Available Premna serratifolia (Syn: Premna integrifolia is an important medicinal herb known as “Agnimantha” in Ayurveda and traditionally used for anticancer activity. The objective of present study was to isolate the cytotoxic phytoconstituents from the n-hexane soluble fraction of P. serratifolia leaf extract. Unsaponifiable portion of n-hexane soluble fraction was subjected to silica based column chromatography. The major constituents present in all the sub-fractions were identified by TLC and phytochemical tests. Two constituents were isolated and they were purified. Sub-fractions with isolates were tested for cytotoxic effect by BSL bioassay. Two isolates were found to be active and which were tested on cancer cell lines MCF-7 and HT-29 for their cytotoxicity. Among two isolates, one compound has shown significant cytotoxicity. From the results we conclude that the plant isolates showed cytotoxicity against selected human cancer cell lines.

  9. Antioxidant Activity and Cytotoxicity of the Leaf and Bark Extracts of ...

    African Journals Online (AJOL)

    Purpose: To investigate the antioxidant potential and cytotoxicity of the leaf and bark extracts of Tarchonanathus campharatus.. Methods: The antioxidant activity of the aqueous leaf extract (Aq LF), methanol leaf extract (MET LF), dichloromethane leaf extract (DCM LF), methanol bark extract (MET BK), dichloromethane bark ...

  10. Resistance of Pseudomonas aeruginosa isolates to hydrogel contact lens disinfection correlates with cytotoxic activity.

    Science.gov (United States)

    Lakkis, C; Fleiszig, S M

    2001-04-01

    One of the most common pathogens in infection of hydrogel contact lens wearers is Pseudomonas aeruginosa, which can gain access to the eye via contamination of the lens, lens case, and lens care solutions. Only one strain per species is used in current regulatory testing for the marketing of chemical contact lens disinfectants. The aim of this study was to determine whether P. aeruginosa strains vary in their susceptibility to hydrogel contact lens disinfectants. A method for rapidly screening bacterial susceptibility to contact lens disinfectants was developed, based on measurement of the MIC. The susceptibility of 35 P. aeruginosa isolates to two chemical disinfectants was found to vary among strains. MICs ranged from 6.25 to 100% for both disinfectants at 37 degrees C, and a number of strains were not inhibited by a 100% disinfectant concentration in the lens case environment at room temperature (22 degrees C). Resistance to disinfection appeared to be an inherent rather than acquired trait, since some resistant strains had been isolated prior to the introduction of the disinfectants and some susceptible P. aeruginosa strains could not be made more resistant by repeated disinfectant exposure. A number of P. aeruginosa strains which were comparatively more resistant to short-term disinfectant exposure also demonstrated the ability to grow to levels above the initial inoculum in one chemical disinfectant after long-term (24 to 48 h) disinfectant exposure. Resistance was correlated with acute cytotoxic activity toward corneal epithelial cells and with exsA, which encodes a protein that regulates cytotoxicity via a complex type III secretion system. These results suggest that chemical disinfection solutions may select for contamination with cytotoxic strains. Further investigation of the mechanisms and factors responsible for resistance may also lead to strategies for reducing adverse responses to contact lens wear.

  11. Antioxidant, antimicrobial, cytotoxic and analgesic activities of ethanolic extract of Mentha arvensis L.

    Directory of Open Access Journals (Sweden)

    Nripendra Nath Biswas

    2014-10-01

    Conclusions: These results suggest that the ethanolic extract of Mentha arvensis L. has potential antioxidant, antibacterial, cytotoxic and analgesic activities that support the ethnopharmacological uses of this plant.

  12. Specific inhibition of cytotoxic memory cells produced against uv-induced tumors in uv-irradiation mice

    International Nuclear Information System (INIS)

    Thorn, R.M.

    1978-01-01

    Cytotoxic responses of uv-irradiated mice against syngeneic uv-induced tumors were measured by using a 51 Cr-release assay to determine if uv treatment induced a specific reduction of cytotoxic activity. The in vivo and in vitro primary responses against syngeneic tumors and allogeneic cells were unaffected, as was the ''memory'' response (in vivo stimulation, in vitro restimulation) against alloantigens. In contrast, the memory response of uv-treated mice against syngeneic, uv-induced tumors was consistently and significantly depressed. The cytotoxicity generated by tumor cell stimulation in vivo or in vitro was tumor-specific and T cell-dependent. Since the primary response against syngeneic uv-induced tumors produces apparently normal amounts of tumor-specific cytotoxic activity, uv-treated mice may not reject transplanted syngeneic tumors because of too few T effector memory cells. These results imply that, at least in this system, tumor rejection depends mostly on the secondary responses against tumor antigens and that at least one carcinogen can, indirectly, specifically regulate immune responses

  13. Lack of dependence of 5-fluorodeoxyuridine-mediated radiosensitization on cytotoxicity

    International Nuclear Information System (INIS)

    Lawrence, T.S.; Davis, M.A.; Chang, E.Y.

    1995-01-01

    It has been proposed that fluoropyrimidine-mediated cytotoxicity and radiosensitization are closely correlated. We have shown that HT29 human colon cancer cells transfected with the E. coli dUTPase gene are resistant to 5-fluorodeoxyuridine (FdUrd)-mediated cytotoxicity, presumably through more effective elimination of dUTP. We used these cells to assess the association between radiosensitization and cytotoxicity produced by FdUrd. The radiation sensitivities of the clones expressing elevated dUTPase activity (dutE clones) were similar to those of untransfected HT29 cells or HT29 cells which has been transfected with only the expression vector for the E. coli gene (con clones). We found that FdUrd produced similar increases in radiation sensitivity regardless of dUTPase activity. Levels of dUTPase in the dutE clones remained elevated during the entire period of FdUrd exposure, demonstrating that the lack of difference between dutE and Con clones was not a reflection of down-regulation of dUTPase activity by FdUrd, Flow cytometry showed that all clones progressed past the G 1 /S-phase boundary and into early S phase during FdUrd treatment. These data suggest that the mechanisms of FdUrd-mediated cytotoxicity and radiosensitization are not closely linked. These findings, combined with our previous investigations, are consistent with the hypothesis that radiosensitization occurs in cells which progress past the G 1 /S-phase boundary in the presence of FdUrd. 24 refs., 2 figs., 2 tabs

  14. Cytotoxicity and trypanocidal activity of nifurtimox encapsulated in ethylcyanoacrylate nanoparticles

    Directory of Open Access Journals (Sweden)

    GITTITH SÁNCHEZ

    2002-01-01

    Full Text Available The aim of the present study was to study the trypanocidal activity of nanoparticles loaded with nifurtimox in comparison with the free drug against Trypanosoma cruzi, responsible for Chagas' disease. Ethylcyanoacrylate nanoparticles acted as the delivery system into cells. As the obligate replicative intracellular form is amastigote, in vitro studies were performed on this form of parasite as well as on cell culture derived trypomastigotes. The fluorescence method used here was very useful as it allowed for the simultaneous study of trypanocide activity and cytotoxicity by determining living or dead parasites within living or dead host cells. According to these results, the greatest trypanocide activity on cell culture-derived trypomastigotes was recorded for nifurtimox-loaded nanoparticles with a 50% inhibitory concentration (IC50 twenty times less than that of the free drug. The cytotoxycity of unloaded nanoparticles at low concentrations was similar to that obtained by free drug when evaluated on Vero cells. Furthermore, nifurtimox-loaded nanoparticles showed increased trypanocide activity on intracellular amastigotes with an IC50 thirteen times less than that of nifurtimox. We also observed that the unloaded nanoparticles possess the previously-described trypanocide activity, similar to the standard solution of nifurtimox, although the mechanism for this has not yet been elucidated. In conclusion, it was possible to establish in vitro conditions using nifurtimox encapsulated nanoparticles in order to decrease the doses of the drug and thus to obtain high trypanocidal activity on both free trypomastigotes and intracellular amastigotes with low cytotoxicity for the host cell.

  15. Cytotoxicity and Antiproliferative Activity Assay of Clove Mistletoe (Dendrophthoe pentandra (L. Miq. Leaves Extracts

    Directory of Open Access Journals (Sweden)

    Vida Elsyana

    2016-01-01

    Full Text Available Clove mistletoe (Dendrophthoe pentandra (L. Miq. is a semiparasitic plant that belongs to Loranthaceae family. Clove mistletoe was traditionally used for cancer treatment in Indonesia. In the present study, we examined cytotoxicity of clove mistletoe leaves extracts against brine shrimps and conducted their antiproliferative activity on K562 (human chronic myelogenous leukemia and MCM-B2 (canine benign mixed mammary cancer cell lines in vitro. The tested samples were water extract, ethanol extract, ethanol fraction, ethyl acetate fraction, and n-hexane fraction. Cytotoxicity was screened using Brine Shrimp Lethality Test (BSLT. Antiproliferative activity was conducted using Trypan Blue Dye Method and cells were counted using haemocytometer. The results showed that n-hexane fraction exhibited significant cytotoxicity with LC50 value of 55.31 μg/mL. The n-hexane fraction was then considered for further examination. The n-hexane fraction of clove mistletoe could inhibit growth of K562 and MCM-B2 cancer cell lines in vitro. The inhibition activity of clove mistletoe n-hexane fraction at concentration of 125 μg/mL on K562 cancer cell lines was 38.69%, while on MCM-B2 it was 41.5%. Therefore, it was suggested that clove mistletoe had potential natural anticancer activity.

  16. Suppression of NRF2–ARE activity sensitizes chemotherapeutic agent-induced cytotoxicity in human acute monocytic leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Hui [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing (China); Wang, Huihui [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); Xue, Peng [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Hou, Yongyong [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); Dong, Jian [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Institute of Biology and Medicine, Wuhan University of Science and Technology, Wuhan (China); Zhou, Tong [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Qu, Weidong [Key Laboratory of the Public Health Safety, Ministry of Education, School of Public Health, Fudan University, Shanghai (China); Peng, Shuangqing [Institute of Disease Control and Prevention, Academy of Military Medical Sciences, Beijing (China); Li, Jin; Carmichael, Paul L. [Unilever, Safety & Environmental Assurance Centre, Colworth Science Park, Sharnbrook, Bedfordshire MK44 1LQ (United Kingdom); Nelson, Bud; Clewell, Rebecca; Zhang, Qiang; Andersen, Melvin E. [The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States); Pi, Jingbo, E-mail: jpi@mail.cmu.edu.cn [School of Public Health, China Medical University, 77 Puhe Road, Shenyang North New Area, Shenyang (China); The Hamner Institutes for Health Sciences, 6 Davis Drive, Research Triangle Park, NC (United States)

    2016-02-01

    Nuclear factor erythroid 2-related factor 2 (NRF2), a master regulator of the antioxidant response element (ARE)-dependent transcription, plays a pivotal role in chemical detoxification in normal and tumor cells. Consistent with previous findings that NRF2–ARE contributes to chemotherapeutic resistance of cancer cells, we found that stable knockdown of NRF2 by lentiviral shRNA in human acute monocytic leukemia (AML) THP-1 cells enhanced the cytotoxicity of several chemotherapeutic agents, including arsenic trioxide (As{sub 2}O{sub 3}), etoposide and doxorubicin. Using an ARE-luciferase reporter expressed in several human and mouse cells, we identified a set of compounds, including isonicotinic acid amides, isoniazid and ethionamide, that inhibited NRF2–ARE activity. Treatment of THP-1 cells with ethionamide, for instance, significantly reduced mRNA expression of multiple ARE-driven genes under either basal or As{sub 2}O{sub 3}-challenged conditions. As determined by cell viability and cell cycle, suppression of NRF2–ARE by ethionamide also significantly enhanced susceptibility of THP-1 and U937 cells to As{sub 2}O{sub 3}-induced cytotoxicity. In THP-1 cells, the sensitizing effect of ethionamide on As{sub 2}O{sub 3}-induced cytotoxicity was highly dependent on NRF2. To our knowledge, the present study is the first to demonstrate that ethionamide suppresses NRF2–ARE signaling and disrupts the transcriptional network of the antioxidant response in AML cells, leading to sensitization to chemotherapeutic agents. - Highlights: • Identification of novel inhibitors of ARE-dependent transcription • Suppression of NRF2–ARE sensitizes THP-1 cells to chemotherapy. • Ethionamide suppresses ARE-dependent transcriptional activity. • Ethionamide and isoniazid increase the cytotoxicity of As{sub 2}O{sub 3} in AML cells. • Sensitization of THP-1 cells to As{sub 2}O{sub 3} toxicity by ethionamide is NRF2-dependent.

  17. Structure-activity relationships of novel salicylaldehyde isonicotinoyl hydrazone (SIH analogs: iron chelation, anti-oxidant and cytotoxic properties.

    Directory of Open Access Journals (Sweden)

    Eliška Potůčková

    Full Text Available Salicylaldehyde isonicotinoyl hydrazone (SIH is a lipophilic, tridentate iron chelator with marked anti-oxidant and modest cytotoxic activity against neoplastic cells. However, it has poor stability in an aqueous environment due to the rapid hydrolysis of its hydrazone bond. In this study, we synthesized a series of new SIH analogs (based on previously described aromatic ketones with improved hydrolytic stability. Their structure-activity relationships were assessed with respect to their stability in plasma, iron chelation efficacy, redox effects and cytotoxic activity against MCF-7 breast adenocarcinoma cells. Furthermore, studies assessed the cytotoxicity of these chelators and their ability to afford protection against hydrogen peroxide-induced oxidative injury in H9c2 cardiomyoblasts. The ligands with a reduced hydrazone bond, or the presence of bulky alkyl substituents near the hydrazone bond, showed severely limited biological activity. The introduction of a bromine substituent increased ligand-induced cytotoxicity to both cancer cells and H9c2 cardiomyoblasts. A similar effect was observed when the phenolic ring was exchanged with pyridine (i.e., changing the ligating site from O, N, O to N, N, O, which led to pro-oxidative effects. In contrast, compounds with long, flexible alkyl chains adjacent to the hydrazone bond exhibited specific cytotoxic effects against MCF-7 breast adenocarcinoma cells and low toxicity against H9c2 cardiomyoblasts. Hence, this study highlights important structure-activity relationships and provides insight into the further development of aroylhydrazone iron chelators with more potent and selective anti-neoplastic effects.

  18. Oxcarbazepine-induced cytotoxicity and genotoxicity in human lymphocyte cultures with or without metabolic activation.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Kefelioğlu, Haluk; Kontaş Yedier, Seval; Şekeroğlu, Vedat; Delmecioğlu, Berrin

    2017-03-01

    There has been considerable debate about the relationship between epilepsy and cancer. Oxcarbazepine (OXC) is used for treating certain types of seizures in patients with epilepsy. There have been no detailed investigations about genotoxicity of OXC and its metabolites. Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of OXC and its metabolites on cultured human lymphocytes. The cytotoxicity and genotoxicity of OXC on human peripheral blood lymphocytes were examined in vitro by sister chromatid exchange (SCE), chromosomal aberration (CA) and micronucleus (MN) tests. Cultures were treated with 125, 250 and 500 μg/ml of OXC in the presence (3 h treatment) and absence (24 h and 48 h treatment) of a metabolic activator (S9 mix). Dimethyl sulfoxide (DMSO) was used as a solvent control. OXC showed cytotoxic activities due to significant decreases in mitotic index (MI), proliferation index (PI) and nuclear division index (NDI) in the absence of S9 mix when compared with solvent control. Metabolites of OXC also significantly reduced MI and PI in cultures with S9 mix. OXC significantly increased the CAs, aberrant cells, SCE and MN values in the presence and absence of S9 mix. Our results indicated that both OXC and its metabolites have cytotoxic, cytostatic and genotoxic potential on human peripheral blood lymphocyte cultures under the experimental conditions. Further studies are necessary to elucidate the relationship between cytotoxic, cytostatic and genotoxic effects, and to make a possible risk assessment in patients receiving therapy with this drug.

  19. The Adaptor Protein SAP Regulates Type II NKT Cell Development, Cytokine Production and Cytotoxicity Against Lymphoma1

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L.; Stein, Paul L.; Wang, Chyung-Ru

    2014-01-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule-associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT cell TCR transgenic mouse model (24αβTg), we demonstrated that CD1d-expressing hematopoietic cells but not thymic epithelial cells meditate efficient selection of type II NKT cells. Further, we showed that SAP regulates type II NKT cell development by controlling Egr2 and PLZF expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IRF4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. PMID:25236978

  20. The adaptor protein SAP regulates type II NKT-cell development, cytokine production, and cytotoxicity against lymphoma.

    Science.gov (United States)

    Weng, Xiufang; Liao, Chia-Min; Bagchi, Sreya; Cardell, Susanna L; Stein, Paul L; Wang, Chyung-Ru

    2014-12-01

    CD1d-restricted NKT cells represent a unique lineage of immunoregulatory T cells that are divided into two groups, type I and type II, based on their TCR usage. Because there are no specific tools to identify type II NKT cells, little is known about their developmental requirements and functional regulation. In our previous study, we showed that signaling lymphocytic activation molecule associated protein (SAP) is essential for the development of type II NKT cells. Here, using a type II NKT-cell TCR transgenic mouse model, we demonstrated that CD1d-expressing hematopoietic cells, but not thymic epithelial cells, meditate efficient selection of type II NKT cells. Furthermore, we showed that SAP regulates type II NKT-cell development by controlling early growth response 2 protein and promyelocytic leukemia zinc finger expression. SAP-deficient 24αβ transgenic T cells (24αβ T cells) exhibited an immature phenotype with reduced Th2 cytokine-producing capacity and diminished cytotoxicity to CD1d-expressing lymphoma cells. The impaired IL-4 production by SAP-deficient 24αβ T cells was associated with reduced IFN regulatory factor 4 and GATA-3 induction following TCR stimulation. Collectively, these data suggest that SAP is critical for regulating type II NKT cell responses. Aberrant responses of these T cells may contribute to the immune dysregulation observed in X-linked lymphoproliferative disease caused by mutations in SAP. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Evaluation of antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137 isolated from mangrove soil in Malaysia

    Directory of Open Access Journals (Sweden)

    Hooi-Leng eSer

    2015-12-01

    Full Text Available A well characterized strain, Streptomyces pluripotens MUSC 137 was isolated from mangrove soil at Tanjung Lumpur, Malaysia. The biological activities of this particular strain of Streptomyces were then explored. For experimentation, the extract of fermentation was prepared by using solvent extraction method. The antioxidant activity was examined by using DPPH assay. The cytotoxicity activity of extract was assessed against selected human cancer cell lines, namely colon cancer cells (HCT-116, Caco-2, SW480 & HT-29, breast cancer cell (MCF-7, lung cancer cell (A549, prostate cancer cell (DU145 and cervical cancer cell (Ca Ski. The results showed MUSC 137 extract possessed significant antioxidant activity and cytotoxic effect against some of the tested cancer cell lines. Lowest IC50 was recorded in MCF-7 cells (61.33 ± 17.10 µg/mL, followed by HCT-116 and A549. Subsequently, the extract was subjected to chemical analysis using GC-MS, which led to the identification of chemical constituents present in the extract of MUSC 137. The analysis resulted in the identification of chemical constituents including deferoxamine and pyrrolizidines related-compounds which may responsible for antioxidant and cytotoxic activities observed. The result of the present investigation is the first report on the potential antioxidative and cytotoxic activities of Streptomyces pluripotens MUSC 137.

  2. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun, E-mail: qflei@zju.edu.cn

    2016-04-15

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF{sub 4}]{sup −} anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by {sup 1}H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  3. Antimicrobial activity and cytotoxicity of piperazinium- and guanidinium-based ionic liquids

    International Nuclear Information System (INIS)

    Yu, Jing; Zhang, Shanshan; Dai, Yitong; Lu, Xiaoxing; Lei, Qunfang; Fang, Wenjun

    2016-01-01

    Highlights: • Twelve piperazinium- and guanidinium-based ionic liquids were synthesized and characterized. • Antimicrobial activities of the ionic liquids against E. coli and S. aureus were investigated. • Cytotoxicity on the rat C6 glioma cells (C6) and human embryonic kidney cells (HEK-293) were evaluated. • The ionic liquids with the [BF_4]"− anion and with benzene ring on cation exhibit relatively high toxicity. - Abstract: Twelve piperazinium- and guanidinium-based ionic liquids (ILs) were synthesized, and characterized by "1H nuclear magnetic resonance (NMR), thermal gravimetric analyzer (TGA) and differential scanning calorimetry (DSC). The antimicrobial activity and cytotoxicity have been investigated to provide the information whether the newly synthesized ILs are toxic or not. The antimicrobial effects of these ILs on gram negative and gram positive bacteria are evaluated on the basis of the minimum inhibitory concentration (MIC) measurements. The membrane damages of bacteria in the presence of ILs are observed by scanning electron microscopy (SEM). The cytotoxicity data of the ILs on HEK-293 and C6 cells are obtained by MTT cell viability assay. The disruption of cell cycle is analyzed by the flow cytometry. The results show that most of the ILs exhibit low toxicity, and the ILs with tetrafluoroborate anion and with benzene ring on cation are the species with relatively high toxicity among the studied ILs. The fundamental data and results can provide some useful information for the further studies and applications of the ILs.

  4. Control of CD56 expression and tumor cell cytotoxicity in human Vγ2Vδ2 T cells

    Directory of Open Access Journals (Sweden)

    Focaccetti Chiara

    2009-09-01

    Full Text Available Abstract Background In lymphocyte subsets, expression of CD56 (neural cell adhesion molecule-1 correlates with cytotoxic effector activity. For cells bearing the Vγ2Vδ2 T cell receptor, isoprenoid pyrophosphate stimulation leads to uniform activation and proliferation, but only a fraction of cells express CD56 and display potent cytotoxic activity against tumor cells. Our goal was to show whether CD56 expression was regulated stochastically, similar to conventional activation antigens, or whether CD56 defined a lineage of cells committed to the cytotoxic phenotype. Results Tracking individual cell clones defined by their Vγ2 chain CDR3 region sequences, we found that CD56 was expressed on precursor cytotoxic T cells already present in the population irrespective of their capacity to proliferate after antigen stimulation. Public T cell receptor sequences found in the CD56+ subset from one individual might appear in the CD56- subset of another donor. The commitment of individual clones to CD56+ or CD56- lineages was stable for each donor over a 1 year interval. Conclusion The ability to express CD56 was not predicted by TCR sequence or by the strength of signal received by the TCR. For γδ T cells, cytotoxic effector function is acquired when cytotoxic precursors within the population are stimulated to proliferate and express CD56. Expression of CD56 defines a committed lineage to the cytotoxic phenotype.

  5. Brosimacutins J-M, four new flavonoids from Brosimum acutifolium and their cytotoxic activity.

    Science.gov (United States)

    Takashima, Junko; Komiyama, Kanki; Ishiyama, Haruaki; Kobayashi, Jun'ichi; Ohsaki, Ayumi

    2005-07-01

    Four new flavonoids, brosimacutins J-M (1 - 4), were isolated from the bark of Brosimum acutifolium Huber together with a known flavan, brosimine A (5). The structures of compounds 1-4 were elucidated by spectroscopic means. 27 constituents of this plant including compounds 1-5 were evaluated for their cytotoxic activity against murine leukemia P388 cells. Although no compounds tested had any reversal effect on vincristine resistance, brocimacutins J-M (1-4) were cytotoxic to vincristine-resistant P388 cells (IC50 4.4 - 19 microg/mL).

  6. Phytochemical screening, cytotoxicity and antiviral activity of hexane fraction of Phaleria macrocarpa fruits

    Science.gov (United States)

    Ismaeel, Mahmud Yusef Yusef; Yaacob, Wan Ahmad; Tahir, Mariya Mohd.; Ibrahim, Nazlina

    2015-09-01

    Phaleria macrocarpa fruits have been widely used in the traditional medicine for the treatment of several infections. The current study was done to determine the phytochemical content, cytotoxicity and antiviral activity of the hexane fraction (HF) of P. macrocarpa fruits. In the hexane fraction of P. macarocarpa fruits, phytochemical screening showed the presence of terpenoids whereas saponins, alkaloids, tannins and anthraquinones were not present. Evaluation on Vero cell lines by using MTT assay showed that the 50% cytotoxic concentration (CC50) value was 0.48 mg/mL indicating that the fraction is not cytotoxic. Antiviral properties of the plant extracts were determined by plaque reduction assay. The effective concentration (EC50) was 0.18 mg/mL. Whereas the selective index (SI = CC50/EC50) of hexane fraction is 2.6 indicating low to moderate potential as antiviral agent.

  7. Screening of Venezuelan medicinal plant extracts for cytostatic and cytotoxic activity against tumor cell lines.

    Science.gov (United States)

    Taylor, Peter; Arsenak, Miriam; Abad, María Jesús; Fernández, Angel; Milano, Balentina; Gonto, Reina; Ruiz, Marie-Christine; Fraile, Silvia; Taylor, Sofía; Estrada, Omar; Michelangeli, Fabian

    2013-04-01

    There are estimated to be more than 20,000 species of plants in Venezuela, of which more than 1500 are used for medicinal purposes by indigenous and local communities. Only a relatively small proportion of these have been evaluated in terms of their potential as antitumor agents. In this study, we screened 308 extracts from 102 species for cytostatic and cytotoxic activity against a panel of six tumor cell lines using a 24-h sulphorhodamine B assay. Extracts from Clavija lancifolia, Hamelia patens, Piper san-vicentense, Physalis cordata, Jacaranda copaia, Heliotropium indicum, and Annona squamosa were the most cytotoxic, whereas other extracts from Calotropis gigantea, Hyptis dilatata, Chromolaena odorata, Siparuna guianensis, Jacaranda obtusifolia, Tapirira guianensis, Xylopia aromatica, Protium heptaphyllum, and Piper arboreum showed the greatest cytostatic activity. These results confirm previous reports on the cytotoxic activities of the above-mentioned plants as well as prompting further studies on others such as C. lancifolia and H. dilatata that have not been so extensively studied. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Linalool Exhibits Cytotoxic Effects by Activating Antitumor Immunity

    Directory of Open Access Journals (Sweden)

    Mei-Yin Chang

    2014-05-01

    Full Text Available According to recent studies, the Plantaginaceae, which are traditional Chinese herbal remedies, have potential for use in viral infection treatment and cancer therapy. Linalool and p-coumaric acid are two of the biologically active compounds that can be isolated from the Plantaginaceae. This study mainly focused on investigating the bioactivity of linalool as well as the bioactivity of p-coumaric acid in terms of their cytotoxic effects on cancer cells. Whether the mechanisms of such effects are generated through apoptosis and immunoregulatory activity were also investigated. By using WST-1 analysis, it was shown that linalool and p-coumaric acid have good inhibitory effects against breast, colorectal and liver cancer cells. The IC50 values of linalool for those cancer cell types were 224 μM, 222 μM, and 290 μM, respectively, and the IC50 values of p-coumaric acid were 693 μM, 215 μM and 87 μM, respectively. Cell cycle analysis also confirmed that linalool and p-coumaric acid can lead to apoptosis. By using flow cytometry, it was determined that treatment with linalool rather than p-coumaric acid significantly increased the sub-G1 phase and that there were more cells concentrated in the G1 phase. Furthermore, by using cytokine array analysis, we found that linalool can stimulate IFN-γ, IL-13, IL-2, IL-21, IL-21R, IL-4, IL-6sR and TNF-α secretion. This demonstrated that in addition to the bidirectional regulation capabilities found in linalool, it also induces Th1 cellular immune response in T-47D cells. These results showed that linalool holds great potential for use in cancer therapy, and we believe that it could provide an alternative way to take action against tumors.

  9. Study of the Cytotoxic and Antifungal Activities of Neolignans 8.O.4´ and Structurally Related Compounds

    Directory of Open Access Journals (Sweden)

    P. Matyus

    2000-03-01

    Full Text Available In the present work we report the antifungal and cytotoxic activities of a neolignan 8.O.4´series. The most active antifungal compounds show a significant cytotoxic effect which might be related.

  10. Screening of Baccaurea ramiflora (Lour.) extracts for cytotoxic, analgesic, anti-inflammatory, neuropharmacological and antidiarrheal activities.

    Science.gov (United States)

    Nesa, Mst Luthfun; Karim, S M Sajedul; Api, Khairunasa; Sarker, Md Moklesur Rahman; Islam, Md Monirul; Kabir, Asma; Sarker, Mithun Kumar; Nahar, Kamrun; Asadujjaman, Mohammad; Munir, Mohammad Sirajum

    2018-01-30

    It has been observed that the various part of Baccaurea ramiflora plant is used in rheumatoid arthritis, cellulitis, abscesses, constipation and injuries. This plant also has anticholinergic, hypolipidemic, hypoglycemic, antiviral, antioxidant, diuretic and cytotoxic activities. The present studyaimed to assess the cytotoxic, analgesic, anti-inflammatory, CNS depressant and antidiarrheal activities of methanol extract of Baccaurea ramiflora pulp and seeds in mice model. The cytotoxic activity was determined by brine shrimp lethality bioassay; anti-nociceptive activity was determined by acetic acid-induced writhing, formalin- induced licking and biting, and tail immersion methods. The anti-inflammatory, CNS depressant and anti-diarrheal activities were assessed by carrageenan-induced hind paw edema, the open field and hole cross tests, and castor oil-induced diarrheal methods, respectively. The data were analyzed by one way ANOVA (analysis of variance) followed by Dunnett's test. In brine shrimp lethality bioassay, the LC 50 values of the methanol extracts of Baccaurea ramiflora pulp and seed were 40 μg/mL and 10 μg/mL, respectively. Our investigation showed that Baccaurea ramiflora pulp and seed extracts (200 mg/kg) inhibited acetic acid induced pain 67.51 and 66.08%, respectively (p analgesic, anti-inflammatory, CNS depressant and antidiarrheal activities of methanol extract of Baccaurea ramiflora pulp and seeds (200 mg/kg).

  11. Anti-Melanogenic Activity and Cytotoxicity of Pistacia vera Hull on Human Melanoma SKMEL-3 Cells.

    Science.gov (United States)

    Sarkhail, Parisa; Salimi, Mona; Sarkheil, Pantea; Mostafapour Kandelous, Hirsa

    2017-07-01

    Pistacia vera seed is a common food and medicinal seed in Iran. It's hull (outer skin) as a significant byproduct of pistachio, is traditionally used as tonic, sedative and antidiarrheal and has been shown to be a rich source of antioxidants. The aim of the present study is to evaluate the anti-melanogenic activity of the pistachio hulls in order to discover a new alternative herbal agent to treat skin hyperpigmentation disorders. In this work, antioxidant and anti-tyrosinase activity of MeOH extract from Pistacia vera hull (MPH) were evaluated in vitro, respectively, by DPPH radical scavenging and mushroom tyrosinase activity assays. Then the effect of MPH on the melanin content, cellular tyrosinase activity and cytotoxicity (MTT assay) on human melanoma SKMEL-3 cell were determined followed by 72 h incubation. The results indicated that MPH had valuable DPPH radical scavenging effect and weak anti-tyrosinase activity when compared to the well-known antioxidant (BHT) and tyrosinase inhibitor (kojic acid), respectively. MPH, at a high dose (0.5 mg/mL), showed significant cytotoxic activity (~63%) and strong anti-melanogenic effect (~57%) on SKMEL-3 cells. The effect of MPH in the reduction of melanin content may be related to its cytotoxicity. The results obtained suggest that MPH can be used as an effective agent in the treatment of some skin hyperpigmentation disorders such as melanoma.

  12. Proinflammatory effects of bacterial lipoprotein on human neutrophil activation status, function and cytotoxic potential in vitro.

    LENUS (Irish Health Repository)

    Power, C

    2012-02-03

    Bacterial lipoprotein (BLP) is the most abundant protein in gram-negative bacterial cell walls, heavily outweighing lipopolysaccharide (LPS). Herein we present findings demonstrating the potent in vitro effects of BLP on neutrophil (PMN) activation status, function, and capacity to transmigrate an endothelial monolayer. PMNs are the principal effectors of the initial host response to injury or infection and constitute a significant threat to invading bacterial pathogens. The systemic inflammatory response syndrome (SIRS) is characterised by significant host tissue injury mediated, in part, by uncontrolled regulation of PMN cytotoxic activity. We found that BLP-activated human PMN as evidenced by increased CD11b\\/CD18 (Mac-1) expression. Up-regulation of PMN Mac-1 in response to BLP occurred independently of membrane-bound CD14 (mCD14). A similar up-regulation of intercellular adhesion molecule-1 (ICAM-1) on endothelial cells was observed whilst E-Selectin expression was unaffected. PMN transmigration across a human umbilical vein endothelial cell (HUVEC) monolayer was markedly increased after treating either PMN\\'s or HUVEC independently with BLP. This increased transmigration did not occur as a result of any direct effect of BLP on HUVEC monolayer permeability, assessed objectively using the passage of FITC-labeled Dextran-70. BLP primed PMN for enhanced respiratory burst and superoxide anion production in response to PMA, but did not influence phagocytosis of opsonized Escherichia coli. BLP far exceeds LPS as a gram-negative bacterial wall component, these findings therefore implicate BLP as an additional putative mediator of SIRS arising from gram-negative infection.

  13. Cytotoxic Activity of the Leaf and Stem Extracts of Hibiscus rosa ...

    African Journals Online (AJOL)

    Methods: The crude petroleum ether, ethyl acetate and methanol extracts of the leaf and stem of Hibiscus rosa sinensis were prepared using cold extraction method. The in vitro cytotoxic activity of the extracts (20 - 100 μg/ml) was evaluated on leukaemic cancer cell line (K-562) and Mardin-Darby kidney cell line (MDBK) ...

  14. Cytotoxic and multidrug resistance reversal activity of a vegetable, 'Anastasia Red', a variety of sweet pepper.

    Science.gov (United States)

    Motohashi, Noboru; Wakabayashi, Hidetsugu; Kurihara, Teruo; Takada, Yuko; Maruyama, Shichiro; Sakagami, Hiroshi; Nakashima, Hideki; Tani, Satoru; Shirataki, Yoshiaki; Kawase, Masami; Wolfard, Kristina; Molnár, Joseph

    2003-04-01

    The vegetable, Anastasia Red, Capsicum annuum L. var. angulosum Mill. (Solanaceae) was successively extracted with hexane, acetone, methanol and 70% methanol, and the extracts were further separated into a total of 21 fractions by silica gel or octadecylsilane (ODS) column chromatography. The biological activities of extracts and fractions were determined. These extracts showed relatively higher cytotoxic activity against two human oral tumor cell lines (HSC-2, HSG) than against normal human gingival fibroblasts (HGF), suggesting a tumor-specific cytotoxic activity. The cytotoxic activity of these extracts was enhanced by fractionation on silica gel [H2, A2, M1-M3] or ODS column chromatography [70M]. Several fractions [H2, H4, H5, A1, A2, A3, A5, A6, A7, M2] reversed the multidrug resistance (MDR) phenotype with L5178 mouse lymphoma T cells, more efficiently than (+/-)-verapamil. The extracts and fractions did not show any detectable anti-human immunodeficiency virus (HIV) or anti-Helicobacter pylori activity. Thus, this study suggests the effective and selective antitumor potential of 'Anastasia Red' of sweet pepper for further phytochemical and biological investigation. Copyright 2003 John Wiley & Sons, Ltd.

  15. Cytotoxic activity of quassinoids from Eurycoma longifolia.

    Science.gov (United States)

    Miyake, Katsunori; Li, Feng; Tezuka, Yasuhiro; Awale, Suresh; Kadota, Shigetoshi

    2010-07-01

    Twenty-four quassinoids isolated from Eurycoma longifolia Jack were investigated for their cytotoxicity against a panel of four different cancer cell lines, which includes three murine cell lines [colon 26-L5 carcinoma (colon 26-L5), B16-BL6 melanoma (B16-BL6), Lewis lung carcinoma (LLC)] and a human lung A549 adenocarcinoma (A549) cell line. Among the tested compounds, eurycomalactone (9) displayed the most potent activity against all the tested cell lines; colon 26-L5 (IC50 = 0.70 microM), B16-BL6 (IC50 = 0.59 microM), LLC (IC50 = 0.78 microM), and A549 (IC50 = 0.73 microM). These activities were comparable to clinically used anticancer agent doxorubicin (colon 26-L5, IC50 = 0.76 microM; B16-BL6, IC50 = 0.86 microM; LLC, IC50 = 0.80 microM; A549, IC50 = 0.66 microM).

  16. Cytotoxic, trypanocidal activities and physicochemical parameters of nor-beta-lapachone-based 1,2,3-triazoles

    Energy Technology Data Exchange (ETDEWEB)

    Silva Junior, Eufranio N. da [Universidade Federal Fluminense (UFF), Niteroi , RJ (Brazil). Inst. de Quimica. Dept. de Quimica Organica; Moura, Maria Aline B. F. de [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil). Inst. de Quimica e Biotecnologia; Pinto, Antonio V. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Nucleo de Pesquisas de Produtos Naturais] (and others)

    2009-07-01

    The cytotoxicities of five nor-{beta}-lapachone-based 1,2,3-triazoles and the precursor azidonaphthoquinone were assayed against six neoplasic cancer cell lines: SF-295 (central nervous system), HCT-8 (colon), MDAMB-435 (melanoma), HL-60 (leukaemia), PC-3 (prostate) and B-16 (murine melanoma). IC{sub 50} values ranging from 0.43 to 9.48 {mu}M were obtained. 3-(4-(1-hydroxycyclohexyl)-{sup 1}H-1,2,3-triazol-1- yl)-2,2-dimethylnaphtho[1,2-b]furan-4,5-dione proved highly cytotoxic to MDAMB-435, with IC{sub 50} even lower than the one from doxorubicin (positive control). In an attempt to correlate physicochemical parameters (reduction potentials and calculated log P) with cytotoxic activity, electrochemical studies were conducted in acetate buffer, pH 4.5, using a vitreous carbon electrode and calculated log P values were obtained. Despite the absence of a structural conjugative interaction between the two systems (quinone and triazole), the heterocyclic group was found to influence the voltammetric behaviour, as indicated by anodic shifts in the reduction potentials. No correlation was found between Ep{sub Ic} and cytotoxicity. In contrast, a comparison of Ep{sub Ic} with previously reported trypanocidal activities reconfirmed the trend for higher activity coupled with better quinone electrophilicity (> Ep{sub Ic}). A leading term in the correlation of cytoxicity, despite the absence of a linear correlation, was the calculated log P: the lower the lipophilicity, the lower the cytoxicity (> IC{sub 50}). (author)

  17. Novel 5-Fluorouracil Derivatives: Synthesis and Cytotoxic Activity of 2-Butoxy-4-Substituted 5-Fluoropyrimidines

    International Nuclear Information System (INIS)

    Sun, Jian; Zhou, Wei; Hu, Weixiao; Shan, Shang; Zhang, Shijie; Li, Haibo

    2013-01-01

    Twenty two new 5-fluorouracil (5-FU) derivatives, 2-butoxy-4-substituted 5-fluoropyrimidines, were synthesized and characterized by IR, 1 H NMR, MS, HRMS. All compounds were preliminarily evaluated by MTT assay on human liver BEL-7402 cancer cell line in vitro. Ten compounds were selected to test their cytotoxic activity against A549, HL-60 and MCF-7 cancer cell lines in vitro. These compounds were more sensitive to BEL-7402 than other cell lines, particularly, cytotoxic activity of compounds 6b, 6d-f, 6p, 6s-u were in sub-micromolar scale. The highest cytotoxic potency against A549, HL-60 and MCF-7 was shown by 2-butoxy-4-chloro-5-fluoropyrimidine (5) with IC 50 values of 0.10, 1.66 and 0.59 μM, respectively. Compounds 6d and 6e were effective against MCF-7 with IC 50 9.73 μM and HL-60 with IC 50 8.83 μM, respectively

  18. Detection of tumor-specific cytotoxic drug activity in vitro using the fluorometric microculture cytotoxicity assay and primary cultures of tumor cells from patients.

    Science.gov (United States)

    Nygren, P; Fridborg, H; Csoka, K; Sundström, C; de la Torre, M; Kristensen, J; Bergh, J; Hagberg, H; Glimelius, B; Rastad, J

    1994-03-01

    The semi-automated fluorometric microculture cytotoxicity assay (FMCA), based on the measurement of fluorescence generated from cellular hydrolysis of fluorescein diacetate (FDA) by viable cells, was employed for cytotoxic drug sensitivity testing of tumor cells from patients with hematological or solid tumors. In total, 390 samples from 20 diagnoses were tested with up to 12 standard cytotoxic drugs. The technical success rate for different tumor types ranged from 67 to 95%. Fluorescence was linearly related to cell number but variably steep depending on tumor type. Samples from most solid tumors thus showed higher signal-to-noise ratios than hematological samples. A wide spectrum of in vitro drug activity was obtained, with acute leukemias and non-Hodgkin's lymphomas being sensitive to almost all tested drugs, whereas renal and adrenocortical carcinomas were essentially totally resistant. Between these extremes were samples of breast and ovarian carcinomas and sarcomas. When in vitro response was compared with known clinical response patterns, a good correspondence was observed. The results indicate that the FMCA is a rapid and efficient method for in vitro measurement of tumor-specific drug activity both in hematological and in solid tumors. The assay may be suitable for new drug development and direction of phase-2 trials to suitable patients.

  19. Response rate of fibrosarcoma cells to cytotoxic drugs on the expression level correlates to the therapeutic response rate of fibrosarcomas and is mediated by regulation of apoptotic pathways

    International Nuclear Information System (INIS)

    Lehnhardt, Marcus; Mueller, Oliver; Klein-Hitpass, Ludger; Kuhnen, Cornelius; Homann, Heinz Herbert; Daigeler, Adrien; Steinau, Hans Ulrich; Roehrs, Sonja; Schnoor, Laura; Steinstraesser, Lars

    2005-01-01

    Because of the high resistance rate of fibrosarcomas against cytotoxic agents clinical chemotherapy of these tumors is not established. A better understanding of the diverse modes of tumor cell death following cytotoxic therapies will provide a molecular basis for new chemotherapeutic strategies. In this study we elucidated the response of a fibrosarcoma cell line to clinically used cytostatic agents on the level of gene expression. HT1080 fibrosarcoma cells were exposed to the chemotherapeutic agents doxorubicin, actinomycin D or vincristine. Total RNA was isolated and the gene expression patterns were analyzed by microarray analysis. Expression levels for 46 selected candidate genes were validated by quantitative real-time PCR. The analysis of the microarray data resulted in 3.309 (actinomycin D), 1.019 (doxorubicin) and 134 (vincristine) probesets that showed significant expression changes. For the RNA synthesis blocker actinomycin D, 99.4% of all differentially expressed probesets were under-represented. In comparison, probesets down-regulated by doxorubicin comprised only 37.4% of all genes effected by this agent. Closer analysis of the differentially regulated genes revealed that doxorubicin induced cell death of HT1080 fibrosarcoma cells mainly by regulating the abundance of factors mediating the mitochondrial (intrinsic) apoptosis pathway. Furthermore doxorubicin influences other pathways and crosstalk to other pathways (including to the death receptor pathway) at multiple levels. We found increased levels of cytochrome c, APAF-1 and members of the STAT-family (STAT1, STAT3), while Bcl-2 expression was decreased. Caspase-1, -3, -6, -8, and -9 were increased indicating that these proteases are key factors in the execution of doxorubicin mediated apoptosis. This study demonstrates that chemotherapy regulates the expression of apoptosis-related factors in fibrosarcoma cells. The number and the specific pattern of the genes depend on the used cytotoxic drug

  20. Cytotoxicity and genotoxicity of clothianidin in human lymphocytes with or without metabolic activation system.

    Science.gov (United States)

    Atlı Şekeroğlu, Zülal; Şekeroğlu, Vedat; Uçgun, Ebru; Kontaş Yedier, Seval; Aydın, Birsen

    2018-02-26

    Clothianidin (CHN) is a broad-spectrum neonicotinoid insecticide. Limited studies have been carried out on the cytotoxic and genotoxic effects of both CHN using different genotoxicity tests in human cells with or without human metabolic activation system (S9 mix). Therefore, the aim of this study is to investigate the cytotoxic and genotoxic effects of CHN and its metabolites on human lymphocyte cultures with or without S9 mix using chromosomal aberration (CA) and micronucleus (MN) tests. The cultures were treated with 25, 50, and 100 µg/ml of CHN in the presence (3 h treatment) and absence (48 h treatment) of S9 mix. Dimethyl sulfoxide (DMSO) was used as a solvent control. CHN showed cytotoxic and genotoxic effects due to significant decreases in mitotic index (MI) and nuclear division index (NDI), and significant increases in the CAs, aberrant cells, and MN formation in the absence of S9 mix when compared with solvent control. However, CHN did not significantly induce cytotoxicity and genotoxicity in the presence of S9 mix. Our results indicated that CHN has cytotoxic, cytostatic, and genotoxic potential on human peripheral blood lymphocyte cultures, but not its metabolites under the experimental conditions.

  1. Cytotoxicity of MEIC chemicals Nos. 11-30 in 3T3 mouse fibroblasts with and without microsomal activation

    DEFF Research Database (Denmark)

    Rasmussen, Eva

    1999-01-01

    acid, propranolol, thioridazine, lithium sulfate, copper sulfate and thallium sulfate, whereas the cytotoxicity of 1,1,1-trichloroethylene, phenol, nicotine, and paraquat was significantly increased by use of the microsomal activation mixture. These cytotoxicity data are in line with observations...

  2. Cytotoxic Activities against Breast Cancer Cells of Local Justicia gendarussa Crude Extracts

    Science.gov (United States)

    Abd Samad, Azman; Jamil, Shajarahtunnur

    2014-01-01

    Justicia gendarussa methanolic leaf extracts from five different locations in the Southern region of Peninsular Malaysia and two flavonoids, kaempferol and naringenin, were tested for cytotoxic activity. Kaempferol and naringenin were two flavonoids detected in leaf extracts using gas chromatography-flame ionization detection (GC-FID). The results indicated that highest concentrations of kaempferol and naringenin were detected in leaves extracted from Mersing with 1591.80 mg/kg and 444.35 mg/kg, respectively. Positive correlations were observed between kaempferol and naringenin concentrations in all leaf extracts analysed with the Pearson method. The effects of kaempferol and naringenin from leaf extracts were examined on breast cancer cell lines (MDA-MB-231 and MDA-MB-468) using MTT assay. Leaf extract from Mersing showed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 40 μg/mL, respectively, compared to other leaf extracts. Kaempferol possessed high cytotoxicity against MDA-MB-468 and MDA-MB-231 with IC50 values of 23 μg/mL and 34 μg/mL, respectively. These findings suggest that the presence of kaempferol in Mersing leaf extract contributed to high cytotoxicity of both MDA-MB-231 and MDA-MB-468 cancer cell lines. PMID:25574182

  3. Antioxidant and cytotoxic activities of 'acai' (Euterpe precatoria Mart.)

    International Nuclear Information System (INIS)

    Galotta, Ana Lucia Q.A.; Boaventura, Maria Amelia D.; Lima, Luciana A. R.S.

    2008-01-01

    Decoction of roots of the Amazonian palm acai (Euterpe precatoria Mart.) is widely used by Brazilian and Peruvian people as an anti-inflammatory, to heal kidney and liver diseases and against snake bites. In this study, the antioxidant activity of extracts and flavonoids (quercetin, catechin, epicatechin, rutin and astilbin) isolated from roots and leaf stalks of E. precatoria was investigated using β-carotene in TLC plates and DPPH radical scavenging in a spectrophotometric bioassay. All extracts and flavonoids showed activity. Also, the cytotoxic activity of these extracts was evaluated by the brine shrimp (Artemia salina) larvicide bioassay and was lower than that of lapachol, used as control. The presence of flavonoids and sitosterol-3-O-β-D-glucopyranoside in the extracts can justify the use of the plant in traditional medicine. (author)

  4. The effect of gamma irradiation on cytotoxic activity of the flesh of Mahkota Dewa (Phaleria macrocarpa (Scheff) Boerl) Fruits

    International Nuclear Information System (INIS)

    Ermin K Winarno; Mazda; Hindra Rahmawati; Hendig Winarno

    2010-01-01

    Gamma irradiation had been used by herbs medicine industries for preservation of medicinal plants, but the effect of irradiation on their bioactivities has not been observed. The purpose of this research was to obtain the optimum radiation dose for the preservation of mahkota dewa flesh fruits without damaging their cytotoxic activities. To evaluate the effect of irradiation, dried samples of flesh fruit of mahkota dewa were irradiated at various doses of 0; 5; 7.5; 10; 15 and 20 kGy. Microbial contamination was tested using Indonesian National Standard method, which indicated that all microbes were killed at the dose of 5 kGy. Each sample was macerated with ethanol, and the extracts obtained were then fractionated with column chromatography, from which 8 fractions were obtained. Cytotoxicity test of the fractions against leukemia L1210 cells, showed that the Fr.3 was the most cytotoxic. To determine optimal irradiation dose to inhibit and to kill bacteria and yeast/mold in the mahkota dewa flesh fruit samples without decreasing cytotoxic activity, a thin layer chromatography (TLC) and high performance liquid chromatography (HPLC) analysis of the Fr.3 were done. The results showed that the doses of ≥ 5 kGy inhibited the growth and killed all the bacteria, yeast and mold without decreasing significantly the cytotoxic activity of ethanol extract against leukemia L1210 cell. The significant decrease of cytotoxic against leukemia L1210 of ethanol extract were occurred after ≥ 10 kGy irradiation of the samples. At the dose of 10 kGy, the cytotoxicity decreased even though it was not exceeded the limit of the fraction was declared inactive. Analysis of thin layer chromatogram profiles showed that the Fr.3 contained at least 10 components. Irradiation until the dose of 20 kGy decreased the major peak intensity. with the increasing of irradiation doses. It was concluded that the dose of 5 kGy to 10 kGy were the optimum dose for the preservation of flesh fruit of

  5. Manzamine alkaloids: isolation, cytotoxicity, antimalarial activity and SAR studies.

    Science.gov (United States)

    Ashok, Penta; Ganguly, Swastika; Murugesan, Sankaranarayanan

    2014-11-01

    The infectious disease Malaria is caused by different species of the genus Plasmodium. Resistance to quinoline antimalarial drugs and decreased susceptibility to artemisinin-based combination therapy have increased the need for novel antimalarial agents. Historically, natural products have been used for the treatment of infectious diseases. Identification of natural products and their semi-synthetic derivatives with potent antimalarial activity is an important method for developing novel antimalarial agents. Manzamine alkaloids are a unique group of β-carboline alkaloids isolated from various species of marine sponge displaying potent antimalarial activity against drug-sensitive and -resistant strains of Plasmodium. In this review, we demonstrate antimalarial potency, cytotoxicity and antimalarial SAR of manzamine alkaloids. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Cytotoxicity, antimicrobial and antioxidant activity of eight compounds isolated from Entada abyssinica (Fabaceae).

    Science.gov (United States)

    Dzoyem, Jean P; Melong, Raduis; Tsamo, Armelle T; Tchinda, Alembert T; Kapche, Deccaux G W F; Ngadjui, Bonaventure T; McGaw, Lyndy J; Eloff, Jacobus N

    2017-03-06

    Entada abyssinica is a plant traditionally used against gastrointestinal bacterial infections. Eight compounds including three flavonoids, three terpenoids, a monoglyceride and a phenolic compound isolated from E. abyssinica were investigated for their cytotoxicity, antibacterial and antioxidant activity. Compounds 7 and 2 had remarkable activity against Salmonella typhimurium with the lowest respective minimum inhibitory concentration (MIC) values of 1.56 and 3.12 µg/mL. The antioxidant assay gave IC 50 values varied from 0.48 to 2.87 μg/mL in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, from 2.53 to 17.04 μg/mL in the 2,2'-Azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) assay and from 1.43 to 103.98 µg/mL in the FRAP assay. Compounds had relatively low cytotoxicity (LC 50 values ranging from 22.42 to 80.55 µg/mL) towards Vero cells. Ursolic acid had the most potent cytotoxicity against THP-1 and RAW 264.7 cells with LC 50 values of 9.62 and 4.56 μg/mL respectively, and selectivity index values of 7.32 and 15.44 respectively. Our findings suggest that among the terpenoid and flavonoid compounds studied, entadanin (compound 7) possess tremendous antibacterial activity against S. typhimurium and could be developed for the treatment of bacterial diseases.

  7. Antioxidant and cytotoxic activity of mono- and bissalicylic acid derivatives

    Directory of Open Access Journals (Sweden)

    Đurendić Evgenija A.

    2014-01-01

    Full Text Available A simple synthesis of mono- and bis-salicylic acid derivatives 1-10 by the transesterification of methyl salicylate (methyl 2-hydroxybenzoate with 3-oxapentane-1,5-diol, 3,6- dioxaoctane-1,8-diol, 3,6,9-trioxaundecane-1,11-diol, propane-1,2-diol or 1-aminopropan- 2-ol in alkaline conditions is reported. All compounds were tested in vitro on three malignant cell lines (MCF-7, MDA-MB-231, PC-3 and one non-tumor cell line (MRC- 5. Strong cytotoxicity against prostate PC-3 cancer cells expressed compounds 3, 4, 6, 9 and 10, all with the IC50 less than 10 μmol/L, which were 11-27 times higher than the cytotoxicity of antitumor drug doxorubicin. All tested compounds were not toxic against the non-tumor MRC-5 cell line. Antioxidant activity of the synthesized derivatives was also evaluated. Compounds 2, 5 and 8 were better OH radical scavengers than commercial antioxidants BHT and BHA. The synthesized compounds showed satisfactory scavenger activity, which was studied by QSAR modeling. A good correlation between the experimental variables IC50 DPPH and IC50 OH and MTI (molecular topological indices molecular descriptors and CAA (accessible Connolly solvent surface area for the new compounds 1, 3, and 5 was observed.

  8. In vitro cytotoxic and antioxidant activities of phenolic components of Algerian Achillea odorata leaves

    Directory of Open Access Journals (Sweden)

    Hanane Boutennoun

    2017-03-01

    Full Text Available In this study, methanol extract from Achillea odorata was evaluated for its phenolic contents using Folin–Ciocalteu reagent, and antioxidant activity using: 1,1-diphenyl-2-picrylhidrazyl (DPPH radical scavenging activity, reducing activity of H2O2 and ferric reducing power assay. The total phenolic content was determined as gallic acid (GAE equivalent. Flavonoids and flavonols contents were determined as quercetin (QE equivalents. The cytotoxicity of the plant extract was tested against three tumor cell lines: MCF-7, Hep2 and WEHI using 3-(4,5-dimethyl thiazol-2-yl-2,5-diphynyl tetrazolium bromide (MTT assay. Preliminary screening was concluded in the presence of substances with large therapeutic values. The total phenolic content confirmed the presence of total phenolics in the extract and showed strong association with antioxidant activity. An important content of flavonoids and flavonols was also detected. The results of the antioxidant activities obtained indicate that A. odorata recorded a good capacity. For the cytotoxic activity, the results showed the plant extract significantly inhibited tumor cell growth and colony formation at various concentrations.

  9. Antifungal, Antileishmanial, and Cytotoxicity Activities of Various Extracts of Berberis vulgaris (Berberidaceae) and Its Active Principle Berberine.

    Science.gov (United States)

    Mahmoudvand, Hossein; Ayatollahi Mousavi, Seyyed Amin; Sepahvand, Asghar; Sharififar, Fariba; Ezatpour, Behrouz; Gorohi, Fatemeh; Saedi Dezaki, Ebrahim; Jahanbakhsh, Sareh

    2014-01-01

    In this study, in vitro antidermatophytic activity against Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis, and Microsporum gypseum was studied by disk diffusion test and assessment of minimum inhibitory concentration (MIC) using CLSI broth macrodilution method (M38-A2). Moreover, antileishmanial and cytotoxicity activity of B. vulgaris and berberine against promastigotes of Leishmania major and Leishmania tropica were evaluated by colorimetric MTT assay. The findings indicated that the various extracts of B. vulgaris particularly berberine showed high potential antidermatophytic against pathogenic dermatophytes tested with MIC values varying from 0.125 to >4 mg/mL. The results revealed that B. vulgaris extracts as well as berberine were effective in inhibiting L. major and L. tropica promastigotes growth in a dose-dependent manner with IC50 (50% inhibitory concentration) values varying from 2.1 to 26.6  μ g/mL. Moreover, it could be observed that berberine as compared with B. vulgaris exhibited more cytotoxicity against murine macrophages with CC50 (cytotoxicity concentration for 50% of cells) values varying from 27.3 to 362.6  μ g/mL. Results of this investigation were the first step in the search for new antidermatophytic and antileishmanial drugs. However, further works are required to evaluate exact effect of these extracts in animal models as well as volunteer human subjects.

  10. Divergent effects of norepinephrine, dopamine and substance P on the activation, differentiation and effector functions of human cytotoxic T lymphocytes

    Directory of Open Access Journals (Sweden)

    Niggemann Bernd

    2009-12-01

    Full Text Available Abstract Background Neurotransmitters are important regulators of the immune system, with very distinct and varying effects on different leukocyte subsets. So far little is known about the impact of signals mediated by neurotransmitters on the function of CD8+ T lymphocytes. Therefore, we investigated the influence of norepinephrine, dopamine and substance P on the key tasks of CD8+ T lymphocytes: activation, migration, extravasation and cytotoxicity. Results The activation of naïve CD8+ T lymphocytes by CD3/CD28 cross-linking was inhibited by norepinephrine and dopamine, which was caused by a downregulation of interleukin (IL-2 expression via Erk1/2 and NF-κB inhibition. Furthermore, all of the investigated neurotransmitters increased the spontaneous migratory activity of naïve CD8+ T lymphocytes with dopamine being the strongest inducer. In contrast, activated CD8+ T lymphocytes showed a reduced migratory activity in the presence of norepinephrine and substance P. With regard to extravasation we found norepinephrine to induce adhesion of activated CD8+ T cells: norepinephrine increased the interleukin-8 release from endothelium, which in turn had effect on the activated CXCR1+ CD8+ T cells. At last, release of cytotoxic granules from activated cells in response to CD3 cross-linking was not influenced by any of the investigated neurotransmitters, as we have analyzed by measuring the β-hexosamidase release. Conclusion Neurotransmitters are specific modulators of CD8+ T lymphocytes not by inducing any new functions, but by fine-tuning their key tasks. The effect can be either stimulatory or suppressive depending on the activation status of the cells.

  11. Anti-Trypanosoma cruzi and cytotoxic activities of Eugenia uniflora L.

    Science.gov (United States)

    Santos, Karla K A; Matias, Edinardo F F; Tintino, Saulo R; Souza, Celestina E S; Braga, Maria F B M; Guedes, Gláucia M M; Rolón, Miriam; Vega, Celeste; de Arias, Antonieta Rojas; Costa, José G M; Menezes, Irwin R A; Coutinho, Henrique D M

    2012-05-01

    Chagas disease is caused by Trypanosoma cruzi, being considered a public health problem. An alternative to combat this pathogen is the use of natural products isolated from fruits such as Eugenia uniflora, a plant used by traditional communities as food and medicine due to its antimicrobial and biological activities. Ethanolic extract from E. uniflora was used to evaluate in vitro anti-epimastigote and cytotoxic activity. This is the first record of anti-Trypanosoma activity of E. uniflora, demonstrating that a concentration presenting 50% of activity (EC(50)) was 62.76 μg/mL. Minimum inhibitory concentration (MIC) was ≤ 1024 μg/mL. Our results indicate that E. uniflora could be a source of plant-derived natural products with anti-epimastigote activity with low toxicity. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Cytotoxic Activities, SAR and Anti-Invasion Effects of Butylphthalide Derivatives on Human Hepatocellular Carcinoma SMMC7721 Cells

    Directory of Open Access Journals (Sweden)

    Yihan Hu

    2015-11-01

    Full Text Available A series of butylphthalide derivatives (BPDs 1–8 were isolated from the extract of the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae. The cytotoxic activities of BPDs 1–8 were evaluated using a panel of human cancer cell lines. In addition, the SAR analysis and potential anti-invasion activities were investigated. The sp2 carbons at C-7 and C-7a appeared to be essential for the cytotoxic activities of BPDs. BPDs 5 and 6 remarkably inhibited the migration and invasion of cancer cells. The anti-invasion activity of dimer 6 was demonstrated to be significantly higher than monomer 5.

  13. Chemical Composition and Cytotoxic and Antibacterial Activities of the Essential Oil of Aloysia citriodora Palau Grown in Morocco

    Directory of Open Access Journals (Sweden)

    Moulay Ali Oukerrou

    2017-01-01

    Full Text Available The aim of this work is to investigate the in vitro cytotoxic and antibacterial effects of the essential oils of Aloysia citriodora Palau, harvested in different regions of Morocco. The chemical profile was established using gas chromatography-mass spectrometry analysis. The cytotoxic activity against P815, MCF7, and VERO cell lines as well as the normal human peripheral blood mononuclear cells (PBMCs was evaluated using the MTT assay. Standard, ATCC, strains of bacteria (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa were cultivated in Muller Hinton media. Then, agar disc diffusion, minimum inhibitory concentrations (MICs, and minimal bactericidal concentrations (MBCs were determined using microdilution method. The essential oils obtained were predominantly composed of β-spathulenol (15.61%, Ar-curcumene (14.15%, trans-caryophyllene oxide (14.14%, and neral (10.02%. The results of the assays showed that the cytotoxic effect of the essential oil of A. citriodora was high on P815 and moderate on MCF7 and on VERO cell lines. However, no cytotoxic effect was observed on PBMCs. On the other hand, essential oils showed a significant antimicrobial activity against both Gram-negative and Gram-positive bacteria. MICs ranged between 2.84 and 8.37 mg/ml. Essential oil of A. citriodora leaves possesses significant antibacterial effect and cytotoxic activity against tumor cell lines.

  14. p53-independent structure-activity relationships of 3-ring mesogenic compounds' activity as cytotoxic effects against human non-small cell lung cancer lines.

    Science.gov (United States)

    Fukushi, Saori; Yoshino, Hironori; Yoshizawa, Atsushi; Kashiwakura, Ikuo

    2016-07-25

    We recently demonstrated the cytotoxicity of liquid crystal precursors (hereafter referred to as "mesogenic compounds") in the human non-small cell lung cancer (NSCLC) cell line A549 which carry wild-type p53. p53 mutations are observed in 50 % of NSCLC and contribute to their resistance to chemotherapy. To develop more effective and cancer-specific agents, in this study, we investigated the structure-activity relationships of mesogenic compounds with cytotoxic effects against multiple NSCLC cells. The pharmacological effects of mesogenic compounds were examined in human NSCLC cells (A549, LU99, EBC-1, and H1299) and normal WI-38 human fibroblast. Analyses of the cell cycle, cell-death induction, and capsases expression were performed. The 3-ring compounds possessing terminal alkyl and hydroxyl groups (compounds C1-C5) showed cytotoxicity in NSCLC cells regardless of the p53 status. The compounds C1 and C3, which possess a pyrimidine at the center of the core, induced G2/M arrest, while the compounds without a pyrimidine (C2, C4, and C5) caused G1 arrest; all compounds produced caspase-mediated cell death. These events occurred in a p53-independent manner. Furthermore, it was suggested that compounds induced cell death through p53-independent DNA damage-signaling pathway. Compounds C2, C4, and C5 did not show strong cytotoxicity in WI-38 cells, whereas C1 and C3 did. However, the cytotoxicity of compound C1 against WI-38 cells was improved by modulating the terminal alkyl chain lengths of the compound. We showed the p53-indepdent structure-activity relationships of mesogenic compounds related to the cytotoxic effects. These structure-activity relationships will be helpful in the development of more effective and cancer-specific agents.

  15. Synthesis of geranylhydroquinone derivatives with potential cytotoxic activity

    Energy Technology Data Exchange (ETDEWEB)

    Baeza, Evelyn; Catalan, Karen; Pena-Cortes, Hugo; Espinoza, Luis, E-mail: luis.espinozac@usm.cl [Departamento de Quimica, Universidad Tecnica Federico Santa Maria, Valparaiso (Chile); Villena, Joan [Facultad de Medicina, Universidad de Valparaiso, Centro Regional de Estudios en Alimentos Saludables, Valparaiso (Chile); Carrasco, Hector [Departamento de Ciencias Quimicas, Universidad Andres Bello, Campus Vina del Mar (Chile)

    2012-07-01

    Natural geranylhydroquinone 1 and geranyl-p-methoxyphenol 2 were prepared by Electrophilic Aromatic Substitution (EAS) reactions between geraniol and 1,4-hydroquinone or p-methoxyphenol respectively, using BF{sub 3} {center_dot}Et{sub 2}O as a catalyst. Furthermore, natural geranylquinone 3, geranyl-1,4-dimethoxyquinone 4 and the new geranyl-4-methoxyphenyl acetate 5 were obtained by chemical transformations of 1 and 2. The compounds were evaluated for their in vitro cytotoxicity activities against cultured human cancer cells of PC-3 human prostate cancer, MCF-7 and MDA-MB-231 breast carcinoma, and Dermal Human ibroblasts DHF. IC{sub 50} values were in the {mu}M range. (author)

  16. Polymeric nanoparticles affect the intracellular delivery, antiretroviral activity and cytotoxicity of the microbicide drug candidate dapivirine.

    Science.gov (United States)

    das Neves, José; Michiels, Johan; Ariën, Kevin K; Vanham, Guido; Amiji, Mansoor; Bahia, Maria Fernanda; Sarmento, Bruno

    2012-06-01

    To assess the intracellular delivery, antiretroviral activity and cytotoxicity of poly(ε-caprolactone) (PCL) nanoparticles containing the antiretroviral drug dapivirine. Dapivirine-loaded nanoparticles with different surface properties were produced using three surface modifiers: poloxamer 338 NF (PEO), sodium lauryl sulfate (SLS) and cetyl trimethylammonium bromide (CTAB). The ability of nanoparticles to promote intracellular drug delivery was assessed in different cell types relevant for vaginal HIV transmission/microbicide development. Also, antiretroviral activity of nanoparticles was determined in different cell models, as well as their cytotoxicity. Dapivirine-loaded nanoparticles were readily taken up by different cells, with particular kinetics depending on the cell type and nanoparticles, resulting in enhanced intracellular drug delivery in phagocytic cells. Different nanoparticles showed similar or improved antiviral activity compared to free drug. There was a correlation between increased antiviral activity and increased intracellular drug delivery, particularly when cell models were submitted to a single initial short-course treatment. PEO-PCL and SLS-PCL nanoparticles consistently showed higher selectivity index values than free drug, contrasting with high cytotoxicity of CTAB-PCL. These results provide evidence on the potential of PCL nanoparticles to affect in vitro toxicity and activity of dapivirine, depending on surface engineering. Thus, this formulation approach may be a promising strategy for the development of next generation microbicides.

  17. Rapamycin Synergizes with Cisplatin in Antiendometrial Cancer Activation by Improving IL-27–Stimulated Cytotoxicity of NK Cells

    Directory of Open Access Journals (Sweden)

    Wen-Jie Zhou

    2018-01-01

    Full Text Available Natural killer (NK cell function is critical for controlling initial tumor growth and determining chemosensitivity of the tumor. A synergistic relationship between rapamycin and cisplatin in uterine endometrial cancer (UEC in vitro has been reported, but the mechanism and the combined therapeutic strategy for endometrial cancer (EC are still unknown. We found a positive correlation between the level of IL-27 and the differentiated stage of UEC. The increase of IL-27 in uterine endometrial cancer cell (UECC lines (Ishikawa, RL95-2 and KLE led to a high cytotoxic activity of NK cells to UECC in the co-culture system. Exposure with rapamycin enhanced the cytotoxicity of NK cells by upregulating the expression of IL-27 in UECC and IL-27 receptors (IL-27Rs: WSX-1 and gp130 on NK cells and further restricted the growth of UEC in Ishikawa-xenografted nude mice. In addition, treatment with rapamycin resulted in an increased autophagy level of UECC, and IL-27 enhanced this ability of rapamycin. Cisplatin-mediated NK cells' cytotoxic activity and anti-UEC activation were independent of IL-27; however, the combination of rapamycin and cisplatin led to a higher cytotoxic activity of NK cells, smaller UEC volume and longer survival rate in vivo. These results suggest that rapamycin and cisplatin synergistically activate the cytotoxicity of NK cells and inhibit the progression of UEC in both an IL-27–dependent and –independent manner. This provides a scientific basis for potential rapamycin-cisplatin combined therapeutic strategies targeted to UEC, especially for the patients with low differentiated stage or abnormally low level of IL-27.

  18. Chemical Composition, Cytotoxic and Antibacterial Activities of the Essential Oil from the Tunisian Ononis angustissima L. (Fabaceae).

    Science.gov (United States)

    Ghribi, Lotfi; Ben Nejma, Aymen; Besbes, Malek; Harzalla-Skhiri, Fethia; Flamini, Guido; Ben Jannet, Hichem

    2016-01-01

    The chemical composition, cytotoxic and antibacterial activities of the hydrodistilled essential oil of the aerial parts of Ononis angustissima from south Tunisia has been evaluated. The oil yield was 0.04% (w/w). The chemical composition, determined by GC and GC-MS is reported for the first time. Forty-five components, accounting for 93.7% of the total oil have been identified. The oil was characterized by a high proportion of oxygenated sesquiterpenes (33.2%), followed by sesquiterpene hydrocarbons (6.3%) and apocarotenoids (10.3%). The main components of the oil were α-eudesmol (22.4%), 2-tridecanone (9.3%) and acetophenone (7.4%). The essential oil was tested for its possible cytotoxic activity towards the human cervical cell line HeLa using the MTT assay and the antibacterial activity against Pseudomonas aeruginosa, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and the clinical strain Acinetobacter sp. This oil exerted a cytotoxic activity with an IC50 of 0.53 ± 0.02 mg/mL and a significant antibacterial effect against P. aeruginosa and E. faecalis.

  19. Cytotoxic activity of ethanolic extract of the marine sponge Aaptos suberitoides against T47D cell

    Science.gov (United States)

    Nurhayati, Awik Puji Dyah; Prastiwi, Rarastoeti; Sukardiman, Wahyuningsih, Tri

    2018-04-01

    Aaptos suberitoides marine sponge produce many kinds of secondary metabolites. The purpose of this study were to examine the cytotoxic, proliferation inhibition and apoptosis induction of marine sponge A.suberitoides. The sponge was extracted with 96 % ethanol. Ethanol extract cytotoxicity assay were performed with MTT method (Microculture Tetrazolium) against to cell line of T47D. The proliferation inhibition were done by doubling time. The apoptosis induction by observing the treated cell morphology after staining with acrydine orange. The results show that cytotoxic activity of the ethanol extract was 153.109 µg/mL, inhibits cell proliferation cell lines of T47D at 24 hours of incubation and apoptosis induction.

  20. Synthesis, characterization, cytotoxic and antitubercular activities of new gold(I) and gold(III) complexes containing ligands derived from carbohydrates.

    Science.gov (United States)

    Chaves, Joana Darc Souza; Damasceno, Jaqueline Lopes; Paula, Marcela Cristina Ferreira; de Oliveira, Pollyanna Francielli; Azevedo, Gustavo Chevitarese; Matos, Renato Camargo; Lourenço, Maria Cristina S; Tavares, Denise Crispim; Silva, Heveline; Fontes, Ana Paula Soares; de Almeida, Mauro Vieira

    2015-10-01

    Novel gold(I) and gold(III) complexes containing derivatives of D-galactose, D-ribose and D-glucono-1,5-lactone as ligands were synthesized and characterized by IR, (1)H, and (13)C NMR, high resolution mass spectra and cyclic voltammetry. The compounds were evaluated in vitro for their cytotoxicity against three types of tumor cells: cervical carcinoma (HeLa) breast adenocarcinoma (MCF-7) and glioblastoma (MO59J) and one non-tumor cell line: human lung fibroblasts (GM07492A). Their antitubercular activity was evaluated as well expressed as the minimum inhibitory concentration (MIC90) in μg/mL. In general, the gold(I) complexes were more active than gold(III) complexes, for example, the gold(I) complex (1) was about 8.8 times and 7.6 times more cytotoxic than gold(III) complex (8) in MO59J and MCF-7 cells, respectively. Ribose and alkyl phosphine derivative complexes were more active than galactose and aryl phosphine complexes. The presence of a thiazolidine ring did not improve the cytotoxicity. The study of the cytotoxic activity revealed effective antitumor activities for the gold(I) complexes, being more active than cisplatin in all the tested tumor cell lines. Gold(I) compounds (1), (2), (3), (4) and (6) exhibited relevant antitubercular activity even when compared with first line drugs such as rifampicin.

  1. Chemical composition of Schinus molle essential oil and its cytotoxic activity on tumour cell lines.

    Science.gov (United States)

    Díaz, Cecilia; Quesada, Silvia; Brenes, Oscar; Aguilar, Gilda; Cicció, José F

    2008-01-01

    The leaf essential oil hydrodistilled from Schinus molle grown in Costa Rica was characterised in terms of its chemical composition, antioxidant activity, ability to induce cytotoxicity and the mechanism of cell death involved in the process. As a result, 42 constituents, accounting for 97.2% of the total oil, were identified. The major constituents of the oil were beta-pinene and alpha-pinene. The antioxidant activity showed an IC(50) of 36.3 microg mL(-1). The essential oil was cytotoxic in several cell lines, showing that it is more effective on breast carcinoma and leukemic cell lines. The LD(50) for cytotoxicity at 48 h in K562 corresponded to 78.7 microg mL(-1), which was very similar to the LD(50) obtained when apoptosis was measured. The essential oil did not induce significant necrosis up to 200 microg mL(-1), which together with the former results indicate that apoptosis is the main mechanism of toxicity induced by S. molle essential oil in this cell line. In conclusion, the essential oil tested was weak antioxidant and induced cytotoxicity in different cell types by a mechanism related to apoptosis. It would be interesting to elucidate the role that different components of the oil play in the effect observed here, since some of them could have potential anti-tumoural effects, either alone or in combination.

  2. Antihyperlipidemic, Antioxidant and Cytotoxic Activities of Methanolic and Aqueous Extracts of Different Parts of Star Fruit.

    Science.gov (United States)

    Saghir, Sultan A M; Sadikun, Amirin; Al-Suede, Fouad S R; Majid, Amin M S A; Murugaiyah, Vikneswaran

    Star fruit (Averrhoa carambola) is a well-known plant in Malaysia which bears a great significance in traditional medicine. This study aimed to evaluate the antihyperlipidemic effect, antioxidant potential and cytotoxicity of aqueous and methanolic extracts of ripe and unripe fruits, leaves and stem of A. carambola. Antihyperlipidemic activity was assessed in poloxamer-407 (P-407) induced acute hyperlipidemic rat's model. The antioxidant activity was assessed in vitro using 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulphonic acid) (ABTS) radical scavenging, 1-diphenyl-2-dipicrylhydrazyl radical scavenging (DPPH) and ferric reducing antioxidant power (FRAP) assays. In addition, cytotoxicity of A. carambola extracts was assessed using MTS assay on four leukemic cell lines (human colon cancer, human promyeloid leukemia, erythroid leukemia, acute myeloid leukemia) and one normal cell (human umbilical vein endothelial cells). Methanolic extract of leaves had the most potent antihyperlipidemic activity in P-407 model, whereby it significantly reduced serum levels of total cholesterol (Pcarambola stem and leaves showed the strongest antioxidant activity. Total phenolic and flavonoid contents of the extracts exhibited significant correlations with antioxidant but not with antihyperlipidemic activities. All plant parts showed no cytotoxic effect on the selected cancer or normal cell lines. Antihyperlipidemic activity of different parts of A. carambola is greatly affected by extraction solvents used. Methanolic extract of A. carambola leaves exhibited higher antihyperlipidemic and antioxidant potentials compared to other parts of the plant.

  3. Novel enaminones as non-cytotoxic compounds with mild antibacterial activity: Synthesis and structure-activity correlations

    Science.gov (United States)

    Cindrić, Marina; Rubčić, Mirta; Hrenar, Tomica; Pisk, Jana; Cvijanović, Danijela; Lovrić, Jasna; Vrdoljak, Višnja

    2018-02-01

    Six non-symmetric enaminones 4-[(2-hydroxy-5-methylphenyl)amino]pent-3-en-2-one (H2L1), 4-[(2-hydroxy-4-methylphenyl)amino]pent-3-en-2-one (H2L2), 4-[(4-hydroxy-2-methylphenyl)amino)]pent-3-en-2-one (H2L3), 3-[(2-hydroxy-5-methylphenyl)amino]-1-phenylbut-2-en-1-one (H2L4), 3-[(2-hydroxy-4-methylphenyl)amino]-1-phenylbut-2-en-1-one (H2L5) and 3-[(4-hydroxy-2-methylphenyl)amino]-1-phenylbut-2-en-1-one (H2L6) have been prepared by solution based method. The enaminones were characterized by elemental and DSC analysis, NMR and IR spectroscopy. Crystal and molecular structures of H2L1, H2L2, H2L4 and H2L6 were determined via single crystal X-ray analysis. The prepared enaminones were screened against THP-1 and HepG2 cells, and Staphylococcus aureus, Enterococcus faecalis, Escherichia coli and Moraxella catarrhalis bacteria to assess their cytotoxic and antibacterial activity, respectively. All compounds proved to be non-cytotoxic and showed mild or no antibacterial activity. Quantum mechanical calculations suggest that the presence of hydroxy group in ortho position, combined with the methyl group on the same aromatic ring, has a significant impact on the biological activities.

  4. Antiplasmodial activities and cytotoxic effects of aqueous extracts and sesquiterpene lactones from Neurolaena lobata.

    Science.gov (United States)

    François, G; Passreiter, C M; Woerdenbag, H J; Van Looveren, M

    1996-04-01

    Aqueous and lipophilic extracts of Neurolaena lobata (Asteraceae), obtained from Guatemala, were tested against Plasmodium falciparum in vitro. Moreover, sesquiterpene lactones, of the germacranolide and furanoheliangolide type, isolated from N. lobata, were shown to be active against P. falciparum in vitro. In addition to their antiplasmodial activity, their cytotoxic effects on human carcinoma cell lines were evaluated. Structure-activity relationships are discussed.

  5. Differential Cytotoxic Activity of Essential Oil of Lippia citriodora from Different Regions in Morocco.

    Science.gov (United States)

    Oukerrou, Moulay Ali; Tilaoui, Mounir; Mouse, Hassan Ait; Bouchmaa, Najat; Zyad, Abdelmajid

    2017-07-01

    The aim of this work was to investigate the cytotoxic effect of the essential oil of dried leaves of Lippia citriodora (H.B. & K.) harvested in different regions of Morocco. This effect was evaluated against the P815 murine mastocytoma cell line using the MTT assay. Interestingly, this work demonstrated for the first time that these essential oils exhibited a strong cytotoxic activity against the P815 cell line, with IC 50 values ranging from 7.75 to 13.25 μg/ml. This cytotoxicity began early and increased in a dose- and time-dependent manner. The chemical profile of these essential oils was analyzed by gas chromatography coupled to mass spectrometry. Importantly, the difference in terms of major components' contents was not significant suggesting probably that the differential cytotoxicity between these essential oils could be attributed to the difference in the content of these essential oils in minor compounds, which could interact with each other or with the main molecules. Finally, this study demonstrated for the first time that essential oils of L. citriodora from different regions in Morocco induced apoptosis against P815 tumor cell line. © 2017 Wiley-VHCA AG, Zurich, Switzerland.

  6. Cytotoxic activity of kenaf (Hibiscus cannabinus L.) seed extract and oil against human cancer cell lines

    Science.gov (United States)

    Wong, Yu Hua; Tan, Wai Yan; Tan, Chin Ping; Long, Kamariah; Nyam, Kar Lin

    2014-01-01

    Objective To examine the cytotoxic properties of both the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cervical cancer, human breast cancer, human colon cancer and human lung cancer cell lines. Methods The in vitro cytotoxic activity of the kenaf (Hibiscus cannabinus L.) seed extract and kenaf seed oil on human cancer cell lines was evaluated by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and sulforhodamine B assays. Cell morphological changes were observed by using an inverted light microscope. Results The kenaf seed extract (KSE) exhibited a lower IC50 than kenaf seed oil (KSO) in all of the cancer cell lines. Morphological alterations in the cell lines after KSE and KSO treatment were observed. KSE and KSO possessed effective cytotoxic activities against all the cell lines been selected. Conclusions KSE and KSO could be potential sources of natural anti-cancer agents. Further investigations on using kenaf seeds for anti-proliferative properties are warranted. PMID:25183141

  7. Quantitative structure-cytotoxicity relationship of phenylpropanoid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Saito, Takayuki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-07-01

    A total of 12 phenylpropanoid amides were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to investigate on their biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean CC50 (50% cytotoxic concentration) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of CC50 to EC50 (50% cytoprotective concentration from HIV infection). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by the LowModeMD method followed by density functional theory (DFT) method. Twelve phenylpropanoid amides showed moderate cytotoxicity against both normal and OSCC cell lines. N-Caffeoyl derivatives coupled with vanillylamine and tyramine exhibited relatively higher tumor selectivity. Cytotoxicity against normal cells was correlated with descriptors related to electrostatic interaction such as polar surface area and chemical hardness, whereas cytotoxicity against tumor cells correlated with free energy, surface area and ellipticity. The tumor-selective cytotoxicity correlated with molecular size (surface area) and electrostatic interaction (the maximum electrostatic potential). The molecular size, shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of phenylpropanoid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  8. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis.

    Science.gov (United States)

    Aronsson, Per; Munissi, Joan J E; Gruhonjic, Amra; Fitzpatrick, Paul A; Landberg, Göran; Nyandoro, Stephen S; Erdelyi, Mate

    2016-01-15

    As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae), a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8'-oxo-biplumbagin ( 1 ) was isolated along with the known tetralones trans -isoshinanolone ( 2 ) and cis -isoshinanolone ( 3 ), and the naphthoquinones plumbagin ( 4 ) and 3,3'-biplumbagin ( 5 ). Compounds 2 , 4 , and 5 showed cytotoxicity (IC 50 520-82.1 μM) against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC 50 16.1, 29.7 and > 100 μg/mL, respectively), and for the methanol extract of the stem bark (IC 50 59.6 μg/mL). The radical scavenging activity of the isolated constituents ( 1 - 5 ) was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  9. Antiplasmodial Activity, Cytotoxicity and Structure-Activity Relationship Study of Cyclopeptide Alkaloids

    Directory of Open Access Journals (Sweden)

    Emmy Tuenter

    2017-02-01

    Full Text Available Cyclopeptide alkaloids are polyamidic, macrocyclic compounds, containing a 13-, 14-, or 15-membered ring. The ring system consists of a hydroxystyrylamine moiety, an amino acid, and a β-hydroxy amino acid; attached to the ring is a side chain, comprised of one or two more amino acid moieties. In vitro antiplasmodial activity was shown before for several compounds belonging to this class, and in this paper the antiplasmodial and cytotoxic activities of ten more cyclopeptide alkaloids are reported. Combining these results and the IC50 values that were reported by our group previously, a library consisting of 19 cyclopeptide alkaloids was created. A qualitative SAR (structure-activity relationship study indicated that a 13-membered macrocyclic ring is preferable over a 14-membered one. Furthermore, the presence of a β-hydroxy proline moiety could correlate with higher antiplasmodial activity, and methoxylation (or, to a lesser extent, hydroxylation of the styrylamine moiety could be important for displaying antiplasmodial activity. In addition, QSAR (quantitative structure-activity relationship models were developed, using PLS (partial least squares regression and MLR (multiple linear regression. On the one hand, these models allow for the indication of the most important descriptors (molecular properties responsible for the antiplasmodial activity. Additionally, predictions made for interesting structures did not contradict the expectations raised in the qualitative SAR study.

  10. Putrescine-dependent re-localization of TvCP39, a cysteine proteinase involved in Trichomonas vaginalis cytotoxicity.

    Directory of Open Access Journals (Sweden)

    Bertha Isabel Carvajal-Gamez

    Full Text Available Polyamines are involved in the regulation of some Trichomonas vaginalis virulence factors such as the transcript, proteolytic activity, and cytotoxicity of TvCP65, a cysteine proteinase (CP involved in the trichomonal cytotoxicity. In this work, we reported the putrescine effect on TvCP39, other CP that also participate in the trichomonal cytotoxicity. Parasites treated with 1,4-diamino-2-butanone (DAB (an inhibitor of putrescine biosynthesis, diminished the amount and proteolytic activity of TvCP39 as compared with untreated parasites. Inhibition of putrescine biosynthesis also reduced ∼ 80% the tvcp39 mRNA levels according to RT-PCR and qRT-PCR assays. Additionally, actinomycin D-treatment showed that the tvcp39 mRNA half-life decreased in the absence of putrescine. However, this reduction was restored by exogenous putrescine addition, suggesting that putrescine is necessary for tvcp39 mRNA stability. TvCP39 was localized in the cytoplasm but, in DAB treated parasites transferred into exogenous putrescine culture media, TvCP39 was re-localized to the nucleus and nuclear periphery of trichomonads. Interestingly, the amount and proteolytic activity of TvCP39 was recovered as well as the tvcp39 mRNA levels were restored when putrescine exogenous was added to the DAB-treated parasites. In conclusion, our data show that putrescine regulate the TvCP39 expression, protein amount, proteolytic activity, and cellular localization.

  11. The transcription factors Runx3 and ThPOK cross-regulate acquisition of cytotoxic function by human Th1 lymphocytes

    Science.gov (United States)

    Defrance, Matthieu; Vu Manh, Thien-Phong; Azouz, Abdulkader; Detavernier, Aurélie; Hoyois, Alice; Das, Jishnu; Bizet, Martin; Pollet, Emeline; Tabbuso, Tressy; Calonne, Emilie; van Gisbergen, Klaas; Dalod, Marc; Fuks, François; Goriely, Stanislas

    2018-01-01

    Cytotoxic CD4 (CD4CTX) T cells are emerging as an important component of antiviral and antitumor immunity, but the molecular basis of their development remains poorly understood. In the context of human cytomegalovirus infection, a significant proportion of CD4 T cells displays cytotoxic functions. We observed that the transcriptional program of these cells was enriched in CD8 T cell lineage genes despite the absence of ThPOK downregulation. We further show that establishment of CD4CTX-specific transcriptional and epigenetic programs occurred in a stepwise fashion along the Th1-differentiation pathway. In vitro, prolonged activation of naive CD4 T cells in presence of Th1 polarizing cytokines led to the acquisition of perforin-dependent cytotoxic activity. This process was dependent on the Th1 transcription factor Runx3 and was limited by the sustained expression of ThPOK. This work elucidates the molecular program of human CD4CTX T cells and identifies potential targets for immunotherapy against viral infections and cancer. PMID:29488879

  12. Mechanism of arctigenin-mediated specific cytotoxicity against human lung adenocarcinoma cell lines.

    Science.gov (United States)

    Susanti, Siti; Iwasaki, Hironori; Inafuku, Masashi; Taira, Naoyuki; Oku, Hirosuke

    2013-12-15

    The lignan arctigenin (ARG) from the herb Arctium lappa L. possesses anti-cancer activity, however the mechanism of action of ARG has been found to vary among tissues and types of cancer cells. The current study aims to gain insight into the ARG mediated mechanism of action involved in inhibiting proliferation and inducing apoptosis in lung adenocarcinoma cells. This study also delineates the cancer cell specificity of ARG by comparison with its effects on various normal cell lines. ARG selectively arrested the proliferation of cancer cells at the G0/G1 phase through the down-regulation of NPAT protein expression. This down-regulation occurred via the suppression of either cyclin E/CDK2 or cyclin H/CDK7, while apoptosis was induced through the modulation of the Akt-1-related signaling pathway. Furthermore, a GSH synthase inhibitor specifically enhanced the cytotoxicity of ARG against cancer cells, suggesting that the intracellular GSH content was another factor influencing the susceptibility of cancer cells to ARG. These findings suggest that specific cytotoxicity of ARG against lung cancer cells was explained by its selective modulation of the expression of NPAT, which is involved in histone biosynthesis. The cytotoxicity of ARG appeared to be dependent on the intracellular GSH level. Copyright © 2013 Elsevier GmbH. All rights reserved.

  13. Synthesis, cytotoxicity and haemolytic activity of Pulsatilla saponin A, D derivatives.

    Science.gov (United States)

    Chen, Zhong; Duan, Huaqing; Wang, Minglei; Han, Li; Liu, Yanli; Zhu, Yongming; Yang, Shilin

    2015-06-15

    The strong haemolytic activity of Pulsatilla saponin A (PSA), D (PSD) hampered their clinical development of antitumor agents. In order to solve this problem, C-28 position modification derivatives of PSA/PSD were synthesized. The cytotoxicity and haemolytic activity of these compounds were evaluated. Structure-activity relationship and structure-toxicity relationship had been observed. The mice acute toxicity of compound 11 was reduced greatly than that of PSA. This study indicates that compound 11 may represent an interesting class of potent antitumor agents from triterpenoid saponins avoiding the haemolysis problem. The present study has important significance for the development of antitumor saponins. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Cytotoxic and Antibacterial Activity of an Extract from a Saudi Traditional Medicinal Plant Equisetum Arvense

    KAUST Repository

    Aldaas, Salsabil

    2011-05-01

    Background:Many ancient civilizations have used plants for medicinal purposes and indeed research has suggested that plant-derived compounds can be useful for treating many ailments, including cancer and infectious diseases. One such plant, Equisetum arvense, commonly known as horsetail, is a herbal plant that grows in Saudi Arabia and is traditionally used as a diuretic. Objective (s): We sought to determine whether horsetail extract exhibits 1) cytotoxic activity on cell lines and 2) antibacterial activity on the bacterial strain Escherichia coli. Materials and Methods: Using dried aerial part of the horsetail plant, a methanolic extract was prepared for screening. This extract was examined for its cytotoxic effect on the following cell lines: cervical adenocarcinoma and breast adenocarcinoma as a cancer cell model; lung fibroblast as a normal cell model; and human embryonic kidney. After 72 hours of treatment, the cells were assayed to determine the relative percentages of dead and live cells. Microscopical examination was used to give approximate percentages and a general overview of the effect on cell morphology. The LIVE⁄DEAD® Viability⁄Cytotoxicity kit was used to determine viability of cells in the population by using two dyes: the green-fluorescent calcein-AM which stains living cells, and the red-fluorescent ethidium homodimer-1 which stains dead cells. The alamarBlue® assay, based on a fluorometric/colorimetric growth indicator that detects metabolic activity, was used to establish a relative percentage of the living cells in a population treated with the plant extract compared to untreated cells (control). To determine antibacterial activity, the disc diffusion method was used. Results: Preliminary screening suggests that the horsetail extract induces death on the four tested cell lines with the greatest effect on human embryonic kidney cells followed by breast adenocarcinoma. The extract also displayed antibacterial activity at the highest

  15. A cytotoxic serine proteinase isolated from mouse submandibular gland.

    Science.gov (United States)

    Shimamura, T; Nagumo, N; Ikigai, H; Murakami, K; Okubo, S; Toda, M; Ohnishi, R; Tomita, M

    1989-08-01

    We have isolated a novel cytotoxic factor from the submandibular glands of male BALB/c mice by Sephadex G-50 gel filtration chromatography and reverse-phase HPLC. The cytotoxic factor is a serine proteinase, which belongs to the mouse glandular kallikrein (mGK) family, with an Mr of approximately 27,000. The purified serine proteinase showed cytotoxic activity against mouse thymocytes in a dose-dependent manner, and a serine proteinase inhibitor, diisopropyl fluorophosphate, blocked its cytotoxic activity.

  16. Particle Size-Dependent Antibacterial Activity and Murine Cell Cytotoxicity Induced by Graphene Oxide Nanomaterials

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-01-01

    Full Text Available Recent studies have indicated that graphene and its derivative graphene oxide (GO engage in a wide range of antibacterial activities with limited toxicity to human cells. Here, we systematically evaluate the dependence of GO toxicity on the size of the nanoparticles used in treatments: we compare the cytotoxic effects of graphene quantum dots (GQDs, <15 nm, small GOs (SGOs, 50–200 nm, and large GOs (LGOs, 0.5–3 μm. We synthesize the results of bacterial colony count assays and SEM-based observations of morphological changes to assess the antibacterial properties that these GOs bring into effect against E. coli. We also use Live/Dead assays and morphological analysis to investigate changes to mammalian (Murine macrophage-like Raw 264.7 cells induced by the presence of the various GO particle types. Our results demonstrate that LGOs, SGOs, and GQDs possess antibacterial activities and cause mammalian cell cytotoxicity at descending levels of potency. Placing our observations in the context of previous simulation results, we suggest that both the lateral size and surface area of GO particles contribute to cytotoxic effects. We hope that the size dependence elucidated here provides a useful schematic for tuning GO-cell interactions in biomedical applications.

  17. Extracellular synthesis of gold bionanoparticles by Nocardiopsis sp. and evaluation of its antimicrobial, antioxidant and cytotoxic activities.

    Science.gov (United States)

    Manivasagan, Panchanathan; Alam, Moch Syaiful; Kang, Kyong-Hwa; Kwak, Minseok; Kim, Se-Kwon

    2015-06-01

    Advancement of biological process for the synthesis of bionanoparticles is evolving into a key area of research in nanotechnology. The present study deals with the biosynthesis, characterization of gold bionanoparticles by Nocardiopsis sp. MBRC-48 and evaluation of their antimicrobial, antioxidant and cytotoxic activities. The gold bionanoparticles obtained were characterized by UV-visible spectroscopy, X-ray diffraction analysis, Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy dispersive X-ray analysis and transmission electron microscopy (TEM). The synthesized gold bionanoparticles were spherical in shape with an average of 11.57 ± 1.24 nm as determined by TEM and dynamic light scattering (DLS) particle size analyzer, respectively. The biosynthesized gold nanoparticles exhibited good antimicrobial activity against pathogenic microorganisms. It showed strong antioxidant activity as well as cytotoxicity against HeLa cervical cancer cell line. The present study demonstrated the potential use of the marine actinobacterial strain of Nocardiopsis sp. MBRC-48 as an important source for gold nanoparticles with improved biomedical applications including antimicrobial, antioxidant as well as cytotoxic agent.

  18. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Díaz, Mario Alberto [Facultad de Ciencias Químicas, UASLP, Álvaro Obregón 64, San Luis Potosí (Mexico); Boegli, Laura; James, Garth [Center for Biofilm Engineering, Montana State University, Bozeman, MT (United States); Velasquillo, Cristina; Sánchez-Sánchez, Roberto [Laboratorio de Biotecnología, Instituto Nacional de Rehabilitación (Mexico); Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro [Facultad de Estomatología, Universidad Autónoma de San Luis Potosí (Mexico); Martinez-Gutierrez, Fidel, E-mail: fidel@uaslp.mx [Facultad de Ciencias Químicas, UASLP, Álvaro Obregón 64, San Luis Potosí (Mexico)

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5 ± 1.1 nm. However, AgNPs at high concentrations (> 10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. - Highlights: • Biological activities of silver nanoparticles for dental caries purposes • Antimicrobial activity of AgNPs on planktonic cell was size and concentration dependent. • Reduction in the S. mutans biofilm formation was statistically significant. • AgNPs at high concentrations showed a cytotoxic effect upon human dermal fibroblasts. • AgNPs could be used for prevention and treatment of dental caries.

  19. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect

    International Nuclear Information System (INIS)

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-01-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5 ± 1.1 nm. However, AgNPs at high concentrations (> 10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. - Highlights: • Biological activities of silver nanoparticles for dental caries purposes • Antimicrobial activity of AgNPs on planktonic cell was size and concentration dependent. • Reduction in the S. mutans biofilm formation was statistically significant. • AgNPs at high concentrations showed a cytotoxic effect upon human dermal fibroblasts. • AgNPs could be used for prevention and treatment of dental caries

  20. Antioxidant, Cytotoxic, and Toxic Activities of Propolis from Two Native Bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides

    Directory of Open Access Journals (Sweden)

    Thaliny Bonamigo

    2017-01-01

    Full Text Available Propolis is a natural mixture of compounds produced by various bee species, including stingless bees. This compound has been shown to exhibit antioxidant, antiproliferative, and antitumor activities. The present study aimed to determine the chemical constituents as well as the antioxidant, cytotoxic, and toxic activities of ethanol extracts of propolis obtained from the stingless bees Scaptotrigona depilis and Melipona quadrifasciata anthidioides, which are found in Brazil. Phytosterols, terpenes, phenolic compounds, and tocopherol were identified in the ethanol extracts of propolis (EEPs in different concentrations. The compounds stigmasterol, taraxasterol, vanilic acid, caffeic acid, quercetin, luteolin, and apigenin were found only in EEP-M. The EEPs were able to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid and protected human erythrocytes against lipid peroxidation, with the latter effect being demonstrated by their antihemolytic activity and inhibition of malondialdehyde formation. The EEPs showed cytotoxic activity against erythroleukemic cells and necrosis was the main mechanism of death observed. In addition, the concentrations at which the EEPs were cytotoxic were not toxic against Caenorhabditis elegans. In this context, it is concluded that EEP-S and EEP-M show antioxidant and cytotoxic activities and are promising bioactive mixtures for the control of diseases associated with oxidative stress and tumor cell proliferation.

  1. Antioxidant, Cytotoxic, and Toxic Activities of Propolis from Two Native Bees in Brazil: Scaptotrigona depilis and Melipona quadrifasciata anthidioides.

    Science.gov (United States)

    Bonamigo, Thaliny; Campos, Jaqueline Ferreira; Alfredo, Tamaeh Monteiro; Balestieri, José Benedito Perrella; Cardoso, Claudia Andrea Lima; Paredes-Gamero, Edgar Julian; de Picoli Souza, Kely; Dos Santos, Edson Lucas

    2017-01-01

    Propolis is a natural mixture of compounds produced by various bee species, including stingless bees. This compound has been shown to exhibit antioxidant, antiproliferative, and antitumor activities. The present study aimed to determine the chemical constituents as well as the antioxidant, cytotoxic, and toxic activities of ethanol extracts of propolis obtained from the stingless bees Scaptotrigona depilis and Melipona quadrifasciata anthidioides , which are found in Brazil. Phytosterols, terpenes, phenolic compounds, and tocopherol were identified in the ethanol extracts of propolis (EEPs) in different concentrations. The compounds stigmasterol, taraxasterol, vanilic acid, caffeic acid, quercetin, luteolin, and apigenin were found only in EEP-M. The EEPs were able to scavenge the free radicals 2,2-diphenyl-1-picrylhydrazyl and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and protected human erythrocytes against lipid peroxidation, with the latter effect being demonstrated by their antihemolytic activity and inhibition of malondialdehyde formation. The EEPs showed cytotoxic activity against erythroleukemic cells and necrosis was the main mechanism of death observed. In addition, the concentrations at which the EEPs were cytotoxic were not toxic against Caenorhabditis elegans . In this context, it is concluded that EEP-S and EEP-M show antioxidant and cytotoxic activities and are promising bioactive mixtures for the control of diseases associated with oxidative stress and tumor cell proliferation.

  2. Texas Native Plants Yield Compounds with Cytotoxic Activities against Prostate Cancer Cells.

    Science.gov (United States)

    Shaffer, Corena V; Cai, Shengxin; Peng, Jiangnan; Robles, Andrew J; Hartley, Rachel M; Powell, Douglas R; Du, Lin; Cichewicz, Robert H; Mooberry, Susan L

    2016-03-25

    There remains a critical need for more effective therapies for the treatment of late-stage and metastatic prostate cancers. Three Texas native plants yielded three new and three known compounds with antiproliferative and cytotoxic activities against prostate cancer cells with IC50 values in the range of 1.7-35.0 μM. A new sesquiterpene named espadalide (1), isolated from Gochnatia hypoleuca, had low micromolar potency and was highly effective in clonogenic assays. Two known bioactive germacranolides (2 and 3) were additionally isolated from G. hypoleuca. Dalea frutescens yielded two new isoprenylated chalcones, named sanjuanolide (4) and sanjoseolide (5), and the known sesquiterpenediol verbesindiol (6) was isolated from Verbesina virginica. Mechanistic studies showed that 1-4 caused G2/M accumulation and the formation of abnormal mitotic spindles. Tubulin polymerization assays revealed that 4 increased the initial rate of tubulin polymerization, but did not change total tubulin polymer levels, and 1-3 had no effects on tubulin polymerization. Despite its cytotoxic activity, compound 6 did not initiate changes in cell cycle distribution and has a mechanism of action different from the other compounds. This study demonstrates that new compounds with significant biological activities germane to unmet oncological needs can be isolated from Texas native plants.

  3. Phytochemical and Cytotoxic Investigations of Alpinia mutica Rhizomes

    Directory of Open Access Journals (Sweden)

    Kae Shin Sim

    2011-01-01

    Full Text Available The methanol and fractionated extracts (hexane, ethyl acetate and water of Alpinia mutica (Zingiberaceae rhizomes were investigated for their cytotoxic effect against six human carcinoma cell lines, namely KB, MCF7, A549, Caski, HCT116, HT29 and non-human fibroblast cell line (MRC 5 using an in vitro cytotoxicity assay. The ethyl acetate extract possessed high inhibitory effect against KB, MCF7 and Caski cells (IC50 values of 9.4, 19.7 and 19.8 µg/mL, respectively. Flavokawin B (1, 5,6-dehydrokawain (2, pinostrobin chalcone (3 and alpinetin (4, isolated from the active ethyl acetate extract were also evaluated for their cytotoxic activity. Of these, pinostrobin chalcone (3 and alpinetin (4 were isolated from this plant for the first time. Pinostrobin chalcone (3 displayed very remarkable cytotoxic activity against the tested human cancer cells, such as KB, MCF7 and Caski cells (IC50 values of 6.2, 7.3 and 7.7 µg/mL, respectively. This is the first report of the cytotoxic activity of Alpinia mutica.

  4. 'Chocolate' silver nanoparticles: Synthesis, antibacterial activity and cytotoxicity.

    Science.gov (United States)

    Chowdhury, Neelika Roy; MacGregor-Ramiasa, Melanie; Zilm, Peter; Majewski, Peter; Vasilev, Krasimir

    2016-11-15

    Silver nanoparticles (AgNPs) have emerged as a powerful weapon against antibiotic resistant microorganisms. However, most conventional AgNPs syntheses require the use of hazardous chemicals and generate toxic organic waste. Hence, in recent year's, plant derived and biomolecule based synthetics have has gained much attention. Cacao has been used for years for its medicinal benefits and contains a powerful reducing agent - oxalic acid. We hypothesized that, due to the presence of oxalic acid, cacao extract is capable of reducing silver nitrate (AgNO3) to produce AgNPs. In this study, AgNPs were synthesized by using natural cacao extract as a reducing and stabilizing agent. The reaction temperature, time and reactant molarity were varied to optimize the synthesis yield. UV-visible spectroscopy (UV-vis), dynamic light scattering (DLS) and transmission electron microscopy (TEM) characterization demonstrated that the synthesized AgNPs were spherical particles ranging in size from 35 to 42.5nm. The synthesized AgNPs showed significant antibacterial activity against clinically relevant pathogens such as Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus and Staphylococcus epidermidis. Importantly, these green AgNPs are not cytotoxic to human dermal fibroblasts (HDFs) at concentrations below 32μg/ml. We conclude that cacao-based synthesis is a reproducible and sustainable method for the generation of stable antimicrobial silver nanoparticles with low cytotoxicity to human cells. The AgNPs synthesized in this work have promising properties for applications in the biomedical field. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Phytochemical screening, antioxidant and cytotoxic activity of fruit extracts of Calamus tenuis Roxb

    Directory of Open Access Journals (Sweden)

    Zaki Uddin Ahmed

    2014-08-01

    Full Text Available Objective: To investigate the antioxidant and cytotoxic activity of the fruits of Calamus tenuis Roxb. Methods: The preliminary phytochemical group tests were done, which revealed the presence of alkaloid, tannin, flavonoid and steroid. The dried fruit was extracted in soxhlet apparatus using petroleum ether, ethyl acetate and methanol. Antioxidant potential of each extract was evaluated using total phenol content, total flavonoid content, cupric reducing antioxidant capacity, 1,1-diphenyl-2-picrylhydrazyl radical scavenging activity, and total antioxidant capacity determinations. Results: The extracts were found to possess moderate to high amounts of phenolic and flavonoid contents. In cupric reducing antioxidant capacity assay the extracts showed moderate reducing power which increases with concentration. Scavenging of 1,1-diphenyl-2-picrylhydrazyl radical was found to rise with concentration with lowest IC50 value for methanol extract, which was confirmed by total antioxidant activity test that shows highest (95 mg/g of extract in ascorbic acid equivalent for methanol extract. In Brine shrimp lethality bioassay the methanol and petroleum ether extracts were found to be toxic to Brine shrimp nauplii, with LC50 of 25.53 µg/mL and 28.07 µg/mL respectively while the LC50 of the reference vincristine sulphate was 1.32 µg/mL. Ethyl acetate extract was found to be moderately cytotoxic showing LC50 of 47.79 µg/mL. Conclusions: The results of the present study suggest that the fruits of Calamus tenuis Roxb possess antioxidant and cytotoxic potential. Moreover, phytochemical screening reveals the presence of alkaloid, tannin, flavonoid and steroid, which may be responsible for the observed bioactivities.

  6. Anti-Leishmania and cytotoxic activities of perillaldehyde epoxide synthetic positional isomers.

    Science.gov (United States)

    Keesen, Tatjana Souza Lima; da Silva, Larisse Virgolino; da Câmara Rocha, Juliana; Andrade, Luciana Nalone; Lima, Tamires Cardoso; de Sousa, Damião Pergentino

    2018-03-13

    Leishmaniasis belongs to a complex of zoonotic disease caused by protozoa of the genus Leishmania and is considered a major public health problem. Several essential oil chemical components have inhibitory effect against protozoa, including Leishmania donovani. Thus, the aim of this study was to evaluate for the first time the anti-Leishmania activity of two p-menthane monoterpene isomers (EPER-1: perillaldehyde 1,2-epoxide and EPER-2: perillaldehyde 8,9-epoxide) against L. donovani promastigotes as well as evaluating cytotoxic effect on mononuclear peripheral blood cells. Results of anti-Leishmania assay revealed that EPER-2 (IC 50  = 3.8 μg.mL -1 ) was 16-fold more potent than its isomer EPER-1 (IC 50  = 64.6 μg.mL -1 ). In contrast to PBMC cells, EPER-2 was not cytotoxic (IC 50  > 400 μg.mL -1 ) when compared to positive control. These data suggest that the disposition of epoxide group into the p-menthane skeleton affects the anti-Leishmania activity, being that the presence of the exocyclic epoxide group considerably increased potency. Thus, it was possible to observe that the location of the epoxide group into the p-menthane skeleton resulted in different potencies.

  7. Cytotoxic glucosphingolipid from Celtis Africana.

    Science.gov (United States)

    Perveen, Shagufta; Al-Taweel, Areej Mohammad; Fawzy, Ghada Ahmed; El-Shafae, Azza Muhammed; Khan, Afsar; Proksch, Peter

    2015-05-01

    Literature survey proved the use of the powdered sun-dried bark and roots of Celtis africana for the treatment of cancer in South Africa. The aim of this study was to do further isolation work on the ethyl acetate fraction and to investigate the cytotoxic activities of the various fractions and isolated compound. Cytotoxicity of petroleum ether, chloroform, ethyl acetate, n-butanol fractions and compound 1 were tested on mouse lymphoma cell line L5178Y using the microculture tetrazolium assay. One new glucosphingolipid 1 was isolated from the aerial parts of C. africana. The structure of the new compound was determined by extensive analysis by one-dimensional and two-dimensional nuclear magnetic resonance spectroscopy and mass spectrometry. The ethyl acetate fraction and compound 1 showed strong cytotoxic activity with an EC50 value of 8.3 μg/mL and 7.8 μg/mL, respectively, compared with Kahalalide F positive control (6.3 μg/mL). This is the first report of the occurrence of a cytotoxic glucosphingolipid in family Ulmaceae.

  8. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    International Nuclear Information System (INIS)

    Lin, Ming-Chung; Chen, Chia-Ling; Yang, Tsan-Tzu; Choi, Pui-Ching; Hsing, Chung-Hsi; Lin, Chiou-Feng

    2012-01-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  9. Anesthetic propofol overdose causes endothelial cytotoxicity in vitro and endothelial barrier dysfunction in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Ming-Chung [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Anesthesiology, Chi Mei Medical Center, Liouying, Tainan, Taiwan (China); Chen, Chia-Ling [Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Yang, Tsan-Tzu; Choi, Pui-Ching [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Hsing, Chung-Hsi [Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan (China); Department of Anesthesiology, College of Medicine, Taipei Medical University, Taipei, Taiwan (China); Lin, Chiou-Feng, E-mail: cflin@mail.ncku.edu.tw [Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China); Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan (China)

    2012-12-01

    An overdose and a prolonged treatment of propofol may cause cellular cytotoxicity in multiple organs and tissues such as brain, heart, kidney, skeletal muscle, and immune cells; however, the underlying mechanism remains undocumented, particularly in vascular endothelial cells. Our previous studies showed that the activation of glycogen synthase kinase (GSK)-3 is pro-apoptotic in phagocytes during overdose of propofol treatment. Regarding the intravascular administration of propofol, we therefore hypothesized that propofol overdose also induces endothelial cytotoxicity via GSK-3. Propofol overdose (100 μg/ml) inhibited growth in human arterial and microvascular endothelial cells. After treatment, most of the endothelial cells experienced caspase-independent necrosis-like cell death. The activation of cathepsin D following lysosomal membrane permeabilization (LMP) determined necrosis-like cell death. Furthermore, propofol overdose also induced caspase-dependent apoptosis, at least in part. Caspase-3 was activated and acted downstream of mitochondrial transmembrane potential (MTP) loss; however, lysosomal cathepsins were not required for endothelial cell apoptosis. Notably, activation of GSK-3 was essential for propofol overdose-induced mitochondrial damage and apoptosis, but not necrosis-like cell death. Intraperitoneal administration of a propofol overdose in BALB/c mice caused an increase in peritoneal vascular permeability. These results demonstrate the cytotoxic effects of propofol overdose, including cathepsin D-regulated necrosis-like cell death and GSK-3-regulated mitochondrial apoptosis, on endothelial cells in vitro and the endothelial barrier dysfunction by propofol in vivo. Highlights: ► Propofol overdose causes apoptosis and necrosis in endothelial cells. ► Propofol overdose triggers lysosomal dysfunction independent of autophagy. ► Glycogen synthase kinase-3 facilitates propofol overdose-induced apoptosis. ► Propofol overdose causes an increase

  10. Synthesis, antibacterial and cytotoxic activities of new biflorin-based hydrazones and oximes.

    Science.gov (United States)

    da S Souza, Luciana G; Almeida, Macia C S; Lemos, Telma L G; Ribeiro, Paulo R V; de Brito, Edy S; Silva, Vera L M; Silva, Artur M S; Braz-Filho, Raimundo; Costa, José G M; Rodrigues, Fábio F G; Barreto, Francisco S; de Moraes, Manoel O

    2016-01-15

    Biflorin 1 is a biologically active quinone, isolated from Capraria biflora. Five new biflorin-based nitrogen derivatives were synthesized, of which two were mixtures of (E)- and (Z)- isomers: (Z)-2a, (Z)-2b, (Z)-3a, (Z)- and (E)-3b, (Z)- and (E)-3c. The antibacterial activity was investigated using the microdilution method for determining the minimum inhibitory concentration (MIC) against six bacterial strains. Tests have shown that these derivatives have potential against all bacterial strains. The cytotoxic activity was also evaluated against three strains of cancer cells, but none of the derivatives showed activity. Copyright © 2015. Published by Elsevier Ltd.

  11. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    Science.gov (United States)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Miller, Vandana; Fridman, Alexander; Choi, Eun Ha

    2016-03-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future.

  12. Cytotoxic macrophage-released tumour necrosis factor-alpha (TNF-α) as a killing mechanism for cancer cell death after cold plasma activation

    International Nuclear Information System (INIS)

    Kaushik, Nagendra Kumar; Kaushik, Neha; Min, Booki; Choi, Ki Hong; Hong, Young June; Choi, Eun Ha; Miller, Vandana; Fridman, Alexander

    2016-01-01

    The present study aims at studying the anticancer role of cold plasma-activated immune cells. The direct anti-cancer activity of plasma-activated immune cells against human solid cancers has not been described so far. Hence, we assessed the effect of plasma-treated RAW264.7 macrophages on cancer cell growth after co-culture. In particular, flow cytometer analysis revealed that plasma did not induce any cell death in RAW264.7 macrophages. Interestingly, immunofluorescence and western blot analysis confirmed that TNF-α released from plasma-activated macrophages acts as a tumour cell death inducer. In support of these findings, activated macrophages down-regulated the cell growth in solid cancer cell lines and induced cell death in vitro. Together our findings suggest plasma-induced reactive species recruit cytotoxic macrophages to release TNF-α, which blocks cancer cell growth and can have the potential to contribute to reducing tumour growth in vivo in the near future. (paper)

  13. Phytochemical screening, antiproliferative and cytotoxic activities of the mosses Rhytidiadelphus triquetrus (Hedw. Warnst. and Tortella tortuosa (Hedw. Limpr.

    Directory of Open Access Journals (Sweden)

    Muhammet Şamil Yağlıoğlu

    2017-06-01

    Full Text Available The paper presents information about the phytochemical analysis, antiproliferative and cytotoxic activities of Rhytidiadelphus triquetrus and Tortella tortuosa extracts. The cytotoxic activities of some extracts shows highest antiproliferative activities were detected with Lactate Dehydrogenase Leakage Assay. Sixteen components obtained from hexane extracts were determined by GC/MS. Palmitic acid was identified as the main component. The phenolic components of the other extracts were determined by HPLC-TOF/MS. 4-hydroxy benzoic acid, salicylic acid, gallic acid, caffeic acid, and gensitic acid were detected as the main components in all extracts. The hexane, chloroform, ethyl acetate extracts of studied mosses and the EtOAc and hexane extracts of R. triquetrus showed statistically significant antiproliferative activities.

  14. Evaluation of morning glory (Jacquemontia tamnifolia (L.) Griseb) leaves for antioxidant, antinociceptive, anticoagulant and cytotoxic activities.

    Science.gov (United States)

    Hossain, Mohammad Shahadat; Reza, A S M Ali; Rahaman, Md Masudur; Nasrin, Mst Samima; Rahat, Mohammed Rasib Uddin; Islam, Md Rabiul; Uddin, Md Josim; Rahman, Md Atiar

    2018-01-05

    The present study was planned to investigate the phytochemical, antioxidant, antinociceptive, anticoagulant and cytotoxic activities of the Jacquemontia tamnifolia (L.) Griseb leaf methanol extract (MExJT) in the laboratory using both in vitro and in vivo methods. Phytochemical values, namely, total phenolic and flavonoid contents, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging effect and FeCl3 reducing power effects, were studied by established methods. In vivo antinociceptive activity was performed by acidic acid-induced writhing test and formalin-induced pain test on Swiss albino mice at doses of 125, 250 and 500 mg/kg body weight. The clot lysis and brine shrimp lethality bioassay in vitro were used to evaluate the thrombolytic and cytotoxic activities of the plant extract, respectively. Phytochemical screening illustrates the presence of tannins, saponins, flavonoids, gums and carbohydrates, steroids, alkaloids and reducing sugars in the extract. The results showed the total phenolic content (146.33 g gallic acid equivalents/100 g extract) and total flavonoid content (133.33 g quercetin/100 g). Significant (pacetic acid-induced writhing test and formalin-induced pain models in Swiss albino mice with doses of 125, 250 and 500 mg/kg body weight. Significant (panalgesic activity. The results also demonstrate that MExJT has moderate thrombolytic and lower cytotoxic properties that may warrant further exploration.

  15. The antioxidant and cytotoxic activities of Sonchus oleraceus L. extracts.

    Science.gov (United States)

    Yin, Jie; Kwon, Gu-Joong; Wang, Myeong-Hyeon

    2007-01-01

    This study investigated in vitro antioxidant activity of Sonchus oleraceus L. by extraction solvent, which were examined by reducing power, hydroxyl radical-scavenging activity(HRSA) and 1, 1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging assays. 70% MeOH extract had the greatest reducing power while EtOH extract had the greatest HRSA. The antioxidant activity of S. oleraceus extracts was concentration dependent and its IC(50) values ranged from 47.1 to 210.5 microg/ml and IC(50) of 70% MeOH, boiling water and 70% EtOH extracts were 47.1, 52.7 and 56.5 microg/ml, respectively. 70% MeOH extract of S. oleraceus contained the greatest amount of both phenolic and flavonoid contents. The extracts tested had greater nitrite scavenging effects at lower pH conditions. The cytotoxic activity showed that EtOH extract had the best activity against the growth of stomach cancer cell. These results suggest that S. oleraceus extract could be used as a potential source of natural antioxidants.

  16. Neem leaf glycoprotein prevents post-surgical sarcoma recurrence in Swiss mice by differentially regulating cytotoxic T and myeloid-derived suppressor cells.

    Directory of Open Access Journals (Sweden)

    Madhurima Sarkar

    Full Text Available Post-surgical tumor recurrence is a common problem in cancer treatment. In the present study, the role of neem leaf glycoprotein (NLGP, a novel immunomodulator, in prevention of post-surgical recurrence of solid sarcoma was examined. Data suggest that NLGP prevents tumor recurrence after surgical removal of sarcoma in Swiss mice and increases their tumor-free survival time. In NLGP-treated tumor-free mice, increased cytotoxic CD8+ T cells and a decreased population of suppressor cells, especially myeloid-derived suppressor cells (MDSCs was observed. NLGP-treated CD8+ T cells showed greater cytotoxicity towards tumor-derived MDSCs and supernatants from the same CD8+ T cell culture caused upregulation of FasR and downregulation of cFLIP in MDSCs. To elucidate the role of CD8+ T cells, specifically in association with the downregulation in MDSCs, CD8+ T cells were depleted in vivo before NLGP immunization in surgically tumor removed mice and tumor recurrence was noted. These mice also exhibited increased MDSCs along with decreased levels of Caspase 3, Caspase 8 and increased cFLIP expression. In conclusion, it can be stated that NLGP, by activating CD8+ T cells, down regulates the proportion of MDSCs. Accordingly, suppressive effects of MDSCs on CD8+ T cells are minimized and optimum immune surveillance in tumor hosts is maintained to eliminate the residual tumor mass appearing during recurrence.

  17. Cytotoxic and Antimigratory Activities of Phenolic Compounds from Dendrobium brymerianum

    Directory of Open Access Journals (Sweden)

    Pornprom Klongkumnuankarn

    2015-01-01

    Full Text Available Chromatographic separation of a methanol extract prepared from the whole plant of Dendrobium brymerianum led to the isolation of eight phenolic compounds. Among the isolated compounds (1–8, moscatilin (1, gigantol (3, lusianthridin (4, and dendroflorin (6 showed appreciable cytotoxicity against human lung cancer cell lines with IC50 values of 196.7, 23.4, 65.0, and 125.8 μg/mL, respectively, and exhibited antimigratory property at nontoxic concentrations. This study is the first report on the biological activities of this plant.

  18. Phytoconstituents with Radical Scavenging and Cytotoxic Activities from Diospyros shimbaensis

    Directory of Open Access Journals (Sweden)

    Per Aronsson

    2016-01-01

    Full Text Available As part of our search for natural products having antioxidant and anticancer properties, the phytochemical investigation of Diospyros shimbaensis (Ebenaceae, a plant belonging to a genus widely used in East African traditional medicine, was carried out. From its stem and root barks the new naphthoquinone 8,8′-oxo-biplumbagin (1 was isolated along with the known tetralones trans-isoshinanolone (2 and cis-isoshinanolone (3, and the naphthoquinones plumbagin (4 and 3,3′-biplumbagin (5. Compounds 2, 4, and 5 showed cytotoxicity (IC50 520–82.1 μM against MDA-MB-231 breast cancer cells. Moderate to low cytotoxicity was observed for the hexane, dichloromethane, and methanol extracts of the root bark (IC50 16.1, 29.7 and > 100 μg/mL, respectively, and for the methanol extract of the stem bark (IC50 59.6 μg/mL. The radical scavenging activity of the isolated constituents (1–5 was evaluated on the 2,2-diphenyl-1-picrylhydrazyl (DPPH radical scavenging assay. The applicability of the crude extracts and of the isolated constituents for controlling degenerative diseases is discussed.

  19. Antioxidant, cytotoxic and alpha-glucosidase inhibition activities from the Mexican berry "Anacahuita" (Cordia boissieri).

    Science.gov (United States)

    Viveros-Valdez, Ezequiel; Jaramillo-Mora, Carlos; Oranday-Cardenas, Azucena; Mordn-Martinez, Javier; Carranza-Rosales, Pilar

    2016-09-01

    This study describes the total phenolic and flavonoid content as well as cytotoxic, alpha-glucosidase inhibition and antiradical/antioxidant potential of extracts obtained from the edible fruits of Cordia boissieri, which is widely distributed throughout northeastern Mexico. Phenolic and flavonoid content were evaluated by means of the Folin-Ciocalteu method and aluminum chloride colorimetric assay respectively. The antiradical/antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging and Trolox Equivalent Antioxidant Capacity (TEAC) assays. Cytotoxic activity was assessed by means of human cancer cell lines (MCF-7 and HeLa), alpha-glucosidase inhibition was determined by colorimetric assay using p-Nitrophenyl a-D-glucopyranoside (PNPG) as a substrate. Results indicate that extract of C. boissieri fruit has a good antioxidant potential to show a EC₅₀: 137.76 ± 35 ptg/mL and 65 ±2 ltM/g in the DPPH and TEAC assays respectively, inhibitor of the enzyme alpha-glu- cosidase involved in sugar uptake (ICSO: 215.20 ± 35 μg/ mL), cytotoxic activities against MCF-7 (IC50: 310 ± 42 μg/mL) and HeLa (IC₅₀0: 450.4 ±21μgg/mL) cancer cell lines as well as an important phenolic content with 230 t 23 mg/1OOg and 54±11 mg100g g of phenols and flavonoids totals respectively. These results point towards an interesting potential for the fruits of C. boissieri as chemopreventive properties and expand the possibilities.

  20. New Benzimidazole-1,2,4-Triazole Hybrid Compounds: Synthesis, Anticandidal Activity and Cytotoxicity Evaluation

    Directory of Open Access Journals (Sweden)

    Hülya Karaca Gençer

    2017-03-01

    Full Text Available Owing to the growing need for antifungal agents, we synthesized a new series 2-((5-(4-(5-substituted-1H-benzimidazol-2-ylphenyl-4-substituted-4H-1,2,4-triazol-3-ylthio-1-(substitutedphenylethan-1-one derivatives, which were tested against Candida species. The synthesized compounds were characterized and elucidated by FT-IR, 1H-NMR, 13C-NMR and HR-MS spectroscopies. The synthesized compounds were screened in vitro anticandidal activity against Candida species by broth microdiluation methods. In vitro cytotoxic effects of the final compounds were determined by MTT assay. Microbiological studies revealed that compounds 5m, 5o, 5r, 5t, 5y, 5ab, and 5ad possess a good antifungal profile. Compounds 5w was the most active derivative and showed comparable antifungal activity to those of reference drugs ketoconazole and fluconazole. Cytotoxicity evaluation of compounds 5m, 5o, 5r, 5w, 5y, 5ab and 5ad showed that compounds 5w and 5ad were the least cytotoxic agents. Effects of these two compounds against ergosterol biosynthesis were observed by LC-MS-MS method, which is based on quantification of ergosterol level in C. albicans. Compounds 5w and 5d inhibited ergosterol biosynthesis concentration dependently. A fluorescence microscopy study was performed to visualize effect of compound 5w against C. albicans at cellular level. It was determined that compound 5w has a membrane damaging effect, which may be related with inhibition of biosynthesis of ergosterol.

  1. Alpha- and Beta-Cyclodextrin Inclusion Complexes with 5-Fluorouracil: Characterization and Cytotoxic Activity Evaluation

    Directory of Open Access Journals (Sweden)

    Cristina Di Donato

    2016-12-01

    Full Text Available Cyclodextrins are natural macrocyclic oligosaccharides able to form inclusion complexes with a wide variety of guests, affecting their physicochemical and pharmaceutical properties. In order to obtain an improvement of the bioavailability and solubility of 5-fluorouracil, a pyrimidine analogue used as chemotherapeutic agent in the treatment of the colon, liver, and stomac cancers, the drug was complexed with alpha- and beta-cyclodextrin. The inclusion complexes were prepared in the solid state by kneading method and characterized by Fourier transform-infrared (FT-IR spectroscopy and X-ray powder diffractometry. In solution, the 1:1 stoichiometry for all the inclusion complexes was established by the Job plot method and the binding constants were determined at different pHs by UV-VIS titration. Furthermore, the cytotoxic activity of 5-fluorouracil and its complexation products were evaluated using the 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay on MCF-7 (breast cancer cell line, Hep G2 (hepatocyte carcinoma cell line, Caco-2 (colon adenocarcinoma cell line, and A-549 (alveolar basal epithelial carcinoma cell line. The results showed that both inclusion complexes increased the 5-fluorouracil capability of inhibiting cell growth. In particular, 5-fluorouracil complexed with beta-cyclodextrin had the highest cytotoxic activity on MCF-7; with alpha-cyclodextrin the highest cytotoxic activity was observed on A-549. The IC50 values were equal to 31 and 73 µM at 72 h, respectively. Our results underline the possibility of using these inclusion complexes in pharmaceutical formulations for improving 5-fluorouracil therapeutic efficacy.

  2. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles

    OpenAIRE

    Yana I. Pylina; Dmitry M. Shadrin; Oksana G. Shevchenko; Olga M. Startseva; Igor O. Velegzhaninov; Dmitry V. Belykh; Ilya O. Velegzhaninov

    2017-01-01

    In the present work, we investigated the dark and photoinduced cytotoxic activity of the new chlorophyll-a derivatives which contain the substituents of oligoethylene glycol on the periphery of their macrocycles. These compounds were tested using human cell lines to estimate their potential as photosensitizers for photodynamic therapy of cancer. It was shown that all the tested compounds have expressed photoinduced cytotoxic activity in vitro. Detailed study of the biological activity of one ...

  3. Cytotoxic activity of Thai medicinal plants against human cholangiocarcinoma, laryngeal and hepatocarcinoma cells in vitro

    Directory of Open Access Journals (Sweden)

    Itharat Arunporn

    2010-09-01

    Full Text Available Abstract Background Cholangiocarcinoma is a serious public health in Thailand with increasing incidence and mortality rates. The present study aimed to investigate cytotoxic activities of crude ethanol extracts of a total of 28 plants and 5 recipes used in Thai folklore medicine against human cholangiocarcinoma (CL-6, human laryngeal (Hep-2, and human hepatocarcinoma (HepG2 cell lines in vitro. Methods Cytotoxic activity of the plant extracts against the cancerous cell lines compared with normal cell line (renal epithelial cell: HRE were assessed using MTT assay. 5-fluorouracil was used as a positive control. The IC50 (concentration that inhibits cell growth by 50% and the selectivity index (SI were calculated. Results The extracts from seven plant species (Atractylodes lancea, Kaempferia galangal, Zingiber officinal, Piper chaba, Mesua ferrea, Ligusticum sinense, Mimusops elengi and one folklore recipe (Pra-Sa-Prao-Yhai exhibited promising activity against the cholangiocarcinoma CL-6 cell line with survival of less than 50% at the concentration of 50 μg/ml. Among these, the extracts from the five plants and one recipe (Atractylodes lancea, Kaempferia galangal, Zingiber officinal, Piper chaba, Mesua ferrea, and Pra-Sa-Prao-Yhai recipe showed potent cytotoxic activity with mean IC50 values of 24.09, 37.36, 34.26, 40.74, 48.23 and 44.12 μg/ml, respectively. All possessed high activity against Hep-2 cell with mean IC50 ranging from 18.93 to 32.40 μg/ml. In contrast, activity against the hepatoma cell HepG2 varied markedly; mean IC50 ranged from 9.67 to 115.47 μg/ml. The only promising extract was from Zingiber officinal (IC50 = 9.67 μg/ml. The sensitivity of all the four cells to 5-FU also varied according to cell types, particularly with CL-6 cell (IC50 = 757 micromolar. The extract from Atractylodes lancea appears to be both the most potent and most selective against cholangiocarcinoma (IC50 = 24.09 μg/ml, SI = 8.6. Conclusions The

  4. Antimicrobial activity and cytotoxicity of triterpenes isolated from leaves of Maytenus undata (Celastraceae).

    Science.gov (United States)

    Mokoka, Tsholofelo Abednego; McGaw, Lyndy Joy; Mdee, Ladislaus Kakore; Bagla, Victor Patrick; Iwalewa, Ezekiel Olugbenga; Eloff, Jacobus Nicolaas

    2013-05-20

    Plants of the genus Maytenus belong to the family Celastraceae and are widely used in folk medicine as anti-tumour, anti-asthmatic, analgesic, anti-inflammatory, antimicrobial and anti-ulcer agents, and as a treatment for stomach problems. The aim of this study was to isolate and identify active compounds with antifungal activity from Maytenus undata after a preliminary study highlighted promising activity in crude extracts. Sequential extracts of M. undata leaves prepared using hexane, dichloromethane (DCM), acetone and methanol (MeOH) were tested for activity against Cryptococcus neoformans, a fungal organism implicated in opportunistic infections. Bioassay-guided fractionation of the hexane extract using C. neoformans as test organism was carried out to isolate antifungal compounds. The cytotoxicity of compounds isolated in sufficient quantities was evaluated using a tetrazolium-based colorimetric cellular assay (MTT) and a haemagglutination assay (HA). The hexane extract was most active with an MIC of 20 μg/ml against C. neoformans. The triterpene compounds friedelin (1), epifriedelanol (2), taraxerol (3), 3-oxo-11α-methoxyolean-12-ene-30-oic acid (4), 3-oxo-11α-hydroxyolean-12-ene-30-oic acid (5) and 3,11-dihydroxyolean-12-ene-30-oic acid (6) were isolated. Compound 6 was isolated for the first time from a plant species. The antimicrobial activity of compounds 1, 3, 5 and 6 was determined against a range of bacteria and fungi implicated in opportunistic and nosocomial infections. Compounds 5 and 6 were the most active against all the tested microorganisms with MIC values ranging between 24 and 63 μg/ml, except against Staphylococcus aureus which was relatively resistant. Compounds 1 and 3 had a low toxicity with an LC50 > 200 μg/ml towards Vero cells in the MTT assay. Compounds 5 and 6 were toxic with LC50 values of 6.03±0.02 and 2.98±0.01 μg/ml, respectively. Compounds 1 and 3 similarly were not toxic to the red blood cells (RBCs) but compounds 5 and

  5. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves.

    Science.gov (United States)

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, Sm Anisul; Mia, Akbar Ali

    2013-05-12

    Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion method against four gram-positive and five gram-negative bacteria at 300, 500 and 800 μg/disc. Kanamycin (30 μg/disc) was used as the standard drug. Antidiarrhoeal activities of leaf extracts were evaluated at two doses (200 and 400 mg/kg) and compared with loperamide in a castor oil-induced diarrhoeal model in rat. The fractions were subjected to a brine shrimp lethality test to evaluate their cytotoxicity. The methanol extract and other three fractions exhibited better activities at higher concentrations. Amongst, the chloroform fraction showed maximum activity at all three concentrations (300, 500, and 800 μg/disc) against almost all bacteria. S. aureus and P. aeruginosa showed better sensitivities to all extracts at all three concentrations excluding the pet. ether fraction. Bacillus megaterium and Klebsiella spp. were two bacteria amongst nine that showed lowest sensitivity to the extracts. Maximum zone of inhibition (25-mm) was obtained by the methanol extract at an 800 μg/disc concentration against S. aureus. In the antidiarrhoeal test, all fractions exhibited dose-dependent actions, which were statistically significant (p extract and its three fractions compared with the standard drug vincristine sulfate in the brine shrimp bioassay. In the present study, the LC50 values of the methanol crude extract and ethyl acetate, chloroform, pet. ether fractions and vincristine sulfate were 223.87, 281.84, 112.2, 199.53, and 12.59 μg/mL, respectively. Therefore, the ethyl acetate fraction

  6. Influence of zinc oxide quantum dots in the antibacterial activity and cytotoxicity of an experimental adhesive resin.

    Science.gov (United States)

    Garcia, Isadora Martini; Leitune, Vicente Castelo Branco; Visioli, Fernanda; Samuel, Susana Maria Werner; Collares, Fabrício Mezzomo

    2018-06-01

    To evaluate the influence of zinc oxide quantum dots (ZnO QDs ) into an experimental adhesive resin regarding the antibacterial activity against Streptococcus mutans and the cytotoxicity against pulp fibroblasts. ZnO QDs were synthesized by sol-gel process and were incorporated into 2-hydroxyethyl methacrylate (HEMA). An experimental adhesive resin was formulated by mixing 66.6 wt.% bisphenol A glycol dimethacrylate (BisGMA) and 33.3 wt.% HEMA with a photoinitiator system as control group. HEMA containing ZnO QDs was used for test group formulation. For the antibacterial activity assay, a direct contact inhibition evaluation was performed with biofilm of Streptococcus mutans (NCTC 10449). The cytotoxicity assay was performed by Sulforhodamine B (SRB) colorimetric assay for cell density determination using pulp fibroblasts. Data were analyzed by Student's t-test (α = 0.05). The antibacterial activity assay indicated statistically significant difference between the groups (p = 0.003), with higher values of biofilm formation on the polymerized samples of control group and a reduction of more than 50% of biofilm formation on ZnO QDs group. No difference of pulp fibroblasts viability was found between the adhesives (p = 0.482). ZnO QDs provided antibacterial activity when doped into an experimental adhesive resin without cytotoxic effect for pulp fibroblasts. Thus, the use of ZnO QDs is a strategy to develop antibiofilm restorative polymers with non-agglomerated nanofillers. ZnO QDs are non-agglomerated nanoscale fillers for dental resins and may be a strategy to reduce biofilm formation at dentin/restoration interface with no cytotoxicity for pulp fibroblasts. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    International Nuclear Information System (INIS)

    Ristic, Biljana; Bosnjak, Mihajlo; Arsikin, Katarina; Mircic, Aleksandar; Suzin-Zivkovic, Violeta; Bogdanovic, Andrija; Perovic, Vladimir; Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2014-01-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  8. Idarubicin induces mTOR-dependent cytotoxic autophagy in leukemic cells

    Energy Technology Data Exchange (ETDEWEB)

    Ristic, Biljana [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Bosnjak, Mihajlo [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Arsikin, Katarina [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Mircic, Aleksandar; Suzin-Zivkovic, Violeta [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Bogdanovic, Andrija [Clinic for Hematology, Clinical Centre of Serbia, School of Medicine, University of Belgrade, Belgrade (Serbia); Perovic, Vladimir [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Martinovic, Tamara; Kravic-Stevovic, Tamara; Bumbasirevic, Vladimir [Institute of Histology and Embryology, School of Medicine, University of Belgrade, Belgrade (Serbia); Trajkovic, Vladimir, E-mail: vtrajkovic@med.bg.ac.rs [Institute of Microbiology and Immunology, School of Medicine, University of Belgrade, Dr. Subotica 1, 11000 Belgrade (Serbia); Harhaji-Trajkovic, Ljubica, E-mail: buajk@yahoo.com [Institute for Biological Research, University of Belgrade, Belgrade, Despot Stefan Blvd. 142, 11000 Belgrade (Serbia)

    2014-08-01

    We investigated if the antileukemic drug idarubicin induces autophagy, a process of programmed cellular self-digestion, in leukemic cell lines and primary leukemic cells. Transmission electron microscopy and acridine orange staining demonstrated the presence of autophagic vesicles and intracellular acidification, respectively, in idarubicin-treated REH leukemic cell line. Idarubicin increased punctuation/aggregation of microtubule-associated light chain 3B (LC3B), enhanced the conversion of LC3B-I to autophagosome-associated LC3B-II in the presence of proteolysis inhibitors, and promoted the degradation of the selective autophagic target p62, thus indicating the increase in autophagic flux. Idarubicin inhibited the phosphorylation of the main autophagy repressor mammalian target of rapamycin (mTOR) and its downstream target p70S6 kinase. The treatment with the mTOR activator leucine prevented idarubicin-mediated autophagy induction. Idarubicin-induced mTOR repression was associated with the activation of the mTOR inhibitor AMP-activated protein kinase and down-regulation of the mTOR activator Akt. The suppression of autophagy by pharmacological inhibitors or LC3B and beclin-1 genetic knockdown rescued REH cells from idarubicin-mediated oxidative stress, mitochondrial depolarization, caspase activation and apoptotic DNA fragmentation. Idarubicin also caused mTOR inhibition and cytotoxic autophagy in K562 leukemic cell line and leukocytes from chronic myeloid leukemia patients, but not healthy controls. By demonstrating mTOR-dependent cytotoxic autophagy in idarubicin-treated leukemic cells, our results warrant caution when considering combining idarubicin with autophagy inhibitors in leukemia therapy. - Highlights: • Idarubicin induces autophagy in leukemic cell lines and primary leukemic cells. • Idarubicin induces autophagy by inhibiting mTOR in leukemic cells. • mTOR suppression by idarubicin is associated with AMPK activation and Akt blockade.

  9. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-28

    Nov 28, 2011 ... and the nitroblue tetrazolium (NBT) assay. The cytotoxicity ... The antioxidant activity and cytotoxic effect of the extracts increased with increase ... supplements are concoctions of plants and/or plant .... In vitro antioxidant assay.

  10. Nrf2 activation ameliorates cytotoxic effects of arsenic trioxide in acute promyelocytic leukemia cells through increased glutathione levels and arsenic efflux from cells

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, Shoichi; Suzuki, Toshihiro; Koike, Shin [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan); Yuan, Bo; Takagi, Norio [Department of Applied Biochemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392 (Japan); Ogasawara, Yuki, E-mail: yo@my-pharm.ac.jp [Department of Analytical Biochemistry, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588 (Japan)

    2016-08-15

    Carnosic acid (CA), a phenolic diterpene isolated from Rosmarinus officinalis, has been shown to activate nuclear transcription factor E2-related factor 2 (Nrf2), which plays a central role in cytoprotective responses to oxidative and electrophilic stress. Recently, the Nrf2-Kelch ECH associating protein 1 (Keap1) pathway has been associated with cancer drug resistance attributable to modulation of the expression and activation of antioxidant and detoxification enzymes. However, the exact mechanisms by which Nrf2 activation results in chemoresistance are insufficiently understood to date. This study investigated the mechanisms by which the cytotoxic effects of arsenic trioxide (ATO), an anticancer drug, were decreased in acute promyelocytic leukemia cells treated with CA, a typical activator of Nrf2 used to stimulate the Nrf2/Keap1 system. Our findings suggest that arsenic is non-enzymatically incorporated into NB4 cells and forms complexes that are dependent on intracellular glutathione (GSH) concentrations. In addition, the arsenic complexes are recognized as substrates by multidrug resistance proteins and subsequently excreted from the cells. Therefore, Nrf2-associated activation of the GSH biosynthetic pathway, followed by increased levels of intracellular GSH, are key mechanisms underlying accelerated arsenic efflux and attenuation of the cytotoxic effects of ATO. - Highlights: • Nrf2 activation attenuates the effect of arsenic trioxide to acute promyelocytic leukemia cells. • The sensitivity of arsenic trioxide to NB4 cells was dependent on efflux rate of arsenic. • Activation of the GSH biosynthesis is essential in Nrf2-regulated responses for arsenic efflux.

  11. Synthesis of novel kavain-like derivatives and evaluation of their cytotoxic activity

    Energy Technology Data Exchange (ETDEWEB)

    Amaral, Patricia de A.; Agustini, Taciane; Eifler-Lima, Vera L. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre (Brazil). Faculdade de Farmacia. Lab. de Sintese Organica Medicinal; Petrignet, Julien; Cariou, Alexandre; Gree, Rene [Universite de Rennes 1, Rennes (France). Lab. de Chimie Therapeutique; Gouault, Nicolas; Lohezic-Ledevehat, Francoise; David, Michele [CNRS UMR, Universite de Rennes 1, Rennes (France). Lab. de Chimie et Photonique Moleculaires

    2009-07-01

    Palladium-catalyzed cross coupling reactions (Sonogashira-Hagihara, Suzuki-Miyaura, and Heck) coupling and nickel hydride-mediated tandem isomerization aldolisation have been used for the synthesis of three series of {delta}-valerolactones substituted in positions 3, 4, 5 and 6 of the lactone ring. The 26 kavaien-like derivatives were tested against three cell lines and five of them exhibited a weak cytotoxic activity. (author)

  12. Antiglycopeptide Mouse Monoclonal Antibody LpMab-21 Exerts Antitumor Activity Against Human Podoplanin Through Antibody-Dependent Cellular Cytotoxicity and Complement-Dependent Cytotoxicity.

    Science.gov (United States)

    Kato, Yukinari; Kunita, Akiko; Fukayama, Masashi; Abe, Shinji; Nishioka, Yasuhiko; Uchida, Hiroaki; Tahara, Hideaki; Yamada, Shinji; Yanaka, Miyuki; Nakamura, Takuro; Saidoh, Noriko; Yoshida, Kanae; Fujii, Yuki; Honma, Ryusuke; Takagi, Michiaki; Ogasawara, Satoshi; Murata, Takeshi; Kaneko, Mika K

    2017-02-01

    The interaction between podoplanin (PDPN) and C-type lectin-like receptor 2 (CLEC-2) is involved in tumor malignancy. We have established many monoclonal antibodies (mAbs) against human podoplanin using the cancer-specific mAb (CasMab) technology. LpMab-21, one of the mouse antipodoplanin mAbs, is of the IgG 2a subclass, and its minimum epitope was determined to be Thr76-Arg79 of the human podoplanin. Importantly, sialic acid is linked to Thr76; therefore, LpMab-21 is an antiglycopeptide mAb (GpMab). In this study, we investigated whether LpMab-21 shows antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) against human podoplanin-expressing cancer cell lines in vitro and also studied its antitumor activities using a xenograft model. LpMab-21 showed high ADCC and CDC activities against not only podoplanin-expressing Chinese hamster ovary cells but also LN319 glioblastoma cells and PC-10 lung cancer cells, both of which endogenously express podoplanin. Furthermore, LpMab-21 decreased tumor growth in vivo, indicating that LpMab-21 could be useful for antibody therapy against human podoplanin-expressing cancers.

  13. Cytotoxic and apoptosis-inducing activity of C21 steroids from the roots of Cynanchum atratum.

    Science.gov (United States)

    Zhang, Jian; Ma, Lin; Wu, Zheng-Feng; Yu, Shu-Le; Wang, Lei; Ye, Wen-Cai; Zhang, Qing-Wen; Yin, Zhi-Qi

    2017-06-01

    Two new (1-2) and two known C 21 steroids (3-4) were isolated from the roots of Cynanchum atratum. Their structures were elucidated by detailed 1D and 2D spectroscopic. The MTT assay showed that compounds 1-4 displayed obvious cytotoxic activities against HepG2 cells with IC 50 values ranging from 10.19μM to 76.12μM. Compounds 1-3 also exhibited cytotoxic effects in A549 cells with IC 50 values of 30.87-95.39μM. Compound 3 showed the antiproliferative activity via G0/G1 cell cycle arrest and proapoptosis in HepG2 cells by Flowcytometry analysis. Western blotting analysis revealed that compound 3 could induce HepG2 cell apoptosis via the mitochondrial pathway by downregulating Bcl-2 expression, upregulating Bax protein expression, and activating caspase-9 and caspase-3. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Cytotoxicity and antiviral activities of Asplenium nidus, Phaleria macrocarpa and Eleusine indica

    Science.gov (United States)

    Tahir, Mariya Mohd; Ibrahim, Nazlina; Yaacob, Wan Ahmad

    2014-09-01

    Three local medicinal plants namely Asplenium nidus (langsuyar), Eleusine indica (sambau) and Phaleria macrocarpa (mahkota dewa) were screened for the cytotoxicity and antiviral activities. Six plant extracts were prepared including the aqueous and methanol extracts from A. nidus leaf and root, aqueous extract from dried whole plant of E. indica and methanol extract from P. macrocarpa fruits. Cytotoxicity screening in Vero cell line by MTT assay showed that the CC50 values ranged from 15 to 60 mg/mL thus indicating the safety of the extracts even at high concentrations. Antiviral properties of the plant extracts were determined by plaque reduction assay. The EC50 concentrations were between 3.2 to 47 mg/mL. The selectivity indices (SI = CC50/EC50) of each tested extracts ranged from 4.3 to 63.25 indicating the usefulness of the extracts as potential antiviral agents.

  15. Dillapiole as antileishmanial agent: discovery, cytotoxic activity and preliminary SAR studies of dillapiole analogues.

    Science.gov (United States)

    Parise-Filho, Roberto; Pasqualoto, Kerly Fernanda Mesquita; Magri, Fátima Maria Motter; Ferreira, Adilson Kleber; da Silva, Bárbara Athayde Vaz Galvão; Damião, Mariana Celestina Frojuello Costa Bernstorff; Tavares, Maurício Temotheo; Azevedo, Ricardo Alexandre; Auada, Aline Vivian Vatti; Polli, Michelle Carneiro; Brandt, Carlos Alberto

    2012-12-01

    In this paper, the isolation of dillapiole (1) from Piper aduncum was reported as well as the semi-synthesis of two phenylpropanoid derivatives [di-hydrodillapiole (2), isodillapiole (3)], via reduction and isomerization reactions. Also, the compounds' molecular properties (structural, electronic, hydrophobic, and steric) were calculated and investigated to establish some preliminary structure-activity relationships (SAR). Compounds were evaluated for in vitro antileishmanial activity and cytotoxic effects on fibroblast cells. Compound 1 presented inhibitory activity against Leishmania amazonensis (IC(50)  = 69.3 µM) and Leishmania brasiliensis (IC(50)  = 59.4 µM) and induced cytotoxic effects on fibroblast cells mainly in high concentrations. Compounds 2 (IC(50)  = 99.9 µM for L. amazonensis and IC(50)  = 90.5 µM for L. braziliensis) and 3 (IC(50)  = 122.9 µM for L. amazonensis and IC(50)  = 109.8 µM for L. brasiliensis) were less active than dillapiole (1). Regarding the molecular properties, the conformational arrangement of the side chain, electronic features, and the hydrophilic/hydrophobic balance seem to be relevant for explaining the antileishmanial activity of dillapiole and its analogues. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Ganoderma lucidum stimulates NK cell cytotoxicity by inducing NKG2D/NCR activation and secretion of perforin and granulysin.

    Science.gov (United States)

    Chang, Chih-Jung; Chen, Yi-Yuan M; Lu, Chia-Chen; Lin, Chuan-Sheng; Martel, Jan; Tsai, Sheng-Hui; Ko, Yun-Fei; Huang, Tsung-Teng; Ojcius, David M; Young, John D; Lai, Hsin-Chih

    2014-04-01

    Ganoderma lucidum (G. lucidum) is a medicinal mushroom long used in Asia as a folk remedy to promote health and longevity. Recent studies indicate that G. lucidum activates NK cells, but the molecular mechanism underlying this effect has not been studied so far. To address this question, we prepared a water extract of G. lucidum and examined its effect on NK cells. We observed that G. lucidum treatment increases NK cell cytotoxicity by stimulating secretion of perforin and granulysin. The mechanism of activation involves an increased expression of NKG2D and natural cytotoxicity receptors (NCRs), as well as increased phosphorylation of intracellular MAPKs. Our results indicate that G. lucidum induces NK cell cytotoxicity against various cancer cell lines by activating NKG2D/NCR receptors and MAPK signaling pathways, which together culminate in exocytosis of perforin and granulysin. These observations provide a cellular and molecular mechanism to account for the reported anticancer effects of G. lucidum extracts in humans.

  17. Essential Oil Composition, Antioxidant, Cytotoxic and Antiviral Activities of Teucrium pseudochamaepitys Growing Spontaneously in Tunisia

    Directory of Open Access Journals (Sweden)

    Saoussen Hammami

    2015-11-01

    Full Text Available The chemical composition, antioxidant, cytotoxic and antiviral activities of the essential oil obtained by hydrodistillation from the aerial parts of Teucrium pseudochamaepitys (Lamiaceae collected from Zaghouan province of Tunisia are reported. The essential oil was analyzed by gas chromatography equipped with a flame ionization detector (GC-FID and gas chromatography coupled with mass spectrometry (GC/MS. Thirty-one compounds were identified representing 88.6% of the total essential oil. Hexadecanoic acid was found to be the most abundant component (26.1% followed by caryophyllene oxide (6.3%, myristicin (4.9% and α-cubebene (3.9%. The antioxidant capacity of the oil was measured on the basis of the scavenging activity to the stable 2,2-diphenyl-1-picrylhydrazyl (DPPH. The IC50 value of the oil was evaluated as 0.77 mg·mL−1. In addition, the essential oil was found to possess moderate cytotoxic effects on the HEp-2 cell line (50% cytotoxic concentration (CC50 = 653.6 µg·mL−1. The potential antiviral effect was tested against Coxsackievirus B (CV-B, a significant human and mouse pathogen that causes pediatric central nervous system disease, commonly with acute syndromes. The reduction of viral infectivity by the essential oil was measured using a cytopathic (CPE reduction assay.

  18. Low NKp30, NKp46 and NKG2D expression and reduced cytotoxic activity on NK cells in cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Garcia-Iglesias, Trinidad; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Albarran-Somoza, Benibelks; Toro-Arreola, Susana del; Sanchez-Hernandez, Pedro E; Ramirez-Dueñas, Maria Guadalupe; Balderas-Peña, Luz Ma. Adriana; Bravo-Cuellar, Alejandro; Ortiz-Lazareno, Pablo C

    2009-01-01

    Persistent high risk HPV infection can lead to cervical cancer, the second most common malignant tumor in women worldwide. NK cells play a crucial role against tumors and virus-infected cells through a fine balance between activating and inhibitory receptors. Expression of triggering receptors NKp30, NKp44, NKp46 and NKG2D on NK cells correlates with cytolytic activity against tumor cells, but these receptors have not been studied in cervical cancer and precursor lesions. The aim of the present work was to study NKp30, NKp46, NKG2D, NKp80 and 2B4 expression in NK cells from patients with cervical cancer and precursor lesions, in the context of HPV infection. NKp30, NKp46, NKG2D, NKp80 and 2B4 expression was analyzed by flow cytometry on NK cells from 59 patients with cervical cancer and squamous intraepithelial lesions. NK cell cytotoxicity was evaluated in a 4 hour CFSE/7-AAD flow cytometry assay. HPV types were identified by PCR assays. We report here for the first time that NK cell-activating receptors NKp30 and NKp46 are significantly down-regulated in cervical cancer and high grade squamous intraepithelial lesion (HGSIL) patients. NCRs down-regulation correlated with low cytolytic activity, HPV-16 infection and clinical stage. NKG2D was also down-regulated in cervical cancer patients. Our results suggest that NKp30, NKp46 and NKG2D down-regulation represent an evasion mechanism associated to low NK cell activity, HPV-16 infection and cervical cancer progression

  19. Secretory products from thrombin-stimulated human platelets exert an inhibitory effect on NK-cytotoxic activity

    DEFF Research Database (Denmark)

    Skov Madsen, P; Hokland, P; Hokland, M

    1987-01-01

    We have investigated the interaction between human platelets and the NK-system, with special emphasis on the action of secretory products from platelets in an NK assay with 51Cr-labelled K562 as target cells. Supernatants from thrombin-stimulated platelets added to the NK assay consistently...... decreased the NK-cytotoxicity by 40% +/- 4.3%, indicating the existence of secreted products from platelets as a source of NK-inhibiting substances. In contrast, no direct cytotoxic effect of these secretory products on the target cells (K562) was seen. Thus, normal human platelets, when stimulated...... with thrombin, are capable of secreting different, yet undefined factors, which significantly inhibit NK activity in vitro. The results also suggest that the role of products from contaminating in vitro activated platelets should be borne in mind when performing conventional NK assays. Udgivelsesdato: 1986-Oct...

  20. Endophytic Actinobacteria Associated with Dracaena cochinchinensis Lour.: Isolation, Diversity, and Their Cytotoxic Activities.

    Science.gov (United States)

    Salam, Nimaichand; Khieu, Thi-Nhan; Liu, Min-Jiao; Vu, Thu-Trang; Chu-Ky, Son; Quach, Ngoc-Tung; Phi, Quyet-Tien; Narsing Rao, Manik Prabhu; Fontana, Angélique; Sarter, Samira; Li, Wen-Jun

    2017-01-01

    Dracaena cochinchinensis Lour. is an ethnomedicinally important plant used in traditional Chinese medicine known as dragon's blood. Excessive utilization of the plant for extraction of dragon's blood had resulted in the destruction of the important niche. During a study to provide a sustainable way of utilizing the resources, the endophytic Actinobacteria associated with the plant were explored for potential utilization of their medicinal properties. Three hundred and four endophytic Actinobacteria belonging to the genera Streptomyces , Nocardiopsis , Brevibacterium , Microbacterium , Tsukamurella , Arthrobacter , Brachybacterium , Nocardia , Rhodococcus , Kocuria , Nocardioides , and Pseudonocardia were isolated from different tissues of D. cochinchinensis Lour. Of these, 17 strains having antimicrobial and anthracyclines-producing activities were further selected for screening of antifungal and cytotoxic activities against two human cancer cell lines, MCF-7 and Hep G2. Ten of these selected endophytic Actinobacteria showed antifungal activities against at least one of the fungal pathogens, of which three strains exhibited cytotoxic activities with IC 50 -values ranging between 3 and 33  μ g·mL -1 . Frequencies for the presence of biosynthetic genes, polyketide synthase- (PKS-) I, PKS-II, and nonribosomal peptide synthetase (NRPS) among these 17 selected bioactive Actinobacteria were 29.4%, 70.6%, and 23.5%, respectively. The results indicated that the medicinal plant D. cochinchinensis Lour. is a good niche of biologically important metabolites-producing Actinobacteria.

  1. Essential Oil from the Resin of Protium heptaphyllum: Chemical Composition, Cytotoxicity, Antimicrobial Activity, and Antimutagenicity.

    Science.gov (United States)

    de Lima, Ewelyne Miranda; Cazelli, Didley Sâmia Paiva; Pinto, Fernanda Endringer; Mazuco, Renata Alves; Kalil, Ieda Carneiro; Lenz, Dominik; Scherer, Rodrigo; de Andrade, Tadeu Uggere; Endringer, Denise Coutinho

    2016-01-01

    Protium heptaphyllum (Aubl.) March is popularly used as an analgesic and anti-inflammatory agent. This study aimed to evaluate the chemical composition of P. heptaphyllum essential oil, its cytotoxicity in a breast cancer cell line (MCF-7), antimicrobial activity, and its antimutagenicity in vivo. The chemical composition of the essential oil collected in three 3 years was determined by gas chromatography-mass spectrometry. The cytotoxicity was evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Annexin V conjugated with fluorescein isothiocyanate, caspase-3, and tumor necrosis factor-alpha (TNF-α) assays were performed to evaluate apoptosis and inflammatory events. The antimutagenic activity at doses of 25, 50, and 100 mg/kg was determined using a micronucleus test in murine bone marrow. The essential oil showed a predominance of monoterpene compounds, being the terpinolene, p-cymene-8-ol, and p-cymene, present in the essential oil extracted in the 3 years. The essential oil showed a protection against cyclophosphamide-induced genotoxicity, and the cytotoxicity index polychromatic erythrocytes/normochromatic erythrocytes ratio in animals treated with oil at all doses (1.34 ± 0.33; 1.15 ± 0.1; 1.11 ± 0.13) did not differ from the negative control animal (1.31 ± 0.33), but from the cyclophosphamide group (0.61 ± 0.12). Cytotoxicity, at a concentration of 40.0 μg/mL, and antimicrobial activity were not observed for the essential oil (minimum inhibitory concentration ≥0.5 mg/mL). The essential oil did not change the levels of caspase-3 in the TNF-α level. The essential oil showed antimutagenic activity due to its chemical composition. Terpinolene, p-cymene-8-ol, and p-cymene are the main constituents of the essential oil of P. heptaphyllum collected within 3-yearsThe essential oil of P. heptaphyllum did not show antimicrobial activity (MIC >0.5 mg/mL) against E. coli, S. aureus, E. faecalis, and C. albicansThe essential oil

  2. Molecular cytotoxic mechanisms of anticancer hydroxychalcones.

    Science.gov (United States)

    Sabzevari, Omid; Galati, Giuseppe; Moridani, Majid Y; Siraki, Arno; O'Brien, Peter J

    2004-06-30

    Chalcones are being considered as anticancer agents as they are natural compounds that are particularly cytotoxic towards K562 leukemia or melanoma cells. In this study, we have investigated phloretin, isoliquiritigenin, and 10 other hydroxylated chalcones for their cytotoxic mechanisms towards isolated rat hepatocytes. All hydroxychalcones partly depleted hepatocyte GSH and oxidized GSH to GSSG. These chalcones also caused a collapse of mitochondrial membrane potential and increased oxygen uptake. Furthermore, glycolytic or citric acid cycle substrates prevented cytotoxicity and mitochondrial membrane potential collapse. The highest pKa chalcones were the most effective at collapsing the mitochondrial membrane potential which suggests that the cytotoxic activity of hydroxychalcones are likely because of their ability to uncouple mitochondria.

  3. Relationship of CD86 surface marker expression and cytotoxicity on dendritic cells exposed to chemical allergen

    International Nuclear Information System (INIS)

    Hulette, Ben C.; Ryan, Cindy A.; Gildea, Lucy A.; Gerberick, G. Frank

    2005-01-01

    Human peripheral blood-derived dendritic cells (DC) respond to a variety of chemical allergens by up-regulating expression of the co-stimulatory molecule CD86. It has been postulated that this measure might provide the basis for an in vitro alternative approach for the identification of skin sensitizing chemicals. We recently reported that DC, exposed in culture to the highest non-cytotoxic concentrations of various chemical allergens, displayed marginal up-regulation of membrane CD86 expression; the interpretation being that such changes were insufficiently sensitive for the purposes of hazard identification. For the work presented here, immature DC were derived from human monocytes and treated with the chemical allergens 2,4-dinitrobenzenesulfonic acid (DNBS), nickel sulfate (NiSO 4 ), p-phenylenediamine (PPD), Bandrowski's base (BB), hydroquinone (HQ) and propyl gallate (PG) for 48 h at concentrations which induced both no to slight to moderate cytotoxicity. For comparison, DC were treated with the irritants sodium dodecyl sulfate (SDS), benzoic acid (BA), and benzalkonium chloride (BZC) at concentrations resulting in comparable levels of cytotoxicity. CD86 expression, as measured by flow cytometry, was consistently up-regulated (ranging from 162 to 386% control) on DC treated with concentrations of chemical allergens that induced approximately 10-15% cytotoxicity. The irritants BA and BZC did not induce up-regulation of CD86 expression when tested at concentrations that induced similar levels of cytotoxicity. SDS, however, up-regulated CD86 expression to 125-138% of control in 2/4 preparations when tested at concentrations which induced similar toxicity. Our results confirm that chemical allergens up-regulate CD86 expression on blood-derived DC and illustrate further that up-regulation of CD86 surface marker expression is more robust when DC are treated with concentrations of chemical allergen that induce slight to moderate cytotoxicity

  4. Regulation of Serine-Threonine Kinase Akt Activation by NAD+-Dependent Deacetylase SIRT7

    Directory of Open Access Journals (Sweden)

    Jia Yu

    2017-01-01

    Full Text Available The Akt pathway is a central regulator that promotes cell survival in response to extracellular signals. Depletion of SIRT7, an NAD+-dependent deacetylase that is the least-studied sirtuin, is known to significantly increase Akt activity in mice through unknown mechanisms. In this study, we demonstrate that SIRT7 depletion in breast cancer cells results in Akt hyper-phosphorylation and increases cell survival following genotoxic stress. Mechanistically, SIRT7 specifically interacts with and deacetylates FKBP51 at residue lysines 28 and 155 (K28 and K155, resulting in enhanced interactions among FKBP51, Akt, and PHLPP, as well as Akt dephosphorylation. Mutating both lysines to arginines abolishes the effect of SIRT7 on Akt activity through FKBP51 deacetylation. Finally, energy stress strengthens SIRT7-mediated effects on Akt dephosphorylation through FKBP51 and thus sensitizes cancer cells to cytotoxic agents. These results reveal a direct role of SIRT7 in Akt regulation and raise the possibility of using the glucose analog 2-deoxy-D-glucose (2DG as a chemo-sensitizing agent.

  5. Cytotoxic effects of replication-competent adenoviruses on human esophageal carcinoma are enhanced by forced p53 expression

    International Nuclear Information System (INIS)

    Yang, Shan; Kawamura, Kiyoko; Okamoto, Shinya; Yamauchi, Suguru; Shingyoji, Masato; Sekine, Ikuo; Kobayashi, Hiroshi; Tada, Yuji; Tatsumi, Koichiro; Hiroshima, Kenzo; Shimada, Hideaki; Tagawa, Masatoshi

    2015-01-01

    Improvement of transduction and augmentation of cytotoxicity are crucial for adenoviruses (Ad)-mediated gene therapy for cancer. Down-regulated expression of type 5 Ad (Ad5) receptors on human tumors hampered Ad-mediated transduction. Furthermore, a role of the p53 pathways in cytotoxicity mediated by replication-competent Ad remained uncharacterized. We constructed replication-competent Ad5 of which the E1 region genes were activated by a transcriptional regulatory region of the midkine or the survivin gene, which is expressed preferentially in human tumors. We also prepared replication-competent Ad5 which were regulated by the same region but had a fiber-knob region derived from serotype 35 (AdF35). We examined the cytotoxicity of these Ad and a possible combinatory use of the replication-competent AdF35 and Ad5 expressing the wild-type p53 gene (Ad5/p53) in esophageal carcinoma cells. Expression levels of molecules involved in cell death, anti-tumor effects in vivo and production of viral progenies were also investigated. Replication-competent AdF35 in general achieved greater cytotoxic effects to esophageal carcinoma cells than the corresponding replication-competent Ad5. Infection with the AdF35 induced cleavages of caspases and increased sub-G1 fractions, but did not activate the autophagy pathway. Transduction with Ad5/p53 in combination with the replication-competent AdF35 further enhanced the cytotoxicity in a synergistic manner. We also demonstrated the combinatory effects in an animal model. Transduction with Ad5/p53 however suppressed production of replication-competent AdF35 progenies, but the combination augmented Ad5/p53-mediated p53 expression levels and the downstream pathways. Combination of replication-competent AdF35 and Ad5/p53 achieved synergistic cytotoxicity due to enhanced p53-mediated apoptotic pathways. The online version of this article (doi:10.1186/s12885-015-1482-8) contains supplementary material, which is available to authorized

  6. Randomized anticancer and cytotoxicity activities of Guibourtia ...

    African Journals Online (AJOL)

    Materials and Methods: The plants were screened for the presence of coumarins, alkaloids, flavonoids, anthraquinones, steroids and terpenoids using thin layer chromatography. Anticancer screening was performed on a panel of three cancer cell lines, while cytotoxicity was determined using a human fibroblast cell line, ...

  7. Sensitization of TNF-induced cytotoxicity in lung cancer cells by concurrent suppression of the NF-κB and Akt pathways

    International Nuclear Information System (INIS)

    Wang Xia; Chen Wenshu; Lin Yong

    2007-01-01

    Blockage of either nuclear factor-κB (NF-κB) or Akt sensitizes cancer cells to TNF-induced apoptosis. In this study, we investigated the undetermined effect of concurrent blockage of these two survival pathways on TNF-induced cytotoxicity in lung cancer cells. The results show that Akt contributes to TNF-induced NF-κB activation in lung cancer cells through regulating phosphorylation of the p65/RelA subunit of NF-κB. Although individually blocking IKK or Akt partially suppressed TNF-induced NF-κB activation, concurrent suppression of these pathways completely inhibited TNF-induced NF-κB activation and downstream anti-apoptotic gene expression, and synergistically potentiated TNF-induced cytotoxicity. Moreover, suppression of Akt inhibited the Akt-mediated anti-apoptotic pathway through dephosphorylation of BAD. These results indicate that concurrent suppression of NF-κB and Akt synergistically sensitizes TNF-induced cytotoxicity through blockage of distinct survival pathways downstream of NF-κB and Akt, which may be applied in lung cancer therapy

  8. Biocompatibility index of antiseptic agents by parallel assessment of antimicrobial activity and cellular cytotoxicity.

    Science.gov (United States)

    Müller, Gerald; Kramer, Axel

    2008-06-01

    To assess the suitability of an antiseptic agent, both the microbicidal activity and the cytotoxic effect must be taken into consideration to derive biocompatible antibacterial agents. We defined the biocompatibility index (BI) by measuring the antibacterial activity against the test organisms Escherichia coli and Staphylococcus aureus and, in parallel, the cytotoxicity on cultured murine fibroblasts. The antiseptic agents tested were benzalkonium chloride (BAC), cetylpyridinium chloride (CPC), chlorhexidine digluconate (CHX), mild silver protein (MSP), octenidine dihydrochloride (OCT), polyhexamethylene biguanide (PHMB), povidone iodine in solution [PVP-I(s)], povidone iodine in ointment [PVP-I(o)], silver nitrate (AgNO(3)), silver (I) sulfadiazine (SSD) and triclosan (TRI). Assays were carried out for 30 min of exposure at 37 degrees C in the presence of cell culture medium containing 10% fetal bovine serum. The resulting dimensionless BI was defined as the ratio of the concentration at which 50% of the murine fibroblasts are damaged and the microbicidal effect producing at least 3 log(10) (99.9%) reduction. The resulting rank ordering of BI for the ratio of fibroblast cytotoxicity to E. coli toxicity was OCT > PHMB > CHX > PVP-I(o) > PVP-I(s) > BAC > CPC > TRI > MSP and that to S. aureus was OCT > PHMB > CHX > CPC > PVP-I(o) > BAC > PVP(s) > TRI > MSP. OCT and PHMB were the most suitable agents with a BI greater than 1. The BI presented may be a useful tool to evaluate antiseptic agents for use in clinical practice.

  9. Cytotoxicity and anti-Leishmania amazonensis activity of Citrus sinensis leaf extracts.

    Science.gov (United States)

    Garcia, Andreza R; Amaral, Ana Claudia F; Azevedo, Mariana M B; Corte-Real, Suzana; Lopes, Rosana C; Alviano, Celuta S; Pinheiro, Anderson S; Vermelho, Alane B; Rodrigues, Igor A

    2017-12-01

    Leishmania amazonensis is the main agent of diffuse cutaneous leishmaniasis, a disease characterized by lesional polymorphism and the commitment of skin surface. Previous reports demonstrated that the Citrus genus possess antimicrobial activity. This study evaluated the anti-L. amazonensis activity of Citrus sinensis (L.) Osbeck (Rutaceae) extracts. Citrus sinensis dried leaves were subjected to maceration with hexane (CH), ethyl acetate (CEA), dichloromethane/ethanol (CD/Et - 1:1) or ethanol/water (CEt/W - 7:3). Leishmania amazonensis promastigotes were treated with C. sinensis extracts (1-525 μg/mL) for 120 h at 27 °C. Ultrastructure alterations of treated parasites were evaluated by transmission electron microscopy. Cytotoxicity of the extracts was assessed on RAW 264.7 and J774.G8 macrophages after 48-h treatment at 37 °C using the tetrazolium assay. In addition, Leishmania-infected macrophages were treated with CH and CD/Et (10-80 μg/mL). CH, CD/Et and CEA displayed antileishmanial activity with 50% inhibitory activity (IC 50 ) of 25.91 ± 4.87, 54.23 ± 3.78 and 62.74 ± 5.04 μg/mL, respectively. Parasites treated with CD/Et (131.2 μg/mL) presented severe alterations including mitochondrial swelling, lipid body formation and intense cytoplasmic vacuolization. CH and CD/Et demonstrated cytotoxic effects similar to that of amphotericin B in the anti-amastigote assays (SI of 2.16, 1.98 and 1.35, respectively). Triterpene amyrins were the main substances in CH and CD/Et extracts. In addition, 80 μg/mL of CD/Et reduced the number of intracellular amastigotes and the percentage of infected macrophages in 63% and 36%, respectively. The results presented here highlight C. sinensis as a promising source of antileishmanial agents.

  10. Cytotoxic activity of erypogein d from erythrina poeppigiana (leguminosae) against cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells

    Science.gov (United States)

    Herlina, T.; Gaffar, S.; Widowati, W.

    2018-05-01

    Cancer is the uncontrolled growth of abnormal cells and continues to divide rapidly in the body. Current anticancer treatment usually causes many side effects. Natural products are then explored to be new alternatives for cancer treatment. Flavonoids have been known to possess medicinal properties, including anticancer. This study was performed to observe the cytotoxic activity of isoflavanone compound, erypogein D from Erythrina poeppigiana, toward cervical cancer (HeLa), breast cancer (MCF-7) and ovarian cancer (SKOV-3) cells. The cytotoxic activity of erypogein D was tested using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3- carboxyme-thoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. The percentage of cell mortality was calculated and the IC50 was analyzed using probit analysis. The result showed that cytotoxic activity of the erypogein D against HeLa, SKOV-3, and MCF-7 cells had an IC50 value 225, 70.74, and 30.12 μM, respectively. Based on IC50 value can be concluded that erypogein D is the most cytotoxic to breast cancer MCF-7 cell. However the cytotoxic activity of erypogein D toward MCF7 is moderate.

  11. Semisynthetic Esters of 17-Hydroxycativic Acid with in Vitro Cytotoxic Activity against Leukemia Cell Lines

    Czech Academy of Sciences Publication Activity Database

    Cavallaro, V.; Řezníčková, Eva; Jorda, Radek; Alza, N.P.; Murray, A.P.; Kryštof, Vladimír

    2017-01-01

    Roč. 40, č. 11 (2017), s. 1923-1928 ISSN 0918-6158 R&D Projects: GA MŠk(CZ) LO1204 Institutional support: RVO:61389030 Keywords : biological evaluation * derivatives * andrographolide * apoptosis * cancer * agents * diterpenes * inhibition * activation * chemistry * diterpenoid * 17-hydroxycativic acid * cytotoxic activity * human cancer cell * apoptosis Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Hematology Impact factor: 1.683, year: 2016

  12. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa

    Directory of Open Access Journals (Sweden)

    Helena O. Ferraz

    2010-11-01

    Full Text Available Cuscuta racemosa Mart. is a parasitic plant of the Convolvulaceae family, used in popular medicine as an anti-inflammatory and a diuretic, for stomach and hepatic disorders, and for treating fresh wounds. This plant is popularly known as "cipó-chumbo" and "fios-de-ovos". In this study, it was chemically investigated and tested for its antimicrobial activity and cytotoxicity. The flavonoid and tannin content of the dried plant were 2.79% and 2.01%, respectively. Furthermore, the 4'-methoxyquercetin flavanoid compound was isolated from the ethanolic fraction. The minimum inhibiting concentration in the antimicrobial test was 2.0 mg/ml for Staphylococcus aureus, and a DL50 of 0.231 mg/mL was obtained in the cytotoxicity experiment. The fraction directed to alkaloids was able to eliminate 100% of the brine shrimp used for the test.

  13. Phytochemical study and evaluation of the antimicrobial activity and cytotoxicity of Cuscuta racemosa

    Directory of Open Access Journals (Sweden)

    Helena O. Ferraz

    2011-02-01

    Full Text Available Cuscuta racemosa Mart. is a parasitic plant of the Convolvulaceae family, used in popular medicine as an anti-inflammatory and a diuretic, for stomach and hepatic disorders, and for treating fresh wounds. This plant is popularly known as "cipó-chumbo" and "fios-de-ovos". In this study, it was chemically investigated and tested for its antimicrobial activity and cytotoxicity. The flavonoid and tannin content of the dried plant were 2.79% and 2.01%, respectively. Furthermore, the 4'-methoxyquercetin flavanoid compound was isolated from the ethanolic fraction. The minimum inhibiting concentration in the antimicrobial test was 2.0 mg/ml for Staphylococcus aureus, and a DL50 of 0.231 mg/mL was obtained in the cytotoxicity experiment. The fraction directed to alkaloids was able to eliminate 100% of the brine shrimp used for the test.

  14. Cytotoxic Effects of Bangladeshi Medicinal Plant Extracts

    Directory of Open Access Journals (Sweden)

    Shaikh J. Uddin

    2011-01-01

    Full Text Available To investigate the cytotoxic effect of some Bangladeshi medicinal plant extracts, 16 Bangladeshi medicinal plants were successively extracted with n-hexane, dichloromethane, methanol and water. The methanolic and aqueous extracts were screened for cytotoxic activity against healthy mouse fibroblasts (NIH3T3 and three human cancer-cell lines (gastric: AGS; colon: HT-29; and breast: MDA-MB-435S using the MTT assay. Two methanolic extracts (Hygrophila auriculata and Hibiscus tiliaceous and one aqueous extract (Limnophila indica showed no toxicity against healthy mouse fibroblasts, but selective cytotoxicity against breast cancer cells (IC50 1.1–1.6 mg mL−1. Seven methanolic extracts from L. indica, Clerodendron inerme, Cynometra ramiflora, Xylocarpus moluccensis, Argemone mexicana, Ammannia baccifera and Acrostichum aureum and four aqueous extracts from Hygrophila auriculata, Bruguiera gymnorrhiza, X. moluccensis and Aegiceras corniculatum showed low toxicity (IC50 > 2.5 mg mL−1 against mouse fibroblasts but selective cytotoxicity (IC50 0.2–2.3 mg mL−1 against different cancer cell lines. The methanolic extract of Blumea lacera showed the highest cytotoxicity (IC50 0.01–0.08 mg mL−1 against all tested cell lines among all extracts tested in this study. For some of the plants their traditional use as anticancer treatments correlates with the cytotoxic results, whereas for others so far unknown cytotoxic activities were identified.

  15. Antioxidant and cytotoxic activities of 'acai' (Euterpe precatoria Mart.)

    Energy Technology Data Exchange (ETDEWEB)

    Galotta, Ana Lucia Q.A. [Universidade Federal do Amazonas (UFAM), Manaus, AM (Brazil). Inst. de Ciencias Exatas. Dept. de Quimica; Boaventura, Maria Amelia D.; Lima, Luciana A. R.S. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Dept. de Quimica

    2008-07-01

    Decoction of roots of the Amazonian palm acai (Euterpe precatoria Mart.) is widely used by Brazilian and Peruvian people as an anti-inflammatory, to heal kidney and liver diseases and against snake bites. In this study, the antioxidant activity of extracts and flavonoids (quercetin, catechin, epicatechin, rutin and astilbin) isolated from roots and leaf stalks of E. precatoria was investigated using {beta}-carotene in TLC plates and DPPH radical scavenging in a spectrophotometric bioassay. All extracts and flavonoids showed activity. Also, the cytotoxic activity of these extracts was evaluated by the brine shrimp (Artemia salina) larvicide bioassay and was lower than that of lapachol, used as control. The presence of flavonoids and sitosterol-3-O-{beta}-D-glucopyranoside in the extracts can justify the use of the plant in traditional medicine. (author)

  16. Immunomodulatory, Cytotoxicity, and Antioxidant Activities of Roots of Ziziphus mauritiana

    OpenAIRE

    Afzal, Samina; Batool, Murium; Ch, Bashir Ahmad; Ahmad, Ashfaq; Uzair, Muhammad; Afzal, Khurram

    2017-01-01

    Aims: The study is conducted to evaluate the immunomodulatory, cytotoxicity, and antioxidant potential of Ziziphus mauritiana (Rhamnaceae). Phytochemical analysis of Z. mauritiana revealed the presence of alkaloids, anthraquinone glycoside, cardiac glycoside, saponin, tannin, and flavonoids. Methodology: The cytotoxicity of the plant Z. mauritiana was evaluated by brine shrimp lethality test. Antioxidant parameters such as superoxide dismutase (SOD), total antioxidant capacity (T-AOC), and ma...

  17. ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL Activity in Cancer Vaccine Clinical Trials

    Directory of Open Access Journals (Sweden)

    Thomas J. Sayers

    2012-05-01

    Full Text Available The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a given clinical trial depends on the known or suggested immunomodulating mechanisms associated with the tested therapeutic modality. Cell-mediated cytotoxicity represents a key mechanism in the immune response to various pathogens and tumors. Therefore, the selection of monitoring methods for the appropriate assessment of cell-mediated cytotoxicity is thought to be crucial. Assays that can detect both cytotoxic T lymphocytes (CTL frequency and function, such as the IFN-γ enzyme-linked immunospot assay (ELISPOT have gained increasing popularity for monitoring clinical trials and in basic research. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, have shown the suitability of the IFN-γ ELISPOT assay for monitoring T cell responses. However, the Granzyme B ELISPOT assay and Perforin ELISPOT assay may represent a more direct analysis of cell-mediated cytotoxicity as compared to the IFN-γ ELISPOT, since Granzyme B and perforin are the key mediators of target cell death via the granule-mediated pathway. In this review we analyze our own data and the data reported by others with regard to the application of various modifications of ELISPOT assays for monitoring CTL activity in clinical vaccine trials.

  18. "Proliferation of cytotoxic and activated T cells during acute Epstein-Barr virus induced Infectious Mononucleosis "

    Directory of Open Access Journals (Sweden)

    Mansoori SD

    2002-05-01

    Full Text Available The immune responses that develop following Epstien-Barr Virus (EBV infection are complex and involve both humoral and to a greater extent cell-mediated immune mechanisms. To evaluate the immune response, flow cytometric analysis of the peripheral blood of six patients during the acute phase of EBV infection was performed. This analysis revealed a significant increase in the percentages and the absolute number of CD8+cytotoxic and activated (HLA-DR+ - T lymphocytes and in some cases with a concomitan decrease in the percentages of B (CD19+ lymphocytes and T helper (CD4+ lymphocytes. These patient invariably had inverted CD4/CD8 ratio. All changes reversed to normal level during the recovery phase of infection. It is therefore concluded that EBV specific cytotoxic and activated T lymphocytes are essential in controlling acute EBV infection presented by the infected B cells.

  19. Conventional and improved cytotoxicity test methods of newly developed biodegradable magnesium alloys

    Science.gov (United States)

    Han, Hyung-Seop; Kim, Hee-Kyoung; Kim, Yu-Chan; Seok, Hyun-Kwang; Kim, Young-Yul

    2015-11-01

    Unique biodegradable property of magnesium has spawned countless studies to develop ideal biodegradable orthopedic implant materials in the last decade. However, due to the rapid pH change and extensive amount of hydrogen gas generated during biocorrosion, it is extremely difficult to determine the accurate cytotoxicity of newly developed magnesium alloys using the existing methods. Herein, we report a new method to accurately determine the cytotoxicity of magnesium alloys with varying corrosion rate while taking in-vivo condition into the consideration. For conventional method, extract quantities of each metal ion were determined using ICP-MS and the result showed that the cytotoxicity due to pH change caused by corrosion affected the cell viability rather than the intrinsic cytotoxicity of magnesium alloy. In physiological environment, pH is regulated and adjusted within normal pH (˜7.4) range by homeostasis. Two new methods using pH buffered extracts were proposed and performed to show that environmental buffering effect of pH, dilution of the extract, and the regulation of eluate surface area must be taken into consideration for accurate cytotoxicity measurement of biodegradable magnesium alloys.

  20. Autophagy plays a critical role in ChLym-1-induced cytotoxicity of non-hodgkin's lymphoma cells.

    Directory of Open Access Journals (Sweden)

    Jiajun Fan

    Full Text Available Autophagy is a critical mechanism in both cancer therapy resistance and tumor suppression. Monoclonal antibodies have been documented to kill tumor cells via apoptosis, antibody-dependent cellular cytotoxicity (ADCC and complement-dependent cytotoxicity (CDC. In this study, we report for the first time that chLym-1, a chimeric anti-human HLA-DR monoclonal antibody, induces autophagy in Raji Non-Hodgkin's Lymphoma (NHL cells. Interestingly, inhibition of autophagy by pharmacological inhibitors (3-methyladenine and NH4Cl or genetic approaches (siRNA targeting Atg5 suppresses chLym-1-induced growth inhibition, apoptosis, ADCC and CDC in Raji cells, while induction of autophagy could accelerate cytotoxic effects of chLym-1 on Raji cells. Furthermore, chLym-1-induced autophagy can mediate apoptosis through Caspase 9 activation, demonstrating the tumor-suppressing role of autophagy in antilymphoma effects of chLym-1. Moreover, chLym-1 can activate several upstream signaling pathways of autophagy including Akt/mTOR and extracellular signal-regulated kinase 1/2 (Erk1/2. These results elucidate the critical role of autophagy in cytotoxicity of chLym-1 antibody and suggest a potential therapeutic strategy of NHL therapy by monoclonal antibody chLym-1 in combination with autophagy inducer.

  1. Synthesis and biological activity of chimeric structures derived from the cytotoxic natural compounds dolastatin 10 and dolastatin 15.

    Science.gov (United States)

    Poncet, J; Busquet, M; Roux, F; Pierré, A; Atassi, G; Jouin, P

    1998-04-23

    The natural cytotoxic compounds dolastatins 10 and 15 exhibit great similarities in structure and in their biological activity profiles. Two compounds (1 and 2) formed by interchanging the dolaisoleuine residue of dolastatin 10 and the MeVal-Pro dipeptide of dolastatin 15 were synthesized in order to evaluate the possible equivalence of these units. These compounds can be considered as chimeras of dolastatins 10 and 15 formed by the N-terminal part of the former and the C-terminal part of the latter and vice versa. Both analogues exhibited a marked decrease in their cytotoxic activity but showed similar differential cytotoxicity with regard to the cell lines assayed compared with the parent compounds. HT-29 cell line was the least sensitive one. However, this activity was in the nanomolar level and close to that of vincristine. The differences in their effect on tubulin polymerization were less pronounced. We confirmed the already known crucial role of the Dil residue in this assay. The nonequivalence of the Dil unit and the MeVal-Pro dipeptide probably reflects modification in the relative positions of the N-dimethylamino and the phenyl moieties.

  2. Role of IL-2 and interferon in the generation of natural cytotoxic activity in influenza virus-stimulated PBL cultures: analysis with the use of prednisolone

    NARCIS (Netherlands)

    Braakman, E.; Treep-van Leeuwen, P.; ten Berge, R. J.; Schellekens, P. T.; Lucas, C. J.

    1988-01-01

    We have examined the role of interleukin 2, interferon-gamma and interferon-alpha in the generation of natural cytotoxic (NC) activity and cytotoxic T-lymphocyte (CTL) activity in peripheral blood lymphocyte cultures stimulated with influenza virus, using the immunosuppressive effects of

  3. Cytotoxicity and Apoptotic Activity of Ficus pseudopalma Blanco ...

    African Journals Online (AJOL)

    Blanco Leaf Extracts Against Human Prostate Cancer Cell. Lines ... Keywords: Ficus pseudopalma, Cytotoxicity, Apopotic, human prostate PRST2 cancer cell, Lupeol,. Quercetin. ..... apoptosis through Fas-receptor mediated pathway in a ...

  4. Isolation, Purification, and Characterization of Five Active Diketopiperazine Derivatives from Endophytic Streptomyces SUK 25 with Antimicrobial and Cytotoxic Activities.

    Science.gov (United States)

    Alshaibani, Muhanna; Zin, Noraziah; Jalil, Juriyati; Sidik, Nik; Ahmad, Siti Junaidah; Kamal, Nurkhalida; Edrada-Ebel, Ruangelie

    2017-07-28

    In our search for new sources of bioactive secondary metabolites from Streptomyces sp., the ethyl acetate extracts from endophytic Streptomyces SUK 25 afforded five active diketopiperazine (DKP) compounds. The aim of this study was to characterize the bioactive compounds isolated from endophytic Streptomyces SUK 25 and evaluate their bioactivity against multiple drug resistance (MDR) bacteria such as Enterococcus raffinosus, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa, and Enterobacter spp., and their cytotoxic activities against the human hepatoma (HepaRG) cell line. The production of secondary metabolites by this strain was optimized through Thornton's medium. Isolation, purification, and identification of the bioactive compounds were carried out using high-performance liquid chromatography, high-resolution mass liquid chromatography-mass spectrometry, Fourier transform infrared spectroscopy, and nuclear magnetic resonance, and cryopreserved HepaRG cells were selected to test the cytotoxicity. The results showed that endophytic Streptomyces SUK 25 produces four active DKP compounds and an acetamide derivative, which were elucidated as cyclo -( L -Val- L -Pro), cyclo -( L -Leu- L -Pro), cyclo -( L -Phe- L -Pro), cyclo -( L -Val- L -Phe), and N -(7-hydroxy-6-methyl-octyl)-acetamide. These active compounds exhibited activity against methicillin-resistant S. aureus ATCC 43300 and Enterococcus raffinosus , with low toxicity against human hepatoma HepaRG cells. Endophytic Streptomyces SUK 25 has the ability to produce DKP derivatives biologically active against some MDR bacteria with relatively low toxicity against HepaRG cells line.

  5. Brine shrimp cytotoxicity of Caesalpinia pulcherrima aerial parts, antimicrobial activity and characterisation of isolated active fractions.

    Science.gov (United States)

    Chanda, Sumitra; Baravalia, Yogesh

    2011-12-01

    Caesalpinia pulcherrima Swartz. is an ornamental plant, shrub or a small tree belonging to the family Caesalpiniaceae. The plant has been used for the treatment of inflammatory disorders, skin diseases and so on. In this study, the cytotoxicity of the methanol extract of the aerial parts of C. pulcherrima was tested using an Artemia salina (brine shrimp) bioassay. Further, the methanol extract was fractionated by silica gel column chromatography using a solvent gradient of hexane:ethyl acetate:methanol in different ratios and 56 fractions were collected. On the basis of thin layer chromatography profiles, 13 major fractions were obtained, which were tested for antimicrobial activity against 14 microorganisms using the agar disc diffusion method and also tested for their minimal inhibitory concentration and minimal bactericidal concentration values. In terms of cytotoxicity, the extract caused 26% mortality of brine shrimp larvae after 24 h at a concentration of 1000 µg mL(-1). Fractions 3, 9 and 10 showed significant antimicrobial activities. Phytochemical analysis of these three fractions led to the identification of 11 compounds, and their structures were established by means of gas chromatography-mass spectroscopy techniques. These findings suggest that these bioactive compounds may be useful as potential antimicrobials. Further investigation is needed to establish the mode of action of these bioactive compounds.

  6. Cytotoxic constituents of ethyl acetate fraction from Dianthus superbus.

    Science.gov (United States)

    Ding, Chengli; Zhang, Wu; Li, Jie; Lei, Jiachuan; Yu, Jianqing

    2013-01-01

    The ethyl acetate fraction (EE-DS) from Dianthus superbus was found to possess the cytotoxic activity against cancer cells in previous study. To investigate cytotoxic constituents, the bioassay-guided isolation of compounds from EE-DS was performed. Two dianthramides (1 and 2), three flavonoids (3-5), two coumarins (6 and 7) and three other compounds (8-10) were obtained. Structures of isolated compounds were identified by spectroscopic analysis. Cytotoxicity of the compounds against HepG2 cells was evaluated. Compound 1 showed the strongest cytotoxicity, compounds 10, 4, 3 and 5 had moderate cytotoxicity.

  7. Cytotoxic Activities of Several Geranyl-Substituted Flavanones

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, K.; Svačinová, Jana; Šlapetová, T.; Schneiderová, K.; Dall’Acqua, S.; Innocenti, G.; Závalová, V.; Kollár, P.; Chudík, S.; Marek, R.; Julínek, O.; Urbanová, M.; Kartal, M.; Csöllei, M.; Doležal, Karel

    2010-01-01

    Roč. 73, č. 4 (2010), s. 568-572 ISSN 0163-3864 R&D Projects: GA MŠk(CZ) LC06030; GA ČR GD522/08/H003 Institutional research plan: CEZ:AV0Z50380511 Keywords : flavanones * geranyl * cytotoxicity Subject RIV: BO - Biophysics Impact factor: 2.872, year: 2010

  8. Synthesis, DNA Cleavage Activity, Cytotoxicity, Acetylcholinesterase Inhibition, and Acute Murine Toxicity of Redox-Active Ruthenium(II) Polypyridyl Complexes.

    Science.gov (United States)

    Alatrash, Nagham; Narh, Eugenia S; Yadav, Abhishek; Kim, Mahn-Jong; Janaratne, Thamara; Gabriel, James; MacDonnell, Frederick M

    2017-07-06

    Four mononuclear [(L-L) 2 Ru(tatpp)] 2+ and two dinuclear [(L-L) 2 Ru(tatpp)Ru(L-L) 2 ] 4+ ruthenium(II) polypyridyl complexes (RPCs) containing the 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3'''-n]pentacene (tatpp) ligand were synthesized, in which L-L is a chelating diamine ligand such as 2,2'-bipyridine (bpy), 1,10-phenanthroline (phen), 3,4,7,8-tetramethyl-1,10-phenanthroline (Me 4 phen) or 4,7-diphenyl-1,10-phenanthroline (Ph 2 phen). These Ru-tatpp analogues all undergo reduction reactions with modest reducing agents, such as glutathione (GSH), at pH 7. These, plus several structurally related but non-redox-active RPCs, were screened for DNA cleavage activity, cytotoxicity, acetylcholinesterase (AChE) inhibition, and acute mouse toxicity, and their activities were examined with respect to redox activity and lipophilicity. All of the redox-active RPCs show single-strand DNA cleavage in the presence of GSH, whereas none of the non-redox-active RPCs do. Low-micromolar cytotoxicity (IC 50 ) against malignant H358, CCL228, and MCF7 cultured cell lines was mainly restricted to the redox-active RPCs; however, they were substantially less toxic toward nonmalignant MCF10 cells. The IC 50 values for AChE inhibition in cell-free assays and the acute toxicity of RPCs in mice revealed that whereas most RPCs show potent inhibitory action against AChE (IC 50 values <15 μm), Ru-tatpp complexes as a class are surprisingly well tolerated in animals relative to other RPCs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Analysis of the Effects of Cell Stress and Cytotoxicity on In ...

    Science.gov (United States)

    Chemical toxicity can arise from disruption of specific biomolecular functions or through more generalized cell stress and cytotoxicity-mediated processes. Here, concentration-dependent responses of 1063 chemicals including pharmaceuticals, natural products, pesticidals, consumer, and industrial chemicals across a diverse battery of 821 in vitro assay endpoints from 7 high-throughput assay technology platforms were analyzed in order to better distinguish between these types of activities. Both cell-based and cell-free assays showed a rapid increase in the frequency of responses at concentrations where cell stress / cytotoxicity responses were observed in cell-based assays. Chemicals that were positive on at least two viability/cytotoxicity assays within the concentration range tested (typically up to 100 M) activated a median of 12% of assay endpoints while those that were not cytotoxic in this concentration range activated 1.3% of the assays endpoints. The results suggest that activity can be broadly divided into: (1) specific biomolecular interactions against one or more targets (e.g., receptors or enzymes) at concentrations below which overt cytotoxicity-associated activity is observed; and (2) activity associated with cell stress or cytotoxicity, which may result from triggering of specific cell stress pathways, chemical reactivity, physico-chemical disruption of proteins or membranes, or broad low-affinity non-covalent interactions. Chemicals showing a g

  10. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    International Nuclear Information System (INIS)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He

    2010-01-01

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole

  11. Chemical composition, and cytotoxic, antioxidant and antibacterial activities of the essential oil from ginseng leaves.

    Science.gov (United States)

    Jiang, Rui; Sun, Liwei; Wang, Yanbing; Liu, Jianzeng; Liu, Xiaodan; Feng, Hao; Zhao, Daqing

    2014-06-01

    Panax ginseng C.A.Meyer is one of the most valuable traditional Chinese medicines. In this study, the essential oil of ginseng leaves (EOGL), collected using hydrodistillation and analyzed by GC/MS, contained a complex mixture of aliphatic (69.0%), terpenoid (21.5%) and aromatic compounds (2.4%). Among 54 components identified, the major ones were palmitic acid (36.1%), beta-farnesene (15.4%), linoleic acid (9.8%) and phytol (5.6%). In the cytotoxicity study, EOGL exhibited obvious cytotoxic activities against different cancer cell lines, including Hela, A549, ZR-75-1, HT-29, SGC7901 and B16 cells. Furthermore, Annexin V-FITC/PI staining assay indicated that EOGL can induce late apoptosis of ZR-75-1 cells, and the percentage of apoptotic cells increased in a concentration-dependent manner (0.9% to 5.6% and 67.4%). In addition to this, we also found that EOGL exhibited weak DPPH radical scavenging (12.0 +/- 0.4 mg/mL) and ABTS radical scavenging activities (1.6 +/- 0.1 mg/mL), and showed antibacterial activity against the Gram-positive bacteria, Staphylococcus aureus and Bacillus subtilis, and the Gram-negative bacterium, Escherichia coli. The data suggest that EOGL, which possesses important biological activities, especially significant anticancer activity, could be a potential medicinal resource.

  12. Synthesis of Azole-containing Piperazine Derivatives and Evaluation of their Antibacterial, Antifungal and Cytotoxic Activities

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Lin Ling; Fang, Bo; Zhou, Cheng He [Southwest University, Chongqing (China)

    2010-12-15

    A series of azole-containing piperazine derivatives have been designed and synthesized. The obtained compounds were investigated in vitro for their antibacterial, antifungal and cytotoxic activities. The preliminary results showed that most compounds exhibited moderate to significant antibacterial and antifungal activities in vitro. 1-(4-((4-chlorophenyl) (phenyl)methyl)piperazin-1-yl)-2-(1H-imidazol-1-yl)ethanone and 1-(4-((4-Chlorophenyl)(phenyl)methyl)piperazin-1- yl)-2-(2-phenyl-1H-imidazol-1-yl)ethanone gave remarkable and broad-spectrum antimicrobial efficacy against all tested strains with MIC values ranging from 3.1 to 25 μg/mL, and exhibited comparable activities to the standard drugs chloramphenicol and fluconazole in clinic. Moreover, 2-((4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)methyl)- 1H-benzo[d]imidazole was found to be the most effective in vitro against the PC-3 cell line, reaching growth inhibition values (36.4, 60.1 and 76.5%) for each tested concentration: 25 μM, 50 μM and 100 μM in dose-dependent manner. The results also showed that the azole ring had noticeable effect on their antimicrobial and cytotoxic activities, and imidazole and benzimidazole moiety were much more favourable to biological activity than 1,2,4-triazole.

  13. Flow cytometric estimation on cytotoxic activity of leaf extracts from seashore plants in subtropical Japan: isolation, quantification and cytotoxic action of (-)-deoxypodophyllotoxin.

    Science.gov (United States)

    Masuda, Toshiya; Oyama, Yasuo; Yonemori, Shigetomo; Takeda, Yoshio; Yamazaki, Yuko; Mizuguchi, Shinichi; Nakata, Mami; Tanaka, Tomochika; Chikahisa, Lumi; Inaba, Yuzuru; Okada, Yoshihiko

    2002-06-01

    The cytotoxic activity of methanol extracts of leaves collected from 39 seashore plants in Iriomote Island, subtropical Japan was examined on human leukaemia cells (K562 cells) using a flow cytometer with two fluorescent probes, ethidium bromide and annexin V-FITC. Five extracts (10 microg/mL) from Hernandia nymphaeaefolia, Cerbera manghas, Pongamia pinnata, Morus australis var. glabra and Thespesia populnea greatly inhibited the growth of K562 cells. When the concentration was decreased to 1 microg/mL, only one extract from H. nymphaeaefolia still inhibited the cell growth. A cytotoxic compound was isolated from the leaves by bioassay-guided fractionation and was identified as (-)-deoxypodophyllotoxin (DPT). The fresh leaves of H. nymphaeaefolia contained a remarkably high amount of DPT (0.21 +/- 0.07% of fresh leaf weight), being clarified by a quantitative HPLC analysis. DPT at 70-80 pM started to inhibit the growth of K562 cells in an all-or-none fashion and at 100 pM or more it produced complete inhibition in all cases. Therefore, the slope of the dose-response curve was very steep. DPT at 100 pM or more decreased the cell viability to 50%-60% and increased the number of cells undergoing apoptosis (annexin V-positive cells). The results indicate that DPT contributes to the cytotoxic action of the extract from the leaves of H. nymphaeaefolia on K562 cells. Copyright 2002 John Wiley & Sons, Ltd.

  14. Antimicrobial, Anti-Inflammatory, Antiparasitic, and Cytotoxic Activities of Laennecia confusa

    Directory of Open Access Journals (Sweden)

    María G. Martínez Ruiz

    2012-01-01

    Full Text Available The current paper investigated the potential benefit of the traditional Mexican medicinal plant Laennecia confusa (Cronquist G. L. Nesom (Asteraceae. Fractions from the hexane, chloroform, methanol, and aqueous extracts were analyzed for antibacterial, antifungal, anti-inflammatory, and antiparasitic activities. The antimicrobial activity of the extracts and fractions was assessed on bacterial and fungal strains, in addition to the protozoa Leishmania donovani, using a microdilution assay. The propensity of the plant's compounds to produce adverse effects on human health was also evaluated using propidium iodine to identify damage to human macrophages. The anti-inflammatory activity of the extracts and fractions was investigated by measuring the secretion of interleukin-6. Chemical analyses demonstrated the presence of flavonoids, cyanogenic and cardiotonic glycosides, saponins, sesquiterpene lactones, and triterpenes in the chloroform extract. A number of extracts and fractions show antibacterial activity. Of particular interest is antibacterial activity against Staphylococcus aureus and its relative methicillin-resistant strain, MRSA. Hexanic and chloroformic fractions also exhibit antifungal activity and two extracts and the fraction CE 2 antiparasitic activity against Leishmania donovani. All bioactive extracts and fractions assayed were also found to be cytotoxic to macrophages. In addition, the hexane and methane extracts show anti-inflammatory activity by suppressing the secretion of interleukine-6.

  15. 7-Chloroquinolinotriazoles: synthesis by the azide-alkyne cycloaddition click chemistry, antimalarial activity, cytotoxicity and SAR studies.

    Science.gov (United States)

    Pereira, Guilherme R; Brandão, Geraldo Célio; Arantes, Lucas M; de Oliveira, Háliton A; de Paula, Renata Cristina; do Nascimento, Maria Fernanda A; dos Santos, Fábio M; da Rocha, Ramon K; Lopes, Júlio César D; de Oliveira, Alaíde Braga

    2014-02-12

    Twenty-seven 7-chloroquinolinotriazole derivatives with different substituents in the triazole moiety were synthesized via copper-catalyzed cycloaddition (CuAAC) click chemistry between 4-azido-7-chloroquinoline and several alkynes. All the synthetic compounds were evaluated for their in vitro activity against Plasmodium falciparum (W2) and cytotoxicity to Hep G2A16 cells. All the products disclosed low cytotoxicity (CC50 > 100 μM) and five of them have shown moderate antimalarial activity (IC50 from 9.6 to 40.9 μM). As chloroquine analogs it was expected that these compounds might inhibit the heme polymerization and SAR studies were performed aiming to explain their antimalarial profile. New structural variations can be designed on the basis of the results obtained. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Identification of SlpB, a Cytotoxic Protease from Serratia marcescens.

    Science.gov (United States)

    Shanks, Robert M Q; Stella, Nicholas A; Hunt, Kristin M; Brothers, Kimberly M; Zhang, Liang; Thibodeau, Patrick H

    2015-07-01

    The Gram-negative bacterium and opportunistic pathogen Serratia marcescens causes ocular infections in healthy individuals. Secreted protease activity was characterized from 44 ocular clinical isolates, and a higher frequency of protease-positive strains was observed among keratitis isolates than among conjunctivitis isolates. A positive correlation between protease activity and cytotoxicity to human corneal epithelial cells in vitro was determined. Deletion of prtS in clinical keratitis isolate K904 reduced, but did not eliminate, cytotoxicity and secreted protease production. This indicated that PrtS is necessary for full cytotoxicity to ocular cells and implied the existence of another secreted protease(s) and cytotoxic factors. Bioinformatic analysis of the S. marcescens Db11 genome revealed three additional open reading frames predicted to code for serralysin-like proteases noted here as slpB, slpC, and slpD. Induced expression of prtS and slpB, but not slpC and slpD, in strain PIC3611 rendered the strain cytotoxic to a lung carcinoma cell line; however, only prtS induction was sufficient for cytotoxicity to a corneal cell line. Strain K904 with deletion of both prtS and slpB genes was defective in secreted protease activity and cytotoxicity to human cell lines. PAGE analysis suggests that SlpB is produced at lower levels than PrtS. Purified SlpB demonstrated calcium-dependent and AprI-inhibited protease activity and cytotoxicity to airway and ocular cell lines in vitro. Lastly, genetic analysis indicated that the type I secretion system gene, lipD, is required for SlpB secretion. These genetic data introduce SlpB as a new cytotoxic protease from S. marcescens. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  17. Antimicrobial and cytotoxic potentials of Buddleja polystachya extracts

    Directory of Open Access Journals (Sweden)

    Ghada Ahmed Fawzy

    2013-06-01

    Full Text Available Most of the species of Buddleja have found applications in folk medicine. This study aimed to evaluate the in vitro antimicrobial and cytotoxic potentials of B. polystachya extracts. Four extracts were prepared A-D (dichloromethane, ethyl acetate, n-butanol, and aqueous extracts, respectively. The antimicrobial activity was evaluated using the broth micro-dilution assay for minimum inhibitory concentrations (MIC. The crystal violet staining method (CVS was used for the evaluation of the cytotoxic activity on HepG-2, MCF-7 and HCT-116 human cell lines. Results showed that the highest antimicrobial activity was given by the ethyl acetate extract followed by the dichloromethane extract, while the n-butanol revealed moderate activity against gram positive bacteria only with no activity against the rest of tested microorganisms. The aqueous extract was totally ineffective against all tested microorganisms at 20 mg/ml. Among the four extracts tested, dichloromethane and ethyl acetate extracts showed the highest cytotoxic activity on all three human cell lines.

  18. Alkaloids from Prosopis juliflora leaves induce glial activation, cytotoxicity and stimulate NO production.

    Science.gov (United States)

    Silva, A M M; Silva, A R; Pinheiro, A M; Freitas, S R V B; Silva, V D A; Souza, C S; Hughes, J B; El-Bachá, R S; Costa, M F D; Velozo, E S; Tardy, M; Costa, S L

    2007-04-01

    Prosopis juliflora is used for feeding cattle and humans. Intoxication with the plant has been reported, and is characterized by neuromuscular alterations and gliosis. Total alkaloidal extract (TAE) was obtained using acid/basic-modified extraction and was fractionated. TAE and seven alkaloidal fractions, at concentrations ranging 0.03-30 microg/ml, were tested for 24h on astrocyte primary cultures derived from the cortex of newborn Wistar rats. The MTT test and the measure of LDH activity on the culture medium, revealed that TAE and fractions F29/30, F31/33, F32 and F34/35 were cytotoxic to astrocytes. The EC(50) values for the most toxic compounds, TAE, F31/33 and F32 were 2.87 2.82 and 3.01 microg/ml, respectively. Morphological changes and glial cells activation were investigated through Rosenfeld's staining, by immunocytochemistry for the protein OX-42, specific of activated microglia, by immunocytochemistry and western immunoblot for GFAP, the marker of reactive and mature astrocytes, and by the production of nitric oxide (NO). We observed that astrocytes exposed to 3 microg/ml TAE, F29/30 or F31/33 developed compact cell body with many processes overexpressing GFAP. Treatment with 30 microg/ml TAE and fractions, induced cytotoxicity characterized by a strong cell body contraction, very thin and long processes and condensed chromatin. We also observed that when compared with the control (+/-1.34%), the proportion of OX-42 positive cells was increased in cultures treated with 30 microg/ml TAE or F29/30, F31/33, F32 and F34/35, with values raging from 7.27% to 28.74%. Moreover, incubation with 3 microg/ml F32, 30 microg/ml TAE, F29/30, F31/33 or F34/35 induced accumulation of nitrite in culture medium indicating induction of NO production. Taken together these results show that TAE and fractionated alkaloids from P. juliflora act directly on glial cells, inducing activation and/or cytotoxicity, stimulating NO production, and may have an impact on neuronal

  19. Physicochemical Properties, Antioxidant and Cytotoxic Activities of Crude Extracts and Fractions from Phyllanthus amarus

    Directory of Open Access Journals (Sweden)

    Van Tang Nguyen

    2017-06-01

    Full Text Available Background: Phyllanthus amarus (P. amarus has been used as a medicinal plant for the prevention and treatment of chronic ailments such as diabetes, hepatitis, and cancer. Methods: The physicochemical properties, antioxidant and cytotoxic activities of crude extracts and fractions from P. amarus were determined using spectrophotometric method. Results: The P. amarus methanol (PAM extract had lower levels of residual moisture (7.40% and water activity (0.24 and higher contents of saponins, phenolics, flavonoids, and proanthocyanidins (1657.86 mg escin equivalents, 250.45 mg gallic acid equivalents, 274.73 mg rutin equivalents and 61.22 mg catechin equivalents per g dried extract, respectively than those of the P. amarus water (PAW extract. The antioxidant activity of PAM extract was significantly higher (p < 0.05 than that of the PAW extract, PAM fractions, and phyllanthin (known as a major compound in the P. amarus. Higher cytotoxic activity of PAM extract based on MTT assay on different cell lines including MiaPaCa-2 (pancreas, HT29 (colon, A2780 (ovarian, H460 (lung, A431 (skin, Du145 (prostate, BE2-C (neuroblastoma, MCF-7 (breast, MCF-10A (normal breast, and U87, SJ-G2, SMA (glioblastoma was observed in comparison to the PAW extract and PAM fractions. The cytotoxic potential of the PAW extract (200 μg/mL, based on the CCK-8 assay on a pancreatic cancer cell line (MiaCaPa2 was significantly lower (p < 0.05 than those of gemcitabine (50 nM and a saponin-enriched extract from quillajia bark at 200 μg/mL (a commercial product, but was significantly higher than that of phyllanthin at 2 μg/mL. Conclusions: The results achieved from this study reveal that the PA extracts are a potential source for the development of natural antioxidant products and/or novel anticancer drugs.

  20. Mannose receptor induces T-cell tolerance via inhibition of CD45 and up-regulation of CTLA-4.

    Science.gov (United States)

    Schuette, Verena; Embgenbroich, Maria; Ulas, Thomas; Welz, Meike; Schulte-Schrepping, Jonas; Draffehn, Astrid M; Quast, Thomas; Koch, Katharina; Nehring, Melanie; König, Jessica; Zweynert, Annegret; Harms, Frederike L; Steiner, Nancy; Limmer, Andreas; Förster, Irmgard; Berberich-Siebelt, Friederike; Knolle, Percy A; Wohlleber, Dirk; Kolanus, Waldemar; Beyer, Marc; Schultze, Joachim L; Burgdorf, Sven

    2016-09-20

    The mannose receptor (MR) is an endocytic receptor involved in serum homeostasis and antigen presentation. Here, we identify the MR as a direct regulator of CD8(+) T-cell activity. We demonstrate that MR expression on dendritic cells (DCs) impaired T-cell cytotoxicity in vitro and in vivo. This regulatory effect of the MR was mediated by a direct interaction with CD45 on the T cell, inhibiting its phosphatase activity, which resulted in up-regulation of cytotoxic T-lymphocyte-associated Protein 4 (CTLA-4) and the induction of T-cell tolerance. Inhibition of CD45 prevented expression of B-cell lymphoma 6 (Bcl-6), a transcriptional inhibitor that directly bound the CTLA-4 promoter and regulated its activity. These data demonstrate that endocytic receptors expressed on DCs contribute to the regulation of T-cell functionality.

  1. Unsaturated fatty acids lactose esters: cytotoxicity, permeability enhancement and antimicrobial activity.

    Science.gov (United States)

    Lucarini, Simone; Fagioli, Laura; Campana, Raffaella; Cole, Hannah; Duranti, Andrea; Baffone, Wally; Vllasaliu, Driton; Casettari, Luca

    2016-10-01

    Sugar based surfactants conjugated with fatty acid chains are an emerging broad group of highly biocompatible and biodegradable compounds with established and potential future applications in the pharmaceutical, cosmetic and food industries. In this work, we investigated absorption enhancing and antimicrobial properties of disaccharide lactose, monoesterified with unsaturated fatty acids through an enzymatic synthetic approach. After chemical and cytotoxicity characterizations, their permeability enhancing activity was demonstrated using intestinal Caco-2 monolayers through transepithelial electrical resistance (TEER) and permeability studies. The synthesized compounds, namely lactose palmitoleate (URB1076) and lactose nervonate (URB1077), were shown to exhibit antimicrobial activity versus eight pathogenic species belonging to Gram-positive, Gram-negative microorganisms and fungi. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Antibacterial and Cytotoxic Activities of Acacia nilotica Lam ...

    African Journals Online (AJOL)

    Erah

    Keywords: Acacia nilotica, ESBLs, MRSA, E. coli, Klebsiella, Antibacterial resistance, Cytotoxicity. Received: ... infectious diseases, is an age-long practice, especially ... used in a variety of infections. ... E. coli K1 [14] and MRSA [15] were used.

  3. Flavonoids and Ellagitannins Characterization, Antioxidant and Cytotoxic Activities of Phyllanthus acuminatus Vahl

    Directory of Open Access Journals (Sweden)

    Mirtha Navarro

    2017-12-01

    Full Text Available The phenolic composition of leaves from Phyllanthus acuminatus L., a plant commonly used in Costa Rica as traditional medicine, was studied using UPLC-ESI-MS on an enriched phenolic extract. A total of 20 phenolic compounds were identified, comprising eight flavonoids (two flavanones—pinocembrin isomers and six derivatives from apigenin, chrysin, quercetin, and kaempferol; seven ellagitannins, two flavan-3-ols (prodelphinidin B dimer and (epigallocatechin; and three phenolic acids (ellagic acid, trimethylellagic acid, and ferulic acid. All of these compounds are reported for the first time in P. acuminatus, while previously reported in the genus Phyllanthus. Antioxidant evaluation was performed for P. acuminatus phenolic extract obtaining DPPH results with a remarkably low IC50 value of 0.15 μg/mL. Also, cytotoxicity on gastric AGS and colon SW20 adenocarcinoma cell lines was evaluated, and highly promising results were obtained, with IC50 values of 11.3 μg/mL and 10.5 μg/mL, respectively. Furthermore, selectivity index values obtained when comparing cytotoxicity on normal Vero cells was SI > 20 for both cancer cell lines, indicating a particularly high selectivity. Additionally, Justicidin B, a metabolite extensively studied for its antitumoral activity, was isolated from a non-polar extract of P. acuminatus, and comparatively evaluated for both bioactivities. The DPPH value obtained for Justicidin B was moderate (IC50 = 14.28 μg/mL, while cytotoxicity values for both AGS (IC50 = 19.5 μg/mL and SW620 (IC50 = 24.8 μg/mL cell lines, as well as selectivity when compared with normal Vero cells (SI = 5.4 and 4.2 respectively, was good, but lower than P. acuminatus extract. These preliminary results suggest that P. acuminatus enriched phenolic extract containing flavonoids, ellagitannins, flavan-3-ols, and phenolic acids, reported for the first time in this plant, could be of interest for further cancer cytotoxicity studies to elucidate

  4. Antibacterial and Cytotoxic Activity of Extracts and Isolated Compounds from Myrciariaferruginea (Myrtaceae

    Directory of Open Access Journals (Sweden)

    Cinthia Costa de Lima

    2017-01-01

    Full Text Available This study evaluated for the first time the antibacterial activity, cell viability and migration ability on 3T3 murine fibroblast cells of extracts and isolated compounds [lupeol (1, hexamethylcoruleoellagic acid (2 and a mixture of 1 and betulinaldehyde (3] of Myrciaria ferruginea. In antibacterial assays extracts were susceptible only against S. aureus (MIC 500 μg/mL and S. epidermidis (MIC ranging from 7.8 to 500 μg/mL and compounds 1-3have shown no significant activity. In trials for c ell viability, with exception of MeOH-H 2O fraction from leaves (viable cells > 90%, both the crude extract and other fractions showed inhibition of cell growth (viable cells ≤ 80% at 15.625 and 31.25 μg/mL; while the samples from stems, with the exception of CHCl 3 fraction that showed strong cytotoxic effect at the lowest concentration tested (15.625 μg/mL, the other fractions were not cytotoxic. Compounds (1-3 inhibited cell viability in dose dependent manner (15.625 to 500 μg/mL. Mixture containing 1 and 3 showed inhibitions only in concentrations greater than 62.5 μg/mL while compound 2 decreased from the lowest concentration tested. In scratch wound assay, these compoundsnot increased the population of fibroblasts at concentrations less than 62.5 μg/mL.

  5. Nanoencapsulation of gallic acid and evaluation of its cytotoxicity and antioxidant activity.

    Science.gov (United States)

    de Cristo Soares Alves, Aline; Mainardes, Rubiana Mara; Khalil, Najeh Maissar

    2016-03-01

    Gallic acid is an important polyphenol compound presenting various biological activities. The objective of this study was to prepare, characterize and evaluate poly(lactic-co-glycolic acid) (PLGA) nanoparticles coated or not with polysorbate 80 (PS80) containing gallic acid. Nanoparticles coated or not with PS80 were produced by emulsion solvent evaporation method and presented a mean size of around 225 nm, gallic acid encapsulation efficiency of around 26% and zeta potential of -22 mV. Nanoparticle formulations were stable during storage, except nanoparticles coated with PS80 stored at room temperature. In vitro release profile demonstrated a quite sustained gallic acid release from nanoparticles and PS80-coating decreased drug release. Cytotoxicity over red blood cells was assessed and gallic acid-loaded PLGA nanoparticles at all analyzed concentrations demonstrated lack of hemolysis, while PS80-nanoparticles containing gallic acid were cytotoxic only in higher concentrations. Antioxidant potential of nanoparticles containing gallic acid was assessed and PLGA uncoated nanoparticles presented greater efficacy than PS80-coated PLGA nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Cytotoxic, antimigratory, pro-and antioxidative activities of extracts from medicinal mushrooms on colon cancer cell lines

    Directory of Open Access Journals (Sweden)

    Šeklić Dragana S.

    2016-01-01

    Full Text Available Methanol extracts of five commercially available mushroom species (Phellinus linteus (Berk. et Curt Teng, Cordyceps sinensis (Berk. Sacc., Lentinus edodes (Berk. Pegler, Coprinus comatus (O. F. Müll. Pers. and Ganoderma lucidum (Curtis P. Karst, traditionally used as anticancer agents, were evaluated in vitro for their total phenol and flavonoid contents, cytotoxic and antimigratory activities and antioxidant/prooxidant effects on colon cancer cell lines (HCT-116 and SW-480. Spectrophotometric methods were used for the determination of total phenol content, flavonoid concentrations and DPPH activity of the extracts. Cytotoxic activity was measured by the MTT assay. The antimigratory activity of extracts was determined using the Transwell assay and immunofluorescence staining of β-catenin. The prooxidant/antioxidant status was followed by measuring the superoxide anion radical (O2•-, nitrite and reduced glutathione (GSH concentrations. Our results show that the highest phenolic and flavonoid content was found in P. linteus, and its DPPH-scavenging capacity was significantly higher than in other samples. The P. linteus extract significantly decreased cell viability of both tested cancer cell lines. All other extracts selectively inhibited SW-480 cell viability, but did not show significant cytotoxic activity. The mushroom extracts caused changes in the prooxidant/antioxidant status of cells, inducing oxidative stress. All extracts tested on HCT-116 cells demonstrated significant antimigratory effects, which correlated with increased production of O2•- and a reduced level of β-catenin protein expression, while only P. linteus showed the same effect on SW-480 cells. The results of the present research indicate that the mushroom extracts causes oxidative stress which has a pronounced impact on the migratory status of colon cancer cell lines. [Projekat Ministarstva nauke Republike Srbije, br. III41010

  7. Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: roles of caspase activation and oxidative stress.

    Science.gov (United States)

    Lu, Jingtao; Miyakawa, Kazuhisa; Roth, Robert A; Ganey, Patricia E

    2013-01-01

    Amiodarone (AMD), a class III antiarrhythmic drug, causes idiosyncratic hepatotoxicity in human patients. We demonstrated previously that tumor necrosis factor-alpha (TNF-α) plays an important role in a rat model of AMD-induced hepatotoxicity under inflammatory stress. In this study, we developed a model in vitro to study the roles of caspase activation and oxidative stress in TNF potentiation of AMD cytotoxicity. AMD caused cell death in Hepa1c1c7 cells, and TNF cotreatment potentiated its toxicity. Activation of caspases 9 and 3/7 was observed in AMD/TNF-cotreated cells, and caspase inhibitors provided minor protection from cytotoxicity. Intracellular reactive oxygen species (ROS) generation and lipid peroxidation were observed after treatment with AMD and were further elevated by TNF cotreatment. Adding water-soluble antioxidants (trolox, N-acetylcysteine, glutathione, or ascorbate) produced only minor attenuation of AMD/TNF-induced cytotoxicity and did not influence the effect of AMD alone. On the other hand, α-tocopherol (TOCO), which reduced lipid peroxidation and ROS generation, prevented AMD toxicity and caused pronounced reduction in cytotoxicity from AMD/TNF cotreatment. α-TOCO plus a pancaspase inhibitor completely abolished AMD/TNF-induced cytotoxicity. In summary, activation of caspases and oxidative stress were observed after AMD/TNF cotreatment, and caspase inhibitors and a lipid-soluble free-radical scavenger attenuated AMD/TNF-induced cytotoxicity.

  8. Effect of varying incubation periods on cytotoxicity and virucidal ...

    African Journals Online (AJOL)

    Backgrounds: Justicia gendarussa Burm.f. has an anti-HIV activity. This study was conducted to evaluate the effects of incubation periods on the cytotoxicity and virucidal activities of the J. gendarussa leaves extract on MOLT-4 cells. Materials and Methods: The cytotoxicity assay was evaluated by using the WST-1 test with ...

  9. Biosynthesis of Silver Nanoparticles Using Taxus yunnanensis Callus and Their Antibacterial Activity and Cytotoxicity in Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Qian Hua Xia

    2016-09-01

    Full Text Available Plant constituents could act as chelating/reducing or capping agents for synthesis of silver nanoparticles (AgNPs. The green synthesis of AgNPs has been considered as an environmental friendly and cost-effective alternative to other fabrication methods. The present work described the biosynthesis of AgNPs using callus extracts from Taxus yunnanensis and evaluated their antibacterial activities in vitro and potential cytotoxicity in cancer cells. Callus extracts were able to reduce silver nitrate at 1 mM in 10 min. Transmission electron microscope (TEM indicated the synthesized AgNPs were spherical with the size range from 6.4 to 27.2 nm. X-ray diffraction (XRD confirmed the AgNPs were in the form of nanocrystals. Fourier transform infrared spectroscopy (FTIR suggested phytochemicals in callus extracts were possible reducing and capping agents. The AgNPs exhibited effective inhibitory activity against all tested human pathogen bacteria and the inhibition against Gram-positive bacteria was stronger than that of Gram-negative bacteria. Furthermore, they exhibited stronger cytotoxic activity against human hepatoma SMMC-7721 cells and induced noticeable apoptosis in SMMC-7721 cells, but showed lower cytotoxic against normal human liver cells (HL-7702. Our results suggested that biosynthesized AgNPs could be an alternative measure in the field of antibacterial and anticancer therapeutics.

  10. PMA synergistically enhances apicularen A-induced cytotoxicity by disrupting microtubule networks in HeLa cells

    International Nuclear Information System (INIS)

    Seo, Kang-Sik; Hwang, Byung-Doo; Kim, Jong-Seok; Park, Ji-Hoon; Song, Kyoung-Sub; Yun, Eun-Jin; Park, Jong-Il; Kweon, Gi Ryang; Yoon, Wan-Hee; Lim, Kyu

    2014-01-01

    Combination therapy is key to improving cancer treatment efficacy. Phorbol 12-myristate 13-acetate (PMA), a well-known PKC activator, increases the cytotoxicity of several anticancer drugs. Apicularen A induces cytotoxicity in tumor cells through disrupting microtubule networks by tubulin down-regulation. In this study, we examined whether PMA increases apicularen A-induced cytotoxicity in HeLa cells. Cell viability was examined by thiazolyl blue tetrazolium (MTT) assays. To investigate apoptotic potential of apicularen A, DNA fragmentation assays were performed followed by extracting genomic DNA, and caspase-3 activity assays were performed by fluorescence assays using fluorogenic substrate. The cell cycle distribution induced by combination with PMA and apicularen A was examined by flow cytometry after staining with propidium iodide (PI). The expression levels of target proteins were measured by Western blotting analysis using specific antibodies, and α-tubulin mRNA levels were assessed by reverse transcription polymerase chain reaction (RT-PCR). To examine the effect of combination of PMA and apicularen A on the microtubule architecture, α-tubulin protein and nuclei were visualized by immunofluorescence staining using an anti-α-tubulin antibody and PI, respectively. We found that apicularen A induced caspase-dependent apoptosis in HeLa cells. PMA synergistically increased cytotoxicity and apoptotic sub-G 1 population induced by apicularen A. These effects were completely blocked by the PKC inhibitors Ro31-8220 and Go6983, while caspase inhibition by Z-VAD-fmk did not prevent cytotoxicity. RNA interference using siRNA against PKCα, but not PKCβ and PKCγ, inhibited cytotoxicity induced by combination PMA and apicularen A. PMA increased the apicularen A-induced disruption of microtubule networks by further decreasing α- and β-tubulin protein levels in a PKC-dependent manner. These results suggest that the synergy between PMA and apicularen A is involved by

  11. The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis

    International Nuclear Information System (INIS)

    Jiménez-Medina, Eva; Berruguilla, Enrique; Romero, Irene; Algarra, Ignacio; Collado, Antonia; Garrido, Federico; Garcia-Lora, Angel

    2008-01-01

    Protein-bound polysaccharide (PSK) is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated. The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells. PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G 0 /G 1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation. These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells

  12. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles.

    Science.gov (United States)

    Pylina, Yana I; Shadrin, Dmitry M; Shevchenko, Oksana G; Startseva, Olga M; Velegzhaninov, Igor O; Belykh, Dmitry V; Velegzhaninov, Ilya O

    2017-01-05

    In the present work, we investigated the dark and photoinduced cytotoxic activity of the new chlorophyll-a derivatives which contain the substituents of oligoethylene glycol on the periphery of their macrocycles. These compounds were tested using human cell lines to estimate their potential as photosensitizers for photodynamic therapy of cancer. It was shown that all the tested compounds have expressed photoinduced cytotoxic activity in vitro. Detailed study of the biological activity of one of the most perspective compound in this series-pyropheophorbide-a 17-diethylene glycol ester (Compound 21 ) was performed. This new compound is characterized by lower dark cytotoxicity and higher photoinduced cytotoxicity than previously described in a similar compound (DH-I-180-3) and clinically used Photolon TM . Using fluorescent microscopy, it was shown that Compound 21 quickly penetrates the cells. Analysis of caspase-3 activity indicated an apoptosis induction 40 min after exposure to red light (λ = 660 nm). The induction of DNA damages and apoptosis was shown using Comet assay. The results of expression analysis of the stress-response genes indicate an activation of the genes which control the cell cycle and detoxification of the free radicals after an exposure of HeLa cells to Compound 21 and to red light. High photodynamic activity of this compound and the ability to oxidize biomolecules was demonstrated on nuclear-free mice erythrocytes. In addition, it was shown that Compound 21 is effectively activated with low energy 700 nm light, which can penetrate deep into the tissue. Thus, Compound 21 is a prospective substance for development of the new drugs for photodynamic therapy of cancer.

  13. Dark and Photoinduced Cytotoxic Activity of the New Chlorophyll-a Derivatives with Oligoethylene Glycol Substituents on the Periphery of Their Macrocycles

    Directory of Open Access Journals (Sweden)

    Yana I. Pylina

    2017-01-01

    Full Text Available In the present work, we investigated the dark and photoinduced cytotoxic activity of the new chlorophyll-a derivatives which contain the substituents of oligoethylene glycol on the periphery of their macrocycles. These compounds were tested using human cell lines to estimate their potential as photosensitizers for photodynamic therapy of cancer. It was shown that all the tested compounds have expressed photoinduced cytotoxic activity in vitro. Detailed study of the biological activity of one of the most perspective compound in this series—pyropheophorbide-a 17-diethylene glycol ester (Compound 21 was performed. This new compound is characterized by lower dark cytotoxicity and higher photoinduced cytotoxicity than previously described in a similar compound (DH-I-180-3 and clinically used PhotolonTM. Using fluorescent microscopy, it was shown that Compound 21 quickly penetrates the cells. Analysis of caspase-3 activity indicated an apoptosis induction 40 min after exposure to red light (λ = 660 nm. The induction of DNA damages and apoptosis was shown using Comet assay. The results of expression analysis of the stress-response genes indicate an activation of the genes which control the cell cycle and detoxification of the free radicals after an exposure of HeLa cells to Compound 21 and to red light. High photodynamic activity of this compound and the ability to oxidize biomolecules was demonstrated on nuclear-free mice erythrocytes. In addition, it was shown that Compound 21 is effectively activated with low energy 700 nm light, which can penetrate deep into the tissue. Thus, Compound 21 is a prospective substance for development of the new drugs for photodynamic therapy of cancer.

  14. Cytotoxic Effect and Antioxidant Activity of Bioassay- guided ...

    African Journals Online (AJOL)

    ... were investigated for their in vitro cytotoxic effect against various cancer cell lines using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- ... In MTT assay, fractions 1, 2 and 4 from methanol extract showed the ... plant is used as antitumourigenic, antioxidant,.

  15. DNA and factor VII-activating protease protect against the cytotoxicity of histones

    NARCIS (Netherlands)

    Marsman, Gerben; von Richthofen, Helen; Bulder, Ingrid; Lupu, Florea; Hazelzet, Jan; Luken, Brenda M.; Zeerleder, Sacha

    2017-01-01

    Circulating histones have been implicated as major mediators of inflammatory disease because of their strong cytotoxic effects. Histones form the protein core of nucleosomes; however, it is unclear whether histones and nucleosomes are equally cytotoxic. Several plasma proteins that neutralize

  16. Dendritic cells decreased the concomitant expanded Tregs and Tregs related IL-35 in cytokine-induced killer cells and increased their cytotoxicity against leukemia cells.

    Directory of Open Access Journals (Sweden)

    Ying Pan

    Full Text Available Regulatory T cells (Tregs are potent immunosuppressive cells and essential for inducing immune tolerance. Recent studies have reported that Tregs and Tregs related cytokines can inhibit the antitumor activity of cytokine-induced killer (CIK cells, but dendritic cells co-cultured CIK (DC-CIK cells can be used for induction of a specific immune response by blocking of Tregs and TGF-β, IL-10. As a novel identified cytokine, IL-35 is specially produced by Tregs and plays an essential role in immune regulation. However, it remains unknown whether IL-35 roles in tumor immunotherapy mediated by CIK and DC-CIK cells. In this study, we cultured CIK and DC-CIK cells from the same healthy adult samples, and investigated their phenotype, proliferation, cytotoxic activity against leukemia cell lines K562 and NB4 by FCM and CCK-8, measured IL-35, TGF-β and IL-10 protein by ELISA, detected Foxp3, IL-35 and IL-35 receptor mRNA by Real-time PCR, respectively. We found Tregs and IL-35 concomitantly expanded by a time-dependent way during the generation of CIK cells, but DC significantly down-regulated the expression of them and simultaneously up-regulated the proliferation ability as well as cytotoxic activity of CIK cells against leukemia cell lines. Therefore, our data suggested that DC decreased concomitant expanded Tregs and Tregs related IL-35 in CIK cells and might contribute to improve their cytotoxicity against leukemia cells in vitro.

  17. Actinomycin D synergistically enhances the cytotoxicity of CDDP on KB cells by activating P53 via decreasing P53-MDM2 complex.

    Science.gov (United States)

    Wang, Lin; Pang, Xiao-Cong; Yu, Zi-Ru; Yang, Sheng-Qian; Liu, Ai-Lin; Wang, Jin-Hua; Du, Guan-Hua

    2017-06-01

    The aim of this study is to investigate the synergism of low dose of actinomycin D (LDActD) to the cytotoxicity of cisplatin (CDDP) on KB cells. The role of P53 reactivation by LDActD in the synergism and its mechanism were further studied. Cell viability was determined by MTT assay. Apoptosis was determined by AnnexinV-FITC/PI staining. Mitochondrial membrane potential (MMP) was detected by JC-1 staining. Expression of proteins was detected by Western blotting (WB) and/or immunofluorescence (IF). Molecular docking of actinomycin D (ACTD) to Mouse double minute 2 homolog (MDM2) and Mouse double minute 2 homolog X (MDMX). MDMX was analyzed by Discovery Studio. The content of P53-MDM2 complex was detected by ELISA assay. The cytotoxicity of CDDP was increased by the combination of LDActD in kinds of cancer cells. Molecular docking showed strong interaction between ACTD and MDM2/MDMX. Meanwhile, LDActD significantly decreased P53-MDM2 complex. Significant increase of the apoptotic activity by the combination therapy in KB cells is P53 upregulated modulator of apoptosis (PUMA) dependent. In addition to the decrease in MMP, LDActD increased P53 regulated protein and decreased BCL-XL in KB cells. LDActD efficiently enhanced the cytotoxicity of CDDP in cancer cells and induced P53-PUMA-dependent and mitochondria-mediated apoptosis in KB cells. The reactivation of P53 was probably achieved by disturbing the interaction of P53 and MDM2/MDMX.

  18. Cetuximab Enhanced the Cytotoxic Activity of Immune Cells during Treatment of Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Lin Wang

    2017-11-01

    Full Text Available Background/Aims: Cetuximab is a chimeric IgG1 monoclonal antibody which targets the extracellular domain of epidermal growth factor receptor. This antibody is widely used for colorectal cancer (CRC treatment but its influence on the immune system is incompletely understood. Methods: The immune influence of cetuximab therapy in CRC patients was investigated by analyzing peripheral blood mononuclear cells using flow cytometry. We undertook in vitro cytotoxicity and cytokine-profile assays to ascertain the immunomodulatory effect of cetuximab treatment. Results: The number of CD3+ T, CD8+ T, and natural killer (NK cells was increased significantly and T-regulatory cells reduced gradually after cetuximab treatment. Percentage of CD4+ T, natural killer T (NKT-like, invariant NKT, and dendritic cells was similar between baseline patients and cetuximab patients. Expression of CD137 on NK and CD8+ T cells was increased significantly after 4 weeks of cetuximab therapy. In vitro cetuximab treatment markedly increased expression of CD137 and CD107a on NK and CD8+ T cells. Cetuximab treatment promoted the cytotoxic activity of NK and CD8+ T cells against tumor cells. Conclusion: Cetuximab treatment promotes activation of the immune response but alleviates immunosuppression: this might be the underlying anti-CRC effect of cetuximab.

  19. Selective Cytotoxic Activity of Se-Methyl-Seleno-L-Cysteine- and Se-Polysaccharide-Containing Extracts from Shiitake Medicinal Mushroom, Lentinus edodes (Agaricomycetes).

    Science.gov (United States)

    Klimaszewska, Marzenna; Górska, Sandra; Dawidowski, Maciej; Podsadni, Piotr; Szczepanska, Agnieszka; Orzechowska, Emilia; Kurpios-Piec, Dagmara; Grosicka-Maciag, Emilia; Rahden-Staroń, Iwonna; Turło, Jadwiga

    2017-01-01

    Numerous formulations derived from the shiitake medicinal mushroom, Lentinus edodes, demonstrate anticancer activities. We hypothesized that isolates from selenium (Se)-enriched mycelia of L. edodes would possess stronger cancer-preventive properties than current preparations. The aim of this study was to investigate whether the presence of Se-methyl-seleno-L-cysteine in mycelial extracts of L. edodes affects their cytotoxic activity (makes them stronger) or whether they are as effective as Se-containing polysaccharides. Extracts were prepared from Se-containing mycelia under various conditions and assayed for cytotoxic activity in cancer (PC3 and HeLa) and normal (HMEC-1) cell lines. The chemical composition of the extracts was examined; specifically, the amounts of potentially cytotoxic Se compounds (methylselenocysteine, selenomethionine, and Se-containing polysaccharides) were measured. The relationship between extract composition and biological activity was characterized. Mycelial cultures were cultivated in a 10-L bioreactor in medium enriched with sodium selenite. Mycelial extracts were prepared either at 100°C or at 4°C in acidic solution. Total Se content was determined using the atomic absorption spectrometry method, and methylselenocysteine and selenomethionine contents were measured using reverse-phase high-performance liquid chromatography. Protein, carbohydrate, and polyphenolic contents were determined with spectrophotometric methods, and Se-containing polysaccharides were measured with the use of precipitation. Anticancer activity of mycelial extracts was examined using the MTT cell viability assay. Extracts containing Se-methyl-seleno-L-cysteine or Se-polysaccharides prepared at 4°C and 100°C, respectively, display moderate, time-dependent, specific cytotoxic activity in HeLa and PC3 cell lines. The effect in HeLa cells is more pronounced in the extract prepared at 4°C than at 100°C. The effect is almost equal for the PC3 cell line. However

  20. The Cytotoxicity of Elderberry Ribosome-Inactivating Proteins Is Not Solely Determined by Their Protein Translation Inhibition Activity.

    Directory of Open Access Journals (Sweden)

    Chenjing Shang

    Full Text Available Although the protein translation inhibition activity of ribosome inactivating proteins (RIPs is well documented, little is known about the contribution of the lectin chain to the biological activity of these proteins. In this study, we compared the in vitro and intracellular activity of several S. nigra (elderberry RIPs and non-RIP lectins. Our data demonstrate that RIPs from elderberry are much more toxic to HeLa cells than to primary fibroblasts. Differences in the cytotoxicity between the elderberry proteins correlated with differences in glycan specificity of their lectin domain, cellular uptake efficiency and intracellular destination. Despite the fact that the bulk of the RIPs accumulated in the lysosomes and partly in the Golgi apparatus, we could demonstrate effective inhibition of protein synthesis in cellula. As we also observed cytotoxicity for non-RIP lectins, it is clear that the lectin chain triggers additional pathways heralding cell death. Our data suggest that one of these pathways involves the induction of autophagy.

  1. Two new alkaloids from Portulaca oleracea and their cytotoxic activities.

    Science.gov (United States)

    Tian, Jin-Long; Liang, Xiao; Gao, Pin-Yi; Li, Dan-Qi; Sun, Qian; Li, Ling-Zhi; Song, Shao-Jiang

    2014-01-01

    Two new alkaloids named (3R)-3,5-bis(3-methoxy-4-hydroxyphenyl)-2,3-dihydro-2(1H)-pyridinone (1) and 1,5-dimethyl-6-phenyl-1,2-dihydro-1,2,4-triazin-3(2H)-one (2), together with two known compounds (7'R)-N-feruloyl normetanephrine (3) and N-trans-feruloyl tyramine (4) were isolated from the air-dried aerial parts of Portulaca oleracea L. Their structures and configurations were elucidated by spectroscopic methods including 1D NMR, 2D NMR, and HR-MS techniques. In addition, compounds 1-4 were tested for in vitro cytotoxic activities against human lung (K562 and A549) and breast (MCF-7 and MDA-MB-435) cancer cell lines.

  2. Phenolic compounds from Glycyrrhiza pallidiflora Maxim. and their cytotoxic activity.

    Science.gov (United States)

    Shults, Elvira E; Shakirov, Makhmut M; Pokrovsky, Mikhail A; Petrova, Tatijana N; Pokrovsky, Andrey G; Gorovoy, Petr G

    2017-02-01

    Twenty-one phenolic compounds (1-21) including dihydrocinnamic acid, isoflavonoids, flavonoids, coumestans, pterocarpans, chalcones, isoflavan and isoflaven, were isolated from the roots of Glycyrrhiza pallidiflora Maxim. Phloretinic acid (1), chrysin (6), 9-methoxycoumestan (8), isoglycyrol (9), 6″-O-acetylanonin (19) and 6″-O-acetylwistin (21) were isolated from G. pallidiflora for the first time. Isoflavonoid acetylglycosides 19, 21 might be artefacts that could be produced during the EtOAc fractionation process of whole extract. Compounds 2-4, 10, 11, 19 and 21 were evaluated for their cytotoxic activity with respect to model cancer cell lines (CEM-13, MT-4, U-937) using the conventional MTT assays. Isoflavonoid calycosin (4) showed the best potency against human T-cell leukaemia cells MT-4 (CTD 50 , 2.9 μM). Pterocarpans medicarpin (10) and homopterocarpin (11) exhibit anticancer activity in micromolar range with selectivity on the human monocyte cells U-937. The isoflavan (3R)-vestitol (16) was highly selective on the lymphoblastoid leukaemia cells CEM-13 and was more active than the drug doxorubicin.

  3. Effects of human pharmaceuticals on cytotoxicity, EROD activity and ROS production in fish hepatocytes

    International Nuclear Information System (INIS)

    Laville, N.; Aiet-Aiessa, S.; Gomez, E.; Casellas, C.; Porcher, J.M.

    2004-01-01

    Pharmaceuticals are found in the aquatic environment but their potential effects on non-target species like fish remain unknown. This in vitro study is a first approach in the toxicity assessment of human drugs on fish. Nine pharmaceuticals were tested on two fish hepatocyte models: primary cultures of rainbow trout hepatocytes (PRTH) and PLHC-1 fish cell line. Cell viability, interaction with cytochrome P450 1A (CYP1A) enzyme and oxidative stress were assessed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrasodium bromide tetrazolium (MTT), 7-ethoxyresorufin-o-deethylase (EROD) and dichlorofluorescein (DCFH-DA) assays, respectively. The tested drugs were clofibrate (CF), fenofibrate (FF), carbamazepine (CBZ), fluoxetine (FX), diclofenac (DiCF), propranolol (POH), sulfamethoxazole (SFX), amoxicillin (AMX) and gadolinium chloride (GdCl 3 ). All substances were cytotoxic, except AMX at concentration up to 500 μM. The calculated MTT EC 50 values ranged from 2 μM (CF) to 651 μM (CBZ) in PLHC-1, and from 53 μM (FF) to 962 μM (GdCl 3 ) in PRTH. CF, FF, and FX were the most cytotoxic drugs and induced oxidative stress before being cytotoxic. Compared to hepatocytes from human and dog, fish hepatocytes seemed to be more susceptible to the peroxisome proliferators (PPs) CF and FF. In PLHC-1 cells none of the tested drugs induced the EROD activity whereas POH appeared as a weak EROD inducer in PRTH. Moreover, in PRTH, SFX, DiCF, CBZ and to a lesser extend, FF and CF inhibited the basal EROD activity at clearly sublethal concentrations which may be of concern at the biological and chemical levels in a multipollution context

  4. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  5. Studies on constituents with cytotoxic and cytostatic activity of two Turkish medicinal plants Phlomis armeniaca and Scutellaria salviifolia.

    Science.gov (United States)

    Saracoglu, I; Inoue, M; Calis, I; Ogihara, Y

    1995-10-01

    Ten known glycosidic compounds, betulalbuside A (1), 8-hydroxylinaloyl,3-O-beta-D-glucopyranoside (2) (monoterpen glycosides), ipolamide (3) (iridoid glycoside), acteoside (verbascoside) (4), leucosceptoside A (5), martynoside (6), forsythoside B (7), phlinoside B (8), phlinoside C (9), and teuerioside (10) (phenylpropanoid glycosides) were isolated from methanolic extracts of Phlomis armeniaca and Scutellaria salviifolia (Labiatae). Structure elucidations were carried out using 1H-, 13C-NMR and FAB-MS spectra, as well as chemical evidence. The cytotoxic and cytostatic activities of isolated compounds were investigated by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) method. Among the glycosides obtained here, caffeic acid-containing phenylpropanoid (or phenethyl alcohol, or phenylethanoid) glycosides were found to show activity against several kinds of cancer cells. However, they didn't affect the growth and viability of primary-cultured rat hepatocytes. Study of the structure-activity relationship indicated that ortho-dihydroxy aromatic systems of phenylpropanoid glycosides are necessary for their cytotoxic and cytostatic activities.

  6. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia

    Science.gov (United States)

    2013-01-01

    Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their

  7. Sesquiterpene lactones: Mechanism of antineoplastic activity; relationship of cellular glutathione to cytotoxicity; and disposition

    International Nuclear Information System (INIS)

    Grippo, A.A.

    1987-01-01

    Helenalin, a sesquiterpene lactone, inhibited the growth of P388 lymphocytic and L1210 lymphoid leukemia, and Ehrlich ascites and KB carcinoma cells. The L1210 leukemia cells were most sensitive to the cytotoxic effects of helenalin. Helenalin's antineoplastic effects were due to inhibition of DNA synthesis by suppressing the activities of enzymes involved in this biosynthetic pathway; i.e., IMP dehydrogenase, ribonucleoside diphosphate reductase, thioredoxin complex, GSH disulfide oxidoreductase and DNA polymerase α activities. The relationship of reduced glutathione (GSH) to the cytotoxic effects of helanalin was evaluated. L1210 cells, which were more sensitive to helenalin's toxicity, contained lower basal concentrations of GSH. Helenalin decreased the concentration of reduced glutathione in both L1210 and P388 leukemia cells. Concurrent administration of helanalin with agents reported to raise GSH concentrations did not substantially effect GSH levels, nor were survival times of tumor-bearing mice enhanced. Following intraperitoneal administration of 3 H-plenolin, no radioactive drug and/or metabolite was sequestered in the organs of BDF 1 mice. Approximately 50% of 3 H-plenolin and/or its metabolites were eliminated via urine while lesser amounts of radioactive drug and/or metabolites were eliminated in the feces

  8. Chemical Composition, Larvicidal and Cytotoxic Activities of the Essential Oils from two Bauhinia Species

    Directory of Open Access Journals (Sweden)

    Leôncio M. de Sousa

    2016-05-01

    Full Text Available The essential oils obtained by hydrodistilation from leaves of Bauhinia pulchella Benth. and Bauhinia ungulata L. were analysed by GC-FID and GC-MS. The major components of B. pulchella essential oil were identified as a -pinene (23.9%, caryophyllene oxide (22.4% and b -pinene (12.2%, while in the B. ungulata essential oil were caryophyllene oxide (23.0%, (E-caryophyllene (14.5% and a -copaene (7.2%. The essential oils were subsequently evaluated for their larvicidal and cytotoxic activities. Larval bioassay against Aedes aegypti of B. pulchella and B. ungulata essential oils showed LC 50 values of 105.9 ± 1.5 and 75.1 ± 2.8 m g/mL, respectively. The essential oils were evaluated against four human cancer cells lines: HL-60 (pro-myelocytic leukemia, MCF-7 (breast adenocarcinoma, NCI-H292 (lung carcinoma and HEP-2 ( cervical adenocarcinoma, showing IC 50 values in the range of 9.9 to 53.1 m g/mL. This is the first report on chemical composition of essential from leaves of B. pulchella and on larvicidal and cytotoxic activities of the essential oils.

  9. Synthesis, characterization, antioxidant and brine shrimp cytotoxic activity of novel 3-benzothioyl-1-(3-hydroxy-3-phenyl -3-propyl)-1-methylthiourea.

    Science.gov (United States)

    Shoaib, Mohammad; Ullah, Abid; Shah, Syed Wadood Ali; Tahir, Muhammad Nawaz

    2017-07-01

    In the present research work novel ephedrine based thiourea derivative, 3-benzothioyl-1-(3-hydroxy-3-phenyl -3-propyl)-1-methylthiourea 4is synthesized and then characterized elemental analyzed via various techniques i.e., Proton NMR, carbon13 NMR and fatherly confirmed via X-ray crystallography. Compound 4 was then screened for their possible antioxidant and cytotoxic potentials. Benzoyl chloride was treated with an equimolar potassium thiocyanate in acetone to achieve benzoyl isothiocyantes. It was then treated with an equimolar (1R, 2S)-(-)-Ephedrine to obtain the 3-benzothioyl-1-(3-hydroxy-3-phenyl-3-propyl)-1-methyl thiourea4. It was then screened for antioxidant and cytotoxic potentials. The compound 4 showed excellent antioxidant activity almost comparable to ascorbic acid (standard) and have significant cytotoxic activity with LC 50 value 05±0.58 ppm.

  10. Phytochemical composition, anti-inflammatory activity and cytotoxic effects of essential oils from three Pinus spp.

    Science.gov (United States)

    Basholli-Salihu, Mimoza; Schuster, Roswitha; Hajdari, Avni; Mulla, Dafina; Viernstein, Helmut; Mustafa, Behxhet; Mueller, Monika

    2017-12-01

    Inflammation and cell differentiation lead to a number of severe diseases. In the recent years, various studies focused on the anti-inflammatory and anticancer activity of essential oils (EOs) of numerous plants, including different Pinus species. The phytochemical composition, anti-inflammatory and cytotoxic activity of EOs from needles and twigs of Pinus heldreichii Christ (Pinaceae) and P. peuce Griseb., and from needles, twigs and cones of P. mugo Turra were determined. For separation and identification of the EOs, gas chromatography/flame ion detector (GC/FID) and GC/mass spectrometry were performed. The amount of secreted IL-6 in a lipopolysaccharide (LPS)-stimulated macrophage model was quantified (concentration of oils: 0.0001-0.2%, 3 h incubation). Cytotoxicity on the cancer cell lines HeLa, CaCo-2 and MCF-7 were determined using a MTT (Thiazolyl Blue Tetrazolium Bromide) assay (concentration of oils: 0.001-0.1%, 24 h incubation). The most prominent members in the oils include: δ-3-carene, α-pinene and linalool-acetate (P. mugo); α-pinene, β-phellandrene and β-pinene (P. peuce); limonene, α-pinene and (E)-caryophyllene (P. heldreichii). EOs showed significant cytotoxic effects on cancer cell lines (IC 50 0.007 to >0.1%), with a reduction in cell viability with up to 90% at a concentration of 0.1%, and anti-inflammatory activity (IC 50 0.0008-0.02%) with a reduction of IL-6 secretion with up to 60% at a concentration of 0.01%. The EOs of needles and twigs from P. peuce and P. heldreichii as well as of needles, twigs and cones of P. mugo can be considered as promising agents for anticancer and anti-inflammatory drugs.

  11. Microbial degradation, cytotoxicity and antibacterial activity of polyurethanes based on modified castor oil and polycaprolactone.

    Science.gov (United States)

    Uscátegui, Yomaira L; Arévalo, Fabián R; Díaz, Luis E; Cobo, Martha I; Valero, Manuel F

    2016-10-11

    The objective of this study was to assess the effects of type of polyol and concentration of polycaprolactone (PCL) in polyurethanes (PUs) on microbial degradability, cytotoxicity, biological properties and antibacterial activity to establish whether these materials may have biomedical applications. Chemically modified and unmodified castor oil, PCL and isophorone diisocyanate in a 1:1 ratio of NCO/OH were used. PUs were characterized by stress/strain fracture tests and hardness (ASTM D 676-59). Hydrophilic character was determined by contact angle trials and morphology was evaluated by scanning electron microscopy. Degradability with Escherichia coli and Pseudomonas aeruginosa was evaluated by measuring variations in the weight of the polymers. Cytotoxicity was evaluated using the ISO 10993-5 (MTT) method with mouse embryonic fibroblasts L-929 (ATCC® CCL-1) in direct contact with the PUs and with NIH/3T3 cells (ATCC® CRL-1658) in indirect contact with the PUs. Antimicrobial activity against E. coli and P. aeruginosa was determined. PUs derived from castor oil modified (P0 and P1) have higher mechanical properties than PUs obtained from castor oil unmodified (CO). The viability of L-929 mouse fibroblasts in contact with polymers was greater than 70%. An assessment of NIH/3T3 cells in indirect contact with PUs revealed no-toxic degradation products. Finally, the antibacterial effect of the PUs decreased by 77% for E. coli and 56% for P. aeruginosa after 24 h. These results indicate that PUs synthesized with PCL have biocidal activity against Gram-negative bacteria and do not induce cytotoxic responses, indicating the potential use of these materials in the biomedical field.

  12. The immunomodulator PSK induces in vitro cytotoxic activity in tumour cell lines via arrest of cell cycle and induction of apoptosis

    Directory of Open Access Journals (Sweden)

    Garrido Federico

    2008-03-01

    Full Text Available Abstract Background Protein-bound polysaccharide (PSK is derived from the CM-101 strain of the fungus Coriolus versicolor and has shown anticancer activity in vitro and in in vivo experimental models and human cancers. Several randomized clinical trials have demonstrated that PSK has great potential in adjuvant cancer therapy, with positive results in the adjuvant treatment of gastric, esophageal, colorectal, breast and lung cancers. These studies have suggested the efficacy of PSK as an immunomodulator of biological responses. The precise molecular mechanisms responsible for its biological activity have yet to be fully elucidated. Methods The in vitro cytotoxic anti-tumour activity of PSK has been evaluated in various tumour cell lines derived from leukaemias, melanomas, fibrosarcomas and cervix, lung, pancreas and gastric cancers. Tumour cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of PSK on human peripheral blood lymphocyte (PBL proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in PSK-treated cells. Results PSK showed in vitro inhibition of tumour cell proliferation as measured by BrdU incorporation and viable cell count. The inhibition ranged from 22 to 84%. Inhibition mechanisms were identified as cell cycle arrest, with cell accumulation in G0/G1 phase and increase in apoptosis and caspase-3 expression. These results indicate that PSK has a direct cytotoxic activity in vitro, inhibiting tumour cell proliferation. In contrast, PSK shows a synergistic effect with IL-2 that increases PBL proliferation. Conclusion These results indicate that PSK has cytotoxic activity in vitro on tumour cell lines. This new cytotoxic activity of PSK on tumour cells is independent of its previously described immunomodulatory activity on NK cells.

  13. Synthesis, antimicrobial and cytotoxic activity of novel azetidine-2-one derivatives of 1H-benzimidazole

    Directory of Open Access Journals (Sweden)

    Malleshappa Noolvi

    2014-04-01

    Full Text Available A series of 1-methyl-N-[(substituted-phenylmethylidene-1H-benzimidazol-2-amines (4a–4g were prepared via the formation of 1-methyl-1H-benzimidazol-2-amine (3, which was prepared by the cycloaddition of o-phenylenediamine (1 with cyanogen bromide in the presence of aqueous base followed by N-methylation with methyl iodide in the presence of anhydrous potassium carbonate in dry acetonitrile. Moreover, the four-membered β-lactam ring was introduced by the cycloaddition of 4a–4g and chloroacetyl chloride in the presence of triethylamine catalyst to give 3-chloro-1-(1-methyl-1H-benzimidazol-2-yl-(4′-substituted-phenylazetidin-2-one 5a–5g. A total of 14 compounds were synthesized and characterized by IR, 1H NMR, 13C NMR and Mass spectral technique, in addition they were evaluated for anti-bacterial and cytotoxic properties. Among the chemicals tested 4a, 4b, 5a, 5b, 5g exhibited good antibacterial activity and 5f, 5g shown good cytotoxic activity in vitro.

  14. A non-cytotoxic N-dehydroabietylamine derivative with potent antimalarial activity.

    Science.gov (United States)

    Sadashiva, Maralinganadoddi P; Gowda, Raghavendra; Wu, Xianzhu; Inamdar, Gajanan S; Kuzu, Omer F; Rangappa, Kanchugarakoppal S; Robertson, Gavin P; Gowda, D Channe

    2015-08-01

    Malaria caused by the Plasmodium parasites continues to be an enormous global health problem owing to wide spread drug resistance of parasites to many of the available antimalarial drugs. Therefore, development of new classes of antimalarial agents is essential to effectively treat malaria. In this study, the efficacy of naturally occurring diterpenoids, dehydroabietylamine and abietic acid, and their synthetic derivatives was assessed for antimalarial activity. Dehydroabietylamine and its N-trifluoroacetyl, N-tribromoacetyl, N-benzoyl, and N-benzyl derivatives showed excellent activity against P. falciparum parasites with IC50 values of 0.36 to 2.6 µM. Interestingly, N-dehydroabietylbenzamide showed potent antimalarial activity (IC50 0.36), and negligible cytotoxicity (IC50 >100 µM) to mammalian cells; thus, this compound can be an important antimalarial drug. In contrast, abietic acid was only marginally effective, exhibiting an IC50 value of ~82 µM. Several carboxylic group-derivatives of abietic acid were moderately active with IC50 values of ~8.2 to ~13.3 µM. These results suggest that a detailed understanding of the structure-activity relationship of abietane diterpenoids might provide strategies to exploit this class of compounds for malaria treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Evaluation of the Cytotoxicity of Structurally Correlated p-Menthane Derivatives

    Directory of Open Access Journals (Sweden)

    Luciana Nalone Andrade

    2015-07-01

    Full Text Available Compounds isolated from essential oils play an important role in the prevention and treatment of cancer. Monoterpenes are natural products, and the principal constituents of many essential oils. The aim of this study was to investigate the cytotoxic potential of p-menthane derivatives. Additionally, analogues of perillyl alcohol, a monoterpene with known anticancer activity, were evaluated to identify the molecular characteristics which contribute to their cytotoxicity, which was tested against OVCAR-8, HCT-116, and SF-295 human tumor cell lines, using the MTT assay. The results of this study showed that (−-perillaldehyde 8,9-epoxide exhibited the highest percentage inhibition of cell proliferation (GI = 96.32%–99.89%. Perillyl alcohol exhibited high cytotoxic activity (90.92%–95.82%, while (+-limonene 1,2-epoxide (GI = 58.48%–93.10%, (−-perillaldehyde (GI = 59.28%–83.03%, and (−-8-hydroxycarvotanacetone (GI = 61.59%–94.01% showed intermediate activity. All of the compounds tested were less cytotoxic than perillyl alcohol, except (−-perillaldehyde 8,9-epoxide (IC50 = 1.75–1.03 µL/mg. In general, replacement of C-C double bonds by epoxide groups in addition to the aldehyde group increases cytotoxicity. Furthermore, stereochemistry seems to play an important role in cytotoxicity. We have demonstrated the cytotoxic influence of chemical substituents on the p-menthane structure, and analogues of perillyl alcohol.

  16. Blainvillea rhomboidea: chemical constituents and cytotoxic activity; Blainvillea rhomboidea: constituintes quimicos e atividade citotoxica

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Regina Ferreira; Santos, Helcio Silva dos; Albuquerque, Maria Rose Jane R., E-mail: rjane_7@hotmail.co [Universidade Estadual Vale do Acarau, Sobral, CE (Brazil). Centro de Ciencias Exatas e Tecnologia. Coord. de Quimica; Pessoa, Otilia Deusdenia L. [Universidade Federal do Ceara (DQOI/UFC), Fortaleza (Brazil). Dept. de Quimica Organica e Inorganica; Lotufo, Leticia V. Costa; Pessoa, Claudia do O; Moraes, Manoel Odorico de; Rodrigues, Felipe A. R. [Universidade Federal do Ceara (UFC), Fortaleza (Brazil). Dept. de Fisiologia e Farmacologia

    2010-07-01

    The phytochemical investigation of the ethanol extract from the aerial parts of Blainvillea rhomboidea (Asteraceae) resulted in the isolation and characterization of 8-tigloyloxy-grazielia acid, together with the flavonoids derrone, acacetin, luteolin and luteolin 7-methyl ether, and p-(1-methyl-ethan-1-ol)-phenol. The structures of all compounds were determined by spectroscopic methods ({sup '}H and {sup 13}C NMR and HREIMS) and comparison with published spectral data. The flavonoids luteolin and 7-O-metyl-luteolin, isolated from the active dichloromethane fraction, showed moderate cytotoxic activity. (author)

  17. Cytotoxicity, anti-angiogenic, apoptotic effects and transcript profiling of a naturally occurring naphthyl butenone, guieranone A

    Directory of Open Access Journals (Sweden)

    Kuete Victor

    2012-06-01

    Full Text Available Abstract Background Malignant diseases are responsible of approximately 13% of all deaths each year in the world. Natural products represent a valuable source for the development of novel anticancer drugs. The present study was aimed at evaluating the cytotoxicity of a naphtyl butanone isolated from the leaves of Guiera senegalensis, guieranone A (GA. Results The results indicated that GA was active on 91.67% of the 12 tested cancer cell lines, the IC50 values below 4 μg/ml being recorded on 83.33% of them. In addition, the IC50 values obtained on human lymphoblastic leukemia CCRF-CEM (0.73 μg/ml and its resistant subline CEM/ADR5000 (1.01 μg/ml and on lung adenocarcinoma A549 (0.72 μg/ml cell lines were closer or lower than that of doxorubicin. Interestingly, low cytotoxicity to normal hepatocyte, AML12 cell line was observed. GA showed anti-angiogenic activity with up to 51.9% inhibition of the growth of blood capillaries on the chorioallantoic membrane of quail embryo. Its also induced apotosis and cell cycle arrest. Ingenuity Pathway Analysis identified several pathways in CCRF-CEM cells and functional group of genes regulated upon GA treatment (P , the Cell Cycle: G2/M DNA Damage Checkpoint Regulation and ATM Signaling pathways being amongst the four most involved functional groups. Conclusion The overall results of this work provide evidence of the cytotoxic potential of GA and supportive data for its possible use in cancer chemotherapy.

  18. Evaluation of in vitro cytotoxicity, biocompatibility, and changes in the expression of apoptosis regulatory proteins induced by cerium oxide nanocrystals

    Science.gov (United States)

    Khan, Shahanavaj; Ansari, Anees A.; Rolfo, Christian; Coelho, Andreia; Abdulla, Maha; Al-Khayal, Khayal; Ahmad, Rehan

    2017-12-01

    Cerium oxide nanocrystals (CeO2-NCs) exhibit superoxide dismutase and catalase mimetic activities. Based on these catalytic activities, CeO2-NCs have been suggested to have the potential to treat various diseases. The crystalline size of these materials is an important factor that influences the performance of CeO2-NCs. Previous reports have shown that several metal-based nanocrystals, including CeO2-NCs, can induce cytotoxicity in cancer cells. However, the underlying mechanisms have remained unclear. To characterize the anticancer activities of CeO2-NCs, several assays related to the mechanism of cytotoxicity and induction of apoptosis has been performed. Here, we have carried out a systematic study to characterize CeO2-NCs phase purity (X-ray diffraction), morphology (electron microscopy), and optical features (optical absorption, Raman scattering, and photoluminescence) to better establish their potential as anticancer drugs. Our study revealed anticancer effects of CeO2-NCs in HT29 and SW620 colorectal cancer cell lines with half-maximal inhibitory concentration (IC50) values of 2.26 and 121.18 μg ml-1, respectively. Reductions in cell viability indicated the cytotoxic potential of CeO2-NCs in HT29 cells based on inverted and florescence microscopy assessments. The mechanism of cytotoxicity confirmed by estimating possible changes in the expression levels of Bcl2, BclxL, Bax, PARP, cytochrome c, and β-actin (control) proteins in HT29 cells. Down-regulation of Bcl2 and BclxL and up-regulation of Bax, PARP, and cytochrome c proteins suggested the significant involvement of CeO2-NCs exposure in the induction of apoptosis. Furthermore, biocompatibility assay showed minimum effect of CeO2-NCs on human red blood cells.

  19. Sesquiterpenoids with PTP1B Inhibitory Activity and Cytotoxicity from the Edible Mushroom Pleurotus citrinopileatus.

    Science.gov (United States)

    Tao, Qiao-Qiao; Ma, Ke; Bao, Li; Wang, Kai; Han, Jun-Jie; Wang, Wen-Zhao; Zhang, Jin-Xia; Huang, Chen-Yang; Liu, Hong-Wei

    2016-05-01

    One new perhydrobenzannulated 5,5-spiroketal sesquiterpene, pleurospiroketal F (1), as well as six new modified bisabolene sesquiterpenes pleurotins A-F (2-7) were isolated from solid-state fermentation of Pleurotus citrinopileatus. The structures of compounds 1-7 were determined by NMR and MS spectroscopic analysis. The absolute configuration of 1 was determined by X-ray diffraction analysis, while the absolute configurations of 3-7 were assigned using the in situ dimolybdenum circular dichroism method and circular dichroism data comparison. Protein tyrosine phosphatase 1B plays a crucial role as a negative regulator of the insulin-dependent signal cascades. Therefore, the protein tyrosine phosphatase 1B inhibitor can be used for treating type 2 diabetes mellitus and obesity. Compounds 2 and 6 showed moderate inhibitory effects on protein tyrosine phosphatase 1B with IC50 s of 32.1 µM and 30.5 µM, respectively. The kinetic study confirmed compound 2 to be a noncompetitive inhibitor. Compounds 1-7 did not show cytotoxic activity against cancer cell lines (IC50 > 50 µM). Georg Thieme Verlag KG Stuttgart · New York.

  20. A new kaempferol triglycoside from Fagonia taeckholmiana: cytotoxic activity of its extracts.

    Science.gov (United States)

    Ibrahim, Lamyaa F; Kawashty, Salwa A; El-Hagrassy, Ali M; Nassar, Mahmoud I; Mabry, Tom J

    2008-01-14

    In addition to apigenin, apigenin 7-O-glucoside, kaempferol 3-O-glucoside, kaempferol 3,7-di-O-rhamnoside, quercetin, and quercetin 3-O-glucoside, the methanolic extract of Fagonia taeckholmiana afforded a new compound identified as kaempferol 3-O-beta-l-arabinopyranosyl-(1-->4)-alpha-l-rhamnopyranoside-7-O-alpha-l-rhamnopyranoside. Identification of the isolated compounds was based on chemical and spectroscopic analyses including UV, FABMS, (1)H, (13)C and 2D NMR, and DEPT. The cytotoxic activities of the compounds against several cancer cell lines were determined.

  1. Structure and cytotoxic activity of ulvan extracted from green seaweed Ulva lactuca.

    Science.gov (United States)

    Thanh, Thi Thu Thuy; Quach, Thi Minh Thu; Nguyen, Thi Nu; Vu Luong, Dang; Bui, Minh Ly; Tran, Thi Thanh Van

    2016-12-01

    The structure of an ulvan obtained by water extraction from green seaweed Ulva lactuca was elucidated by using IR, NMR, SEC-MALL and ESIMS methods. The ulvan was also evaluated for its cytotoxic effects on three human cancer cell lines. The results showed that the ulvan was composed of rhamnose, galactose, xylose, manose, glucose (with a mole ratio of Rha: Gal: Xyl: Man: Glu equal to 1: 0.03: 0.07: 0.01: 0.06), uronic acid (21.5%) and sulfate content (18.9%) with a molecular weight of 347000. This ulvan mainly consists of disaccharide [→4)-β-d-GlcA-(1→4)-α-l-Rha3S-(1→] and other minor disaccharide β-GlcA-(1→2)-α-Xyl and β-GlcA-(→2)-α-Rha. The ulvan showed a significant cytotoxic activity against hepatocellular carcinoma (IC 50 29.67±2.87μg/ml), human breast cancer (IC 50 25.09±1.36μg/ml), and cervical cancer (IC 50 36.33±3.84μg/ml). Copyright © 2016 Elsevier B.V. All rights reserved.

  2. 5,6-Dihydropyrrolo[2,1-a]isoquinolines as Alternative of New Drugs with Cytotoxic Activity

    Czech Academy of Sciences Publication Activity Database

    Chávez-Santos, R. M.; Reyes Gutierrez, Paul Eduardo; Torres-Ochoa, R. O.; Ramírez-Apan, M. T.; Martínez, R.

    2017-01-01

    Roč. 65, č. 10 (2017), s. 973-981 ISSN 0009-2363 Institutional support: RVO:61388963 Keywords : pyrrolo[2,1-a]isoquinoline * synthesis * cytotoxic activity Subject RIV: CC - Organic Chemistry OBOR OECD: Organic chemistry Impact factor: 1.133, year: 2016 https://www.jstage.jst.go.jp/article/cpb/65/10/65_c17-00409/_html/-char/en

  3. Cytotoxic activity of carotenoid rich fractions from Haematococcus pluvialis and Dunaliella salina microalgae and the identification of the phytoconstituents using LC-DAD/ESI-MS.

    Science.gov (United States)

    El-Baz, Farouk K; Hussein, Rehab A; Mahmoud, Khaled; Abdo, Sayeda M

    2018-02-01

    Microalgae represent a rich source that satisfies the growing need for novel ingredients of nutriceuticals, pharmaceuticals, and food supplements. Haematococcus pluvialis and Dunaliella salina microalgae are isolated from the Egyptian hydro-flora and are reported for their potent antioxidant activities. The cytotoxic activity of different fractions of both microalgae was investigated on 4 cell lines HePG2, MCF7, HCT116, and A549. The carotenoid rich fraction of H. pluvialis showed potent cytotoxic activity against colon cancer cell line and moderate activity against both liver and breast cancer cell lines. On the other hand, the carotenoid rich fraction of D. salina showed mild cytotoxic activity on breast and liver cancer cell lines. The carotenoid rich fraction of H. pluvialis was analysed using LC-DAD/ESI-MS and the major carotenoids were identified either free as well as bounded to fatty acids. Copyright © 2017 John Wiley & Sons, Ltd.

  4. Antiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root.

    Science.gov (United States)

    Okokon, Jude Efiom; Antia, Bassey Sunday; Azare, Bala Adamu; Okokon, Patience Jude

    2017-01-01

    Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressive, prophylactic and curative tests and in vitro antiplasmodial activity against chloroquine-sensitive (Pf 3D7) and resistant (Pf INDO) strains of Plasmodium falciparum using SYBR green assay method. Median lethal dose and cytotoxic activity against HeLa and HEKS cells were assessed and phytochemical screening was also carried out using standard procedures. The LD 50 value of root extract was found to be 474.34 mg/kg. The crude extract (45-135 mg/kg, p.o) showed significant (p100 μg/ml against both HeLa and HEKS cell lines. These results suggest that the root extract of Zea mays possesses antimalarial activity against both chloroquine-sensitive and resistant malaria and these data justify its use in ethnomedicine to treat malaria infections.

  5. Antimicrobial and Cytotoxic Assessment of Marine Cyanobacteria - Synechocystis and Synechococcus

    OpenAIRE

    Martins, Rosário F.; Ramos, Miguel F.; Herfindal, Lars; Sousa, José A.; Skærven, Kaja; Vasconcelos, Vitor M.

    2008-01-01

    Aqueous extracts and organic solvent extracts of isolated marine cyanobacteria strains were tested for antimicrobial activity against a fungus, Gram-positive and Gram-negative bacteria and for cytotoxic activity against primary rat hepatocytes and HL-60 cells. Antimicrobial activity was based on the agar diffusion assay. Cytotoxic activity was measured by apoptotic cell death scored by cell surface evaluation and nuclear morphology. A high percentage of apoptotic cells were observed for HL-60...

  6. Ex-vivo expanded human NK cells express activating receptors that mediate cytotoxicity of allogeneic and autologous cancer cell lines by direct recognition and antibody directed cellular cytotoxicity

    Directory of Open Access Journals (Sweden)

    Campana Dario

    2010-10-01

    Full Text Available Abstract Background The possibility that autologous NK cells could serve as an effective treatment modality for solid tumors has long been considered. However, implementation is hampered by (i the small number of NK cells in peripheral blood, (ii the difficulties associated with large-scale production of GMP compliant cytolytic NK cells, (iii the need to activate the NK cells in order to induce NK cell mediated killing and (iv the constraints imposed by autologous inhibitory receptor-ligand interactions. To address these issues, we determined (i if large numbers of NK cells could be expanded from PBMC and GMP compliant cell fractions derived by elutriation, (ii their ability to kill allogeneic and autologous tumor targets by direct cytotoxitiy and by antibody-mediated cellular cytotoxicity and (iii defined NK cell specific receptor-ligand interactions that mediate tumor target cell killing. Methods Human NK cells were expanded during 14 days. Expansion efficiency, NK receptor repertoire before and after expansion, expression of NK specific ligands, cytolytic activity against allogeneic and autologous tumor targets, with and without the addition of chimeric EGFR monoclonal antibody, were investigated. Results Cell expansion shifted the NK cell receptor repertoire towards activation and resulted in cytotoxicity against various allogeneic tumor cell lines and autologous gastric cancer cells, while sparing normal PBMC. Blocking studies confirmed that autologous cytotoxicity is established through multiple activating receptor-ligand interactions. Importantly, expanded NK cells also mediated ADCC in an autologous and allogeneic setting by antibodies that are currently being used to treat patients with select solid tumors. Conclusion These data demonstrate that large numbers of cytolytic NK cells can be generated from PBMC and lymphocyte-enriched fractions obtained by GMP compliant counter current elutriation from PBMC, establishing the preclinical

  7. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis.

    Science.gov (United States)

    Sena-Lopes, Ângela; Bezerra, Francisco Silvestre Brilhante; das Neves, Raquel Nascimento; de Pinho, Rodrigo Barros; Silva, Mara Thais de Oliveira; Savegnago, Lucielli; Collares, Tiago; Seixas, Fabiana; Begnini, Karine; Henriques, João Antonio Pêgas; Ely, Mariana Roesch; Rufatto, Luciane C; Moura, Sidnei; Barcellos, Thiago; Padilha, Francine; Dellagostin, Odir; Borsuk, Sibele

    2018-01-01

    Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP) and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS). EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate); trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL) in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1); 50 μg of rCP40 protein (G2); or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3). Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%), (E)-β-farnesene (2.50%), and δ-amorphene (2.3%). Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3) in comparison to the administration of each component alone (G1 and G2), resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is

  8. Chemical composition, immunostimulatory, cytotoxic and antiparasitic activities of the essential oil from Brazilian red propolis.

    Directory of Open Access Journals (Sweden)

    Ângela Sena-Lopes

    Full Text Available Most studies of Brazilian red propolis have explored the composition and biological properties of its ethanolic extracts. In this work, we chemically extracted and characterized the essential oil of Brazilian red propolis (EOP and assessed its adjuvant, antiparasitic and cytotoxic activities. The chemical composition of EOP was analyzed using gas chromatography with mass spectrometry (GC-MS. EOP was tested for in vitro activity against Trichomonas vaginalis (ATCC 30236 isolate; trophozoites were treated with different concentrations of EOP (ranging from 25 to 500 μg/mL in order to establish the MIC and IC50 values. A cytotoxicity assay was performed in CHO-K1 cells submitted to different EOP concentrations. BALB/c mice were used to test the adjuvant effect of EOP. The animals were divided in 3 groups and inoculated as follows: 0.4 ng/kg BW EOP (G1; 50 μg of rCP40 protein (G2; or a combination of 0.4 ng/kg BW EOP and 50 μg of rCP40 (G3. Total IgG, IgG1 and IgG2a levels were assessed by ELISA. The major constituent compounds of EOP were methyl eugenol (13.1%, (E-β-farnesene (2.50%, and δ-amorphene (2.3%. Exposure to EOP inhibited the growth of T. vaginalis, with an IC50 value of 100 μg/mL of EOP. An EOP concentration of 500 μg/mL was able to kill 100% of the T. vaginalis trophozoites. The EOP kinetic growth curve showed a 36% decrease in trophozoite growth after a 12 h exposure to 500 μg/mL of EOP, while complete parasite death was induced at 24 h. With regard to CHO-K1 cells, the CC50 was 266 μg/mL, and 92% cytotoxicity was observed after exposure to 500 μg/mL of EOP. Otherwise, a concentration of 200 μg/mL of EOP was able to reduce parasite proliferation by 70% and was not cytotoxic to CHO-K1 cells. As an adjuvant, a synergistic effect was observed when EOP was combined with the rCP40 protein (G3 in comparison to the administration of each component alone (G1 and G2, resulting in higher concentrations of IgG, IgG1 and IgG2a. EOP is

  9. Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity.

    Science.gov (United States)

    Levatić, Jurica; Pavić, Kristina; Perković, Ivana; Uzelac, Lidija; Ester, Katja; Kralj, Marijeta; Kaiser, Marcel; Rottmann, Matthias; Supek, Fran; Zorc, Branka

    2018-02-25

    Primaquine (PQ) is a commonly used drug that can prevent the transmission of Plasmodium falciparum malaria, however toxicity limits its use. We prepared five groups of PQ derivatives: amides 1a-k, ureas 2a-k, semicarbazides 3a,b, acylsemicarbazides 4a-k and bis-ureas 5a-v, and evaluated them for antimalarial activity in vitro against the erythrocytic stage of P. falciparum NF54. Particular substituents, such as trityl (in 2j and 5r) and methoxybenzhydryl (in 3b and 5v) were associated with a favorable cytotoxicity-to-activity ratio. To systematically link structural features of PQ derivatives to antiplasmodial activity, we performed a quantitative structure-activity relationship (QSAR) study using the Support Vector Machines machine learning method. This yielded a highly accurate statistical model (R 2  = 0.776 in cross-validation), which was used to prioritize novel candidate compounds. Seven novel PQ-ureidoamides 10a-g were synthesized and evaluated for activity, highlighting the benzhydryl ureidoamides 10e and 10f derived from p-chlorophenylglycine. Further experiments on human cell lines revealed that 10e and 10f are an order of magnitude less toxic than PQ in vitro while having antimalarial activity indistinguishable from PQ. The toxicity profile of novel compounds 10 toward human cells was particularly favorable when the glucose-6-phosphate dehydrogenase (G6PD) was inhibited, while toxicity of PQ was exacerbated by G6PD inhibition. Our work therefore highlights promising lead compounds for the development of effective antimalarial drugs that may also be safer for G6PD-deficient patients. In addition, we provide computational inferences of antimalarial activity and cytotoxicity for thousands of PQ-like molecular structures. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  10. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi-Fen; Shyu, Huey-Wen [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chang, Yi-Chuang [Department of Nursing, Fooyin University, Kaohsiung, Taiwan (China); Tseng, Wei-Chang [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Huang, Yeou-Lih [Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan (China); Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China); Chen, Chang-Yu, E-mail: mt037@mail.fy.edu.tw [Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Kaohsiung, Taiwan (China)

    2012-03-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  11. Nickel (II)-induced cytotoxicity and apoptosis in human proximal tubule cells through a ROS- and mitochondria-mediated pathway

    International Nuclear Information System (INIS)

    Wang, Yi-Fen; Shyu, Huey-Wen; Chang, Yi-Chuang; Tseng, Wei-Chang; Huang, Yeou-Lih; Lin, Kuan-Hua; Chou, Miao-Chen; Liu, Heng-Ling; Chen, Chang-Yu

    2012-01-01

    Nickel compounds are known to be toxic and carcinogenic in kidney and lung. In this present study, we investigated the roles of reactive oxygen species (ROS) and mitochondria in nickel (II) acetate-induced cytotoxicity and apoptosis in the HK-2 human renal cell line. The results showed that the cytotoxic effects of nickel (II) involved significant cell death and DNA damage. Nickel (II) increased the generation of ROS and induced a noticeable reduction of mitochondrial membrane potential (MMP). Analysis of the sub-G1 phase showed a significant increase in apoptosis in HK-2 cells after nickel (II) treatment. Pretreatment with N-acetylcysteine (NAC) not only inhibited nickel (II)-induced cell death and DNA damage, but also significantly prevented nickel (II)-induced loss of MMP and apoptosis. Cell apoptosis triggered by nickel (II) was characterized by the reduced protein expression of Bcl-2 and Bcl-xL and the induced the protein expression of Bad, Bcl-Xs, Bax, cytochrome c and caspases 9, 3 and 6. The regulation of the expression of Bcl-2-family proteins, the release of cytochrome c and the activation of caspases 9, 3 and 6 were inhibited in the presence of NAC. These results suggest that nickel (II) induces cytotoxicity and apoptosis in HK-2 cells via ROS generation and that the mitochondria-mediated apoptotic signaling pathway may be involved in the positive regulation of nickel (II)-induced renal cytotoxicity.

  12. Comparative study of the hemolytic and cytotoxic activities of nematocyst venoms from the jellyfish Cyanea nozakii Kishinouye and Nemopilema nomurai Kishinouye

    Science.gov (United States)

    Pang, Min; Xu, Jintao; Liu, Yunlong; Zhang, Xuelei

    2017-10-01

    Two species of jellyfish, Cyanea nozakii Kishinouye and Nemopilema nomurai Kishinouye, have occurred off coastal areas of the northeastern China Sea, Yellow Sea, and Bohai Sea in recent years. They influence marine ecosystem safety and fishery production, and also pose a risk to human health. The current study examined the hemolytic and cytotoxic activities of crude venoms extracted from the nematocysts of C. nozakii and N. nomurai. The results showed that there were more nematocysts on tentacles from C. nozakii than on tentacles of the same length from N. nomurai. The protein concentration per nematocyst extracted from N. nomurai was higher than that from C. nozakii. Both nematocyst venoms showed dose- and time-dependent hemolytic activity on erythrocytes from chicken, pigeon, and sheep, with sheep erythrocytes being the most sensitive, with EC50 values of 69.69 and 63.62 μg/mL over a 30-min exposure with N. nomurai and C. nozakii nematocyst venoms, respectively. A cytotoxic assay of both jellyfish venoms on A431 human epidermal carcinoma cells resulted in IC50 values of 68.6 and 40.9 μg/mL after 24-h incubation, respectively, with venom from C. nozakii showing stronger cytotoxic activity than that from N. nomurai. The results of current study indicate that nematocyst venom from C. nozakii had stronger hemolytic and cytotoxic activities than that from N. nomurai and, thus, C. nozakii might be more harmful to the health of humans and other species than are N. nomurai when they appear in coastal waters.

  13. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    International Nuclear Information System (INIS)

    Kurayoshi, Kenta; Ozono, Eiko; Iwanaga, Ritsuko; Bradford, Andrew P.; Komori, Hideyuki; Ohtani, Kiyoshi

    2014-01-01

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  14. Cancer cell specific cytotoxic gene expression mediated by ARF tumor suppressor promoter constructs

    Energy Technology Data Exchange (ETDEWEB)

    Kurayoshi, Kenta [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan); Ozono, Eiko [Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ (United Kingdom); Iwanaga, Ritsuko; Bradford, Andrew P. [Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045 (United States); Komori, Hideyuki [Center for Stem Cell Biology, Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109 (United States); Ohtani, Kiyoshi, E-mail: btm88939@kwansei.ac.jp [Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337 (Japan)

    2014-07-18

    Highlights: • ARF promoter showed higher responsiveness to deregulated E2F activity than the E2F1 promoter. • ARF promoter showed higher cancer cell-specificity than E2F1 promoter to drive gene expression. • HSV-TK driven by ARF promoter showed higher cancer cell-specific cytotoxicity than that driven by E2F1 promoter. - Abstract: In current cancer treatment protocols, such as radiation and chemotherapy, side effects on normal cells are major obstacles to radical therapy. To avoid these side effects, a cancer cell-specific approach is needed. One way to specifically target cancer cells is to utilize a cancer specific promoter to express a cytotoxic gene (suicide gene therapy) or a viral gene required for viral replication (oncolytic virotherapy). For this purpose, the selected promoter should have minimal activity in normal cells to avoid side effects, and high activity in a wide variety of cancers to obtain optimal therapeutic efficacy. In contrast to the AFP, CEA and PSA promoters, which have high activity only in a limited spectrum of tumors, the E2F1 promoter exhibits high activity in wide variety of cancers. This is based on the mechanism of carcinogenesis. Defects in the RB pathway and activation of the transcription factor E2F, the main target of the RB pathway, are observed in almost all cancers. Consequently, the E2F1 promoter, which is mainly regulated by E2F, has high activity in wide variety of cancers. However, E2F is also activated by growth stimulation in normal growing cells, suggesting that the E2F1 promoter may also be highly active in normal growing cells. In contrast, we found that the tumor suppressor ARF promoter is activated by deregulated E2F activity, induced by forced inactivation of pRB, but does not respond to physiological E2F activity induced by growth stimulation. We also found that the deregulated E2F activity, which activates the ARF promoter, is detected only in cancer cell lines. These observations suggest that ARF promoter

  15. Synsepalum dulcificum extracts exhibit cytotoxic activity on human colorectal cancer cells and upregulate c-fos and c-jun early apoptotic gene expression

    Directory of Open Access Journals (Sweden)

    Jichang Seong

    2018-01-01

    Full Text Available Objective: To explore cytotoxicity of Synsepalum dulcificum (S. dulcificum Daniell (Sapotaceae on human colon cancer (HCT-116 and HT-29, human monocytic leukemia (THP-1 and normal (HDFn cell lines, and its effect on the expression of early apoptotic genes, c-fos and c-jun. Methods: Leaf, stem and berry of S. dulcificum were separately extracted by using 2 solvents, 10% ethanol (EtOH and 80% methanol (MeOH. PrestoBlue® cell viability assay and qRT-PCR assay were conducted to examine the above objectives respectively. Results: Stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum were cytotoxic to HCT-116 and HT-29 human colon cancer cells. For HCT-116, IC50 values of these 3 extracts were not significantly different (P>0.05 from that of the positive control bleomycin (IC50 of 33.57 μg/mL, while for HT-29, IC50 values of these 3 extracts were significantly lower (P<0.05 than that of bleomycin (IC50 of 25.24 μg/mL. None of the extracts were cytotoxic to the THP-1 monocytic leukemia cells and HDFn normal human dermal fibroblasts. For both HCT-116 and HT-29, these extracts significantly up-regulated (P<0.05 the expression of c-fos and c-jun compared to the untreated negative control. Conclusions: The results of this study suggest that cytotoxicity of stem MeOH, stem EtOH, and berry EtOH extracts of S. dulcificum on HCT-116 and HT-29 colon cancer cells is due to the induced apoptosis which is caused by the up-regulation of the expression of early apoptotic genes, c-fos and c-jun.

  16. The Antifungal Activity and Cytotoxicity of Silver Containing Denture ...

    African Journals Online (AJOL)

    2015-10-30

    Oct 30, 2015 ... Objective: Denture base materials are susceptible to fungal adhesion, which is an important .... (Shimadzu Corp., Kyoto, Japan) to achieve a wavelength ..... assay for detection of cytotoxicity and prediction of acute toxicity.

  17. Imidazole Alkaloids from the South China Sea Sponge Pericharax heteroraphis and Their Cytotoxic and Antiviral Activities

    Directory of Open Access Journals (Sweden)

    Kai-Kai Gong

    2016-01-01

    Full Text Available Marine sponges continue to serve as a rich source of alkaloids possessing interesting biological activities and often exhibiting unique structural frameworks. In the current study, chemical investigation on the marine sponge Pericharax heteroraphis collected from the South China Sea yielded one new imidazole alkaloid named naamidine J (1 along with four known ones (2–5. Their structures were established by extensive spectroscopic methods and comparison of their data with those of the related known compounds. All the isolates possessed a central 2-aminoimidazole ring, substituted by one or two functionalized benzyl groups in some combination of the C4 and C5 positions. The cytotoxicities against selected HL-60, HeLa, A549 and K562 tumor cell lines and anti-H1N1 (Influenza a virus (IAV activity for the isolates were evaluated. Compounds 1 and 2 exhibited cytotoxicities against the K562 cell line with IC50 values of 11.3 and 9.4 μM, respectively. Compound 5 exhibited weak anti-H1N1 (influenza a virus, IAV activity with an inhibition ratio of 33%.

  18. A novel alkaloid from marine-derived actinomycete Streptomyces xinghaiensis with broad-spectrum antibacterial and cytotoxic activities.

    Directory of Open Access Journals (Sweden)

    Wence Jiao

    Full Text Available Due to the increasing emergence of drug-resistant bacteria and tumor cell lines, novel antibiotics with antibacterial and cytotoxic activities are urgently needed. Marine actinobacteria are rich sources of novel antibiotics, and here we report the discovery of a novel alkaloid, xinghaiamine A, from a marine-derived actinomycete Streptomyces xinghaiensis NRRL B24674(T. Xinghaiamine A was purified from the fermentation broth, and its structure was elucidated based on extensive spectroscopic analysis, including 1D and 2D NMR spectrum as well as mass spectrometry. Xinghaiamine A was identified to be a novel alkaloid with highly symmetric structure on the basis of sulfoxide functional group, and sulfoxide containing compound has so far never been reported in microorganisms. Biological assays revealed that xinghaiamine A exhibited broad-spectrum antibacterial activities to both Gram-negative persistent hospital pathogens (e.g. Acinetobacter baumannii, Pseudomonas aeruginosa and Escherichia coli and Gram-positive ones, which include Staphylococcus aureus and Bacillus subtilis. In addition, xinghaiamine A also exhibited potent cytotoxic activity to human cancer cell lines of MCF-7 and U-937 with the IC50 of 0.6 and 0.5 µM, respectively.

  19. In vitro evaluation of triazenes: DNA cleavage, antibacterial activity and cytotoxicity against acute myeloid leukemia cells

    Energy Technology Data Exchange (ETDEWEB)

    Domingues, Vanessa O.; Hoerner, Rosmari; Reetz, Luiz G.B.; Kuhn, Fabio, E-mail: rosmari.ufsm@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Analises Clinicas e Toxicologicas; Coser, Virginia M.; Rodrigues, Jacqueline N.; Bauchspiess, Rita; Pereira, Waldir V. [Hospital Universitario de Santa Maria, RS (Brazil). Dept. de Hematologia-Oncologia; Paraginski, Gustavo L.; Locatelli, Aline; Fank, Juliana de O.; Giglio, Vinicius F.; Hoerner, Manfredo, E-mail: hoerner.manfredo@gmail.co [Universidade Federal de Santa Maria (UFSM), RS (Brazil). Dept. de Quimica

    2010-07-01

    The asymmetric diazoamines 1-(2-chlorophenyl)-3-(4-carboxyphenyl)triazene (1), 1-(2-fluorophenyl)-3-(4-carboxyphenyl)triazene (2) and 1-(2-fluorophenyl)-3-(4-amidophenyl) triazene (3) were evaluated for their ability to cleave pUC18 and pBSKII plasmid DNA, antibacterial activity and in vitro cytotoxicity against acute myeloid leukemia cells and normal leukocytes using the bioassay of reduction of 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT). The triazenes showed ability to cleave the two types of plasmid DNA: triazene 1 at pH 8.0 and 50 deg C; triazene 2 at pH 6.5 and 37 and 50 deg C; triazene 3 at pH 6.5 and 37 deg C. The compounds presented cytotoxic activity against myeloid leukemia cells. Compound 1 showed high activity against B. cereus (MIC = 32 {mu}g mL{sup -1}). The observation of intermolecular hydrogen bonding in the solid state of compound 3, based on the structural analysis by X-ray crystallography, as well as the results of IR and UV-Vis spectroscopic analyses of compounds 1, 2 and 3 are discussed in the present work. (author)

  20. Isolation, Characterization and Anticancer Potential of Cytotoxic Triterpenes from Betula utilis Bark.

    Directory of Open Access Journals (Sweden)

    Tripti Mishra

    Full Text Available Betula utilis, also known as Himalayan silver birch has been used as a traditional medicine for many health ailments like inflammatation, HIV, renal and bladder disorders as well as many cancers from ages. Here, we performed bio-guided fractionation of Betula utilis Bark (BUB, in which it was extracted in methanol and fractionated with hexane, ethyl acetate, chloroform, n-butanol and water. All six fractions were evaluated for their in-vitro anticancer activity in nine different cancer cell lines and ethyl acetate fraction was found to be one of the most potent fractions in terms of inducing cytotoxic activity against various cancer cell lines. By utilizing column chromatography, six triterpenes namely betulin, betulinic acid, lupeol, ursolic acid (UA, oleanolic acid and β-amyrin have been isolated from the ethyl acetate extract of BUB and structures of these compounds were unraveled by spectroscopic methods. β-amyrin and UA were isolated for the first time from Betula utilis. Isolated triterpenes were tested for in-vitro cytotoxic activity against six different cancer cell lines where UA was found to be selective for breast cancer cells over non-tumorigenic breast epithelial cells (MCF 10A. Tumor cell selective apoptotic action of UA was mainly attributed due to the activation of extrinsic apoptosis pathway via up regulation of DR4, DR5 and PARP cleavage in MCF-7 cells over non-tumorigenic MCF-10A cells. Moreover, UA mediated intracellular ROS generation and mitochondrial membrane potential disruption also play a key role for its anti cancer effect. UA also inhibits breast cancer migration. Altogether, we discovered novel source of UA having potent tumor cell specific cytotoxic property, indicating its therapeutic potential against breast cancer.

  1. Secondary Metabolites from the Marine-Derived Fungus Dichotomomyces sp. L-8 and Their Cytotoxic Activity

    Directory of Open Access Journals (Sweden)

    Li-Hong Huang

    2017-03-01

    Full Text Available Bioassay-guided isolation of the secondary metabolites from the fungus Dichotomomyces sp. L-8 associated with the soft coral Lobophytum crassum led to the discovery of two new compounds, dichotones A and B (1 and 2, together with four known compounds including dichotocejpin C (3, bis-N-norgliovictin (4, bassiatin (5 and (3R,6R-bassiatin (6. The structures of these compounds were determined by 1D, 2D NMR and mass spectrometry. (3R,6R-bassiatin (6 displayed significant cytotoxic activities against the human breast cancer cell line MDA-MB-435 and the human lung cancer cell line Calu3 with IC50 values of 7.34 ± 0.20 and 14.54 ± 0.01 μM, respectively, while bassiatin (5, the diastereomer of compound 6, was not cytotoxic.

  2. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders.

    Science.gov (United States)

    Johnson, Tyler A; Sohn, Johann; Inman, Wayne D; Bjeldanes, Leonard F; Rayburn, Keith

    2013-01-15

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activities in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves was also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with a standard compound celastrol (1) but were moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects greater than or equal to 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of stinging nettle may be more effective than traditional tinctures (water, methanol, ethanol) in clinical evaluations for the treatment of inflammatory disorders especially arthritis. A chemical investigation into the lipophilic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. Published by Elsevier GmbH.

  3. Lipophilic stinging nettle extracts possess potent anti-inflammatory activity, are not cytotoxic and may be superior to traditional tinctures for treating inflammatory disorders

    Science.gov (United States)

    Johnson, Tyler A.; Sohn, Johann; Inman, Wayne D.; Bjeldanes, Leonard F.; Rayburn, Keith

    2012-01-01

    Extracts of four plant portions (roots, stems, leaves and flowers) of Urtica dioica, (the stinging nettle) were prepared using accelerated solvent extraction (ASE) involving water, hexanes, methanol and dichloromethane. The extracts were evaluated for their anti-inflammatory and cytotoxic activity in an NF-κB luciferase and MTT assay using macrophage immune (RAW264.7) cells. A standardized commercial ethanol extract of nettle leaves were also evaluated. The methanolic extract of the flowering portions displayed significant anti-inflammatory activity on par with the standard anti-inflammatory agent celastrol (1) but was moderately cytotoxic. Alternatively, the polar extracts (water, methanol, ethanol) of the roots, stems and leaves plant portions displayed moderate to weak anti-inflammatory activity, while the methanol and especially the water soluble extracts exhibited noticeable cytotoxicity. In contrast, the lipophilic dichloromethane extracts of the roots, stems and leaves exhibited potent anti-inflammatory effects ≥ 1 with minimal cytotoxicity to RAW264.7 cells. Collectively these results suggest that using lipophilic extracts of the roots, stems or leaves of stinging nettle may be more effective then traditional tinctures (water, methanol, ethanol) to undergo clinical evaluations for the treatment of inflammatory disorders including arthritis. A chemical investigation into the lipophillic extracts of stinging nettle to identify the bioactive compound(s) responsible for their observed anti-inflammatory activity is further warranted. PMID:23092723

  4. Flavonoids of Calligonum polygonoides and their cytotoxicity.

    Science.gov (United States)

    Ahmed, Hayam; Moawad, Abeer; Owis, Asmaa; AbouZid, Sameh; Ahmed, Osama

    2016-10-01

    Context Calligonum polygonoides L. subsp. comosum L' Hér. (Polygonaceae), locally known as "arta", is a slow-growing small leafless desert shrub. Objective Isolation, structure elucidation and evaluation of cytotoxic activity of flavonoids from C. polygonoides aerial parts. Materials and methods Flavonoids in the hydroalcoholic extract of the of C. polygonoides were isolated and purified using column chromatography and preparative HPLC. The structures of the isolated flavonoids were elucidated on the basis of spectroscopic data including 2D NMR techniques. The cytotoxic activity of the isolated flavonoids (6.25, 25, 50 and 100 μg/mL) was evaluated against liver HepG2 and breast MCF-7 cancer cell lines using sulphorhodamine-B assay. Results A new flavonoid, kaempferol-3-O-β-D-(6″-n-butyl glucuronide) (1), and 13 known flavonoids, quercetin 3-O-β-D-(6″-n-butyl glucuronide) (2), kaempferol-3-O-β-D-(6″-methyl glucuronide) (3), quercetin-3-O-β-D-(6″-methyl glucuronide) (4), quercetin-3-O-glucuronide (5), kaempferol-3-O-glucuronide (6), quercetin-3-O-α-rhamnopyranoside (7), astragalin (8), quercetin-3-O-glucopyranoside (9), taxifolin (10), (+)-catechin (11), dehydrodicatechin A (12), quercetin (13), and kaempferol (14), were isolated from the aerial parts of C. polygonoides. Quercetin showed significant cytotoxic activity against HepG2 and MCF-7 cell lines with IC50 values of 4.88 and 0.87 μg/mL, respectively. Structure-activity relationships were analyzed by comparing IC50 values of several pairs of flavonoids differing in one structural element. Discussion and conclusion The activity against breast cancer cell lines decreased by glycosylation at C-3. The presence of 2,3-double bond in ring C, carbonyl group at C-4 and 3',4'-dihydroxy substituents in ring B are essential structural requirements for the cytotoxic activity against breast cancer cells.

  5. Comparative study of anti-inflammatory, ulcerogenic and cytotoxic activities of racemate and S-ibuprofen

    Directory of Open Access Journals (Sweden)

    Flavio Henrique Nuevo Benez

    2013-08-01

    Full Text Available Ibuprofen is widely commercialized in racemic form. Although metabolic chiral inversion occurs through the conversion of R(--ibuprofen to S(+-ibuprofen and the latter enantiomer is considered the active form, clinical trials involving the administration of a racemate to S-enantiomer dosage ratio of 1:0.5 have demonstrated that S(+-ibuprofen is as efficacious as the racemic formulation. Moreover, the R(--enantiomer has been implicated in adverse gastrointestinal effects found with the racemic form, but the mechanisms involved in this process are not yet fully understood. The aim of the present study was to evaluate the anti-inflammatory activity of a racemate to S(+-ibuprofen dosage ratio of 1:0.5 using the carrageenan air pouch model of inflammation and determine both ulcerogenic activity and the chiral conversion rate in rats. An in vitro study of the cytotoxicity of racemate and S(+-ibuprofen in gastric cells was also performed. Although the plasma level of S(+-ibuprofen was raised after racemate administration, no significant difference was found in anti-inflammatory activity, as assessed by exudate formation, PGE2 production and leukocyte migration to the air pouches. Fewer gastric lesions were found after S(+-ibuprofen administration, despite the low gastric PGE2 content. In the in vitro study, the racemic compound proved more cytotoxic than S(+-ibuprofen. The present findings suggest that the S-enantiomer of ibuprofen could be considered a therapeutic alternative to minimize gastrointestinal side effects, since the chiral inversion of R(--ibuprofen to S(+-ibuprofen did not result in an improved anti-inflammatory response.

  6. Studies on Cytotoxic Activity against HepG-2 Cells of Naphthoquinones from Green Walnut Husks of Juglans mandshurica Maxim.

    Science.gov (United States)

    Zhou, Yuanyuan; Yang, Bingyou; Jiang, Yanqiu; Liu, Zhaoxi; Liu, Yuxin; Wang, Xiaoli; Kuang, Haixue

    2015-08-26

    Twenty-seven naphthoquinones and their derivatives, including four new naphthalenyl glucosides and twenty-three known compounds, were isolated from green walnut husks, which came from Juglans mandshurica Maxim. The structures of four new naphthalenyl glucosides were elucidated based on extensive spectroscopic analyses. All of these compounds were evaluated for their cytotoxic activities against the growth of human cancer cells lines HepG-2 by MTT [3-(4,5-dimethylthiazo l-2-yl)-2,5 diphenyl tetrazolium bromide] assay. The results were shown that most naphthoquinones in an aglycone form exhibited better cytotoxicity in vitro than naphthalenyl glucosides with IC50 values in the range of 7.33-88.23 μM. Meanwhile, preliminary structure-activity relationships for these compounds were discussed.

  7. Chemical composition, cytotoxicity and antioxidant activities of the ...

    African Journals Online (AJOL)

    The species of the genus Citrus (Rutaceae) have been widely used in traditional medicine. In this study, the essential oil was extracted from the leaves of Citrus aurantium and its cytotoxicity effect on six tumor cell lines and a normal cell line was studied. Furthermore, antioxidant potential of the oil was tested by 2, ...

  8. Origin of anti-tumor activity of the cysteine-containing GO peptides and further optimization of their cytotoxic properties

    Science.gov (United States)

    Tyuryaeva, Irina I.; Lyublinskaya, Olga G.; Podkorytov, Ivan S.; Skrynnikov, Nikolai R.

    2017-01-01

    Antitumor GO peptides have been designed as dimerization inhibitors of prominent oncoprotein mucin 1. In this study we demonstrate that activity of GO peptides is independent of the level of cellular expression of mucin 1. Furthermore, these peptides prove to be broadly cytotoxic, causing cell death also in normal cells such as dermal fibroblasts and endometrial mesenchymal stem cells. To explore molecular mechanism of their cytotoxicity, we have designed and tested a number of new peptide sequences containing the key CxC or CxxC motifs. Of note, these sequences bear no similarity to mucin 1 except that they also contain a pair of proximal cysteines. Several of the new peptides turned out to be significantly more potent than their GO prototypes. The results suggest that cytotoxicity of these peptides stems from their (moderate) activity as disulfide oxidoreductases. It is expected that such peptides, which we have termed DO peptides, are involved in disulfide-dithiol exchange reaction, resulting in formation of adventitious disulfide bridges in cell proteins. In turn, this leads to a partial loss of protein function and rapid onset of apoptosis. We anticipate that coupling DO sequences with tumor-homing transduction domains can create a potentially valuable new class of tumoricidal peptides.

  9. Effect of radiotherapy on lymphocyte cytotoxicity in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Wasserman, J; Melen, B [Central Microbiological Laboratory, Stockholm County Council (Sweden); Blomgren, H; Glas, U; Perlmann, P

    1975-11-01

    The cytotoxic functions of highly purified blood lymphocytes from patients with breast cancer were studied before and after radiotherapy. Addition of PHA or of rabbit antibodies to target cells (chicken erythrocytes) were chosen as two means of inducing lymphocyte cytotoxicity in vitro. The proportion of T and non-T lymphocytes was determined by means of E and EAC rosette tests. The antibody-induced cytotoxicity of lymphocytes decreased following radiotherapy while that mediated by PHA remained unchanged. There was some reduction in the percentage of EAC rosette-forming cells. These results, as well as earlier observations, suggest that the decrease in the peripheral blood of the proportion of lymphocytes with receptors for activated complement is responsible for changes in the antibody-mediated lymphocyte cytotoxicity.

  10. Evaluation of In Vitro Cytotoxic and Antioxidant Activity of Datura metel Linn. and Cynodon dactylon Linn. Extracts.

    Science.gov (United States)

    Roy, Soumen; Pawar, Sandip; Chowdhary, Abhay

    2016-01-01

    To evaluate in vitro cytotoxicity and antioxidant activity of Datura metel L. and Cynodon dactylon L. extracts. The extraction of plants parts (datura seed and fruit pulp) and areal parts of durva was carried out using soxhlet and cold extraction method using solvents namely methanol and distilled water. The total phenolic content (TPC) and total flavonoid content (TFC) was determined by established methods. The in vitro cytotoxicity assay was performed in vero cell line by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay method. In vitro antioxidant activity of the extract was performed by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging method. We found that the highest amount of TPC and TFC in methanolic extracts of seed (268.6 μg of gallic acid equivalence/mg of dry plant material) and fruit pulp (8.84 μg of quercetin equivalence/mg dry plant material) of D. metel, respectively prepared by Soxhlet method. The methanolic extract of C. dactylon prepared using soxhlation has shown potent free radical scavenging activity with 50% inhibitory concentration (IC50) value of 100 μg/ml. The IC50 of a methanolic cold extract of datura fruit was found to be 3 mg/ml against vero cell line. We observed that plant parts of C. dactylon and D. metel have a high antioxidant activity. Further research is needed to explore the therapeutic potential of these plant extracts. In the present study we observed a positive correlation was between the phenolic and flavanoid content of the Datura metel and cynodon doctylon (durva) extracts with the free radical scavenging activities. Both were found to have a high antioxidant activity. Abbreviations used: BHA: Butylated hydroxyanisole, BHT: Butylated hydroxytoluene, CC50: 50% cell cytotoxic concentration, CNS: Central nervous system, DPPH: 2, 2-diphenyl-1-picrylhydrazyl, IC50: 50% inhibitory concentration, MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), TFC: Total flavonoid content, TPC: Total

  11. In vitro determination of cytotoxic drug response in ovarian carcinoma using the fluorometric microculture cytotoxicity assay (FMCA).

    Science.gov (United States)

    Csóka, K; Tholander, B; Gerdin, E; de la Torre, M; Larsson, R; Nygren, P

    1997-09-17

    The fluorometric microculture cytotoxicity assay (FMCA), a short-term in vitro assay based on the concept of total tumor cell kill, was used for testing the cytotoxic drug sensitivity of tumor cells from patients with ovarian carcinoma. A total of 125 fresh specimens was obtained, 98 (78%) of which were analyzed successfully. Data from 45 patients were available for clinical correlations. The FMCA appeared to yield clinically relevant cytotoxic drug sensitivity data for ovarian carcinoma as indicated by a comparison with tumor samples obtained from patients with non-Hodgkin's lymphoma or kidney carcinoma. Considering the most active single agent in vitro actually given in vivo, and using the median drug activity among all ovarian carcinoma samples as a cut-off, the sensitivity of the assay and its specificity were 75 and 52%, respectively. Cross-resistance in vitro was frequently observed between standard drugs but not between standard drugs and Taxol. Ten percent of the specimens showed an extreme resistance for at least 4 of 6 of the drugs investigated.

  12. Composition and cytotoxic and antioxidant activities of the oil of Piper aequale Vahl.

    Science.gov (United States)

    da Silva, Joyce Kelly R; Pinto, Laine C; Burbano, Rommel M R; Montenegro, Raquel C; Andrade, Eloísa Helena A; Maia, José Guilherme S

    2016-10-07

    Piper aequale Vahl is a small shrub that grows in the shadow of large trees in the Carajás National Forest, Municipality of Parauapebas, Para state, Brazil. The local people have used the plant against rheumatism and inflammation. The essential oil of the aerial parts was extracted and analyzed by GC and GC-MS. The MTT colorimetric assay was used to measuring the cytotoxic activity of the oil against human cancer lines. The determination of antioxidant activity of the oil was conducted by DPPH radical scavenging assay. The main constituents were δ-elemene (18.92 %), β-pinene (15.56 %), α-pinene (12.57 %), cubebol (7.20 %), β-atlantol (5.87 %), and bicyclogermacrene (5.51 %), totalizing 65.63 % of the oil. The oil displayed a strong in vitro cytotoxic activity against the human cancer cell lines HCT-116 (colon) and ACP03 (gastric) with IC 50 values of 8.69 μg/ml and 1.54 μg/ml, respectively. The oil has induced the apoptosis in a gastric cancer cells in all tested concentration (0.75-3.0 μg/ml), after 72 h of treatment, when compared to negative control (p < 0.001). Also, the oil showed a significant antioxidant activity (280.9 ± 22.2 mg TE/ml), when analyzed as Trolox equivalent, and a weak acetylcholinesterase inhibition, with a detection limit of 100 ng, when compared to the physostigmine standard (1.0 ng). The higher cell growth inhibition induced by the oil of P. aequale is probably due to its primary terpene compounds, which were previously reported in the proliferation inhibition, in stimulation of apoptosis and induction of cell cycle arrest in malignant cells.

  13. Chemical study, antioxidant, anti-hypertensive, and cytotoxic/cytoprotective activities of Centaurea cyanus L. petals aqueous extract.

    Science.gov (United States)

    Escher, Graziela Bragueto; Santos, Jânio Sousa; Rosso, Neiva Deliberali; Marques, Mariza Boscacci; Azevedo, Luciana; do Carmo, Mariana Araújo Vieira; Daguer, Heitor; Molognoni, Luciano; Prado-Silva, Leonardo do; Sant'Ana, Anderson Souza; da Silva, Marcia Cristina; Granato, Daniel

    2018-05-19

    This study aimed to optimise the experimental conditions of extraction of the phytochemical compounds and functional properties of Centaurea cyanus petals. The following parameters were determined: the chemical composition (LC-ESI-MS/MS), the effects of pH on the stability and antioxidant activity of anthocyanins, the inhibition of lipid peroxidation, antioxidant activity, anti-hemolytic activity, antimicrobial, anti-hypertensive, and cytotoxic/cytoprotective effect, and the measurements of intracellular reactive oxygen species. Results showed that the temperature and time influenced (p ≤ 0.05) the content of flavonoids, anthocyanins, and FRAP. Only the temperature influenced the total phenolic content, non-anthocyanin flavonoids, and antioxidant activity (DPPH). The statistical approach made it possible to obtain the optimised experimental extraction conditions to increase the level of bioactive compounds. Chlorogenic, caffeic, ferulic, and p-coumaric acids, isoquercitrin, and coumarin were identified as the major compounds in the optimised extract. The optimised extract presented anti-hemolytic and anti-hypertensive activity in vitro, in addition to showing stability and reversibility of anthocyanins and antioxidant activity with pH variation. The C. cyanus extract exhibited high IC 50 and GI 50 (>900 μg/mL) values for all cell lines, meaning low cytotoxicity. Based on the stress oxidative assay, the extract exhibited pro-oxidant action (10-100 μg/mL) but did not cause damage or cell death. Copyright © 2018. Published by Elsevier Ltd.

  14. Benzimidazole condensed ring systems 10 (1). Synthesis and cytotoxic activity of some pyrido[1,2-a]benzimidazoles.

    Science.gov (United States)

    Badawey, E S; Kappe, T

    1995-01-01

    As a part of research project on the synthesis of a number of pyrido[1,2-a]benzimidazole derivatives with possible antineoplastic activity and as a result of the interesting antineoplastic activity recorded for one such compounds (NSC 649900), some new pyrido[1,2-a]benzimidazoles were prepared and evaluated for such activity. Compound (11, NSC 660334) exhibited a moderate in vitro antineoplastic activity especially against most of the leukemia cell lines, while compound (10, VM30309) showed a good cytotoxic activity against Artina salina larvae (IC50 = 1.75 micrograms/ml).

  15. Chemical Composition and Anti-Inflammatory, Cytotoxic and Antioxidant Activities of Essential Oil from Leaves of Mentha piperita Grown in China.

    Science.gov (United States)

    Sun, Zhenliang; Wang, Huiyan; Wang, Jing; Zhou, Lianming; Yang, Peiming

    2014-01-01

    The chemical composition, anti-inflammatory, cytotoxic and antioxidant activities of essential oil from leaves of Mentha piperita (MEO) grown in China were investigated. Using GC-MS analysis, the chemical composition of MEO was characterized, showing that it was mainly composed of menthol, menthone and menthy acetate. MEO exhibited potent anti-inflammatory activities in a croton oil-induced mouse ear edema model. It could also effectively inhibit nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cytotoxic effect was assessed against four human cancer cells. MEO was found to be significantly active against human lung carcinoma SPC-A1, human leukemia K562 and human gastric cancer SGC-7901 cells, with an IC50 value of 10.89, 16.16 and 38.76 µg/ml, respectively. In addition, MEO had moderate antioxidant activity. The results of this study may provide an experimental basis for further systematic research, rational development and clinical utilization of peppermint resources.

  16. Chemical Composition, Antioxidant, DNA Damage Protective, Cytotoxic and Antibacterial Activities of Cyperus rotundus Rhizomes Essential Oil against Foodborne Pathogens

    Science.gov (United States)

    Hu, Qing-Ping; Cao, Xin-Ming; Hao, Dong-Lin; Zhang, Liang-Liang

    2017-01-01

    Cyperus rotundus L. (Cyperaceae) is a medicinal herb traditionally used to treat various clinical conditions at home. In this study, chemical composition of Cyperus rotundus rhizomes essential oil, and in vitro antioxidant, DNA damage protective and cytotoxic activities as well as antibacterial activity against foodborne pathogens were investigated. Results showed that α-cyperone (38.46%), cyperene (12.84%) and α-selinene (11.66%) were the major components of the essential oil. The essential oil had an excellent antioxidant activity, the protective effect against DNA damage, and cytotoxic effects on the human neuroblastoma SH-SY5Y cell, as well as antibacterial activity against several foodborne pathogens. These biological activities were dose-dependent, increasing with higher dosage in a certain concentration range. The antibacterial effects of essential oil were greater against Gram-positive bacteria as compared to Gram-negative bacteria, and the antibacterial effects were significantly influenced by incubation time and concentration. These results may provide biological evidence for the practical application of the C. rotundus rhizomes essential oil in food and pharmaceutical industries. PMID:28338066

  17. Identification of stable cytotoxic factors in the gas phase extract of cigarette smoke and pharmacological characterization of their cytotoxicity.

    Science.gov (United States)

    Noya, Yoichi; Seki, Koh-Ichi; Asano, Hiroshi; Mai, Yosuke; Horinouchi, Takahiro; Higashi, Tsunehito; Terada, Koji; Hatate, Chizuru; Hoshi, Akimasa; Nepal, Prabha; Horiguchi, Mika; Kuge, Yuji; Miwa, Soichi

    2013-12-06

    Smoking is a major risk factor for atherosclerotic vascular diseases, but the mechanism for its genesis is unknown. We have recently shown that the gas phase of cigarette smoke (nicotine- and tar-free cigarette smoke extract; CSE) likely to reach the systemic circulation contains stable substances which cause cytotoxicity like plasma membrane damage and cell death in cultured cells, and also that the plasma membrane damage is caused through sequential activation of protein kinase C (PKC) and NADPH oxidase (NOX) and the resulting generation of reactive oxygen species (PKC/NOX-dependent mechanism), whereas cell death is caused through PKC/NOX-dependent and -independent mechanisms. To identify these stable substances, the CSE was prepared by passing the main-stream smoke of 10 cigarettes through a Cambridge glass fiber filter, trapping of the smoke in a vessel cooled at -80°C, and subsequent dissolution in 10ml of water. The CSE was fractionated into nine fractions using reversed-phase HPLC, and each fraction was screened for cytotoxicity in cultured cells, using propidium iodide uptake assay for cell membrane damage and MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] reduction assay for cell viability. The cytotoxicity was positive in two of the nine fractions (Fr2 and Fr5). After extraction of the active fractions into dichloromethane, GC/MS analysis identified 2-cyclopenten-1-one (CPO) in Fr5 but none in Fr2. After derivatization of the active fractions with O-(2,3,4,5,6-pentafluorobenzyl) hydroxylamine hydrochloride, GC/MS analysis identified acrolein, acetone and propionaldehyde in Fr2, and methyl vinyl ketone (MVK) in Fr5. After 4-h incubation, authentic acrolein and MVK induced concentration-dependent cytotoxicity with EC50 values of 75.9±8.2 and 47.0±8.0μM (mean±SEM; n=3), respectively, whereas acetone, propionaldehyde and CPO were without effect. However, after 24-h incubation, CPO induced concentration

  18. Antimycobacterial, antioxidant and cytotoxic activities of essential oil ...

    African Journals Online (AJOL)

    mL and 495.6 - >2000μg/mL for DPPH and ABTS assay respectively. The cytotoxicity assay showed LC50 ranged between 26.47 to 93.64 μg/mL against Vero cells and 74.29 to 225.40 μg/mL against C3A. The results of this study show that the ...

  19. Cytotoxic components of Pereskia bleo (Kunth) DC. (Cactaceae) leaves.

    Science.gov (United States)

    Malek, Sri Nurestri Abdul; Shin, Sim Kae; Wahab, Norhanom Abdul; Yaacob, Hashim

    2009-05-06

    Dihydroactinidiolide (1) and a mixture of sterols [campesterol (2), stigmasterol (3) and beta-sitosterol (4)], together with the previously isolated individual compounds beta-sitosterol (4), 2,4-di-tert-butylphenol (5), alpha-tocopherol (6), phytol (7) were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth) DC. (Cactaceae) leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB), human cervical carcinoma cell line (CasKi), human colon carcinoma cell line (HCT 116), human hormone-dependent breast carcinoma cell line (MCF7) and human lung carcinoma cell line (A549); and non-cancer human fibroblast cell line (MRC-5) were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC(50 )value of 0.81microg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  20. Cytotoxic Components of Pereskia bleo (Kunth DC. (Cactaceae Leaves

    Directory of Open Access Journals (Sweden)

    Sri Nurestri Abdul Malek

    2009-05-01

    Full Text Available Dihydroactinidiolide (1 and a mixture of sterols [campesterol (2, stigmasterol (3 and β-sitosterol (4], together with the previously isolated individual compounds β-sitosterol (4, 2,4-di-tert-butylphenol (5, α-tocopherol (6, phytol (7 were isolated from the active ethyl acetate fraction of Pereskia bleo (Kunth DC. (Cactaceae leaves. Cytotoxic activities of the above mentioned compounds against five human carcinoma cell lines, namely the human nasopharyngeal epidermoid carcinoma cell line (KB, human cervical carcinoma cell line (CasKi, human colon carcinoma cell line (HCT 116, human hormone-dependent breast carcinoma cell line (MCF7 and human lung carcinoma cell line (A549; and non-cancer human fibroblast cell line (MRC-5 were investigated. Compound 5 possessed very remarkable cytotoxic activity against KB cells, with an IC50 value of 0.81µg/mL. This is the first report on the cytotoxic activities of the compounds isolated from Pereskia bleo.

  1. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, Yasushi [Meikai Univ., Sakado, Saitama (Japan). School of Dentistry

    2000-07-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  2. A cytotoxic study of eugenol and its ortho dimer (bis-eugenol)

    International Nuclear Information System (INIS)

    Kashiwagi, Yasushi

    2000-01-01

    Eugenol is widely used not only as a dental material such as pulp capping material, provisional cement, root canal sealer, and impression paste, but also as a perfume ingredients. Eugenol has antioxidant, bactericidal, and sedative activities, inhibits and non-enzymatic peroxidation. It was previously reported that eugenol exhibited the cytotoxic activity toward pulp cells and gingial fibroblasts and also that the cytotoxic activity was predominantly performed by radicals derived from the oxidation of eugenol. This study was based on the hypothesis that the toxicity of eugenol may be greately reduced if the radicalization of eugenol was diminished by the dimerization of eugenol. Thus, bis-eugenol, the dimer of eugenol, was synthesized to characterize the effect of this eugenol-related compound. The cytotoxic activity of bis-eugenol against human gingival fibroblasts (HGF cell) or human submandibular gland cancer cells (HSG cell) was studied in the presence or absence of light irradiation (visible or ultraviolet light), and compared with that of eugenol. The cytotoxic activity of eugenol was significantly greater than that of bis-eugenol. The cytotoxic activity of irradiated eugenol, but not that of irradiated bis-eugenol, was significantly higher than that of the non-irradiated counterpart. Bis-eugenol at a relatively low concentration declined the phototoxic activity of irradiation on living cells. Also, the generation of reactive oxygen in HSG cells in the ab-sence or the presence of irradiated bis-eugenol or eugenol was evaluated by an ACAS laser cytometry, and the results indicated that eugenol, but not bis-eugenol, generated reactive oxygen in the cells. The DPPH-radical scavenging activity of bis-eugenol was larger than that of eugenol. Furthermore, eugenol had a positive apoptosis-inducing effect on HSG cells. The structure-activity relationships of eugenol-related compounds showed that the nature of the substituent at the ortho or para-position of eugenol

  3. Selective cytotoxicity of transformed cells but not normal cells by a sialoglycopeptide growth regulator in the presence of tumor necrosis factor

    Science.gov (United States)

    Woods, K. M.; Fattaey, H.; Johnson, T. C.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    The tumor necrosis factor-alpha (TNF)-resistant, SV40-transformed, murine fibroblast cell lines, F5b and F5m, became sensitive to TNF-mediated cytolysis after treatment with a biologically active 18 kDa peptide fragment (SGP) derived from a 66-kDa parental cell surface sialoglycoprotein. Neither TNF nor the SGP alone exhibited cytotoxicity to the two SV40-transformed cell lines. However, Balb/c 3T3 cells, incubated with SGP alone or with SGP and TNF, were not killed. Therefore, SGP can selectively sensitize cells for TNF alpha-mediated cytotoxicity. This selective sensitization may be due to the previously documented ability of the SGP to selectively mediate cell cycle arrest.

  4. Real-time cell toxicity profiling of Tox21 10K compounds reveals cytotoxicity dependent toxicity pathway linkage.

    Directory of Open Access Journals (Sweden)

    Jui-Hua Hsieh

    Full Text Available Cytotoxicity is a commonly used in vitro endpoint for evaluating chemical toxicity. In support of the U.S. Tox21 screening program, the cytotoxicity of ~10K chemicals was interrogated at 0, 8, 16, 24, 32, & 40 hours of exposure in a concentration dependent fashion in two cell lines (HEK293, HepG2 using two multiplexed, real-time assay technologies. One technology measures the metabolic activity of cells (i.e., cell viability, glo while the other evaluates cell membrane integrity (i.e., cell death, flor. Using glo technology, more actives and greater temporal variations were seen in HEK293 cells, while results for the flor technology were more similar across the two cell types. Chemicals were grouped into classes based on their cytotoxicity kinetics profiles and these classes were evaluated for their associations with activity in the Tox21 nuclear receptor and stress response pathway assays. Some pathways, such as the activation of H2AX, were associated with the fast-responding cytotoxicity classes, while others, such as activation of TP53, were associated with the slow-responding cytotoxicity classes. By clustering pathways based on their degree of association to the different cytotoxicity kinetics labels, we identified clusters of pathways where active chemicals presented similar kinetics of cytotoxicity. Such linkages could be due to shared underlying biological processes between pathways, for example, activation of H2AX and heat shock factor. Others involving nuclear receptor activity are likely due to shared chemical structures rather than pathway level interactions. Based on the linkage between androgen receptor antagonism and Nrf2 activity, we surmise that a subclass of androgen receptor antagonists cause cytotoxicity via oxidative stress that is associated with Nrf2 activation. In summary, the real-time cytotoxicity screen provides informative chemical cytotoxicity kinetics data related to their cytotoxicity mechanisms, and with our

  5. Biochemical studies of immune RNA using a cell-mediated cytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Sellin, H.G.; Novelli, G.D.

    1980-01-01

    Immune RNA (iRNA), a subcellular macromolecular species usually prepared by phenol extraction of lymphoid tissue, can confer some manifestation(s) of cellular immunity on naive lymphocytes. Experiments were done to develop an assay system to detect activation of lymphocytes by iRNA to become cytotoxic toward tumor cells, and to study certain properties of iRNA using this system. Guinea pigs were immunized with human mammary carcinoma cells and the iRNA, prepared from spleens of animals shown by prior assay to have blood lymphocytes highly cytotoxic against the tumor cells, was assayed by ability of iRNA-activated lymphocytes to lyse /sup 51/Cr-labelled tumor cells. The ability of iRNA to activate lymphocytes to tumor cytotoxicity could only be differentiated from a cytotoxic activation by RNA preparations from unimmunized animals at very low doses of RNA. The most active iRNA preparations were from cytoplasmic subcellular fractions, extracted by a cold phenol procedure, while iRNA isolated by hot phenol methods was no more active than control RNA prepared by the same techniques. Attempts to demonstrate poly(A) sequences in iRNA were inconclusive.

  6. In vitro anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A, a chalcone isolated from Boesenbergia rotunda (L.) (fingerroot)

    International Nuclear Information System (INIS)

    Isa, N.M.; Abdelwahab, S.I.; Mohan, S.; Abdul, A.B.; Sukari, M.A.; Taha, M.M.E.; Syam, S.; Narrima, P.; Cheah, S.Ch.; Ahmad, S.; Mustafa, M.R.

    2012-01-01

    The current in vitro study was designed to investigate the anti-inflammatory, cytotoxic and antioxidant activities of boesenbergin A (BA), a chalcone derivative of known structure isolated from Boesenbergia rotunda. Human hepatocellular carcinoma (HepG2), colon adenocarcinoma (HT-29), non-small cell lung cancer (A549), prostate adenocarcinoma (PC3), and normal hepatic cells (WRL-68) were used to evaluate the cytotoxicity of BA using the MTT assay. The antioxidant activity of BA was assessed by the ORAC assay and compared to quercetin as a standard reference antioxidant. ORAC results are reported as the equivalent concentration of Trolox that produces the same level of antioxidant activity as the sample tested at 20 µg/mL. The toxic effect of BA on different cell types, reported as IC 50 , yielded 20.22 ± 3.15, 10.69 ± 2.64, 20.31 ± 1.34, 94.10 ± 1.19, and 9.324 ± 0.24 µg/mL for A549, PC3, HepG2, HT-29, and WRL-68, respectively. BA displayed considerable antioxidant activity, when the results of ORAC assay were reported as Trolox equivalents. BA (20 µg/mL) and quercetin (5 µg/mL) were equivalent to a Trolox concentration of 11.91 ± 0.23 and 160.32 ± 2.75 µM, respectively. Moreover, the anti-inflammatory activity of BA was significant at 12.5 to 50 µg/mL and without any significant cytotoxicity for the murine macrophage cell line RAW 264.7 at 50 µg/mL. The significant biological activities observed in this study indicated that BA may be one of the agents responsible for the reported biological activities of B. rotunda crude extract

  7. Cytotoxic diterpenoids from Jatropha curcas cv. nigroviensrugosus CY Yang Roots.

    Science.gov (United States)

    Liu, JieQing; Yang, YuanFeng; Xia, JianJun; Li, XuYang; Li, ZhongRong; Zhou, Lin; Qiu, MingHua

    2015-09-01

    An investigation of phytochemicals from the roots of Jatropha curcas cv. nigroviensrugosus resulted in the isolation of twenty diterpenoids, including lathyranlactone, an unusual diterpenoid lactone possessing a 5/13/3 tricyclic skeleton, jatrocurcasenones A-E and jatrophodiones B-E, as well as 10 known analogues. All isolates were evaluated for cytotoxicity against the HL-60, SMMC-772, A-549, MCF-7 and SW480 human tumor cell lines using the MTS viability assay. Four of the known analogues showed cytotoxic activity in these cell lines, with IC50 values ranging from 2.0 to 23.0 μM. Moreover, the assessment of their cytotoxic structure-activity relationships showed the epoxy ring between C-5 and C-6 and the hydroxyl group at C-2 were the key functionalities for cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Biological activities of plant extracts from Ficus elastica and Selaginella vogelli: An antimalarial, antitrypanosomal and cytotoxity evaluation

    Directory of Open Access Journals (Sweden)

    Jean Emmanuel Mbosso Teinkela

    2018-01-01

    Full Text Available The cytotoxic, antiplasmodial, and antitrypanosomal activities of two medicinal plants traditionally used in Cameroon were evaluated. Wood of Ficus elastica Roxb. ex Hornem. aerial roots (Moraceae and Selaginella vogelii Spring (Selaginellaceae leaves were collected from two different sites in Cameroon. In vitro cell-growth inhibition activities were assessed on methanol extract of plant materials against Plasmodium falciparum strain 3D7 and Trypanosoma brucei brucei, as well as against HeLa human cervical carcinoma cells. Criteria for activity were an IC50 value < 10 μg/mL. The extract of S. vogelii did not significantly reduce the viability of P. falciparum at a concentration of 25 μg/mL but dramatically affected the trypanosome growth with an IC50 of 2.4 μg/mL. In contrast, at the same concentration, the extract of F. elastica exhibited plasmodiacidal activity (IC50 value of 9.5 μg/mL and trypanocidal (IC50 value of 0.9 μg/mL activity. Both extracts presented low cytotoxic effects on HeLa cancer cell line. These results indicate that the selected medicinal plants could be further investigated for identifying compounds that may be responsible for the observed activities and that may represent new leads in parasitical drug discovery.

  9. Antiplasmodial activity and cytotoxicity of ethanol extract of Zea mays root

    Directory of Open Access Journals (Sweden)

    Jude Efiom Okokon

    2017-04-01

    Full Text Available Objective:Zea mays root decoction that has been traditionally used for the treatment of malaria by various tribes in Nigeria, was evaluated for antimalarial potential against malaria parasites using in vivo and in vitro models. Materials and Methods: The root extract of Zea mays was investigated for antimalarial activity against Plasmodium berghei in mice using rodent malaria models; suppressive, prophylactic and curative tests and in vitro antiplasmodial activity against chloroquine-sensitive (Pf 3D7 and resistant (Pf INDO strains of Plasmodium falciparum using SYBR green assay method. Median lethal dose and cytotoxic activity against HeLa and HEKS cells were assessed and phytochemical screening was also carried out using standard procedures. Results: The LD50 value of root extract was found to be 474.34 mg/kg. The crude extract (45-135 mg/kg, p.o showed significant (p100 μg/ml against both HeLa and HEKS cell lines. Conclusion: These results suggest that the root extract of Zea mays possesses antimalarial activity against both chloroquine-sensitive and resistant malaria and these data justify its use in ethnomedicine to treat malaria infections.

  10. Chaetoglobosins from Chaetomium globosum, an endophytic fungus in Ginkgo biloba, and their phytotoxic and cytotoxic activities.

    Science.gov (United States)

    Li, He; Xiao, Jian; Gao, Yu-Qi; Tang, Jiang Jiang; Zhang, An-Ling; Gao, Jin-Ming

    2014-04-30

    In preceding studies, cultivation of Chaetomium globosum, an endophytic fungus in Ginkgo biloba, produced five cytochalasan mycotoxins, chaetoglobosins A, G, V, Vb, and C (1-5), in three media. In the present work, five known chaetoglobosins, C, E, F, Fex, and 20-dihydrochaetoglobosin A (5-9), together with the four known compounds (11-14), were isolated from the MeOH extracts of the solid culture of the same endophyte. The structures of these metabolites were elucidated on the basis of spectroscopic analysis. Treatment of chaetoglobosin F (7) with (diethylamino)sulfur trifluoride (DAST) in dichloromethane afforded an unexpected fluorinated chaetoglobosin, named chaetoglobosin Fa (10), containing an oxolane ring between C-20 and C-23. The phytotoxic effects of compounds 1, 3-8, and 10 were assayed on radish seedlings; some of these compounds (1, 3, and 6-8) significantly inhibited the growth of radish (Raphanus sativus) seedlings with inhibitory rates of >60% at a concentration of 50 ppm, which was comparable or superior to the positive control, glyphosate. In addition, the cytotoxic activities against HCT116 human colon cancer cells were also tested, and compounds 1 and 8-10 showed remarkable cytotoxicity with IC50 values ranging from 3.15 to 8.44 μM, in comparison to the positive drug etoposide (IC50 = 2.13 μM). The epoxide ring between C-6 and C-7 or the double bond at C-6(12) led to a drastically increased cytotoxicity, and chaetoglobosin Fa (10) displayed a markedly increased cytotoxicity but decreased phytotoxicity.

  11. Chemotaxonomic Characterization and in-Vitro Antimicrobial and Cytotoxic Activities of the Leaf Essential Oil of Curcuma longa Grown in Southern Nigeria

    Directory of Open Access Journals (Sweden)

    Emmanuel E. Essien

    2015-12-01

    Full Text Available Curcuma longa (turmeric has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS. The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%, α-turmerone (13.7%, and β-turmerone (12.6%. A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor and PC-3 (prostate tumor cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise.

  12. Chemotaxonomic Characterization and in-Vitro Antimicrobial and Cytotoxic Activities of the Leaf Essential Oil of Curcuma longa Grown in Southern Nigeria

    Science.gov (United States)

    Essien, Emmanuel E.; Newby, Jennifer Schmidt; Walker, Tameka M.; Setzer, William N.; Ekundayo, Olusegun

    2015-01-01

    Curcuma longa (turmeric) has been used in Chinese traditional medicine and Ayurvedic medicine for many years. Methods: The leaf essential oil of C. longa from southern Nigeria was obtained by hydrodistillation and analyzed by gas chromatography–mass spectrometry (GC-MS). The essential oil was screened for in vitro antibacterial, antifungal, and cytotoxic activities. The major components in C. longa leaf oil were ar-turmerone (63.4%), α-turmerone (13.7%), and β-turmerone (12.6%). A cluster analysis has revealed this to be a new essential oil chemotype of C. longa. The leaf oil showed notable antibacterial activity to Bacillus cereus and Staphylococcus aureus, antifungal activity to Aspergillus niger, and cytotoxic activity to Hs 578T (breast tumor) and PC-3 (prostate tumor) cells. The ar-turmerone-rich leaf essential oil of C. longa from Nigeria has shown potent biological activity and therapeutic promise. PMID:28930216

  13. Cytotoxic and phytotoxic actions of Heliotropium strigosum.

    Science.gov (United States)

    Shah, Syed Majid; Hussain, Sajid; Khan, Arif-Ullah; Shah, Azhar-Ul-Haq Ali; Khan, Haroon; Ullah, Farhat; Barkatullah

    2015-05-01

    This study describes the cytotoxic and phytotoxic activities of the crude extract of Heliotropium strigosum and its resultant fractions. In brine shrimp toxicology assays, profound cytotoxicity was displayed by ethyl acetate (LD50 8.3 μg/ml) and chloroform (LD50 8.8 μg/ml) fractions, followed by relatively weak crude methanolic extract of H. strigosum (LD50 909 μg/ml) and n-hexane fraction (LD50 1000 μg/ml). In case of phytotoxicity activity against Lemna acquinoctialis, highest phytotoxic effect was showed by ethyl acetate fraction (LD50 91.0 μg/ml), while chloroform fraction, plant crude extract and n-hexane, respectively, caused 50%, 30.76 ± 1.1% and 30.7 ± 1.1% inhibitory action at maximum concentration used, that is, 1000 μg/ml. These data indicates that H. strigosum exhibits cytotoxic and phytotoxic potential, which explore its use as anticancer and herbicidal medicine. The ethyl acetate and chloroform fractions were more potent for the evaluated toxicity effects, thus recommended for isolation and identification of the active compounds. © The Author(s) 2012.

  14. Cytotoxic constituents of Soymida febrifuga from Myanmar.

    Science.gov (United States)

    Awale, Suresh; Miyamoto, Tatsuya; Linn, Thein Zaw; Li, Feng; Win, Nwet Nwet; Tezuka, Yasuhiro; Esumi, Hiroyasu; Kadota, Shigetoshi

    2009-09-01

    The 70% ethanol extract of Soymida febrifuga was found to kill PANC-1 human pancreatic cancer cells preferentially under nutrition-deprived conditions at a concentration of 10 microg/mL. Phytochemical investigation led to the isolation of 27 compounds including four new compounds [(3R)-6,4'-dihydroxy-8-methoxyhomoisoflavan (1), (2R)-7,4'-dihydroxy-5-methoxy-8-methylflavan (2), 7-hydroxy-6-methoxy-3-(4'-hydroxybenzyl)coumarin (3), and 6-hydroxy-7-methoxy-3-(4'-hydroxybenzyl)coumarin (4)]. 2',4'-Dihydroxychalcone (8) displayed the most potent preferential cytotoxicity (PC(50) 19.0 microM) against PANC-1 cells. In addition, the cytotoxic activity against colon 26-L5 carcinoma (colon 26-L5), B16-BL6 melanoma (B16-BL6), lung A549 adenocarcinoma (A549), cervix HeLa adenocarcinoma (HeLa), and HT-1080 fibrosarcoma (HT-1080) cell lines and their structure-activity relationship are discussed. The cytotoxic activity of 4'-hydroxy-3,5-dimethoxystilbene (6) against colon 26-L5 (IC(50) 2.96 microM) was found to be stronger than the positive control, doxorubicin, at IC(50) 3.12 microM.

  15. BET inhibition silences expression of MYCN and BCL2 and induces cytotoxicity in neuroblastoma tumor models.

    Directory of Open Access Journals (Sweden)

    Anastasia Wyce

    Full Text Available BET family proteins are epigenetic regulators known to control expression of genes involved in cell growth and oncogenesis. Selective inhibitors of BET proteins exhibit potent anti-proliferative activity in a number of hematologic cancer models, in part through suppression of the MYC oncogene and downstream Myc-driven pathways. However, little is currently known about the activity of BET inhibitors in solid tumor models, and whether down-regulation of MYC family genes contributes to sensitivity. Here we provide evidence for potent BET inhibitor activity in neuroblastoma, a pediatric solid tumor associated with a high frequency of MYCN amplifications. We treated a panel of neuroblastoma cell lines with a novel small molecule inhibitor of BET proteins, GSK1324726A (I-BET726, and observed potent growth inhibition and cytotoxicity in most cell lines irrespective of MYCN copy number or expression level. Gene expression analyses in neuroblastoma cell lines suggest a role of BET inhibition in apoptosis, signaling, and N-Myc-driven pathways, including the direct suppression of BCL2 and MYCN. Reversal of MYCN or BCL2 suppression reduces the potency of I-BET726-induced cytotoxicity in a cell line-specific manner; however, neither factor fully accounts for I-BET726 sensitivity. Oral administration of I-BET726 to mouse xenograft models of human neuroblastoma results in tumor growth inhibition and down-regulation MYCN and BCL2 expression, suggesting a potential role for these genes in tumor growth. Taken together, our data highlight the potential of BET inhibitors as novel therapeutics for neuroblastoma, and suggest that sensitivity is driven by pleiotropic effects on cell growth and apoptotic pathways in a context-specific manner.

  16. Cytotoxic sesquiterpene lactones from the aerial parts of Inula aucheriana.

    Directory of Open Access Journals (Sweden)

    Ahmad Reza Gohari

    2015-06-01

    Full Text Available Inula aucheriana DC is a member of the family Asteraceae which is known to produce cytotoxic secondary metabolites noted as sesquiterpene lactones. In the present study, sesquiterpene lactones inuchinenolide B, 6-deoxychamissonolide (stevin and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were isolated from I. aucheriana. Inuchinenolide B and 14-acetoxy-1β,5α,7αH-4β-hydroxy-guai-9(10,11(13-dien-12,8α-olide were further evaluated by the MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium bromide assay to demonstrate cytotoxic activity with IC50 values of (56.6, 19.0, (39.0, 11.8, and (55.7, 15.3 μg/mL against HepG-2, MCF-7 and A-549 cells, respectively. The cytotoxic activity of the two evaluated sesquiterpene lactones partly explains the cytotoxic activity that was previously observed for the extracts of Inula aucheriana. The isolated compounds could be further investigated in cancer research studies.

  17. Neolignans from Nectandra megapotamica (Lauraceae Display in vitro Cytotoxic Activity and Induce Apoptosis in Leukemia Cells

    Directory of Open Access Journals (Sweden)

    Vitor Ponci

    2015-07-01

    Full Text Available Nectandra megapotamica (Spreng. Mez. (Lauraceae is a well-known Brazilian medicinal plant that has been used in folk medicine to treat several diseases. In continuation of our ongoing efforts to discover new bioactive natural products from the Brazilian flora, this study describes the identification of cytotoxic compounds from the MeOH extract of N. megapotamica (Lauraceae leaves using bioactivity-guided fractionation. This approach resulted in the isolation and characterization of eight tetrahydrofuran neolignans: calopeptin (1, machilin-G (2, machilin-I (3, aristolignin (4, nectandrin A (5, veraguensin (6, ganschisandrin (7, and galgravin (8. Different assays were conducted to evaluate their cytotoxic activities and to determine the possible mechanism(s related to the activity displayed against human leukemia cells. The most active compounds 4, 5 and 8 gave IC50 values of 14.2 ± 0.7, 16.9 ± 0.8 and 16.5 ± 0.8 µg/mL, respectively, against human leukemia (HL-60 tumor cells. Moreover, these compounds induced specific apoptotic hallmarks, such as plasma membrane bleb formation, nuclear DNA condensation, specific chromatin fragmentation, phosphatidyl-serine exposure on the external leaflet of the plasma membrane, cleavage of PARP as well as mitochondrial damage, which as a whole could be related to the intrinsic apoptotic pathway.

  18. Antimalarial and cytotoxic activities of roots and fruits fractions of Astrodaucus persicus extract

    Directory of Open Access Journals (Sweden)

    Saied Goodarzi

    2017-12-01

    Full Text Available Objective(s:Astrodaucus persicus (Apiaceae is one of the two species of this genus which grows in different parts of Iran. Roots of this plant were rich in benzodioxoles and used as food additive or salad in Iran and near countries. The aim of present study was evaluation of antimalarial and cytotoxic effects of different fractions of A. persicus fruits and roots extracts. Materials and Methods: Ripe fruits and roots of A. persicuswere extracted and fractionated by hexane, chloroform, ethyl acetate and methanol, separately. Antimalarial activities of fractions were performed based on Plasmodium berghei suppressive test in mice model and percentage of parasitemia and suppression were determined for each sample. Cytotoxicity of fruits and roots fractions were investigated against human breast adenocarcinoma (MCF-7, colorectal carcinoma (SW480 and normal (L929 cell lines by MTT assay and IC50 of them were measured. Results: Hexane fraction of roots extract (RHE and ethyl acetate fraction of fruits extract (FEA of A. persicus demonstrated highest parasite inhibition (73.3 and 72.3%, respectively at 500 mg/kg/day which were significantly different from negative control group (P

  19. Antioxidant and cytotoxic activities of Dendrobium moniliforme extracts and the detection of related compounds by GC-MS.

    Science.gov (United States)

    Paudel, Mukti Ram; Chand, Mukesh Babu; Pant, Basant; Pant, Bijaya

    2018-04-23

    The medicinal orchid Dendrobium moniliforme contains water-soluble polysaccharides, phenanthrenes, bibenzyl derivatives, and polyphenol compounds. This study explored the antioxidant and cytotoxic activities of D. moniliforme extracts and detected their bioactive compounds. Plant material was collected from the Daman of Makawanpur district in central Nepal. Plant extracts were prepared from stems using hexane, chloroform, acetone, ethanol and methanol. The total polyphenol content (TPC) in each extract was determined using Folin-Ciocalteu's reagent and the total flavonoid content (TFC) in each extract was determined using the aluminium chloride method. The in vitro antioxidant and cytotoxic activities of each extract were determined using DPPH (2,2-diphenyl-1-picrylhydrazyl) and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assays respectively. Gas chromatography and mass spectrometry (GC-MS) analysis was used to detect bioactive compounds. TPC content was highest (116.65 μg GAE/mg of extract) in D. moniliforme chloroform extract (DMC) and TFC content was highest (116.67 μg QE/mg of extract) in D. moniliforme acetone extract (DMA). D. moniliforme hexane extract (DMH) extract showed the highest percentage of DPPH radical scavenging activity (94.48%), followed closely by D. moniliforme ethanol extract (DME) (94.45%), DMA (93.71%) and DMC (94.35%) at 800 μg/ml concentration. The antioxidant capacities of DMC, DMA, DMH and DME, which were measured in IC 50 values, were much lower 42.39 μg/ml, 49.56 μg/ml, 52.68 μg/ml, and 58.77 μg/ml respectively than the IC 50 of D. moniliforme methanol extract (DMM) (223.15 μg/ml). DMM at the concentration of 800 μg/ml most inhibited the growth of HeLa cells (78.68%) and DME at the same concentration most inhibited the growth of U251 cells (51.95%). The cytotoxic capacity (IC 50 ) of DMM against HeLa cells was 155.80 μg/ml of extract and that of DME against the U251 cells was 772.50 μg/ml of

  20. In vitro thrombolytic, anthelmintic, anti-oxidant and cytotoxic activity with phytochemical screening of methanolic extract of Xanthium indicum leaves

    Directory of Open Access Journals (Sweden)

    Antara Ghosh

    2015-12-01

    Full Text Available Xanthium indicum is an important medicinal plant traditionally used in Bangladesh as a folkloric treatment. The current study was undertaken to evaluate thrombolytic, anthelmintic, anti-oxidant, cytotoxic properties with phytochemical screening of methanolic extract of X. indicum leaves. The analysis of phytochemical screening confirmed the existence of phytosetrols and diterpenes. In thrombolytic assay, a significant clot lysis was observed at four concentrations of plant extract compare to the positive control streptokinase (30,000 IU, 15,000 IU and negative control normal saline. The extract revealed potent anthelmintic activity at different concentrations. In anti-oxidant activity evaluation by two potential experiments namely total phenolic content determination and free radical scavenging assay by 2, 2-diphenylpicrylhydrazyl (DPPH, the leaves extract possess good anti-oxidant property. In the brine shrimp lethality bioassay, the crude extract showed potent (LC50 1.3 μg/mL cytotoxic activity compare to the vincristine sulfate as a positive control (LC50 0.8 μg/mL.

  1. Role of the flavonoid-rich fraction in the antioxidant and cytotoxic activities of Bauhinia forficata Link. (Fabaceae) leaves extract.

    Science.gov (United States)

    Miceli, Natalizia; Buongiorno, Luigina Pasqualina; Celi, Maria Grazia; Cacciola, Francesco; Dugo, Paola; Donato, Paola; Mondello, Luigi; Bonaccorsi, Irene; Taviano, Maria Fernanda

    2016-06-01

    Bauhinia forficata Link. is utilised as an antidiabetic in Brazilian folk-medicine; furthermore, its antioxidant properties suggest a potential usefulness in the prevention of diabetes complications associated with oxidative stress. The contribution of a flavonoid-rich fraction (FRF), HPLC-PDA-ESI-MS characterised, to the antioxidant and cytotoxic properties of B. forficata hydro-alcoholic leaves extract was evaluated for the first time. Both extract and FRF showed radical-scavenging activity and reducing power with a strong relationship with the flavonoid content found; hence, flavonoids are mainly responsible for the primary antioxidant activity of B. forficata extract. The extract significantly decreased FO-1 cell viability at the higher concentrations. FRF did not exert any effect; thus, flavonoids do not appear to be responsible for the cytotoxicity of the extract. The extract resulted virtually non-toxic against both Artemia salina and normal human lymphocytes, demonstrating potential selectivity in inhibiting cancer cell growth. Finally, no antimicrobial activity was observed against the bacteria and yeasts tested.

  2. GENERATION OF CYTOTOXIC LYMPHOCYTES IN MIXED LYMPHOCYTE REACTIONS

    Science.gov (United States)

    Forman, James; Möller, Göran

    1973-01-01

    Generation of cytotoxic effector cells by a unidirectional mixed lymphocyte reaction (MLR) in the mouse H-2 system was studied using labeled YAC (H-2a) leukemia cells as targets. The responding effector cell displayed a specific cytotoxic effect against target cells of the same H-2 genotype as the stimulating cell population. Killing of syngeneic H-2 cells was not observed, even when the labeled target cells were "innocent bystanders" in cultures where specific target cells were reintroduced. Similar results were found with spleen cells taken from mice sensitized in vivo 7 days earlier. The effector cell was not an adherent cell and was not activated by supernatants from MLR. The supernatants were not cytotoxic by themselves. When concanavalin A or phytohemagglutinin was added to the cytotoxic test system, target and effector cells were agglutinated. Under these conditions, killing of H-2a target cells was observed in mixed cultures where H-2a lymphocytes were also the effector cells. These findings indicate that specifically activated, probably thymus-derived lymphocytes, can kill nonspecifically once they have been activated and providing there is close contact between effector and target cells. Thus, specificity of T cell killing appears to be restricted to recognition and subsequent binding to the targets, the actual effector phase being nonspecific. PMID:4269560

  3. IN VITRO CYTOTOXICITY OF BTEX METABOLITES IN HELA CELL LINES

    Science.gov (United States)

    Fuel leakage from underground storage tanks is a major source of groundwater contamination. Although the toxicity of regulated compounds such as benzene, toluene, ethylbenzene, and xylene (BTEX) are well recognized, the cytotoxicity of their metabolites has not been studied exte...

  4. Structures, chemotaxonomic significance, cytotoxic and Na(+),K(+)-ATPase inhibitory activities of new cardenolides from Asclepias curassavica.

    Science.gov (United States)

    Zhang, Rong-Rong; Tian, Hai-Yan; Tan, Ya-Fang; Chung, Tse-Yu; Sun, Xiao-Hui; Xia, Xue; Ye, Wen-Cai; Middleton, David A; Fedosova, Natalya; Esmann, Mikael; Tzen, Jason T C; Jiang, Ren-Wang

    2014-11-28

    Five new cardenolide lactates (1–5) and one new dioxane double linked cardenolide glycoside (17) along with 15 known compounds (6–16 and 18–21) were isolated from the ornamental milkweed Asclepias curassavica. Their structures were elucidated by extensive spectroscopic methods (IR, UV, MS, 1D- and 2D-NMR). The molecular structures and absolute configurations of 1–3 and 17 were further confirmed by single-crystal X-ray diffraction analysis. Simultaneous isolation of dioxane double linked cardenolide glycosides (17–21) and cardenolide lactates (1–5) provided unique chemotaxonomic markers for this genus. Compounds 1–21 were evaluated for the inhibitory activities against DU145 prostate cancer cells. The dioxane double linked cardenolide glycosides showed the most potent cytotoxic effect followed by normal cardenolides and cardenolide lactates, while the C21 steroids were non-cytotoxic. Enzymatic assay established a correlation between the cytotoxic effects in DU145 cancer cells and the Ki for the inhibition of Na(+),K(+)-ATPase. Molecular docking analysis revealed relatively strong H-bond interactions between the bottom of the binding cavity and compounds 18 or 20, and explained why the dioxane double linked cardenolide glycosides possessed higher inhibitory potency on Na(+),K(+)-ATPase than the cardenolide lactate.

  5. Chemical Composition and Cytotoxic and Antioxidant Activities of Satureja montana L. Essential Oil and Its Antibacterial Potential against Salmonella Spp. Strains

    Directory of Open Access Journals (Sweden)

    Hanene Miladi

    2013-01-01

    Full Text Available The present study describes chemical composition as well as cytotoxic, antioxidant, and antimicrobial activities of winter savory Satureja montana L. essential oil (EO. The plant was collected from south France mountain, and its EO was extracted by hydrodistillation (HD and analysed by gas chromatography/mass spectrometry (GC/MS. Thirty-two compounds were identified accounting for 99.85% of the total oil, where oxygenated monoterpenes constituted the main chemical class (59.11%. The oil was dominated by carvacrol (53.35%, γ-terpinene (13.54%, and the monoterpenic hydrocarbons p-cymene (13.03%. Moreover, S. montana L. EO exhibited high antibacterial activities with strong effectiveness against several pathogenic food isolated Salmonella spp. including S. enteritidis with a diameter of inhibition zones growth ranging from 21 to 51 mm and MIC and MBC values ranging from 0.39–1.56 mg/mL to 0.39–3.12 mg/mL, respectively. Furthermore, the S. montana L. EO was investigated for its cytotoxic and antioxidant activities. The results revealed a significant cytotoxic effect of S. montana L. EO against A549 cell line and an important antioxidant activity. These findings suggest that S. montana L. EO may be considered as an interesting source of components used as potent agents in food preservation and for therapeutic or nutraceutical industries.

  6. Cytotoxic and Apoptosis-Inducing Activity of Plants from the Family Asparagaceae in Relation to Human Alveolar Adenocarcinoma Cells

    Directory of Open Access Journals (Sweden)

    Y.N. Kamalova

    2016-06-01

    Full Text Available Cancer is known as the second major mortality cause. The number of new cases is increasing every year. Thus, it is urgent for scientists to search for alternative drugs with selective antitumor action and minimal side effects. It is known that some plant metabolites exhibit antioxidant, cytotoxic, and antitumor activity, while at the same time being less toxic than modern allopathic drugs. In this work, we have investigated the cytotoxic and apoptosis-inducing effects of extracts obtained from plants of the family Asparagaceae on A549 human lung adenocarcinoma cells. The analysis has been performed using flow cytofluorometry. If extracts showed cytotoxicity, the apoptosis-inducing action has been evaluated at the concentration of 50 μg/mL; in other cases, the analyzed concentration range was 50–300 μg/mL. On the basis of the experiments carried out, the following conclusions have been made. Extracts of the leaves and rhizomes of Sansevieria cylindrica and Sansevieria trifasciata do not possess antitumor activity. Extracts of the leaves of Polianthes tuberosa and Furcraea gigantea, which were cytotoxic at high concentrations, cause cell death at 50 μg/mL in the amount of 21.35 ± 1.86 and 15.6 ± 3.23, respectively. Extracts of Polianthes tuberosa bulbs and Yucca filamentosa leaves are able to induce apoptosis at higher concentrations. When the concentration reaches 100 μg/mL, the proportion of apoptotic cells for these plants is 45.76 ± 1.34 and 11.33 ± 0.07, respectively. The number of dead cells at the concentration of 300 μg/mL increased up to 73.33 ± 3.05 and 81.75 ± 4.07. The results have great importance for development of new drugs based on metabolites from these plant extracts.

  7. Aquaporin 3 (AQP3) participates in the cytotoxic response to nucleoside-derived drugs

    International Nuclear Information System (INIS)

    Pérez-Torras, Sandra; Casado, F Javier; Pastor-Anglada, Marçal

    2012-01-01

    Nucleoside analogs used in the chemotherapy of solid tumors, such as the capecitabine catabolite 5 ′ -deoxy-5-fluorouridine (5 ′ -DFUR) trigger a transcriptomic response that involves the aquaglyceroporin aquaporin 3 along with other p53-dependent genes. Here, we examined whether up-regulation of aquaporin 3 (AQP3) mRNA in cancer cells treated with 5 ′ -DFUR represents a collateral transcriptomic effect of the drug, or conversely, AQP3 participates in the activity of genotoxic agents. The role of AQP3 in cell volume increase, cytotoxicity and cell cycle arrest was analyzed using loss-of-function approaches. 5 ′ -DFUR and gemcitabine, but not cisplatin, stimulated AQP3 expression and cell volume, which was partially and significantly blocked by knockdown of AQP3. Moreover, AQP3 siRNA significantly blocked other effects of nucleoside analogs, including G 1 /S cell cycle arrest, p21 and FAS up-regulation, and cell growth inhibition. Short incubations with 5-fluorouracil (5-FU) also induced AQP3 expression and increased cell volume, and the inhibition of AQP3 expression significantly blocked growth inhibition triggered by this drug. To further establish whether AQP3 induction is related to cell cycle arrest and apoptosis, cells were exposed to long incubations with escalating doses of 5-FU. AQP3 was highly up-regulated at doses associated with cell cycle arrest, whereas at doses promoting apoptosis induction of AQP3 mRNA expression was reduced. Based on the results, we propose that the aquaglyceroporin AQP3 is required for cytotoxic activity of 5’-DFUR and gemcitabine in the breast cancer cell line MCF7 and the colon adenocarcinoma cell line HT29, and is implicated in cell volume increase and cell cycle arrest

  8. Antiviral activity of viro care gz-08 against newcastle disease virus in poultry and its in-vitro cytotoxicity assay

    International Nuclear Information System (INIS)

    Rasool, M.H.; Afzal, A.M.

    2014-01-01

    Newcastle disease (ND), one of the most important disease of poultry throughout the World is caused by Newcastle Disease Virus (NDV). It is causing huge economic losses in poultry industry of Pakistan. Regardless of vaccination, other prevention and control measures are necessary to prevent ND outbreaks. Natural resources have been exploited to obtain antiviral compounds in several latest studies. In this study, the antiviral activity of Viro Care GZ-081 was checked up in-vitro, in-ovo and in-vivo. The cytotoxicity assay of the product was performed using Vero cell line. All the trials revealed that the stock solution and 1:2 dilution of GZ-08 had some antiviral activity as well as were cytotoxic. As the concentration decreased, cytotoxicity as well as antiviral activities were lost. Based on these findings, it was concluded that GZ-08 sanitizer or spray can be used as antiviral agent to clean or disinfect some non-living surfaces against different viruses in general and NDV in particular. However, in-vivo use of GZ-08 in poultry against NDV is recommended only as pre-treatment with ND vaccines as it significantly reduced morbidity and mortality as compared to the use of vaccines alone. However, further work is recommended in future on GZ-08 for its use as post-treatment of ND as well as on other antiviral compounds of natural origin to develop a novel antiviral drug against NDV in poultry. (author)

  9. Cytotoxic compounds from the leaves of Combretum paniculatum Vent

    African Journals Online (AJOL)

    It is used locally in the treatment of carcinomous tumors. The cytotoxic activity of pheophorbide a and pheophorbide a-methyl ester isolated from the leaves of C. paniculatum were investigated. In vitro cytotoxicity of the compounds were evaluated against HT-29, MCF-7 and HeLa cancer cell lines using the methyl thiazolyl ...

  10. Antioxidant, antimicrobial, antitumor, and cytotoxic activities of an important medicinal plant (Euphorbia royleana from Pakistan

    Directory of Open Access Journals (Sweden)

    Aisha Ashraf

    2015-03-01

    Full Text Available The aim of present study was to evaluate antioxidant, antimicrobial, and antitumor activities of methanol, hexane, and aqueous extracts of fresh Euphorbia royleana. Total phenolic and flavonoid contents were estimated as gallic acid and querectin equivalents, respectively. Antioxidant activity was assessed by scavenging of free 2,2′- diphenyl-1-picrylhydrazyl radicals and reduction of ferric ions, and it was observed that inhibition values increase linearly with increase in concentration of extract. The results of ferric reducing antioxidant power assay showed that hexane extract has maximum ferric reducing power (12.70 ± 0.49 mg gallic acid equivalents/g of plant extract. Maximum phenolic (47.47 ± 0.71 μg gallic acid equivalents/mg of plant extract and flavonoid (63.68 ± 0.43 μg querectin equivalents/mg of plant extract contents were also found in the hexane extract. Furthermore, we examined antimicrobial activity of the three extracts (methanol, hexane, aqueous against a panel of microorganisms (Escherichia coli, Bacillus subtillis, Pasteurella multocida, Aspergillus niger, and Fusarium solani by disc-diffusion assay, and found the hexane extract to be the best antimicrobial agent. Hexane extract was also observed as to be most effective in a potato disc assay. As hexane extract showed potent activity in all the investigated assays, it was targeted for cytotoxic assessment. Maximum cytotoxicity (61.66% by hexane extract was found at 800 μg/mL. It is concluded that investigated extracts have potential for isolation of antioxidant and antimicrobial compounds for the pharmaceutical industry.

  11. Cytotoxicity of cardenolides and cardenolide glycosides from Asclepias curassavica.

    Science.gov (United States)

    Li, Jun-Zhu; Qing, Chen; Chen, Chang-Xiang; Hao, Xiao-Jiang; Liu, Hai-Yang

    2009-04-01

    A new cardenolide, 12beta,14beta-dihydroxy-3beta,19-epoxy-3alpha-methoxy-5alpha-card-20(22)-enolide (6), and a new doubly linked cardenolide glycoside, 12beta-hydroxycalotropin (13), together with eleven known compounds, coroglaucigenin (1), 12beta-hydroxycoroglaucigenin (2), calotropagenin (3), desglucouzarin (4), 6'-O-feruloyl-desglucouzarin (5), calotropin (7), uscharidin (8), asclepin (9), 16alpha-hydroxyasclepin (10), 16alpha-acetoxycalotropin (11), and 16alpha-acetoxyasclepin (12), were isolated from the aerial part of ornamental milkweed, Asclepias curassavica and chemically elucidated through spectral analyses. All the isolates were evaluated for their cytotoxic activity against HepG2 and Raji cell lines. The results showed that asclepin (9) had the strongest cytotoxic activity with an IC(50) value of 0.02 microM against the two cancer cell lines and the new compound 13 had significant cytotoxic activity with IC(50) values of 0.69 and 1.46 microM, respectively.

  12. Potential genotoxic and cytotoxicity of emamectin benzoate in human normal liver cells.

    Science.gov (United States)

    Zhang, Zhijie; Zhao, Xinyu; Qin, Xiaosong

    2017-10-10

    Pesticide residue inducing cancer-related health problems draw people more attention recently. Emamectin benzoate (EMB) has been widely used in agriculture around the world based on its specificity targets. Although potential risk and the molecular mechanism of EMB toxicity to human liver has not been well-characterized. Unlike well-reported toxicity upon central nervous system, potential genotoxic and cytotoxicity of EMB in human liver cell was ignored and very limited. In this study, we identify genotoxicity and cytotoxicity of EMB to human normal liver cells (QSG7701 cell line) in vitro . We demonstrate that EMB inhibited the viability of QSG7701 cells and induced the DNA damage. Established assays of cytotoxicity were performed to characterize the mechanism of EMB toxicity on QSG7701 cells. Typical chromatin condensation and DNA fragmentation indicated the apoptosis of QSG7701 cells induced by EMB. And the intracellular biochemical results demonstrated that EMB-enhanced apoptosis of QSG7701 cells concurrent with generated ROS, a loss of mitochondrial membrane potential, the cytochrome-c release, up regulate the Bax/Bcl-2 and the activation of caspase-9/-3. Our results of EMB induces the death of QSG7701 cells maybe via mitochondrial-mediated intrinsic apoptotic pathways would contribute to promote the awareness of EMB as an extensive used pesticide to human being effects and reveal the underlying mechanisms of potential genotoxic.

  13. Cytotoxic, antitumor and leukocyte migration activities of resveratrol and sitosterol present in the hidroalcoholic extract of Cissus sicyoides L., Vitaceae, leaves

    Directory of Open Access Journals (Sweden)

    Flávia R. S. Lucena

    2010-05-01

    Full Text Available Cissus sicyoides L. pertains to the Vitaceae family. It is popularly known as "insulina, cipo-pucá, bejuco caro, puci, anil trepador". A vasoconstrictor effect and an antibacterial activity have also been allocated to it. In Brazil, C. sicyoides was evaluated for its anticonvulsant and anti-diabetc properties. Phytochemistry studies identified and isolated sitosterol and resveratrol compounds from its aerial parts which are pointed out as having antitumor activities. The goal of this study was to investigate the cytotoxic and antitumor activities of Cissus sicyoides hydroalcoholic extract as well as its ability to repair leukocytes cells to injured tissue. Cissus sicyoides did not demonstrate cytotoxic activity but showed an inhibition of tumor growth in face of the tumors tested. The extract had a strong chemotactic effect on the twenty four hours period after treatment. The hidroalchoolic extract of Cissus sicyoides presented antitumor activity which was prompted by T lymphocytes recruitment to the local lesion and suggests a new pathway to antitumor activity by activation of lymphoid lineage.

  14. Bacterial CpG-DNA activates dendritic cells in vivo: T helper cell-independent cytotoxic T cell responses to soluble proteins.

    Science.gov (United States)

    Sparwasser, T; Vabulas, R M; Villmow, B; Lipford, G B; Wagner, H

    2000-12-01

    Receptors for conserved molecular patterns associated with microbial pathogens induce synthesis of co-stimulatory molecules and cytokines in immature dendritic cells (DC), as do antigen-reactive CD4 T helper cells via CD40 signaling. Once activated, antigen-presenting DC may activate CD8 T cell responses in a T helper cell-independent fashion. Using immunostimulatory CpG-oligonucleotides (ODN) mimicking bacterial CpG-DNA, we tested whether CpG-DNA bypasses the need for T helper cells in CTL responses towards proteins by directly activating antigen-presenting DC to transit into professional APC. We describe that immature DC in situ constitutively process soluble proteins and generate CD8 T cell determinants yet CD8 T cell responses remain abortive. Induction of primary antigen-specific CD8 cytotoxic T lymphocyte (CTL)-mediated responses becomes initiated in wild-type as well as T helper cell-deficient mice, provided soluble protein and CpG-ODN are draining into the same lymph node. Specifically we show that CpG-ODN trigger antigen-presenting immature DC within the draining lymph node to acutely up-regulate co-stimulatory molecules and produce IL-12. These results provide new insights for generating in vivo efficient CTL responses to soluble proteins which may influence vaccination strategies.

  15. Bioassay-Guided Isolation of Cytotoxic Isocryptoporic Acids from Cryptoporus volvatus

    Directory of Open Access Journals (Sweden)

    Ling-Yun Zhou

    2016-12-01

    Full Text Available The present work constitutes a contribution to the phytochemical investigation of Cryptoporus volvatus aiming to search for effective cytotoxic constituents against tumor cell lines in vivo. Bioassay-guided separation of the ethylacetate extract of C. volvatus afforded four new isocryptoporic acid (ICA derivatives, ICA-B trimethyl ester (1, ICA-E (2, ICA-E pentamethyl ester (3, and ICA-G (4, together with nine known cryptoporic acids. These isocryptoporic acids are isomers of the cryptoporic acids with drimenol instead of albicanol as the terpenoid fragment; their structures were elucidated on the basis of spectroscopic evidences (UV, IR, HRMS, and NMR and comparison with literature values. All isolates show certain cytotoxic activities against five tumor cell lines. Among them, compound 4 showed an comparable activity to that of the positive control cis-platin, while other compounds exhibited weak cytotoxic activities.

  16. Assessment of Cytotoxic Activity of Rosemary (Rosmarinus officinalis L.), Turmeric (Curcuma longa L.), and Ginger (Zingiber officinale R.) Essential Oils in Cervical Cancer Cells (HeLa)

    Science.gov (United States)

    Santos, P. A. S. R.; Avanço, G. B.; Nerilo, S. B.; Marcelino, R. I. A.; Janeiro, V.; Valadares, M. C.

    2016-01-01

    The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L.), turmeric (CEO, Curcuma longa L.), and ginger (GEO, Zingiber officinale R.) essential oils in HeLa cells. Cytotoxicity tests were performed in vitro, using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50 obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells. PMID:28042599

  17. Assessment of Cytotoxic Activity of Rosemary (Rosmarinus officinalis L., Turmeric (Curcuma longa L., and Ginger (Zingiber officinale R. Essential Oils in Cervical Cancer Cells (HeLa

    Directory of Open Access Journals (Sweden)

    P. A. S. R. Santos

    2016-01-01

    Full Text Available The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L., turmeric (CEO, Curcuma longa L., and ginger (GEO, Zingiber officinale R. essential oils in HeLa cells. Cytotoxicity tests were performed in vitro, using tetrazolium (MTT and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC50 obtained was 36.6 μg/mL for CEO and 129.9 μg/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs, and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81 μg/mL of CEO and 32.12 μg/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.

  18. Assessment of Cytotoxic Activity of Rosemary (Rosmarinus officinalis L.), Turmeric (Curcuma longa L.), and Ginger (Zingiber officinale R.) Essential Oils in Cervical Cancer Cells (HeLa).

    Science.gov (United States)

    Santos, P A S R; Avanço, G B; Nerilo, S B; Marcelino, R I A; Janeiro, V; Valadares, M C; Machinski, Miguel

    2016-01-01

    The objective of this study was to evaluate the cytotoxic activity of rosemary (REO, Rosmarinus officinalis L.), turmeric (CEO, Curcuma longa L.), and ginger (GEO, Zingiber officinale R.) essential oils in HeLa cells. Cytotoxicity tests were performed in vitro , using tetrazolium (MTT) and neutral red assays for evaluation of antiproliferative activity by different mechanisms, trypan blue assay to assess cell viability and evaluation of cell morphology for Giemsa to observe the cell damage, and Annexin V to evaluate cell death by apoptosis. CEO and GEO exhibited potent cytotoxic activity against HeLa cells. IC 50 obtained was 36.6  μ g/mL for CEO and 129.9  μ g/mL for GEO. The morphology of HeLa cells showed condensation of chromatin, loss of cell membrane integrity with protrusions (blebs), and cell content leakage for cells treated with CEO and GEO, from the lowest concentrations studied, 32.81  μ g/mL of CEO and 32.12  μ g/mL of GEO. The Annexin V assay revealed a profile of cell death by apoptosis for both CEO and GEO. The results indicate cytotoxic activity in vitro for CEO and GEO, suggesting potential use as anticancer agents for cervical cancer cells.

  19. Calcium phosphate coating containing silver shows high antibacterial activity and low cytotoxicity and inhibits bacterial adhesion

    Energy Technology Data Exchange (ETDEWEB)

    Ando, Yoshiki, E-mail: andoy@jmmc.jp [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Miyamoto, Hiroshi [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Noda, Iwao; Sakurai, Nobuko [Research Department, Japan Medical Materials Corporation, Uemura Nissei Bldg.9F 3-3-31 Miyahara, Yodogawa-ku, Osaka 532-0003 (Japan); Akiyama, Tomonori [Division of Microbiology, Department of Pathology and Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan); Yonekura, Yutaka; Shimazaki, Takafumi; Miyazaki, Masaki; Mawatari, Masaaki; Hotokebuchi, Takao [Department of Orthopaedic Surgery, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga 849-8501 (Japan)

    2010-01-01

    Surgical site infection is one of the serious complications of orthopedic implants. In order to reduce the incidence of implant-associated infections, we developed a novel coating technology of calcium phosphate (CP) containing silver (Ag), designated Ag-CP coating, using a thermal spraying technique. In this study, we evaluated the antibacterial efficacy and biological safety of this coating. In vitro antibacterial activity tests showed that the growths of Escherichia coli, Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) are completely suppressed on Ag-CP coating. In vitro bacterial adherence tests revealed that the number of adherent bacteria on the surface of this coating is significantly less (p < 0.02) than that on the surface of the CP coating. Moreover, the Ag-CP coating completely inhibits MRSA adhesion [<10 colony-forming units (CFU)] when 10{sup 2} CFU MRSA is inoculated. On the other hand, V79 Chinese hamster lung cells were found to grow on the Ag-CP coating as well as on the CP coating in a cytotoxicity test. These results indicate that the Ag-CP coating on the surface of orthopedic implants exhibits antibacterial activity and inhibits bacterial adhesion without cytotoxicity.

  20. Anti-Phytopathogenic and Cytotoxic Activities of Crude Extracts and Secondary Metabolites of Marine-Derived Fungi

    Directory of Open Access Journals (Sweden)

    Dong-Lin Zhao

    2018-01-01

    Full Text Available Thirty-one isolates belonging to eight genera in seven orders were identified from 141 strains that were isolated from several marine plants. Alternaria sp. and Fusarium sp. were found to be the predominant fungi. Evaluation of the anti-phytopathogenic bacterial and fungal activities, as well as the cytotoxicity of these 31 extracts, revealed that most of them displayed different levels of bioactivities. Due to their interesting bioactivities, two fungal strains—Fusarium equiseti (P18 and Alternaria sp. (P8—were selected for chemical investigation and compounds 1–4 were obtained. The structure of 1 was elucidated by 1D and 2D NMR analysis, as well as high-resolution electrospray ionization mass spectroscopy (HRESIMS, and the absolute configuration of its stereogenic carbon (C-11 was established by comparison of the experimental and calculated electronic circular-dichroism (ECD spectra. Moreover, alterperylenol (4 exhibited antibacterial activity against Clavibacter michiganensis with a minimum inhibitory concentration (MIC of 1.95 μg/mL, which was 2-fold stronger than that of streptomycin sulfate. Additionally, an antibacterial mechanism study revealed that 4 caused membrane hyperpolarization without evidence of destruction of cell membrane integrity. Furthermore, stemphyperylenol (3 displayed potent antifungal activity against Pestallozzia theae and Alternaria brassicicola with MIC values equal to those of carbendazim. The cytotoxicity of 1 and 2 against human lung carcinoma (A-549, human cervical carcinoma (HeLa, and human hepatoma (HepG2 cell lines were also evaluated.

  1. The novel oral imatinib microemulsions: physical properties, cytotoxicity activities and improved Caco-2 cell permeability.

    Science.gov (United States)

    Gundogdu, Evren; Karasulu, Hatice Yesim; Koksal, Cinel; Karasulu, Ercüment

    2013-01-01

    The objective of this study was to formulate imatinib (IM) loaded to water-in-oil (w/o) microemulsions as an alternative formulation for cancer therapy and to evaluate the cytotoxic effect of microemulsions Caco-2 and MCF-7. Moreover, permeability studies were also performed with Caco-2 cells. W/o microemulsion systems were developed by using pseudo-ternary phase diagram. According to cytotoxicity studies, all formulations did not exert a cytotoxic effect on Caco-2 cells. Furthermore, all formulations had a significant cytotoxic effect on MCF-7 cells and the cytotoxic effect of M3IM was significantly more than that of other microemulsions and IM solution (p < 0.05). The permeability studies of IM across Caco-2 cells showed that permeability value from apical to basolateral was higher than permeability value of other formulations. In conclusion, the microemulsion formulations as a drug carrier, especially M3IM formulation, may be used as an effective alternative breast cancer therapy for oral delivery of IM.

  2. Synthesis of racemic and chiral albicanol, albicanyl acetate and cyclozonarone: cytotoxic activity of ent-cyclozonarone

    International Nuclear Information System (INIS)

    Delgado, Virginia; Armstrong, Veronica; Cortes, Manuel; Barrero, Alejandro F.

    2008-01-01

    The total synthesis of racemic cyclozonarone ((±)-3) was achieved from E,E-farnesol (4) in an eight-step sequence in 6.6% overall yield. Albicanol ((±)-1) and its acetate ((±)-2) are intermediates. A similar sequence starting from natural (-)-drimenol (5) gave (+)-albicanol (1) and (+)-cyclozonarone (3) (42% and 11% yield, respectively). The cytotoxic activity of (+)-cyclozonarone was assayed and showed some selectivity towards MS-1 (mice endothelial cells). (author)

  3. Cytotoxic Properties of Three Isolated Coumarin-hemiterpene Ether Derivatives from Artemisia armeniaca Lam.

    Science.gov (United States)

    Mojarrab, Mahdi; Emami, Seyed Ahmad; Delazar, Abbas; Tayarani-Najaran, Zahra

    2017-01-01

    Considering multiple reports on cytotoxic activity of the Artemisia genus and its phytochemicals, in the current study A. armeniaca Lam. and the three components isolated from the plant were subjected to cytotoxic studies. Analytical fractionation of A. armeniaca aerial parts for the first time was directed to the isolation of 7-hydroxy-8-(4-hydroxy-3-methylbutoxy) comarin (armenin), 8-hydroxy-7-(4-hydroxy-3-methylbutoxy) comarin (isoarmenin) and deoxylacarol. Cytotoxicity assessed with alamalBlue® assay and apoptosis was detected by PI staining and western blot analysis of Bax and PARP proteins. Extracts and all compounds exhibited cytotoxic activity against apoptosis-proficient HL-60 and apoptosis-resistant K562 cells, with the lowest cytotoxic activity on J774 cell line as non-malignant cell. Armenin as the most potent component decreased the viability of cell with IC50 of 22.5 and 71.1 µM for K562 and HL-60 cells respectively and selected for further mechanistic study. Armenin increased the sub-G1 peak in flow cytometry histogram of HL-60 and K562 treated cells and increase in the amount of Bax protein and the cleavage of PARP in comparison with the control after treatment for 48 h in K562 treated cells verified the apoptotic activity of the armenin. Taken together, according to the finding of this study armenin was introduced as a novel cytotoxic compound with apoptotic activity, which is encouraging for further mechanistic and clinical studies.

  4. Cytotoxicity and antimicrobial activity of Salvia officinalis L. flowers ...

    African Journals Online (AJOL)

    In this study a comparison of the Cytotoxicity and antimicrobial action of the aqueous and 70% methanol extracts from the flower of the herbal species Salvia officinalis L. (Lamiaceae), originating from Sudan was carried out. Material and Methods: Aqueous, and aquatic methanolic extracts of S. officinalis was investigated for ...

  5. New phenanthrene and 9, 10-dihydrophenanthrene derivatives from the stems of Dendrobium officinale with their cytotoxic activities.

    Science.gov (United States)

    Zhao, Gui-Yun; Deng, Bo-Wen; Zhang, Chong-Yu; Cui, Yi-Da; Bi, Jia-Yi; Zhang, Guo-Gang

    2018-01-01

    Two new phenanthrene and 9, 10-dihydrophenanthrene derivatives (1-2) with six known congeners (3-8) were isolated from the extraction of stems of Dendrobium officinale. Compounds 1 and 2 were based on carbon skeleton in which phenanthrene and 9, 10-dihydrophenanthrene moiety were linked with a phenylpropane unit through a dioxane bridge, respectively. Their structures were determined by comprehensive NMR spectroscopic data, the absolute configuration of new compounds were determined by comparing their experimental and calculated ECD for the first time. All the compounds were investigated contains two cancer cell lines (HI-60, THP-1). All the isolates showed cytotoxicity, especially compound 4 showed markedly cytotoxic activities against HI-60 and THP-1 cell lines with IC 50 values of 11.96 and 8.92 μM.

  6. Cobalt iron oxide nanoparticles induce cytotoxicity and regulate the apoptotic genes through ROS in human liver cells (HepG2).

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Khan, M A Majeed; Alhadlaq, Hisham A; Alshamsan, Aws

    2016-12-01

    Cobalt iron oxide (CoFe 2 O 4 ) nanoparticles (CIO NPs) have been one of the most widely explored magnetic NPs because of their excellent chemical stability, mechanical hardness and heat generating potential. However, there is limited information concerning the interaction of CIO NPs with biological systems. In this study, we investigated the reactive oxygen species (ROS) mediated cytotoxicity and apoptotic response of CIO NPs in human liver cells (HepG2). Diameter of crystalline CIO NPs was found to be 23nm with a band gap of 1.97eV. CIO NPs induced cell viability reduction and membrane damage, and degree of induction was dose- and time-dependent. CIO NPs were also found to induce oxidative stress revealed by induction of ROS, depletion of glutathione and lower activity of superoxide dismutase enzyme. Real-time PCR data has shown that mRNA level of tumor suppressor gene p53 and apoptotic genes (bax, CASP3 and CASP9) were higher, while the expression level of anti-apoptotic gene bcl-2 was lower in cells following exposure to CIO NPs. Activity of caspase-3 and caspase-9 enzymes was also higher in CIO NPs exposed cells. Furthermore, co-exposure of N-acetyl-cysteine (ROS scavenger) efficiently abrogated the modulation of apoptotic genes along with the prevention of cytotoxicity caused by CIO NPs. Overall, we observed that CIO NPs induced cytotoxicity and apoptosis in HepG2 cells through ROS via p53 pathway. This study suggests that toxicity mechanisms of CIO NPs should be further investigated in animal models. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Astaxanthin down-regulates Rad51 expression via inactivation of AKT kinase to enhance mitomycin C-induced cytotoxicity in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chen, Jyh-Cheng; Wang, Tai-Jing; Zheng, Hao-Yu; Chen, Wen-Ching; Chang, Po-Yuan; Lin, Yun-Wei

    2016-04-01

    Astaxanthin has been demonstrated to exhibit a wide range of beneficial effects, including anti-inflammatory and anti-cancer properties. However, the molecular mechanism of astaxanthin-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination, and studies show that chemo-resistant carcinomas exhibit high levels of Rad51 expression. In this study, astaxanthin treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1703. Astaxanthin treatment (2.5-20 μM) decreased Rad51 expression and phospho-AKT(Ser473) protein level in a time and dose-dependent manner. Furthermore, expression of constitutively active AKT (AKT-CA) vector rescued the decreased Rad51 mRNA and protein levels in astaxanthin-treated NSCLC cells. Combined treatment with phosphatidylinositol 3-kinase (PI3K) inhibitors (LY294002 or wortmannin) further decreased the Rad51 expression in astaxanthin-exposed A549 and H1703 cells. Knockdown of Rad51 expression by transfection with si-Rad51 RNA or cotreatment with LY294002 further enhanced the cytotoxicity and cell growth inhibition of astaxanthin. Additionally, mitomycin C (MMC) as an anti-tumor antibiotic is widely used in clinical NSCLC chemotherapy. Combination of MMC and astaxanthin synergistically resulted in cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced phospho-AKT(Ser473) level and Rad51 expression. Overexpression of AKT-CA or Flag-tagged Rad51 reversed the astaxanthin and MMC-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in astaxanthin and MMC co-treated cells. In conclusion, astaxanthin enhances MMC-induced cytotoxicity by decreasing Rad51 expression and AKT activation. These findings may provide rationale to combine astaxanthin with MMC for the treatment of NSCLC. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng.

    Directory of Open Access Journals (Sweden)

    Rosany Lopes Martins

    Full Text Available Aeollanthus suaveolens species popularly known as catinga de mulata belongs to the Lamiaceae family. In the Amazon region, it is used in folk medicine for the treatment of gastritis, convulsions of epileptic origin, stomach pain and diarrhea in the form of tea and juice. Essential oils have analgesic, anti-inflammatory, and antimicrobial activity. This study evaluated the chemical composition of the A. suaveolens essential oil, and its cytotoxic, antimicrobial and antioxidant activity on Artemia salina Leach. The plant species was collected in Fazendinha district in the city of Macapa-AP. The essential oil obtained from the process was performed by hydrodistillation and identification of components by gas chromatography coupled with mass spectrometer. The antioxidant activity was evaluated by the kidnapping method of 2,2- diphenyl -1-picrilhidrazil radical, while the cytotoxic activity was assessed using saline A. and the microbiological activity was carried out by microdilution method with Escherichia coli, Salmonella sp. and Staphylococcus aureus bacteria. In a chromatographic analysis, the major constituents found in the essential oil of A. suaveolens were (E -β-farnesene (37.615%, Linalool (33.375%, α-Santalene (3.255% and linalyl acetate (3.222%. The results showed that the Escherichia coli and Salmonella sp. bacteria were more susceptible to MIC 50 mg.mL-1 when compared with the Staphylococcus aureus bacterium MIC 100 mg.mL-1. With respect to MBC concentration of 100 mg.mL-1 it was sufficient to inhibit the growth of E. coli. The essential oil did not show antioxidant activity, however, has a high cytotoxic activity against the A. salina, LC50 8.90 μg.mL-1.

  9. Chemical Composition, an Antioxidant, Cytotoxic and Microbiological Activity of the Essential Oil from the Leaves of Aeollanthus suaveolens Mart. ex Spreng.

    Science.gov (United States)

    Martins, Rosany Lopes; Simões, Ranggel Carvalho; Rabelo, Érica de Menezes; Farias, Ana Luzia Ferreira; Rodrigues, Alex Bruno Lobato; Ramos, Ryan da Silva; Fernandes, João Batista; Santos, Lourivaldo da Silva; de Almeida, Sheylla Susan Moreira da Silva

    2016-01-01

    Aeollanthus suaveolens species popularly known as catinga de mulata belongs to the Lamiaceae family. In the Amazon region, it is used in folk medicine for the treatment of gastritis, convulsions of epileptic origin, stomach pain and diarrhea in the form of tea and juice. Essential oils have analgesic, anti-inflammatory, and antimicrobial activity. This study evaluated the chemical composition of the A. suaveolens essential oil, and its cytotoxic, antimicrobial and antioxidant activity on Artemia salina Leach. The plant species was collected in Fazendinha district in the city of Macapa-AP. The essential oil obtained from the process was performed by hydrodistillation and identification of components by gas chromatography coupled with mass spectrometer. The antioxidant activity was evaluated by the kidnapping method of 2,2- diphenyl -1-picrilhidrazil radical, while the cytotoxic activity was assessed using saline A. and the microbiological activity was carried out by microdilution method with Escherichia coli, Salmonella sp. and Staphylococcus aureus bacteria. In a chromatographic analysis, the major constituents found in the essential oil of A. suaveolens were (E) -β-farnesene (37.615%), Linalool (33.375%), α-Santalene (3.255%) and linalyl acetate (3.222%). The results showed that the Escherichia coli and Salmonella sp. bacteria were more susceptible to MIC 50 mg.mL-1 when compared with the Staphylococcus aureus bacterium MIC 100 mg.mL-1. With respect to MBC concentration of 100 mg.mL-1 it was sufficient to inhibit the growth of E. coli. The essential oil did not show antioxidant activity, however, has a high cytotoxic activity against the A. salina, LC50 8.90 μg.mL-1.

  10. Silencing of the transcription factor STAT3 sensitizes lung cancer cells to DNA damaging drugs, but not to TNFα- and NK cytotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Kulesza, Dorota W. [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland); Postgraduate School of Molecular Medicine, Warsaw Medical University, Warsaw (Poland); Carré, Thibault; Chouaib, Salem [Unité INSERM U753, Institut de Cancérologie Gustave Roussy, Villejuif Cedex (France); Kaminska, Bozena, E-mail: bozenakk@nencki.gov.pl [Laboratory of Transcription Regulation, Department of Cell Biology, The Nencki Institute of Experimental Biology, Warsaw (Poland)

    2013-02-15

    Transcription factor STAT3 (Signal Transducers and Activators of Transcription 3) is persistently active in human tumors and may contribute to tumor progression. Inhibition of STAT3 expression/activity could be a good strategy to modulate tumor cell survival and responses to cancer chemotherapeutics or immune cytotoxicity. We silenced STAT3 expression in human A549 lung cancer cells to elucidate its role in cell survival and resistance to chemotherapeutics, TNFα and natural killer (NK)-mediated cytotoxicity. We demonstrate that STAT3 is not essential for basal survival and proliferation of A549 cancer cells. Stable silencing of STAT3 expression sensitized A549 cells to DNA damaging chemotherapeutics doxorubicin and cisplatin in a p53-independent manner. Sensitization to DNA damage-inducing chemotherapeutics could be due to down-regulation of the Bcl-xL expression in STAT3 depleted cells. In contrast, knockdown of STAT3 in cancer cells did not modulate responses to TNFα and NK-mediated cytotoxicity. We found that STAT3 depletion increased the NFκB activity likely providing the compensatory, pro-survival signal. The treatment with TNFα, but not doxorubicin, enhanced this effect. We conclude that STAT3 is not crucial for the control of basal cell proliferation and survival of lung carcinoma cells but modulates susceptibility to DNA damaging chemotherapeutics by regulation of intrinsic pro-survival pathways. - Highlights: ► STAT3 silencing is negligent for basal lung cancer cell viability and proliferation. ► STAT3 depletion sensitizes lung cancer cells to DNA damaging chemotherapeutics. ► STAT3 depletion has no effect on susceptibility to extrinsic apoptosis inducers. ► Increased pro-survival NFκB activity may compensate for STAT3 depletion.

  11. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Science.gov (United States)

    Hamilton, Gerhard

    2014-01-01

    Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4) inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC) cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS) and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose)-Polymerase 1 (PARP1) inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS. PMID:24608973

  12. Esters of Quinoxaline 1ˏ4-Di-N-oxide with Cytotoxic Activity on Tumor Cell Lines Based on NCI-60 Panel

    Science.gov (United States)

    Rivera, Gildardo; Ahmad Shah, Syed Shoaib; Arrieta-Baez, Daniel; Palos, Isidro; Mongue, Antonio; Sánchez-Torres, Luvia Enid

    2017-01-01

    Quinoxalines display diverse and interesting pharmacological activities as antibacterial, antiviral, antiparasitic and anticancer agents. Particularly, their 1ˏ4-di-N-oxide derivatives have proved to be cytotoxic agents that are active under hypoxic conditions as that of solid tumours. A new series of quinoxaline 1ˏ4-di-N-oxide substitutes at 7-position with esters group were synthetized and characterized by infrared (IR), proton nuclear magnetic resonance (1H-NMR), spectroscopy, and elemental analysis. Seventeen derivatives (M1-M3, E1-E8, P1-P3 and DR1-DR3) were selected and evaluated for antitumor activities using the NCI-60 human tumor cell lines screen. Results showed that E7, P3 and E6 were the most active compounds against the cell lines tested. Substitutions at 7-position with esters group not necessarily affect the biological activity, but the nature of the esters group could exert an influence on the selectivity. Additionally, substitutions at 2-position influenced the cytotoxic activity of the compounds. PMID:29201086

  13. Cytotoxic Activity of C-Geranyl Compounds from Paulownia tomentosa Fruits

    Czech Academy of Sciences Publication Activity Database

    Šmejkal, K.; Babula, P.; Šlapetová, T.; Brognara, E.; Dall Acqua, S.; Žemlička, M.; Innocenti, G.; Cvačka, Josef

    2008-01-01

    Roč. 74, č. 12 (2008), s. 1488-1491 ISSN 0032-0943 Institutional research plan: CEZ:AV0Z40550506 Keywords : Paulownia tomentosa * Scrophulariaceae * cytotoxicity Subject RIV: CC - Organic Chemistry Impact factor: 1.960, year: 2008

  14. Evaluation of Antioxidant Activity and Cytotoxicity of Cumin Seed Oil Nanoemulsion Stabilized by Sodium Caseinate- Guar Gum

    Directory of Open Access Journals (Sweden)

    Parastoo Farshi 1, Mahnaz Tabibiazar 2 * , Marjan Ghorbani 3, Hamed Hamishehkar 3

    2017-12-01

    Full Text Available Background: The objective of this study was to prepare the sodium caseinate- guar gum stabilized nanoemulsion of cumin seed oil (Cumminum cyminum using ultrasonication method. Meanwhile, the effect of nanoemulsification on the antioxidant and cytotoxicity of the cumin seed oil was evaluated. Method: The effect of concentration of sodium casienate and guar gum was investigated on droplet size, thermal and oxidative stability of cumin seed oil nanoemulsion using TBARS and z-average measurements, the antioxidant activity was evaluated by DPPH scavenging and iron reducing power measurements. The biocompatibility and the cytotoxicity of the cumin seed oil nanoemulsion were evaluated by MTT assay test and compared with cumin seed oil and cumin seed oil free-nanoemulsion. Results: GC–MS analysis indicated 15 compounds in the cumin seed oil. The nanoemulsions were stabilized by sodium caseinate-guar gum complex. The minimum and stable droplets (155 ± 8 nm of nanoemulsion were formulated when the concentration of essential oil in oil phase was 30 % (w/w. DPPH radical scavenging ability, iron reducing power and cytotoxicity of nanoemulsified cumin seed oil were significantly higher than cumin seed oil (p<0.05 Conclusion: In this study, cumin seed oil nanoemulsion was prepared and stabilized by sodium caseinate- guar gum. The aforementioned nanoemulsion had good stability even after 60 days storage at 4ºC. Antioxidant and cytotoxicity of cumin seed oil were increased by nanoemulsification. It can be concluded that cumin seed oil nanoemulsion has the potential to use as natural preservative and anticancer product in food industry.

  15. Three New Cytotoxic ent-Kaurane Diterpenes from Isodon excisoides

    Directory of Open Access Journals (Sweden)

    Li-Ping Dai

    2015-09-01

    Full Text Available Three types of ent-kaurane diterpenoids were isolated from the aerial parts of Isodon excisoides, including three new diterpenoids, 1α,7α,14β-trihydroxy-20-acetoxy-ent-kaur-15-one (1; 1α,7α,14β,18-tetrahydroxy-20-acetoxy-ent-kaur-15-one (2; and 1α-acetoxy-14β-hydroxy-7α,20-epoxy-ent-kaur-16-en-15-one (3; together with six known diterpenes henryin (4; kamebanin (5; reniformin C (6; kamebacetal A (7; kamebacetal B (8; and oridonin (9. The structures of the isolated compounds were elucidated by means of nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry in conjunction with published data for their analogs, as well as their fragmentation patterns. Compounds 5 and 9 were isolated from Isodon excisoides for the first time. To explore the structure-activity relationships of the isolated compounds, they were tested for their cytotoxic effects against five human cancer cell lines: HCT-116, HepG2, A2780, NCI-H1650, and BGC-823. Most of the isolated compounds showed certain cytotoxic activity against the five cancer cell lines with IC50 values ranging from 1.09–8.53 µM. Among the tested compounds, compound 4 exhibited the strongest cytotoxic activity in the tested cell lines, with IC50 values ranging from 1.31–2.07 µM. Compounds 1, 6, and 7 exhibited selective cytotoxic activity.

  16. The antioxidant properties, cytotoxicity and monoamine oxidase ...

    African Journals Online (AJOL)

    Tarchonanthus camphoratus (camphor bush) has been widely used for numerous medicinal purposes. The aim of the present study was to evaluate the antioxidant properties, cytotoxicity and monoamine oxidase inhibition activities of the crude dichloromethane leaf extract of T. camphoratus. The antioxidant activities were ...

  17. Tamoxifen enhances erlotinib-induced cytotoxicity through down-regulating AKT-mediated thymidine phosphorylase expression in human non-small-cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Chiu, Hsien-Chun; Syu, Jhan-Jhang; Jian, Yi-Jun; Chen, Chien-Yu; Jian, Yun-Ting; Huang, Yi-Jhen; Wo, Ting-Yu; Lin, Yun-Wei

    2014-03-01

    Tamoxifen is a triphenylethylene nonsteroidal estrogen receptor (ER) antagonist used worldwide as an adjuvant hormone therapeutic agent in the treatment of breast cancer. However, the molecular mechanism of tamoxifen-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Thymidine phosphorylase (TP) is an enzyme of the pyrimidine salvage pathway which is upregulated in cancers. In this study, tamoxifen treatment inhibited cell survival in two NSCLC cells, H520 and H1975. Treatment with tamoxifen decreased TP mRNA and protein levels through AKT inactivation. Furthermore, expression of constitutively active AKT (AKT-CA) vectors significantly rescued the decreased TP protein and mRNA levels in tamoxifen-treated NSCLC cells. In contrast, combination treatment with PI3K inhibitors (LY294002 or wortmannin) and tamoxifen further decreased the TP expression and cell viability of NSCLC cells. Knocking down TP expression by transfection with small interfering RNA of TP enhanced the cytotoxicity and cell growth inhibition of tamoxifen. Erlotinib (Tarceva, OSI-774), an orally available small molecular inhibitor of epidermal growth factor receptor (EGFR) tyrosine kinase, is approved for clinical treatment of NSCLC. Compared to a single agent alone, tamoxifen combined with erlotinib resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-AKT and phospho-ERK1/2, and reduced TP protein levels. These findings may have implications for the rational design of future drug regimens incorporating tamoxifen and erlotinib for the treatment of NSCLC. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Supercritical Carbon Dioxide extraction of Aloe Emodin and Barbaloin from Aloe Vera L. leaves and their in-vitro cytotoxic activity

    International Nuclear Information System (INIS)

    Kabbash, A.; El-Soud, K.A.; Zalat, E.; Shoeib, N.; Yagi, A.

    2008-01-01

    Aloe emodin and barbaloin, isolated as the active principles of the medicinal plant Aloe vera L., were extracted by supercritical fluid extraction (SFE) and analyzed by high performance liquid chromatography (HPLC). With optimized operating conditions for SFE, aloe emodin and barbaloin were quantitatively extracted from A. Vera leaves within 20 minutes at a flow rate of 0.3 ml/min, temperature and pressure at 40C and 3200 Psi respectively with the addition of 1 ml of methanol as a modifier. Separation of aloe emodin and barbaloin, in a pure form, from the SFE extract was achieved using a semi-preparative column. The cytotoxic activity of both aloe emodin and barbaloin were evaluated using the in-vitro MTT colorimetric assay. Aloe emodin showed a cytotoxic activity on two human colon cancer cells lines (DLD-1 and HD-29) with IC 8.94 and 10.78 M respectively, while barbaloin had no effect. (author)

  19. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2002-01-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  20. In vitro preliminary cytotoxicity testing of vegetal extracts, using colorimetric methods

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Cordero Camacho

    2011-12-01

    Full Text Available To advance in the study of the Colombian vegetal biodiversity, considered as a potential source of pharmacologically active products, the establishment of biological activity evaluation systems is necessary, which allow the detection of active products against pathologies with high social and economical impact, such as cancer. This work describes the implementation of a preliminary in vitro methodology for the determination of potential anticancer activity in vegetal extracts, by cytotoxicity testing upon human tumor cell lines, measuring the cellular mass indirectly with the colorimetric assays of MTT (methyl tetrazolium tiazole reduction and SRB (sulforhodamine Bstaining. HT-29, MCF-7, SiHa and HEp-2 cell lines cultures were adapted, MTT concentration, cellular density and treatment period parameters for the cytotoxicity assay were selected. Cell lines sensitivity to the chemotherapeutic agent Doxorubicin HCl was determined. Colombian vegetal species extracts cytotoxicity was tested and usefulness of the assay as a tool to bioguide the search of active products was evidenced.

  1. In vitro cytotoxic screening of selected Saudi medicinal plants.

    Science.gov (United States)

    Almehdar, Hussein; Abdallah, Hossam M; Osman, Abdel-Moneim M; Abdel-Sattar, Essam A

    2012-04-01

    Many natural products from plants have been identified to exert anticancer activity. It might be expected to be a challenge to look at the Saudi plants in order to discover new sources for new molecules which may have anticancer activity. The methanolic extracts of forty species of plants traditionally used in Saudi Arabia for the treatment of a variety of diseases were tested in vitro for their potential anticancer activity on different human cancer cell lines. The cytotoxic activity of the methanolic extracts of the tested plants were determined using three human cancer cell lines, namely, breast cancer (MCF7), hepatocellular carcinoma (HEPG2), and cervix cancer (HELA) cells. In addition, human normal melanocyte (HFB4) was used as normal nonmalignant cells. Sulforhodamine B colorimetric assay was used to evaluate the in vitro cytotoxic activity of the different extracts. The growth inhibition of 50% (IC(50)) for each extract was calculated from the optical density of treated and untreated cells. Doxorubicin, a broad-spectrum anticancer drug, was used as the positive control. Nine plant extracts were chosen for further fractionation based on their activity and availability. Interesting cytotoxic activity was observed for Hypoestes forskaolii, Withania somnifera, Solanum glabratum, Adenium obesum, Pistacia vera oleoresin, Caralluma quadrangula, Eulophia petersii, Phragmanthera austroarabica, and Asparagus officinalis. Other extracts showed poor activity.

  2. Melanogenesis-inhibitory and cytotoxic activities of diarylheptanoids from Acer nikoense bark and their derivatives.

    Science.gov (United States)

    Akihisa, Toshihiro; Takeda, Ayano; Akazawa, Hiroyuki; Kikuchi, Takashi; Yokokawa, Satoru; Ukiya, Motohiko; Fukatsu, Makoto; Watanabe, Kensuke

    2012-08-01

    Nine cyclic diarylheptanoids, 1-9, including two new compounds, i.e., 9-oxoacerogenin A (8) and 9-O-β-D-glucopyranosylacerogenin K (9), along with three acyclic diarylheptanoids, 10-12, and four phenolic compounds, 13-16, were isolated from a MeOH extract of the bark of Acer nikoense (Aceraceae). Acid hydrolysis of 9 yielded acerogenin K (17) and D-glucose. Two of the cyclic diarylheptanoids, acerogenin A (1) and (R)-acerogenin B (5), were converted to their ether and ester derivatives, 18-24 and 27-33, respectively, and to the dehydrated derivatives, 25, 26, 34, and 35. Upon evaluation of compounds 1-16 and 18-35 for their inhibitory activities against melanogenesis in B16 melanoma cells, induced with α-melanocyte-stimulating hormone (α-MSH), eight natural glycosides, i.e., six diarylheptanoid glycosides, 2-4, 6, 9, and 12, and two phenolic glycosides, 15 and 16, exhibited inhibitory activities with 24-61% reduction of melanin content at 100 μM concentration with no or almost no toxicity to the cells (88-106% of cell viability at 100 μM). In addition, when compounds 1-16 and 18-35 were evaluated for cytotoxic activity against human cancer cell lines, two natural acyclic diarylheptanoids, 10 and 11, ten ether and ester derivatives, 18-22 and 27-31, and two dehydrated derivatives, 34 and 35, exhibited potent cytotoxicities against HL60 human leukemia cell line (IC(50) 8.1-19.3 μM), and five compounds, 10, 11, 20, 29, and 30, against CRL1579 human melanoma cell line (IC(50) 10.1-18.4 μM). Copyright © 2012 Verlag Helvetica Chimica Acta AG, Zürich.

  3. Synthesis, structural characterization and cytotoxic activity of two new organoruthenium(II complexes

    Directory of Open Access Journals (Sweden)

    SANJA GRGURIC-SIPKA

    2008-06-01

    Full Text Available Two new p-cymene ruthenium(II complexes containing as additional ligands N-methylpiperazine ([(η6-p-cymeneRuCl2(CH3NH(CH24NH]PF6, complex 1 or vitamin K3-thiosemicarbazone ([(η6-p-cymeneRuCl2(K3tsc], complex 2 were synthesized starting from [(η6-p-cymene2RuCl2]2 and the corresponding ligand. The complexes were characterized by elemental analysis, IR, electronic absorption and NMR spectroscopy. The X-ray crystal structure determination of complex 1 revealed “piano-stool” geometry. The differences in the cytotoxic activity of the two complexes are discussed in terms of the ligand present.

  4. Quantitative structure-cytotoxicity relationship of piperic acid amides.

    Science.gov (United States)

    Shimada, Chiyako; Uesawa, Yoshihiro; Ishihara, Mariko; Kagaya, Hajime; Kanamoto, Taisei; Terakubo, Shigemi; Nakashima, Hideki; Takao, Koichi; Miyashiro, Takaki; Sugita, Yoshiaki; Sakagami, Hiroshi

    2014-09-01

    A total of 12 piperic acid amides, including piperine, were subjected to quantitative structure-activity relationship (QSAR) analysis, based on their cytotoxicity, tumor selectivity and anti-HIV activity, in order to find new biological activities. Cytotoxicity against four human oral squamous cell carcinoma (OSCC) cell lines and three human oral normal cells was determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) method. Tumor selectivity was evaluated by the ratio of the mean 50% cytotoxic concentration (CC50) against normal oral cells to that against OSCC cell lines. Anti-HIV activity was evaluated by the ratio of the CC50 to 50% HIV infection-cytoprotective concentration (EC50). Physicochemical, structural, and quantum-chemical parameters were calculated based on the conformations optimized by LowModeMD method followed by density functional theory method. All compounds showed low-to-moderate tumor selectivity, but no anti-HIV activity. N-Piperoyldopamine ( 8: ) which has a catechol moiety, showed the highest tumor selectivity, possibly due to its unique molecular shape and electrostatic interaction, especially its largest partial equalization of orbital electronegativities and vsurf descriptors. The present study suggests that molecular shape and ability for electrostatic interaction are useful parameters for estimating the tumor selectivity of piperic acid amides. Copyright© 2014 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Activation of Rho GTPases by Cytotoxic Necrotizing Factor 1 Induces Macropinocytosis and Scavenging Activity in Epithelial Cells

    Science.gov (United States)

    Fiorentini, Carla; Falzano, Loredana; Fabbri, Alessia; Stringaro, Annarita; Logozzi, Mariaantonia; Travaglione, Sara; Contamin, Stéphanette; Arancia, Giuseppe; Malorni, Walter; Fais, Stefano

    2001-01-01

    Macropinocytosis, a ruffling-driven process that allows the capture of large material, is an essential aspect of normal cell function. It can be either constitutive, as in professional phagocytes where it ends with the digestion of captured material, or induced, as in epithelial cells stimulated by growth factors. In this case, the internalized material recycles back to the cell surface. We herein show that activation of Rho GTPases by a bacterial protein toxin, the Escherichia coli cytotoxic necrotizing factor 1 (CNF1), allowed epithelial cells to engulf and digest apoptotic cells in a manner similar to that of professional phagocytes. In particular, we have demonstrated that 1) the activation of all Rho, Rac, and Cdc42 by CNF1 was essential for the capture and internalization of apoptotic cells; and 2) such activation allowed the discharge of macropinosomal content into Rab7 and lysosomal associated membrane protein-1 acidic lysosomal vesicles where the ingested particles underwent degradation. Taken together, these findings indicate that CNF1-induced “switching on” of Rho GTPases may induce in epithelial cells a scavenging activity, comparable to that exerted by professional phagocytes. The activation of such activity in epithelial cells may be relevant, in mucosal tissues, in supporting or integrating the scavenging activity of resident macrophages. PMID:11452003

  6. Variation among Staphylococcus aureus membrane vesicle proteomes affects cytotoxicity of host cells.

    Science.gov (United States)

    Jeon, Hyejin; Oh, Man Hwan; Jun, So Hyun; Kim, Seung Il; Choi, Chi Won; Kwon, Hyo Il; Na, Seok Hyeon; Kim, Yoo Jeong; Nicholas, Asiimwe; Selasi, Gati Noble; Lee, Je Chul

    2016-04-01

    Staphylococcus aureus secretes membrane-derived vesicles (MVs), which can deliver virulence factors to host cells and induce cytopathology. However, the cytopathology of host cells induced by MVs derived from different S. aureus strains has not yet been characterized. In the present study, the cytotoxic activity of MVs from different S. aureus isolates on host cells was compared and the proteomes of S. aureus MVs were analyzed. The MVs purified from S. aureus M060 isolated from a patient with staphylococcal scalded skin syndrome showed higher cytotoxic activity toward host cells than that shown by MVs from three other clinical S. aureus isolates. S. aureus M060 MVs induced HEp-2 cell apoptosis in a dose-dependent manner, but the cytotoxic activity of MVs was completely abolished by treatment with proteinase K. In a proteomic analysis, the MVs from three S. aureus isolates not only carry 25 common proteins, but also carry ≥60 strain-specific proteins. All S. aureus MVs contained δ-hemolysin (Hld), γ-hemolysin, leukocidin D, and exfoliative toxin C, but exfoliative toxin A (ETA) was specifically identified in S. aureus M060 MVs. ETA was delivered to HEp-2 cells via S. aureus MVs. Both rETA and rHld induced cytotoxicity in HEp-2 cells. In conclusion, MVs from clinical S. aureus isolates differ with respect to cytotoxic activity in host cells, and these differences may result from differences in the MV proteomes. Further proteogenomic analysis or mutagenesis of specific genes is necessary to identify cytotoxic factors in S. aureus MVs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Antimicrobial, antioxidant, cytotoxic and anticholinesterase activities of water-soluble polysaccharides extracted from microalgae Isochrysis galbana and Nannochloropsis oculata

    Directory of Open Access Journals (Sweden)

    Ben Hafsa Mhammed

    2017-01-01

    Full Text Available The present work is carried out to evaluate potential applications of aqueous extracts of two microalgae Isochrysis galbana (PEA and Nannochloropsis oculata (PEB containing mainly polysaccharides. The monosaccharide composition of microalgal extracts was determined. GC–MS analyses after derivatization show that glucose is the major compound in both microalgae PEA (56.88 % and PEB (68.23 %. Mannitol (38.8 % and inositol (20.32 % are respectively the second major compounds in PEA and PEB. Silylation of monosaccharides allows the determination of sorbitol that attained 3.38 % in PEB. The determination of antioxidant, antimicrobial and cytotoxic properties were also analyzed. Antioxidant activity was evaluated from the DPPH scavenging activity. PEA and PEB show a concentration dependent DPPH·radical scavenging activity. At concentration of 10 mg/mL, both PEA and PEB exhibit an antioxidant activity of 41.45 and 59.07 %, respectively. PEB and PEA are able to inhibit the growth of Gram-negative bacteria, Grampositive bacteria and three Candida species. Cytotoxic activity was evaluated on human HeLa cervical cancer cells. HeLa cell proliferation was totally inhibited after treatment with PEA and PEB (1 mg/mL and the inhibition was dose dependent (from 0.031 to 1 mg/mL. Their anticholinesterase activity was also investigated against butyrylcholinesterase enzymes. These polysaccharides possess interesting antimicrobial, anticancer and anticholinesterase activities that could represent an additional value for these microalgal products.

  8. Antimalarial, antimicrobial, cytotoxic, DNA interaction and SOD like activities of tetrahedral copper(II) complexes

    Science.gov (United States)

    Mehta, Jugal V.; Gajera, Sanjay B.; Patel, Mohan N.

    2015-02-01

    The mononuclear copper(II) complexes with P, O-donor ligand and different fluoroquinolones have been synthesized and characterized by elemental analysis, electronic spectra, TGA, EPR, FT-IR and LC-MS spectroscopy. An antimicrobial efficiency of the complexes has been tested against five different microorganisms in terms of minimum inhibitory concentration (MIC) and displays very good antimicrobial activity. The binding strength and binding mode of the complexes with Herring Sperm DNA (HS DNA) have been investigated by absorption titration and viscosity measurement studies. The studies suggest the classical intercalative mode of DNA binding. Gel electrophoresis assay determines the ability of the complexes to cleave the supercoiled form of pUC19 DNA. Synthesized complexes have been tested for their SOD mimic activity using nonenzymatic NBT/NADH/PMS system and found to have good antioxidant activity. All the complexes show good cytotoxic and in vitro antimalarial activities.

  9. Structure-activity relationship of antiparasitic and cytotoxic indoloquinoline alkaloids, and their tricyclic and bicyclic analogues.

    Science.gov (United States)

    Van Baelen, Gitte; Hostyn, Steven; Dhooghe, Liene; Tapolcsányi, Pál; Mátyus, Péter; Lemière, Guy; Dommisse, Roger; Kaiser, Marcel; Brun, Reto; Cos, Paul; Maes, Louis; Hajós, György; Riedl, Zsuzsanna; Nagy, Ildikó; Maes, Bert U W; Pieters, Luc

    2009-10-15

    Based on the indoloquinoline alkaloids cryptolepine (1), neocryptolepine (2), isocryptolepine (3) and isoneocryptolepine (4), used as lead compounds for new antimalarial agents, a series of tricyclic and bicyclic analogues, including carbolines, azaindoles, pyrroloquinolines and pyrroloisoquinolines was synthesized and biologically evaluated. None of the bicyclic compounds was significantly active against the chloroquine-resistant strain Plasmodium falciparum K1, in contrast to the tricyclic derivatives. The tricyclic compound 2-methyl-2H-pyrido[3,4-b]indole (9), or 2-methyl-beta-carboline, showed the best in vitro activity, with an IC(50) value of 0.45 microM against P. falciparum K1, without apparent cytotoxicity against L6 cells (SI>1000). However, this compound was not active in the Plasmodium berghei mouse model. Structure-activity relationships are discussed and compared with related naturally occurring compounds.

  10. Cytotoxic diterpenoids from the roots of Salvia lachnocalyx

    Directory of Open Access Journals (Sweden)

    Hossein Hadavand Mirzaei

    Full Text Available ABSTRACT Salvia lachnocalyx Hedge, Lamiaceae, is an endemic sage which grows naturally in the Fars Province of Iran. The phytochemical analyses of the roots of S. lachnocalyx led to the isolation of five known diterpenoids: ferruginol (1, taxodione (2, sahandinone (3, 4-dehydrosalvilimbinol (4 and labda-7,14-dien-13-ol (5. Their chemical structures were elucidated using one (1H and 13C and two dimensional (COSY, HSQC and HMBC NMR spectroscopic data as well as electron impact mass spectra. The cytotoxicity of the purified compounds was evaluated against three human cancer cell lines; MOLT-4 (acute lymphoblastic leukemia, HT-29 (colorectal adenocarcinoma and MCF7 (breast adenocarcinoma and all of the isolated compounds showed considerable cytotoxic activity against these cell lines. Compounds 2 and 3 (IC50 range: 0.41–3.87 µg/ml with endocyclic α,β-unsaturated carbonyl functional group, exhibited the highest cytotoxic activities compared to the other compounds (IC50 range: 6.85–17.23 µg/ml. In conclusion, compounds 2 and 3 are presented as compounds that deserve further investigation of their biological activities.

  11. Cytotoxic triterpenoid saponins from Clematis tangutica.

    Science.gov (United States)

    Zhao, Min; Da-Wa, Zhuo-Ma; Guo, Da-Le; Fang, Dong-Mei; Chen, Xiao-Zhen; Xu, Hong-Xi; Gu, Yu-Cheng; Xia, Bing; Chen, Lei; Ding, Li-Sheng; Zhou, Yan

    2016-10-01

    Eight previously undescribed oleanane-type triterpenoid saponins, clematangoticosides A-H, together with eight known saponins, were isolated from the whole plants of Clematis tangutica (Maxim.) Korsh. Their structures were elucidated by extensive spectroscopic analysis, in combination with chemical methods (acid hydrolysis and mild alkaline hydrolysis). Clematangoticosides D-G were found to be unusual 23, 28-bidesmosidic glycosides. The cytotoxic activities of all of the isolated saponins were evaluated against the four human cancer cell lines SGC-7901, HepG2, HL-60 and U251MG. Clematoside S, sapindoside B, kalopanax saponin A, and koelreuteria saponin A exhibited cytotoxicity against all of the test cancer cell lines with IC50 values in the range of 1.88-27.20 μM, while clematangoticoside D and F showed selective cytotoxicity against SGC-7901 with IC50 values of 24.22 and 21.35 μM, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Cytotoxicity of Sambucus ebulus on cancer cell lines and protective ...

    African Journals Online (AJOL)

    Regarding the traditional utilization of Sambucus ebulus, Iranian native botany and its active ingredients (e.g. ebulitin and ebulin 1), cytotoxicity of ethyl acetate ... cytotoxic agent on liver and colon cancer cells and suggest that vitamins C and E may protect normal cells, when SEE were used in cancer therapy in future.

  13. Resveratrol exhibits a strong cytotoxic activity in cultured cells and has an antiviral action against polyomavirus: potential clinical use

    Directory of Open Access Journals (Sweden)

    Galati Gaspare

    2009-07-01

    Full Text Available Abstract Background Resveratrol is a non flavonoid polyphenol compound present in many plants and fruits and, at especially high concentrations, in the grape berries of Vitis vinifera. This compound has a strong bioactivity and its cytoprotective action has been demonstrated, however at high concentrations the drug exhibits also an effective anti-proliferative action. We recently showed its ability to abolish the effects of oxidative stress in cultured cells. In this work we assayed the bioactivity of resveratrol as antiproliferative and antiviral drug in cultured fibroblasts. Studies by other Authors showed that this natural compound inhibits the proliferation of different viruses such as herpes simplex, varicella-zoster and influenza A. The results presented here show an evident toxic activity of the drug at high concentrations, on the other hand at sub-cytotoxic concentrations, resveratrol can effectively inhibit the synthesis of polyomavirus DNA. A possible interpretation is that, due to the damage caused by resveratrol to the plasma membrane, the transfer of the virus from the endoplasmic reticulum to the nucleus, may be hindered thus inhibiting the production of viral DNA. Methods The mouse fibroblast line 3T6 and the human tumor line HL60 were used throughout the work. Cell viability and vital cell count were assessed respectively, by the MTT assay and Trypan Blue staining. Cytotoxic properties and evaluation of viral DNA production by agarose gel electrophoresis were performed according to standard protocols. Results Our results show a clear dose dependent both cytotoxic and antiviral effect of resveratrol respectively at high and low concentrations. The cytotoxic action is exerted towards a stabilized cell-line (3T6 as well as a tumor-line (HL60. Furthermore the antiviral action is evident after the phase of virion entry, therefore data suggest that the drug acts during the synthesis of the viral progeny DNA. Conclusion Resveratrol is

  14. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    Directory of Open Access Journals (Sweden)

    Collado Antonia

    2006-05-01

    Full Text Available Abstract Background Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE, a novel extract of the plant Calendula Officinalis (Asteraceae. Methods An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. Results The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. Conclusion These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation

  15. A new extract of the plant calendula officinalis produces a dual in vitro effect: cytotoxic anti-tumor activity and lymphocyte activation

    International Nuclear Information System (INIS)

    Jiménez-Medina, Eva; Garcia-Lora, Angel; Paco, Laura; Algarra, Ignacio; Collado, Antonia; Garrido, Federico

    2006-01-01

    Phytopharmacological studies of different Calendula extracts have shown anti-inflamatory, anti-viral and anti-genotoxic properties of therapeutic interest. In this study, we evaluated the in vitro cytotoxic anti-tumor and immunomodulatory activities and in vivo anti-tumor effect of Laser Activated Calendula Extract (LACE), a novel extract of the plant Calendula Officinalis (Asteraceae). An aqueous extract of Calendula Officinalis was obtained by a novel extraction method in order to measure its anti-tumor and immunomodulatory activities in vitro. Tumor cell lines derived from leukemias, melanomas, fibrosarcomas and cancers of breast, prostate, cervix, lung, pancreas and colorectal were used and tumor cell proliferation in vitro was measured by BrdU incorporation and viable cell count. Effect of LACE on human peripheral blood lymphocyte (PBL) proliferation in vitro was also analyzed. Studies of cell cycle and apoptosis were performed in LACE-treated cells. In vivo anti-tumor activity was evaluated in nude mice bearing subcutaneously human Ando-2 melanoma cells. The LACE extract showed a potent in vitro inhibition of tumor cell proliferation when tested on a wide variety of human and murine tumor cell lines. The inhibition ranged from 70 to 100%. Mechanisms of inhibition were identified as cell cycle arrest in G0/G1 phase and Caspase-3-induced apoptosis. Interestingly, the same extract showed an opposite effect when tested on PBLs and NKL cell line, in which in vitro induction of proliferation and activation of these cells was observed. The intraperitoneal injection or oral administration of LACE extract in nude mice inhibits in vivo tumor growth of Ando-2 melanoma cells and prolongs the survival day of the mice. These results indicate that LACE aqueous extract has two complementary activities in vitro with potential anti-tumor therapeutic effect: cytotoxic tumor cell activity and lymphocyte activation. The LACE extract presented in vivo anti-tumoral activity in nude

  16. The future of cytotoxic therapy: selective cytotoxicity based on biology is the key

    International Nuclear Information System (INIS)

    Bono, Johann S de; Tolcher, Anthony W; Rowinsky, Eric K

    2003-01-01

    Although mortality from breast cancer is decreasing, 15% or more of all patients ultimately develop incurable metastatic disease. It is hoped that new classes of target-based cytotoxic therapeutics will significantly improve the outcome for these patients. Many of these novel agents have displayed cytotoxic activity in preclinical and clinical evaluations, with little toxicity. Such preferential cytotoxicity against malignant tissues will remain tantamount to the Holy Grail in oncologic therapeutics because this portends improved patient tolerance and overall quality of life, and the capacity to deliver combination therapy. Combinations of such rationally designed target-based therapies are likely to be increasingly important in treating patients with breast carcinoma. The anticancer efficacy of these agents will, however, remain dependent on the involvement of the targets of these agents in the biology of the individual patient's disease. Results of DNA microarray analyses have raised high hopes that the analyses of RNA expression levels can successfully predict patient prognosis, and indicate that the ability to rapidly 'fingerprint' the oncogenic profile of a patient's tumor is now possible. It is hoped that these studies will support the identification of the molecules driving a tumor's growth, and the selection of the appropriate combination of targeted agents in the near future

  17. Chemical Composition, Biological and Cytotoxic Activities of Plant Extracts and Compounds Isolated from Ferula lutea

    Directory of Open Access Journals (Sweden)

    Mansour Znati

    2014-02-01

    Full Text Available The present work describes the phytochemical study on Ferula lutea flowers. Total phenolics and flavonoids of the n-butanol and ethyl acetate extracts were quantified (phenolics [40.68–52.29 mg gallic acid equivalent/g of dry weight], flavonoids [12.38–14.72 mg quercitin/g dry weight]. Two diastereoisomers were isolated and identified using spectroscopic techniques (1D, 2D NMR and GC-MS. The extracts and diastereoisomers were tested for antioxidant, antiacetylcholinesterase, antimicrobial, antidiabectic, cytotoxic (leukemia cell line activities and allelopathic potentialities. The strongest antioxidant activity was obtained for the ethyl acetate extract (IC50 = 12.8 ± 1.29 µg/mL. The two extracts exhibited high antidiabetic activity (54.1 and 52.1% at 40 µg/mL.

  18. Antibacterial, cytotoxicity and anticoagulant activities from Hypnea esperi and Caulerpa prolifera marine algae.

    Science.gov (United States)

    Selim, Samy; Amin, Abeer; Hassan, Sherif; Hagazey, Mohamed

    2015-03-01

    Extracts from 2 algal species (Hypnea esperi and Caulerpa prolifera) from Suez Canal region, Egypt were screened for the production of antibacterial compounds against some pathogenic bacteria. The bacteria tested included Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium, Aeromonas hydrophila, Bacillus subtilis and Staphylococcus aureus. Algal species displayed antibacterial activity. The methanolic extracts showed variable response by producing various zones of inhibition against studied bacteria. The tested Gram-negative bacteria were less affected by studied algal extracts than Gram-positive bacteria. We determined some biopotentials properties such as cytotoxicity and anticoagulant activity of most potent algal active extracts. The secondary metabolites of only Hypnea esperi algal extract effectively prevented the blood clotting to the extent of 120 seconds. Minimum inhibitory concentration (MIC) indicated that all potent tested algal extract C inhibits Bacillus subtilis and Staphylococcus aureus. Minimum bactericidal concentration (MBC) was between 1 and 1.4mg/ml. The algal isolates from Egypt have been found showing promising results against infectious bacteria instead of some synthetic antibiotics.

  19. In vitro cytotoxicity and apoptotic inducing activity of the synthesized 4-aryl-4H-chromenes derivatives against human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Mohagheghi MA

    2009-09-01

    Full Text Available "n Normal 0 false false false EN-US X-NONE AR-SA MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:Arial; mso-bidi-theme-font:minor-bidi;} Background: 4-Aryl-4H-chromenes are novel anticancer agents which induce apoptosis in cancer cells. These compounds were found to induce apoptosis by targeting the tubulin/microtubule system in cell proliferation process. The aim of this study was to report cyototoxic and apoptosis inducing activities of a new series of synthesized 4-aryl-4H-chromenes compounds."n"n Methods: The in vitro cytotoxic activity of the synthesized 4-aryl-4H-chromenes was investigated against a paned of human cancer cell lines including MCF-7 (breast carcinoma, A549 (lung carcinoma, HEPG-2 (liver carcinoma, SW-480 (colon adenocarcinoma, U87-MG (glioblastoma, 1321N1 (astrocytoma, and DAOY (medulloblastoma. The percentage of growth inhibitory activity was evaluated using MTT colorimetric assay versus controls not treated with test derivatives. The data for etoposide, a well known anticancer drug, was included for comparison. For each compound, the 50% inhibitory concentration (IC50 were determined. Apoptosis inducing activity were assessed by DAPI staining."n"n Results: Preliminary screening showed that those chromenes analogs bearing phenyl-isoxazole-3-yl substitution or the derivatives containing methoxyphenyl in chromene ring exhibited

  20. Acute toxicity, brine shrimp cytotoxicity and relaxant activity of fruits of callistemon citrinus curtis

    Directory of Open Access Journals (Sweden)

    Shah Ismail

    2011-10-01

    Full Text Available Abstract Background Callistemon citrinus Curtis belongs to family Myrtaceae that has a great medicinal importance. In our previous work, fruits of Callistemon citrinus were reported to have relaxant (antispasmodic activity. The current work describes the screening of fractions of the crude methanol extract for tracing spasmolytic constituents so that it shall help us for isolation of bioactive compounds. Acute toxicity and brine shrimp cytotoxicity of crude methanol extract are also performed to standardize it. Methods The crude methanol extract was obtained by maceration with distilled water (500 ml three times and fractionated successively with n-hexane, chloroform, ethyl acetate and n-butanol (300 ml of each solvent. Phytochemical analysis for crude methanol extract was performed. Acute toxicity studies were performed in mice. Brine shrimp cytotoxicity studies were performed to determine its cytotoxicity and standardize it. In other series of experiments, rabbits' jejunum preparations were used in screening for possible relaxant activities of various fractions. They were applied in concentrations of 0.01, 0.03, 0.1, 0.3, 1.0, 3.0, 5.0 and 10.0 mg/ml on spontaneous rabbits' jejunum preparations. In similar fashion, fractions were also tested on KCl (80 mM -induced contractions. Calcium chloride curves were constructed in K-rich Tyrode's solution. The effects of various fractions were tested on calcium chloride curves at concentrations 1.0, 3.0, 5.0 and 10.0 mg/ml. Curves of verapamil used as reference drug at concentration 0.1 μM and 0.3 μM were also constructed. The curves were compared with their respective controls for possible right shift. Results Methanol extract tested strongly positive for saponins and tannins. However, it tested mild positive for presence of proteins, amino acids, carbohydrates and phenolic compounds. LD50 value for crude methanol extract is 476.25 ± 10.3 (470-481, n = 4 mg/ml. Similarly, EC50 value for brine shrimp

  1. AMP-activated protein kinase α2 and E2F1 transcription factor mediate doxorubicin-induced cytotoxicity by forming a positive signal loop in mouse embryonic fibroblasts and non-carcinoma cells.

    Science.gov (United States)

    Yang, Wookyeom; Park, In-Ja; Yun, Hee; Im, Dong-Uk; Ock, Sangmi; Kim, Jaetaek; Seo, Seon-Mi; Shin, Ha-Yeon; Viollet, Benoit; Kang, Insug; Choe, Wonchae; Kim, Sung-Soo; Ha, Joohun

    2014-02-21

    Doxorubicin is one of the most widely used anti-cancer drugs, but its clinical application is compromised by severe adverse effects in different organs including cardiotoxicity. In the present study we explored mechanisms of doxorubicin-induced cytotoxicity by revealing a novel role for the AMP-activated protein kinase α2 (AMPKα2) in mouse embryonic fibroblasts (MEFs). Doxorubicin robustly induced the expression of AMPKα2 in MEFs but slightly reduced AMPKα1 expression. Our data support the previous notion that AMPKα1 harbors survival properties under doxorubicin treatment. In contrast, analyses of Ampkα2(-/-) MEFs, gene knockdown of AMPKα2 by shRNA, and inhibition of AMPKα2 activity with an AMPK inhibitor indicated that AMPKα2 functions as a pro-apoptotic molecule under doxorubicin treatment. Doxorubicin induced AMPKα2 at the transcription level via E2F1, a transcription factor that regulates apoptosis in response to DNA damage. E2F1 directly transactivated the Ampkα2 gene promoter. In turn, AMPKα2 significantly contributed to stabilization and activation of E2F1 by doxorubicin, forming a positive signal amplification loop. AMPKα2 directly interacted with and phosphorylated E2F1. This signal loop was also detected in H9c2, C2C12, and ECV (human epithelial cells) cells as well as mouse liver under doxorubicin treatment. Resveratrol, which has been suggested to attenuate doxorubicin-induced cytotoxicity, significantly blocked induction of AMPKα2 and E2F1 by doxorubicin, leading to protection of these cells. This signal loop appears to be non-carcinoma-specific because AMPKα2 was not induced by doxorubicin in five different tested cancer cell lines. These results suggest that AMPKα2 may serve as a novel target for alleviating the cytotoxicity of doxorubicin.

  2. Identification of a cytotoxic molecule in heat-modified citrus pectin.

    Science.gov (United States)

    Leclere, Lionel; Fransolet, Maude; Cambier, Pierre; El Bkassiny, Sandy; Tikad, Abdellatif; Dieu, Marc; Vincent, Stéphane P; Van Cutsem, Pierre; Michiels, Carine

    2016-02-10

    Modified forms of citrus pectin possess anticancer properties. However, their mechanism of action and the structural features involved remain unclear. Here, we showed that citrus pectin modified by heat treatment displayed cytotoxic effects in cancer cells. A fractionation approach was used aiming to identify active molecules. Dialysis and ethanol precipitation followed by HPLC analysis evidenced that most of the activity was related to molecules with molecular weight corresponding to low degree of polymerization oligogalacturonic acid. Heat-treatment of galacturonic acid also generated cytotoxic molecules. Furthermore, heat-modified galacturonic acid and heat-fragmented pectin contained the same molecule that induced cell death when isolated by HPLC separation. Mass spectrometry analyses revealed that 4,5-dihydroxy-2-cyclopenten-1-one was one cytotoxic molecule present in heat-treated pectin. Finally, we synthesized the enantiopure (4R,5R)-4,5-dihydroxy-2-cyclopenten-1-one and demonstrated that this molecule was cytotoxic and induced a similar pattern of apoptotic-like features than heat-modified pectin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Cytotoxic bibenzyl dimers from the stems of Dendrobium fimbriatum Hook.

    Science.gov (United States)

    Xu, Feng-Qing; Xu, Fang-Cheng; Hou, Bo; Fan, Wei-Wei; Zi, Cheng-Ting; Li, Yan; Dong, Fa-Wu; Liu, Yu-Qing; Sheng, Jun; Zuo, Zhi-Li; Hu, Jiang-Miao

    2014-11-15

    The bioassay-guided chemical investigation of the stems of Dendrobium fimbriatum Hook led to the isolation of seven first reported bibenzyl dimers with a linkage of a methylene moiety, fimbriadimerbibenzyls A-G (1-7), together with a new dihydrophenanthrene derivative (S)-2,4,5,9-tetrahydroxy-9,10-dihydrophenanthrene (8) and thirteen known compounds (9-21). The structure of the new compound was established by spectroscopic analysis. Biological evaluation of bibenzyl derivatives against five human cell lines indicated that seven of those compounds exhibited broad-spectrum and cytotoxic activities with IC50 values ranging from 2.2 to 21.2 μM. Those rare bibenzyl dimers exhibited cytotoxic activities in vitro and the cytotoxicity decreased as the number of oxygen-containing groups in the structure decreases. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Cytotoxic Effects of Fascaplysin against Small Cell Lung Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Gerhard Hamilton

    2014-03-01

    Full Text Available Fascaplysin, the natural product of a marine sponge, exhibits anticancer activity against a broad range of tumor cells, presumably through interaction with DNA, and/or as a highly selective cyclin-dependent kinase 4 (CDK4 inhibitor. In this study, cytotoxic activity of fascaplysin against a panel of small cell lung cancer (SCLC cell lines and putative synergism with chemotherapeutics was investigated. SCLC responds to first-line chemotherapy with platinum-based drugs/etoposide, but relapses early with topotecan remaining as the single approved therapeutic agent. Fascaplysin was found to show high cytotoxicity against SCLC cells and to induce cell cycle arrest in G1/0 at lower and S-phase at higher concentrations, respectively. The compound generated reactive oxygen species (ROS and induced apoptotic cell death in the chemoresistant NCI-H417 SCLC cell line. Furthermore, fascaplysin revealed marked synergism with the topoisomerase I-directed camptothecin and 10-hydroxy-camptothecin. The Poly(ADP-ribose-Polymerase 1 (PARP1 inhibitor BYK 204165 antagonized the cytotoxic activity of fascaplysin, pointing to the involvement of DNA repair in response to the anticancer activity of the drug. In conclusion, fascaplysin seems to be suitable for treatment of SCLC, based on high cytotoxic activity through multiple routes of action, affecting topoisomerase I, integrity of DNA and generation of ROS.

  5. Cytotoxic constituents from Brazilian red propolis and their structure-activity relationship.

    Science.gov (United States)

    Li, Feng; Awale, Suresh; Tezuka, Yasuhiro; Kadota, Shigetoshi

    2008-05-15

    Several classes of flavonoids [flavanoids (1-10), flavonol (11), isoflavones (12-18), isoflavanones (19-22), isoflavans (23-26), chalcones (27-30), auronol (31), pterocarpans (32-37), 2-arylbenzofuran (38), and neoflavonoid (39)] and lignans (40-42) isolated from the MeOH extract of Brazilian red propolis were investigated for their cytotoxic activity against a panel of six different cancer cell lines including murine colon 26-L5 carcinoma, murine B16-BL6 melanoma, murine Lewis lung carcinoma, human lung A549 adenocarcinoma, human cervix HeLa adenocarcinoma, and human HT-1080 fibrosarcoma cell lines. Based on the observed results, structure-activity relationships were discussed. Among the tested compounds, 7-hydroxy-6-methoxyflavanone (3) exhibited the most potent activity against B16-BL6 (IC(50), 6.66microM), LLC (IC(50), 9.29microM), A549 (IC(50), 8.63microM), and HT-1080 (IC(50), 7.94microM) cancer cell lines, and mucronulatol (26) against LLC (IC(50), 8.38microM) and A549 (IC(50), 9.9microM) cancer cell lines. These activity data were comparable to those of the clinically used anticancer drugs, 5-fluorouracil and doxorubicin, against the tested cell lines, suggesting that 3 and 26 are the good candidates for future anticancer drug development.

  6. Acylation Enhances, but Is Not Required for, the Cytotoxic Activity of Mannheimia haemolytica Leukotoxin in Bighorn Sheep.

    Science.gov (United States)

    Batra, Sai A; Shanthalingam, Sudarvili; Munske, Gerhard R; Raghavan, Bindu; Kugadas, Abirami; Bavanthasivam, Jegarubee; Highlander, Sarah K; Srikumaran, Subramaniam

    2015-10-01

    Mannheimia haemolytica causes pneumonia in domestic and wild ruminants. Leukotoxin (Lkt) is the most important virulence factor of the bacterium. It is encoded within the four-gene lktCABD operon: lktA encodes the structural protoxin, and lktC encodes a trans-acylase that adds fatty acid chains to internal lysine residues in the protoxin, which is then secreted from the cell by a type 1 secretion system apparatus encoded by lktB and lktD. It has been reported that LktC-mediated acylation is necessary for the biological effects of the toxin. However, an LktC mutant that we developed previously was only partially attenuated in its virulence for cattle. The objective of this study was to elucidate the role of LktC-mediated acylation in Lkt-induced cytotoxicity. We performed this study in bighorn sheep (Ovis canadensis) (BHS), since they are highly susceptible to M. haemolytica infection. The LktC mutant caused fatal pneumonia in 40% of inoculated BHS. On necropsy, a large number of necrotic polymorphonuclear leukocytes (PMNs) were observed in the lungs. Lkt from the mutant was cytotoxic to BHS PMNs in an in vitro cytotoxicity assay. Flow cytometric analysis of mutant Lkt-treated PMNs revealed the induction of necrosis. Scanning electron microscopic analysis revealed the presence of pores and blebs on mutant-Lkt-treated PMNs. Mass spectrometric analysis confirmed that the mutant secreted an unacylated Lkt. Taken together, these results suggest that acylation is not necessary for the cytotoxic activity of M. haemolytica Lkt but that it enhances the potency of the toxin. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Endocytosis of Cytotoxic Granules Is Essential for Multiple Killing of Target Cells by T Lymphocytes.

    Science.gov (United States)

    Chang, Hsin-Fang; Bzeih, Hawraa; Schirra, Claudia; Chitirala, Praneeth; Halimani, Mahantappa; Cordat, Emmanuelle; Krause, Elmar; Rettig, Jens; Pattu, Varsha

    2016-09-15

    CTLs are serial killers that kill multiple target cells via exocytosis of cytotoxic granules (CGs). CG exocytosis is tightly regulated and has been investigated in great detail; however, whether CG proteins are endocytosed following exocytosis and contribute to serial killing remains unknown. By using primary CTLs derived from a knock-in mouse of the CG membrane protein Synaptobrevin2, we show that CGs are endocytosed in a clathrin- and dynamin-dependent manner. Following acidification, endocytosed CGs are recycled through early and late, but not recycling endosomes. CGs are refilled with granzyme B at the late endosome stage and polarize to subsequent synapses formed between the CTL and new target cells. Importantly, inhibiting CG endocytosis in CTLs results in a significant reduction of their cytotoxic activity. Thus, our data demonstrate that continuous endocytosis of CG membrane proteins is a prerequisite for efficient serial killing of CTLs and identify key events in this process. Copyright © 2016 by The American Association of Immunologists, Inc.

  8. Oleic acid is a key cytotoxic component of HAMLET-like complexes.

    Science.gov (United States)

    Permyakov, Sergei E; Knyazeva, Ekaterina L; Khasanova, Leysan M; Fadeev, Roman S; Zhadan, Andrei P; Roche-Hakansson, Hazeline; Håkansson, Anders P; Akatov, Vladimir S; Permyakov, Eugene A

    2012-01-01

    HAMLET is a complex of α-lactalbumin (α-LA) with oleic acid (OA) that selectively kills tumor cells and Streptococcus pneumoniae. To assess the contribution of the proteinaceous component to cytotoxicity of HAMLET, OA complexes with proteins structurally and functionally distinct from α-LA were prepared. Similar to HAMLET, the OA complexes with bovine β-lactoglobulin (bLG) and pike parvalbumin (pPA) (bLG-OA-45 and pPA-OA-45, respectively) induced S. pneumoniae D39 cell death. The activation mechanisms of S. pneumoniae death for these complexes were analogous to those for HAMLET, and the cytotoxicity of the complexes increased with OA content in the preparations. The half-maximal inhibitory concentration for HEp-2 cells linearly decreased with rise in OA content in the preparations, and OA concentration in the preparations causing HEp-2 cell death was close to the cytotoxicity of OA alone. Hence, the cytotoxic action of these complexes against HEp-2 cells is induced mostly by OA. Thermal stabilization of bLG upon association with OA implies that cytotoxicity of bLG-OA-45 complex cannot be ascribed to molten globule-like conformation of the protein component. Overall, the proteinaceous component of HAMLET-like complexes studied is not a prerequisite for their activity; the cytotoxicity of these complexes is mostly due to the action of OA.

  9. Listeriolysin o is strongly immunogenic independently of its cytotoxic activity.

    Directory of Open Access Journals (Sweden)

    Javier A Carrero

    Full Text Available The presentation of microbial protein antigens by Major Histocompatibility Complex (MHC molecules is essential for the development of acquired immunity to infections. However, most biochemical studies of antigen processing and presentation deal with a few relatively inert non-microbial model antigens. The bacterial pore-forming toxin listeriolysin O (LLO is paradoxical in that it is cytotoxic at nanomolar concentrations as well as being the source of dominant CD4 and CD8 T cell epitopes following infection with Listeria monocytogenes. Here, we examined the relationship of LLO toxicity to its antigenicity and immunogenicity. LLO offered to antigen presenting cells (APC as a soluble protein, was presented to CD4 T cells at picomolar to femtomolar concentrations- doses 3000-7000-fold lower than free peptide. This presentation required a dose of LLO below the cytotoxic level. Mutations of two key tryptophan residues reduced LLO toxicity by 10-100-fold but had no effect on its presentation to CD4 T cells. Thus there was a clear dissociation between the cytotoxic properties of LLO and its very high antigenicity. Presentation of LLO to CD8 T cells was not as robust as that seen in CD4 T cells, but still occurred in the nanomolar range. APC rapidly bound and internalized LLO, then disrupted endosomal compartments within 4 hours of treatment, allowing endosomal contents to access the cytosol. LLO was also immunogenic after in vivo administration into mice. Our results demonstrate the strength of LLO as an immunogen to both CD4 and CD8 T cells.

  10. Phytochemicals from Kaempferia angustifolia Rosc. and Their Cytotoxic and Antimicrobial Activities

    Directory of Open Access Journals (Sweden)

    Sook Wah Tang

    2014-01-01

    Full Text Available Phytochemical investigation on rhizomes of Kaempferia angustifolia has afforded a new abietene diterpene, kaempfolienol (1 along with crotepoxide (2, boesenboxide (3, 2′-hydroxy-4,4′,6′-trimethoxychalcone (4, zeylenol (5, 6-methylzeylenol (6, (24S-24-methyl-5α-lanosta-9(11, 25-dien-3β-ol (7, sucrose, β-sitosterol, and its glycoside (8. The structures of the compounds were elucidated on the basis of spectroscopic methods (IR, MS, and NMR. Isolation of 6-methylzeylenol (6, (24S-24-methyl-5α-lanosta-9(11, 25-dien-3β-ol (7, and β-sitosterol-3-O-β-D-glucopyranoside (8 from this plant species has never been reported previously. The spectroscopic data of (7 is firstly described in this paper. Cytotoxic screening indicated that most of the pure compounds tested showed significant activity with (4 showing the most potent activity against HL-60 (human promyelocytic leukemia and MCF-7 (human breast cancer cell lines. However, all extracts and most of the pure compounds tested were found to be inactive against HT-29 (human colon cancer and HeLa (human cervical cancer cell lines. Similarly, none of the extracts or compounds showed activity in the antimicrobial testing.

  11. MSH3 mismatch repair protein regulates sensitivity to cytotoxic drugs and a histone deacetylase inhibitor in human colon carcinoma cells.

    Directory of Open Access Journals (Sweden)

    Jae Myung Park

    Full Text Available MSH3 is a DNA mismatch repair (MMR gene that undergoes frequent somatic mutation in colorectal cancers (CRCs with MMR deficiency. MSH3, together with MSH2, forms the MutSβ heteroduplex that interacts with interstrand cross-links induced by drugs such as cisplatin. To date, the impact of MSH3 on chemosensitivity is unknown.We utilized isogenic HCT116 (MLH1-/MSH3- cells where MLH1 is restored by transfer of chromosome 3 (HCT116+ch3 and also MSH3 by chromosome 5 (HCT116+3+5. We generated HCT116+3+5, SW480 (MLH1+/MSH3+ and SW48 (MLH1-/MSH3+ cells with shRNA knockdown of MSH3. Cells were treated with 5-fluorouracil (5-FU, SN-38, oxaliplatin, or the histone deacetylase (HDAC inhibitor PCI-24781 and cell viability, clonogenic survival, DNA damage and apoptosis were analyzed.MSH3-deficient vs proficient CRC cells showed increased sensitivity to the irinotecan metabolite SN-38 and to oxaliplatin, but not 5-FU, as shown in assays for apoptosis and clonogenic survival. In contrast, suppression of MLH1 attenuated the cytotoxic effect of 5-FU, but did not alter sensitivity to SN-38 or oxaliplatin. The impact of MSH3 knockdown on chemosensitivity to SN-38 and oxaliplatin was maintained independent of MLH1 status. In MSH3-deficient vs proficient cells, SN-38 and oxaliplatin induced higher levels of phosphorylated histone H2AX and Chk2, and similar results were found in MLH1-proficient SW480 cells. MSH3-deficient vs proficient cells showed increased 53BP1 nuclear foci after irradiation, suggesting that MSH3 can regulate DNA double strand break (DSB repair. We then utilized PCI-24781 that interferes with homologous recombination (HR indicated by a reduction in Rad51 expression. The addition of PCI-24781 to oxaliplatin enhanced cytotoxicity to a greater extent compared to either drug alone.MSH3 status can regulate the DNA damage response and extent of apoptosis induced by chemotherapy. The ability of MSH3 to regulate chemosensitivity was independent of MLH1

  12. Essential roles of caspases and their upstream regulators in rotenone-induced apoptosis

    International Nuclear Information System (INIS)

    Lee Jihjong; Huang, M.-S.; Yang, I-C.; Lai, T.-C.; Wang, J.-L.; Pang, V.F.; Hsiao, M.; Kuo, M.Y.P.

    2008-01-01

    In the present study, we examined whether caspases and their upstream regulators are involved in rotenone-induced cytotoxicity. Rotenone significantly inhibited the proliferation of oral cancer cell lines in a dose-dependent manner compared to normal oral mucosal fibroblasts. Flow cytometric analysis of DNA content showed that rotenone treatment induced apoptosis following G2/M arrest. Western blotting showed activation of both the caspase-8 and caspase-9 pathways, which differed from previous studies conducted in other cell types. Furthermore, p53 protein and its downstream pro-apoptotic target, Bax, were induced in SAS cells after treatment with rotenone. Rotenone-induced apoptosis was inhibited by antioxidants (glutathione, N-acetylcysteine, and tiron). In conclusion, our results demonstrate significant involvement of caspases and their upstream regulators in rotenone-induced cytotoxicity

  13. Antioxidant activity and cytotoxic profie of Chuquiraga spinosa Lessing on human tumor cell lines: A promissory plant from Peruvian flra

    Directory of Open Access Journals (Sweden)

    Oscar Herrera-Calderon

    2017-05-01

    Full Text Available Objective: To determine the phytochemical content, antioxidant activity in vitro and cytotoxicity of crude ethanol extract (CEE, n-hexane fraction (NHF, petroleum ether fraction (PEF, chloroform fraction (CLF and ethyl acetate fraction (EAF of aerial parts of Chuquiraga spinosa (C. spinosa Lessing. Methods: Phytochemical screening was developed by color and precipitated formation. The evaluation of antioxidant activity was assessed using hydroxyl and nitric oxide radical. Total phenolic content (TPC and total flavonoids content (TFC were measured by using standard methods by spectrophotometry. The cytotoxic effect was determined on human tumor cell lines including MCF-7, H-460, HT-29, M-14, HUTU-80, K-562 and DU-145. Results: Phytochemical analysis confirmed the presence of phenols, flavonoids in crude extract and its all fractions. The CEE showed the highest antioxidant activity, for OH and NO radical scavenging tests (IC50 = 15.16 ± 3.45 μg/mL and IC50 = 18.91 ± 1.13 μg/mL, respectively. TPC was found to be the highest in the CEE (121.36 mg of gallic acid equivalent/g of dried extract compared to other fractions. The ranking order of NHF, PEF, CLF, EAF and CEE for TFC was 21.17 < 35.20 < 62.19 < 70.25 < 78.25 mg quercetin equivalent/g of dried extract. The crude ethanolic extract (μg/mL showed a high cytotoxicity on MCF-7 (IC50 = 9.25 ± 0.81, K-562 (IC50 = 7.34 ± 1.00, HT-29 (IC50 = 8.52 ± 2.69, H-460 (IC50 = 5.32 ± 1.05, M-14 (IC50 = 8.30 ± 0.60, DU-145 (IC50 = 7.09 ± 0.09, HUTU-80 (IC50 = 6.20 ± 0.50. Conclusions: The study showed that CEE of the aerial parts of C. spinosa can be measured as a natural source of antioxidant which might be effective towards preventing or slowing oxidative stress related to chronic diseases as well as cytotoxic agent.

  14. The 15-lipoxygenase inhibitory, antioxidant, antimycobacterial activity and cytotoxicity of fourteen ethnomedicinally used African spices and culinary herbs.

    Science.gov (United States)

    Dzoyem, Jean Paul; Kuete, Victor; McGaw, Lyndy J; Eloff, Jacobus N

    2014-10-28

    Culinary herbs and spices are widely used ethnomedically across Africa. They are traditionally employed in the treatment of several ailments including inflammation disorders, pain alleviation and infectious diseases. Pharmacological studies are necessary to provide a scientific basis to substantiate their traditional use and safety. In this study, the 15-lipoxygenase inhibitory, antioxidant, antimycobacterial and the cytotoxic activities, total phenolic and flavonoid contents of fourteen edible plants were investigated. The 15-lipoxygenase inhibitory activity was evaluated by the ferrous oxidation-xylenol orange (FOX) assay method. The antioxidant activity was determined using free-radical scavenging assays. The antimycobacterial activity was determined by a broth microdilution method against three species of mycobacteria: Mycobacterium smegmatis, Mycobacterium aurum and Mycobacterium fortuitum using tetrazolium violet as growth indicator. The cytotoxicity was assessed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay on Vero monkey kidney cells. All the extracts tested had some 15-lipoxygenase inhibitory activity ranging from 32.9 to 78.64%. Adansonia digitata (fruit) had the highest antioxidant capacity (IC₅₀ values of 8.15 μg/mL and 9.16 μg/mL in the DPPH and ABTS assays respectively; TEAC of 0.75 in the FRAP assay) along with the highest amount of total phenolics (237.68 mg GAE/g) and total flavonoids (16.14 mg E/g). There were good correlations between DPPH and ABTS values (R(2) 0.98) and between total phenolics and total flavonoids (R(2) 0.94). Tamarindus indica had significant antimycobacterial activity against Mycobacterium aurum (MIC 78 μg/mL). As could be expected with edible plants, all the extracts had a relatively low cytotoxicity with LC₅₀ values higher than 102 μg/mL with the exception of the two Aframomum species (33 and 74 μg/mL). This study provides scientific support for some of the the traditional uses

  15. Antimicrobial, Cytotoxic, Anti-Inflammatory, and Antioxidant Activity of Culinary Processed Shiitake Medicinal Mushroom (Lentinus edodes, Agaricomycetes) and Its Major Sulfur Sensory-Active Compound-Lenthionine.

    Science.gov (United States)

    Kupcova, Kristyna; Stefanova, Iveta; Plavcova, Zuzana; Hosek, Jan; Hrouzek, Pavel; Kubec, Roman

    2018-01-01

    The antimicrobial, cytotoxic, anti-inflammatory, and antioxidant properties of aqueous extracts of raw and culinary processed shiitake mushrooms were evaluated and compared with those of lenthionine (1,2,3,5,6-penta-thiepane), the principal aroma-bearing substance of the shiitake medicinal mushroom (Lentinus edodes). Antimicrobial activity was tested using a panel of 4 strains of bacteria, 2 yeasts, and 2 fungi. Cytotoxic properties were evaluated against 3 cell lines (HepG2, HeLa, PaTu), whereas the anti-inflammatory activity of tested samples was assayed based on their ability to attenuate the secretion of the cytokine tumor necrosis factor-α. Antioxidant activity was measured using in vitro DPPH and ABTS assays. It was found that lenthionine possesses significant antimicrobial properties; it is remarkably effective in inhibiting the growth of yeasts and fungi (minimum inhibitory concentration, 2-8 μg/mL) and thus is comparable to standard antifungal agents. Lenthionine is also able to decrease significantly the production of tumor necrosis factor-a and thus could be at least partly responsible for the observed anti-inflammatory effect of shiitake. On the other hand, lenthionine does not seem to contribute significantly to the well-known anticancer and antioxidant effects of the mushroom.

  16. Cytotoxic and antibacterial naphthoquinones from an endophytic fungus, Cladosporium sp.

    Directory of Open Access Journals (Sweden)

    Md. Imdadul Huque Khan

    Full Text Available Objective: Endophytes have the potential to synthesize various bioactive secondary metabolites. The aim of the study was to find new cytotoxic and antibacterial metabolites from endophytic fungus, Cladosporium sp. isolated from the leaves of Rauwolfia serpentina (L. Benth. ex Kurz. (Fam: Apocyanaceae. Materials and methods: The endophytic fungus was grown on potato dextrose agar medium and extracted using ethyl acetate. Secondary metabolites were isolated by chromatographic separation and re-crystallization, and structures were confirmed by 1H NMR, 13C NMR and mass spectroscopic data. The cytotoxicity was determined by WST-1 assay and brine shrimp lethality bioassay, while antibacterial activity was assessed by disc diffusion method. Results: Two naphthoquinones, namely anhydrofusarubin (1 and methyl ether of fusarubin (2, were isolated from Cladosporium sp. The isolated compounds 1 and 2, by WST-1 assay against human leukemia cells (K-562 showed potential cytotoxicity with IC50 values of 3.97 μg/mL and 3.58 μg/mL, respectively. Initial screening of crude ethyl acetate extract and column fractions F-8 and F-10 exhibited noticeable cytotoxicity to brine shimp nauplii with LC50 values of 42.8, 1.2 and 2.1 μg/mL, respectively. Moreover, the isolated compound 2 (40 μg/disc showed prominent activities against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Bacillus megaterium with an average zone of inhibition of 27 mm, 25 mm, 24 mm and 22 mm, respectively and the activities were compared with kanamycin (30 μg/disc. Conclusion: Our findings indicate that anhydrofusarubin (1 and methyl ether of fusarubin (2 might be useful lead compounds to develop potential cytotoxic and antimicrobial drugs. Keywords: Endophytic fungi, Cladosporium species, Fusarubin, Cytoxicity, Antibacterial activity

  17. LC–MS characterization, anti-kinetoplastide and cytotoxic activities of natural products from Eugenia jambolana Lam. and Eugenia uniflora

    Directory of Open Access Journals (Sweden)

    Celestina Elba Sobral de Souza

    2017-09-01

    Conclusions: The species E. jambolana and E. uniflora presented antiparasitic activity against all tested parasite strains, indicating that these species can serve as an alternative therapy as they were efficient in the tests performed. The E. uniflora extract and the E. jambolana flavonoid fraction presented a low cytotoxicity, opening the floor for new biological studies.

  18. Antibacterial, antidiarrhoeal, and cytotoxic activities of methanol extract and its fractions of Caesalpinia bonducella (L.) Roxb leaves

    OpenAIRE

    Billah, Muhammad Mutassim; Islam, Rafikul; Khatun, Hajera; Parvin, Shahnaj; Islam, Ekramul; Islam, SM Anisul; Mia, Akbar Ali

    2013-01-01

    Background Caesalpinia bonducella is an important medicinal plant for its traditional uses against different types of diseases. Therefore, the present study investigated the antimicrobial, antidiarrhoeal, and cytotoxic activities of the methanol extract and ethyl acetate, chloroform, and petroleum ether (pet. ether) fractions of C. bonducella leaves. Methods The antibacterial potentialities of methanol extract and its fractions of C. bonducella leaves were investigated by the disc diffusion m...

  19. Analogues of luteinizing hormone-releasing hormone containing cytotoxic groups.

    Science.gov (United States)

    Janáky, T; Juhász, A; Bajusz, S; Csernus, V; Srkalovic, G; Bokser, L; Milovanovic, S; Redding, T W; Rékási, Z; Nagy, A

    1992-02-01

    In an attempt to produce better cytotoxic analogues, chemotherapeutic antineoplastic radicals including an alkylating nitrogen mustard derivative of D-phenylalanine (D-melphalan), reactive cyclopropane, anthraquinone derivatives [2-(hydroxymethyl)anthraquinone and the anticancer antibiotic doxorubicin], and an antimetabolite (methotrexate) were coupled to suitably modified agonists and antagonists of luteinizing hormone-releasing hormone (LH-RH). Analogues with D-lysine6 and D-ornithine6 or N epsilon-(2,3-diaminopropionyl)-D-lysine and N delta-(2,3-diaminopropionyl)-D-ornithine were used as carriers for one or two cytotoxic moieties. The enhanced biological activities produced by the incorporation of D amino acids into position 6 of the agonistic analogues were further increased by the attachment of hydrophobic cytotoxic groups, resulting in compounds with 10-50 times higher activity than LH-RH. Most of the monosubstituted agonistic analogues showed high affinities for the membrane receptors of human breast cancer cells, while the receptor binding affinities of peptides containing two cytotoxic side chains were lower. Antagonistic carriers [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,D-Lys6,D-Ala10] LH-RH [where Nal(2) is 3-(2-naphthyl)alanine], [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Trp3,Arg5,N epsilon-(2,3-diaminopropionyl)-D-Lys6,D-Ala10]LH-RH, and their D-Pal(3)3 homologs [Pal(3) is 3-(3-pyridyl)alanine] as well as [Ac-D-Nal(2)1,D-Phe(4Cl)2,D-Pal(3)3,Tyr5,N epsilon-(2,3-diamino-propionyl)-D-Lys6,D-Ala10]LH-RH were linked to cytotoxic compounds. The hybrid molecules inhibited ovulation in rats at doses of 10 micrograms and suppressed LH release in vitro. The receptor binding of cytotoxic analogues was decreased compared to the precursor peptides, although analogues with 2-(hydroxymethyl)anthraquinone hemiglutarate had high affinities. All of the cytotoxic analogues tested inhibited [3H]thymidine incorporation into DNA in cultures of human breast and prostate cancer cell lines

  20. Composition and in vitro cytotoxic activities of essential oil of Hedychium spicatum from different geographical regions of western Himalaya by principal components analysis.

    Science.gov (United States)

    Mishra, Tripti; Pal, Mahesh; Meena, Sanjeev; Datta, Dipak; Dixit, Prateek; Kumar, Anil; Meena, Baleshwar; Rana, T S; Upreti, D K

    2016-01-01

    The rhizome of Hedychium spicatum has been widely used in traditional medicines. The present study deals with the evaluation of the cytotoxic potential of rhizome essential oils from four different regions of the Western Himalaya (India) along with comparative correlation analysis to characterise the bioactive cytotoxic component. The essential oils were coded as MHS-1, MHS-2, MHS-3 and MHS-4, and characterised using GC-FID and GC-MS. The main volatile compounds identified were 1,8-cineol, eudesmol, cubenol, spathulenol and α-cadinol. In vitro cytotoxic activities were assessed against human cancer cell lines such as, the lung (A549), colon (DLD-1, SW 620), breast (MCF-7, MDA-MB-231), head and neck (FaDu), and cervix (HeLa). MHS-4 is significantly active in comparison to other samples against all cancer cell lines. Sample MHS-4 has major proportion of monoterpene alcohol mainly 1,8-cineol. Principal components analysis was performed for the experimental results and all four samples were clustered according to their percentage inhibition at different doses.

  1. Calcein AM release-based cytotoxic cell assay for fish leucocytes.

    Science.gov (United States)

    Iwanowicz, Luke R; Densmore, Christine L; Ottinger, Christopher A

    2004-02-01

    A non-specific cytotoxic cell assay for fish is presented that is based on the release of the activated fluorochrome calcein AM from lysed carp epithelioma papulosum cyprini (EPC) cells. To establish the suitability of treating EPC cells with calcein AM the uptake and spontaneous release of the calcein AM by the EPC cells was evaluated. Incubation of 5 microM calcein AM in culture medium with 1x10(5)EPC cells well(-1)for a minimum of 3 h provided sufficient labelling. Spontaneous release of fluorescence from the labelled EPC cells during 10 h of post labelling incubation ranged from 30 to 39% of the total observed fluorescence. Cytotoxic activity of trout leucocytes was evaluated at three leucocyte to target cell ratios (10:1, 2:1 and 1:1) following incubation (4, 6, 8, and 10 h) with calcein AM-labelled EPC cells at 15 degrees C. In some instances, the monoclonal antibody specific for the NCC surface receptor NCCRP-1 (MAb5C.6) was included in the cultures. The activity of NCC cells was significantly inhibited in the presence of 0.25 microg well(-1)of MAb5C.6 relative to no antibody (Pcytotoxic cell activity of approximately 18% was observed following 8 h of incubation at the 2:1 and 1:1 leucocyte to target cell ratios. Percent cytotoxic cell activity using calcein AM was similar to values reported for rainbow trout leucocytes using the 51Cr-release assay.

  2. In vitro Antimalarial and Cytotoxic Activities of Leaf Extracts of ...

    African Journals Online (AJOL)

    efficacy of the plant leaves for treatment of malaria. Key Words: Antiplasmodial, cytotoxicity, Vernonia amygdalina leave, in vitro, Plasmodium falciparum, vero cell line. INTRODUCTION. Malaria constitutes one of the major public health problems in the world, especially in tropical. Africa, Asia and Latin America. The World.

  3. In vitro Antimicrobial, Cytotoxic and Radical Scavenging Activities and Chemical Constituents of the Endemic Thymus laevigatus (Vahl

    Directory of Open Access Journals (Sweden)

    Mohamed Al-Fatimi

    2010-01-01

    Full Text Available The leaves of Thymus laevigatus (Vahl, Lamiaceae (Labiatae, an endemic species of Yemen, are traditionally used in the treatment of various disorders including stomach and respiratory system. In a first biological and chemical study of this endemic species we investigated antimicrobial, cytotoxic and antioxidant activities of different extracts of the leaves of this plant. The preliminary phytochemical screening of extracts composition was performed by TLC while the composition of the essential oil was determined by GC-MS. Twelve constituents were detected from the essential oil, which constituted 99.6 % of the total amount. The major constituents of the oil were: carvacrol (84.3 %, p-cymene (4.1 % p-mentha-1, 4-diene (4.0 % and trans-anethole (3.6%. The main active components were identified by TLC as carvacrol and anethole for dichloromethane extract and as non-volatile phenols and flavonoids for the methanol extract. The methanol, dichloromethane and aqueous extracts were tested for their antimicrobial activities against five bacteria strains and six human pathogenic fungi. Both methanol and dichloromethane showed strong activities against most human pathogenic strains. In the contrast, methanol extract showed broader and stronger antibacterial activities than the dichloromethane extract, especially against the Gram-negative bacterium Pseudomonas aeruginosa. The methanol extract showed the same strong radical scavenging activity in the DPPH assay (14.9mg/ml, when compared to the standard antioxidant, ascorbic acid. In contrast, the cytotoxic activity of the methanol against FL cells, a human amniotic epithelial cell line, was only moderate (IC50 298, 8 mg/ml. On the contrary, the water extract did not show any biological activity. Results presented here suggest that the essential oil and extracts of Thymus laevigatus possess strong antimicrobial and antioxidant properties, and therefore, they can be used as a natural preservative ingredient

  4. Concanavalin A-induced activation of lymphocytic choriomeningitis virus memory lymphocytes into specifically cytotoxic T cells

    DEFF Research Database (Denmark)

    Marker, O; Thomsen, Allan Randrup; Andersen, G T

    1977-01-01

    When spleen cells, which have been primed to Lymphocytic Choriomeningitis (LCM) virus during a primary infection several months previously, are stimulated in vitro with Con A. highly specific secondary cytotoxic effector cells are generated. The degree of cytotoxicity revealed by such Con A...

  5. Identification of cytotoxic drugs that selectively target tumor cells with MYC overexpression.

    Directory of Open Access Journals (Sweden)

    Anna Frenzel

    Full Text Available Expression of MYC is deregulated in a wide range of human cancers, and is often associated with aggressive disease and poorly differentiated tumor cells. Identification of compounds with selectivity for cells overexpressing MYC would hence be beneficial for the treatment of these tumors. For this purpose we used cell lines with conditional MYCN or c-MYC expression, to screen a library of 80 conventional cytotoxic compounds for their ability to reduce tumor cell viability and/or growth in a MYC dependent way. We found that 25% of the studied compounds induced apoptosis and/or inhibited proliferation in a MYC-specific manner. The activities of the majority of these were enhanced both by c-MYC or MYCN over-expression. Interestingly, these compounds were acting on distinct cellular targets, including microtubules (paclitaxel, podophyllotoxin, vinblastine and topoisomerases (10-hydroxycamptothecin, camptothecin, daunorubicin, doxorubicin, etoposide as well as DNA, RNA and protein synthesis and turnover (anisomycin, aphidicholin, gliotoxin, MG132, methotrexate, mitomycin C. Our data indicate that MYC overexpression sensitizes cells to disruption of specific pathways and that in most cases c-MYC and MYCN overexpression have similar effects on the responses to cytotoxic compounds. Treatment of the cells with topoisomerase I inhibitors led to down-regulation of MYC protein levels, while doxorubicin and the small molecule MYRA-A was found to disrupt MYC-Max interaction. We conclude that the MYC pathway is only targeted by a subset of conventional cytotoxic drugs currently used in the clinic. Elucidating the mechanisms underlying their specificity towards MYC may be of importance for optimizing treatment of tumors with MYC deregulation. Our data also underscores that MYC is an attractive target for novel therapies and that cellular screenings of chemical libraries can be a powerful tool for identifying compounds with a desired biological activity.

  6. Trilobolide-steroid hybrids: Synthesis, cytotoxic and antimycobacterial activity

    Czech Academy of Sciences Publication Activity Database

    Jurášek, M.; Džubák, P.; Rimpelová, S.; Sedlák, David; Konečný, P.; Frydrych, I.; Gurska, S.; Hajdúch, M.; Bogdanová, K.; Kolář, M.; Muller, Tomáš; Kmoníčková, Eva; Ruml, T.; Harmatha, Juraj; Drašar, P. B.

    2017-01-01

    Roč. 117, JAN (2017), s. 97-104 ISSN 0039-128X R&D Projects: GA MŠk(CZ) LO1304; GA MŠk LO1220; GA MŠk LM2015063 Grant - others:GA ČR(CZ) GA14-04329S Institutional support: RVO:68378050 ; RVO:68378041 ; RVO:61388963 Keywords : Trilobolide * Steroids * Click chemistry * Cytotoxicity * sar * Steroid receptor Subject RIV: EB - Genetics ; Molecular Biology; CC - Organic Chemistry (UOCHB-X) OBOR OECD: Biochemistry and molecular biology; Organic chemistry (UOCHB-X) Impact factor: 2.282, year: 2016

  7. Cytotoxicity and activation of the Wnt/beta-catenin pathway in mouse embryonic stem cells treated with four GSK3 inhibitors.

    Science.gov (United States)

    Naujok, Ortwin; Lentes, Jana; Diekmann, Ulf; Davenport, Claudia; Lenzen, Sigurd

    2014-04-29

    Small membrane-permeable molecules are now widely used during maintenance and differentiation of embryonic stem cells of different species. In particular the glycogen synthase kinase 3 (GSK3) is an interesting target, since its chemical inhibition activates the Wnt/beta-catenin pathway. In the present comparative study four GSK3 inhibitors were characterized. Cytotoxicity and potential to activate the Wnt/beta-catenin pathway were tested using the commonly used GSK3 inhibitors BIO, SB-216763, CHIR-99021, and CHIR-98014. Wnt/beta-catenin-dependent target genes were measured by quantitative PCR to confirm the Wnt-reporter assay and finally EC50-values were calculated. CHIR-99021 and SB-216763 had the lowest toxicities in mouse embryonic stem cells and CHIR-98014 and BIO the highest toxicities. Only CHIR-99021 and CHIR-98014 lead to a strong induction of the Wnt/beta-catenin pathway, whereas BIO and SB-216763 showed a minor or no increase in activation of the Wnt/beta-catenin pathway over the natural ligand Wnt3a. The data from the Wnt-reporter assay were confirmed by gene expression analysis of the TCF/LEF regulated gene T. Out of the four tested GSK3 inhibitors, only CHIR-99021 and CHIR-98014 proved to be potent pharmacological activators of the Wnt/beta-catenin signaling pathway. But only in the case of CHIR-99021 high potency was combined with very low toxicity.

  8. Minocycline enhances mitomycin C-induced cytotoxicity through down-regulating ERK1/2-mediated Rad51 expression in human non-small cell lung cancer cells.

    Science.gov (United States)

    Ko, Jen-Chung; Wang, Tai-Jing; Chang, Po-Yuan; Syu, Jhan-Jhang; Chen, Jyh-Cheng; Chen, Chien-Yu; Jian, Yun-Ting; Jian, Yi-Jun; Zheng, Hao-Yu; Chen, Wen-Ching; Lin, Yun-Wei

    2015-10-01

    Minocycline is a semisynthetic tetracycline derivative; it has anti-inflammatory and anti-cancer effects distinct from its antimicrobial function. However, the molecular mechanism of minocycline-induced cytotoxicity in non-small cell lung cancer (NSCLC) cells has not been identified. Rad51 plays a central role in homologous recombination and high levels of Rad51 expression are observed in chemo- or radioresistant carcinomas. Our previous studies have shown that the MKK1/2-ERK1/2 signal pathway maintains the expression of Rad51 in NSCLC cells. In this study, minocycline treatment inhibited cell viability and proliferation of two NSCLC cells, A549 and H1975. Treatment with minocycline decreased Rad51 mRNA and protein levels through MKK1/2-ERK1/2 inactivation. Furthermore, expression of constitutively active MKK1 (MKK1-CA) vectors significantly rescued the decreased Rad51 protein and mRNA levels in minocycline-treated NSCLC cells. However, combined treatment with MKK1/2 inhibitor U0126 and minocycline further decreased the Rad51 expression and cell viability of NSCLC cells. Knocking down Rad51 expression by transfection with small interfering RNA of Rad51 enhanced the cytotoxicity and cell growth inhibition of minocycline. Mitomycin C (MMC) is typically used as a first or second line regimen to treat NSCLC. Compared to a single agent alone, MMC combined with minocycline resulted in cytotoxicity and cell growth inhibition synergistically in NSCLC cells, accompanied with reduced activation of phospho-ERK1/2, and reduced Rad51 protein levels. Overexpression of MKK1-CA or Flag-tagged Rad51 could reverse the minocycline and MMC-induced synergistic cytotoxicity. These findings may have implications for the rational design of future drug regimens incorporating minocycline and MMC for the treatment of NSCLC. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Virus-specific cytotoxic T cells in chronic active Epstein-Barr virus infection.

    Science.gov (United States)

    Shibayama, Haruna; Imadome, Ken-Ichi; Onozawa, Erika; Tsuzura, Akiho; Miura, Osamu; Koyama, Takatoshi; Arai, Ayako

    2017-01-01

    Chronic active Epstein-Barr virus infection (CAEBV) is a disease characterized by clonally proliferating and activated EBV-infected T or NK cells accompanied by chronic inflammation and T- or NK-cell neoplasms. However, the mechanism for developing CAEBV has not been clarified to date. Because the decreased number or inactivation of EBV-specific cytotoxic T lymphocytes (CTLs) resulted in the development of EBV-positive B-cell neoplasms, we investigated the number of CTLs in CAEBV patients using the tetrameric complexes of HLA-restricted EBV-specific peptides. Among the seven patients examined, EBV-specific CTLs were detected in the peripheral blood mononuclear cells (PBMCs) of four cases but were not detected in three cases. The ratio of EBV-specific CTLs in PBMCs tended to be higher in the patients with active disease than in those with inactive disease. In two patients in whom EBV-specific CTLs had not been detected, CTLs appeared after the eradication of EBV-infected T cells by allogeneic bone marrow transplantation. These results suggested that the failure of CTLs had a role in developing CAEBV, although the induction number and function of EBV-specific CTLs might vary in each patient.

  10. Silver nanoparticles with antimicrobial activities against Streptococcus mutans and their cytotoxic effect.

    Science.gov (United States)

    Pérez-Díaz, Mario Alberto; Boegli, Laura; James, Garth; Velasquillo, Cristina; Sánchez-Sánchez, Roberto; Martínez-Martínez, Rita-Elizabeth; Martínez-Castañón, Gabriel Alejandro; Martinez-Gutierrez, Fidel

    2015-10-01

    Microbial resistance represents a challenge for the scientific community to develop new bioactive compounds. The goal of this research was to evaluate the antimicrobial activity of silver nanoparticles (AgNPs) against a clinical isolate of Streptococcus mutans, antibiofilm activity against mature S. mutans biofilms and the compatibility with human fibroblasts. The antimicrobial activity of AgNPs against the planktonic clinical isolate was size and concentration dependent, with smaller AgNPs having a lower minimum inhibitory concentration. A reduction of 2.3 log in the number of colony-forming units of S. mutans was observed when biofilms grown in a CDC reactor were exposed to 100 ppm of AgNPs of 9.5±1.1 nm. However, AgNPs at high concentrations (>10 ppm) showed a cytotoxic effect upon human dermal fibroblasts. AgNPs effectively inhibited the growth of a planktonic S. mutans clinical isolate and killed established S. mutans biofilms, which suggests that AgNPs could be used for prevention and treatment of dental caries. Further research and development are necessary to translate this technology into therapeutic and preventive strategies. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Cytotoxic and cytoprotective activities of curcumin. Effects on paracetamol-induced cytotoxicity, lipid peroxidation and glutathione depletion in rat hepatocytes

    NARCIS (Netherlands)

    Donatus, I A; Sardjoko,; Vermeulen, N P

    1990-01-01

    The cytoprotective effect of curcumin, a natural constituent of Curcuma longa, on the cytotoxicity of paracetamol in rat hepatocytes was studied. Paracetamol was selected as a model-toxin, since it is known to be bioactivated by 3-methylcholanthrene inducible cytochromes P450 presumably to

  12. Induction of Activating Transcription Factor 3 Is Associated with Cisplatin Responsiveness in Non–Small Cell Lung Carcinoma Cells

    Directory of Open Access Journals (Sweden)

    Jair Bar

    2016-09-01

    Full Text Available Non–small cell lung carcinoma (NSCLC is the most common cause of cancer deaths, with platin-based combination chemotherapy the most efficacious therapies. Gains in overall survival are modest, highlighting the need for novel therapeutic approaches including the development of next-generation platin combination regimens. The goal of this study was to identify novel regulators of platin-induced cytotoxicity as potential therapeutic targets to further enhance platin cytotoxicity. Employing RNA-seq transcriptome analysis comparing two parental NSCLC cell lines Calu6 and H23 to their cisplatin-resistant sublines, Calu6cisR1 and H23cisR1, activating transcription factor 3 (ATF3 was robustly induced in cisplatin-treated parental sensitive cell lines but not their resistant sublines, and in three of six tumors evaluated, but not in their corresponding normal adjacent lung tissue (0/6. Cisplatin-induced JNK activation was a key regulator of this ATF3 induction. Interestingly, in both resistant sublines, this JNK induction was abrogated, and the expression of an activated JNK construct in these cells enhanced both cisplatin-induced cytotoxicity and ATF3 induction. An FDA-approved drug compound screen was employed to identify enhancers of cisplatin cytotoxicity that were dependent on ATF3 gene expression. Vorinostat, a histone deacetylase inhibitor, was identified in this screen and demonstrated synergistic cytotoxicity with cisplatin in both the parental Calu6 and H23 cell lines and importantly in their resistant sublines as well that was dependent on ATF3 expression. Thus, we have identified ATF3 as an important regulator of cisplatin cytotoxicity and that ATF3 inducers in combination with platins are a potential novel therapeutic approach for NSCLC.

  13. Correlation between DNA interactions and cytotoxic activity of four new ternary compounds of copper(II) with N-donor heterocyclic ligands.

    Science.gov (United States)

    Silva, Priscila P; Guerra, Wendell; Dos Santos, Geandson Coelho; Fernandes, Nelson G; Silveira, Josiane N; da Costa Ferreira, Ana M; Bortolotto, Tiago; Terenzi, Hernán; Bortoluzzi, Adailton João; Neves, Ademir; Pereira-Maia, Elene C

    2014-03-01

    Four new ternary complexes of copper(II) were synthesized and characterized: [Cu(hyd)(bpy)(acn)(ClO4)](ClO4)] (1), [Cu(hyd)(phen)(acn)(ClO4)](ClO4)] (2), [Cu(Shyd)(bpy)(acn)(ClO4)](ClO4)] (3) and [Cu(Shyd)(phen)(acn)(ClO4)](ClO4)] (4), in which acn=acetonitrile; hyd=2-furoic acid hydrazide, bpy=2,2-bipyridine; phen=1,10-phenanthroline and Shyd=2-thiophenecarboxylic acid hydrazide. The cytotoxic activity of the complexes in a chronic myelogenous leukemia cell line was investigated. All complexes are able to enter cells and inhibit cellular growth in a concentration-dependent manner, with an activity higher than that of the corresponding free ligands. The substitution of Shyd for hyd increases the activity, while the substitution of bpy for phen renders the complex less active. Therefore, the most potent complex is 4 with an IC50 value of 1.5±0.2μM. The intracellular copper concentration needed to inhibit 50% of cell growth is approximately 7×10(-15)mol/cell. It is worth notifying that a correlation between cytotoxic activity, DNA binding affinity and DNA cleavage was found: 1<3<2<4. © 2013.

  14. Cytotoxicity of Cerastes cerastes snake venom: Involvement of imbalanced redox status.

    Science.gov (United States)

    Kebir-Chelghoum, Hayet; Laraba-Djebari, Fatima

    2017-09-01

    Envenomation caused by Cerastes cerastes snake venom is characterized by a local and a systemic tissue damage due to myonecrosis, hemorrhage, edema and acute muscle damage. The present study aimed to evaluate the relationship between the pro/anti-oxidants status and the cytotoxicity of C. cerastes snake venom. The in vivo cytotoxicity analysis was undertaken by the injection of C. cerastes venom (48μg/20g body weight) by i.p. route, mice were then sacrificed at 3, 24 and 48h post injection, organs were collected for further analysis. In vitro cytotoxicity analysis was investigated on cultured PBMC, hepatocytes and isolated liver. The obtained results showed a significant cell infiltration characterized by a significant increase of myeloperoxidase (MPO) and eosinoperoxidase (EPO) activities. These results showed also a potent oxidative activity of C. cerastes venom characterized by increased levels of residual nitrites and lipid peroxidation associated with a significant decrease of glutathione and catalase activity in sera and tissues (heart, lungs, liver and kidneys). The in vitro cytotoxicity of C. cerastes venom on PBMC seems to be dose-dependent (IC50 of 21μg/ml/10 6 cells) and correlated with an imbalanced redox status at high doses of venom. However, in the case of cultured hepatocytes, the LDH release and oxidative stress were observed only at high doses of the venom. The obtained results of in vivo study were confirmed by the culture of isolated liver. Therefore, these results suggest that the venom induces a direct cytotoxic effect which alters the membrane integrity causing a leakage of the cellular contents. This cytotoxic effect can lead indirectly to inflammatory response and oxidative stress. These data suggest that an early anti-inflammatory and antioxidant treatment could be useful in the management of envenomed victims. Copyright © 2017. Published by Elsevier B.V.

  15. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  16. Semi-synthetic salinomycin analogs exert cytotoxic activity against human colorectal cancer stem cells.

    Science.gov (United States)

    Klose, Johannes; Kattner, Sarah; Borgström, Björn; Volz, Claudia; Schmidt, Thomas; Schneider, Martin; Oredsson, Stina; Strand, Daniel; Ulrich, Alexis

    2018-01-01

    Salinomycin, a polyether antibiotic, is a well-known inhibitor of human cancer stem cells. Chemical modification of the allylic C20 hydroxyl of salinomycin has enabled access to synthetic analogs that display increased cytotoxic activity compared to the native structure. The aim of this study was to investigate the activity of a cohort of C20-O-acyl analogs of salinomycin on human colorectal cancer cell lines in vitro. Two human colorectal cancer cell lines (SW480 and SW620) were exposed to three C20-O-acylated analogs and salinomycin. The impact of salinomycin and its analogs on tumor cell number, migration, cell death, and cancer stem cell specifity was analyzed. Exposure of human colorectal cancer cells to the C20-O-acylated analogs of salinomycin resulted in reduced tumor cell number and impaired tumor cell migration at lower concentrations than salinomycin. When used at higher (micromolar) concentrations, these effects were accompanied by induction of apoptotic cell death. Salinomycin analogs further expose improved activity against cancer stem cells compared to salinomycin. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Aporphine and tetrahydroprotoberberine alkaloids from the leaves of Guatteria friesiana (Annonaceae) and their cytotoxic activities

    International Nuclear Information System (INIS)

    Costa, Emmanoel Vilaca; Cruz, Pedro Ernesto O. da; Marques, Francisco A.; Barison, Andersson; Maia, Beatriz Helena L.N.S.; Pinheiro, Maria Lucia B.; Ruiz, Ana Lucia T.G.; Marchetti, Gabriela M.; Carvalho, Joao Ernesto de

    2013-01-01

    Phytochemical investigation of the leaves of Guatteria friesiana (Annonaceae) afforded three new isoquinoline alkaloids, 13-hydroxy-discretinine, 6,6a-dehydroguatteriopsiscine and 9-dehydroxy-1-methoxy-dihydroguattouregidine. Eight known alkaloids were also isolated, 13-hydroxy-2,3,9,10-tetramethoxyprotoberberine, guatteriopsiscine, lysicamine, liriodenine, atherospermidine, lanuginosine, 7,8-dihydro-8-hydroxypalmatine and palmatine. 13-Hydroxy- 2,3,9,10-tetramethoxyprotoberberine was only obtained by synthesis and is being reported as a natural product for the first time. The structures of the isolated alkaloids were established by extensive analysis of 1D and 2D nuclear magnetic resonance (NMR) and mass spectrometric (MS) data, as well as by comparison with data reported in the literature. The in vitro cytotoxic activity of the major alkaloids was evaluated against tumor and non-tumor cell lines. All of the alkaloids evaluated were determined to be inactive based on National Cancer Institute (NCI/USA) criteria. However, the alkaloid palmatine exhibited a cytostatic effect on MCF-7 (breast) and U251 (glioma) human tumor cell lines, with GI 50 values lower than 20.0 μmol L - 1 (10.5and 16.2μmolL -1 , respectively), suggesting a selective cytotoxic action (author)

  18. Glycoengineering of therapeutic antibodies enhances monocyte/macrophage-mediated phagocytosis and cytotoxicity.

    Science.gov (United States)

    Herter, Sylvia; Birk, Martina C; Klein, Christian; Gerdes, Christian; Umana, Pablo; Bacac, Marina

    2014-03-01

    Therapeutic Abs possess several clinically relevant mechanisms of action including perturbation of tumor cell signaling, activation of complement-dependent cytotoxicity, Ab-dependent cellular cytotoxicity (ADCC), Ab-dependent cellular phagocytosis (ADCP), and induction of adaptive immunity. In view of the important role of phagocytic lineage cells in the mechanism of action of therapeutic Abs, we analyzed FcγR receptor-dependent effector functions of monocytes and macrophages triggered by glycoengineered (GE) Abs (having enhanced FcγRIIIa [CD16a] binding affinity) versus their wild-type (WT) counterparts under different experimental conditions. We first defined the precise FcγR repertoire on classical and nonclassical intermediate monocytes--M1 and M2c macrophage populations. We further show that WT and GE Abs display comparable binding and induce similar effector functions (ADCC and ADCP) in the absence of nonspecific, endogenous IgGs. However, in the presence of these IgGs (i.e., in a situation that more closely mimics physiologic conditions), GE Abs display significantly superior binding and promote stronger monocyte and macrophage activity. These data show that in addition to enhancing CD16a-dependent NK cell cytotoxicity, glycoengineering also enhances monocyte and macrophage phagocytic and cytotoxic activities through enhanced binding to CD16a under conditions that more closely resemble the physiologic setting.

  19. Reduced antibody-dependent cellular cytotoxicity to herpes simplex virus-infected cells of salivary polymorphonuclear leukocytes and inhibition of peripheral blood polymorphonuclear leukocyte cytotoxicity by saliva.

    Science.gov (United States)

    Ashkenazi, M; Kohl, S

    1990-06-15

    Blood polymorphonuclear leukocytes (BPMN) have been shown to mediate antibody-dependent cellular cytotoxicity (ADCC) against HSV-infected cells. Although HSV infections are frequently found in the oral cavity, the ADCC capacity of salivary PMN (SPMN) has not been studied, mainly because methods to isolate SPMN were not available. We have recently developed a method to isolate SPMN, and in this study have evaluated their ADCC activity against HSV-infected cells. SPMN were obtained by repeated washings of the oral cavity, and separated from epithelial cells by nylon mesh filtration. ADCC was quantitatively determined by 51Cr release from HSV-infected Chang liver cells. SPMN in the presence of antibody were able to destroy HSV-infected cells, but SPMN were much less effective in mediating ADCC than BPMN (3.4% vs 40.7%, p less than 0.0001). In the presence of antiviral antibody, SPMN were able to adhere to HSV-infected cells, but less so than BPMN (34% vs 67%), and specific antibody-induced adherence was significantly lower in SPMN (p less than 0.04). The spontaneous adherence to HSV-infected cells was higher for SPMN than BPMN. SPMN demonstrated up-regulation of the adhesion glycoprotein CD18, but down-regulation of the FcRIII receptor. Incubation with saliva decreased ADCC capacity of BPMN, up-regulated CD18 expression, and down-regulated FcRIII expression.

  20. Green Adeptness in the Synthesis and Stabilization of Copper Nanoparticles: Catalytic, Antibacterial, Cytotoxicity, and Antioxidant Activities

    Science.gov (United States)

    Din, Muhammad Imran; Arshad, Farhan; Hussain, Zaib; Mukhtar, Maria

    2017-12-01

    Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process, sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations, and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given. The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new pathway for researchers to investigate those plants which have not been used in the past.

  1. Cytotoxicity of semiconductor nanoparticles in A549 cells is attributable to their intrinsic oxidant activity

    Energy Technology Data Exchange (ETDEWEB)

    Escamilla-Rivera, Vicente; Uribe-Ramirez, Marisela [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico); Gonzalez-Pozos, Sirenia [CINVESTAV-IPN, Unidad de Microscopia Electrónica (LaNSE) (Mexico); Velumani, Subramaniam [CINVESTAV-IPN, Departamento de Ingeniería Eléctrica (Mexico); Arreola-Mendoza, Laura [Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo del Instituto Politécnico Nacional (CIIEMAD-IPN), Departamento de Biociencias e Ingeniería (Mexico); Vizcaya-Ruiz, Andrea De, E-mail: avizcaya@cinvestav.mx [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Departamento de Toxicología (Mexico)

    2016-04-15

    Copper indium gallium diselenide (CIGS) and cadmium sulfide (CdS) nanoparticles (NP) are next generation semiconductors used in photovoltaic cells (PV). They possess high quantum efficiency, absorption coefficient, and cheaper manufacturing costs compared to silicon. Due to their potential for an industrial development and the lack of information about the risk associated in their use, we investigated the influence of the physicochemical characteristics of CIGS (9 nm) and CdS (20 nm) in relation to the induction of cytotoxicity in human alveolar A549 cells through ROS generation and mitochondrial dysfunction. CIGS induced cytotoxicity in a dose dependent manner in lower concentrations than CdS; both NP were able to induce ROS in A549. Moreover, CIGS interact directly with mitochondria inducing depolarization that leads to the induction of apoptosis compared to CdS. Antioxidant pretreatment significantly prevented the loss of mitochondrial membrane potential and cytotoxicity, suggesting ROS generation as the main cytotoxic mechanism. These results demonstrate that semiconductor characteristics of NP are crucial for the type and intensity of the cytotoxic effects. Our work provides relevant information that may help guide the production of a safer NP-based PV technologies, and would be a valuable resource on future risk assessment for a safer use of nanotechnology in the development of clean sources of renewable energy.

  2. Evaluation of anti-cholinesterase, antibacterial and cytotoxic activities of green synthesized silver nanoparticles using from Millettia pinnata flower extract.

    Science.gov (United States)

    Rajakumar, Govindasamy; Gomathi, Thandapani; Thiruvengadam, Muthu; Devi Rajeswari, V; Kalpana, V N; Chung, Ill-Min

    2017-02-01

    The aim of this study is to develop an easy and eco-friendly method for the synthesis of Ag-NPs using extracts from the medicinal plant, Millettia pinnata flower extract and investigate the effects of Ag-NPs on acetylcholinesterase (AChE), butyrylcholinesterase (BChE), antibacterial and cytotoxicity activity. UV-Vis peak at 438 nm confirmed the Ag-NPs absorbance. The SEM analysis results confirmed the presence of spherical shaped Ag-NPs by a huge disparity in the particle size distribution with an average size of 49 ± 0.9 nm. TEM images revealed the formation of Ag-NPs with spherical shape and sizes in the range between 16 and 38 nm. The Ag-NPs showed an excellent inhibitory efficacy against AChE and BChE. The highest antibacterial activity was found against Escherichia coli (20.25 ± 0.91 mm). These nanoparticles showed the cytotoxic effects against brine shrimp (artemia saliana) nauplii with a LD 50 value of 33.92. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. In Vitro Antiplasmodial Activity and Cytotoxic Effect of (Z-2-Benzylidene-4, 6-Dimethoxybenzofuran-3(2H-One Derivatives

    Directory of Open Access Journals (Sweden)

    Ali RAMAZANI

    2016-10-01

    Full Text Available Background: Aurones are naturally occurring compounds that belong to flavenoids family and have antiplasmodial effects. This study investigated some new aurones derivatives against chloroquine sensitive Plasmodium falciparum. Here we report the synthesis, in vitro antiplasmodial activity and cytotoxic evaluation of 11 compound from derivatives of (Z-2- benzylidene-4, 6-dimethoxybenzofuran-3(2H-one.Methods: The cytotoxic evaluations of active compounds were performed with MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyltetrazolium bromide assay on human breast cancer cell lines; MCF7 and T47D.Results: From 11 compounds M3, M6 and M7 compounds showed good antiplasmodial effect against chloroquine-sensitive 3D strain of P. falciparum with IC50 (50% inhibitory concentration values of 7.82, 7.27 and 2.3 µM respectively. No noticeable toxicity was‌ observed with these compounds when tested against tested cell lines. Conclusion: The replacement of the 4 and 5 positions at ring B of aurone derivatives, with propoxy and bromide (Br respectively was revealed highly advantageous for their antiplasmodial effect.

  4. Comparative cytotoxic response of nickel ferrite nanoparticles in human liver HepG2 and breast MFC-7 cancer cells.

    Science.gov (United States)

    Ahamed, Maqusood; Akhtar, Mohd Javed; Alhadlaq, Hisham A; Khan, M A Majeed; Alrokayan, Salman A

    2015-09-01

    Nickel ferrite nanoparticles (NPs) have received much attention for their potential applications in biomedical fields such as magnetic resonance imaging, drug delivery and cancer hyperthermia. However, little is known about the toxicity of nickel ferrite NPs at the cellular and molecular levels. In this study, we investigated the cytotoxic responses of nickel ferrite NPs in two different types of human cells (i.e., liver HepG2 and breast MCF-7). Nickel ferrite NPs induced dose-dependent cytotoxicity in both types of cells, which was demonstrated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazoliumbromide (MTT), neutral red uptake (NRU) and lactate dehydrogenase (LDH) assays. Nickel ferrite NPs were also found to induce oxidative stress, which was evident by the depletion of glutathione and the induction of reactive oxygen species (ROS) and lipid peroxidation. The mitochondrial membrane potential due to nickel ferrite NP exposure was also observed. The mRNA levels for the tumor suppressor gene p53 and the apoptotic genes bax, CASP3 and CASP9 were up-regulated, while the anti-apoptotic gene bcl-2 was down-regulated following nickel ferrite NP exposure. Furthermore, the activities of apoptotic enzymes (caspase-3 and caspase-9) were also higher in both types of cells treated with nickel ferrite NPs. Cytotoxicity induced by nickel ferrite was efficiently prevented by N-acetyl cysteine (ROS scavenger) treatment, which suggested that oxidative stress might be one of the possible mechanisms of nickel ferrite NP toxicity. We also observed that MCF-7 cells were slightly more susceptible to nickel ferrite NP exposure than HepG2 cells. This study warrants further investigation to explore the potential mechanisms of different cytotoxic responses of nickel ferrite NPs in different cell lines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Regulation of DC development and DC-mediated T-cell immunity via CISH

    OpenAIRE

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-01-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  6. Regulation of DC development and DC-mediated T-cell immunity via CISH.

    Science.gov (United States)

    Miah, Mohammad Alam; Bae, Yong-Soo

    2013-03-01

    Cytokine inducible SH2-containing protein (CISH) plays a crucial role in type 1 dendritic cell (DC) development as well as in the DC-mediated activation of cytotoxic T lymphocytes (CTLs). CISH expression at late DC developmental stages shuts down the proliferation of DC progenitors by negatively regulating signal transducer and activator of transcription 5 (STAT5) and facilitates the differentiation of DCs into potent stimulators of CTLs.

  7. Enhanced sensitivity of A549 cells to the cytotoxic action of anticancer drugs via suppression of Nrf2 by procyanidins from Cinnamomi Cortex extract

    Energy Technology Data Exchange (ETDEWEB)

    Ohnuma, Tomokazu; Matsumoto, Takashi; Itoi, Ayano; Kawana, Ayako; Nishiyama, Takahito; Ogura, Kenichiro [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan); Hiratsuka, Akira, E-mail: hiratuka@toyaku.ac.jp [Department of Drug Metabolism and Molecular Toxicology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji-shi, Tokyo 192-0392 (Japan)

    2011-10-07

    Highlights: {yields} We found a novel inhibitor of Nrf2 known as a chemoresistance factor. {yields} Overexpressed Nrf2 in lung cancer cells was suppressed by Cinnamomi Cortex extract. {yields} Cytotoxic action of anticancer drugs in cells treated with the extract was enhanced. {yields} Procyanidin tetramers and pentamers were active components in suppressing Nrf2. -- Abstract: Nuclear factor-E2-related factor 2 (Nrf2) is an important cytoprotective transcription factor because Nrf2-regulated enzymes play a key role in antioxidant and detoxification processes. Recent studies have reported that lung cancer cells overexpressing Nrf2 exhibit increased resistance to chemotherapy. Suppression of overexpressed Nrf2 is needed for a new therapeutic approach against lung cancers. In the present study, we found that Cinnamomi Cortex extract (CCE) has an ability to suppress Nrf2-regulated enzyme activity and Nrf2 expression in human lung cancer A549 cells with high Nrf2 activity. Moreover, we demonstrated that CCE significantly enhances sensitivity of A549 cells to the cytotoxic action of doxorubicin and etoposide as well as increasing the intracellular accumulation of both drugs. These results suggest that CCE might be an effective concomitant agent to reduce anticancer drug resistance derived from Nrf2 overexpression. Bioactivity-guided fractionation revealed that procyanidin tetramers and pentamers contained in CCE were active components in suppressing Nrf2.

  8. Synthesis of dihydropyrimidin-2-one/thione library and cytotoxic activity against the human U138-MG and Rat C6 glioma cell lines

    International Nuclear Information System (INIS)

    Canto, Romulo F.S.; Eifler-Lima, Vera Lucia; Bernardi, Andressa; Battastini, Ana Maria O.; Russowsky, Dennis

    2011-01-01

    Two series of 4-aryl-3,4-dihydropyrimidin-2(1H)-(thio)ones including monastrol (1a), have been synthesized by an environment-friendly methodology based on the combined use of citric acid or oxalic acid and TEOF (triethylorthoformate). The library was evaluated as inhibitor of cell proliferation on two glioma cell lines (human-U138-MG and Rat-C6). The compounds derived from thiourea 1f and 1d were more cytotoxic than monastrol. The compound derived from urea 2d showed the highest cytotoxic activity among the analyzed compounds. (author)

  9. Cytotoxic Compounds from Aloe megalacantha

    Directory of Open Access Journals (Sweden)

    Negera Abdissa

    2017-07-01

    Full Text Available Phytochemical investigation of the ethyl acetate extract of the roots of Aloe megalacantha led to the isolation of four new natural products—1,8-dimethoxynepodinol (1, aloesaponarin III (2, 10-O-methylchrysalodin (3 and methyl-26-O-feruloyl-oxyhexacosanate (4—along with ten known compounds. All purified metabolites were characterized by NMR, mass spectrometric analyses and comparison with literature data. The isolates were evaluated for their cytotoxic activity against a human cervix carcinoma cell line KB-3-1 and some of them exhibited good activity, with aloesaponarin II (IC50 = 0.98 µM being the most active compound.

  10. Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities

    International Nuclear Information System (INIS)

    Dominguez-Carmona, Dafne B.; Escalante-Erosa, Fabiola; Garcia-Sosa, Karlina; Pena-Rodriguez, Luis M.

    2011-01-01

    Purification of the root extract of Colubrina greggii var. yucatanensis resulted in the isolation and identification of 3-O-acetyl ceanothic acid as a new natural ceanothane triterpene, together with the known metabolites ceanothic acid, cenothenic acid, betulinic acid, discarine B and chrysophanein. The natural products and the semisynthetic esters acetyl dimethyl ceanothate, dimethyl ceanothate and chrysophanein peracetate showed moderate to low leishmanicidal and trypanocidal activities. None of the metabolites showed cytotoxic or antiproliferative effects. The results also suggested that betulinic acid contributes to the antiplasmodial activity originally detected in the crude root extract of C. greggii var. yucatanensis. (author)

  11. Metabolites from roots of Colubrina greggii var. yucatanensis and evaluation of their antiprotozoan, cytotoxic and antiproliferative activities

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Carmona, Dafne B.; Escalante-Erosa, Fabiola; Garcia-Sosa, Karlina; Pena-Rodriguez, Luis M., E-mail: lmanuel@cicy.m [Centro de Investigacion Cientifica de Yucatan (Mexico). Unidad de Biotecnologia; Ruiz-Pinell, Grace; Gutierrez-Yapu, David; Gimenez-Turba, Alberto [Universidad Mayor de San Andres, La Paz (Bolivia, Plurinational State of). Inst. de Investigaciones Farmaco-Bioquimicas; Chan-Bacab, Manuel J. [Universidad Autonoma de Campeche (Mexico). Dept. de Microbiologia Ambiental y Biotecnologia; Moo-Puc, Rosa E. [Centro Medico Ignacio Garcia Tellez, Col. Industrial, Merida, Yucatan (Mexico). Unidad de Investigacion Medica Yucatan y Unidad Medica de Alta Especialidad; Veitch, Nigel C. [Jodrell Laboratory, Richmond, Surrey (United Kingdom)

    2011-07-01

    Purification of the root extract of Colubrina greggii var. yucatanensis resulted in the isolation and identification of 3-O-acetyl ceanothic acid as a new natural ceanothane triterpene, together with the known metabolites ceanothic acid, cenothenic acid, betulinic acid, discarine B and chrysophanein. The natural products and the semisynthetic esters acetyl dimethyl ceanothate, dimethyl ceanothate and chrysophanein peracetate showed moderate to low leishmanicidal and trypanocidal activities. None of the metabolites showed cytotoxic or antiproliferative effects. The results also suggested that betulinic acid contributes to the antiplasmodial activity originally detected in the crude root extract of C. greggii var. yucatanensis. (author)

  12. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-01-01

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF. PMID:29507676

  13. Dimethyl fumarate is highly cytotoxic in KRAS mutated cancer cells but spares non-tumorigenic cells.

    Science.gov (United States)

    Bennett Saidu, Nathaniel Edward; Bretagne, Marie; Mansuet, Audrey Lupo; Just, Pierre-Alexandre; Leroy, Karen; Cerles, Olivier; Chouzenoux, Sandrine; Nicco, Carole; Damotte, Diane; Alifano, Marco; Borghese, Bruno; Goldwasser, François; Batteux, Frédéric; Alexandre, Jérôme

    2018-02-06

    KRAS mutation, one of the most common molecular alterations observed in adult carcinomas, was reported to activate the anti-oxidant program driven by the transcription factor NRF2 (Nuclear factor-erythroid 2-related factor 2). We previously observed that the antitumoral effect of Dimethyl fumarate (DMF) is dependent of NRF2 pathway inhibition. We used in vitro methods to examine the effect of DMF on cell death and the activation of the NRF2/DJ-1 antioxidant pathway. We report here that DMF is preferentially cytotoxic against KRAS mutated cancer cells. This effect was observed in patient-derived cancer cell lines harbouring a G12V KRAS mutation, compared with cell lines without such a mutation. In addition, KRAS*G12V over-expression in the human Caco-2 colon cancer cell line significantly promoted DMF-induced cell death, as well as DMF-induced- reactive oxygen species (ROS) formation and -glutathione (GSH) depletion. Moreover, in contrast to malignant cells, our data confirms that the same concentration of DMF has no significant cytotoxic effects on non-tumorigenic human ARPE-19 retinal epithelial, murine 3T3 fibroblasts and primary mice bone marrow cells; but is rather associated with NRF2 activation, decreased ROS and increased GSH levels. Furthermore, DJ-1 down-regulation experiments showed that this protein does not play a protective role against NRF2 in non-tumorigenic cells, as it does in malignant ones. This, interestingly, could be at the root of the differential effect of DMF observed between malignant and non-tumorigenic cells. Our results suggest for the first time that the dependence on NRF2 observed in mutated KRAS malignant cells makes them more sensitive to the cytotoxic effect of DMF, which thus opens up new prospects for the therapeutic applications of DMF.

  14. Phytochemical Analysis and Cytotoxicity Evaluation of Kelussia odoratissima Mozaff.

    Directory of Open Access Journals (Sweden)

    Amir Abbas Momtazi

    2017-06-01

    Conclusions: The present results suggest a direct cytotoxic activity of K. odoratissima leaf extract against human cancer cell lines. This activity of K. odoratissima may find application in combination with traditional herbal medicines to develop a new anticancer pharmacopuncture therapy.

  15. Evaluation and SAR analysis of the cytotoxicity of tanshinones in colon cancer cells.

    Science.gov (United States)

    Wang, Lin; Liu, An; Zhang, Fei-Long; Yeung, John H K; Li, Xu-Qin; Cho, Chi-Hin

    2014-03-01

    This study was designed to evaluate the anti-cancer actions of tanshinone I and tanshinone IIA, and six derivatives of tanshinone IIA on normal and cancerous colon cells. Structure activity relationship (SAR) analysis was conducted to delineate the significance of the structural modifications of tanshinones for improved anti-cancer action. Tanshinone derivatives were designed and synthesized according to the literature. The cytotoxicity of different compounds on colon cancer cells was determined by the MTT assay. Apoptotic activity of the tanshinones was measured by flow cytometry (FCM). Tanshinone I and tanshinone IIA both exhibited significant cytotoxicity on colon cancer cells. They are more effective in p53(+/+) colon cancer cell line. It was also noted that the anti-cancer activity of tanshinone I was more potent and selective. Two of the derivatives of tanshinone IIA (N1 and N2) also exhibited cytotoxicity on colon cancer cells. The anti-colon cancer activity of tanshinone I was more potent and selective than tanshinone IIA, and is p53 dependent. The derivatives obtained by structural modifications of tanshinone IIA exhibited lower cytotoxicity on both normal and colon cancer cells. From steric and electronic characteristics point of view, it was concluded that structural modifications of ring A and furan or dihydrofuran ring D on the basic structure of tanshinones influences the activity. An increase of the delocalization of the A and B rings could enhance the cytotoxicity of such compounds, while a non-planar and small sized D ring region would provide improved anti-cancer activity. Copyright © 2014 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.

  16. Cytotoxic human CD4(+) T cells

    NARCIS (Netherlands)

    van de Berg, Pablo J.; van Leeuwen, Ester M.; ten Berge, Ineke J.; van Lier, Rene

    2008-01-01

    The induction of adaptive immune responses critically depends on helper signals provided by CD4(+) T cells. These signals not only license antigen presenting cells (APC) to activate naïve CD8(+) T cells leading to the formation of vast numbers of cytotoxic T lymphocytes but also support the

  17. Modern aspects of tax regulation of investment activity

    Directory of Open Access Journals (Sweden)

    E.S. Podakov

    2016-03-01

    Full Text Available The article investigates the tax regulation of investment activity in modern conditions. Scientists studied different views about the impact of tax regulations on the investment activity in the country. The author determines that the tax regulation of investment activity involves the use of state mechanisms taxation of certain measures to improve investment conditions. The subject is the state tax regulations, and the object is the investment activity of individual and institutional investors of any form of ownership including organizational and legal forms. Such regulation is performed by using complex special tools. The possible methods of tax stimulation of investment processes are described. The article deals with the current results of tax reform in Ukraine and predicts its possible consequences for agricultural producers. The rating positions of Ukraine according to international organizations are showed. The systematic analysis has been carried out and the impact of differential tax rates, tax exemption for a specified period, reducing the tax base, elimination of double taxation on investment activity in certain areas have been researched. The special instruments of investment activity tax regulation are considered. The options for improving investment activity by introducing effective tax regulation are determined.

  18. SlpE is a calcium-dependent cytotoxic metalloprotease associated with clinical isolates of Serratia marcescens.

    Science.gov (United States)

    Stella, Nicholas A; Callaghan, Jake D; Zhang, Liang; Brothers, Kimberly M; Kowalski, Regis P; Huang, Jean J; Thibodeau, Patrick H; Shanks, Robert M Q

    Serralysin-like proteases are found in a wide variety of bacteria. These metalloproteases are frequently implicated in virulence and are members of the widely conserved RTX-toxin family. We identified a serralysin-like protease in the genome of a clinical isolate of Serratia marcescens that is highly similar to the canonical serralysin protein, PrtS. This gene was named serralysin-like protease E, SlpE, and was found in the majority (67%) of tested clinical isolates, but was absent from most tested non-clinical isolates including the insect pathogen and reference S. marcescens strain Db11. Purified recombinant SlpE exhibited calcium-dependent protease activity similar to metalloproteases PrtS and SlpB. Induction of slpE in the low-protease-producing S. marcescens strain PIC3611 highly elevated extracellular protease activity, and extracellular secretion required the lipD type 1 secretion system gene. Transcription of slpE was highly reduced in an eepR transcription factor mutant. Mutation of the slpE gene in a highly proteolytic clinical isolate reduced its protease activity, and evidence suggests that SlpE confers cytotoxicity of S. marcescens to the A549 airway carcinoma cell line. Together, these data reveal SlpE to be an EepR-regulated cytotoxic metalloprotease associated with clinical isolates of an important opportunistic pathogen. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  19. Mesoporous carbon nanomaterials induced pulmonary surfactant inhibition, cytotoxicity, inflammation and lung fibrosis.

    Science.gov (United States)

    Chen, Yunan; Yang, Yi; Xu, Bolong; Wang, Shunhao; Li, Bin; Ma, Juan; Gao, Jie; Zuo, Yi Y; Liu, Sijin

    2017-12-01

    Environmental exposure and health risk upon engineered nanomaterials are increasingly concerned. The family of mesoporous carbon nanomaterials (MCNs) is a rising star in nanotechnology for multidisciplinary research with versatile applications in electronics, energy and gas storage, and biomedicine. Meanwhile, there is mounting concern on their environmental health risks due to the growing production and usage of MCNs. The lung is the primary site for particle invasion under environmental exposure to nanomaterials. Here, we studied the comprehensive toxicological profile of MCNs in the lung under the scenario of moderate environmental exposure. It was found that at a low concentration of 10μg/mL MCNs induced biophysical inhibition of natural pulmonary surfactant. Moreover, MCNs at similar concentrations reduced viability of J774A.1 macrophages and lung epithelial A549 cells. Incubating with nature pulmonary surfactant effectively reduced the cytotoxicity of MCNs. Regarding the pro-inflammatory responses, MCNs activated macrophages in vitro, and stimulated lung inflammation in mice after inhalation exposure, associated with lung fibrosis. Moreover, we found that the size of MCNs played a significant role in regulating cytotoxicity and pro-inflammatory potential of this nanomaterial. In general, larger MCNs induced more pronounced cytotoxic and pro-inflammatory effects than their smaller counterparts. Our results provided valuable information on the toxicological profile and environmental health risks of MCNs, and suggested that fine-tuning the size of MCNs could be a practical precautionary design strategy to increase safety and biocompatibility of this nanomaterial. Copyright © 2017. Published by Elsevier B.V.

  20. Antioxidant, pro-oxidant and cytotoxic properties of parsley.

    Science.gov (United States)

    Dorman, H J Damien; Lantto, Tiina A; Raasmaja, Atso; Hiltunen, Raimo

    2011-06-01

    Parsley (Petroselinum crispum) leaves were macerated with a mixture of methanol: water: acetic acid to produce a crude extract which was then defatted with (40°-60°) petrol. Antioxidant activity of the extract was evaluated using a battery of in vitro assays, viz., iron(iii) reduction, iron(ii) chelation and free radical scavenging assays. Evaluation of the pro-oxidant activity of the extract was based upon its effects upon DNA fragmentation and protein carbonylation. Cytotoxicity and apoptotic effects of the extract were determined in non-cancerous CV1-P fibroblast and cancerous A375 melanoma cells using MTT and LDH tests and caspase 3-like activity assay. The highest concentration, 2.0 mg ml(-1), decreased the viability of both cell lines, however, the cancerous melanoma cells were slightly susceptible to the effects. The observed cytotoxicity was not due to the caspase 3 activity. In conclusion, the toxicity might be explained by the pro-oxidative activity of components within the extract against proteins and/or DNA but it is not related to caspase 3-dependent apoptosis within cells.