WorldWideScience

Sample records for regulates cholesterol homeostasis

  1. Cholesterol efflux is differentially regulated in neurons and astrocytes: implications for brain cholesterol homeostasis

    Science.gov (United States)

    Chen, Jing; Zhang, Xiaolu; Kusumo, Handojo; Costa, Lucio G.; Guizzetti, Marina

    2012-01-01

    Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS. PMID:23010475

  2. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    OpenAIRE

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-choleste...

  3. Mig-6 plays a critical role in the regulation of cholesterol homeostasis and bile acid synthesis.

    Directory of Open Access Journals (Sweden)

    Bon Jeong Ku

    Full Text Available The disruption of cholesterol homeostasis leads to an increase in cholesterol levels which results in the development of cardiovascular disease. Mitogen Inducible Gene 6 (Mig-6 is an immediate early response gene that can be induced by various mitogens, stresses, and hormones. To identify the metabolic role of Mig-6 in the liver, we conditionally ablated Mig-6 in the liver using the Albumin-Cre mouse model (Alb(cre/+Mig-6(f/f; Mig-6(d/d. Mig-6(d/d mice exhibit hepatomegaly and fatty liver. Serum levels of total, LDL, and HDL cholesterol and hepatic lipid were significantly increased in the Mig-6(d/d mice. The daily excretion of fecal bile acids was significantly decreased in the Mig-6(d/d mice. DNA microarray analysis of mRNA isolated from the livers of these mice showed alterations in genes that regulate lipid metabolism, bile acid, and cholesterol synthesis, while the expression of genes that regulate biliary excretion of bile acid and triglyceride synthesis showed no difference in the Mig-6(d/d mice compared to Mig-6(f/f controls. These results indicate that Mig-6 plays an important role in cholesterol homeostasis and bile acid synthesis. Mice with liver specific conditional ablation of Mig-6 develop hepatomegaly and increased intrahepatic lipid and provide a novel model system to investigate the genetic and molecular events involved in the regulation of cholesterol homeostasis and bile acid synthesis. Defining the molecular mechanisms by which Mig-6 regulates cholesterol homeostasis will provide new insights into the development of more effective ways for the treatment and prevention of cardiovascular disease.

  4. Lysosomal regulation of cholesterol homeostasis in tuberous sclerosis complex is mediated via NPC1 and LDL-R.

    Science.gov (United States)

    Filippakis, Harilaos; Alesi, Nicola; Ogorek, Barbara; Nijmeh, Julie; Khabibullin, Damir; Gutierrez, Catherine; Valvezan, Alexander J; Cunningham, James; Priolo, Carmen; Henske, Elizabeth P

    2017-06-13

    Tuberous sclerosis complex (TSC) is a multisystem disease associated with hyperactive mTORC1. The impact of TSC1/2 deficiency on lysosome-mediated processes is not fully understood. We report here that inhibition of lysosomal function using chloroquine (CQ) upregulates cholesterol homeostasis genes in TSC2-deficient cells. This TSC2-dependent transcriptional signature is associated with increased accumulation and intracellular levels of both total cholesterol and cholesterol esters. Unexpectedly, engaging this CQ-induced cholesterol uptake pathway together with inhibition of de novo cholesterol synthesis allows survival of TSC2-deficient, but not TSC2-expressing cells. The underlying mechanism of TSC2-deficient cell survival is dependent on exogenous cholesterol uptake via LDL-R, and endosomal trafficking mediated by Vps34. Simultaneous inhibition of lysosomal and endosomal trafficking inhibits uptake of esterified cholesterol and cell growth in TSC2-deficient, but not TSC2-expressing cells, highlighting the TSC-dependent lysosome-mediated regulation of cholesterol homeostasis and pointing toward the translational potential of these pathways for the therapy of TSC.

  5. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity.

    Science.gov (United States)

    Sag, Duygu; Cekic, Caglar; Wu, Runpei; Linden, Joel; Hedrick, Catherine C

    2015-02-27

    ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1(-/-) mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1(-/-) mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1(-/-) macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer.

  6. Lead nitrate-induced development of hypercholesterolemia in rats: sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis.

    Science.gov (United States)

    Kojima, Misaki; Masui, Toshimitsu; Nemoto, Kiyomitsu; Degawa, Masakuni

    2004-12-01

    Changes in the gene expressions of hepatic enzymes responsible for cholesterol homeostasis were examined during the process of lead nitrate (LN)-induced development of hypercholesterolemia in male rats. Total cholesterol levels in the liver and serum were significantly increased at 3-72 h and 12-72 h, respectively, after LN-treatment (100 micromol/kg, i.v.). Despite the development of hypercholesterolemia, the genes for hepatic 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) and other enzymes (FPPS, farnesyl diphosphate synthase; SQS, squalene synthase; CYP51, lanosterol 14alpha-demethylase) responsible for cholesterol biosynthesis were activated at 3-24 h and 12-18 h, respectively. On the other hand, the gene expression of cholesterol 7alpha-hydroxylase (CYP7A1), a catabolic enzyme of cholesterol, was remarkably suppressed at 3-72 h. The gene expression levels of cytokines interleukin-1beta (IL-1beta) and TNF-alpha, which activate the HMGR gene and suppress the CYP7A1 gene, were significantly increased at 1-3 h and 3-24 h, respectively. Furthermore, gene activation of SREBP-2, a gene activator of several cholesterogenic enzymes, occurred before the gene activations of FPPS, SQS and CYP51. This is the first report demonstrating sterol-independent gene regulation of hepatic enzymes responsible for cholesterol homeostasis in LN-treated male rats. The mechanisms for the altered-gene expressions of hepatic enzymes in LN-treated rats are discussed.

  7. Cholesterol homeostasis in two commonly used human prostate cancer cell-lines, LNCaP and PC-3.

    Directory of Open Access Journals (Sweden)

    James Robert Krycer

    2009-12-01

    Full Text Available Recently, there has been renewed interest in the link between cholesterol and prostate cancer. It has been previously reported that in vitro, prostate cancer cells lack sterol-mediated feedback regulation of the major transcription factor in cholesterol homeostasis, sterol-regulatory element binding protein 2 (SREBP-2. This could explain the accumulation of cholesterol observed in clinical prostate cancers. Consequently, perturbed feedback regulation to increased sterol levels has become a pervasive concept in the prostate cancer setting. Here, we aimed to explore this in greater depth.After altering the cellular cholesterol status in LNCaP and PC-3 prostate cancer cells, we examined SREBP-2 processing, downstream effects on promoter activity and expression of SREBP-2 target genes, and functional activity (low-density lipoprotein uptake, cholesterol synthesis. In doing so, we observed that LNCaP and PC-3 cells were sensitive to increased sterol levels. In contrast, lowering cholesterol levels via statin treatment generated a greater response in LNCaP cells than PC-3 cells. This highlighted an important difference between these cell-lines: basal SREBP-2 activity appeared to be higher in PC-3 cells, reducing sensitivity to decreased cholesterol levels.Thus, prostate cancer cells are sensitive to changing sterol levels in vitro, but the extent of this regulation differs between prostate cancer cell-lines. These results shed new light on the regulation of cholesterol metabolism in two commonly used prostate cancer cell-lines, and emphasize the importance of establishing whether or not cholesterol homeostasis is perturbed in prostate cancer in vivo.

  8. Niemann-pick type C1 (NPC1) overexpression alters cellular cholesterol homeostasis.

    Science.gov (United States)

    Millard, E E; Srivastava, K; Traub, L M; Schaffer, J E; Ory, D S

    2000-12-08

    The Niemann-Pick type C1 (NPC1) protein is a key participant in intracellular trafficking of low density lipoprotein cholesterol, but its role in regulation of sterol homeostasis is not well understood. To characterize further the function of NPC1, we generated stable Chinese hamster ovary (CHO) cell lines overexpressing the human NPC1 protein (CHO/NPC1). NPC1 overexpression increases the rate of trafficking of low density lipoprotein cholesterol to the endoplasmic reticulum and the rate of delivery of endosomal cholesterol to the plasma membrane (PM). CHO/NPC1 cells exhibit a 1.5-fold increase in total cellular cholesterol and up to a 2.9-fold increase in PM cholesterol. This increase in PM cholesterol is closely paralleled by a 3-fold increase in de novo cholesterol synthesis. Inhibition of cholesterol synthesis results in marked redistribution of PM cholesterol to intracellular sites, suggesting an unsuspected role for NPC1 in internalization of PM cholesterol. Despite elevated total cellular cholesterol, CHO/NPC1 cells exhibit increased cholesterol synthesis, which may be attributable to both resistance to oxysterol suppression of sterol-regulated gene expression and to reduced endoplasmic reticulum cholesterol levels under basal conditions. Taken together, these studies provide important new insights into the role of NPC1 in the determination of the levels and distribution of cellular cholesterol.

  9. Identification of miR-185 as a regulator of de novo cholesterol biosynthesis and low density lipoprotein uptake

    Science.gov (United States)

    Yang, Muhua; Liu, Weidong; Pellicane, Christina; Sahyoun, Christine; Joseph, Biny K.; Gallo-Ebert, Christina; Donigan, Melissa; Pandya, Devanshi; Giordano, Caroline; Bata, Adam; Nickels, Joseph T.

    2014-01-01

    Dysregulation of cholesterol homeostasis is associated with various metabolic diseases, including atherosclerosis and type 2 diabetes. The sterol response element binding protein (SREBP)-2 transcription factor induces the expression of genes involved in de novo cholesterol biosynthesis and low density lipoprotein (LDL) uptake, thus it plays a crucial role in maintaining cholesterol homeostasis. Here, we found that overexpressing microRNA (miR)-185 in HepG2 cells repressed SREBP-2 expression and protein level. miR-185-directed inhibition caused decreased SREBP-2-dependent gene expression, LDL uptake, and HMG-CoA reductase activity. In addition, we found that miR-185 expression was tightly regulated by SREBP-1c, through its binding to a single sterol response element in the miR-185 promoter. Moreover, we found that miR-185 expression levels were elevated in mice fed a high-fat diet, and this increase correlated with an increase in total cholesterol level and a decrease in SREBP-2 expression and protein. Finally, we found that individuals with high cholesterol had a 5-fold increase in serum miR-185 expression compared with control individuals. Thus, miR-185 controls cholesterol homeostasis through regulating SREBP-2 expression and activity. In turn, SREBP-1c regulates miR-185 expression through a complex cholesterol-responsive feedback loop. Thus, a novel axis regulating cholesterol homeostasis exists that exploits miR-185-dependent regulation of SREBP-2 and requires SREBP-1c for function. PMID:24296663

  10. NRF1 Is an ER Membrane Sensor that Is Central to Cholesterol Homeostasis.

    Science.gov (United States)

    Widenmaier, Scott B; Snyder, Nicole A; Nguyen, Truc B; Arduini, Alessandro; Lee, Grace Y; Arruda, Ana Paula; Saksi, Jani; Bartelt, Alexander; Hotamisligil, Gökhan S

    2017-11-16

    Cholesterol is a critical nutrient requiring tight constraint in the endoplasmic reticulum (ER) due to its uniquely challenging biophysical properties. While the mechanisms by which the ER defends against cholesterol insufficiency are well described, it remains unclear how the ER senses and effectively defends against cholesterol excess. Here, we identify the ER-bound transcription factor nuclear factor erythroid 2 related factor-1, Nrf1/Nfe2L1, as a critical mediator of this process. We show that Nrf1 directly binds to and specifically senses cholesterol in the ER through a defined domain and that cholesterol regulates Nrf1 turnover, processing, localization, and activity. In Nrf1 deficiency, in vivo cholesterol challenges induce massive hepatic cholesterol accumulation and damage, which is rescued by replacing Nrf1 exogenously. This Nrf1-mediated mechanism involves the suppression of CD36-driven inflammatory signaling and derepression of liver X receptor activity. These findings reveal Nrf1 as a guardian of cholesterol homeostasis and a core component of adaptive responses to excess cellular cholesterol. Copyright © 2017. Published by Elsevier Inc.

  11. The relationships of markers of cholesterol homeostasis with carotid intima-media thickness.

    Directory of Open Access Journals (Sweden)

    Oliver Weingärtner

    Full Text Available BACKGROUND: The relationship of cholesterol homeostasis and carotid intima-media thickness (cIMT is unknown. To address this, we assessed markers of cholesterol homeostasis (serum plant sterols and cholesterol precursor concentrations as surrogate measures of cholesterol absorption and synthesis, respectively and cIMT in a middle-aged, statin-naive population. METHODS: In this prospective study of primary prevention cIMT was measured by ultrasound in 583 hospital employees aged 25-60 years without prevalent cardiovascular disease or lipid-modifying medication. The serum concentrations of plant sterols (as markers of cholesterol absorption were measured by gas-liquid chromatography. Lathosterol serum concentrations were quantitated to assess hepatic cholesterol synthesis. RESULTS: cIMT correlated positively with serum cholesterol (r = 0.22, P<0.0005 and lathosterol-to-cholesterol (r = 0.18, P<0.001. In contrast, plant sterols, as markers of cholesterol absorption, showed a weak negative correlation to cIMT measurements (r = -0.18; P<0.001 for campesterol-to-cholesterol. Stratifying subjects by serum sterol levels, we found that cIMT increased continuously over quintiles of serum cholesterol (P<0.0005 and was positively associated to serum lathosterol-to-cholesterol levels (P = 0.007, on the other hand, plant sterol levels showed a weak negative association to cIMT (P<0.001 for campesterol-to-cholesterol. CONCLUSIONS: In this population without prevalent cardiovascular diseases or lipid-modifying medication, markers of increased endogenous cholesterol synthesis correlated positively with cIMT, while markers of cholesterol absorption showed a weakly negative correlation. These data suggest that not only total serum cholesterol levels but also differences in cholesterol homeostasis are associated with cIMT.

  12. Mga2 transcription factor regulates an oxygen-responsive lipid homeostasis pathway in fission yeast

    DEFF Research Database (Denmark)

    Burr, Risa; Stewart, Emerson V; Shao, Wei

    2016-01-01

    -binding protein (SREBP) transcription factors regulate lipid homeostasis. In mammals, SREBP-2 controls cholesterol biosynthesis, whereas SREBP-1 controls triacylglycerol and glycerophospholipid biosynthesis. In the fission yeast Schizosaccharomyces pombe, the SREBP-2 homolog Sre1 regulates sterol homeostasis....... In the absence of mga2, fission yeast exhibited growth defects under both normoxia and low oxygen conditions. Mga2 transcriptional targets were enriched for lipid metabolism genes, and mga2Δ cells showed disrupted triacylglycerol and glycerophospholipid homeostasis, most notably with an increase in fatty acid...

  13. Sex Hormones and Their Receptors Regulate Liver Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Minqian Shen

    2015-01-01

    Full Text Available The liver is one of the most essential organs involved in the regulation of energy homeostasis. Hepatic steatosis, a major manifestation of metabolic syndrome, is associated with imbalance between lipid formation and breakdown, glucose production and catabolism, and cholesterol synthesis and secretion. Epidemiological studies show sex difference in the prevalence in fatty liver disease and suggest that sex hormones may play vital roles in regulating hepatic steatosis. In this review, we summarize current literature and discuss the role of estrogens and androgens and the mechanisms through which estrogen receptors and androgen receptors regulate lipid and glucose metabolism in the liver. In females, estradiol regulates liver metabolism via estrogen receptors by decreasing lipogenesis, gluconeogenesis, and fatty acid uptake, while enhancing lipolysis, cholesterol secretion, and glucose catabolism. In males, testosterone works via androgen receptors to increase insulin receptor expression and glycogen synthesis, decrease glucose uptake and lipogenesis, and promote cholesterol storage in the liver. These recent integrated concepts suggest that sex hormone receptors could be potential promising targets for the prevention of hepatic steatosis.

  14. Enzymes involved in cholesterol homeostasis in outer vs inner cortices of the guinea pig adrenal

    International Nuclear Information System (INIS)

    Brody, R.I.

    1988-01-01

    Adrenocortical cells require cholesterol for steroid hormone synthesis. Intracellular free cholesterol levels are maintained by the actions of three key enzymes: HMG CoA reductase, a rate limiting enzyme of cholesterol biosynthesis, acyl CoA:cholesterol acyltransferase (ACAT), which esterifies cholesterol to fatty acids, and cholesterol ester hydrolase (CEH), which releases stored cholesterol by clearing the ester bond. The guinea pig adrenal cortex, which can be separated into a lipid-rich outer zone and a lipid-poor inner zone, provides a good model in which to determine whether the morphological differences in these regions correlate with functional distinctions in enzymes of cholesterol homeostasis. These studies have shown that there are great differences in these enzymes in the outer and inner zones of the guinea pig adrenal cortex. The cholesterol-rich outer zone possesses greater activities of ACAT and CEH than the inner zone, and, in untreated animals, these enzymes are nearly maximally stimulated. Both zones had substantial levels of HMG CoA reductase, as measured by enzyme assay and ELISA, and these levels increased following ACTH stimulation. However, only the outer zone incorporated 14 C-acetate into steroids and cholesterol to any great degree in vitro, and only in this zone was incorporation increased following incubation of cultures with ACTH. The discrepancies between HMG CoA reductase levels and 14 C-acetate incorporation in the inner zone indicate that cholesterol synthesis must be regulated differently in this zone

  15. Statins, PCSK9 inhibitors and cholesterol homeostasis: a view from within the hepatocyte.

    Science.gov (United States)

    Sniderman, Allan D; Kiss, Robert Scott; Reid, Thomas; Thanassoulis, George; Watts, Gerald F

    2017-05-01

    Statins and PCSK9 inhibitors dramatically lower plasma LDL levels and dramatically increase LDL receptor number within hepatocyte cell membranes. It seems self-evident that total clearance of LDL particles from plasma and total delivery of cholesterol to the liver must increase in consequence. However, based on the results of stable isotope tracer studies, this analysis demonstrates the contrary to be the case. Statins do not change the production rate of LDL particles. Accordingly, at steady state, the clearance rate cannot change. Because LDL particles contain less cholesterol on statin therapy, the delivery of cholesterol to the liver must, therefore, be reduced. PCSK9 inhibitors reduce the production of LDL particles and this further reduces cholesterol delivery to the liver. With both agents, a larger fraction of a smaller pool is removed per unit time. These findings are inconsistent with the conventional model of cholesterol homeostasis within the liver, but are consistent with a new model of regulation, the multi-channel model, which postulates that different lipoprotein particles enter the hepatocyte by different routes and have different metabolic fates within the hepatocyte. The multi-channel model, but not the conventional model, may explain how statins and PCSK9 inhibitors can produce sustained increases in LDL receptor number. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  16. Adropin: An endocrine link between the biological clock and cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Sarbani Ghoshal

    2018-02-01

    Full Text Available Objective: Identify determinants of plasma adropin concentrations, a secreted peptide translated from the Energy Homeostasis Associated (ENHO gene linked to metabolic control and vascular function. Methods: Associations between plasma adropin concentrations, demographics (sex, age, BMI and circulating biomarkers of lipid and glucose metabolism were assessed in plasma obtained after an overnight fast in humans. The regulation of adropin expression was then assessed in silico, in cultured human cells, and in animal models. Results: In humans, plasma adropin concentrations are inversely related to atherogenic LDL-cholesterol (LDL-C levels in men (n = 349, but not in women (n = 401. Analysis of hepatic Enho expression in male mice suggests control by the biological clock. Expression is rhythmic, peaking during maximal food consumption in the dark correlating with transcriptional activation by RORα/γ. The nadir in the light phase coincides with the rest phase and repression by Rev-erb. Plasma adropin concentrations in nonhuman primates (rhesus monkeys also exhibit peaks coinciding with feeding times (07:00 h, 15:00 h. The ROR inverse agonists SR1001 and the 7-oxygenated sterols 7-β-hydroxysterol and 7-ketocholesterol, or the Rev-erb agonist SR9009, suppress ENHO expression in cultured human HepG2 cells. Consumption of high-cholesterol diets suppress expression of the adropin transcript in mouse liver. However, adropin over expression does not prevent hypercholesterolemia resulting from a high cholesterol diet and/or LDL receptor mutations. Conclusions: In humans, associations between plasma adropin concentrations and LDL-C suggest a link with hepatic lipid metabolism. Mouse studies suggest that the relationship between adropin and cholesterol metabolism is unidirectional, and predominantly involves suppression of adropin expression by cholesterol and 7-oxygenated sterols. Sensing of fatty acids, cholesterol and oxysterols by the ROR

  17. Sensitivity to lysosome-dependent cell death is directly regulated by lysosomal cholesterol content.

    Directory of Open Access Journals (Sweden)

    Hanna Appelqvist

    Full Text Available Alterations in lipid homeostasis are implicated in several neurodegenerative diseases, although the mechanisms responsible are poorly understood. We evaluated the impact of cholesterol accumulation, induced by U18666A, quinacrine or mutations in the cholesterol transporting Niemann-Pick disease type C1 (NPC1 protein, on lysosomal stability and sensitivity to lysosome-mediated cell death. We found that neurons with lysosomal cholesterol accumulation were protected from oxidative stress-induced apoptosis. In addition, human fibroblasts with cholesterol-loaded lysosomes showed higher lysosomal membrane stability than controls. Previous studies have shown that cholesterol accumulation is accompanied by the storage of lipids such as sphingomyelin, glycosphingolipids and sphingosine and an up regulation of lysosomal associated membrane protein-2 (LAMP-2, which may also influence lysosomal stability. However, in this study the use of myriocin and LAMP deficient fibroblasts excluded these factors as responsible for the rescuing effect and instead suggested that primarily lysosomal cholesterol content determineD the cellular sensitivity to toxic insults. Further strengthening this concept, depletion of cholesterol using methyl-β-cyclodextrin or 25-hydroxycholesterol decreased the stability of lysosomes and cells became more prone to undergo apoptosis. In conclusion, cholesterol content regulated lysosomal membrane permeabilization and thereby influenced cell death sensitivity. Our data suggests that lysosomal cholesterol modulation might be used as a therapeutic strategy for conditions associated with accelerated or repressed apoptosis.

  18. Intracellular Cholesterol Trafficking and Impact in Neurodegeneration

    Directory of Open Access Journals (Sweden)

    Fabian Arenas

    2017-11-01

    Full Text Available Cholesterol is a critical component of membrane bilayers where it plays key structural and functional roles by regulating the activity of diverse signaling platforms and pathways. Particularly enriched in brain, cholesterol homeostasis in this organ is singular with respect to other tissues and exhibits a heterogeneous regulation in distinct brain cell populations. Due to the key role of cholesterol in brain physiology and function, alterations in cholesterol homeostasis and levels have been linked to brain diseases and neurodegeneration. In the case of Alzheimer disease (AD, however, this association remains unclear with evidence indicating that either increased or decreased total brain cholesterol levels contribute to this major neurodegenerative disease. Here, rather than analyzing the role of total cholesterol levels in neurodegeneration, we focus on the contribution of intracellular cholesterol pools, particularly in endolysosomes and mitochondria through its trafficking via specialized membrane domains delineated by the contacts between endoplasmic reticulum and mitochondria, in the onset of prevalent neurodegenerative diseases such as AD, Parkinson disease, and Huntington disease as well as in lysosomal disorders like Niemann-Pick type C disease. We dissect molecular events associated with intracellular cholesterol accumulation, especially in mitochondria, an event that results in impaired mitochondrial antioxidant defense and function. A better understanding of the mechanisms involved in the distribution of cholesterol in intracellular compartments may shed light on the role of cholesterol homeostasis disruption in neurodegeneration and may pave the way for specific intervention opportunities.

  19. Mitochondrial function is involved in regulation of cholesterol efflux to apolipoprotein (apoA-I from murine RAW 264.7 macrophages

    Directory of Open Access Journals (Sweden)

    Allen Anne Marie

    2012-12-01

    Full Text Available Abstract Background Mitochondrial DNA damage, increased production of reactive oxygen species and progressive respiratory chain dysfunction, together with increased deposition of cholesterol and cholesteryl esters, are hallmarks of atherosclerosis. This study investigated the role of mitochondrial function in regulation of macrophage cholesterol efflux to apolipoprotein A-I, by the addition of established pharmacological modulators of mitochondrial function. Methods Murine RAW 264.7 macrophages were treated with a range of concentrations of resveratrol, antimycin, dinitrophenol, nigericin and oligomycin, and changes in viability, cytotoxicity, membrane potential and ATP, compared with efflux of [3H]cholesterol to apolipoprotein (apo A-I. The effect of oligomycin treatment on expression of genes implicated in macrophage cholesterol homeostasis were determined by quantitative polymerase chain reaction, and immunoblotting, relative to the housekeeping enzyme, Gapdh, and combined with studies of this molecule on cholesterol esterification, de novo lipid biosynthesis, and induction of apoptosis. Significant differences were determined using analysis of variance, and Dunnett’s or Bonferroni post t-tests, as appropriate. Results The positive control, resveratrol (24 h, significantly enhanced cholesterol efflux to apoA-I at concentrations ≥30 μM. By contrast, cholesterol efflux to apoA-I was significantly inhibited by nigericin (45%; ppAbca1 mRNA. Oligomycin treatment did not affect cholesterol biosynthesis, but significantly inhibited cholesterol esterification following exposure to acetylated LDL, and induced apoptosis at ≥30 μM. Finally, oligomycin induced the expression of genes implicated in both cholesterol efflux (Abca1, Abcg4, Stard1 and cholesterol biosynthesis (Hmgr, Mvk, Scap, Srebf2, indicating profound dysregulation of cholesterol homeostasis. Conclusions Acute loss of mitochondrial function, and in particular Δψm, reduces

  20. LXR regulates cholesterol uptake through Idol-dependent ubiquitination of the LDL receptor

    NARCIS (Netherlands)

    Zelcer, Noam; Hong, Cynthia; Boyadjian, Rima; Tontonoz, Peter

    2009-01-01

    Cellular cholesterol levels reflect a balance between uptake, efflux, and endogenous synthesis. Here we show that the sterol-responsive nuclear liver X receptor (LXR) helps maintain cholesterol homeostasis, not only through promotion of cholesterol efflux but also through suppression of low-density

  1. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis.

    Science.gov (United States)

    Gautier, Emmanuel L; Huby, Thierry; Saint-Charles, Flora; Ouzilleau, Betty; Pirault, John; Deswaerte, Virginie; Ginhoux, Florent; Miller, Elizabeth R; Witztum, Joseph L; Chapman, M John; Lesnik, Philippe

    2009-05-05

    Immunoinflammatory mechanisms are implicated in the atherogenic process. The polarization of the immune response and the nature of the immune cells involved, however, are major determinants of the net effect, which may be either proatherogenic or antiatherogenic. Dendritic cells (DCs) are central to the regulation of immunity, the polarization of the immune response, and the induction of tolerance to antigens. The potential role of DCs in atherosclerosis, however, remains to be defined. We created a mouse model in which the lifespan and immunogenicity of conventional DCs are enhanced by specific overexpression of the antiapoptotic gene hBcl-2 under the control of the CD11c promoter. When studied in either low-density lipoprotein receptor-deficient or apolipoprotein E-deficient backgrounds, DC-hBcl2 mice exhibited an expanded DC population associated with enhanced T-cell activation, a T-helper 1 and T-helper 17 cytokine expression profile, and elevated production of T-helper 1-driven IgG2c autoantibodies directed against oxidation-specific epitopes. This proatherogenic signature, however, was not associated with acceleration of atherosclerotic plaque progression, because expansion of the DC population was unexpectedly associated with an atheroprotective decrease in plasma cholesterol levels. Conversely, depletion of DCs in hyperlipidemic CD11c-diphtheria toxin receptor/apolipoprotein E-deficient transgenic mice resulted in enhanced cholesterolemia, thereby arguing for a close relationship between the DC population and plasma cholesterol levels. Considered together, the present data reveal that conventional DCs are central to the atherosclerotic process, because they are directly implicated in both cholesterol homeostasis and the immune response.

  2. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Rader Daniel J

    2011-10-01

    Full Text Available Abstract Background The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC n-3 polyunsaturated fatty acids (PUFA is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA or safflower oil (n-6 PUFA (both 10% [w/w] and either cholesterol-supplemented (0.1% cholesterol [w/w] or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]. Results Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL cholesterol and triglyceride concentrations (P Conclusion These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  3. LDL-C levels in older people: Cholesterol homeostasis and the free radical theory of ageing converge.

    Science.gov (United States)

    Mc Auley, Mark T; Mooney, Kathleen M

    2017-07-01

    The cardiovascular disease (CVD) risk factor, low density lipoprotein cholesterol (LDL-C) increases with age, up until the midpoint of life in males and females. However, LDL-C can decrease with age in older men and women. Intriguingly, a recent systematic review also revealed an inverse association between LDL-C levels and cardiovascular mortality in older people; low levels of LDL-C were associated with reduced risk of mortality. Such findings are puzzling and require a biological explanation. In this paper a hypothesis is proposed to explain these observations. We hypothesize that the free radical theory of ageing (FRTA) together with disrupted cholesterol homeostasis can account for these observations. Based on this hypothesis, dysregulated hepatic cholesterol homeostasis in older people is characterised by two distinct metabolic states. The first state accounts for an older person who has elevated plasma LDL-C. This state is underpinned by the FRTA which suggests there is a decrease in cellular antioxidant capacity with age. This deficiency enables hepatic reactive oxidative species (ROS) to induce the total activation of HMG-CoA reductase, the key rate limiting enzyme in cholesterol biosynthesis. An increase in cholesterol synthesis elicits a corresponding rise in LDL-C, due to the downregulation of LDL receptor synthesis, and increased production of very low density lipoprotein cholesterol (VLDL-C). In the second state of dysregulation, ROS also trigger the total activation of HMG-CoA reductase. However, due to an age associated decrease in the activity of cholesterol-esterifying enzyme, acyl CoA: cholesterol acyltransferase, there is restricted conversion of excess free cholesterol (FC) to cholesterol esters. Consequently, the secretion of VLDL-C drops, and there is a corresponding decrease in LDL-C. As intracellular levels of FC accumulate, this state progresses to a pathophysiological condition akin to nonalcoholic fatty liver disease. It is our

  4. Cholesterol and ocular pathologies: focus on the role of cholesterol-24S-hydroxylase in cholesterol homeostasis

    Directory of Open Access Journals (Sweden)

    Fourgeux Cynthia

    2015-03-01

    Full Text Available The retina is responsible for coding the light stimulus into a nervous signal that is transferred to the brain via the optic nerve. The retina is formed by the association of the neurosensory retina and the retinal pigment epithelium that is supported by Bruch’s membrane. Both the physical and metabolic associations between these partners are crucial for the functioning of the retina, by means of nutrient intake and removal of the cell and metabolic debris from the retina. Dysequilibrium are involved in the aging processes and pathologies such as age-related macular degeneration, the leading cause of visual loss after the age of 50 years in Western countries. The retina is composed of several populations of cells including glia that is involved in cholesterol biosynthesis. Cholesterol is the main sterol in the retina. It is present as free form in cells and as esters in Bruch’s membrane. Accumulation of cholesteryl esters has been associated with aging of the retina and impairment of the retinal function. Under dietary influence and in situ synthesized, the metabolism of cholesterol is regulated by cell interactions, including neurons and glia via cholesterol-24S-hydroxylase. Several pathophysiological associations with cholesterol and its metabolism can be suggested, especially in relation to glaucoma and age-related macular degeneration.

  5. The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

    Directory of Open Access Journals (Sweden)

    Se-Jin Jeong

    2017-03-01

    Full Text Available Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we briefly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipophagy as a therapeutic target in the treatment of atherosclerosis.

  6. Neuronal regulation of homeostasis by nutrient sensing.

    Science.gov (United States)

    Lam, Tony K T

    2010-04-01

    In type 2 diabetes and obesity, the homeostatic control of glucose and energy balance is impaired, leading to hyperglycemia and hyperphagia. Recent studies indicate that nutrient-sensing mechanisms in the body activate negative-feedback systems to regulate energy and glucose homeostasis through a neuronal network. Direct metabolic signaling within the intestine activates gut-brain and gut-brain-liver axes to regulate energy and glucose homeostasis, respectively. In parallel, direct metabolism of nutrients within the hypothalamus regulates food intake and blood glucose levels. These findings highlight the importance of the central nervous system in mediating the ability of nutrient sensing to maintain homeostasis. Futhermore, they provide a physiological and neuronal framework by which enhancing or restoring nutrient sensing in the intestine and the brain could normalize energy and glucose homeostasis in diabetes and obesity.

  7. Advanced glycation end products affect cholesterol homeostasis by impairing ABCA1 expression on macrophages.

    Science.gov (United States)

    Kamtchueng Simo, Olivier; Ikhlef, Souade; Berrougui, Hicham; Khalil, Abdelouahed

    2017-08-01

    Reverse cholesterol transport (RCT), which is intimately linked to high-density lipoproteins (HDLs), plays a key role in cholesterol homeostasis and the prevention of atherosclerosis. The goal of the present study was to investigate the effect of aging and advanced glycation end products (AGEs) on RCT as well as on other factors that may affect the antiatherogenic property of HDLs. The transfer of macrophage-derived cholesterol to the plasma and liver and then to the feces for elimination was significantly lower in aged mice than in young mice. Chronic injection of d -galactose (D-gal) or AGEs also significantly reduced RCT (65.3% reduction in [ 3 H]cholesterol levels in the plasma of D-gal-treated mice after 48 h compared with control mice, P cholesterol levels in the plasma, although the levels were lower than those of control mice. The in vitro incubation of HDLs with dicarbonyl compounds increased the carbonyl and conjugated diene content of HDLs and significantly reduced PON1 paraoxonase activity (87.4% lower than control HDLs, P cholesterol (69.1% decrease, P < 0.0001). Our results showed, for the first time, that RCT is altered with aging and that AGEs contribute significantly to this alteration.

  8. Histone deacetylase inhibition decreases cholesterol levels in neuronal cells by modulating key genes in cholesterol synthesis, uptake and efflux.

    Directory of Open Access Journals (Sweden)

    Maria João Nunes

    Full Text Available Cholesterol is an essential component of the central nervous system and increasing evidence suggests an association between brain cholesterol metabolism dysfunction and the onset of neurodegenerative disorders. Interestingly, histone deacetylase inhibitors (HDACi such as trichostatin A (TSA are emerging as promising therapeutic approaches in neurodegenerative diseases, but their effect on brain cholesterol metabolism is poorly understood. We have previously demonstrated that HDACi up-regulate CYP46A1 gene transcription, a key enzyme in neuronal cholesterol homeostasis. In this study, TSA was shown to modulate the transcription of other genes involved in cholesterol metabolism in human neuroblastoma cells, namely by up-regulating genes that control cholesterol efflux and down-regulating genes involved in cholesterol synthesis and uptake, thus leading to an overall decrease in total cholesterol content. Furthermore, co-treatment with the amphipathic drug U18666A that can mimic the intracellular cholesterol accumulation observed in cells of Niemman-Pick type C patients, revealed that TSA can ameliorate the phenotype induced by pathological cholesterol accumulation, by restoring the expression of key genes involved in cholesterol synthesis, uptake and efflux and promoting lysosomal cholesterol redistribution. These results clarify the role of TSA in the modulation of neuronal cholesterol metabolism at the transcriptional level, and emphasize the idea of HDAC inhibition as a promising therapeutic tool in neurodegenerative disorders with impaired cholesterol metabolism.

  9. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, Rebecca; Zeino, Maen [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany); Frewert, Simon [Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Department of Pharmaceutical Biotechnology, Saarland University, Saarbrücken (Germany); Efferth, Thomas, E-mail: efferth@uni-mainz.de [Institute of Pharmacy and Biochemistry, Department of Pharmaceutical Biology, Johannes Gutenberg University, Staudinger Weg 5, 55128 Mainz (Germany)

    2014-11-15

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H{sup +}-ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation.

  10. Up-regulation of cholesterol associated genes as novel resistance mechanism in glioblastoma cells in response to archazolid B

    International Nuclear Information System (INIS)

    Hamm, Rebecca; Zeino, Maen; Frewert, Simon; Efferth, Thomas

    2014-01-01

    Treatment of glioblastoma multiforme (GBM), the most common and aggressive lethal brain tumor, represents a great challenge. Despite decades of research, the survival prognosis of GBM patients is unfavorable and more effective therapeutics are sorely required. Archazolid B, a potent vacuolar H + -ATPase inhibitor influencing cellular pH values, is a promising new compound exerting cytotoxicity in the nanomolar range on wild-type U87MG glioblastoma cells and U87MG.∆EGFR cells transfected with a mutant epidermal growth factor receptor (EGFR) gene. Gene expression profiling using microarray technology showed that archazolid B caused drastic disturbances in cholesterol homeostasis. Cholesterol, a main component of cellular membranes, is known to be essential for GBM growth and cells bearing EGFRvIII mutation are highly dependent on exogenous cholesterol. Archazolid B caused excessive accumulation of free cholesterol within intracellular compartments thus depleting cellular cholesterol and leading to up-regulation of SREBP targeted genes, including LDLR and HMGCR, the key enzyme of cholesterol biosynthesis. This cholesterol response is considered to be a novel resistance mechanism induced by archazolid B. We surmise that re-elevation of cholesterol levels in archazolid B treated cells may be mediated by newly synthesized cholesterol, since the drug leads to endosomal/lysosomal malfunction and cholesterol accumulation

  11. Changes in cholesterol homeostasis modify the response of F1B hamsters to dietary very long chain n-3 and n-6 polyunsaturated fatty acids.

    Science.gov (United States)

    Lecker, Jaime L; Matthan, Nirupa R; Billheimer, Jeffrey T; Rader, Daniel J; Lichtenstein, Alice H

    2011-10-21

    The plasma lipoprotein response of F1B Golden-Syrian hamsters fed diets high in very long chain (VLC) n-3 polyunsaturated fatty acids (PUFA) is paradoxical to that observed in humans. This anomaly is attributed, in part, to low lipoprotein lipase activity and is dependent on cholesterol status. To further elucidate the mechanism(s) for these responses, hamsters were fed diets containing supplemental fish oil (VLC n-3 PUFA) or safflower oil (n-6 PUFA) (both 10% [w/w]) and either cholesterol-supplemented (0.1% cholesterol [w/w]) or cholesterol-depleted (0.01% cholesterol [w/w] and 10 days prior to killing fed 0.15% lovastatin+2% cholestyramine [w/w]). Cholesterol-supplemented hamsters fed fish oil, relative to safflower oil, had higher non-high density lipoprotein (HDL) cholesterol and triglyceride concentrations (P safflower oil, had lower non-HDL cholesterol and triglyceride concentrations (P < 0.001) which were associated with lower hepatic SREBP-1c (p < 0.05) but not apo B-100, apo E or ACAT-2 mRNA or protein levels. Independent of cholesterol status, fish oil fed hamsters had lower HDL cholesterol concentrations (p < 0.001), which were associated with lower hepatic apoA-I protein levels (p < 0.05). These data suggest disturbing cholesterol homeostasis in F1B hamsters alters their response to dietary fatty acids, which is reflected in altered plasma lipoprotein patterns and regulation of genes associated with their metabolism.

  12. Synthesis of the oxysterol, 24(S, 25-epoxycholesterol, parallels cholesterol production and may protect against cellular accumulation of newly-synthesized cholesterol

    Directory of Open Access Journals (Sweden)

    Brown Andrew J

    2007-04-01

    Full Text Available Abstract Aim The effects of 24(S,25-epoxycholesterol (24,25EC on aspects of cholesterol homeostasis is well-documented. When added to cells, 24,25EC decreases cholesterol synthesis and up-regulates cholesterol efflux genes, including ABCA1. Synthesis of 24,25EC occurs in a shunt of the mevalonate pathway which also produces cholesterol. Therefore, 24,25EC synthesis should be subject to the same negative feedback regulation as cholesterol synthesis. To date, no role has been ascribed to 24,25EC in light of the fact that increased accumulation of cholesterol should decrease formation of this oxysterol through feedback inhibition. This leads to the intriguing paradox: why inhibit production of an apparently important regulator of cholesterol homeostasis when it is needed most? Methods We used a combination of pharmacological and genetic approaches in Chinese Hamster Ovary cell-lines to investigate this paradox. Endogenous synthesis of 24,25EC was manipulated using partial inhibition of the enzyme, Oxidosqualene Cyclase. Changes in cholesterol and 24,25EC synthesis were determined using metabolic labelling with [1-14C]-acetate, thin-layer chromatography and phosphorimaging. Transcriptional effects mediated via SREBP and LXR were analysed by luciferase reporter assays. Results We showed that cholesterol addition to cells lead to a rapid and preferential inhibition of 24,25EC synthesis. Addition of 24,25EC resulted in parallel inhibition of 24,25EC and cholesterol synthesis. Furthermore, we used a variety of approaches to examine the relationship between cholesterol and 24,25EC synthesis, including cell-lines with different rates of cholesterol synthesis, varying cholesterol synthetic rates by pre-treatment with a statin, or lipoprotein cholesterol loading of macrophages. In all cases, we showed that 24,25EC synthesis faithfully tracked cholesterol synthesis. Moreover, changes in 24,25EC synthesis exerted downstream effects, reducing SREBP

  13. Regulation of α1 Na/K-ATPase Expression by Cholesterol*

    OpenAIRE

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-01-01

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol tr...

  14. Breast Milk Hormones and Regulation of Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    Francesco Savino

    2011-01-01

    Full Text Available Growing evidence suggests that a complex relationship exists between the central nervous system and peripheral organs involved in energy homeostasis. It consists in the balance between food intake and energy expenditure and includes the regulation of nutrient levels in storage organs, as well as in blood, in particular blood glucose. Therefore, food intake, energy expenditure, and glucose homeostasis are strictly connected to each other. Several hormones, such as leptin, adiponectin, resistin, and ghrelin, are involved in this complex regulation. These hormones play a role in the regulation of glucose metabolism and are involved in the development of obesity, diabetes, and metabolic syndrome. Recently, their presence in breast milk has been detected, suggesting that they may be involved in the regulation of growth in early infancy and could influence the programming of energy balance later in life. This paper focuses on hormones present in breast milk and their role in glucose homeostasis.

  15. The effect of 24S-hydroxycholesterol on cholesterol homeostasis in neurons: quantitative changes to the cortical neuron proteome.

    Science.gov (United States)

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N; Griffiths, William J

    2008-04-01

    In humans, the brain represents only about 2% of the body's mass but contains about one-quarter of the body's free cholesterol. Cholesterol is synthesized de novo in brain and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study, we investigated the effect of 24S-hydroxycholesterol on the proteome of rat cortical neurons. With the use of two-dimensional liquid chromatography linked to nanoelectrospray tandem mass spectrometry, over 1040 proteins were identified including members of the cholesterol, isoprenoid and fatty acid synthesis pathways. With the use of stable isotope labeling technology, the protein expression patterns of enzymes in these pathways were investigated. 24S-Hydroxycholesterol was found to down-regulate the expression of members of the cholesterol/isoprenoid synthesis pathways including 3-hydroxy-3-methylglutaryl-Coenzyme A synthase 1 (EC 2.3.3.10), diphosphomevalonate decarboxylase (EC 4.1.1.33), isopentenyl-diphosphate delta isomerase (EC 5.3.3.2), farnesyl-diphosphate synthase (Geranyl trans transferase, EC 2.5.1.10), and dedicated sterol synthesis enzymes, farnesyl-diphosphate farnesyltransferase 1 (squalene synthase, EC 2.5.1.21) and methylsterol monooxygenase (EC 1.14.13.72). The expression of many enzymes in the cholesterol/isoprenoid and fatty acid synthesis pathways are regulated by the membrane-bound transcription factors named sterol regulatory element-binding proteins (SREBPs), which themselves are both transcriptionally and post-transcriptionally regulated. The current proteomic data indicates that 24S-hydroxycholesterol down-regulates cholesterol synthesis in neurons, possibly, in a post-transcriptional manner through SREBP-2. In contrast to cholesterol metabolism, enzymes responsible for the synthesis of fatty acids were not

  16. Cellular Cholesterol Regulates Ubiquitination and Degradation of the Cholesterol Export Proteins ABCA1 and ABCG1*

    Science.gov (United States)

    Hsieh, Victar; Kim, Mi-Jurng; Gelissen, Ingrid C.; Brown, Andrew J.; Sandoval, Cecilia; Hallab, Jeannette C.; Kockx, Maaike; Traini, Mathew; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    The objective of this study was to examine the influence of cholesterol in post-translational control of ABCA1 and ABCG1 protein expression. Using CHO cell lines stably expressing human ABCA1 or ABCG1, we observed that the abundance of these proteins is increased by cell cholesterol loading. The response to increased cholesterol is rapid, is independent of transcription, and appears to be specific for these membrane proteins. The effect is mediated through cholesterol-dependent inhibition of transporter protein degradation. Cell cholesterol loading similarly regulates degradation of endogenously expressed ABCA1 and ABCG1 in human THP-1 macrophages. Turnover of ABCA1 and ABCG1 is strongly inhibited by proteasomal inhibitors and is unresponsive to inhibitors of lysosomal proteolysis. Furthermore, cell cholesterol loading inhibits ubiquitination of ABCA1 and ABCG1. Our findings provide evidence for a rapid, cholesterol-dependent, post-translational control of ABCA1 and ABCG1 protein levels, mediated through a specific and sterol-sensitive mechanism for suppression of transporter protein ubiquitination, which in turn decreases proteasomal degradation. This provides a mechanism for acute fine-tuning of cholesterol transporter activity in response to fluctuations in cell cholesterol levels, in addition to the longer term cholesterol-dependent transcriptional regulation of these genes. PMID:24500716

  17. The dynamin chemical inhibitor dynasore impairs cholesterol trafficking and sterol-sensitive genes transcription in human HeLa cells and macrophages.

    Directory of Open Access Journals (Sweden)

    Emmanuelle Girard

    Full Text Available Intracellular transport of cholesterol contributes to the regulation of cellular cholesterol homeostasis by mechanisms that are yet poorly defined. In this study, we characterized the impact of dynasore, a recently described drug that specifically inhibits the enzymatic activity of dynamin, a GTPase regulating receptor endocytosis and cholesterol trafficking. Dynasore strongly inhibited the uptake of low-density lipoprotein (LDL in HeLa cells, and to a lower extent in human macrophages. In both cell types, dynasore treatment led to the abnormal accumulation of LDL and free cholesterol (FC within the endolysosomal network. The measure of cholesterol esters (CE further showed that the delivery of regulatory cholesterol to the endoplasmic reticulum (ER was deficient. This resulted in the inhibition of the transcriptional control of the three major sterol-sensitive genes, sterol-regulatory element binding protein 2 (SREBP-2, 3-hydroxy-3-methyl-coenzymeA reductase (HMGCoAR, and low-density lipoprotein receptor (LDLR. The sequestration of cholesterol in the endolysosomal compartment impaired both the active and passive cholesterol efflux in HMDM. Our data further illustrate the importance of membrane trafficking in cholesterol homeostasis and validate dynasore as a new pharmacological tool to study the intracellular transport of cholesterol.

  18. miRNA regulation of LDL-cholesterol metabolism.

    Science.gov (United States)

    Goedeke, Leigh; Wagschal, Alexandre; Fernández-Hernando, Carlos; Näär, Anders M

    2016-12-01

    In the past decade, microRNAs (miRNAs) have emerged as key regulators of circulating levels of lipoproteins. Specifically, recent work has uncovered the role of miRNAs in controlling the levels of atherogenic low-density lipoprotein LDL (LDL)-cholesterol by post-transcriptionally regulating genes involved in very low-density lipoprotein (VLDL) secretion, cholesterol biosynthesis, and hepatic LDL receptor (LDLR) expression. Interestingly, several of these miRNAs are located in genomic loci associated with abnormal levels of circulating lipids in humans. These findings reinforce the interest of targeting this subset of non-coding RNAs as potential therapeutic avenues for regulating plasma cholesterol and triglyceride (TAG) levels. In this review, we will discuss how these new miRNAs represent potential pre-disposition factors for cardiovascular disease (CVD), and putative therapeutic targets in patients with cardiometabolic disorders. This article is part of a Special Issue entitled: MicroRNAs and lipid/energy metabolism and related diseases edited by Carlos Fernández-Hernando and Yajaira Suárez. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Diet and Age Interactions with Regards to Cholesterol Regulation and Brain Pathogenesis

    Directory of Open Access Journals (Sweden)

    Romina M. Uranga

    2010-01-01

    Full Text Available Cholesterol is an essential molecule for brain homeostasis; yet, hypercholesterolemia and its numerous complications are believed to play a role in promoting multiple aspects of brain pathogenesis. An ever increasing number of individuals in modern Western Society are regularly consuming diets high in fat which promote the development of hypercholesterolemia. Additionally, modern societies are becoming increasingly aged, causing a collision between increased hypercholesterolemia and increased aging, which will likely lead to the development of increased pathological conditions due to hypercholesterolemia, thereby promoting deleterious neurochemical and behavioral changes in the brain. Lastly, while beneficial in controlling cholesterol levels, the long-term use of statins itself may potentially promote adverse effects on brain homeostasis, although specifics on this remain largely unknown. This review will focus on linking the current understanding of diet-induced hypercholesterolemia (as well as statin use to the development of oxidative stress, neurochemical alterations, and cognitive disturbances in the aging brain.

  20. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Oude Elferink, Ronald P. J.; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPARdelta) is involved in regulation of energy homeostasis. Activation of PPARdelta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased hepatobiliary

  1. Upper intestinal lipids regulate energy and glucose homeostasis.

    Science.gov (United States)

    Cheung, Grace W C; Kokorovic, Andrea; Lam, Tony K T

    2009-09-01

    Upon the entry of nutrients into the small intestine, nutrient sensing mechanisms are activated to allow the body to adapt appropriately to the incoming nutrients. To date, mounting evidence points to the existence of an upper intestinal lipid-induced gut-brain neuronal axis to regulate energy homeostasis. Moreover, a recent discovery has also revealed an upper intestinal lipid-induced gut-brain-liver neuronal axis involved in the regulation of glucose homeostasis. In this mini-review, we will focus on the mechanisms underlying the activation of these respective neuronal axes by upper intestinal lipids.

  2. Agaricus brasiliensis (sun mushroom) affects the expression of genes related to cholesterol homeostasis.

    Science.gov (United States)

    de Miranda, Aline Mayrink; Rossoni Júnior, Joamyr Victor; Souza E Silva, Lorena; Dos Santos, Rinaldo Cardoso; Silva, Marcelo Eustáquio; Pedrosa, Maria Lúcia

    2017-06-01

    The sun mushroom (Agaricus brasiliensis) is considered a major source of bioactive compounds with potential health benefits. Mushrooms typically act as lipid-lowering agents; however, little is known about the mechanisms of action of A. brasiliensis in biological systems. This study aimed to determine the underlying mechanism involved in the cholesterol-lowering effect of A. brasiliensis through the assessment of fecal and serum lipid profiles in addition to gene expression analysis of specific transcription factors, enzymes, and transporters involved in cholesterol homeostasis. Twenty-four albino Fischer rats approximately 90 days old, with an average weight of 205 g, were divided into four groups of 6 each and fed a standard AIN-93 M diet (C), hypercholesterolemic diet (H), hypercholesterolemic diet +1 % A. brasiliensis (HAb), or hypercholesterolemic diet +0.008 % simvastatin (HS) for 6 weeks. Simvastatin was used as a positive control, as it is a typical drug prescribed for lipid disorders. Subsequently, blood, liver, and feces samples were collected for lipid profile and quantitative real-time polymerase chain reaction gene expression analyses. Diet supplementation with A. brasiliensis significantly improved serum lipid profiles, comparable to the effect observed for simvastatin. In addition, A. brasiliensis dietary supplementation markedly promoted fecal cholesterol excretion. Increased expression of 7α-hydroxylase (CYP7A1), ATP-binding cassette subfamily G-transporters (ABCG5/G8), and low-density lipoprotein receptor (LDLR) was observed following A. brasiliensis administration. Our results suggest that consumption of A. brasiliensis improves the serum lipid profile in hypercholesterolemic rats by modulating the expression of key genes involved in hepatic cholesterol metabolism.

  3. Peroxisome proliferator-activated receptor delta activation leads to increased transintestinal cholesterol efflux

    NARCIS (Netherlands)

    Vrins, Carlos L. J.; van der Velde, Astrid E.; van den Oever, Karin; Levels, Johannes H. M.; Huet, Stephane; Elferink, Ronald P. J. Oude; Kuipers, Folkert; Groen, Albert K.

    2009-01-01

    Peroxisome proliferator-activated receptor delta (PPAR delta) is involved in regulation of energy homeostasis. Activation of PPAR delta markedly increases fecal neutral sterol secretion, the last step in reverse cholesterol transport. This phenomenon can neither be explained by increased

  4. Cholesterol Down-Regulates BK Channels Stably Expressed in HEK 293 Cells

    Science.gov (United States)

    Deng, Xiu-Ling; Sun, Hai-Ying; Li, Gui-Rong

    2013-01-01

    Cholesterol is one of the major lipid components of the plasma membrane in mammalian cells and is involved in the regulation of a number of ion channels. The present study investigates how large conductance Ca2+-activated K+ (BK) channels are regulated by membrane cholesterol in BK-HEK 293 cells expressing both the α-subunit hKCa1.1 and the auxiliary β1-subunit or in hKCa1.1-HEK 293 cells expressing only the α-subunit hKCa1.1 using approaches of electrophysiology, molecular biology, and immunocytochemistry. Membrane cholesterol was depleted in these cells with methyl-β-cyclodextrin (MβCD), and enriched with cholesterol-saturated MβCD (MβCD-cholesterol) or low-density lipoprotein (LDL). We found that BK current density was decreased by cholesterol enrichment in BK-HEK 293 cells, with a reduced expression of KCa1.1 protein, but not the β1-subunit protein. This effect was fully countered by the proteasome inhibitor lactacystin or the lysosome function inhibitor bafilomycin A1. Interestingly, in hKCa1.1-HEK 293 cells, the current density was not affected by cholesterol enrichment, but directly decreased by MβCD, suggesting that the down-regulation of BK channels by cholesterol depends on the auxiliary β1-subunit. The reduced KCa1.1 channel protein expression was also observed in cultured human coronary artery smooth muscle cells with cholesterol enrichment using MβCD-cholesterol or LDL. These results demonstrate the novel information that cholesterol down-regulates BK channels by reducing KCa1.1 protein expression via increasing the channel protein degradation, and the effect is dependent on the auxiliary β1-subunit. PMID:24260325

  5. Mechanism of allosteric regulation of β2-adrenergic receptor by cholesterol

    DEFF Research Database (Denmark)

    Manna, Moutusi; Niemelä, Miia; Tynkkynen, Joona

    2016-01-01

    ) - a prototypical G protein-coupled receptor - is modulated by cholesterol in an allosteric fashion. Extensive atomistic simulations show that cholesterol regulates b2AR by limiting its conformational variability. The mechanism of action is based on the binding of cholesterol at specific high-affinity sites located...... near the transmembrane helices 5-7 of the receptor. The alternative mechanism, where the β2AR conformation would be modulated by membrane-mediated interactions, plays only a minor role. Cholesterol analogues also bind to cholesterol binding sites and impede the structural flexibility of β2AR, however...... cholesterol generates the strongest effect. The results highlight the capacity of lipids to regulate the conformation of membrane receptors through specific interactions....

  6. Can non-cholesterol sterols and lipoprotein subclasses distribution predict different patterns of cholesterol metabolism and statin therapy response?

    Science.gov (United States)

    Gojkovic, Tamara; Vladimirov, Sandra; Spasojevic-Kalimanovska, Vesna; Zeljkovic, Aleksandra; Vekic, Jelena; Kalimanovska-Ostric, Dimitra; Djuricic, Ivana; Sobajic, Sladjana; Jelic-Ivanovic, Zorana

    2017-03-01

    Cholesterol homeostasis disorders may cause dyslipidemia, atherosclerosis progression and coronary artery disease (CAD) development. Evaluation of non-cholesterol sterols (NCSs) as synthesis and absorption markers, and lipoprotein particles quality may indicate the dyslipidemia early development. This study investigates associations of different cholesterol homeostasis patterns with low-density (LDL) and high-density lipoproteins (HDL) subclasses distribution in statin-treated and statin-untreated CAD patients, and potential use of aforementioned markers for CAD treatment optimization. The study included 78 CAD patients (47 statin-untreated and 31 statin-treated) and 31 controls (CG). NCSs concentrations were quantified using gas chromatography- flame ionization detection (GC-FID). Lipoprotein subclasses were separated by gradient gel electrophoresis. In patients, cholesterol-synthesis markers were significantly higher comparing to CG. Cholesterol-synthesis markers were inversely associated with LDL size in all groups. For cholesterol homeostasis estimation, each group was divided to good and/or poor synthetizers and/or absorbers according to desmosterol and β-sitosterol median values. In CG, participants with reduced cholesterol absorption, the relative proportion of small, dense LDL was higher in those with increased cholesterol synthesis compared to those with reduced synthesis (p<0.01). LDL I fraction was significantly higher in poor synthetizers/poor absorbers subgroup compared to poor synthetizers/good absorbers (p<0.01), and good synthetizers/poor absorbers (p<0.01). Statin-treated patients with increased cholesterol absorption had increased proportion of LDL IVB (p<0.05). The results suggest the existence of different lipoprotein abnormalities according to various patterns of cholesterol homeostasis. Desmosterol/β-sitosterol ratio could be used for estimating individual propensity toward dyslipidemia development and direct the future treatment.

  7. Effect of the combinations between pea proteins and soluble fibres on cholesterolaemia and cholesterol metabolism in rats.

    Science.gov (United States)

    Parolini, Cinzia; Manzini, Stefano; Busnelli, Marco; Rigamonti, Elena; Marchesi, Marta; Diani, Erika; Sirtori, Cesare R; Chiesa, Giulia

    2013-10-01

    Many functional foods and dietary supplements have been reported to be beneficial for the management of dyslipidaemia, one of the major risk factors for CVD. Soluble fibres and legume proteins are known to be a safe and practical approach for cholesterol reduction. The present study aimed at investigating the hypocholesterolaemic effect of the combinations of these bioactive vegetable ingredients and their possible effects on the expression of genes regulating cholesterol homeostasis. A total of six groups of twelve rats each were fed, for 28 d, Nath's hypercholesterolaemic diets, differing in protein and fibre sources, being, respectively, casein and cellulose (control), pea proteins and cellulose (pea), casein and oat fibres (oat), casein and apple pectin (pectin), pea proteins and oat fibres (pea+oat) and pea proteins and apple pectin (pea+pectin). Administration of each vegetable-containing diet was associated with lower total cholesterol concentrations compared with the control. The combinations (pea+oat and pea+pectin) were more efficacious than fibres alone in modulating cholesterolaemia ( - 53 and - 54%, respectively, at 28 d; Ppea proteins, a lower hepatic cholesterol content (Ppea proteins and oat fibres or apple pectin are extremely effective in lowering plasma cholesterol concentrations in rats and affect cellular cholesterol homeostasis by up-regulating genes involved in hepatic cholesterol turnover.

  8. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    OpenAIRE

    Matthias Orth; Stefano Bellosta

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein...

  9. Cholesterol regulates DAF-16 nuclear localization and fasting-induced longevity in C. elegans.

    Science.gov (United States)

    Ihara, Akiko; Uno, Masaharu; Miyatake, Koichi; Honjoh, Sakiko; Nishida, Eisuke

    2017-01-01

    Cholesterol has attracted significant attention as a possible lifespan regulator. It has been reported that serum cholesterol levels have an impact on mortality due to age-related disorders such as cardiovascular disease. Diet is also known to be an important lifespan regulator. Dietary restriction retards the onset of age-related diseases and extends lifespan in various organisms. Although cholesterol and dietary restriction are known to be lifespan regulators, it remains to be established whether cholesterol is involved in dietary restriction-induced longevity. Here, we show that cholesterol deprivation suppresses longevity induced by intermittent fasting, which is one of the dietary restriction regimens that effectively extend lifespan. We also found that cholesterol is required for the fasting-induced upregulation of transcriptional target genes such as the insulin/IGF-1 pathway effector DAF-16 and that cholesterol deprivation suppresses the long lifespan of the insulin/IGF-1 receptor daf-2 mutant. Remarkably, we found that cholesterol plays an important role in the fasting-induced nuclear accumulation of DAF-16. Moreover, knockdown of the cholesterol-binding protein NSBP-1, which has been shown to bind to DAF-16 in a cholesterol-dependent manner and to regulate DAF-16 activity, suppresses both fasting-induced longevity and DAF-16 nuclear accumulation. Furthermore, this suppression was not additive to the cholesterol deprivation-induced suppression, which suggests that NSBP-1 mediates, at least in part, the action of cholesterol to promote fasting-induced longevity and DAF-16 nuclear accumulation. These findings identify a novel role for cholesterol in the regulation of lifespan. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. The liver in regulation of iron homeostasis.

    Science.gov (United States)

    Rishi, Gautam; Subramaniam, V Nathan

    2017-09-01

    The liver is one of the largest and most functionally diverse organs in the human body. In addition to roles in detoxification of xenobiotics, digestion, synthesis of important plasma proteins, gluconeogenesis, lipid metabolism, and storage, the liver also plays a significant role in iron homeostasis. Apart from being the storage site for excess body iron, it also plays a vital role in regulating the amount of iron released into the blood by enterocytes and macrophages. Since iron is essential for many important physiological and molecular processes, it increases the importance of liver in the proper functioning of the body's metabolism. This hepatic iron-regulatory function can be attributed to the expression of many liver-specific or liver-enriched proteins, all of which play an important role in the regulation of iron homeostasis. This review focuses on these proteins and their known roles in the regulation of body iron metabolism. Copyright © 2017 the American Physiological Society.

  11. PPARγ regulates the expression of cholesterol metabolism genes in alveolar macrophages

    International Nuclear Information System (INIS)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S.; Malur, Achut G.; Thomassen, Mary Jane

    2010-01-01

    Peroxisome proliferator-activated receptor-gamma (PPARγ) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPARγ has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPARγ regulates cholesterol influx, efflux, and metabolism. PPARγ promotes cholesterol efflux through the liver X receptor-alpha (LXRα) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPARγ knockout (PPARγ KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXRα and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPARγ would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPARγ) to restore PPARγ expression in the alveolar macrophages of PPARγ KO mice. Our results show that the alveolar macrophages of PPARγ KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPARγ (1) induced transcription of LXRα and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPARγ regulates cholesterol metabolism in alveolar macrophages.

  12. microRNA Regulation of Peritoneal Cavity Homeostasis in Peritoneal Dialysis

    Directory of Open Access Journals (Sweden)

    Melisa Lopez-Anton

    2015-01-01

    Full Text Available Preservation of peritoneal cavity homeostasis and peritoneal membrane function is critical for long-term peritoneal dialysis (PD treatment. Several microRNAs (miRNAs have been implicated in the regulation of key molecular pathways driving peritoneal membrane alterations leading to PD failure. miRNAs regulate the expression of the majority of protein coding genes in the human genome, thereby affecting most biochemical pathways implicated in cellular homeostasis. In this review, we report published findings on miRNAs and PD therapy, with emphasis on evidence for changes in peritoneal miRNA expression during long-term PD treatment. Recent work indicates that PD effluent- (PDE- derived cells change their miRNA expression throughout the course of PD therapy, contributing to the loss of peritoneal cavity homeostasis and peritoneal membrane function. Changes in miRNA expression profiles will alter regulation of key molecular pathways, with the potential to cause profound effects on peritoneal cavity homeostasis during PD treatment. However, research to date has mainly adopted a literature-based miRNA-candidate methodology drawing conclusions from modest numbers of patient-derived samples. Therefore, the study of miRNA expression during PD therapy remains a promising field of research to understand the mechanisms involved in basic peritoneal cell homeostasis and PD failure.

  13. Impact of Perturbed Pancreatic β-Cell Cholesterol Homeostasis on Adipose Tissue and Skeletal Muscle Metabolism

    Science.gov (United States)

    Cochran, Blake J.; Hou, Liming; Manavalan, Anil Paul Chirackal; Moore, Benjamin M.; Tabet, Fatiha; Sultana, Afroza; Cuesta Torres, Luisa; Tang, Shudi; Shrestha, Sudichhya; Senanayake, Praween; Patel, Mili; Ryder, William J.; Bongers, Andre; Maraninchi, Marie; Wasinger, Valerie C.; Westerterp, Marit; Tall, Alan R.; Barter, Philip J.

    2016-01-01

    Elevated pancreatic β-cell cholesterol levels impair insulin secretion and reduce plasma insulin levels. This study establishes that low plasma insulin levels have a detrimental effect on two major insulin target tissues: adipose tissue and skeletal muscle. Mice with increased β-cell cholesterol levels were generated by conditional deletion of the ATP-binding cassette transporters, ABCA1 and ABCG1, in β-cells (β-DKO mice). Insulin secretion was impaired in these mice under basal and high-glucose conditions, and glucose disposal was shifted from skeletal muscle to adipose tissue. The β-DKO mice also had increased body fat and adipose tissue macrophage content, elevated plasma interleukin-6 and MCP-1 levels, and decreased skeletal muscle mass. They were not, however, insulin resistant. The adipose tissue expansion and reduced skeletal muscle mass, but not the systemic inflammation or increased adipose tissue macrophage content, were reversed when plasma insulin levels were normalized by insulin supplementation. These studies identify a mechanism by which perturbation of β-cell cholesterol homeostasis and impaired insulin secretion increase adiposity, reduce skeletal muscle mass, and cause systemic inflammation. They further identify β-cell dysfunction as a potential therapeutic target in people at increased risk of developing type 2 diabetes. PMID:27702832

  14. Regulation of energy homeostasis via GPR120

    Directory of Open Access Journals (Sweden)

    Atsuhiko eIchimura

    2014-07-01

    Full Text Available Free fatty acids (FFAs are fundamental units of key nutrients. FFAs exert various biological functions, depending on the chain length and degree of desaturation. Recent studies have shown that several FFAs act as ligands of G-protein-coupled receptors (GPCRs, activate intracellular signaling and exert physiological functions via these GPCRs. GPR120 (also known as free fatty acid receptor 4, FFAR4 is activated by unsaturated medium- to long-chain FFAs and has a critical role in various physiological homeostasis mechanisms such as incretin hormone secretion, food preference, anti-inflammation and adipogenesis. Recent studies showed that a lipid sensor GPR120 has a key role in sensing dietary fat in white adipose tissue and regulates the whole body energy homeostasis in both humans and rodents. Genetic study in human identified the loss-of-functional mutation of GPR120 associated with obesity and insulin resistance. In addition, dysfunction of GPR120 has been linked as a novel risk factor for diet-induced obesity. This review aims to provide evidence from the recent development in physiological function of GPR120 and discusses its functional roles in regulation of energy homeostasis and its potential as drug targets.

  15. A Quick-responsive DNA Nanotechnology Device for Bio-molecular Homeostasis Regulation.

    Science.gov (United States)

    Wu, Songlin; Wang, Pei; Xiao, Chen; Li, Zheng; Yang, Bing; Fu, Jieyang; Chen, Jing; Wan, Neng; Ma, Cong; Li, Maoteng; Yang, Xiangliang; Zhan, Yi

    2016-08-10

    Physiological processes such as metabolism, cell apoptosis and immune responses, must be strictly regulated to maintain their homeostasis and achieve their normal physiological functions. The speed with which bio-molecular homeostatic regulation occurs directly determines the ability of an organism to adapt to conditional changes. To produce a quick-responsive regulatory system that can be easily utilized for various types of homeostasis, a device called nano-fingers that facilitates the regulation of physiological processes was constructed using DNA origami nanotechnology. This nano-fingers device functioned in linked open and closed phases using two types of DNA tweezers, which were covalently coupled with aptamers that captured specific molecules when the tweezer arms were sufficiently close. Via this specific interaction mechanism, certain physiological processes could be simultaneously regulated from two directions by capturing one biofactor and releasing the other to enhance the regulatory capacity of the device. To validate the universal application of this device, regulation of the homeostasis of the blood coagulant thrombin was attempted using the nano-fingers device. It was successfully demonstrated that this nano-fingers device achieved coagulation buffering upon the input of fuel DNA. This nano-device could also be utilized to regulate the homeostasis of other types of bio-molecules.

  16. CREBH Maintains Circadian Glucose Homeostasis by Regulating Hepatic Glycogenolysis and Gluconeogenesis.

    Science.gov (United States)

    Kim, Hyunbae; Zheng, Ze; Walker, Paul D; Kapatos, Gregory; Zhang, Kezhong

    2017-07-15

    Cyclic AMP-responsive element binding protein, hepatocyte specific (CREBH), is a liver-enriched, endoplasmic reticulum-tethered transcription factor known to regulate the hepatic acute-phase response and lipid homeostasis. In this study, we demonstrate that CREBH functions as a circadian transcriptional regulator that plays major roles in maintaining glucose homeostasis. The proteolytic cleavage and posttranslational acetylation modification of CREBH are regulated by the circadian clock. Functionally, CREBH is required in order to maintain circadian homeostasis of hepatic glycogen storage and blood glucose levels. CREBH regulates the rhythmic expression of the genes encoding the rate-limiting enzymes for glycogenolysis and gluconeogenesis, including liver glycogen phosphorylase (PYGL), phosphoenolpyruvate carboxykinase 1 (PCK1), and the glucose-6-phosphatase catalytic subunit (G6PC). CREBH interacts with peroxisome proliferator-activated receptor α (PPARα) to synergize its transcriptional activities in hepatic gluconeogenesis. The acetylation of CREBH at lysine residue 294 controls CREBH-PPARα interaction and synergy in regulating hepatic glucose metabolism in mice. CREBH deficiency leads to reduced blood glucose levels but increases hepatic glycogen levels during the daytime or upon fasting. In summary, our studies revealed that CREBH functions as a key metabolic regulator that controls glucose homeostasis across the circadian cycle or under metabolic stress. Copyright © 2017 American Society for Microbiology.

  17. Regulation of alpha1 Na/K-ATPase expression by cholesterol.

    Science.gov (United States)

    Chen, Yiliang; Li, Xin; Ye, Qiqi; Tian, Jiang; Jing, Runming; Xie, Zijian

    2011-04-29

    We have reported that α1 Na/K-ATPase regulates the trafficking of caveolin-1 and consequently alters cholesterol distribution in the plasma membrane. Here, we report the reciprocal regulation of α1 Na/K-ATPase by cholesterol. Acute exposure of LLC-PK1 cells to methyl β-cyclodextrin led to parallel decreases in cellular cholesterol and the expression of α1 Na/K-ATPase. Cholesterol repletion fully reversed the effect of methyl β-cyclodextrin. Moreover, inhibition of intracellular cholesterol trafficking to the plasma membrane by compound U18666A had the same effect on α1 Na/K-ATPase. Similarly, the expression of α1, but not α2 and α3, Na/K-ATPase was significantly reduced in the target organs of Niemann-Pick type C mice where the intracellular cholesterol trafficking is blocked. Mechanistically, decreases in the plasma membrane cholesterol activated Src kinase and stimulated the endocytosis and degradation of α1 Na/K-ATPase through Src- and ubiquitination-dependent pathways. Thus, the new findings, taken together with what we have already reported, revealed a previously unrecognized feed-forward mechanism by which cells can utilize the Src-dependent interplay among Na/K-ATPase, caveolin-1, and cholesterol to effectively alter the structure and function of the plasma membrane.

  18. Regulation of neuronal APL-1 expression by cholesterol starvation.

    Directory of Open Access Journals (Sweden)

    Mary Wiese

    Full Text Available BACKGROUND: Alzheimer's disease (AD is a neurodegenerative disorder characterized by the deposition of β-amyloid plaques composed primarily of the amyloid-β peptide, a cleavage product of amyloid precursor protein (APP. While mutations in APP lead to the development of Familial Alzheimer's Disease (FAD, sporadic AD has only one clear genetic modifier: the ε4 allele of the apolipoprotein E (ApoE gene. Cholesterol starvation in Caenorhabditis elegans leads to molting and arrest phenotypes similar to loss-of-function mutants of the APP ortholog, apl-1 (amyloid precursor-like protein 1, and lrp-1 (lipoprotein receptor-related protein 1, suggesting a potential interaction between apl-1 and cholesterol metabolism. METHODOLOGY/PRINCIPAL FINDINGS: Previously, we found that RNAi knock-down of apl-1 leads to aldicarb hypersensitivity, indicating a defect in synaptic function. Here we find the same defect is recapitulated during lrp-1 knock-down and by cholesterol starvation. A cholesterol-free diet or loss of lrp-1 directly affects APL-1 levels as both lead to loss of APL-1::GFP fluorescence in neurons. However, loss of cholesterol does not affect global transcription or protein levels as seen by qPCR and Western blot. CONCLUSIONS: Our results show that cholesterol and lrp-1 are involved in the regulation of synaptic transmission, similar to apl-1. Both are able to modulate APL-1 protein levels in neurons, however cholesterol changes do not affect global apl-1 transcription or APL-1 protein indicating the changes are specific to neurons. Thus, regulation of synaptic transmission and molting by LRP-1 and cholesterol may be mediated by their ability to control APL-1 neuronal protein expression.

  19. Cholesterol: the debate should be terminated.

    Science.gov (United States)

    Nathan, David G

    2017-07-01

    Here, I offer personal perspectives on cholesterol homeostasis that reflect my belief that certain aspects of the debate have been overstated.-Nathan, D. G. Cholesterol: the debate should be terminated. © FASEB.

  20. Integrating physiological regulation with stem cell and tissue homeostasis

    Science.gov (United States)

    Nakada, Daisuke; Levi, Boaz P.; Morrison, Sean J.

    2015-01-01

    Summary Stem cells are uniquely able to self-renew, to undergo multilineage differentiation, and to persist throughout life in a number of tissues. Stem cells are regulated by a combination of shared and tissue-specific mechanisms and are distinguished from restricted progenitors by differences in transcriptional and epigenetic regulation. Emerging evidence suggests that other aspects of cellular physiology, including mitosis, signal transduction, and metabolic regulation also differ between stem cells and their progeny. These differences may allow stem cells to be regulated independently of differentiated cells in response to circadian rhythms, changes in metabolism, diet, exercise, mating, aging, infection, and disease. This allows stem cells to sustain homeostasis or to remodel relevant tissues in response to physiological change. Stem cells are therefore not only regulated by short-range signals that maintain homeostasis within their tissue of origin, but also by long-range signals that integrate stem cell function with systemic physiology. PMID:21609826

  1. A conserved degron containing an amphipathic helix regulates the cholesterol-mediated turnover of human squalene monooxygenase, a rate-limiting enzyme in cholesterol synthesis.

    Science.gov (United States)

    Chua, Ngee Kiat; Howe, Vicky; Jatana, Nidhi; Thukral, Lipi; Brown, Andrew J

    2017-12-08

    Cholesterol biosynthesis in the endoplasmic reticulum (ER) is tightly controlled by multiple mechanisms to regulate cellular cholesterol levels. Squalene monooxygenase (SM) is the second rate-limiting enzyme in cholesterol biosynthesis and is regulated both transcriptionally and post-translationally. SM undergoes cholesterol-dependent proteasomal degradation when cholesterol is in excess. The first 100 amino acids of SM (designated SM N100) are necessary for this degradative process and represent the shortest cholesterol-regulated degron identified to date. However, the fundamental intrinsic characteristics of this degron remain unknown. In this study, we performed a series of deletions, point mutations, and domain swaps to identify a 12-residue region (residues Gln-62-Leu-73), required for SM cholesterol-mediated turnover. Molecular dynamics and circular dichroism revealed an amphipathic helix within this 12-residue region. Moreover, 70% of the variation in cholesterol regulation was dependent on the hydrophobicity of this region. Of note, the earliest known Doa10 yeast degron, Deg1, also contains an amphipathic helix and exhibits 42% amino acid similarity with SM N100. Mutating SM residues Phe-35/Ser-37/Leu-65/Ile-69 into alanine, based on the key residues in Deg1, blunted SM cholesterol-mediated turnover. Taken together, our results support a model whereby the amphipathic helix in SM N100 attaches reversibly to the ER membrane depending on cholesterol levels; with excess, the helix is ejected and unravels, exposing a hydrophobic patch, which then serves as a degradation signal. Our findings shed new light on the regulation of a key cholesterol synthesis enzyme, highlighting the conservation of critical degron features from yeast to humans. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Cholesterol transfer at endosomal-organelle membrane contact sites.

    Science.gov (United States)

    Ridgway, Neale D; Zhao, Kexin

    2018-06-01

    Cholesterol is delivered to the limiting membrane of late endosomes by Niemann-Pick Type C1 and C2 proteins. This review summarizes recent evidence that cholesterol transfer from endosomes to the endoplasmic reticulum and other organelles is mediated by lipid-binding proteins that localize to membrane contact sites (MCS). LDL-cholesterol in the late endosomal/lysosomes is exported to the plasma membrane, where most cholesterol resides, and the endoplasmic reticulum, which harbors the regulatory complexes and enzymes that control the synthesis and esterification of cholesterol. A major advance in dissecting these cholesterol transport pathways was identification of frequent and dynamic MCS between endosomes and the endoplasmic reticulum, peroxisomes and plasma membrane. Positioned at these MCS are members of the oxysterol-binding protein (OSBP) and steroidogenic acute regulatory protein-related lipid-transfer family of lipid transfer proteins that bridge the opposing membranes and directly or indirectly mediate cholesterol transfer. OSBP-related protein 1L (ORP1L), ORP5 and ORP6 mediate cholesterol transfer to the endoplasmic reticulum that regulates cholesterol homeostasis. ORP1L and STARD3 also move cholesterol from the endoplasmic reticulum-to-late endosomal/lysosomes under low-cholesterol conditions to facilitate intraluminal vesicle formation. Cholesterol transport also occurs at MCS with peroxisomes and possibly the plasma membrane. Frequent contacts between organelles and the endo-lysosomal vesicles are sites for bidirectional transfer of cholesterol.

  3. Renal renin secretion as regulator of body fluid homeostasis

    DEFF Research Database (Denmark)

    Damkjær, Mads; Isaksson, Gustaf L; Stubbe, Jane

    2013-01-01

    The renin-angiotensin system is essential for body fluid homeostasis and blood pressure regulation. This review focuses on the homeostatic regulation of the secretion of active renin in the kidney, primarily in humans. Under physiological conditions, renin secretion is determined mainly by sodium...

  4. Increased expression of RXRα in dementia: an early harbinger for the cholesterol dyshomeostasis?

    Directory of Open Access Journals (Sweden)

    Katsel Pavel

    2010-09-01

    Full Text Available Abstract Background Cholesterol content of cerebral membranes is tightly regulated by elaborate mechanisms that balance the level of cholesterol synthesis, uptake and efflux. Among the conventional regulatory elements, a recent research focus has been nuclear receptors, a superfamily of ligand-activated transcription factors providing an indispensable regulatory framework in controlling cholesterol metabolism pathway genes. The mechanism of transcriptional regulation by nuclear receptors such as LXRs involves formation of heterodimers with RXRs. LXR/RXR functions as a sensor of cellular cholesterol concentration and mediates cholesterol efflux by inducing the transcription of key cholesterol shuffling vehicles namely, ATP-binding cassette transporter A1 (ABCA1 and ApoE. Results In the absence of quantitative data from humans, the relevance of expression of nuclear receptors and their involvement in cerebral cholesterol homeostasis has remained elusive. In this work, new evidence is provided from direct analysis of human postmortem brain gene and protein expression suggesting that RXRα, a key regulator of cholesterol metabolism is differentially expressed in individuals with dementia. Importantly, RXRα expression showed strong association with ABCA1 and ApoE gene expression, particularly in AD vulnerable regions. Conclusions These findings suggest that LXR/RXR-induced upregulation of ABCA1 and ApoE levels may be the molecular determinants of cholesterol dyshomeostasis and of the accompanying dementia observed in AD.

  5. Cholesterol Bilayer Domains in the Eye Lens Health: A Review.

    Science.gov (United States)

    Widomska, Justyna; Subczynski, Witold K; Mainali, Laxman; Raguz, Marija

    2017-12-01

    The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.

  6. Novel Molecules Regulating Energy Homeostasis: Physiology and Regulation by Macronutrient Intake and Weight Loss

    Directory of Open Access Journals (Sweden)

    Anna Gavrieli

    2016-09-01

    Full Text Available Excess energy intake, without a compensatory increase of energy expenditure, leads to obesity. Several molecules are involved in energy homeostasis regulation and new ones are being discovered constantly. Appetite regulating hormones such as ghrelin, peptide tyrosine-tyrosine and amylin or incretins such as the gastric inhibitory polypeptide have been studied extensively while other molecules such as fibroblast growth factor 21, chemerin, irisin, secreted frizzle-related protein-4, total bile acids, and heme oxygenase-1 have been linked to energy homeostasis regulation more recently and the specific role of each one of them has not been fully elucidated. This mini review focuses on the above mentioned molecules and discusses them in relation to their regulation by the macronutrient composition of the diet as well as diet-induced weight loss.

  7. PPAR{gamma} regulates the expression of cholesterol metabolism genes in alveolar macrophages

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Anna D.; Malur, Anagha; Barna, Barbara P.; Kavuru, Mani S. [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Malur, Achut G. [Department of Microbiology and Immunology, East Carolina University (United States); Thomassen, Mary Jane, E-mail: thomassenm@ecu.edu [Department of Internal Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, East Carolina University (United States); Department of Microbiology and Immunology, East Carolina University (United States)

    2010-03-19

    Peroxisome proliferator-activated receptor-gamma (PPAR{gamma}) is a nuclear transcription factor involved in lipid metabolism that is constitutively expressed in the alveolar macrophages of healthy individuals. PPAR{gamma} has recently been implicated in the catabolism of surfactant by alveolar macrophages, specifically the cholesterol component of surfactant while the mechanism remains unclear. Studies from other tissue macrophages have shown that PPAR{gamma} regulates cholesterol influx, efflux, and metabolism. PPAR{gamma} promotes cholesterol efflux through the liver X receptor-alpha (LXR{alpha}) and ATP-binding cassette G1 (ABCG1). We have recently shown that macrophage-specific PPAR{gamma} knockout (PPAR{gamma} KO) mice accumulate cholesterol-laden alveolar macrophages that exhibit decreased expression of LXR{alpha} and ABCG1 and reduced cholesterol efflux. We hypothesized that in addition to the dysregulation of these cholesterol efflux genes, the expression of genes involved in cholesterol synthesis and influx was also dysregulated and that replacement of PPAR{gamma} would restore regulation of these genes. To investigate this hypothesis, we have utilized a Lentivirus expression system (Lenti-PPAR{gamma}) to restore PPAR{gamma} expression in the alveolar macrophages of PPAR{gamma} KO mice. Our results show that the alveolar macrophages of PPAR{gamma} KO mice have decreased expression of key cholesterol synthesis genes and increased expression of cholesterol receptors CD36 and scavenger receptor A-I (SRA-I). The replacement of PPAR{gamma} (1) induced transcription of LXR{alpha} and ABCG1; (2) corrected suppressed expression of cholesterol synthesis genes; and (3) enhanced the expression of scavenger receptors CD36. These results suggest that PPAR{gamma} regulates cholesterol metabolism in alveolar macrophages.

  8. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    Directory of Open Access Journals (Sweden)

    Matthias Orth

    2012-01-01

    Full Text Available Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer’s disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules. We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions.

  9. Effects of dietary beef tallow and soy oil on glucose and cholesterol homeostasis in normal and diabetic pigs

    International Nuclear Information System (INIS)

    Woollett, L.A.

    1987-01-01

    Toe valuate whether dietary fats of different degrees of unsaturation alter glucose and very low density lipoprotein-cholesterol (VLDL-CH) homeostasis, normal and alloxan-diabetic pigs were fed diets containing either beef tallow or soy oil as the primary source of fat for 6 weeks. After intra-arterial and oral doses of glucose, pigs fed soy oil had similar glucose and greater insulin concentrations in plasma when compared with pigs fed beef tallow. Beef tallow-fed pigs additionally were 40% more glucose effective than were soy oil-fed pigs. Disappearance of injected autologous 14 C-VLDL-CH was analyzed in pigs using a two-pool model. Diabetes resulted in a twofold increase in half-lives and a 60-fold increase in pool sizes of the primary and secondary components of VLDL-CH disappearance when compared with those of normal pigs. In normal pigs, feeding beef tallow resulted in longer half-lives of both components of VLDL-CH disappearance and no effect in pool size of both components of VLDL-CH disappearance than did feeding soy oil. In comparison, diabetic pigs fed beef tallow had a similar half-life of the primary component, a twofold shorter half-life of the secondary component, and threefold larger pool size of the primary component, and a similar pool size of the secondary component of VLDL-CH disappearance than did diabetic pigs fed soy oil. Thus, dietary fat seems to play an important role in regulation of glucose and VLDL-CH homeostasis in normal and diabetic animals

  10. LDL Receptor-Related Protein-1 (LRP1 Regulates Cholesterol Accumulation in Macrophages.

    Directory of Open Access Journals (Sweden)

    Anna P Lillis

    Full Text Available Within the circulation, cholesterol is transported by lipoprotein particles and is taken up by cells when these particles associate with cellular receptors. In macrophages, excessive lipoprotein particle uptake leads to foam cell formation, which is an early event in the development of atherosclerosis. Currently, mechanisms responsible for foam cell formation are incompletely understood. To date, several macrophage receptors have been identified that contribute to the uptake of modified forms of lipoproteins leading to foam cell formation, but the in vivo contribution of the LDL receptor-related protein 1 (LRP1 to this process is not known [corrected]. To investigate the role of LRP1 in cholesterol accumulation in macrophages, we generated mice with a selective deletion of LRP1 in macrophages on an LDL receptor (LDLR-deficient background (macLRP1-/-. After feeding mice a high fat diet for 11 weeks, peritoneal macrophages isolated from Lrp+/+ mice contained significantly higher levels of total cholesterol than those from macLRP1-/- mice. Further analysis revealed that this was due to increased levels of cholesterol esters. Interestingly, macLRP1-/- mice displayed elevated plasma cholesterol and triglyceride levels resulting from accumulation of large, triglyceride-rich lipoprotein particles in the circulation. This increase did not result from an increase in hepatic VLDL biosynthesis, but rather results from a defect in catabolism of triglyceride-rich lipoprotein particles in macLRP1-/- mice. These studies reveal an important in vivo contribution of macrophage LRP1 to cholesterol homeostasis.

  11. Membrane plasmalogen composition and cellular cholesterol regulation: a structure activity study

    Directory of Open Access Journals (Sweden)

    Su-Myat Khine K

    2010-06-01

    Full Text Available Abstract Background Disrupted cholesterol regulation leading to increased circulating and membrane cholesterol levels is implicated in many age-related chronic diseases such as cardiovascular disease (CVD, Alzheimer's disease (AD, and cancer. In vitro and ex vivo cellular plasmalogen deficiency models have been shown to exhibit impaired intra- and extra-cellular processing of cholesterol. Furthermore, depleted brain plasmalogens have been implicated in AD and serum plasmalogen deficiencies have been linked to AD, CVD, and cancer. Results Using plasmalogen deficient (NRel-4 and plasmalogen sufficient (HEK293 cells we investigated the effect of species-dependent plasmalogen restoration/augmentation on membrane cholesterol processing. The results of these studies indicate that the esterification of cholesterol is dependent upon the amount of polyunsaturated fatty acid (PUFA-containing ethanolamine plasmalogen (PlsEtn present in the membrane. We further elucidate that the concentration-dependent increase in esterified cholesterol observed with PUFA-PlsEtn was due to a concentration-dependent increase in sterol-O-acyltransferase-1 (SOAT1 levels, an observation not reproduced by 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA reductase inhibition. Conclusion The present study describes a novel mechanism of cholesterol regulation that is consistent with clinical and epidemiological studies of cholesterol, aging and disease. Specifically, the present study describes how selective membrane PUFA-PlsEtn enhancement can be achieved using 1-alkyl-2-PUFA glycerols and through this action reduce levels of total and free cholesterol in cells.

  12. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis

    Directory of Open Access Journals (Sweden)

    Jennifer A. Felsted

    2017-12-01

    Full Text Available Summary: The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1 neurons of the ventromedial hypothalamus (VMH. These effects are body weight independent and involve regulation of SF1+ neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. : Felsted et al. show a required role of the calcium channel subunit and thrombospondin receptor α2δ-1 in regulating glucose and lipid homeostasis in the ventromedial hypothalamus (VMH. These effects are caused by regulation of SF1+ neuronal activity in the VMH through non-canonical mechanisms and concomitant influences on sympathetic output. Keywords: diabetes, VMH, hypothalamus, glucose, norepinephrine, serotonin, excitability, lipid, SF1

  13. Domains of apolipoprotein E contributing to triglyceride and cholesterol homeostasis in vivo. Carboxyl-terminal region 203-299 promotes hepatic very low density lipoprotein-triglyceride secretion

    NARCIS (Netherlands)

    Kypreos, K.E.; Dijk, K.W. van; Zee, A. van der; Havekes, L.M.; Zannis, V.I.

    2001-01-01

    Apolipoprotein (apo) E has been implicated in cholesterol and triglyceride homeostasis in humans. At physiological concentration apoE promotes efficient clearance of apoE-containing lipoprotein remnants. However, high apoE plasma levels correlate with high plasma triglyceride levels. We have used

  14. The role of serum non-cholesterol sterols as surrogate markers of absolute cholesterol synthesis and absorption.

    Science.gov (United States)

    Miettinen, T A; Gylling, H; Nissinen, M J

    2011-10-01

    To study the whole-body cholesterol metabolism in man, cholesterol synthesis and absorption need to be measured. Because of the complicated methods of the measurements, new approaches were developed including the analysis of serum non-cholesterol sterols. In current lipidologic papers and even in intervention studies, serum non-cholesterol sterols are frequently used as surrogate markers of cholesterol metabolism without any validation to the absolute metabolic variables. The present review compares serum non-cholesterol sterols with absolute measurements of cholesterol synthesis and absorption in published papers to find out whether the serum markers are valid indicators of cholesterol metabolism in various conditions. During statin treatment, during interventions of dietary fat, and in type 2 diabetes the relative and absolute variables of cholesterol synthesis and absorption were frequently but not constantly correlated with each other. In some occasions, especially in subjects with apolipoprotein E3/4 and E4/4 phenotypes, the relative metabolic markers were even more sensitive than the absolute ones to reflect changes in cholesterol metabolism during dietary interventions. Even in general population at very high absorption the homeostasis of cholesterol metabolism is disturbed damaging the validity of the serum markers. It is worth using several instead of only one precursor and absorption sterol marker for making conclusions of altered synthesis or absorption of cholesterol, and even then the presence of at least some absolute measurement is valuable. During consumption of plant sterol-enriched diets and in situations of interfered cholesterol homeostasis the relative markers do not adequately reflect cholesterol metabolism. Accordingly, the validity of the relative markers of cholesterol metabolism should not be considered as self-evident. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis

    Directory of Open Access Journals (Sweden)

    Arya Bagus Boedi Iswanto

    2017-04-01

    Full Text Available Abstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD, which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs is highly controlled by plasmodesmata callose (PDC, which is synthesized by callose synthases (CalS and degraded by β-1,3-glucanases (BGs. In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft–processed PDC.

  16. Lipid Raft, Regulator of Plasmodesmal Callose Homeostasis.

    Science.gov (United States)

    Iswanto, Arya Bagus Boedi; Kim, Jae-Yean

    2017-04-03

    A bstract: The specialized plasma membrane microdomains known as lipid rafts are enriched by sterols and sphingolipids. Lipid rafts facilitate cellular signal transduction by controlling the assembly of signaling molecules and membrane protein trafficking. Another specialized compartment of plant cells, the plasmodesmata (PD), which regulates the symplasmic intercellular movement of certain molecules between adjacent cells, also contains a phospholipid bilayer membrane. The dynamic permeability of plasmodesmata (PDs) is highly controlled by plasmodesmata callose (PDC), which is synthesized by callose synthases (CalS) and degraded by β-1,3-glucanases (BGs). In recent studies, remarkable observations regarding the correlation between lipid raft formation and symplasmic intracellular trafficking have been reported, and the PDC has been suggested to be the regulator of the size exclusion limit of PDs. It has been suggested that the alteration of lipid raft substances impairs PDC homeostasis, subsequently affecting PD functions. In this review, we discuss the substantial role of membrane lipid rafts in PDC homeostasis and provide avenues for understanding the fundamental behavior of the lipid raft-processed PDC.

  17. Intestinal Farnesoid X Receptor Controls Transintestinal Cholesterol Excretion in Mice

    NARCIS (Netherlands)

    Boer, J.F. de; Schonewille, M.; Boesjes, M.; Wolters, H.; Bloks, V.W.; Bos, T.; Dijk, T.H. van; Jurdzinski, A.; Boverhof, R.; Wolters, J.C.; Kuivenhoven, J.A.; Deursen, J.M.A. van; Elferink, R.P.; Moschetta, A.; Kremoser, C.; Verkade, H.J.; Kuipers, F.; Groen, A.K.

    2017-01-01

    BACKGROUND & AIMS: The role of the intestine in the maintenance of cholesterol homeostasis increasingly is recognized. Fecal excretion of cholesterol is the last step in the atheroprotective reverse cholesterol transport pathway, to which biliary and transintestinal cholesterol excretion (TICE)

  18. Cholesterol as a modifying agent of the neurovascular unit structure and function under physiological and pathological conditions.

    Science.gov (United States)

    Czuba, Ewelina; Steliga, Aleksandra; Lietzau, Grażyna; Kowiański, Przemysław

    2017-08-01

    The brain, demanding constant level of cholesterol, precisely controls its synthesis and homeostasis. The brain cholesterol pool is almost completely separated from the rest of the body by the functional blood-brain barrier (BBB). Only a part of cholesterol pool can be exchanged with the blood circulation in the form of the oxysterol metabolites such, as 27-hydroxycholesterol (27-OHC) and 24S-hydroxycholesterol (24S-OHC). Not only neurons but also blood vessels and neuroglia, constituting neurovascular unit (NVU), are crucial for the brain cholesterol metabolism and undergo precise regulation by numerous modulators, metabolites and signal molecules. In physiological conditions maintaining the optimal cholesterol concentration is important for the energetic metabolism, composition of cell membranes and myelination. However, a growing body of evidence indicates the consequences of the cholesterol homeostasis dysregulation in several pathophysiological processes. There is a causal relationship between hypercholesterolemia and 1) development of type 2 diabetes due to long-term high-fat diet consumption, 2) significance of the oxidative stress consequences for cerebral amyloid angiopathy and neurodegenerative diseases, 3) insulin resistance on progression of the neurodegenerative brain diseases. In this review, we summarize the current state of knowledge concerning the cholesterol influence upon functioning of the NVU under physiological and pathological conditions.

  19. Hepatitis C Virus Replication Depends on Endosomal Cholesterol Homeostasis.

    Science.gov (United States)

    Stoeck, Ina Karen; Lee, Ji-Young; Tabata, Keisuke; Romero-Brey, Inés; Paul, David; Schult, Philipp; Lohmann, Volker; Kaderali, Lars; Bartenschlager, Ralf

    2018-01-01

    Similar to other positive-strand RNA viruses, hepatitis C virus (HCV) causes massive rearrangements of intracellular membranes, resulting in a membranous web (MW) composed of predominantly double-membrane vesicles (DMVs), the presumed sites of RNA replication. DMVs are enriched for cholesterol, but mechanistic details on the source and recruitment of cholesterol to the viral replication organelle are only partially known. Here we focused on selected lipid transfer proteins implicated in direct lipid transfer at various endoplasmic reticulum (ER)-membrane contact sites. RNA interference (RNAi)-mediated knockdown identified several hitherto unknown HCV dependency factors, such as steroidogenic acute regulatory protein-related lipid transfer domain protein 3 (STARD3), oxysterol-binding protein-related protein 1A and -B (OSBPL1A and -B), and Niemann-Pick-type C1 (NPC1), all residing at late endosome and lysosome membranes and required for efficient HCV RNA replication but not for replication of the closely related dengue virus. Focusing on NPC1, we found that knockdown or pharmacological inhibition caused cholesterol entrapment in lysosomal vesicles concomitant with decreased cholesterol abundance at sites containing the viral replicase factor NS5A. In untreated HCV-infected cells, unesterified cholesterol accumulated at the perinuclear region, partially colocalizing with NS5A at DMVs, arguing for NPC1-mediated endosomal cholesterol transport to the viral replication organelle. Consistent with cholesterol being an important structural component of DMVs, reducing NPC1-dependent endosomal cholesterol transport impaired MW integrity. This suggests that HCV usurps lipid transfer proteins, such as NPC1, at ER-late endosome/lysosome membrane contact sites to recruit cholesterol to the viral replication organelle, where it contributes to MW functionality. IMPORTANCE A key feature of the replication of positive-strand RNA viruses is the rearrangement of the host cell

  20. A new vesicle trafficking regulator CTL1 plays a crucial role in ion homeostasis.

    Science.gov (United States)

    Gao, Yi-Qun; Chen, Jiu-Geng; Chen, Zi-Ru; An, Dong; Lv, Qiao-Yan; Han, Mei-Ling; Wang, Ya-Ling; Salt, David E; Chao, Dai-Yin

    2017-12-01

    Ion homeostasis is essential for plant growth and environmental adaptation, and maintaining ion homeostasis requires the precise regulation of various ion transporters, as well as correct root patterning. However, the mechanisms underlying these processes remain largely elusive. Here, we reported that a choline transporter gene, CTL1, controls ionome homeostasis by regulating the secretory trafficking of proteins required for plasmodesmata (PD) development, as well as the transport of some ion transporters. Map-based cloning studies revealed that CTL1 mutations alter the ion profile of Arabidopsis thaliana. We found that the phenotypes associated with these mutations are caused by a combination of PD defects and ion transporter misregulation. We also established that CTL1 is involved in regulating vesicle trafficking and is thus required for the trafficking of proteins essential for ion transport and PD development. Characterizing choline transporter-like 1 (CTL1) as a new regulator of protein sorting may enable researchers to understand not only ion homeostasis in plants but also vesicle trafficking in general.

  1. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis

    OpenAIRE

    Kocalis, Heidi E.; Hagan, Scott L.; George, Leena; Turney, Maxine K.; Siuta, Michael A.; Laryea, Gloria N.; Morris, Lindsey C.; Muglia, Louis J.; Printz, Richard L.; Stanwood, Gregg D.; Niswender, Kevin D.

    2014-01-01

    Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing...

  2. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis

    Science.gov (United States)

    Kocalis, Heidi E.; Hagan, Scott L.; George, Leena; Turney, Maxine K.; Siuta, Michael A.; Laryea, Gloria N.; Morris, Lindsey C.; Muglia, Louis J.; Printz, Richard L.; Stanwood, Gregg D.; Niswender, Kevin D.

    2014-01-01

    Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing neurons. Rictor deletion in all neurons led to increased fat mass and adiposity, glucose intolerance and behavioral leptin resistance. Disrupting Rictor in POMC neurons also caused obesity and hyperphagia, fasting hyperglycemia and pronounced glucose intolerance. AgRP neuron specific deletion did not impact energy balance but led to mild glucose intolerance. Collectively, we show that Rictor/mTORC2 signaling, especially in POMC-expressing neurons, is important for central regulation of energy and glucose homeostasis. PMID:24944899

  3. Rictor/mTORC2 facilitates central regulation of energy and glucose homeostasis.

    Science.gov (United States)

    Kocalis, Heidi E; Hagan, Scott L; George, Leena; Turney, Maxine K; Siuta, Michael A; Laryea, Gloria N; Morris, Lindsey C; Muglia, Louis J; Printz, Richard L; Stanwood, Gregg D; Niswender, Kevin D

    2014-07-01

    Insulin signaling in the central nervous system (CNS) regulates energy balance and peripheral glucose homeostasis. Rictor is a key regulatory/structural subunit of the mTORC2 complex and is required for hydrophobic motif site phosphorylation of Akt at serine 473. To examine the contribution of neuronal Rictor/mTORC2 signaling to CNS regulation of energy and glucose homeostasis, we utilized Cre-LoxP technology to generate mice lacking Rictor in all neurons, or in either POMC or AgRP expressing neurons. Rictor deletion in all neurons led to increased fat mass and adiposity, glucose intolerance and behavioral leptin resistance. Disrupting Rictor in POMC neurons also caused obesity and hyperphagia, fasting hyperglycemia and pronounced glucose intolerance. AgRP neuron specific deletion did not impact energy balance but led to mild glucose intolerance. Collectively, we show that Rictor/mTORC2 signaling, especially in POMC-expressing neurons, is important for central regulation of energy and glucose homeostasis.

  4. Signalling from the periphery to the brain that regulates energy homeostasis.

    Science.gov (United States)

    Kim, Ki-Suk; Seeley, Randy J; Sandoval, Darleen A

    2018-04-01

    The CNS regulates body weight; however, we still lack a clear understanding of what drives decisions about when, how much and what to eat. A vast array of peripheral signals provides information to the CNS regarding fluctuations in energy status. The CNS then integrates this information to influence acute feeding behaviour and long-term energy homeostasis. Previous paradigms have delegated the control of long-term energy homeostasis to the hypothalamus and short-term changes in feeding behaviour to the hindbrain. However, recent studies have identified target hindbrain neurocircuitry that integrates the orchestration of individual bouts of ingestion with the long-term regulation of energy balance.

  5. Niemann-Pick C1 like 1 gene expression is down-regulated by LXR activators in the intestine

    International Nuclear Information System (INIS)

    Duval, Caroline; Touche, Veronique; Tailleux, Anne; Fruchart, Jean-Charles; Fievet, Catherine; Clavey, Veronique; Staels, Bart; Lestavel, Sophie

    2006-01-01

    Niemann-Pick C1 like 1 (NPC1L1) is a protein critical for intestinal cholesterol absorption. The nuclear receptors peroxisome proliferator-activated receptor alpha (PPARα) and liver X receptors (LXRα and LXRβ) are major regulators of cholesterol homeostasis and their activation results in a reduced absorption of intestinal cholesterol. The goal of this study was to define the role of PPARα and LXR nuclear receptors in the regulation of NPC1L1 gene expression. We show that LXR activators down-regulate NPC1L1 mRNA levels in the human enterocyte cell line Caco-2/TC7, whereas PPARα ligands have no effect. Furthermore, NPC1L1 mRNA levels are decreased in vivo, in duodenum of mice treated with the LXR agonist T0901317. In conclusion, the present study identifies NPC1L1 as a novel LXR target gene further supporting a crucial role of LXR in intestinal cholesterol homeostasis

  6. Emerging roles of the intestine in control of cholesterol metabolism

    NARCIS (Netherlands)

    Kruit, Janine-K.; Groen, Albert K.; van Berkel, Theo J.; Kuipers, Folkert

    2006-01-01

    The liver is considered the major "control center" for maintenance of whole body cholesterol homeostasis. This organ is the main site for de novo cholesterol synthesis, clears cholesterol-containing chylomicron remnants and low density lipoprotein particles from plasma and is the major contributor

  7. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    Science.gov (United States)

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Cadm2 regulates body weight and energy homeostasis in mice

    Directory of Open Access Journals (Sweden)

    Xin Yan

    2018-02-01

    Full Text Available Objective: Obesity is strongly linked to genes regulating neuronal signaling and function, implicating the central nervous system in the maintenance of body weight and energy metabolism. Genome-wide association studies identified significant associations between body mass index (BMI and multiple loci near Cell adhesion molecule2 (CADM2, which encodes a mediator of synaptic signaling enriched in the brain. Here we sought to further understand the role of Cadm2 in the pathogenesis of hyperglycemia and weight gain. Methods: We first analyzed Cadm2 expression in the brain of both human subjects and mouse models and subsequently characterized a loss-of-function mouse model of Cadm2 for alterations in glucose and energy homeostasis. Results: We show that the risk variant rs13078960 associates with increased CADM2 expression in the hypothalamus of human subjects. Increased Cadm2 expression in several brain regions of Lepob/ob mice was ameliorated after leptin treatment. Deletion of Cadm2 in obese mice (Cadm2/ob resulted in reduced adiposity, systemic glucose levels, and improved insulin sensitivity. Cadm2-deficient mice exhibited increased locomotor activity, energy expenditure rate, and core body temperature identifying Cadm2 as a potent regulator of systemic energy homeostasis. Conclusions: Together these data illustrate that reducing Cadm2 expression can reverse several traits associated with the metabolic syndrome including obesity, insulin resistance, and impaired glucose homeostasis. Keywords: Cadm2/SynCAM2, Energy homeostasis, Insulin sensitivity, Genome-wide association studies, Leptin signaling

  9. Innate lymphoid cells as regulators of immunity, inflammation and tissue homeostasis.

    Science.gov (United States)

    Klose, Christoph S N; Artis, David

    2016-06-21

    Research over the last 7 years has led to the formal identification of innate lymphoid cells (ILCs), increased the understanding of their tissue distribution and has established essential functions of ILCs in diverse physiological processes. These include resistance to pathogens, the regulation of autoimmune inflammation, tissue remodeling, cancer and metabolic homeostasis. Notably, many ILC functions appear to be regulated by mechanisms distinct from those of other innate and adaptive immune cells. In this Review, we focus on how group 2 ILC (ILC2) and group 3 ILC (ILC3) responses are regulated and how these cells interact with other immune and non-immune cells to mediate their functions. We highlight experimental evidence from mouse models and patient-based studies that have elucidated the effects of ILCs on the maintenance of tissue homeostasis and the consequences for health and disease.

  10. MLN64 induces mitochondrial dysfunction associated with increased mitochondrial cholesterol content

    Directory of Open Access Journals (Sweden)

    Elisa Balboa

    2017-08-01

    Full Text Available MLN64 is a late endosomal cholesterol-binding membrane protein that has been implicated in cholesterol transport from endosomal membranes to the plasma membrane and/or mitochondria, in toxin-induced resistance, and in mitochondrial dysfunction. Down-regulation of MLN64 in Niemann-Pick C1 deficient cells decreased mitochondrial cholesterol content, suggesting that MLN64 functions independently of NPC1. However, the role of MLN64 in the maintenance of endosomal cholesterol flow and intracellular cholesterol homeostasis remains unclear. We have previously described that hepatic MLN64 overexpression increases liver cholesterol content and induces liver damage. Here, we studied the function of MLN64 in normal and NPC1-deficient cells and we evaluated whether MLN64 overexpressing cells exhibit alterations in mitochondrial function. We used recombinant-adenovirus-mediated MLN64 gene transfer to overexpress MLN64 in mouse liver and hepatic cells; and RNA interference to down-regulate MLN64 in NPC1-deficient cells. In MLN64-overexpressing cells, we found increased mitochondrial cholesterol content and decreased glutathione (GSH levels and ATPase activity. Furthermore, we found decreased mitochondrial membrane potential and mitochondrial fragmentation and increased mitochondrial superoxide levels in MLN64-overexpressing cells and in NPC1-deficient cells. Consequently, MLN64 expression was increased in NPC1-deficient cells and reduction of its expression restore mitochondrial membrane potential and mitochondrial superoxide levels. Our findings suggest that MLN64 overexpression induces an increase in mitochondrial cholesterol content and consequently a decrease in mitochondrial GSH content leading to mitochondrial dysfunction. In addition, we demonstrate that MLN64 expression is increased in NPC cells and plays a key role in cholesterol transport into the mitochondria.

  11. Macrophage heterogeneity and cholesterol homeostasis: classically-activated macrophages are associated with reduced cholesterol accumulation following treatment with oxidized LDL.

    Science.gov (United States)

    Chu, Eugene M; Tai, Daven C; Beer, Jennifer L; Hill, John S

    2013-02-01

    Macrophages are centrally involved during atherosclerosis development and are the predominant cell type that accumulates cholesterol in the plaque. Macrophages however, are heterogeneous in nature reflecting a variety of microenvironments and different phenotypes may be more prone to contribute towards atherosclerosis progression. Using primary human monocyte-derived macrophages, we sought to evaluate one aspect of atherogenic potential of different macrophage phenotypes by determining their propensity to associate with and accumulate oxidized low density lipoprotein (oxLDL). Classically-activated macrophages treated simultaneously with interferon γ (IFNγ) and tumor necrosis factor α (TNFα) associated with less oxLDL and accumulated less cholesterol compared to untreated controls. The combined treatment of IFNγ and TNFα reduced the mRNA expression of CD36 and the expression of both cell surface CD36 and macrophage scavenger receptor 1 (MSR1) protein. Under oxLDL loaded conditions, IFNγ and TNFα did not reduce macrophage protein expression of the transcription factor peroxisome proliferator-actived receptor γ (PPARγ) which is known to positively regulate CD36 expression. However, macrophages treated with IFNγ attenuated the ability of the PPARγ-specific agonist rosiglitazone from upregulating cell surface CD36 protein expression. Our results demonstrate that the observed reduction of cholesterol accumulation in macrophages treated with IFNγ and TNFα following oxLDL treatment was due at least in part to reduced cell surface CD36 and MSR1 protein expression. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. A genome-wide RNAi screen identifies regulators of cholesterol-modified hedgehog secretion in Drosophila.

    Directory of Open Access Journals (Sweden)

    Reid Aikin

    Full Text Available Hedgehog (Hh proteins are secreted molecules that function as organizers in animal development. In addition to being palmitoylated, Hh is the only metazoan protein known to possess a covalently-linked cholesterol moiety. The absence of either modification severely disrupts the organization of numerous tissues during development. It is currently not known how lipid-modified Hh is secreted and released from producing cells. We have performed a genome-wide RNAi screen in Drosophila melanogaster cells to identify regulators of Hh secretion. We found that cholesterol-modified Hh secretion is strongly dependent on coat protein complex I (COPI but not COPII vesicles, suggesting that cholesterol modification alters the movement of Hh through the early secretory pathway. We provide evidence that both proteolysis and cholesterol modification are necessary for the efficient trafficking of Hh through the ER and Golgi. Finally, we identified several putative regulators of protein secretion and demonstrate a role for some of these genes in Hh and Wingless (Wg morphogen secretion in vivo. These data open new perspectives for studying how morphogen secretion is regulated, as well as provide insight into regulation of lipid-modified protein secretion.

  13. Obeticholic acid, a selective farnesoid X receptor agonist, regulates bile acid homeostasis in sandwich-cultured human hepatocytes.

    Science.gov (United States)

    Zhang, Yuanyuan; Jackson, Jonathan P; St Claire, Robert L; Freeman, Kimberly; Brouwer, Kenneth R; Edwards, Jeffrey E

    2017-08-01

    Farnesoid X receptor (FXR) is a master regulator of bile acid homeostasis through transcriptional regulation of genes involved in bile acid synthesis and cellular membrane transport. Impairment of bile acid efflux due to cholangiopathies results in chronic cholestasis leading to abnormal elevation of intrahepatic and systemic bile acid levels. Obeticholic acid (OCA) is a potent and selective FXR agonist that is 100-fold more potent than the endogenous ligand chenodeoxycholic acid (CDCA). The effects of OCA on genes involved in bile acid homeostasis were investigated using sandwich-cultured human hepatocytes. Gene expression was determined by measuring mRNA levels. OCA dose-dependently increased fibroblast growth factor-19 (FGF-19) and small heterodimer partner (SHP) which, in turn, suppress mRNA levels of cholesterol 7-alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for de novo synthesis of bile acids. Consistent with CYP7A1 suppression, total bile acid content was decreased by OCA (1 μmol/L) to 42.7 ± 20.5% relative to control. In addition to suppressing de novo bile acids synthesis, OCA significantly increased the mRNA levels of transporters involved in bile acid homeostasis. The bile salt excretory pump (BSEP), a canalicular efflux transporter, increased by 6.4 ± 0.8-fold, and the basolateral efflux heterodimer transporters, organic solute transporter α (OST α ) and OST β increased by 6.4 ± 0.2-fold and 42.9 ± 7.9-fold, respectively. The upregulation of BSEP and OST α and OST β, by OCA reduced the intracellular concentrations of d 8 -TCA, a model bile acid, to 39.6 ± 8.9% relative to control. These data demonstrate that OCA does suppress bile acid synthesis and reduce hepatocellular bile acid levels, supporting the use of OCA to treat bile acid-induced toxicity observed in cholestatic diseases. © 2017 Intercept Pharmaceuticals. Pharmacology Research & Perspectives published by John Wiley & Sons Ltd, British Pharmacological Society and

  14. Insight into the mechanisms regulating immune homeostasis in health and disease.

    Science.gov (United States)

    Sirisinha, Stitaya

    2011-03-01

    Innate and adaptive immune systems consist of cells and molecules that work together in concert to fight against microbial infection and maintain homeostasis. Hosts encounter microbes / exogenous pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) all the time and they must have proper mechanisms to counteract the danger such that appropriate responses (e.g., degree of inflammation and types of mediators induced) can be mounted in different scenarios. Increasing numbers of endogenous danger signals of host origin are being identified including, for example, uric acid and cholesterol crystals, high mobility group box1 (HMGB1) protein, oxidized LDL, vesicans, heat shock proteins (HSPs) and self DNA. Many of these endogenous ligands have been shown to be associated with inflammation-related diseases like atherosclerosis, gout and type 2 diabetes. Several DAMPs appear to have the ability to interact with more than one receptor. We are now beginning to understand how the immune system can distinguish infection from endogenous ligands elaborated following cellular insults and tissue damage. Appropriate responses to maintain the homeostatic state in health and disease depend largely on the recognition and response to these stimuli by germline encoded pattern-recognition receptors (PRRs) present on both immune and non-immune cells. These receptors are, for example, Toll-like receptors (TLRs), C-type lectin receptors (CLRs) and cytosolic receptors (e.g., RLRs, NLRs and some intracellular DNA sensors). Atypical PRR "danger" receptors, like the receptor for advanced glycation end products (RAGE) and their ligands have been identified. A proper response to maintain homeostasis relies on specific negative regulators and regulatory pathways to dampen its response to tissue injury while maintaining the capacity to eliminate infection and induce proper tissue repair. Moreover, some PRRs (e.g., TLR2,TLR4 and NLRP3) and atypical

  15. The Porphyromonas gingivalis ferric uptake regulator orthologue does not regulate iron homeostasis

    Directory of Open Access Journals (Sweden)

    Catherine Butler

    2015-09-01

    Full Text Available Porphyromonas gingivalis is a Gram-negative anaerobic bacterium that has an absolute requirement for iron which it transports from the host as heme and/or Fe2+. Iron transport must be regulated to prevent toxic effects from excess metal in the cell. P. gingivalis has one ferric uptake regulator (Fur orthologue encoded in its genome called Har, which would be expected to regulate the transport and usage of iron within this bacterium. As a gene regulator, inactivation of Har should result in changes in gene expression of several genes compared to the wild-type. This dataset (GEO accession number GSE37099 provides information on expression levels of genes in P. gingivalis in the absence of Har. Surprisingly, these genes do not relate to iron homeostasis.

  16. Chlordecone, a mixed pregnane X receptor (PXR) and estrogen receptor alpha (ERα) agonist, alters cholesterol homeostasis and lipoprotein metabolism in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lee, Junga; Scheri, Richard C.; Zhang Yuan; Curtis, Lawrence R.

    2008-01-01

    Chlordecone (CD) is one of many banned organochlorine (OC) insecticides that are widespread persistent organic pollutants. OC insecticides alter lipid homeostasis in rodents at doses that are not neurotoxic or carcinogenic. Pretreatment of mice or rats with CD altered tissue distribution of a subsequent dose of [ 14 C]CD or [ 14 C]cholesterol (CH). Nuclear receptors regulate expression of genes important in the homeostasis of CH and other lipids. In this study, we report that CD suppresses in vitro reporter systems for human liver X receptors (LXRs) and activates those for human farnesoid X receptor (FXR), pregnane X receptor (PXR) and estrogen receptor α (ERα) in a concentration-dependent manner (0-50 μM). Consistent with human PXR activation in vitro, three days after a single dose of CD (15 mg/kg) hepatic microsomal CYP3A11 protein increases in C57BL/6 mice. CD decreases hepatic CH ester content without altering total CH concentration. Apolipoprotein A-I (apoA-I) contents of hepatic lipoprotein-rich and microsomal fractions of CD-treated mice are higher than controls. There is a significant reduction in non-high density lipoprotein CH but not apolipoprotein B-48/100 (apoB-48/100) in plasma from CD-treated mice after a 4 h fast. At 14 days after 15 mg CD/kg apoA-I and apoB-100 proteins but not CYP3A11 protein in hepatic microsomes are similar to controls. This work indicates that altered CH homeostasis is a mode of OC insecticide action of relevance after a single dose. This at least partially explains altered CH tissue distribution in CD-pretreated mice

  17. Longitudinal Trajectories of Cholesterol from Midlife through Late Life according to Apolipoprotein E Allele Status

    Directory of Open Access Journals (Sweden)

    Brian Downer

    2014-10-01

    Full Text Available Background: Previous research indicates that total cholesterol levels increase with age during young adulthood and middle age and decline with age later in life. This is attributed to changes in diet, body composition, medication use, physical activity, and hormone levels. In the current study we utilized data from the Framingham Heart Study Original Cohort to determine if variations in apolipoprotein E (APOE, a gene involved in regulating cholesterol homeostasis, influence trajectories of total cholesterol, HDL cholesterol, and total: HDL cholesterol ratio from midlife through late life. Methods: Cholesterol trajectories from midlife through late life were modeled using generalized additive mixed models and mixed-effects regression models. Results: APOE e2+ subjects had lower total cholesterol levels, higher HDL cholesterol levels, and lower total: HDL cholesterol ratios from midlife to late life compared to APOE e3 and APOE e4+ subjects. Statistically significant differences in life span cholesterol trajectories according to gender and use of cholesterol-lowering medications were also detected. Conclusion: The findings from this research provide evidence that variations in APOE modify trajectories of serum cholesterol from midlife to late life. In order to efficiently modify cholesterol through the life span, it is important to take into account APOE allele status.

  18. Two-Compartment Model as a Teaching Tool for Cholesterol Homeostasis

    Science.gov (United States)

    Wrona, Artur; Balbus, Joanna; Hrydziuszko, Olga; Kubica, Krystian

    2015-01-01

    Cholesterol is a vital structural and functional molecule in the human body that is only slightly soluble in water and therefore does not easily travels by itself in the bloodstream. To enable cholesterol's targeted delivery to cells and tissues, it is encapsulated by different fractions of lipoproteins, complex particles containing both proteins…

  19. Cholesterol regulates HERG K+ channel activation by increasing phospholipase C β1 expression.

    Science.gov (United States)

    Chun, Yoon Sun; Oh, Hyun Geun; Park, Myoung Kyu; Cho, Hana; Chung, Sungkwon

    2013-01-01

    Human ether-a-go-go-related gene (HERG) K(+) channel underlies the rapidly activating delayed rectifier K(+) conductance (IKr) during normal cardiac repolarization. Also, it may regulate excitability in many neuronal cells. Recently, we showed that enrichment of cell membrane with cholesterol inhibits HERG channels by reducing the levels of phosphatidylinositol 4,5-bisphosphate [PtdIns(4,5)P2] due to the activation of phospholipase C (PLC). In this study, we further explored the effect of cholesterol enrichment on HERG channel kinetics. When membrane cholesterol level was mildly increased in human embryonic kidney (HEK) 293 cells expressing HERG channel, the inactivation and deactivation kinetics of HERG current were not affected, but the activation rate was significantly decelerated at all voltages tested. The application of PtdIns(4,5)P2 or inhibitor for PLC prevented the effect of cholesterol enrichment, while the presence of antibody against PtdIns(4,5)P2 in pipette solution mimicked the effect of cholesterol enrichment. These results indicate that the effect of cholesterol enrichment on HERG channel is due to the depletion of PtdIns(4,5)P2. We also found that cholesterol enrichment significantly increases the expression of β1 and β3 isoforms of PLC (PLCβ1, PLCβ3) in the membrane. Since the effects of cholesterol enrichment on HERG channel were prevented by inhibiting transcription or by inhibiting PLCβ1 expression, we conclude that increased PLCβ1 expression leads to the deceleration of HERG channel activation rate via downregulation of PtdIns(4,5)P2. These results confirm a crosstalk between two plasma membrane-enriched lipids, cholesterol and PtdIns(4,5)P2, in the regulation of HERG channels.

  20. Alpha2delta-1 in SF1+ Neurons of the Ventromedial Hypothalamus Is an Essential Regulator of Glucose and Lipid Homeostasis.

    Science.gov (United States)

    Felsted, Jennifer A; Chien, Cheng-Hao; Wang, Dongqing; Panessiti, Micaella; Ameroso, Dominique; Greenberg, Andrew; Feng, Guoping; Kong, Dong; Rios, Maribel

    2017-12-05

    The central mechanisms controlling glucose and lipid homeostasis are inadequately understood. We show that α2δ-1 is an essential regulator of glucose and lipid balance, acting in steroidogenic factor-1 (SF1) neurons of the ventromedial hypothalamus (VMH). These effects are body weight independent and involve regulation of SF1 + neuronal activity and sympathetic output to metabolic tissues. Accordingly, mice with α2δ-1 deletion in SF1 neurons exhibit glucose intolerance, altered lipolysis, and decreased cholesterol content in adipose tissue despite normal energy balance regulation. Profound reductions in the firing rate of SF1 neurons, decreased sympathetic output, and elevated circulating levels of serotonin are associated with these alterations. Normal calcium currents but reduced excitatory postsynaptic currents in mutant SF1 neurons implicate α2δ-1 in the promotion of excitatory synaptogenesis separate from its canonical role as a calcium channel subunit. Collectively, these findings identify an essential mechanism that regulates VMH neuronal activity and glycemic and lipid control and may be a target for tackling metabolic disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  1. Regulation of protein homeostasis in neurodegenerative diseases : the role of coding and non-coding genes

    NARCIS (Netherlands)

    Alvarenga Fernandes Sin, Olga; Nollen, Ellen A. A.

    Protein homeostasis is fundamental for cell function and survival, because proteins are involved in all aspects of cellular function, ranging from cell metabolism and cell division to the cell's response to environmental challenges. Protein homeostasis is tightly regulated by the synthesis, folding,

  2. Galanin-like peptide (GALP) is a hypothalamic regulator of energy homeostasis and reproduction.

    Science.gov (United States)

    Lawrence, Catherine; Fraley, Gregory S

    2011-01-01

    Galanin-like peptide (GALP) was discovered in 1999 in the porcine hypothalamus and was found to be a 60 amino acid neuropeptide. GALP shares sequence homology to galanin (1-13) in position 9-21 and can bind to, as well as activate, the three galanin receptor subtypes (GalR1-3). GALP-expressing cells are limited, and are mainly found in the arcuate nucleus of the hypothalamus (ARC) and the posterior pituitary. GALP-positive neurons in the ARC project to several brain regions where they appear to make contact with multiple neuromodulators. These neuromodulators are involved in the regulation of energy homeostasis and reproduction, anatomical evidence that suggests a role for GALP in these physiological functions. In support of this idea, GALP gene expression is regulated by several factors that reflect metabolic state including the metabolic hormones leptin and insulin, thyroid hormones, and blood glucose. Considerable evidence now exists to support the hypothesis that GALP has a role in the regulation of energy homeostasis and reproduction; and, that GALP's role may be independent of the known galanin receptors. In this review, we (1) provide an overview of the distribution of GALP, and discuss the potential relationship between GALP and other neuromodulators of energy homeostasis and reproduction, (2) discuss the metabolic factors that regulate GALP expression, (3) review the evidence for the role of GALP in energy homeostasis and reproduction, (4) discuss the potential downstream mediators and mechanisms underlying GALP's effects, and (5) discuss the possibility that GALP may mediate its effects via an as yet unidentified GALP-specific receptor. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    Science.gov (United States)

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  4. Pitfalls in the detection of cholesterol in Huntington's disease models.

    Science.gov (United States)

    Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena

    2012-10-11

    Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington's disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it.

  5. A multi-scale model of hepcidin promoter regulation reveals factors controlling systemic iron homeostasis.

    Directory of Open Access Journals (Sweden)

    Guillem Casanovas

    2014-01-01

    Full Text Available Systemic iron homeostasis involves a negative feedback circuit in which the expression level of the peptide hormone hepcidin depends on and controls the iron blood levels. Hepcidin expression is regulated by the BMP6/SMAD and IL6/STAT signaling cascades. Deregulation of either pathway causes iron-related diseases such as hemochromatosis or anemia of inflammation. We quantitatively analyzed how BMP6 and IL6 control hepcidin expression. Transcription factor (TF phosphorylation and reporter gene expression were measured under co-stimulation conditions, and the promoter was perturbed by mutagenesis. Using mathematical modeling, we systematically analyzed potential mechanisms of cooperative and competitive promoter regulation by the transcription factors, and experimentally validated the model predictions. Our results reveal that hepcidin cross-regulation primarily occurs by combinatorial transcription factor binding to the promoter, whereas signaling crosstalk is insignificant. We find that the presence of two BMP-responsive elements enhances the steepness of the promoter response towards the iron-sensing BMP signaling axis, which promotes iron homeostasis in vivo. IL6 co-stimulation reduces the promoter sensitivity towards the BMP signal, because the SMAD and STAT transcription factors compete for recruiting RNA polymerase to the transcription start site. This may explain why inflammatory signals disturb iron homeostasis in anemia of inflammation. Taken together, our results reveal why the iron homeostasis circuit is sensitive to perturbations implicated in disease.

  6. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity

    Science.gov (United States)

    Timper, Katharina; Brüning, Jens C.

    2017-01-01

    ABSTRACT The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed. PMID:28592656

  7. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity.

    Science.gov (United States)

    Timper, Katharina; Brüning, Jens C

    2017-06-01

    The 'obesity epidemic' represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed. © 2017. Published by The Company of Biologists Ltd.

  8. Hypothalamic circuits regulating appetite and energy homeostasis: pathways to obesity

    Directory of Open Access Journals (Sweden)

    Katharina Timper

    2017-06-01

    Full Text Available The ‘obesity epidemic’ represents a major global socioeconomic burden that urgently calls for a better understanding of the underlying causes of increased weight gain and its associated metabolic comorbidities, such as type 2 diabetes mellitus and cardiovascular diseases. Improving our understanding of the cellular basis of obesity could set the stage for the development of new therapeutic strategies. The CNS plays a pivotal role in the regulation of energy and glucose homeostasis. Distinct neuronal cell populations, particularly within the arcuate nucleus of the hypothalamus, sense the nutrient status of the organism and integrate signals from peripheral hormones including pancreas-derived insulin and adipocyte-derived leptin to regulate calorie intake, glucose metabolism and energy expenditure. The arcuate neurons are tightly connected to other specialized neuronal subpopulations within the hypothalamus, but also to various extrahypothalamic brain regions, allowing a coordinated behavioral response. This At a Glance article gives an overview of the recent knowledge, mainly derived from rodent models, regarding the CNS-dependent regulation of energy and glucose homeostasis, and illustrates how dysregulation of the neuronal networks involved can lead to overnutrition and obesity. The potential impact of recent research findings in the field on therapeutic treatment strategies for human obesity is also discussed.

  9. NPY modulates PYY function in the regulation of energy balance and glucose homeostasis.

    Science.gov (United States)

    Zhang, L; Nguyen, A D; Lee, I-C J; Yulyaningsih, E; Riepler, S J; Stehrer, B; Enriquez, R F; Lin, S; Shi, Y-C; Baldock, P A; Sainsbury, A; Herzog, H

    2012-08-01

    Both the neuronal-derived neuropeptide Y (NPY) and the gut hormone peptide YY (PYY) have been implicated in the regulation of energy balance and glucose homeostasis. However, despite similar affinities for the same Y receptors, the co-ordinated actions of these two peptides in energy and glucose homeostasis remain largely unknown. To investigate the mechanisms and possible interactions between PYY with NPY in the regulation of these processes, we utilized NPY/PYY single and double mutant mouse models and examined parameters of energy balance and glucose homeostasis. PYY(-/-) mice exhibited increased fasting-induced food intake, enhanced fasting and oral glucose-induced serum insulin levels, and an impaired insulin tolerance, - changes not observed in NPY(-/-) mice. Interestingly, whereas PYY deficiency-induced impairment in insulin tolerance remained in NPY(-/-) PYY(-/-) mice, effects of PYY deficiency on fasting-induced food intake and serum insulin concentrations at baseline and after the oral glucose bolus were absent in NPY(-/-) PYY(-/-) mice, suggesting that NPY signalling may be required for PYY's action on insulin secretion and fasting-induced hyperphagia. Moreover, NPY(-/-) PYY(-/-) , but not NPY(-/-) or PYY(-/-) mice had significantly decreased daily food intake, indicating interactive control by NPY and PYY on spontaneous food intake. Furthermore, both NPY(-/-) and PYY(-/-) mice showed significantly reduced respiratory exchange ratio during the light phase, with no additive effects observed in NPY(-/-) PYY(-/-) mice, indicating that NPY and PYY may regulate oxidative fuel selection via partly shared mechanisms. Overall, physical activity and energy expenditure, however, are not significantly altered by NPY and PYY single or double deficiencies. These findings show significant and diverse interactions between NPY and PYY signalling in the regulation of different aspects of energy balance and glucose homeostasis. © 2012 Blackwell Publishing Ltd.

  10. MicroRNA-27a decreases the level and efficiency of the LDL receptor and contributes to the dysregulation of cholesterol homeostasis.

    Science.gov (United States)

    Alvarez, M Lucrecia; Khosroheidari, Mahdieh; Eddy, Elena; Done, Stefania C

    2015-10-01

    A strong risk factor for atherosclerosis- the leading cause of heart attacks and strokes- is the elevation of low-density lipoprotein cholesterol (LDL-C) in blood. The LDL receptor (LDLR) is the primary pathway for LDL-C removal from circulation, and their levels are increased by statins -the main treatment for high blood LDL-C. However, statins have low efficiency because they also increase PCSK9 which targets LDLR for degradation. Since microRNAs have recently emerged as key regulators of cholesterol homeostasis, our aim was to identify potential microRNA-based therapeutics to decrease blood LDL-C and prevent atherosclerosis. We over expressed and knocked down miR-27a in HepG2 cells to assess its effect on the expression of key players in the LDLR pathway using PCR Arrays, Elisas, and Western blots. We found that miR-27a decreases LDLR levels by 40% not only through a direct binding to its 3' untranslated region but also indirectly by inducing a 3-fold increase in PCSK9, which enhances LDLR degradation. Interestingly, miR-27a also directly decreases LRP6 and LDLRAP1, two other key players in the LDLR pathway that are required for efficient endocytosis of the LDLR-LDL-C complex in the liver. The inhibition of miR-27a using lock nucleic acids induced a 70% increase in LDLR levels and, therefore, it would be a more efficient treatment for hypercholesterolemia because of its desirable effects not only on LDLR but also on PCSK9. The results presented here provide evidence supporting the potential of miR-27a as a novel therapeutic target for the prevention of atherosclerosis. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Ion channels in the central regulation of energy and glucose homeostasis

    OpenAIRE

    Sohn, Jong-Woo

    2013-01-01

    Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles fo...

  12. Ion channels in the central regulation of energy and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Jong-Woo eSohn

    2013-05-01

    Full Text Available Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.

  13. Melanocortin 4 receptor is not required for estrogenic regulations on energy homeostasis and reproduction

    Science.gov (United States)

    Brain estrogen receptor-a (ERa) is essential for estrogenic regulation of energy homeostasis and reproduction. We previously showed that ERa expressed by pro-opiomelanocortin (POMC) neurons mediates estrogen's effects on food intake, body weight, negative regulation of hypothalamic–pituitary–gonadal...

  14. Akt inhibition promotes ABCA1-mediated cholesterol efflux to ApoA-I through suppressing mTORC1.

    Directory of Open Access Journals (Sweden)

    Fumin Dong

    Full Text Available ATP-binding cassette transporter A1 (ABCA1 plays an essential role in mediating cholesterol efflux to apolipoprotein A-I (apoA-I, a major housekeeping mechanism for cellular cholesterol homeostasis. After initial engagement with ABCA1, apoA-I directly interacts with the plasma membrane to acquire cholesterol. This apoA-I lipidation process is also known to require cellular signaling processes, presumably to support cholesterol trafficking to the plasma membrane. We report here that one of major signaling pathways in mammalian cells, Akt, is also involved. In several cell models that express ABCA1 including macrophages, pancreatic beta cells and hepatocytes, inhibition of Akt increases cholesterol efflux to apoA-I. Importantly, Akt inhibition has little effect on cells expressing non-functional mutant of ABCA1, implicating a specific role of Akt in ABCA1 function. Furthermore, we provide evidence that mTORC1, a major downstream target of Akt, is also a negative regulator of cholesterol efflux. In cells where mTORC1 is constitutively activated due to tuberous sclerosis complex 2 deletion, cholesterol efflux to apoA-I is no longer sensitive to Akt activity. This suggests that Akt suppresses cholesterol efflux through mTORC1 activation. Indeed, inhibition of mTORC1 by rapamycin or Torin-1 promotes cholesterol efflux. On the other hand, autophagy, one of the major pathways of cholesterol trafficking, is increased upon Akt inhibition. Furthermore, Akt inhibition disrupts lipid rafts, which is known to promote cholesterol efflux to apoA-I. We therefore conclude that Akt, through its downstream targets, mTORC1 and hence autophagy, negatively regulates cholesterol efflux to apoA-I.

  15. Interaction between dietary lipids and gut microbiota regulates hepatic cholesterol metabolism

    DEFF Research Database (Denmark)

    Caesar, Robert; Nygren, Heli; Orešič, Matej

    2016-01-01

    The gut microbiota influences many aspects of host metabolism. We have previously shown that the presence of a gut microbiota remodels lipid composition. Here we investigated how interaction between gut microbiota and dietary lipids regulates lipid composition in the liver and plasma, and gene...... of most lipid classes differed between mice fed lard and fish oil. However, the gut microbiota also affected lipid composition. The gut microbiota increased hepatic levels of cholesterol and cholesteryl esters in mice fed lard, but not in mice fed fish oil. Serum levels of cholesterol and cholesteryl...... esters were not affected by the gut microbiota. Genes encoding enzymes involved in cholesterol biosynthesis were downregulated by the gut microbiota in mice fed lard and were expressed at a low level in mice fed fish oil independent of microbial status. In summary, we show that gut microbiota...

  16. Neuroimmune interaction and the regulation of intestinal immune homeostasis.

    Science.gov (United States)

    Verheijden, Simon; Boeckxstaens, Guy E

    2018-01-01

    Many essential gastrointestinal functions, including motility, secretion, and blood flow, are regulated by the autonomic nervous system (ANS), both through intrinsic enteric neurons and extrinsic (sympathetic and parasympathetic) innervation. Recently identified neuroimmune mechanisms, in particular the interplay between enteric neurons and muscularis macrophages, are now considered to be essential for fine-tuning peristalsis. These findings shed new light on how intestinal immune cells can support enteric nervous function. In addition, both intrinsic and extrinsic neural mechanisms control intestinal immune homeostasis in different layers of the intestine, mainly by affecting macrophage activation through neurotransmitter release. In this mini-review, we discuss recent insights on immunomodulation by intrinsic enteric neurons and extrinsic innervation, with a particular focus on intestinal macrophages. In addition, we discuss the relevance of these novel mechanisms for intestinal immune homeostasis in physiological and pathological conditions, mainly focusing on motility disorders (gastroparesis and postoperative ileus) and inflammatory disorders (colitis).

  17. Grasshoppers regulate N:p stoichiometric homeostasis by changing phosphorus contents in their frass.

    Science.gov (United States)

    Zhang, Zijia; Elser, James J; Cease, Arianne J; Zhang, Ximei; Yu, Qiang; Han, Xingguo; Zhang, Guangming

    2014-01-01

    Nitrogen (N) and phosphorus (P) are important limiting nutrients for plant production and consumer performance in a variety of ecosystems. As a result, the N:P stoichiometry of herbivores has received increased attention in ecology. However, the mechanisms by which herbivores maintain N:P stoichiometric homeostasis are poorly understood. Here, using a field manipulation experiment we show that the grasshopper Oedaleus asiaticus maintains strong N:P stoichiometric homeostasis regardless of whether grasshoppers were reared at low or high density. Grasshoppers maintained homeostasis by increasing P excretion when eating plants with higher P contents. However, while grasshoppers also maintained constant body N contents, we found no changes in N excretion in response to changing plant N content over the range measured. These results suggest that O. asiaticus maintains P homeostasis primarily by changing P absorption and excretion rates, but that other mechanisms may be more important for regulating N homeostasis. Our findings improve our understanding of consumer-driven P recycling and may help in understanding the factors affecting plant-herbivore interactions and ecosystem processes in grasslands.

  18. Pitfalls in the detection of cholesterol in Huntington’s disease models

    Science.gov (United States)

    Marullo, Manuela; Valenza, Marta; Leoni, Valerio; Caccia, Claudio; Scarlatti, Chiara; De Mario, Agnese; Zuccato, Chiara; Di Donato, Stefano; Carafoli, Ernesto; Cattaneo, Elena

    2012-01-01

    Background Abnormalities in brain cholesterol homeostasis have been reported in Huntington’s disease (HD), an adult-onset neurodegenerative disorder caused by an expansion in the number of CAG repeats in the huntingtin (HTT) gene. However, the results have been contradictory with respect to whether cholesterol levels increase or decrease in HD models. Biochemical and mass spectrometry methods show reduced levels of cholesterol precursors and cholesterol in HD cells and in the brains of several HD animal models. Abnormal brain cholesterol homeostasis was also inferred from studies in HD patients. In contrast, colorimetric and enzymatic methods indicate cholesterol accumulation in HD cells and tissues. Here we used several methods to investigate cholesterol levels in cultured cells in the presence or absence of mutant HTT protein. Results Colorimetric and enzymatic methods with low sensitivity gave variable results, whereas results from a sensitive analytical method, gas chromatography-mass spectrometry, were more reliable. Sample preparation, high cell density and cell clonality also influenced the detection of intracellular cholesterol. Conclusions Detection of cholesterol in HD samples by colorimetric and enzymatic assays should be supplemented by detection using more sensitive analytical methods. Care must be taken to prepare the sample appropriately. By evaluating lathosterol levels using isotopic dilution mass spectrometry, we confirmed reduced cholesterol biosynthesis in knock-in cells expressing the polyQ mutation in a constitutive or inducible manner. *Correspondence should be addressed to Elena Cattaneo: elena.cattaneo@unimi.it PMID:23145355

  19. Phosphatidyl inositol 3-kinase signaling in hypothalamic proopiomelanocortin neurons contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Hill, Jennifer W; Xu, Yong; Preitner, Frederic; Fukuda, Makota; Cho, You-Ree; Luo, Ji; Balthasar, Nina; Coppari, Roberto; Cantley, Lewis C; Kahn, Barbara B; Zhao, Jean J; Elmquist, Joel K

    2009-11-01

    Recent studies demonstrated a role for hypothalamic insulin and leptin action in the regulation of glucose homeostasis. This regulation involves proopiomelanocortin (POMC) neurons because suppression of phosphatidyl inositol 3-kinase (PI3K) signaling in these neurons blunts the acute effects of insulin and leptin on POMC neuronal activity. In the current study, we investigated whether disruption of PI3K signaling in POMC neurons alters normal glucose homeostasis using mouse models designed to both increase and decrease PI3K-mediated signaling in these neurons. We found that deleting p85alpha alone induced resistance to diet-induced obesity. In contrast, deletion of the p110alpha catalytic subunit of PI3K led to increased weight gain and adipose tissue along with reduced energy expenditure. Independent of these effects, increased PI3K activity in POMC neurons improved insulin sensitivity, whereas decreased PI3K signaling resulted in impaired glucose regulation. These studies show that activity of the PI3K pathway in POMC neurons is involved in not only normal energy regulation but also glucose homeostasis.

  20. Negative regulation of Toll-like receptor signaling plays an essential role in homeostasis of the intestine.

    Science.gov (United States)

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S

    2011-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases. However, it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, commensal bacteria-dependent colitis model in IL-10-deficient mice, we investigated the role of TLR and their negative regulation in intestinal homeostasis. In addition to IL-10(-/-) MyD88(-/-) mice, IL-10(-/-) TLR4(-/-) mice exhibited reduced colitis compared to IL-10(-/-) mice, indicating that TLR4 signaling plays an important role in inducing colitis. Interestingly, the expression of IRAK-M, a negative regulator of TLR signaling, is dependent on intestinal commensal flora, as IRAK-M expression was reduced in mice re-derived into a germ-free environment, and introduction of commensal bacteria into germ-free mice induced IRAK-M expression. IL-10(-/-) IRAK-M(-/-) mice exhibited exacerbated colitis with increased inflammatory cytokine gene expression. Therefore, this study indicates that intestinal microflora stimulate the colitogenic immune system through TLR and negative regulation of TLR signaling is essential in maintaining intestinal homeostasis. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Perfringolysin O Theta Toxin as a Tool to Monitor the Distribution and Inhomogeneity of Cholesterol in Cellular Membranes.

    Science.gov (United States)

    Maekawa, Masashi; Yang, Yanbo; Fairn, Gregory D

    2016-03-08

    Cholesterol is an essential structural component of cellular membranes in eukaryotes. Cholesterol in the exofacial leaflet of the plasma membrane is thought to form membrane nanodomains with sphingolipids and specific proteins. Additionally, cholesterol is found in the intracellular membranes of endosomes and has crucial functions in membrane trafficking. Furthermore, cellular cholesterol homeostasis and regulation of de novo synthesis rely on transport via both vesicular and non-vesicular pathways. Thus, the ability to visualize and detect intracellular cholesterol, especially in the plasma membrane, is critical to understanding the complex biology associated with cholesterol and the nanodomains. Perfringolysin O (PFO) theta toxin is one of the toxins secreted by the anaerobic bacteria Clostridium perfringens and this toxin forms pores in the plasma membrane that causes cell lysis. It is well understood that PFO recognizes and binds to cholesterol in the exofacial leaflets of the plasma membrane, and domain 4 of PFO (D4) is sufficient for the binding of cholesterol. Recent studies have taken advantage of this high-affinity cholesterol-binding domain to create a variety of cholesterol biosensors by using a non-toxic PFO or the D4 in isolation. This review highlights the characteristics and usefulness of, and the principal findings related to, these PFO-derived cholesterol biosensors.

  2. Scratching the surface: Regulation of cell surface receptors in cholesterol metabolism

    NARCIS (Netherlands)

    Nelson, J.K.

    2016-01-01

    Elevated plasma levels of low density lipoprotein cholesterol (LDL) are an established risk factor for the development of atherosclerosis and cardiovascular diseases. The LDL-Receptor is a key determinant in regulating LDL levels in plasma, and current lipid-lowering strategies aim to increase its

  3. Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Mark A. Smith

    2015-04-01

    Full Text Available Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC and agouti-related protein (AgRP neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons.

  4. Rational heterodoxy: cholesterol reformation of the amyloid doctrine.

    Science.gov (United States)

    Castello, Michael A; Soriano, Salvador

    2013-01-01

    According to the amyloid cascade hypothesis, accumulation of the amyloid peptide Aβ, derived by proteolytic processing from the amyloid precursor protein (APP), is the key pathogenic trigger in Alzheimer's disease (AD). This view has led researchers for more than two decades and continues to be the most influential model of neurodegeneration. Nevertheless, close scrutiny of the current evidence does not support a central pathogenic role for Aβ in late-onset AD. Furthermore, the amyloid cascade hypothesis lacks a theoretical foundation from which the physiological generation of Aβ can be understood, and therapeutic approaches based on its premises have failed. We present an alternative model of neurodegeneration, in which sustained cholesterol-associated neuronal distress is the most likely pathogenic trigger in late-onset AD, directly causing oxidative stress, inflammation and tau hyperphosphorylation. In this scenario, Aβ generation is part of an APP-driven adaptive response to the initial cholesterol distress, and its accumulation is neither central to, nor a requirement for, the initiation of the disease. Our model provides a theoretical framework that places APP as a regulator of cholesterol homeostasis, accounts for the generation of Aβ in both healthy and demented brains, and provides suitable targets for therapeutic intervention. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  6. Hypothalamic carnitine metabolism integrates nutrient and hormonal feedback to regulate energy homeostasis.

    Science.gov (United States)

    Stark, Romana; Reichenbach, Alex; Andrews, Zane B

    2015-12-15

    The maintenance of energy homeostasis requires the hypothalamic integration of nutrient feedback cues, such as glucose, fatty acids, amino acids, and metabolic hormones such as insulin, leptin and ghrelin. Although hypothalamic neurons are critical to maintain energy homeostasis research efforts have focused on feedback mechanisms in isolation, such as glucose alone, fatty acids alone or single hormones. However this seems rather too simplistic considering the range of nutrient and endocrine changes associated with different metabolic states, such as starvation (negative energy balance) or diet-induced obesity (positive energy balance). In order to understand how neurons integrate multiple nutrient or hormonal signals, we need to identify and examine potential intracellular convergence points or common molecular targets that have the ability to sense glucose, fatty acids, amino acids and hormones. In this review, we focus on the role of carnitine metabolism in neurons regulating energy homeostasis. Hypothalamic carnitine metabolism represents a novel means for neurons to facilitate and control both nutrient and hormonal feedback. In terms of nutrient regulation, carnitine metabolism regulates hypothalamic fatty acid sensing through the actions of CPT1 and has an underappreciated role in glucose sensing since carnitine metabolism also buffers mitochondrial matrix levels of acetyl-CoA, an allosteric inhibitor of pyruvate dehydrogenase and hence glucose metabolism. Studies also show that hypothalamic CPT1 activity also controls hormonal feedback. We hypothesis that hypothalamic carnitine metabolism represents a key molecular target that can concurrently integrate nutrient and hormonal information, which is critical to maintain energy homeostasis. We also suggest this is relevant to broader neuroendocrine research as it predicts that hormonal signaling in the brain varies depending on current nutrient status. Indeed, the metabolic action of ghrelin, leptin or insulin

  7. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  8. High Cholesterol/Low Cholesterol: Effects in Biological Membranes: A Review.

    Science.gov (United States)

    Subczynski, Witold K; Pasenkiewicz-Gierula, Marta; Widomska, Justyna; Mainali, Laxman; Raguz, Marija

    2017-12-01

    Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.

  9. Insig proteins mediate feedback inhibition of cholesterol synthesis in the intestine.

    Science.gov (United States)

    McFarlane, Matthew R; Liang, Guosheng; Engelking, Luke J

    2014-01-24

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes.

  10. Insig Proteins Mediate Feedback Inhibition of Cholesterol Synthesis in the Intestine*

    Science.gov (United States)

    McFarlane, Matthew R.; Liang, Guosheng; Engelking, Luke J.

    2014-01-01

    Enterocytes are the only cell type that must balance the de novo synthesis and absorption of cholesterol, although the coordinate regulation of these processes is not well understood. Our previous studies demonstrated that enterocytes respond to the pharmacological blockade of cholesterol absorption by ramping up de novo sterol synthesis through activation of sterol regulatory element-binding protein-2 (SREBP-2). Here, we genetically disrupt both Insig1 and Insig2 in the intestine, two closely related proteins that are required for the feedback inhibition of SREBP and HMG-CoA reductase (HMGR). This double knock-out was achieved by generating mice with an intestine-specific deletion of Insig1 using Villin-Cre in combination with a germ line deletion of Insig2. Deficiency of both Insigs in enterocytes resulted in constitutive activation of SREBP and HMGR, leading to an 11-fold increase in sterol synthesis in the small intestine and producing lipidosis of the intestinal crypts. The intestine-derived cholesterol accumulated in plasma and liver, leading to secondary feedback inhibition of hepatic SREBP2 activity. Pharmacological blockade of cholesterol absorption was unable to further induce the already elevated activities of SREBP-2 or HMGR in Insig-deficient enterocytes. These studies confirm the essential role of Insig proteins in the sterol homeostasis of enterocytes. PMID:24337570

  11. The mevalonate pathway in neurons: It's not just about cholesterol.

    Science.gov (United States)

    Moutinho, Miguel; Nunes, Maria João; Rodrigues, Elsa

    2017-11-01

    Cholesterol homeostasis greatly impacts neuronal function due to the essential role of this sterol in the brain. The mevalonate (MVA) pathway leads to the synthesis of cholesterol, but also supplies cells with many other intermediary molecules crucial for neuronal function. Compelling evidence point to a model in which neurons shutdown cholesterol synthesis, and rely on a shuttle derived from astrocytes to meet their cholesterol needs. Nevertheless, several reports suggest that neurons maintain the MVA pathway active, even with sustained cholesterol supply by astrocytes. Hence, in this review we focus not on cholesterol production, but rather on the role of the MVA pathway in the synthesis of particular intermediaries, namely isoprenoids, and on their role on neuronal function. Isoprenoids act as anchors for membrane association, after being covalently bound to proteins, such as most of the small guanosine triphosphate-binding proteins, which are critical to neuronal cell function. Based on literature, on our own results, and on the analysis of public transcriptomics databases, we raise the idea that in neurons there is a shift of the MVA pathway towards the non-sterol branch, responsible for isoprenoid synthesis, in detriment to post-squalene branch, and that this is ultimately essential for synaptic activity. Nevertheless new tools that facilitate imaging and the biochemical characterization and quantification of the prenylome in neurons and astrocytes are needed to understand the regulation of isoprenoid production and protein prenylation in the brain, and to analyze its differences on diverse physiological or pathological conditions, such as aging and neurodegenerative states. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Ribosomal S6K1 in POMC and AgRP Neurons Regulates Glucose Homeostasis but Not Feeding Behavior in Mice.

    Science.gov (United States)

    Smith, Mark A; Katsouri, Loukia; Irvine, Elaine E; Hankir, Mohammed K; Pedroni, Silvia M A; Voshol, Peter J; Gordon, Matthew W; Choudhury, Agharul I; Woods, Angela; Vidal-Puig, Antonio; Carling, David; Withers, Dominic J

    2015-04-21

    Hypothalamic ribosomal S6K1 has been suggested as a point of convergence for hormonal and nutrient signals in the regulation of feeding behavior, bodyweight, and glucose metabolism. However, the long-term effects of manipulating hypothalamic S6K1 signaling on energy homeostasis and the cellular mechanisms underlying these roles are unclear. We therefore inactivated S6K1 in pro-opiomelanocortin (POMC) and agouti-related protein (AgRP) neurons, key regulators of energy homeostasis, but in contrast to the current view, we found no evidence that S6K1 regulates food intake and bodyweight. In contrast, S6K1 signaling in POMC neurons regulated hepatic glucose production and peripheral lipid metabolism and modulated neuronal excitability. S6K1 signaling in AgRP neurons regulated skeletal muscle insulin sensitivity and was required for glucose sensing by these neurons. Our findings suggest that S6K1 signaling is not a general integrator of energy homeostasis in the mediobasal hypothalamus but has distinct roles in the regulation of glucose homeostasis by POMC and AgRP neurons. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  13. Bim: guardian of tissue homeostasis and critical regulator of the immune system, tumorigenesis and bone biology.

    Science.gov (United States)

    Akiyama, Toru; Tanaka, Sakae

    2011-08-01

    One of the most important roles of apoptosis is the maintenance of tissue homeostasis. Impairment of apoptosis leads to a number of pathological conditions. In response to apoptotic signals, various proteins are activated in a pathway and signal-specific manner. Recently, the pro-apoptotic molecule Bim has attracted increasing attention as a pivotal regulator of tissue homeostasis. The Bim expression level is strictly controlled in both transcriptional and post-transcriptional levels. This control is dependent on cell, tissue and apoptotic stimuli. The phenotype of Bim-deficient mice is a systemic lupus erythematosus-like autoimmune disease with an abnormal accumulation of hematopoietic cells. Bim is thus a critical regulator of hematopoietic cells and immune system. Further studies have revealed the critical roles of Bim in various normal and pathological conditions, including bone homeostasis and tumorigenesis. The current understanding of Bim signaling and roles in the maintenance of tissue homeostasis is reviewed in this paper, focusing on the immune system, bone biology and tumorigenesis to illustrate the diversified role of Bim.

  14. Role of ATP in the regulation of cholesterol biogenesis

    International Nuclear Information System (INIS)

    Subba Rao, G.; Ramasarma, T.

    1974-01-01

    Intraperitoneal administration of glucose (4oomg/rat) stimulated the biogenesis of sterols in starved rats while citrate or pyruvate (20mg/rat) did not have any effect. ATP (10mg/ rat) administered intraperitoneally stimulated the incorporation of acetate-1- 14 C into sterols but not of mevalonate-2- 14 C into sterols in starved rats. The results indicate that ATP may play a role in regulating cholesterol biogenesis and it is not acting merely as an energy source. (author)

  15. Cellular copper homeostasis: current concepts on its interplay with glutathione homeostasis and its implication in physiology and human diseases.

    Science.gov (United States)

    Bhattacharjee, Ashima; Chakraborty, Kaustav; Shukla, Aditya

    2017-10-18

    Copper is a trace element essential for almost all living organisms. But the level of intracellular copper needs to be tightly regulated. Dysregulation of cellular copper homeostasis leading to various diseases demonstrates the importance of this tight regulation. Copper homeostasis is regulated not only within the cell but also within individual intracellular compartments. Inactivation of export machinery results in excess copper being redistributed into various intracellular organelles. Recent evidence suggests the involvement of glutathione in playing an important role in regulating copper entry and intracellular copper homeostasis. Therefore interplay of both homeostases might play an important role within the cell. Similar to copper, glutathione balance is tightly regulated within individual cellular compartments. This review explores the existing literature on the role of glutathione in regulating cellular copper homeostasis. On the one hand, interplay of glutathione and copper homeostasis performs an important role in normal physiological processes, for example neuronal differentiation. On the other hand, perturbation of the interplay might play a key role in the pathogenesis of copper homeostasis disorders.

  16. miR-758-5p regulates cholesterol uptake via targeting the CD36 3'UTR.

    Science.gov (United States)

    Li, Bi-Rong; Xia, Lin-Qin; Liu, Jing; Liao, Lin-Ling; Zhang, Yang; Deng, Min; Zhong, Hui-Juan; Feng, Ting-Ting; He, Ping-Ping; Ouyang, Xin-Ping

    2017-12-09

    miR-758-3p plays an important role via regulting ABCA1-mediated cholesterol efflux in atherosclerosis. However, the mechanism of miR-758-5p in cholesterol metabolism is still unclear. Here, we revealed that miR-758-5p decreased total cholesterol accumulation in THP-1 macrophage derived foam cells through markedly reducing cholesterol uptake, and no effect on the cholesterol efflux. Interestingly, computational analysis suggests that CD36 may be a target gene of miR-758-5p. Our study further demonstrated that miR-758-5p decreased CD36 expression at both protein and mRNA levels via targeting the CD36 3'UTR in THP-1 macrophage derived foam cells. The present present study concluded that miR-758-5p decreases lipid accumulation of foam cell via regulating CD36-mediated the cholesterol uptake. Therefore, targeting miR-758-5p may offer a promising strategy to treat atherosclerotic vascular disease. Copyright © 2017. Published by Elsevier Inc.

  17. The regulation of alfalfa saponin extract on key genes involved in hepatic cholesterol metabolism in hyperlipidemic rats.

    Directory of Open Access Journals (Sweden)

    Yinghua Shi

    Full Text Available To investigate the cholesterol-lowering effects of alfalfa saponin extract (ASE and its regulation mechanism on some key genes involved in cholesterol metabolism, 40 healthy 7 weeks old male Sprague Dawley (SD rats were randomly divided into four groups with 10 rats in each group: control group, hyperlipidemic group, ASE treatment group, ASE prevention group. The body weight gain, relative liver weight and serum lipid 1evels of rats were determined. Total cholesterol (TC and total bile acids (TBA levels in liver and feces were also measured. Furthermore, the activity and mRNA expressions of Hmgcr, Acat2, Cyp7a1 and Ldlr were investigated. The results showed the following: (1 The abnormal serum lipid levels in hyperlipidemic rats were ameliorated by ASE administration (both ASE prevention group and treatment group (P<0.05. (2 Both ASE administration to hyperlipidemic rats significantly reduced liver TC and increased liver TBA level (P<0.05. TC and TBA levels in feces of hyperlipidemic rats were remarkably elevated by both ASE administration (P<0.05. (3 mRNA expressions of Hmgcr and Acat2 in the liver of hyperlipidemic rats were remarkably down-regulated (P<0.05, as well as mRNA expressions of Cyp7a1 and Ldlr were dramatically up-regulated by both ASE administration (P<0.05. The activities of these enzymes also paralleled the observed changes in mRNA levels. (4 There was no significant difference between ASE treatment and ASE prevention group for most parameters evaluated. Our present study indicated that ASE had cholesterol-lowering effects. The possible mechanism could be attributed to (1 the down-regulation of Hmgcr and Acat2, as well as up-regulation of Cyp7a1 and Ldlr in the liver of hyperlipidemic rats, which was involved in cholesterol biosynthesis, uptake, and efflux pathway; (2 the increase in excretion of cholesterol. The findings in our study suggested ASE had great potential usefulness as a natural agent for treating hyperlipidemia.

  18. Endogenous ligands for C-type lectin receptors: the true regulators of immune homeostasis.

    Science.gov (United States)

    García-Vallejo, Juan J; van Kooyk, Yvette

    2009-07-01

    C-type lectin receptors (CLRs) have long been known as pattern-recognition receptors implicated in the recognition of pathogens by the innate immune system. However, evidence is accumulating that many CLRs are also able to recognize endogenous 'self' ligands and that this recognition event often plays an important role in immune homeostasis. In the present review, we focus on the human and mouse CLRs for which endogenous ligands have been described. Special attention is given to the signaling events initiated upon recognition of the self ligand and the regulation of glycosylation as a switch modulating CLR recognition, and therefore, immune homeostasis.

  19. CART in the Regulation of Appetite and Energy Homeostasis

    Directory of Open Access Journals (Sweden)

    Jackie eLau

    2014-10-01

    Full Text Available The cocaine- and amphetamine-regulated transcript (CART has been the subject of significant interest for over a decade. Work to decipher the detailed mechanism of CART function has been hampered by the lack of specific pharmacological tools like antagonists and the absence of a specific CART receptor(s. However, extensive research has been devoted to elucidate the role of the CART peptide and it is now evident that CART is a key neurotransmitter and hormone involved in the regulation of diverse biological processes, including food intake, maintenance of body weight, reward and addiction, stress response, psychostimulant effects and endocrine functions1,2. In this review, we focus on knowledge gained on CART’s role in controlling appetite and energy homeostasis, and also address certain species differences between rodents and humans.

  20. DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1.

    Science.gov (United States)

    Wong, Jing Ting; Akhbar, Farzanah; Ng, Amanda Yunn Ee; Tay, Mandy Li-Ian; Loi, Gladys Jing En; Pek, Jun Wei

    2017-10-02

    Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. Here we report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, our study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila.Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. Here, the authors show that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis.

  1. Regulation of intestinal homeostasis by innate immune cells.

    Science.gov (United States)

    Kayama, Hisako; Nishimura, Junichi; Takeda, Kiyoshi

    2013-12-01

    The intestinal immune system has an ability to distinguish between the microbiota and pathogenic bacteria, and then activate pro-inflammatory pathways against pathogens for host defense while remaining unresponsive to the microbiota and dietary antigens. In the intestine, abnormal activation of innate immunity causes development of several inflammatory disorders such as inflammatory bowel diseases (IBD). Thus, activity of innate immunity is finely regulated in the intestine. To date, multiple innate immune cells have been shown to maintain gut homeostasis by preventing inadequate adaptive immune responses in the murine intestine. Additionally, several innate immune subsets, which promote Th1 and Th17 responses and are implicated in the pathogenesis of IBD, have recently been identified in the human intestinal mucosa. The demonstration of both murine and human intestinal innate immune subsets contributing to regulation of adaptive immunity emphasizes the conserved innate immune functions across species and might promote development of the intestinal innate immunity-based clinical therapy.

  2. Cholesterol negatively regulates IL-9-producing CD8+ T cell differentiation and antitumor activity.

    Science.gov (United States)

    Ma, Xingzhe; Bi, Enguang; Huang, Chunjian; Lu, Yong; Xue, Gang; Guo, Xing; Wang, Aibo; Yang, Maojie; Qian, Jianfei; Dong, Chen; Yi, Qing

    2018-05-09

    CD8 + T cells can be polarized into IL-9-secreting (Tc9) cells. We previously showed that adoptive therapy using tumor-specific Tc9 cells generated stronger antitumor responses in mouse melanoma than classical Tc1 cells. To understand why Tc9 cells exert stronger antitumor responses, we used gene profiling to compare Tc9 and Tc1 cells. Tc9 cells expressed different levels of cholesterol synthesis and efflux genes and possessed significantly lower cholesterol content than Tc1 cells. Unique to Tc9, but not other CD8 + or CD4 + T cell subsets, manipulating cholesterol content in polarizing Tc9 cells significantly affected IL-9 expression and Tc9 differentiation and antitumor response in vivo. Mechanistic studies showed that IL-9 was indispensable for Tc9 cell persistence and antitumor effects, and cholesterol or its derivatives inhibited IL-9 expression by activating liver X receptors (LXRs), leading to LXR Sumoylation and reduced p65 binding to Il9 promoter. Our study identifies cholesterol as a critical regulator of Tc9 cell differentiation and function. © 2018 Ma et al.

  3. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Elferink, Ronald P. J. Oude; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux ( TICE) contributes significantly to cholesterol removal in mice. Our aim

  4. Regulation of direct transintestinal cholesterol excretion in mice

    NARCIS (Netherlands)

    van der Velde, Astrid E.; Vrins, Carlos L. J.; van den Oever, Karin; Seemann, Ingar; Oude Elferink, Ronald P. J.; van Eck, Miranda; Kuipers, Folkert; Groen, Albert K.

    2008-01-01

    Biliary secretion is generally considered to be an obligate step in the pathway of excess cholesterol excretion from the body. We have recently shown that an alternative route exists. Direct transintestinal cholesterol efflux (TICE) contributes significantly to cholesterol removal in mice. Our aim

  5. Hypolipidemic effect of dietary pea proteins: Impact on genes regulating hepatic lipid metabolism.

    Science.gov (United States)

    Rigamonti, Elena; Parolini, Cinzia; Marchesi, Marta; Diani, Erika; Brambilla, Stefano; Sirtori, Cesare R; Chiesa, Giulia

    2010-05-01

    Controversial data on the lipid-lowering effect of dietary pea proteins have been provided and the mechanisms behind this effect are not completely understood. The aim of the study was to evaluate a possible hypolipidemic activity of a pea protein isolate and to determine whether pea proteins could affect the hepatic lipid metabolism through regulation of genes involved in cholesterol and fatty acid homeostasis. Rats were fed Nath's hypercholesterolemic diets for 28 days, the protein sources being casein or a pea protein isolate from Pisum sativum. After 14 and 28 days of dietary treatment, rats fed pea proteins had markedly lower plasma cholesterol and triglyceride levels than rats fed casein (pPea protein-fed rats displayed higher hepatic mRNA levels of LDL receptor versus those fed casein (ppea protein-fed rats than in rats fed casein (ppea proteins in rats. Moreover, pea proteins appear to affect cellular lipid homeostasis by upregulating genes involved in hepatic cholesterol uptake and by downregulating fatty acid synthesis genes.

  6. Serotonin 2c receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis

    Science.gov (United States)

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor a...

  7. Regulation of vitamin D homeostasis: implications for the immune system.

    Science.gov (United States)

    van Etten, Evelyne; Stoffels, Katinka; Gysemans, Conny; Mathieu, Chantal; Overbergh, Lut

    2008-10-01

    Vitamin D homeostasis in the immune system is the focus of this review. The production of both the activating (25- and 1alpha-hydroxylase) and the metabolizing (24-hydroxylase) enzymes by cells of the immune system itself, indicates that 1,25(OH)(2)D(3) can be produced locally in immune reaction sites. Moreover, the strict regulation of these enzymes by immune signals is highly suggestive for an autocrine/paracrine role in the immune system, and opens new treatment possibilities.

  8. MicroRNA-20a/b regulates cholesterol efflux through post-transcriptional repression of ATP-binding cassette transporter A1.

    Science.gov (United States)

    Liang, Bin; Wang, Xin; Song, Xiaosu; Bai, Rui; Yang, Huiyu; Yang, Zhiming; Xiao, Chuanshi; Bian, Yunfei

    2017-09-01

    ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in reverse cholesterol transport and exhibits anti-atherosclerosis effects. Some microRNAs (miRs) regulate ABCA1 expression, and recent studies have shown that miR-20a/b might play a critical role in atherosclerotic diseases. Here, we attempted to clarify the potential contribution of miR-20a/b in post-transcriptional regulation of ABCA1, cholesterol efflux, and atherosclerosis. We performed bioinformatics analysis and found that miR-20a/b was highly conserved and directly bound to ABCA1 mRNA with low binding free energy. Luciferase-reporter assay also confirmed that miR-20a/b significantly reduced luciferase activity associated with the ABCA1 3' untranslated region reporter construct. Additionally, miR-20a/b decreased ABCA1 expression, which, in turn, decreased cholesterol efflux and increased cholesterol content in THP-1 and RAW 264.7 macrophage-derived foam cells. In contrast, miR-20a/b inhibitors increased ABCA1 expression and cholesterol efflux, decreased cholesterol content, and inhibited foam-cell formation. Consistent with our in vitro results, miR-20a/b-treated ApoE -/- mice showed decreased ABCA1expression in the liver and reductions of reverse cholesterol transport in vivo. Furthermore, miR-20a/b regulated the formation of nascent high-density lipoprotein and promoted atherosclerotic development, whereas miR-20a/b knockdown attenuated atherosclerotic formation. miR-20 is a new miRNA capable of targeting ABCA1 and regulating ABCA1 expression. Therefore, miR-20 inhibition constitutes a new strategy for ABCA1-based treatment of atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    International Nuclear Information System (INIS)

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S.

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with [ 14 C]sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans

  10. Caveolin-1-mediated apolipoprotein A-I membrane binding sites are not required for cholesterol efflux.

    Directory of Open Access Journals (Sweden)

    Soazig Le Lay

    Full Text Available Caveolin-1 (Cav1, a structural protein required for the formation of invaginated membrane domains known as caveolae, has been implicated in cholesterol trafficking and homeostasis. Here we investigated the contribution of Cav1 to apolipoprotein A-I (apoA-I cell surface binding and intracellular processing using mouse embryonic fibroblasts (MEFs derived from wild type (WT or Cav1-deficient (Cav1(-/- animals. We found that cells expressing Cav1 have 2.6-fold more apoA-I binding sites than Cav1(-/- cells although these additional binding sites are not associated with detergent-free lipid rafts. Further, Cav1-mediated binding targets apoA-I for internalization and degradation and these processes are not correlated to cholesterol efflux. Despite lower apoA-I binding, cholesterol efflux from Cav1(-/- MEFs is 1.7-fold higher than from WT MEFs. Stimulation of ABCA1 expression with an LXR agonist enhances cholesterol efflux from both WT and Cav1(-/- cells without increasing apoA-I surface binding or affecting apoA-I processing. Our results indicate that there are at least two independent lipid binding sites for apoA-I; Cav1-mediated apoA-I surface binding and uptake is not linked to cholesterol efflux, indicating that membrane domains other than caveolae regulate ABCA1-mediated cholesterol efflux.

  11. Melanocortin signaling in the CNS directly regulates circulating cholesterol

    OpenAIRE

    Perez-Tilve, Diego; Hofmann, Susanna M; Basford, Joshua; Nogueiras, Ruben; Pfluger, Paul T; Patterson, James T; Grant, Erin; Wilson-Perez, Hilary E; Granholm, Norman A; Arnold, Myrtha; Trevaskis, James L; Butler, Andrew A; Davidson, William S; Woods, Stephen C; Benoit, Stephen C

    2010-01-01

    Cholesterol circulates in the blood in association with triglycerides and other lipids, and elevated blood low-density lipoprotein cholesterol carries a risk for metabolic and cardiovascular disorders, whereas high-density lipoprotein (HDL) cholesterol in the blood is thought to be beneficial. Circulating cholesterol is the balance among dietary cholesterol absorption, hepatic synthesis and secretion, and the metabolism of lipoproteins by various tissues. We found that the CNS is also an impo...

  12. Free cholesterol and cholesterol esters in bovine oocytes: Implications in survival and membrane raft organization after cryopreservation.

    Directory of Open Access Journals (Sweden)

    Jorgelina Buschiazzo

    of cholesterol homeostasis within the COC. Modulation of membrane cholesterol by MβCD improved survival of bovine oocytes and preserved integrity of GM1-related rafts after vitrification.

  13. Carbonic anhydrase 5 regulates acid-base homeostasis in zebrafish.

    Directory of Open Access Journals (Sweden)

    Ruben Postel

    Full Text Available The regulation of the acid-base balance in cells is essential for proper cellular homeostasis. Disturbed acid-base balance directly affects cellular physiology, which often results in various pathological conditions. In every living organism, the protein family of carbonic anhydrases regulate a broad variety of homeostatic processes. Here we describe the identification, mapping and cloning of a zebrafish carbonic anhydrase 5 (ca5 mutation, collapse of fins (cof, which causes initially a collapse of the medial fins followed by necrosis and rapid degeneration of the embryo. These phenotypical characteristics can be mimicked in wild-type embryos by acetazolamide treatment, suggesting that CA5 activity in zebrafish is essential for a proper development. In addition we show that CA5 regulates acid-base balance during embryonic development, since lowering the pH can compensate for the loss of CA5 activity. Identification of selective modulators of CA5 activity could have a major impact on the development of new therapeutics involved in the treatment of a variety of disorders.

  14. MicroRNAs and the regulation of intestinal homeostasis.

    Science.gov (United States)

    Runtsch, Marah C; Round, June L; O'Connell, Ryan M

    2014-01-01

    The mammalian intestinal tract is a unique site in which a large portion of our immune system and the 10(14) commensal organisms that make up the microbiota reside in intimate contact with each other. Despite the potential for inflammatory immune responses, this complex interface contains host immune cells and epithelial cells interacting with the microbiota in a manner that promotes symbiosis. Due to the complexity of the cell types and microorganisms involved, this process requires elaborate regulatory mechanisms to ensure mutualism and prevent disease. While many studies have described critical roles for protein regulators of intestinal homeostasis, recent reports indicate that non-coding RNAs are also major contributors to optimal host-commensal interactions. In particular, there is emerging evidence that microRNAs (miRNAs) have evolved to fine tune host gene expression networks and signaling pathways that modulate cellular physiology in the intestinal tract. Here, we review our present knowledge of the influence miRNAs have on both immune and epithelial cell biology in the mammalian intestines and the impact this has on the microbiota. We also discuss a need for further studies to decipher the functions of specific miRNAs within the gut to better understand cellular mechanisms that promote intestinal homeostasis and to identify potential molecular targets underlying diseases such as inflammatory bowel disease and colorectal cancer.

  15. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila.

    Science.gov (United States)

    Wen, Jung-Kun; Wang, Yi-Ting; Chan, Chih-Chiang; Hsieh, Cheng-Wen; Liao, Hsiao-Man; Hung, Chin-Chun; Chen, Guang-Chao

    2017-11-16

    Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.

  16. Requirement of the ATM/p53 tumor suppressor pathway for glucose homeostasis.

    Science.gov (United States)

    Armata, Heather L; Golebiowski, Diane; Jung, Dae Young; Ko, Hwi Jin; Kim, Jason K; Sluss, Hayla K

    2010-12-01

    Ataxia telangiectasia (A-T) patients can develop multiple clinical pathologies, including neuronal degeneration, an elevated risk of cancer, telangiectasias, and growth retardation. Patients with A-T can also exhibit an increased risk of insulin resistance and type 2 diabetes. The ATM protein kinase, the product of the gene mutated in A-T patients (Atm), has been implicated in metabolic disease, which is characterized by insulin resistance and increased cholesterol and lipid levels, blood pressure, and atherosclerosis. ATM phosphorylates the p53 tumor suppressor on a site (Ser15) that regulates transcription activity. To test whether the ATM pathway that regulates insulin resistance is mediated by p53 phosphorylation, we examined insulin sensitivity in mice with a germ line mutation that replaces the p53 phosphorylation site with alanine. The loss of p53 Ser18 (murine Ser15) led to increased metabolic stress, including severe defects in glucose homeostasis. The mice developed glucose intolerance and insulin resistance. The insulin resistance correlated with the loss of antioxidant gene expression and decreased insulin signaling. N-Acetyl cysteine (NAC) treatment restored insulin signaling in late-passage primary fibroblasts. The addition of an antioxidant in the diet rendered the p53 Ser18-deficient mice glucose tolerant. This analysis demonstrates that p53 phosphorylation on an ATM site is an important mechanism in the physiological regulation of glucose homeostasis.

  17. Perturbed cholesterol and vesicular trafficking associated with dengue blocking in Wolbachia-infected Aedes aegypti cells.

    Science.gov (United States)

    Geoghegan, Vincent; Stainton, Kirsty; Rainey, Stephanie M; Ant, Thomas H; Dowle, Adam A; Larson, Tony; Hester, Svenja; Charles, Philip D; Thomas, Benjamin; Sinkins, Steven P

    2017-09-13

    Wolbachia are intracellular maternally inherited bacteria that can spread through insect populations and block virus transmission by mosquitoes, providing an important approach to dengue control. To better understand the mechanisms of virus inhibition, we here perform proteomic quantification of the effects of Wolbachia in Aedes aegypti mosquito cells and midgut. Perturbations are observed in vesicular trafficking, lipid metabolism and in the endoplasmic reticulum that could impact viral entry and replication. Wolbachia-infected cells display a differential cholesterol profile, including elevated levels of esterified cholesterol, that is consistent with perturbed intracellular cholesterol trafficking. Cyclodextrins have been shown to reverse lipid accumulation defects in cells with disrupted cholesterol homeostasis. Treatment of Wolbachia-infected Ae. aegypti cells with 2-hydroxypropyl-β-cyclodextrin restores dengue replication in Wolbachia-carrying cells, suggesting dengue is inhibited in Wolbachia-infected cells by localised cholesterol accumulation. These results demonstrate parallels between the cellular Wolbachia viral inhibition phenotype and lipid storage genetic disorders. Wolbachia infection of mosquitoes can block dengue virus infection and is tested in field trials, but the mechanism of action is unclear. Using proteomics, Geoghegan et al. here identify effects of Wolbachia on cholesterol homeostasis and dengue virus replication in Aedes aegypti.

  18. Serotonin 2C receptors in pro-opiomelanocortin neurons regulate energy and glucose homeostasis.

    Science.gov (United States)

    Berglund, Eric D; Liu, Chen; Sohn, Jong-Woo; Liu, Tiemin; Kim, Mi Hwa; Lee, Charlotte E; Vianna, Claudia R; Williams, Kevin W; Xu, Yong; Elmquist, Joel K

    2013-12-01

    Energy and glucose homeostasis are regulated by central serotonin 2C receptors. These receptors are attractive pharmacological targets for the treatment of obesity; however, the identity of the serotonin 2C receptor-expressing neurons that mediate the effects of serotonin and serotonin 2C receptor agonists on energy and glucose homeostasis are unknown. Here, we show that mice lacking serotonin 2C receptors (Htr2c) specifically in pro-opiomelanocortin (POMC) neurons had normal body weight but developed glucoregulatory defects including hyperinsulinemia, hyperglucagonemia, hyperglycemia, and insulin resistance. Moreover, these mice did not show anorectic responses to serotonergic agents that suppress appetite and developed hyperphagia and obesity when they were fed a high-fat/high-sugar diet. A requirement of serotonin 2C receptors in POMC neurons for the maintenance of normal energy and glucose homeostasis was further demonstrated when Htr2c loss was induced in POMC neurons in adult mice using a tamoxifen-inducible POMC-cre system. These data demonstrate that serotonin 2C receptor-expressing POMC neurons are required to control energy and glucose homeostasis and implicate POMC neurons as the target for the effect of serotonin 2C receptor agonists on weight-loss induction and improved glycemic control.

  19. Regulation of biliary cholesterol secretion and reverse cholesterol transport

    NARCIS (Netherlands)

    Dikkers, Arne

    2016-01-01

    According to the World Health Organization the number one cause of death throughout the world is cardiovascular disease. Therefore, there is an urgent need for new therapeutic strategies to prevent and treat cardiovascular disease. One possible way is to target the HDL-driven reverse cholesterol

  20. Intra-islet glucagon secretion and action in the regulation of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Qinghua eWang

    2013-01-01

    Full Text Available Glucagon, a key hormone in the regulation of glucose homeostasis, acts as a counter-regulatory hormone to insulin by promoting hepatic glucose output. Under normal conditions, insulin and glucagon operate in concert to maintain the glucose level within a narrow physiological range. In diabetes, however, while insulin secretion or action is insufficient, the production and secretion of glucagon are excessive, contributing to the development of diabetic hyperglycemia. Within an islet, intra-islet insulin, in cooperation with intra-islet GABA, suppresses glucagon secretion via direct modulation of -cell intracellular signaling pathways involving Akt activation, GABA receptor phosphorylation and the receptor plasma membrane translocation, while intra-islet glucagon plays an important role in modulating β-cell function and insulin secretion. Defects in the insulin-glucagon fine-tuning machinery may result in β-cell glucose incompetence, leading to unsuppressed glucagon secretion and subsequent hyperglycemia, which often occur under extreme conditions of glucose influx or efflux. Therefore, deciphering the precise molecular mechanisms underlying glucagon secretion and action will facilitate our understanding of glucagon physiology, in particular, its role in regulating islet β-cell function, and hence the mechanisms behind body glucose homeostasis.

  1. Lipoprotein lipase in hypothalamus is a key regulator of body weight gain and glucose homeostasis in mice.

    Science.gov (United States)

    Laperrousaz, Elise; Moullé, Valentine S; Denis, Raphaël G; Kassis, Nadim; Berland, Chloé; Colsch, Benoit; Fioramonti, Xavier; Philippe, Erwann; Lacombe, Amélie; Vanacker, Charlotte; Butin, Noémie; Bruce, Kimberley D; Wang, Hong; Wang, Yongping; Gao, Yuanqing; Garcia-Caceres, Cristina; Prévot, Vincent; Tschöp, Matthias H; Eckel, Robert H; Le Stunff, Hervé; Luquet, Serge; Magnan, Christophe; Cruciani-Guglielmacci, Céline

    2017-07-01

    Regulation of energy balance involves the participation of many factors, including nutrients, among which are circulating lipids, acting as peripheral signals informing the central nervous system of the energy status of the organism. It has been shown that neuronal lipoprotein lipase (LPL) participates in the control of energy balance by hydrolysing lipid particles enriched in triacylglycerols. Here, we tested the hypothesis that LPL in the mediobasal hypothalamus (MBH), a well-known nucleus implicated in the regulation of metabolic homeostasis, could also contribute to the regulation of body weight and glucose homeostasis. We injected an adeno-associated virus (AAV) expressing Cre-green fluorescent protein into the MBH of Lpl-floxed mice (and wild-type mice) to specifically decrease LPL activity in the MBH. In parallel, we injected an AAV overexpressing Lpl into the MBH of wild-type mice. We then studied energy homeostasis and hypothalamic ceramide content. The partial deletion of Lpl in the MBH in mice led to an increase in body weight compared with controls (37.72 ± 0.7 g vs 28.46 ± 0.12, p < 0.001) associated with a decrease in locomotor activity. These mice developed hyperinsulinaemia and glucose intolerance. This phenotype also displayed reduced expression of Cers1 in the hypothalamus as well as decreased concentration of several C18 species of ceramides and a 3-fold decrease in total ceramide intensity. Conversely, overexpression of Lpl specifically in the MBH induced a decrease in body weight. Our study shows that LPL in the MBH is an important regulator of body weight and glucose homeostasis.

  2. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages.

    Science.gov (United States)

    Xu, Xiaoyang; Zhang, Aolin; Halquist, Matthew S; Yuan, Xinxu; Henderson, Scott C; Dewey, William L; Li, Pin-Lan; Li, Ningjun; Zhang, Fan

    2017-02-01

    Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis. © 2016 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  3. Negative regulation of Toll-like receptor signaling plays an essential role in the homeostasis of the intestine

    OpenAIRE

    Biswas, Amlan; Wilmanski, Jeanette; Forsman, Huamei; Hrncir, Tomas; Hao, Liming; Tlaskalova-Hogenova, Helena; Kobayashi, Koichi S.

    2010-01-01

    A healthy intestinal tract is characterized by controlled homeostasis due to the balanced interaction between commensal bacteria and the host mucosal immune system. Human and animal model studies have supported the hypothesis that breakdown of this homeostasis may underlie the pathogenesis of inflammatory bowel diseases (IBDs). However it is not well understood how intestinal microflora stimulate the intestinal mucosal immune system and how such activation is regulated. Using a spontaneous, c...

  4. Pitavastatin Differentially Modulates MicroRNA-Associated Cholesterol Transport Proteins in Macrophages.

    Directory of Open Access Journals (Sweden)

    Haijun Zhang

    Full Text Available There is emerging evidence identifying microRNAs (miRNAs as mediators of statin-induced cholesterol efflux, notably through the ATP-binding cassette transporter A1 (ABCA1 in macrophages. The objective of this study was to assess the impact of an HMG-CoA reductase inhibitor, pitavastatin, on macrophage miRNAs in the presence and absence of oxidized-LDL, a hallmark of a pro-atherogenic milieu. Treatment of human THP-1 cells with pitavastatin prevented the oxLDL-mediated suppression of miR-33a, -33b and -758 mRNA in these cells, an effect which was not uniquely attributable to induction of SREBP2. Induction of ABCA1 mRNA and protein by oxLDL was inhibited (30% by pitavastatin, while oxLDL or pitavastatin alone significantly induced and repressed ABCA1 expression, respectively. These findings are consistent with previous reports in macrophages. miRNA profiling was also performed using a miRNA array. We identified specific miRNAs which were up-regulated (122 and down-regulated (107 in THP-1 cells treated with oxLDL plus pitavastatin versus oxLDL alone, indicating distinct regulatory networks in these cells. Moreover, several of the differentially expressed miRNAs identified are functionally associated with cholesterol trafficking (six miRNAs in cells treated with oxLDL versus oxLDL plus pitavastatin. Our findings indicate that pitavastatin can differentially modulate miRNA in the presence of oxLDL; and, our results provide evidence that the net effect on cholesterol homeostasis is mediated by a network of miRNAs.

  5. A Cholesterol-Sensitive Regulator of the Androgen Receptor

    Science.gov (United States)

    2010-07-01

    Oncogene (2010) 29, 3745–3747; doi:10.1038/onc.2010.132; published online 3 May 2010 Cholesterol is a sterol that serves as a metabolic precursor to other...bioactive sterols , such as nuclear receptor ligands, and also has a major role in plasma membrane structure. Cholesterol and long- chain...cholesterol synthesis (these drugs are generically termed ‘statins’), have been reported to inhibit cancer incidence or progres- sion in some studies. Although

  6. PfsR is a key regulator of iron homeostasis in Synechocystis PCC 6803.

    Directory of Open Access Journals (Sweden)

    Dan Cheng

    Full Text Available Iron is an essential cofactor in numerous cellular processes. The iron deficiency in the oceans affects the primary productivity of phytoplankton including cyanobacteria. In this study, we examined the function of PfsR, a TetR family transcriptional regulator, in iron homeostasis of the cyanobacterium Synechocystis PCC 6803. Compared with the wild type, the pfsR deletion mutant displayed stronger tolerance to iron limitation and accumulated significantly more chlorophyll a, carotenoid, and phycocyanin under iron-limiting conditions. The mutant also maintained more photosystem I and photosystem II complexes than the wild type after iron deprivation. In addition, the activities of photosystem I and photosystem II were much higher in pfsR deletion mutant than in wild-type cells under iron-limiting conditions. The transcripts of pfsR were enhanced by iron limitation and inactivation of the gene affected pronouncedly expression of fut genes (encoding a ferric iron transporter, feoB (encoding a ferrous iron transporter, bfr genes (encoding bacterioferritins, ho genes (encoding heme oxygenases, isiA (encoding a chlorophyll-binding protein, and furA (encoding a ferric uptake regulator. The iron quota in pfsR deletion mutant cells was higher than in wild-type cells both before and after exposure to iron limitation. Electrophoretic mobility shift assays showed that PfsR bound to its own promoter and thereby auto-regulated its own expression. These data suggest that PfsR is a critical regulator of iron homeostasis.

  7. Hypothalamic roles of mTOR complex I: Integration of nutrient and hormone signals to regulate energy homeostasis

    Science.gov (United States)

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight...

  8. TIPE2, a negative regulator of innate and adaptive immunity that maintains immune homeostasis.

    Science.gov (United States)

    Sun, Honghong; Gong, Shunyou; Carmody, Ruaidhri J; Hilliard, Anja; Li, Li; Sun, Jing; Kong, Li; Xu, Lingyun; Hilliard, Brendan; Hu, Shimin; Shen, Hao; Yang, Xiaolu; Chen, Youhai H

    2008-05-02

    Immune homeostasis is essential for the normal functioning of the immune system, and its breakdown leads to fatal inflammatory diseases. We report here the identification of a member of the tumor necrosis factor-alpha-induced protein-8 (TNFAIP8) family, designated TIPE2, that is required for maintaining immune homeostasis. TIPE2 is preferentially expressed in lymphoid tissues, and its deletion in mice leads to multiorgan inflammation, splenomegaly, and premature death. TIPE2-deficient animals are hypersensitive to septic shock, and TIPE2-deficient cells are hyper-responsive to Toll-like receptor (TLR) and T cell receptor (TCR) activation. Importantly, TIPE2 binds to caspase-8 and inhibits activating protein-1 and nuclear factor-kappaB activation while promoting Fas-induced apoptosis. Inhibiting caspase-8 significantly blocks the hyper-responsiveness of TIPE2-deficient cells. These results establish that TIPE2 is an essential negative regulator of TLR and TCR function, and its selective expression in the immune system prevents hyperresponsiveness and maintains immune homeostasis.

  9. Cholesterol up-regulates neuronal G protein-gated inwardly rectifying potassium (GIRK) channel activity in the hippocampus.

    Science.gov (United States)

    Bukiya, Anna N; Durdagi, Serdar; Noskov, Sergei; Rosenhouse-Dantsker, Avia

    2017-04-14

    Hypercholesterolemia is a well known risk factor for the development of neurodegenerative disease. However, the underlying mechanisms are mostly unknown. In recent years, it has become increasingly evident that cholesterol-driven effects on physiology and pathophysiology derive from its ability to alter the function of a variety of membrane proteins including ion channels. Yet, the effect of cholesterol on G protein-gated inwardly rectifying potassium (GIRK) channels expressed in the brain is unknown. GIRK channels mediate the actions of inhibitory brain neurotransmitters. As a result, loss of GIRK function can enhance neuron excitability, whereas gain of GIRK function can reduce neuronal activity. Here we show that in rats on a high-cholesterol diet, cholesterol levels in hippocampal neurons are increased. We also demonstrate that cholesterol plays a critical role in modulating neuronal GIRK currents. Specifically, cholesterol enrichment of rat hippocampal neurons resulted in enhanced channel activity. In accordance, elevated currents upon cholesterol enrichment were also observed in Xenopus oocytes expressing GIRK2 channels, the primary GIRK subunit expressed in the brain. Furthermore, using planar lipid bilayers, we show that although cholesterol did not affect the unitary conductance of GIRK2, it significantly enhanced the frequency of channel openings. Last, combining computational and functional approaches, we identified two putative cholesterol-binding sites in the transmembrane domain of GIRK2. These findings establish that cholesterol plays a critical role in modulating GIRK activity in the brain. Because up-regulation of GIRK function can reduce neuronal activity, our findings may lead to novel approaches for prevention and therapy of cholesterol-driven neurodegenerative disease. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Delineating the regulation of energy homeostasis using hypothalamic cell models.

    Science.gov (United States)

    Wellhauser, Leigh; Gojska, Nicole M; Belsham, Denise D

    2015-01-01

    Attesting to its intimate peripheral connections, hypothalamic neurons integrate nutritional and hormonal cues to effectively manage energy homeostasis according to the overall status of the system. Extensive progress in the identification of essential transcriptional and post-translational mechanisms regulating the controlled expression and actions of hypothalamic neuropeptides has been identified through the use of animal and cell models. This review will introduce the basic techniques of hypothalamic investigation both in vivo and in vitro and will briefly highlight the key advantages and challenges of their use. Further emphasis will be place on the use of immortalized models of hypothalamic neurons for in vitro study of feeding regulation, with a particular focus on cell lines proving themselves most fruitful in deciphering fundamental basics of NPY/AgRP, Proglucagon, and POMC neuropeptide function. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Adopted orphans as regulators of inflammation, immunity and skeletal homeostasis.

    Science.gov (United States)

    Ipseiz, Natacha; Scholtysek, Carina; Culemann, Stephan; Krönke, Gerhard

    2014-01-01

    Adopted orphan nuclear receptors, such as peroxisome proliferator-activated receptors (PPARs) and liver X receptors (LXRs), have emerged as key regulators of inflammation and immunity and likewise control skeletal homeostasis. These properties render them attractive targets for the therapy of various inflammatory and autoimmune diseases affecting the musculoskeletal system. This review summarises the current knowledge on the role of these families of receptors during innate and adaptive immunity as well as during the control of bone turnover and discuss the potential use of targeting these molecules during the treatment of chronic diseases such as osteoarthritis, rheumatoid arthritis and osteoporosis.

  12. Cholesterol in the retina: the best is yet to come

    Science.gov (United States)

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  13. Neuroimmune regulation during intestinal development and homeostasis.

    Science.gov (United States)

    Veiga-Fernandes, Henrique; Pachnis, Vassilis

    2017-02-01

    Interactions between the nervous system and immune system are required for organ function and homeostasis. Evidence suggests that enteric neurons and intestinal immune cells share common regulatory mechanisms and can coordinate their responses to developmental challenges and environmental aggressions. These discoveries shed light on the physiology of system interactions and open novel perspectives for therapy designs that target underappreciated neurological-immunological commonalities. Here we highlight findings that address the importance of neuroimmune cell units (NICUs) in intestinal development, homeostasis and disease.

  14. Impact of a chronic ingestion of radionuclides on cholesterol metabolism in the rat: example of depleted uranium and cesium 137

    International Nuclear Information System (INIS)

    Racine, Radjini

    2009-01-01

    Depleted uranium (DU) and cesium-137 ( 137 Cs) are radionuclides spread in the environment due to industrial activities, incidents or accidents. This pollution sets a risk of human exposure to low levels of radiations through contaminated foodstuff. The impact of a chronic ingestion of DU or 137 Cs on cholesterol metabolism in the liver and the brain has been studied. Indeed, cholesterol is crucial in physiology, being a component of cell membranes and a precursor to numerous molecules (bile acids...). Disruption of its metabolism is associated to many pathologies such as atherosclerosis or Alzheimer disease. Rats daily ingested a low level of DU or 137 Cs over 9 months. For each radionuclide, a reference model (rats contaminated since adulthood) and a more sensitive model (hypercholesterolemic or contaminated since fetal life) were studied. The effects mainly consist of changes in gene expression or enzymatic activity of various actors of cholesterol metabolism. DU mainly affects one catabolism enzyme in both models, as well as membrane transporters and regulation factors. 137 Cs mainly affects the storage enzyme in both models as well as catabolism enzymes, apolipoproteins, and regulation factors. No change in the plasma profile or in the tissue concentration of cholesterol (hepatic/cerebral) is recorded, whatever the model and the radionuclide. Thus, a chronic internal contamination with DU or 137 Cs induces molecular modifications in cholesterol metabolism in the rat, without affecting its homeostasis or the general health status in all of our experimental models. (author)

  15. Neuronal expression of glucosylceramide synthase in central nervous system regulates body weight and energy homeostasis.

    Science.gov (United States)

    Nordström, Viola; Willershäuser, Monja; Herzer, Silke; Rozman, Jan; von Bohlen Und Halbach, Oliver; Meldner, Sascha; Rothermel, Ulrike; Kaden, Sylvia; Roth, Fabian C; Waldeck, Clemens; Gretz, Norbert; de Angelis, Martin Hrabě; Draguhn, Andreas; Klingenspor, Martin; Gröne, Hermann-Josef; Jennemann, Richard

    2013-01-01

    Hypothalamic neurons are main regulators of energy homeostasis. Neuronal function essentially depends on plasma membrane-located gangliosides. The present work demonstrates that hypothalamic integration of metabolic signals requires neuronal expression of glucosylceramide synthase (GCS; UDP-glucose:ceramide glucosyltransferase). As a major mechanism of central nervous system (CNS) metabolic control, we demonstrate that GCS-derived gangliosides interacting with leptin receptors (ObR) in the neuronal membrane modulate leptin-stimulated formation of signaling metabolites in hypothalamic neurons. Furthermore, ganglioside-depleted hypothalamic neurons fail to adapt their activity (c-Fos) in response to alterations in peripheral energy signals. Consequently, mice with inducible forebrain neuron-specific deletion of the UDP-glucose:ceramide glucosyltransferase gene (Ugcg) display obesity, hypothermia, and lower sympathetic activity. Recombinant adeno-associated virus (rAAV)-mediated Ugcg delivery to the arcuate nucleus (Arc) significantly ameliorated obesity, specifying gangliosides as seminal components for hypothalamic regulation of body energy homeostasis.

  16. Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Kent AP

    2011-04-01

    Full Text Available Anthony P Kent, Ioannis M StylianouDepartment of Medicine and Institute for Translational Medicine and Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USAAbstract: Scavenger receptor class B member 1 (SR-BI, also known as SCARB1 is the primary receptor for the selective uptake of cholesterol from high-density lipoprotein (HDL. SR-BI is present in several key tissues; however, its presence and function in the liver is deemed the most relevant for protection against atherosclerosis. Cholesterol is transferred from HDL via SR-BI to the liver, which ultimately results in the excretion of cholesterol via bile and feces in what is known as the reverse cholesterol transport pathway. Much of our knowledge of SR-BI hepatic function and regulation is derived from mouse models and in vitro characterization. Multiple independent regulatory mechanisms of SR-BI have been discovered that operate at the transcriptional and post-transcriptional levels. In this review we summarize the critical discoveries relating to hepatic SR-BI cholesterol metabolism, atherosclerosis, and regulation of SR-BI, as well as alternative functions that may indirectly affect atherosclerosis.Keywords: SR-BI, SCARB1, lipids, atherosclerosis, CAD, mouse models

  17. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Chen

    Full Text Available Metabolic syndrome (MetS is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1 regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  18. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins.

    Science.gov (United States)

    Chen, Wei-Ming; Sheu, Wayne H-H; Tseng, Pei-Chi; Lee, Tzong-Shyuan; Lee, Wen-Jane; Chang, Pey-Jium; Chiang, An-Na

    2016-01-01

    Metabolic syndrome (MetS) is a complicated health problem that encompasses a variety of metabolic disorders. In this study, we analyzed the relationship between the major biochemical parameters associated with MetS and circulating levels of microRNA (miR)-33, miR-103, and miR-155. We found that miRNA-33 levels were positively correlated with levels of fasting blood glucose, glycosylated hemoglobin A1c, total cholesterol, LDL-cholesterol, and triacylglycerol, but negatively correlated with HDL-cholesterol levels. In the cellular study, miR-33 levels were increased in macrophages treated with high glucose and cholesterol-lowering drugs atorvastatin and pitavastatin. miR-33 has been reported to play an essential role in cholesterol homeostasis through ATP-binding cassette transporter A1 (ABCA1) regulation and reverse cholesterol transport. However, the molecular mechanism underlying the linkage between miR-33 and statin treatment remains unclear. In the present study, we investigated whether atorvastatin and pitavastatin exert their functions through the modulation of miR-33 and ABCA1-mediated cholesterol efflux from macrophages. The results showed that treatment of the statins up-regulated miR-33 expression, but down-regulated ABCA1 mRNA levels in RAW264.7 cells and bone marrow-derived macrophages. Statin-mediated ABCA1 regulation occurs at the post-transcriptional level through targeting of the 3'-UTR of the ABCA1 transcript by miR-33. Additionally, we found significant down-regulation of ABCA1 protein expression in macrophages treated with statins. Finally, we showed that high glucose and statin treatment significantly suppressed cholesterol efflux from macrophages. These findings have highlighted the complexity of statins, which may exert detrimental effects on metabolic abnormalities through regulation of miR-33 target genes.

  19. Localization and role of NPC1L1 in cholesterol absorption in human intestine.

    Science.gov (United States)

    Sané, Alain Théophile; Sinnett, Daniel; Delvin, Edgard; Bendayan, Moise; Marcil, Valérie; Ménard, Daniel; Beaulieu, Jean-François; Levy, Emile

    2006-10-01

    Recent studies have documented the presence of Niemann-Pick C1-Like 1 (NPC1L1) in the small intestine and its capacity to transport cholesterol in mice and rats. The current investigation was undertaken to explore the localization and function of NPC1L1 in human enterocytes. Cell fractionation experiments revealed an NPC1L1 association with apical membrane of the enterocyte in human jejunum. Signal was also detected in lysosomes, endosomes, and mitochondria. Confirmation of cellular NPC1L1 distribution was obtained by immunocytochemistry. Knockdown of NPC1L1 caused a decline in the ability of Caco-2 cells to capture micellar [(14)C]free cholesterol. Furthermore, this NPC1L1 suppression resulted in increased and decreased mRNA levels and activity of HMG-CoA reductase, the rate-limiting step in cholesterol synthesis, and of ACAT, the key enzyme in cholesterol esterification, respectively. An increase was also noted in the transcriptional factor sterol-regulatory element binding protein that modulates cholesterol homeostasis. Efforts were devoted to define the impact of NPC1L1 knockdown on other mediators of cholesterol uptake. RT-PCR evidence is presented to show the significant decrease in the levels of scavenger receptor class B type I (SR-BI) with no changes in ABCA1, ABCG5, and cluster determinant 36 in NPC1L1-deficient Caco-2 cells. Together, our data suggest that NPC1L1 contributes to intestinal cholesterol homeostasis and possibly cooperates with SR-BI to mediate cholesterol absorption in humans.

  20. Identification of the C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol synthesis in HepG2 cells

    International Nuclear Information System (INIS)

    Sun, Shaowei; Wen, Juan; Qiu, Fei; Yin, Yufang; Xu, Guina; Li, Tianping; Nie, Juan; Xiong, Guozuo; Zhang, Caiping; Liao, Duangfang; Chen, Jianxiong; Tuo, Qinhui

    2016-01-01

    Daxx is a highly conserved nuclear transcriptional factor, which has been implicated in many nuclear processes including transcription and cell cycle regulation. Our previous study demonstrated Daxx also plays a role in regulation of intracellular cholesterol content. Daxx contains several domains that are essential for interaction with a growing number of proteins. To delineate the underlying mechanism of hypocholesterolemic activity of Daxx, we constructed a set of plasmids which can be used to overexpress different fragments of Daxx and transfected to HepG2 cells. We found that the C- terminal region Daxx626–740 clearly reduced intracellular cholesterol levels and inhibited the expression of SREBPs and SCAP. In GST pull-down experiments and Double immunofluorescence assays, Daxx626–740 was demonstrated to bind directly to androgen receptor (AR). Our findings suggest that the interaction of Daxx626-740 and AR abolishes the AR-mediated activation of SCAP/SREBPs pathway, which suppresses the de novo cholesterol synthesis. Thus, C-terminal domain of Daxx acts as a potential regulator of intracellular cholesterol content in HepG2 cells. - Highlights: • Daxx C-terminal domain reduces cholesterol levels. • Daxx C-terminal domain binds directly to AR. • The interaction of Daxx C-terminal domain and AR suppresses cholesterol synthesis.

  1. 2-heptyl-formononetin increases cholesterol and induces hepatic steatosis in mice

    DEFF Research Database (Denmark)

    Andersen, Charlotte; Schjoldager, Janne Gram; Tortzen, Christian

    2013-01-01

    Consumption of isoflavones may prevent adiposity, hepatic steatosis, and dyslipidaemia. However, studies in the area are few and primarily with genistein. This study investigated the effects of formononetin and its synthetic analogue, 2-heptyl-formononetin (C7F), on lipid and cholesterol metabolism...... in C57BL/6J mice. The mice were fed a cholesterol-enriched diet for five weeks to induce hypercholesterolemia and were then fed either the cholesterol-enriched diet or the cholesterol-enriched diet-supplemented formononetin or C7F for three weeks. Body weight and composition, glucose homeostasis......, and plasma lipids were compared. In another experiment, mice were fed the above diets for five weeks, and hepatic triglyceride accumulation and gene expression and histology of adipose tissue and liver were examined. Supplementation with C7F increased plasma HDL-cholesterol thereby increasing the plasma...

  2. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Science.gov (United States)

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  3. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Samia Hannaoui

    2014-11-01

    Full Text Available Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD: whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.

  4. Synthesis and live-cell imaging of fluorescent sterols for analysis of intracellular cholesterol transport

    DEFF Research Database (Denmark)

    Modzel, Maciej; Lund, Frederik W.; Wüstner, Daniel

    2017-01-01

    Cellular cholesterol homeostasis relies on precise control of the sterol content of organelle membranes. Obtaining insight into cholesterol trafficking pathways and kinetics by live-cell imaging relies on two conditions. First, one needs to develop suitable analogs that resemble cholesterol...... as closely as possible with respect to their biophysical and biochemical properties. Second, the cholesterol analogs should have good fluorescence properties. This interferes, however, often with the first requirement, such that the imaging instrumentation must be optimized to collect photons from suboptimal...... fluorophores, but good cholesterol mimics, such as the intrinsically fluorescent sterols, cholestatrienol (CTL) or dehydroergosterol (DHE). CTL differs from cholesterol only in having two additional double bonds in the ring system, which is why it is slightly fluorescent in the ultraviolet (UV). In the first...

  5. A mouse model of harlequin ichthyosis delineates a key role for Abca12 in lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Ian Smyth

    2008-09-01

    Full Text Available Harlequin Ichthyosis (HI is a severe and often lethal hyperkeratotic skin disease caused by mutations in the ABCA12 transport protein. In keratinocytes, ABCA12 is thought to regulate the transfer of lipids into small intracellular trafficking vesicles known as lamellar bodies. However, the nature and scope of this regulation remains unclear. As part of an original recessive mouse ENU mutagenesis screen, we have identified and characterised an animal model of HI and showed that it displays many of the hallmarks of the disease including hyperkeratosis, loss of barrier function, and defects in lipid homeostasis. We have used this model to follow disease progression in utero and present evidence that loss of Abca12 function leads to premature differentiation of basal keratinocytes. A comprehensive analysis of lipid levels in mutant epidermis demonstrated profound defects in lipid homeostasis, illustrating for the first time the extent to which Abca12 plays a pivotal role in maintaining lipid balance in the skin. To further investigate the scope of Abca12's activity, we have utilised cells from the mutant mouse to ascribe direct transport functions to the protein and, in doing so, we demonstrate activities independent of its role in lamellar body function. These cells have severely impaired lipid efflux leading to intracellular accumulation of neutral lipids. Furthermore, we identify Abca12 as a mediator of Abca1-regulated cellular cholesterol efflux, a finding that may have significant implications for other diseases of lipid metabolism and homeostasis, including atherosclerosis.

  6. Acid sphingomyelinase activity is regulated by membrane lipids and facilitates cholesterol transfer by NPC2.

    Science.gov (United States)

    Oninla, Vincent O; Breiden, Bernadette; Babalola, Jonathan O; Sandhoff, Konrad

    2014-12-01

    During endocytosis, membrane components move to intraluminal vesicles of the endolysosomal compartment for digestion. At the late endosomes, cholesterol is sorted out mainly by two sterol-binding proteins, Niemann-Pick protein type C (NPC)1 and NPC2. To study the NPC2-mediated intervesicular cholesterol transfer, we developed a liposomal assay system. (Abdul-Hammed, M., B. Breiden, M. A. Adebayo, J. O. Babalola, G. Schwarzmann, and K. Sandhoff. 2010. Role of endosomal membrane lipids and NPC2 in cholesterol transfer and membrane fusion. J. Lipid Res. 51: 1747-1760.) Anionic lipids stimulate cholesterol transfer between liposomes while SM inhibits it, even in the presence of anionic bis(monoacylglycero)phosphate (BMP). Preincubation of vesicles containing SM with acid sphingomyelinase (ASM) (SM phosphodiesterase, EC 3.1.4.12) results in hydrolysis of SM to ceramide (Cer), which enhances cholesterol transfer. Besides SM, ASM also cleaves liposomal phosphatidylcholine. Anionic phospholipids derived from the plasma membrane (phosphatidylglycerol and phosphatidic acid) stimulate SM and phosphatidylcholine hydrolysis by ASM more effectively than BMP, which is generated during endocytosis. ASM-mediated hydrolysis of liposomal SM was also stimulated by incorporation of diacylglycerol (DAG), Cer, and free fatty acids into the liposomal membranes. Conversely, phosphatidylcholine hydrolysis was inhibited by incorporation of cholesterol, Cer, DAG, monoacylglycerol, and fatty acids. Our data suggest that SM degradation by ASM is required for physiological secretion of cholesterol from the late endosomal compartment, and is a key regulator of endolysosomal lipid digestion. Copyright © 2014 by the American Society for Biochemistry and Molecular Biology, Inc.

  7. Mechanical homeostasis regulating adipose tissue volume

    Directory of Open Access Journals (Sweden)

    Svedman Paul

    2007-09-01

    Full Text Available Abstract Background The total body adipose tissue volume is regulated by hormonal, nutritional, paracrine, neuronal and genetic control signals, as well as components of cell-cell or cell-matrix interactions. There are no known locally acting homeostatic mechanisms by which growing adipose tissue might adapt its volume. Presentation of the hypothesis Mechanosensitivity has been demonstrated by mesenchymal cells in tissue culture. Adipocyte differentiation has been shown to be inhibited by stretching in vitro, and a pathway for the response has been elucidated. In humans, intermittent stretching of skin for reconstructional purposes leads to thinning of adipose tissue and thickening of epidermis – findings matching those observed in vitro in response to mechanical stimuli. Furthermore, protracted suspension of one leg increases the intermuscular adipose tissue volume of the limb. These findings may indicate a local homeostatic adipose tissue volume-regulating mechanism based on movement-induced reduction of adipocyte differentiation. This function might, during evolution, have been of importance in confined spaces, where overgrowth of adipose tissue could lead to functional disturbance, as for instance in the turtle. In humans, adipose tissue near muscle might in particular be affected, for instance intermuscularly, extraperitoneally and epicardially. Mechanical homeostasis might also contribute to protracted maintainment of soft tissue shape in the face and neck region. Testing of the hypothesis Assessment of messenger RNA-expression of human adipocytes following activity in adjacent muscle is planned, and study of biochemical and volumetric adipose tissue changes in man are proposed. Implications of the hypothesis The interpretation of metabolic disturbances by means of adipose tissue might be influenced. Possible applications in the head and neck were discussed.

  8. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    DEFF Research Database (Denmark)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate......-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin...... ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together...

  9. A Conserved Splicing Silencer Dynamically Regulates O-GlcNAc Transferase Intron Retention and O-GlcNAc Homeostasis

    Directory of Open Access Journals (Sweden)

    Sung-Kyun Park

    2017-08-01

    Full Text Available Modification of nucleocytoplasmic proteins with O-GlcNAc regulates a wide variety of cellular processes and has been linked to human diseases. The enzymes O-GlcNAc transferase (OGT and O-GlcNAcase (OGA add and remove O-GlcNAc, but the mechanisms regulating their expression remain unclear. Here, we demonstrate that retention of the fourth intron of OGT is regulated in response to O-GlcNAc levels. We further define a conserved intronic splicing silencer (ISS that is necessary for OGT intron retention. Deletion of the ISS in colon cancer cells leads to increases in OGT, but O-GlcNAc homeostasis is maintained by concomitant increases in OGA protein. However, the ISS-deleted cells are hypersensitive to OGA inhibition in culture and in soft agar. Moreover, growth of xenograft tumors from ISS-deleted cells is compromised in mice treated with an OGA inhibitor. Thus, ISS-mediated regulation of OGT intron retention is a key component in OGT expression and maintaining O-GlcNAc homeostasis.

  10. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    Directory of Open Access Journals (Sweden)

    Frans Stellaard

    2017-01-01

    Full Text Available The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1 The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2 The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3 The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded.

  11. Sterol homeostasis requires regulated degradation of squalene monooxygenase by the ubiquitin ligase Doa10/Teb4

    Science.gov (United States)

    Foresti, Ombretta; Ruggiano, Annamaria; Hannibal-Bach, Hans K; Ejsing, Christer S; Carvalho, Pedro

    2013-01-01

    Sterol homeostasis is essential for the function of cellular membranes and requires feedback inhibition of HMGR, a rate-limiting enzyme of the mevalonate pathway. As HMGR acts at the beginning of the pathway, its regulation affects the synthesis of sterols and of other essential mevalonate-derived metabolites, such as ubiquinone or dolichol. Here, we describe a novel, evolutionarily conserved feedback system operating at a sterol-specific step of the mevalonate pathway. This involves the sterol-dependent degradation of squalene monooxygenase mediated by the yeast Doa10 or mammalian Teb4, a ubiquitin ligase implicated in a branch of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) pathway. Since the other branch of ERAD is required for HMGR regulation, our results reveal a fundamental role for ERAD in sterol homeostasis, with the two branches of this pathway acting together to control sterol biosynthesis at different levels and thereby allowing independent regulation of multiple products of the mevalonate pathway. DOI: http://dx.doi.org/10.7554/eLife.00953.001 PMID:23898401

  12. The cholesterol-raising factor from coffee beans, cafestol, as an agonist ligand for the farnesoid and pregnane X receptors

    NARCIS (Netherlands)

    Ricketts, Marie-Louise; Boekschoten, Mark V.; Kreeft, Arja J.; Hooiveld, Guido J. E. J.; Moen, Corina J. A.; Mueller, Michael; Frants, Rune R.; Kasanmoentalib, Soemini; Post, Sabine M.; Princen, Hans M. G.; Porter, J. Gordon; Katan, Martijn B.; Hofker, Marten H.; Moore, David D.

    Cafestol, a diterpene present in unfiltered coffee brews such as Scandinavian boiled, Turkish, and cafetiere coffee, is the most potent cholesterol-elevating compound-knownin the human diet. Several genes involved in cholesterol homeostasis have previously been shown to be targets of cafestol,

  13. Hypothalamic roles of mTOR complex I: integration of nutrient and hormone signals to regulate energy homeostasis.

    Science.gov (United States)

    Hu, Fang; Xu, Yong; Liu, Feng

    2016-06-01

    Mammalian or mechanistic target of rapamycin (mTOR) senses nutrient, energy, and hormone signals to regulate metabolism and energy homeostasis. mTOR activity in the hypothalamus, which is associated with changes in energy status, plays a critical role in the regulation of food intake and body weight. mTOR integrates signals from a variety of "energy balancing" hormones such as leptin, insulin, and ghrelin, although its action varies in response to these distinct hormonal stimuli as well as across different neuronal populations. In this review, we summarize and highlight recent findings regarding the functional roles of mTOR complex 1 (mTORC1) in the hypothalamus specifically in its regulation of body weight, energy expenditure, and glucose/lipid homeostasis. Understanding the role and underlying mechanisms behind mTOR-related signaling in the brain will undoubtedly pave new avenues for future therapeutics and interventions that can combat obesity, insulin resistance, and diabetes. Copyright © 2016 the American Physiological Society.

  14. The Arabidopsis thylakoid chloride channel AtCLCe functions in chloride homeostasis and regulation of photosynthetic electron transport

    Directory of Open Access Journals (Sweden)

    Andrei eHerdean

    2016-02-01

    Full Text Available Chloride ions can be translocated across cell membranes through Cl− channels or Cl−/H+ exchangers. The thylakoid-located member of the Cl− channel CLC family in Arabidopsis thaliana (AtCLCe was hypothesized to play a role in photosynthetic regulation based on the initial photosynthetic characterization of clce mutant lines. The reduced nitrate content of Arabidopsis clce mutants suggested a role in regulation of plant nitrate homeostasis. In this study, we aimed to further investigate the role of AtCLCe in the regulation of ion homeostasis and photosynthetic processes in the thylakoid membrane. We report that the size and composition of proton motive force were mildly altered in two independent Arabidopsis clce mutant lines. Most pronounced effects in the clce mutants were observed on the photosynthetic electron transport of dark-adapted plants, based on the altered shape and associated parameters of the polyphasic OJIP kinetics of chlorophyll a fluorescence induction. Other alterations were found in the kinetics of state transition and in the macro-organisation of photosystem II supercomplexes, as indicated by circular dichroism measurements. Pre-treatment with KCl but not with KNO3 restored the wild-type photosynthetic phenotype. Analyses by transmission electron microscopy revealed a bow-like arrangement of the thylakoid network and a large thylakoid-free stromal region in chloroplast sections from the dark-adapted clce plants. Based on these data, we propose that AtCLCe functions in Cl− homeostasis after transition from light to dark, which affects chloroplast ultrastructure and regulation of photosynthetic electron transport.

  15. 22(R)-hydroxycholesterol and pioglitazone synergistically decrease cholesterol ester via the PPARγ–LXRα–ABCA1 pathway in cholesterosis of the gallbladder

    International Nuclear Information System (INIS)

    Wang, Jing-Min; Wang, Dong; Tan, Yu-Yan; Zhao, Gang; Ji, Zhen-Ling

    2014-01-01

    Highlights: • Cholesterosis is a metabolic disease characterized by excessive lipid droplets. • Lipid droplet efflux is mediated by the ABCA1 transporter. • 22(R)-hydroxycholesterol can activate LXRα and up-regulate ABCA1. • Pioglitazone up-regulates ABCA1 in a PPARγ–LXRα–ABCA1-dependent manner. • 22(R)-hydroxycholesterol and pioglitazone synergistically decrease lipid droplets. - Abstract: Cholesterosis is a disease of cholesterol metabolism characterized by the presence of excessive lipid droplets in the cytoplasm. These lipid droplets are mainly composed of cholesterol esters derived from free cholesterol. The removal of excess cholesterol from gallbladder epithelial cells (GBECs) is very important for the maintenance of intracellular cholesterol homeostasis and the preservation of gallbladder function. Several lines of evidence have indicated that the activation of either peroxisome proliferator-activated receptor gamma (PPARγ) or liver X receptor α (LXRα) relates to cholesterol efflux. While pioglitazone can regulate the activation of PPARγ, 22(R)-hydroxycholesterol can activate LXRα and is a metabolic intermediate in the biosynthesis of steroid hormones. However, the effect of 22(R)-hydroxycholesterol in combination with pioglitazone on cholesterosis of the gallbladder is unclear. GBECs were treated with pioglitazone, 22(R)-hydroxycholesterol or PPARγ siRNA followed by Western blot analysis for ATP-binding cassette transporter A1 (ABCA1), PPARγ and LXRα. Cholesterol efflux to apoA-I was determined, and Oil Red O staining was performed to monitor variations in lipid levels in treated GBECs. Our data showed that 22(R)-hydroxycholesterol can modestly up-regulate LXRα while simultaneously increasing ABCA1 by 56%. The combination of 22(R)-hydroxycholesterol and pioglitazone resulted in a 3.64-fold increase in ABCA1 expression and a high rate of cholesterol efflux. Oil Red O staining showed an obvious reduction in the lipid droplets

  16. Aβ-Induced Insulin Resistance and the Effects of Insulin on the Cholesterol Synthesis Pathway and Aβ Secretion in Neural Cells.

    Science.gov (United States)

    Najem, Dema; Bamji-Mirza, Michelle; Yang, Ze; Zhang, Wandong

    2016-06-01

    Alzheimer's disease (AD) is characterized by amyloid-β (Aβ) toxicity, tau pathology, insulin resistance, neuroinflammation, and dysregulation of cholesterol homeostasis, all of which play roles in neurodegeneration. Insulin has polytrophic effects on neurons and may be at the center of these pathophysiological changes. In this study, we investigated possible relationships among insulin signaling and cholesterol biosynthesis, along with the effects of Aβ42 on these pathways in vitro. We found that neuroblastoma 2a (N2a) cells transfected with the human gene encoding amyloid-β protein precursor (AβPP) (N2a-AβPP) produced Aβ and exhibited insulin resistance by reduced p-Akt and a suppressed cholesterol-synthesis pathway following insulin treatment, and by increased phosphorylation of insulin receptor subunit-1 at serine 612 (p-IRS-S612) as compared to parental N2a cells. Treatment of human neuroblastoma SH-SY5Y cells with Aβ42 also increased p-IRS-S612, suggesting that Aβ42 is responsible for insulin resistance. The insulin resistance was alleviated when N2a-AβPP cells were treated with higher insulin concentrations. Insulin increased Aβ release from N2a-AβPP cells, by which it may promote Aβ clearance. Insulin increased cholesterol-synthesis gene expression in SH-SY5Y and N2a cells, including 24-dehydrocholesterol reductase (DHCR24) and 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGCR) through sterol-regulatory element-binding protein-2 (SREBP2). While Aβ42-treated SH-SY5Y cells exhibited increased HMGCR expression and c-Jun phosphorylation as pro-inflammatory responses, they also showed down-regulation of neuro-protective/anti-inflammatory DHCR24. These results suggest that Aβ42 may cause insulin resistance, activate JNK for c-Jun phosphorylation, and lead to dysregulation of cholesterol homeostasis, and that enhancing insulin signaling may relieve the insulin-resistant phenotype and the dysregulated cholesterol-synthesis pathway to promote A

  17. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Science.gov (United States)

    Liu, Qiang; Zhang, Juan; Zerbinatti, Celina; Zhan, Yan; Kolber, Benedict J; Herz, Joachim; Muglia, Louis J; Bu, Guojun

    2011-01-11

    Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  18. Regulation of body fluid and salt homeostasis--from observations in space to new concepts on Earth.

    Science.gov (United States)

    Gerzer, R; Heer, M

    2005-08-01

    The present manuscript summarizes recent discoveries that were made by studying salt and fluid homeostasis in weightlessness. These data indicate that 1. atrial natriuretic peptide appears not to play an important role in natriuresis in physiology, 2. the distribution of body fluids appears to be tightly coupled with hunger and thirst regulation, 3. intrathoracic pressure may be an important co-regulator of body fluid homeostasis, 4. a so far unknown low-affinity, high capacity osmotically inactive sodium storage mechanism appears to be present in humans that is acting through sodium/hydrogen exchange on glycosaminoglycans and might explain the pathophysiology, e.g., of salt sensitive hypertension. The surprising and unexpected data underline that weightlessness is an excellent tool to investigate the physiology of our human body: If we knew it, we should be able to predict changes that occur when gravity is absent. But, as data from space demonstrate, we do not.

  19. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    Science.gov (United States)

    Budelier, Melissa M; Cheng, Wayland W L; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-06-02

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope-labeled tag, FLI -tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to Thr 83 and Glu 73 , respectively. When Glu 73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Tyr 62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol-binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important Glu 73 residue. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli

    NARCIS (Netherlands)

    Baarlen, van P.; Wells, J.; Kleerebezem, M.

    2013-01-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels

  1. Casein kinase 1 regulates sterol regulatory element-binding protein (SREBP) to control sterol homeostasis.

    Science.gov (United States)

    Brookheart, Rita T; Lee, Chih-Yung S; Espenshade, Peter J

    2014-01-31

    Sterol homeostasis is tightly controlled by the sterol regulatory element-binding protein (SREBP) transcription factor that is highly conserved from fungi to mammals. In fission yeast, SREBP functions in an oxygen-sensing pathway to promote adaptation to decreased oxygen supply that limits oxygen-dependent sterol synthesis. Low oxygen stimulates proteolytic cleavage of the SREBP homolog Sre1, generating the active transcription factor Sre1N that drives expression of sterol biosynthetic enzymes. In addition, low oxygen increases the stability and DNA binding activity of Sre1N. To identify additional signals controlling Sre1 activity, we conducted a genetic overexpression screen. Here, we describe our isolation and characterization of the casein kinase 1 family member Hhp2 as a novel regulator of Sre1N. Deletion of Hhp2 increases Sre1N protein stability and ergosterol levels in the presence of oxygen. Hhp2-dependent Sre1N degradation by the proteasome requires Hhp2 kinase activity, and Hhp2 binds and phosphorylates Sre1N at specific residues. Our results describe a role for casein kinase 1 as a direct regulator of sterol homeostasis. Given the role of mammalian Hhp2 homologs, casein kinase 1δ and 1ε, in regulation of the circadian clock, these findings may provide a mechanism for coordinating circadian rhythm and lipid metabolism.

  2. ILDR2: an endoplasmic reticulum resident molecule mediating hepatic lipid homeostasis.

    Directory of Open Access Journals (Sweden)

    Kazuhisa Watanabe

    Full Text Available Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus, with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts related to neutral lipid synthesis and cholesterol were increased, suggesting "relief" of the secondary suppression imposed by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal interactions, and the relatively extended time

  3. Copper regulation and homeostasis of Daphnia magna and Pseudokirchneriella subcapitata: influence of acclimation

    International Nuclear Information System (INIS)

    Bossuyt, Bart T.A.; Janssen, Colin R.

    2005-01-01

    This study aimed to evaluate (1) the capacity of the green alga Pseudokirchneriella subcapitata and the waterflea Daphnia magna to regulate copper when exposed to environmentally realistic copper concentrations and (2) the influence of multi-generation acclimation to these copper concentrations on copper bioaccumulation and homeostasis. Based on bioconcentration factors, active copper regulation was observed in algae up to 5 μg Cu L -1 and in daphnids up to 35 μg Cu L -1 . Constant body copper concentrations (13 ± 4 μg Cu g DW -1 ) were observed in algae exposed to 1 through 5 μg Cu L -1 and in daphnids exposed to 1 through 12 μg Cu L -1 . At higher exposure concentrations, there was an increase in internal body copper concentration, while no increase was observed in bioconcentration factors, suggesting the presence of a storage mechanism. At copper concentrations of 100 μg Cu L -1 (P. subcapitata) and 150 μg Cu L -1 (D. magna), the significant increases observed in body copper concentrations and in bioconcentration factors may be related to a failure of this regulation mechanism. For both organisms, internal body copper concentrations lower than 13 μg Cu g DW -1 may result in copper deficiency. For P. subcapitata acclimated to 0.5 and 100 μg Cu L -1 , body copper concentrations ranged (mean ± standard deviation) between 5 ± 2 μg Cu g DW -1 and 1300 ± 197 μg Cu g DW -1 , respectively. For D. magna, this value ranged between 9 ± 2 μg Cu g DW -1 and 175 ± 17 μg Cu g DW -1 for daphnids acclimated to 0.5 and 150 μg Cu L -1 . Multi-generation acclimation to copper concentrations ≥12 μg Cu L -1 resulted in a decrease (up to 40%) in body copper concentrations for both organisms compared to the body copper concentration of the first generation. It can be concluded that there is an indication that P. subcapitata and D. magna can regulate their whole body copper concentration to maintain copper homeostasis within their optimal copper range and

  4. Cholesterol as a co-solvent and a ligand for membrane proteins

    Science.gov (United States)

    Song, Yuanli; Kenworthy, Anne K; Sanders, Charles R

    2014-01-01

    As of mid 2013 a Medline search on “cholesterol” yielded over 200,000 hits, reflecting the prominence of this lipid in numerous aspects of animal cell biology and physiology under conditions of health and disease. Aberrations in cholesterol homeostasis underlie both a number of rare genetic disorders and contribute to common sporadic and complex disorders including heart disease, stroke, type II diabetes, and Alzheimer's disease. The corresponding author of this review and his lab stumbled only recently into the sprawling area of cholesterol research when they discovered that the amyloid precursor protein (APP) binds cholesterol, a topic covered by the Hans Neurath Award lecture at the 2013 Protein Society Meeting. Here, we first provide a brief overview of cholesterol-protein interactions and then offer our perspective on how and why binding of cholesterol to APP and its C99 domain (β-CTF) promotes the amyloidogenic pathway, which is closely related to the etiology of Alzheimer's disease. PMID:24155031

  5. Normal Non-HDL Cholesterol, Low Total Cholesterol, and HDL Cholesterol Levels in Sickle Cell Disease Patients in the Steady State: A Case-Control Study of Tema Metropolis.

    Science.gov (United States)

    Ephraim, Richard K D; Adu, Patrick; Ake, Edem; Agbodzakey, Hope; Adoba, Prince; Cudjoe, Obed; Agoni, Clement

    2016-01-01

    Background. Abnormal lipid homeostasis in sickle cell disease (SCD) is characterized by defects in plasma and erythrocyte lipids and may increase the risk of cardiovascular disease. This study assessed the lipid profile and non-HDL cholesterol level of SCD patients. Methods. A hospital-based cross-sectional study was conducted in 50 SCD patients, in the steady state, aged 8-28 years, attending the SCD clinic, and 50 healthy volunteers between the ages of 8-38 years. Serum lipids were determined by enzymatic methods and non-HDL cholesterol calculated by this formula: non-HDL-C = TC-HDL-C. Results. Total cholesterol (TC) ( p = 0.001) and high-density lipoprotein cholesterol (HDL-C) ( p < 0.0001) were significantly decreased in cases compared to controls. The levels of non-HDL-C, low-density lipoprotein cholesterol (LDL-C), and triglyceride (TG) were similar among the participants. The levels of decrease in TC and HDL were associated with whether a patient was SCD-SS or SCD-SC. Systolic blood pressure and diastolic blood pressure were each significantly associated with increased VLDL [SBP, p = 0.01, OR: 0.74 (CI: 0.6-0.93); DBP, p = 0.023, OR: 1.45 (CI: 1.05-2.0)]. Conclusion. Dyslipidemia is common among participants in this study. It was more pronounced in the SCD-SS than in SCD-SC. This dyslipidemia was associated with high VLDL as well as increased SBP and DBP.

  6. HIC1 links retinoic acid signalling to group 3 innate lymphoid cell-dependent regulation of intestinal immunity and homeostasis

    Science.gov (United States)

    Antignano, Frann; Korinek, Vladimir; Underhill, T. Michael

    2018-01-01

    The intestinal immune system must be able to respond to a wide variety of infectious organisms while maintaining tolerance to non-pathogenic microbes and food antigens. The Vitamin A metabolite all-trans-retinoic acid (atRA) has been implicated in the regulation of this balance, partially by regulating innate lymphoid cell (ILC) responses in the intestine. However, the molecular mechanisms of atRA-dependent intestinal immunity and homeostasis remain elusive. Here we define a role for the transcriptional repressor Hypermethylated in cancer 1 (HIC1, ZBTB29) in the regulation of ILC responses in the intestine. Intestinal ILCs express HIC1 in a vitamin A-dependent manner. In the absence of HIC1, group 3 ILCs (ILC3s) that produce IL-22 are lost, resulting in increased susceptibility to infection with the bacterial pathogen Citrobacter rodentium. Thus, atRA-dependent expression of HIC1 in ILC3s regulates intestinal homeostasis and protective immunity. PMID:29470558

  7. Regulation of intestinal homeostasis and immunity with probiotic lactobacilli.

    Science.gov (United States)

    van Baarlen, Peter; Wells, Jerry M; Kleerebezem, Michiel

    2013-05-01

    The gut microbiota provide important stimuli to the human innate and adaptive immune system and co-mediate metabolic and immune homeostasis. Probiotic bacteria can be regarded as part of the natural human microbiota, and have been associated with improving homeostasis, albeit with different levels of success. Composition of microbiota, probiotic strain identity, and host genetic differences may account for differential modulation of immune responses by probiotics. Here, we review the mechanisms of immunomodulating capacities of specific probiotic strains, the responses they can induce in the host, and how microbiota and genetic differences between individuals may co-influence host responses and immune homeostasis. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Comparative effect of amidated pectin and psyllium on cholesterol homeostasis in rats

    Czech Academy of Sciences Publication Activity Database

    Marounek, Milan; Volek, Z.; Skřivanová, E.; Tůma, J.; Dušková, D.

    2010-01-01

    Roč. 5, č. 3 (2010), s. 299-303 ISSN 1895-104X Institutional research plan: CEZ:AV0Z50450515 Keywords : Cholesterol homeostazis * Pectin * Psyllium Subject RIV: GH - Livestock Nutrition Impact factor: 0.685, year: 2010

  9. Role of orexins in the central and peripheral regulation of glucose homeostasis: Evidences & mechanisms.

    Science.gov (United States)

    Rani, Monika; Kumar, Raghuvansh; Krishan, Pawan

    2018-04-01

    Orexins (A & B), neuropeptides of hypothalamic origin, act through G-protein coupled receptors, orexin 1 receptor (OX 1 R) and orexin 2 receptor (OX 2 R). The wide projection of orexin neurons in the hypothalamic region allows them to interact with the other neurons and regulate food intake, emotional status, sleep wake cycle and energy metabolism. The autonomic nervous system plays an important regulatory role in the energy metabolism as well as glucose homeostasis. Orexin neurons are also under the control of GABAergic neurons. Emerging preclinical as well as clinical research has reported the role of orexins in the glucose homeostasis since orexins are involved in hypothalamic metabolism circuitry and also rely on sensing peripheral metabolic signals such as gut, adipose derived and pancreatic peptides. Apart from the hypothalamic origin, integration and control in various physiological functions, peripheral origin in wide organs, raises the possibility of use of orexins as a therapeutic biomarker in the management of metabolic disorders. The present review focuses the central as well as peripheral roles of orexins in the glucose homeostasis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis in the adult central nervous system.

    Directory of Open Access Journals (Sweden)

    Qiang Liu

    2011-01-01

    Full Text Available Obesity is a growing epidemic characterized by excess fat storage in adipocytes. Although lipoprotein receptors play important roles in lipid uptake, their role in controlling food intake and obesity is not known. Here we show that the lipoprotein receptor LRP1 regulates leptin signaling and energy homeostasis. Conditional deletion of the Lrp1 gene in the brain resulted in an obese phenotype characterized by increased food intake, decreased energy consumption, and decreased leptin signaling. LRP1 directly binds to leptin and the leptin receptor complex and is required for leptin receptor phosphorylation and Stat3 activation. We further showed that deletion of the Lrp1 gene specifically in the hypothalamus by Cre lentivirus injection is sufficient to trigger accelerated weight gain. Together, our results demonstrate that the lipoprotein receptor LRP1, which is critical in lipid metabolism, also regulates food intake and energy homeostasis in the adult central nervous system.

  11. Adipose Type One Innate Lymphoid Cells Regulate Macrophage Homeostasis through Targeted Cytotoxicity.

    Science.gov (United States)

    Boulenouar, Selma; Michelet, Xavier; Duquette, Danielle; Alvarez, David; Hogan, Andrew E; Dold, Christina; O'Connor, Donal; Stutte, Suzanne; Tavakkoli, Ali; Winters, Desmond; Exley, Mark A; O'Shea, Donal; Brenner, Michael B; von Andrian, Ulrich; Lynch, Lydia

    2017-02-21

    Adipose tissue has a dynamic immune system that adapts to changes in diet and maintains homeostatic tissue remodeling. Adipose type 1 innate lymphoid cells (AT1-ILCs) promote pro-inflammatory macrophages in obesity, but little is known about their functions at steady state. Here we found that human and murine adipose tissue harbor heterogeneous populations of AT1-ILCs. Experiments using parabiotic mice fed a high-fat diet (HFD) showed differential trafficking of AT1-ILCs, particularly in response to short- and long-term HFD and diet restriction. At steady state, AT1-ILCs displayed cytotoxic activity toward adipose tissue macrophages (ATMs). Depletion of AT1-ILCs and perforin deficiency resulted in alterations in the ratio of inflammatory to anti-inflammatory ATMs, and adoptive transfer of AT1-ILCs exacerbated metabolic disorder. Diet-induced obesity impaired AT1-ILC killing ability. Our findings reveal a role for AT1-ILCs in regulating ATM homeostasis through cytotoxicity and suggest that this function is relevant in both homeostasis and metabolic disease. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. AMPK is essential for energy homeostasis regulation and glucose sensing by POMC and AgRP neurons.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Batterham, Rachel L; Selman, Colin; Choudhury, Agharul I; Fryer, Lee G D; Clements, Melanie; Al-Qassab, Hind; Heffron, Helen; Xu, Allison W; Speakman, John R; Barsh, Gregory S; Viollet, Benoit; Vaulont, Sophie; Ashford, Michael L J; Carling, David; Withers, Dominic J

    2007-08-01

    Hypothalamic AMP-activated protein kinase (AMPK) has been suggested to act as a key sensing mechanism, responding to hormones and nutrients in the regulation of energy homeostasis. However, the precise neuronal populations and cellular mechanisms involved are unclear. The effects of long-term manipulation of hypothalamic AMPK on energy balance are also unknown. To directly address such issues, we generated POMC alpha 2KO and AgRP alpha 2KO mice lacking AMPK alpha2 in proopiomelanocortin- (POMC-) and agouti-related protein-expressing (AgRP-expressing) neurons, key regulators of energy homeostasis. POMC alpha 2KO mice developed obesity due to reduced energy expenditure and dysregulated food intake but remained sensitive to leptin. In contrast, AgRP alpha 2KO mice developed an age-dependent lean phenotype with increased sensitivity to a melanocortin agonist. Electrophysiological studies in AMPK alpha2-deficient POMC or AgRP neurons revealed normal leptin or insulin action but absent responses to alterations in extracellular glucose levels, showing that glucose-sensing signaling mechanisms in these neurons are distinct from those pathways utilized by leptin or insulin. Taken together with the divergent phenotypes of POMC alpha 2KO and AgRP alpha 2KO mice, our findings suggest that while AMPK plays a key role in hypothalamic function, it does not act as a general sensor and integrator of energy homeostasis in the mediobasal hypothalamus.

  13. Current Views on Genetics and Epigenetics of Cholesterol Gallstone Disease

    Directory of Open Access Journals (Sweden)

    Agostino Di Ciaula

    2013-01-01

    Full Text Available Cholesterol gallstone disease, one of the commonest digestive diseases in western countries, is induced by an imbalance in cholesterol metabolism, which involves intestinal absorption, hepatic biosynthesis, and biliary output of cholesterol, and its conversion to bile acids. Several components of the metabolic syndrome (e.g., obesity, type 2 diabetes, dyslipidemia, and hyperinsulinemia are also well-known risk factors for gallstones, suggesting the existence of interplay between common pathophysiological pathways influenced by insulin resistance, genetic, epigenetic, and environmental factors. Cholesterol gallstones may be enhanced, at least in part, by the abnormal expression of a set of the genes that affect cholesterol homeostasis and lead to insulin resistance. Additionally, epigenetic mechanisms (mainly DNA methylation, histone acetylation/deacetylation, and noncoding microRNAs may modify gene expression in the absence of an altered DNA sequence, in response to different lithogenic environmental stimuli, such as diet, lifestyle, pollutants, also occurring in utero before birth. In this review, we will comment on various steps of the pathogenesis of cholesterol gallstones and interaction between environmental and genetic factors. The epigenomic approach may offer new options for therapy of gallstones and better possibilities for primary prevention in subjects at risk.

  14. Chronic vitamin A-enriched diet feeding regulates hypercholesterolaemia through transcriptional regulation of reverse cholesterol transport pathway genes in obese rat model of WNIN/GR-Ob strain

    Directory of Open Access Journals (Sweden)

    Shanmugam M Jeyakumar

    2016-01-01

    Full Text Available Background & objectives: Hepatic scavenger receptor class B1 (SR-B1, a high-density lipoprotein (HDL receptor, is involved in the selective uptake of HDL-associated esterified cholesterol (EC, thereby regulates cholesterol homoeostasis and improves reverse cholesterol transport. Previously, we reported in euglycaemic obese rats (WNIN/Ob strain that feeding of vitamin A-enriched diet normalized hypercholesterolaemia, possibly through hepatic SR-B1-mediated pathway. This study was aimed to test whether it would be possible to normalize hypercholesterolaemia in glucose-intolerant obese rat model (WNIN/GR/Ob through similar mechanism by feeding identical vitamin A-enriched diet. Methods: In this study, 30 wk old male lean and obese rats of WNIN/GR-Ob strain were divided into two groups and received either stock diet or vitamin A-enriched diet (2.6 mg or 129 mg vitamin A/kg diet for 14 wk. Blood and other tissues were collected for various biochemical analyses. Results: Chronic vitamin A-enriched diet feeding decreased hypercholesterolaemia and normalized abnormally elevated plasma HDL-cholesterol (HDL-C levels in obese rats as compared to stock diet-fed obese groups. Further, decreased free cholesterol (FC and increased esterified cholesterol (EC contents of plasma cholesterol were observed, which were reflected in higher EC to FC ratio of vitamin A-enriched diet-fed obese rats. However, neither lecithin-cholesterol acyltransferase (LCAT activity of plasma nor its expression (both gene and protein in the liver were altered. On the contrary, hepatic cholesterol levels significantly increased in vitamin A-enriched diet fed obese rats. Hepatic SR-B1 expression (both mRNA and protein remained unaltered among groups. Vitamin A-enriched diet fed obese rats showed a significant increase in hepatic low-density lipoprotein receptor mRNA levels, while the expression of genes involved in HDL synthesis, namely, ATP-binding cassette protein 1 (ABCA1 and

  15. Regulation of leucocyte homeostasis in the circulation.

    Science.gov (United States)

    Scheiermann, Christoph; Frenette, Paul S; Hidalgo, Andrés

    2015-08-01

    The functions of blood cells extend well beyond the immune functions of leucocytes or the respiratory and hemostatic functions of erythrocytes and platelets. Seen as a whole, the bloodstream is in charge of nurturing and protecting all organs by carrying a mixture of cell populations in transit from one organ to another. To optimize these functions, evolution has provided blood and the vascular system that carries it with various mechanisms that ensure the appropriate influx and egress of cells into and from the circulation where and when needed. How this homeostatic control of blood is achieved has been the object of study for over a century, and although the major mechanisms that govern it are now fairly well understood, several new concepts and mediators have recently emerged that emphasize the dynamism of this liquid tissue. Here we review old and new concepts that relate to the maintenance and regulation of leucocyte homeostasis in blood and briefly discuss the mechanisms for platelets and red blood cells. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  16. Cholesterol Regulates Syntaxin 6 Trafficking at trans-Golgi Network Endosomal Boundaries

    Directory of Open Access Journals (Sweden)

    Meritxell Reverter

    2014-05-01

    Full Text Available Inhibition of cholesterol export from late endosomes causes cellular cholesterol imbalance, including cholesterol depletion in the trans-Golgi network (TGN. Here, using Chinese hamster ovary (CHO Niemann-Pick type C1 (NPC1 mutant cell lines and human NPC1 mutant fibroblasts, we show that altered cholesterol levels at the TGN/endosome boundaries trigger Syntaxin 6 (Stx6 accumulation into VAMP3, transferrin, and Rab11-positive recycling endosomes (REs. This increases Stx6/VAMP3 interaction and interferes with the recycling of αVβ3 and α5β1 integrins and cell migration, possibly in a Stx6-dependent manner. In NPC1 mutant cells, restoration of cholesterol levels in the TGN, but not inhibition of VAMP3, restores the steady-state localization of Stx6 in the TGN. Furthermore, elevation of RE cholesterol is associated with increased amounts of Stx6 in RE. Hence, the fine-tuning of cholesterol levels at the TGN-RE boundaries together with a subset of cholesterol-sensitive SNARE proteins may play a regulatory role in cell migration and invasion.

  17. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong

    2017-11-03

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  18. DNA methylation regulates transcriptional homeostasis of algal endosymbiosis in the coral model Aiptasia

    KAUST Repository

    Li, Yong; Liew, Yi Jin; Cui, Guoxin; Cziesielski, Maha J; Zahran, Noura Ibrahim Omar; Michell, Craig T; Voolstra, Christian R.; Aranda, Manuel

    2017-01-01

    The symbiotic relationship between cnidarians and dinoflagellates is the cornerstone of coral reef ecosystems. Although research is focusing on the molecular mechanisms underlying this symbiosis, the role of epigenetic mechanisms, which have been implicated in transcriptional regulation and acclimation to environmental change, is unknown. To assess the role of DNA methylation in the cnidarian-dinoflagellate symbiosis, we analyzed genome-wide CpG methylation, histone associations, and transcriptomic states of symbiotic and aposymbiotic anemones in the model system Aiptasia. We find methylated genes are marked by histone H3K36me3 and show significant reduction of spurious transcription and transcriptional noise, revealing a role of DNA methylation in the maintenance of transcriptional homeostasis. Changes in DNA methylation and expression show enrichment for symbiosis-related processes such as immunity, apoptosis, phagocytosis recognition and phagosome formation, and unveil intricate interactions between the underlying pathways. Our results demonstrate that DNA methylation provides an epigenetic mechanism of transcriptional homeostasis during symbiosis.

  19. Phytosterol glycosides reduce cholesterol absorption in humans

    OpenAIRE

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series ...

  20. Adipocyte-specific protein tyrosine phosphatase 1B deletion increases lipogenesis, adipocyte cell size and is a minor regulator of glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Carl Owen

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B, a key negative regulator of leptin and insulin signaling, is positively correlated with adiposity and contributes to insulin resistance. Global PTP1B deletion improves diet-induced obesity and glucose homeostasis via enhanced leptin signaling in the brain and increased insulin signaling in liver and muscle. However, the role of PTP1B in adipocytes is unclear, with studies demonstrating beneficial, detrimental or no effect(s of adipose-PTP1B-deficiency on body mass and insulin resistance. To definitively establish the role of adipocyte-PTP1B in body mass regulation and glucose homeostasis, adipocyte-specific-PTP1B knockout mice (adip-crePTP1B(-/- were generated using the adiponectin-promoter to drive Cre-recombinase expression. Chow-fed adip-crePTP1B(-/- mice display enlarged adipocytes, despite having similar body weight/adiposity and glucose homeostasis compared to controls. High-fat diet (HFD-fed adip-crePTP1B(-/- mice display no differences in body weight/adiposity but exhibit larger adipocytes, increased circulating glucose and leptin levels, reduced leptin sensitivity and increased basal lipogenesis compared to controls. This is associated with decreased insulin receptor (IR and Akt/PKB phosphorylation, increased lipogenic gene expression and increased hypoxia-induced factor-1-alpha (Hif-1α expression. Adipocyte-specific PTP1B deletion does not beneficially manipulate signaling pathways regulating glucose homeostasis, lipid metabolism or adipokine secretion in adipocytes. Moreover, PTP1B does not appear to be the major negative regulator of the IR in adipocytes.

  1. Thyroid hormone regulation of adult intestinal stem cells: Implications on intestinal development and homeostasis.

    Science.gov (United States)

    Sun, Guihong; Roediger, Julia; Shi, Yun-Bo

    2016-12-01

    Organ-specific adult stem cells are essential for organ homeostasis, tissue repair and regeneration. The formation of such stem cells often takes place during postembryonic development, a period around birth in mammals when plasma thyroid hormone concentration is high. The life-long self-renewal of the intestinal epithelium has made mammalian intestine a valuable model to study the function and regulation and adult stem cells. On the other hand, much less is known about how the adult intestinal stem cells are formed during vertebrate development. Here, we will review some recent progresses on this subject, focusing mainly on the formation of the adult intestine during Xenopus metamorphosis. We will discuss the role of thyroid hormone signaling pathway in the process and potential molecular conservations between amphibians and mammals as well as the implications in organ homeostasis and human diseases.

  2. Cholesterol asymmetry in synaptic plasma membranes.

    Science.gov (United States)

    Wood, W Gibson; Igbavboa, Urule; Müller, Walter E; Eckert, Gunter P

    2011-03-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: (i) chronic ethanol consumption; (ii) statins; (iii) aging; and (iv) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, P-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  3. Leucine supplementation improves adiponectin and total cholesterol concentrations despite the lack of changes in adiposity or glucose homeostasis in rats previously exposed to a high-fat diet

    Directory of Open Access Journals (Sweden)

    Donato Jose

    2011-09-01

    Full Text Available Abstract Background Studies suggest that leucine supplementation (LS has a therapeutic potential to prevent obesity and to promote glucose homeostasis. Furthermore, regular physical exercise is a widely accepted strategy for body weight maintenance and also for the prevention of obesity. The aim of this study was to determine the effect of chronic LS alone or combined with endurance training (ET as potential approaches for reversing the insulin resistance and obesity induced by a high-fat diet (HFD in rats. Methods Forty-seven rats were randomly divided into two groups. Animals were fed a control diet-low fat (n = 10 or HFD (n = 37. After 15 weeks on HFD, all rats received the control diet-low fat and were randomly divided according to treatment: reference (REF, LS, ET, and LS+ET (n = 7-8 rats per group. After 6 weeks of treatment, the animals were sacrificed and body composition, fat cell volume, and serum concentrations of total cholesterol, HDL-cholesterol, triacylglycerol, glucose, adiponectin, leptin and tumor necrosis factor-alpha (TNF-α were analyzed. Results At the end of the sixth week of treatment, there was no significant difference in body weight between the REF, LS, ET and LS+ET groups. However, ET increased lean body mass in rats (P = 0.019. In addition, ET was more effective than LS in reducing adiposity (P = 0.019, serum insulin (P = 0.022 and TNF-α (P = 0.044. Conversely, LS increased serum adiponectin (P = 0.021 levels and reduced serum total cholesterol concentration (P = 0.042. Conclusions The results showed that LS had no beneficial effects on insulin sensitivity or adiposity in previously obese rats. On the other hand, LS was effective in increasing adiponectin levels and in reducing total cholesterol concentration.

  4. Disruption of astrocyte-neuron cholesterol cross talk affects neuronal function in Huntington's disease.

    Science.gov (United States)

    Valenza, M; Marullo, M; Di Paolo, E; Cesana, E; Zuccato, C; Biella, G; Cattaneo, E

    2015-04-01

    In the adult brain, neurons require local cholesterol production, which is supplied by astrocytes through apoE-containing lipoproteins. In Huntington's disease (HD), such cholesterol biosynthesis in the brain is severely reduced. Here we show that this defect, occurring in astrocytes, is detrimental for HD neurons. Astrocytes bearing the huntingtin protein containing increasing CAG repeats secreted less apoE-lipoprotein-bound cholesterol in the medium. Conditioned media from HD astrocytes and lipoprotein-depleted conditioned media from wild-type (wt) astrocytes were equally detrimental in a neurite outgrowth assay and did not support synaptic activity in HD neurons, compared with conditions of cholesterol supplementation or conditioned media from wt astrocytes. Molecular perturbation of cholesterol biosynthesis and efflux in astrocytes caused similarly altered astrocyte-neuron cross talk, whereas enhancement of glial SREBP2 and ABCA1 function reversed the aspects of neuronal dysfunction in HD. These findings indicate that astrocyte-mediated cholesterol homeostasis could be a potential therapeutic target to ameliorate neuronal dysfunction in HD.

  5. Sex Differences in the Hepatic Cholesterol Sensing Mechanisms in Mice

    Directory of Open Access Journals (Sweden)

    Ingemar Björkhem

    2013-09-01

    Full Text Available Cholesterol is linked to many multifactorial disorders, including different forms of liver disease where development and severity depend on the sex. We performed a detailed analysis of cholesterol and bile acid synthesis pathways at the level of genes and metabolites combined with the expression studies of hepatic cholesterol uptake and transport in female and male mice fed with a high-fat diet with or without cholesterol. Lack of dietary cholesterol led to a stronger response of the sterol sensing mechanism in females, resulting in higher expression of cholesterogenic genes compared to males. With cholesterol in the diet, the genes were down-regulated in both sexes; however, males maintained a more efficient hepatic metabolic flux through the pathway. Females had higher content of hepatic cholesterol but this was likely not due to diminished excretion but rather due to increased synthesis and absorption. Dietary cholesterol and sex were not important for gallbladder bile acids composition. Neither sex up-regulated Cyp7a1 upon cholesterol loading and there was no compensatory up-regulation of Abcg5 or Abcg8 transporters. On the other hand, females had higher expression of the Ldlr and Cd36 genes. These findings explain sexual dimorphism of cholesterol metabolism in response to dietary cholesterol in a high-fat diet in mice, which contributes to understanding the sex-basis of cholesterol-associated liver diseases.

  6. Activating transcription factor 6 mediates oxidized LDL-induced cholesterol accumulation and apoptosis in macrophages by up-regulating CHOP expression.

    Science.gov (United States)

    Yao, Shutong; Zong, Chuanlong; Zhang, Ying; Sang, Hui; Yang, Mingfeng; Jiao, Peng; Fang, Yongqi; Yang, Nana; Song, Guohua; Qin, Shucun

    2013-01-01

    This study was to explore whether activating transcription factor 6 (ATF6), an important sensor to endoplasmic reticulum (ER) stress, would mediate oxidized low-density lipoprotein (ox-LDL)- induced cholesterol accumulation and apoptosis in cultured macrophages and the underlying molecular mechanisms. Intracellular lipid droplets and total cholesterol levels were assayed by oil red O staining and enzymatic colorimetry, respectively. Cell viability and apoptosis were determined using MTT assay and AnnexinV-FITC apoptosis detection kit, respectively. The nuclear translocation of ATF6 in cells was detected by immunofluorescence analysis. Protein and mRNA levels were examined by Western blot analysis and real time-PCR, respectively. ATF6 siRNA was transfected to RAW264.7 cells by lipofectamin. Exposure of cells to ox-LDL induced glucose-regulated protein 78 (GRP78). C/EBP homologous protein (CHOP), a key-signaling component of ER stress-induced apoptosis, was up-regulated in ox-LDL-treated cells. ATF6, a factor that positively regulates CHOP expression, was activated by ox-LDL in a concentration- and time- dependent manner. The role of the ATF6-mediated ER stress pathway was further confirmed through the siRNA-mediated knockdown of ATF6, which attenuated ox-LDL-induced upregulation of CHOP, cholesterol accumulation and apoptosis in macrophages. In addition, the phosphorylation of double-stranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK), another factor that positively regulates CHOP expression, was induced in the presence of ox-LDL, and PERK-specific siRNA also inhibited the ox-LDL-induced upregulation of CHOP and apoptosis in RAW264.7 cells. These results demonstrate that ER stress-related proteins, particularly ATF6 and its downstream molecule CHOP, are involved in ox-LDL-induced cholesterol accumulation and apoptosis in macrophages.

  7. Calcineurin signaling and membrane lipid homeostasis regulates iron mediated multidrug resistance mechanisms in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Saif Hameed

    2011-04-01

    Full Text Available We previously demonstrated that iron deprivation enhances drug susceptibility of Candida albicans by increasing membrane fluidity which correlated with the lower expression of ERG11 transcript and ergosterol levels. The iron restriction dependent membrane perturbations led to an increase in passive diffusion and drug susceptibility. The mechanisms underlying iron homeostasis and multidrug resistance (MDR, however, are not yet resolved. To evaluate the potential mechanisms, we used whole genome transcriptome and electrospray ionization tandem mass spectrometry (ESI-MS/MS based lipidome analyses of iron deprived Candida cells to examine the new cellular circuitry of the MDR of this pathogen. Our transcriptome data revealed a link between calcineurin signaling and iron homeostasis. Among the several categories of iron deprivation responsive genes, the down regulation of calcineurin signaling genes including HSP90, CMP1 and CRZ1 was noteworthy. Interestingly, iron deprived Candida cells as well as iron acquisition defective mutants phenocopied molecular chaperone HSP90 and calcineurin mutants and thus were sensitive to alkaline pH, salinity and membrane perturbations. In contrast, sensitivity to above stresses did not change in iron deprived DSY2146 strain with a hyperactive allele of calcineurin. Although, iron deprivation phenocopied compromised HSP90 and calcineurin, it was independent of protein kinase C signaling cascade. Notably, the phenotypes associated with iron deprivation in genetically impaired calcineurin and HSP90 could be reversed with iron supplementation. The observed down regulation of ergosterol (ERG1, ERG2, ERG11 and ERG25 and sphingolipid biosynthesis (AUR1 and SCS7 genes followed by lipidome analysis confirmed that iron deprivation not only disrupted ergosterol biosynthesis, but it also affected sphingolipid homeostasis in Candida cells. These lipid compositional changes suggested extensive remodeling of the membranes in iron

  8. Human genetic variation in VAC14 regulates Salmonella invasion and typhoid fever through modulation of cholesterol.

    Science.gov (United States)

    Alvarez, Monica I; Glover, Luke C; Luo, Peter; Wang, Liuyang; Theusch, Elizabeth; Oehlers, Stefan H; Walton, Eric M; Tram, Trinh Thi Bich; Kuang, Yu-Lin; Rotter, Jerome I; McClean, Colleen M; Chinh, Nguyen Tran; Medina, Marisa W; Tobin, David M; Dunstan, Sarah J; Ko, Dennis C

    2017-09-12

    Risk, severity, and outcome of infection depend on the interplay of pathogen virulence and host susceptibility. Systematic identification of genetic susceptibility to infection is being undertaken through genome-wide association studies, but how to expeditiously move from genetic differences to functional mechanisms is unclear. Here, we use genetic association of molecular, cellular, and human disease traits and experimental validation to demonstrate that genetic variation affects expression of VAC14, a phosphoinositide-regulating protein, to influence susceptibility to Salmonella enterica serovar Typhi ( S Typhi) infection. Decreased VAC14 expression increased plasma membrane cholesterol, facilitating Salmonella docking and invasion. This increased susceptibility at the cellular level manifests as increased susceptibility to typhoid fever in a Vietnamese population. Furthermore, treating zebrafish with a cholesterol-lowering agent, ezetimibe, reduced susceptibility to S Typhi. Thus, coupling multiple genetic association studies with mechanistic dissection revealed how VAC14 regulates Salmonella invasion and typhoid fever susceptibility and may open doors to new prophylactic/therapeutic approaches.

  9. Stress responses during ageing: molecular pathways regulating protein homeostasis.

    Science.gov (United States)

    Kyriakakis, Emmanouil; Princz, Andrea; Tavernarakis, Nektarios

    2015-01-01

    The ageing process is characterized by deterioration of physiological function accompanied by frailty and ageing-associated diseases. The most broadly and well-studied pathways influencing ageing are the insulin/insulin-like growth factor 1 signaling pathway and the dietary restriction pathway. Recent studies in diverse organisms have also delineated emerging pathways, which collectively or independently contribute to ageing. Among them the proteostatic-stress-response networks, inextricably affect normal ageing by maintaining or restoring protein homeostasis to preserve proper cellular and organismal function. In this chapter, we survey the involvement of heat stress and endoplasmic reticulum stress responses in the regulation of longevity, placing emphasis on the cross talk between different response mechanisms and their systemic effects. We further discuss novel insights relevant to the molecular pathways mediating these stress responses that may facilitate the development of innovative interventions targeting age-related pathologies such as diabetes, cancer, cardiovascular and neurodegenerative diseases.

  10. Cholesterol 7alpha-hydroxylase (CYP7A1) activity is modified after chronic ingestion of depleted uranium in the rat.

    Science.gov (United States)

    Racine, R; Grandcolas, L; Grison, S; Stefani, J; Delissen, O; Gourmelon, P; Veyssière, G; Souidi, M

    2010-05-01

    Depleted uranium (DU) is a radioactive heavy metal derived from the nuclear energy production. Its wide use in civilian and military items increases the risk of its environmental dissemination, and thus the risk of internal contamination of populations living in such contaminated territories. Previous studies have shown that vitamin D and cerebral cholesterol metabolisms were affected following chronic ingestion of DU. Even more than the brain, the liver is a crucial organ in cholesterol homeostasis since it regulates cholesterol distribution and elimination at body level. The aim of this work was to assess the impact of a low-level chronic ingestion of DU on hepatic cholesterol metabolism. Rats were contaminated with DU in their drinking water at a concentration of 40mg/l for 9 months. The major effect induced by DU was a decrease of CYP7A1 specific activity (-60%) correlated with a matching decrease of its product 7alpha-hydroxycholesterol in the plasma. Hepatic gene expression of transporters ABC A1, ABC G5, ABC G8 and of nuclear receptor RXR was increased, whereas that of catabolism enzyme CYP7B1 was decreased. Thus, after a chronic ingestion of DU, rats experience a modulation of cholesterol catabolism but overcome it, since their cholesterolemia is preserved and no pathology is declared.

  11. Palmitoylation regulates epidermal homeostasis and hair follicle differentiation.

    Directory of Open Access Journals (Sweden)

    Pleasantine Mill

    2009-11-01

    Full Text Available Palmitoylation is a key post-translational modification mediated by a family of DHHC-containing palmitoyl acyl-transferases (PATs. Unlike other lipid modifications, palmitoylation is reversible and thus often regulates dynamic protein interactions. We find that the mouse hair loss mutant, depilated, (dep is due to a single amino acid deletion in the PAT, Zdhhc21, resulting in protein mislocalization and loss of palmitoylation activity. We examined expression of Zdhhc21 protein in skin and find it restricted to specific hair lineages. Loss of Zdhhc21 function results in delayed hair shaft differentiation, at the site of expression of the gene, but also leads to hyperplasia of the interfollicular epidermis (IFE and sebaceous glands, distant from the expression site. The specific delay in follicle differentiation is associated with attenuated anagen propagation and is reflected by decreased levels of Lef1, nuclear beta-catenin, and Foxn1 in hair shaft progenitors. In the thickened basal compartment of mutant IFE, phospho-ERK and cell proliferation are increased, suggesting increased signaling through EGFR or integrin-related receptors, with a parallel reduction in expression of the key differentiation factor Gata3. We show that the Src-family kinase, Fyn, involved in keratinocyte differentiation, is a direct palmitoylation target of Zdhhc21 and is mislocalized in mutant follicles. This study is the first to demonstrate a key role for palmitoylation in regulating developmental signals in mammalian tissue homeostasis.

  12. Transcriptome analysis by GeneTrail revealed regulation of functional categories in response to alterations of iron homeostasis in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Lenhof Hans-Peter

    2011-05-01

    Full Text Available Abstract Background High-throughput technologies have opened new avenues to study biological processes and pathways. The interpretation of the immense amount of data sets generated nowadays needs to be facilitated in order to enable biologists to identify complex gene networks and functional pathways. To cope with this task multiple computer-based programs have been developed. GeneTrail is a freely available online tool that screens comparative transcriptomic data for differentially regulated functional categories and biological pathways extracted from common data bases like KEGG, Gene Ontology (GO, TRANSPATH and TRANSFAC. Additionally, GeneTrail offers a feature that allows screening of individually defined biological categories that are relevant for the respective research topic. Results We have set up GeneTrail for the use of Arabidopsis thaliana. To test the functionality of this tool for plant analysis, we generated transcriptome data of root and leaf responses to Fe deficiency and the Arabidopsis metal homeostasis mutant nas4x-1. We performed Gene Set Enrichment Analysis (GSEA with eight meaningful pairwise comparisons of transcriptome data sets. We were able to uncover several functional pathways including metal homeostasis that were affected in our experimental situations. Representation of the differentially regulated functional categories in Venn diagrams uncovered regulatory networks at the level of whole functional pathways. Over-Representation Analysis (ORA of differentially regulated genes identified in pairwise comparisons revealed specific functional plant physiological categories as major targets upon Fe deficiency and in nas4x-1. Conclusion Here, we obtained supporting evidence, that the nas4x-1 mutant was defective in metal homeostasis. It was confirmed that nas4x-1 showed Fe deficiency in roots and signs of Fe deficiency and Fe sufficiency in leaves. Besides metal homeostasis, biotic stress, root carbohydrate, leaf

  13. PAI-1 and IFN-γ in the regulation of innate immune homeostasis during sublethal yersiniosis.

    Science.gov (United States)

    Wang, Zheng; Zhao, Qi; Han, Yuxia; Zhang, Dongxia; Zhang, Liangyan; Luo, Deyan

    2013-03-01

    Plasminogen activator inhibitor type 1 (PAI-l), a key part of the fibrinolytic system, plays a critical host protective role during the acute phase of infection by regulating interferon(IFN)-γ release. IFN-γ regulates PAI-1 expression, which suggests an intricate interplay between PAI-1 and IFN-γ. Here, using the notion of a feedback loop, we report the complicated regulatory relationship between PAI-1 and IFN-γ. Mice were inoculated intravenously with 1×10(3) colony forming units of Yersinia enterocolitica; PAI-1 deficiency enhanced lethality (pimmune homeostasis. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Regulation of glucose homeostasis by KSR1 and MARK2.

    Directory of Open Access Journals (Sweden)

    Paula J Klutho

    Full Text Available Protein scaffolds control the intensity and duration of signaling and dictate the specificity of signaling through MAP kinase pathways. KSR1 is a molecular scaffold of the Raf/MEK/ERK MAP kinase cascade that regulates the intensity and duration of ERK activation. Relative to wild-type mice, ksr1⁻/⁻ mice are modestly glucose intolerant, but show a normal response to exogenous insulin. However, ksr1⁻/⁻ mice also demonstrate a three-fold increase in serum insulin levels in response to a glucose challenge, suggesting a role for KSR1 in insulin secretion. The kinase MARK2 is closely related to C-TAK1, a known regulator of KSR1. Mice lacking MARK2 have an increased rate of glucose disposal in response to exogenous insulin, increased glucose tolerance, and are resistant to diet-induced obesity. mark2⁻/⁻ksr1⁻/⁻ (DKO mice were compared to wild type, mark2⁻/⁻, and ksr1⁻/⁻ mice for their ability to regulate glucose homeostasis. Here we show that disruption of KSR1 in mark2⁻/⁻ mice reverses the increased sensitivity to exogenous insulin resulting from MARK2 deletion. DKO mice respond to exogenous insulin similarly to wild type and ksr1⁻/⁻ mice. These data suggest a model whereby MARK2 negatively regulates insulin sensitivity in peripheral tissue through inhibition of KSR1. Consistent with this model, we found that MARK2 binds and phosphorylates KSR1 on Ser392. Phosphorylation of Ser392 is a critical regulator of KSR1 stability, subcellular location, and ERK activation. These data reveal an unexpected role for the molecular scaffold KSR1 in insulin-regulated glucose metabolism.

  15. Osteopontin regulates the cross-talk between phosphatidylcholine and cholesterol metabolism in mouse liver.

    Science.gov (United States)

    Nuñez-Garcia, Maitane; Gomez-Santos, Beatriz; Buqué, Xabier; García-Rodriguez, Juan L; Romero, Marta R; Marin, Jose J G; Arteta, Beatriz; García-Monzón, Carmelo; Castaño, Luis; Syn, Wing-Kin; Fresnedo, Olatz; Aspichueta, Patricia

    2017-09-01

    Osteopontin (OPN) is involved in different liver pathologies in which metabolic dysregulation is a hallmark. Here, we investigated whether OPN could alter liver, and more specifically hepatocyte, lipid metabolism and the mechanism involved. In mice, lack of OPN enhanced cholesterol 7α-hydroxylase (CYP7A1) levels and promoted loss of phosphatidylcholine (PC) content in liver; in vivo treatment with recombinant (r)OPN caused opposite effects. rOPN directly decreased CYP7A1 levels through activation of focal adhesion kinase-AKT signaling in hepatocytes. PC content was also decreased in OPN-deficient (OPN-KO) hepatocytes in which de novo FA and PC synthesis was lower, whereas cholesterol (CHOL) synthesis was higher, than in WT hepatocytes. In vivo inhibition of cholesterogenesis normalized liver PC content in OPN-KO mice, demonstrating that OPN regulates the cross-talk between liver CHOL and PC metabolism. Matched liver and serum samples showed a positive correlation between serum OPN levels and liver PC and CHOL concentration in nonobese patients with nonalcoholic fatty liver. In conclusion, OPN regulates CYP7A1 levels and the metabolic fate of liver acetyl-CoA as a result of CHOL and PC metabolism interplay. The results suggest that CYP7A1 is a main axis and that serum OPN could disrupt liver PC and CHOL metabolism, contributing to nonalcoholic fatty liver disease progression in nonobese patients.

  16. What Can We Learn about Cholesterol's Transmembrane Distribution Based on Cholesterol-Induced Changes in Membrane Dipole Potential?

    DEFF Research Database (Denmark)

    Falkovich, Stanislav G.; Martinez-Seara, Hector; Nesterenko, Alexey M.

    2016-01-01

    Cholesterol is abundant in the plasma membranes of animal cells and is known to regulate a variety of membrane properties. Despite decades of research, the transmembrane distribution of cholesterol is still a matter of debate. Here we consider this outstanding issue through atomistic simulations ...

  17. Spiromastixones Inhibit Foam Cell Formation via Regulation of Cholesterol Efflux and Uptake in RAW264.7 Macrophages

    Directory of Open Access Journals (Sweden)

    Chongming Wu

    2015-10-01

    Full Text Available Bioassay-guided evaluation shows that a deep sea-derived fungus, Spiromastix sp. MCCC 3A00308, possesses lipid-lowering activity. Chromatographic separation of a culture broth resulted in the isolation of 15 known depsidone-based analogues, labeled spiromastixones A–O (1–15. Each of these compounds was tested for its ability to inhibit oxidized low-density lipoprotein (oxLDL-induced foam cell formation in RAW264.7 macrophages. Spiromastixones 6–8 and 12–14 significantly decreased oxLDL-induced lipid over-accumulation, reduced cell surface area, and reduced intracellular cholesterol concentration. Of these compounds, spiromastixones 6 and 14 exerted the strongest inhibitory effects. Spiromastixones 6 and 14 dramatically inhibited cholesterol uptake and stimulated cholesterol efflux to apolipoprotein A1 (ApoA1 and high-density lipoprotein (HDL in RAW264.7 macrophages. Mechanistic investigation indicated that spiromastixones 6, 7, 12 and 14 significantly up-regulated the mRNA levels of ATP-binding cassette sub-family A1 (ABCA1 and down-regulated those of scavenger receptor CD36, while the transcription of ATP-binding cassette sub-family A1 (ABCG1 and proliferator-activated receptor gamma (PPARγ were selectively up-regulated by 6 and 14. A transactivation reporter assay revealed that spiromastixones 6 and 14 remarkably enhanced the transcriptional activity of PPARγ. These results suggest that spiromastixones inhibit foam cell formation through upregulation of PPARγ and ABCA1/G1 and downregulation of CD36, indicating that spiromastixones 6 and 14 are promising lead compounds for further development as anti-atherogenic agents.

  18. The Specific Roles of Vitamins in the Regulation of Immunosurveillance and Maintenance of Immunologic Homeostasis in the Gut

    OpenAIRE

    Hosomi, Koji; Kunisawa, Jun

    2017-01-01

    Vitamins are micronutrients which are essential for the maintenance of biological responses including immune system. Hence, vitamin deficiency increases a risk of infectious, allergic, and inflammatory diseases. Accumulating evidence has recently revealed the molecular and cellular mechanisms of vitamin-mediated regulation in the active and quiescent immune responses. In this review, we focus on the immunologic roles of vitamins in the regulation of homeostasis and surveillance in the gut.

  19. Mucins and calcium phosphate precipitates additively stimulate cholesterol crystallization

    NARCIS (Netherlands)

    van den Berg, A. A.; van Buul, J. D.; Tytgat, G. N.; Groen, A. K.; Ostrow, J. D.

    1998-01-01

    Human biliary mucin and calcium binding protein (CBP) influence formation of both calcium salt precipitates and cholesterol crystals and colocalize in the center of cholesterol gallstones. We investigated how physiological concentrations of these proteins regulate cholesterol crystallization in

  20. Regulation of NKT Cell Localization in Homeostasis and Infection

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection. PMID:26074921

  1. Regulation of NKT Cell Localization in Homeostasis and Infection.

    Science.gov (United States)

    Slauenwhite, Drew; Johnston, Brent

    2015-01-01

    Natural killer T (NKT) cells are a specialized subset of T lymphocytes that regulate immune responses in the context of autoimmunity, cancer, and microbial infection. Lipid antigens derived from bacteria, parasites, and fungi can be presented by CD1d molecules and recognized by the canonical T cell receptors on NKT cells. Alternatively, NKT cells can be activated through recognition of self-lipids and/or pro-inflammatory cytokines generated during infection. Unlike conventional T cells, only a small subset of NKT cells traffic through the lymph nodes under homeostatic conditions, with the largest NKT cell populations localizing to the liver, lungs, spleen, and bone marrow. This is thought to be mediated by differences in chemokine receptor expression profiles. However, the impact of infection on the tissue localization and function of NKT remains largely unstudied. This review focuses on the mechanisms mediating the establishment of peripheral NKT cell populations during homeostasis and how tissue localization of NKT cells is affected during infection.

  2. GRP94 Regulates Circulating Cholesterol Levels through Blockade of PCSK9-Induced LDLR Degradation

    Directory of Open Access Journals (Sweden)

    Steve Poirier

    2015-12-01

    Full Text Available Clearance of circulating low-density lipoprotein cholesterol (LDLc by hepatic LDL receptors (LDLR is central for vascular health. Secreted by hepatocytes, PCSK9 induces the degradation of LDLR, resulting in higher plasma LDLc levels. Still, it remains unknown why LDLR and PCSK9 co-exist within the secretory pathway of hepatocytes without leading to complete degradation of LDLR. Herein, we identified the ER-resident GRP94, and more precisely its client-binding C-terminal domain, as a PCSK9-LDLR inhibitory binding protein. Depletion of GRP94 did not affect calcium homeostasis, induce ER stress, nor did it alter PCSK9 processing or its secretion but greatly increased its capacity to induce LDLR degradation. Accordingly, we found that hepatocyte-specific Grp94-deficient mice have higher plasma LDLc levels correlated with ∼80% reduction in hepatic LDLR protein levels. Thus, we provide evidence that, in physiological conditions, binding of PCSK9 to GRP94 protects LDLR from degradation likely by preventing early binding of PCSK9 to LDLR within the ER.

  3. MicroRNAs at the epicenter of intestinal homeostasis.

    Science.gov (United States)

    Belcheva, Antoaneta

    2017-03-01

    Maintaining intestinal homeostasis is a key prerequisite for a healthy gut. Recent evidence points out that microRNAs (miRNAs) act at the epicenter of the signaling networks regulating this process. The fine balance in the interaction between gut microbiota, intestinal epithelial cells, and the host immune system is achieved by constant transmission of signals and their precise regulation. Gut microbes extensively communicate with the host immune system and modulate host gene expression. On the other hand, sensing of gut microbiota by the immune cells provides appropriate tolerant responses that facilitate the symbiotic relationships. While the role of many regulatory proteins, receptors and their signaling pathways in the regulation of the intestinal homeostasis is well documented, the involvement of non-coding RNA molecules in this process has just emerged. This review discusses the most recent knowledge about the contribution of miRNAs in the regulation of the intestinal homeostasis. © 2017 WILEY Periodicals, Inc.

  4. DIETARY-CHOLESTEROL INDUCED DOWN-REGULATION OF INTESTINAL 3-HYDROXY-3-METHYLGLUTARYL COENZYME-A REDUCTASE-ACTIVITY IS DIMINISHED IN RABBITS WITH HYPERRESPONSE OF SERUM-CHOLESTEROL TO DIETARY-CHOLESTEROL

    NARCIS (Netherlands)

    MEIJER, GW; SMIT, MJ; VANDERPALEN, JGP; KUIPERS, F; VONK, RJ; VANZUTPHEN, BFM; BEYNEN, AC

    Key enzymes of cholesterol metabolism were studied in two inbred strains of rabbits with hyper- or hyporesponse of serum cholesterol to dietary cholesterol. Baseline 3-hydroxy-3-methylglutaryl (HMG)CoA reductase activity in liver was similar in hypo- and hyperresponders, but that in intestine was

  5. Phospholipid Homeostasis Regulates Dendrite Morphogenesis in Drosophila Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Shan Meltzer

    2017-10-01

    Full Text Available Disruptions in lipid homeostasis have been observed in many neurodevelopmental disorders that are associated with dendrite morphogenesis defects. However, the molecular mechanisms of how lipid homeostasis affects dendrite morphogenesis are unclear. We find that easily shocked (eas, which encodes a kinase with a critical role in phospholipid phosphatidylethanolamine (PE synthesis, and two other enzymes in this synthesis pathway are required cell autonomously in sensory neurons for dendrite growth and stability. Furthermore, we show that the level of Sterol Regulatory Element-Binding Protein (SREBP activity is important for dendrite development. SREBP activity increases in eas mutants, and decreasing the level of SREBP and its transcriptional targets in eas mutants largely suppresses the dendrite growth defects. Furthermore, reducing Ca2+ influx in neurons of eas mutants ameliorates the dendrite morphogenesis defects. Our study uncovers a role for EAS kinase and reveals the in vivo function of phospholipid homeostasis in dendrite morphogenesis.

  6. Cholesterol oxidation products and their biological importance

    DEFF Research Database (Denmark)

    Kulig, Waldemar; Cwiklik, Lukasz; Jurkiewicz, Piotr

    2016-01-01

    The main biological cause of oxysterols is the oxidation of cholesterol. They differ from cholesterol by the presence of additional polar groups that are typically hydroxyl, keto, hydroperoxy, epoxy, or carboxyl moieties. Under typical conditions, oxysterol concentration is maintained at a very low...... and precisely regulated level, with an excess of cholesterol. Like cholesterol, many oxysterols are hydrophobic and hence confined to cell membranes. However, small chemical differences between the sterols can significantly affect how they interact with other membrane components, and this in turn can have...

  7. Modeling the role of negative cooperativity in metabolic regulation and homeostasis.

    Directory of Open Access Journals (Sweden)

    Eliot C Bush

    Full Text Available A significant proportion of enzymes display cooperativity in binding ligand molecules, and such effects have an important impact on metabolic regulation. This is easiest to understand in the case of positive cooperativity. Sharp responses to changes in metabolite concentrations can allow organisms to better respond to environmental changes and maintain metabolic homeostasis. However, despite the fact that negative cooperativity is almost as common as positive, it has been harder to imagine what advantages it provides. Here we use computational models to explore the utility of negative cooperativity in one particular context: that of an inhibitor binding to an enzyme. We identify several factors which may contribute, and show that acting together they can make negative cooperativity advantageous.

  8. Neuronal and molecular mechanisms of sleep homeostasis.

    Science.gov (United States)

    Donlea, Jeffrey M

    2017-12-01

    Sleep is necessary for survival, and prolonged waking causes a homeostatic increase in the need for recovery sleep. Homeostasis is a core component of sleep regulation and has been tightly conserved across evolution from invertebrates to man. Homeostatic sleep regulation was first identified among insects in cockroaches several decades ago, but the characterization of sleep rebound in Drosophila melanogaster opened the use of insect model species to understand homeostatic functions and regulation of sleep. This review describes circuits in two neuropil structures, the central complex and mushroom bodies, that influence sleep homeostasis and neuromodulatory systems that influence the accrual of homeostatic sleep need. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Dynamic regulation of auxin oxidase and conjugating enzymes AtDAO1 and GH3 modulates auxin homeostasis.

    Science.gov (United States)

    Mellor, Nathan; Band, Leah R; Pěnčík, Aleš; Novák, Ondřej; Rashed, Afaf; Holman, Tara; Wilson, Michael H; Voß, Ute; Bishopp, Anthony; King, John R; Ljung, Karin; Bennett, Malcolm J; Owen, Markus R

    2016-09-27

    The hormone auxin is a key regulator of plant growth and development, and great progress has been made understanding auxin transport and signaling. Here, we show that auxin metabolism and homeostasis are also regulated in a complex manner. The principal auxin degradation pathways in Arabidopsis include oxidation by Arabidopsis thaliana gene DIOXYGENASE FOR AUXIN OXIDATION 1/2 (AtDAO1/2) and conjugation by Gretchen Hagen3s (GH3s). Metabolic profiling of dao1-1 root tissues revealed a 50% decrease in the oxidation product 2-oxoindole-3-acetic acid (oxIAA) and increases in the conjugated forms indole-3-acetic acid aspartic acid (IAA-Asp) and indole-3-acetic acid glutamic acid (IAA-Glu) of 438- and 240-fold, respectively, whereas auxin remains close to the WT. By fitting parameter values to a mathematical model of these metabolic pathways, we show that, in addition to reduced oxidation, both auxin biosynthesis and conjugation are increased in dao1-1 Transcripts of AtDAO1 and GH3 genes increase in response to auxin over different timescales and concentration ranges. Including this regulation of AtDAO1 and GH3 in an extended model reveals that auxin oxidation is more important for auxin homoeostasis at lower hormone concentrations, whereas auxin conjugation is most significant at high auxin levels. Finally, embedding our homeostasis model in a multicellular simulation to assess the spatial effect of the dao1-1 mutant shows that auxin increases in outer root tissues in agreement with the dao1-1 mutant root hair phenotype. We conclude that auxin homeostasis is dependent on AtDAO1, acting in concert with GH3, to maintain auxin at optimal levels for plant growth and development.

  10. The Essential Role of Mbd5 in the Regulation of Somatic Growth and Glucose Homeostasis in Mice

    Science.gov (United States)

    Du, Yarui; Liu, Bo; Guo, Fan; Xu, Guifang; Ding, Yuqiang; Liu, Yong; Sun, Xin; Xu, Guoliang

    2012-01-01

    Methyl-CpG binding domain protein 5 (MBD5) belongs to the MBD family proteins, which play central roles in transcriptional regulation and development. The significance of MBD5 function is highlighted by recent studies implicating it as a candidate gene involved in human 2q23.1 microdeletion syndrome. To investigate the physiological role of Mbd5, we generated knockout mice. The Mbd5-deficient mice showed growth retardation, wasting and pre-weaning lethality. The observed growth retardation was associated with the impairment of GH/IGF-1 axis in Mbd5-null pups. Conditional knockout of Mbd5 in the brain resulted in the similar phenotypes as whole body deletion, indicating that Mbd5 functions in the nervous system to regulate postnatal growth. Moreover, the mutant mice also displayed enhanced glucose tolerance and elevated insulin sensitivity as a result of increased insulin signaling, ultimately resulting in disturbed glucose homeostasis and hypoglycemia. These results indicate Mbd5 as an essential factor for mouse postnatal growth and maintenance of glucose homeostasis. PMID:23077600

  11. Bile Acid Metabolism and Signaling

    Science.gov (United States)

    Chiang, John Y. L.

    2015-01-01

    Bile acids are important physiological agents for intestinal nutrient absorption and biliary secretion of lipids, toxic metabolites, and xenobiotics. Bile acids also are signaling molecules and metabolic regulators that activate nuclear receptors and G protein-coupled receptor (GPCR) signaling to regulate hepatic lipid, glucose, and energy homeostasis and maintain metabolic homeostasis. Conversion of cholesterol to bile acids is critical for maintaining cholesterol homeostasis and preventing accumulation of cholesterol, triglycerides, and toxic metabolites, and injury in the liver and other organs. Enterohepatic circulation of bile acids from the liver to intestine and back to the liver plays a central role in nutrient absorption and distribution, and metabolic regulation and homeostasis. This physiological process is regulated by a complex membrane transport system in the liver and intestine regulated by nuclear receptors. Toxic bile acids may cause inflammation, apoptosis, and cell death. On the other hand, bile acid-activated nuclear and GPCR signaling protects against inflammation in liver, intestine, and macrophages. Disorders in bile acid metabolism cause cholestatic liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes. Bile acids, bile acid derivatives, and bile acid sequestrants are therapeutic agents for treating chronic liver diseases, obesity, and diabetes in humans. PMID:23897684

  12. Transcriptional regulation of Arabidopsis MIR168a and argonaute1 homeostasis in abscisic acid and abiotic stress responses.

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-03-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants.

  13. The nuclear IκB family of proteins controls gene regulation and immune homeostasis.

    Science.gov (United States)

    MaruYama, Takashi

    2015-10-01

    The inhibitory IκB family of proteins is subdivided into two groups based on protein localization in the cytoplasm or in the nucleus. These proteins interact with NF-κB, a major transcription factor regulating the expression of many inflammatory cytokines, by modulating its transcriptional activity. However, nuclear IκB family proteins not only interact with NF-κB to change its transcriptional activity, but they also bind to chromatin and control gene expression. This review provides an overview of nuclear IκB family proteins and their role in immune homeostasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Circulating Blood eNOS Contributes to the Regulation of Systemic Blood Pressure and Nitrite Homeostasis

    Science.gov (United States)

    Wood, Katherine C.; Cortese-Krott, Miriam M.; Kovacic, Jason C.; Noguchi, Audrey; Liu, Virginia B.; Wang, Xunde; Raghavachari, Nalini; Boehm, Manfred; Kato, Gregory J.; Kelm, Malte; Gladwin, Mark T.

    2013-01-01

    Objective Mice genetically deficient in endothelial nitric oxide synthase (eNOS−/−) are hypertensive with lower circulating nitrite levels, indicating the importance of constitutively produced nitric oxide (NO•) to blood pressure regulation and vascular homeostasis. While the current paradigm holds that this bioactivity derives specifically from expression of eNOS in endothelium, circulating blood cells also express eNOS protein. A functional red cell eNOS that modulates vascular NO• signaling has been proposed. Approach and Results To test the hypothesis that blood cells contribute to mammalian blood pressure regulation via eNOS-dependent NO• generation, we cross-transplanted WT and eNOS−/− mice, producing chimeras competent or deficient for eNOS expression in circulating blood cells. Surprisingly, we observed a significant contribution of both endothelial and circulating blood cell eNOS to blood pressure and systemic nitrite levels, the latter being a major component of the circulating NO• reservoir. These effects were abolished by the NOS inhibitor L-NAME and repristinated by the NOS substrate L-Arginine, and were independent of platelet or leukocyte depletion. Mouse erythrocytes were also found to carry an eNOS protein and convert 14C-Arginine into 14C-Citrulline in a NOS-dependent fashion. Conclusions These are the first studies to definitively establish a role for a blood borne eNOS, using cross transplant chimera models, that contributes to the regulation of blood pressure and nitrite homeostasis. This work provides evidence suggesting that erythrocyte eNOS may mediate this effect. PMID:23702660

  15. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    Science.gov (United States)

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2/SCP-x/L-FABP null

  16. Cholesterol catalyses Aβ42 aggregation through a heterogeneous nucleation pathway in the presence of lipid membranes

    Science.gov (United States)

    Habchi, Johnny; Chia, Sean; Galvagnion, Céline; Michaels, Thomas C. T.; Bellaiche, Mathias M. J.; Ruggeri, Francesco Simone; Sanguanini, Michele; Idini, Ilaria; Kumita, Janet R.; Sparr, Emma; Linse, Sara; Dobson, Christopher M.; Knowles, Tuomas P. J.; Vendruscolo, Michele

    2018-06-01

    Alzheimer's disease is a neurodegenerative disorder associated with the aberrant aggregation of the amyloid-β peptide. Although increasing evidence implicates cholesterol in the pathogenesis of Alzheimer's disease, the detailed mechanistic link between this lipid molecule and the disease process remains to be fully established. To address this problem, we adopt a kinetics-based strategy that reveals a specific catalytic role of cholesterol in the aggregation of Aβ42 (the 42-residue form of the amyloid-β peptide). More specifically, we demonstrate that lipid membranes containing cholesterol promote Aβ42 aggregation by enhancing its primary nucleation rate by up to 20-fold through a heterogeneous nucleation pathway. We further show that this process occurs as a result of cooperativity in the interaction of multiple cholesterol molecules with Aβ42. These results identify a specific microscopic pathway by which cholesterol dramatically enhances the onset of Aβ42 aggregation, thereby helping rationalize the link between Alzheimer's disease and the impairment of cholesterol homeostasis.

  17. The Interplay between Feedback and Buffering in Cellular Homeostasis.

    Science.gov (United States)

    Hancock, Edward J; Ang, Jordan; Papachristodoulou, Antonis; Stan, Guy-Bart

    2017-11-22

    Buffering, the use of reservoirs of molecules to maintain concentrations of key molecular species, and negative feedback are the primary known mechanisms for robust homeostatic regulation. To our knowledge, however, the fundamental principles behind their combined effect have not been elucidated. Here, we study the interplay between buffering and negative feedback in the context of cellular homeostasis. We show that negative feedback counteracts slow-changing disturbances, whereas buffering counteracts fast-changing disturbances. Furthermore, feedback and buffering have limitations that create trade-offs for regulation: instability in the case of feedback and molecular noise in the case of buffering. However, because buffering stabilizes feedback and feedback attenuates noise from slower-acting buffering, their combined effect on homeostasis can be synergistic. These effects can be explained within a traditional control theory framework and are consistent with experimental observations of both ATP homeostasis and pH regulation in vivo. These principles are critical for studying robustness and homeostasis in biology and biotechnology. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Gut TFH and IgA: key players for regulation of bacterial communities and immune homeostasis.

    Science.gov (United States)

    Kato, Lucia M; Kawamoto, Shimpei; Maruya, Mikako; Fagarasan, Sidonia

    2014-01-01

    The main function of the immune system is to protect the host against pathogens. However, unlike the systemic immune system, the gut immune system does not eliminate, but instead nourishes complex bacterial communities and establishes advanced symbiotic relationships. Immunoglobulin A (IgA) is the most abundant antibody isotype in mammals, produced mainly in the gut. The primary function of IgA is to maintain homeostasis at mucosal surfaces, and studies in mice have demonstrated that IgA diversification has an essential role in the regulation of gut microbiota. Dynamic diversification and constant adaptation of IgA responses to local microbiota require expression of activation-induced cytidine deaminase by B cells and control from T follicular helper and Foxp3(+) T cells in germinal centers (GCs). We discuss the finely tuned regulatory mechanisms for IgA synthesis in GCs of Peyer's patches and emphasize the roles of CD4(+) T cells for IgA selection and the maintenance of appropriate gut microbial communities required for immune homeostasis.

  19. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in arabidopsis.

    Science.gov (United States)

    Kant, Surya; Peng, Mingsheng; Rothstein, Steven J

    2011-03-01

    Plants need abundant nitrogen and phosphorus for higher yield. Improving plant genetics for higher nitrogen and phosphorus use efficiency would save potentially billions of dollars annually on fertilizers and reduce global environmental pollution. This will require knowledge of molecular regulators for maintaining homeostasis of these nutrients in plants. Previously, we reported that the NITROGEN LIMITATION ADAPTATION (NLA) gene is involved in adaptive responses to low-nitrogen conditions in Arabidopsis, where nla mutant plants display abrupt early senescence. To understand the molecular mechanisms underlying NLA function, two suppressors of the nla mutation were isolated that recover the nla mutant phenotype to wild type. Map-based cloning identified these suppressors as the phosphate (Pi) transport-related genes PHF1 and PHT1.1. In addition, NLA expression is shown to be regulated by the low-Pi induced microRNA miR827. Pi analysis revealed that the early senescence in nla mutant plants was due to Pi toxicity. These plants accumulated over five times the normal Pi content in shoots specifically under low nitrate and high Pi but not under high nitrate conditions. Also the Pi overaccumulator pho2 mutant shows Pi toxicity in a nitrate-dependent manner similar to the nla mutant. Further, the nitrate and Pi levels are shown to have an antagonistic crosstalk as displayed by their differential effects on flowering time. The results demonstrate that NLA and miR827 have pivotal roles in regulating Pi homeostasis in plants in a nitrate-dependent fashion.

  20. The intracellular cholesterol landscape: dynamic integrator of the immune response

    Science.gov (United States)

    Fessler, Michael B.

    2016-01-01

    Cholesterol has typically been considered an exogenous, disease-related factor in immunity; however, recent literature suggests that a paradigm shift is in order. Sterols are now recognized to ligate several immune receptors. Altered flux through the mevalonic acid synthesis pathway also appears to be a required event in the antiviral interferon response of macrophages and in the activation, proliferation, and differentiation of T cells. In this review, evidence is discussed that suggests an intrinsic, ‘professional’ role for sterols and oxysterols in macrophage and T cell immunity. Host defense may have been the original selection pressure behind the development of mechanisms for intracellular cholesterol homeostasis. Functional coupling between sterol metabolism and immunity has fundamental implications for health and disease. PMID:27692616

  1. Fungal Morphology, Iron Homeostasis, and Lipid Metabolism Regulated by a GATA Transcription Factor in Blastomyces dermatitidis.

    Directory of Open Access Journals (Sweden)

    Amber J Marty

    2015-06-01

    Full Text Available In response to temperature, Blastomyces dermatitidis converts between yeast and mold forms. Knowledge of the mechanism(s underlying this response to temperature remains limited. In B. dermatitidis, we identified a GATA transcription factor, SREB, important for the transition to mold. Null mutants (SREBΔ fail to fully complete the conversion to mold and cannot properly regulate siderophore biosynthesis. To capture the transcriptional response regulated by SREB early in the phase transition (0-48 hours, gene expression microarrays were used to compare SREB∆ to an isogenic wild type isolate. Analysis of the time course microarray data demonstrated SREB functioned as a transcriptional regulator at 37°C and 22°C. Bioinformatic and biochemical analyses indicated SREB was involved in diverse biological processes including iron homeostasis, biosynthesis of triacylglycerol and ergosterol, and lipid droplet formation. Integration of microarray data, bioinformatics, and chromatin immunoprecipitation identified a subset of genes directly bound and regulated by SREB in vivo in yeast (37°C and during the phase transition to mold (22°C. This included genes involved with siderophore biosynthesis and uptake, iron homeostasis, and genes unrelated to iron assimilation. Functional analysis suggested that lipid droplets were actively metabolized during the phase transition and lipid metabolism may contribute to filamentous growth at 22°C. Chromatin immunoprecipitation, RNA interference, and overexpression analyses suggested that SREB was in a negative regulatory circuit with the bZIP transcription factor encoded by HAPX. Both SREB and HAPX affected morphogenesis at 22°C; however, large changes in transcript abundance by gene deletion for SREB or strong overexpression for HAPX were required to alter the phase transition.

  2. Bilirubin Increases Insulin Sensitivity by Regulating Cholesterol Metabolism, Adipokines and PPARγ Levels

    Science.gov (United States)

    Liu, Jinfeng; Dong, Huansheng; Zhang, Yong; Cao, Mingjun; Song, Lili; Pan, Qingjie; Bulmer, Andrew; Adams, David B.; Dong, Xiao; Wang, Hongjun

    2015-01-01

    Obesity can cause insulin resistance and type 2 diabetes. Moderate elevations in bilirubin levels have anti-diabetic effects. This study is aimed at determining the mechanisms by which bilirubin treatment reduces obesity and insulin resistance in a diet-induced obesity (DIO) mouse model. DIO mice were treated with bilirubin or vehicle for 14 days. Body weights, plasma glucose, and insulin tolerance tests were performed prior to, immediately, and 7 weeks post-treatment. Serum lipid, leptin, adiponectin, insulin, total and direct bilirubin levels were measured. Expression of factors involved in adipose metabolism including sterol regulatory element-binding protein (SREBP-1), insulin receptor (IR), and PPARγ in liver were measured by RT-PCR and Western blot. Compared to controls, bilirubin-treated mice exhibited reductions in body weight, blood glucose levels, total cholesterol (TC), leptin, total and direct bilirubin, and increases in adiponectin and expression of SREBP-1, IR, and PPARγ mRNA. The improved metabolic control achieved by bilirubin-treated mice was persistent: at two months after treatment termination, bilirubin-treated DIO mice remained insulin sensitive with lower leptin and higher adiponectin levels, together with increased PPARγ expression. These results indicate that bilirubin regulates cholesterol metabolism, adipokines and PPARγ levels, which likely contribute to increased insulin sensitivity and glucose tolerance in DIO mice. PMID:26017184

  3. The Effect of 24S-Hydroxycholesterol on Cholesterol Homeostasis in Neurons: Quantitative Changes to the Cortical Neuron Proteome

    OpenAIRE

    Wang, Yuqin; Muneton, Sabina; Sjövall, Jan; Jovanovic, Jasmina N.; Griffiths, William J.

    2008-01-01

    In human the brain represents only about 2% of the body’s mass but contains about one quarter of the body’s free cholesterol. Cholesterol is synthesised de novo in brain, and removed by metabolism to oxysterols. 24S-Hydoxycholesterol represents the major metabolic product of cholesterol in brain, being formed via the cytochrome P450 (CYP) enzyme CYP46A1. CYP46A1 is expressed exclusively in brain, normally by neurons. In this study we investigated the effect of 24S-hydroxycholesterol on the pr...

  4. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis.

    Science.gov (United States)

    Hirota, Simon A; Ng, Jeffrey; Lueng, Alan; Khajah, Maitham; Parhar, Ken; Li, Yan; Lam, Victor; Potentier, Mireille S; Ng, Kelvin; Bawa, Misha; McCafferty, Donna-Marie; Rioux, Kevin P; Ghosh, Subrata; Xavier, Ramnik J; Colgan, Sean P; Tschopp, Jurg; Muruve, Daniel; MacDonald, Justin A; Beck, Paul L

    2011-06-01

    Attenuated innate immune responses to the intestinal microbiota have been linked to the pathogenesis of Crohn's disease (CD). Recent genetic studies have revealed that hypofunctional mutations of NLRP3, a member of the NOD-like receptor (NLR) superfamily, are associated with an increased risk of developing CD. NLRP3 is a key component of the inflammasome, an intracellular danger sensor of the innate immune system. When activated, the inflammasome triggers caspase-1-dependent processing of inflammatory mediators, such as IL-1β and IL-18. In the current study we sought to assess the role of the NLRP3 inflammasome in the maintenance of intestinal homeostasis through its regulation of innate protective processes. To investigate this role, Nlrp3(-/-) and wildtype mice were assessed in the dextran sulfate sodium and 2,4,6-trinitrobenzenesulfonic acid models of experimental colitis. Nlrp3(-/-) mice were found to be more susceptible to experimental colitis, an observation that was associated with reduced IL-1β, reduced antiinflammatory cytokine IL-10, and reduced protective growth factor TGF-β. Macrophages isolated from Nlrp3(-/-) mice failed to respond to bacterial muramyl dipeptide. Furthermore, Nlrp3-deficient neutrophils exhibited reduced chemotaxis and enhanced spontaneous apoptosis, but no change in oxidative burst. Lastly, Nlrp3(-/-) mice displayed altered colonic β-defensin expression, reduced colonic antimicrobial secretions, and a unique intestinal microbiota. Our data confirm an essential role for the NLRP3 inflammasome in the regulation of intestinal homeostasis and provide biological insight into disease mechanisms associated with increased risk of CD in individuals with NLRP3 mutations. Copyright © 2010 Crohn's & Colitis Foundation of America, Inc.

  5. Cholesterol modulates the volume-regulated anion current in Ehrlich-Lettre ascites cells via effects on Rho and F-actin

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjaer; Hougaard, Charlotte; Hoffmann, Else K

    2006-01-01

    swollen cells, this reduction was prevented by cholesterol depletion, which also increased isotonic Rho activity. Thrombin, which stimulates Rho and causes actin polymerization, potentiated VRAC in modestly swollen cells. VRAC activity was unaffected by inclusion of a water-soluble PtdIns(4,5)P(2......) analogue or a PtdIns(4,5)P(2)-blocking antibody in the pipette, or neomycin treatment to sequester PtdIns(4,5)P(2). It is suggested that in ELA cells, F-actin and Rho-Rho kinase modulate VRAC magnitude and activation rate, respectively, and that cholesterol depletion potentiates VRAC at least in part......The mechanisms controlling the volume-regulated anion current (VRAC) are incompletely elucidated. Here, we investigate the modulation of VRAC by cellular cholesterol and the potential involvement of F-actin, Rho, Rho kinase, and phosphatidylinositol-(4,5)-bisphosphate [PtdIns(4,5)P(2...

  6. Regulation of intestinal homeostasis by innate and adaptive immunity.

    Science.gov (United States)

    Kayama, Hisako; Takeda, Kiyoshi

    2012-11-01

    The intestine is a unique tissue where an elaborate balance is maintained between tolerance and immune responses against a variety of environmental factors such as food and the microflora. In a healthy individual, the microflora stimulates innate and adaptive immune systems to maintain gut homeostasis. However, the interaction of environmental factors with particular genetic backgrounds can lead to dramatic changes in the composition of the microflora (i.e. dysbiosis). Many of the specific commensal-bacterial products and the signaling pathways they trigger have been characterized. The role of T(h)1, T(h)2 and T(h)17 cells in inflammatory bowel disease has been widely investigated, as has the contribution of epithelial cells and subsets of dendritic cells and macrophages. To date, multiple regulatory cells in adaptive immunity, such as regulatory T cells and regulatory B cells, have been shown to maintain gut homeostasis by preventing inappropriate innate and adaptive immune responses to commensal bacteria. Additionally, regulatory myeloid cells have recently been identified that prevent intestinal inflammation by inhibiting T-cell proliferation. An increasing body of evidence has shown that multiple regulatory mechanisms contribute to the maintenance of gut homeostasis.

  7. Influence of DNA-methylation on zinc homeostasis in myeloid cells: Regulation of zinc transporters and zinc binding proteins.

    Science.gov (United States)

    Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter

    2016-09-01

    The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.

  8. Arabidopsis ABI5 plays a role in regulating ROS homeostasis by activating CATALASE 1 transcription in seed germination.

    Science.gov (United States)

    Bi, Chao; Ma, Yu; Wu, Zhen; Yu, Yong-Tao; Liang, Shan; Lu, Kai; Wang, Xiao-Fang

    2017-05-01

    It has been known that ABA INSENSITIVE 5 (ABI5) plays a vital role in regulating seed germination. In the present study, we showed that inhibition of the catalase activity with 3-amino-1,2,4-triazole (3-AT) inhibits seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines. Compared with Col-0, the seeds of abi5 mutants showed more sensitive to 3-AT during seed germination, while the seeds of ABI5-overexpression transgenic lines showed more insensitive. H 2 O 2 showed the same effect on seed germination of Col-0, abi5 mutants and ABI5-overexpression transgenic lines as 3-AT. These results suggest that ROS is involved in the seed germination mediated by ABI5. Further, we observed that T-DNA insertion mutants of the three catalase members in Arabidopsis displayed 3-AT-insensitive or -hypersensitive phenotypes during seed germination, suggesting that these catalase members regulate ROS homeostasis in a highly complex way. ABI5 affects reactive oxygen species (ROS) homeostasis by affecting CATALASE expression and catalase activity. Furthermore, we showed that ABI5 directly binds to the CAT1 promoter and activates CAT1 expression. Genetic evidence supports the idea that CAT1 functions downstream of ABI5 in ROS signaling during seed germination. RNA-sequencing analysis indicates that the transcription of the genes involved in ROS metabolic process or genes responsive to ROS stress is impaired in abi5-1 seeds. Additionally, expression changes in some genes correlative to seed germination were showed due to the change in ABI5 expression under 3-AT treatment. Together, all the findings suggest that ABI5 regulates seed germination at least partly by affecting ROS homeostasis.

  9. Hypothalamic regulation of brown adipose tissue thermogenesis and energy homeostasis

    Directory of Open Access Journals (Sweden)

    Wei eZhang

    2015-08-01

    Full Text Available Obesity and diabetes are increasing at an alarming rate worldwide, but the strategies for the prevention and treatment of these disorders remain inadequate. Brown adipose tissue (BAT is important for cold protection by producing heat using lipids and glucose as metabolic fuels. This thermogenic action causes increased energy expenditure and significant lipid/glucose disposal. In addition, BAT in white adipose tissue (WAT or beige cells have been found and they also exhibit the thermogenic action similar to BAT. These data provide evidence indicating BAT/beige cells as a potential target for combating obesity and diabetes. Recent discoveries of active BAT and beige cells in adult humans have further highlighted this potential. Growing studies have also shown the importance of central nervous system in the control of BAT thermogenesis and WAT browning using animal models. This review is focused on central neural thermoregulation, particularly addressing our current understanding of the importance of hypothalamic neural signaling in the regulation of BAT/beige thermogenesis and energy homeostasis.

  10. Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis

    Directory of Open Access Journals (Sweden)

    João A.B. Pedroso

    2015-05-01

    Full Text Available Leucine is a well-known activator of the mammalian target of rapamycin (mTOR. Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss.

  11. Cholesterol activates the G-protein coupled receptor Smoothened to promote Hedgehog signaling

    Science.gov (United States)

    Luchetti, Giovanni; Sircar, Ria; Kong, Jennifer H; Nachtergaele, Sigrid; Sagner, Andreas; Byrne, Eamon FX; Covey, Douglas F; Siebold, Christian; Rohatgi, Rajat

    2016-01-01

    Cholesterol is necessary for the function of many G-protein coupled receptors (GPCRs). We find that cholesterol is not just necessary but also sufficient to activate signaling by the Hedgehog (Hh) pathway, a prominent cell-cell communication system in development. Cholesterol influences Hh signaling by directly activating Smoothened (SMO), an orphan GPCR that transmits the Hh signal across the membrane in all animals. Unlike many GPCRs, which are regulated by cholesterol through their heptahelical transmembrane domains, SMO is activated by cholesterol through its extracellular cysteine-rich domain (CRD). Residues shown to mediate cholesterol binding to the CRD in a recent structural analysis also dictate SMO activation, both in response to cholesterol and to native Hh ligands. Our results show that cholesterol can initiate signaling from the cell surface by engaging the extracellular domain of a GPCR and suggest that SMO activity may be regulated by local changes in cholesterol abundance or accessibility. DOI: http://dx.doi.org/10.7554/eLife.20304.001 PMID:27705744

  12. Cholesterol metabolism: increasingly complex; El metabolismo del colesterol: cada vez mas complejo

    Energy Technology Data Exchange (ETDEWEB)

    Sanhueza, J.; Valenzuela, R.; Valenzuela, A.

    2012-07-01

    Cholesterol is an important molecule; it is necessary for the biosynthesis of steroidal hormones, bile salts and to maintain the stability of biological membranes in animal cells. However, its excess is negative and is responsible for the development of many diseases involving the heart and brain, or in the generation of some types of cancer. For these reasons, the cellular cholesterol levels must be finely regulated and therefore, an infinite number of mechanisms participate in this regulation, which undertake the organism as a whole. These mechanisms should begin to operate efficiently from the intake of cholesterol from the diet, its incorporation into the enterocytes, where are involved carriers such as ABC and NCP1 transporters, PDZ structural motif, to name a few. It is also necessary an adequate regulation of circulating cholesterol and once inside the body, there should be a perfect harmony between the addition of cholesterol to various tissues, its metabolic use, the mechanisms of its tissue deposition, and the synthesis of this lipid. From this perspective, this review offers a general view of the molecular mechanisms that allow the regulation of extra and intracellular cholesterol levels. (Author) 82 refs.

  13. Rapamycin down-regulates LDL-receptor expression independently of SREBP-2

    International Nuclear Information System (INIS)

    Sharpe, Laura J.; Brown, Andrew J.

    2008-01-01

    As a key regulator of cholesterol homeostasis, sterol-regulatory element binding protein-2 (SREBP-2) up-regulates expression of genes involved in cholesterol synthesis (e.g., 3-hydroxy-3-methyl-glutaryl-coenzyme A (HMG-CoA) Reductase) and uptake (the low density lipoprotein (LDL)-receptor). Previously, we showed that Akt, a critical kinase in cell growth and proliferation, contributes to SREBP-2 activation. However, the specific Akt target involved is unknown. A potential candidate is the mammalian target of rapamycin, mTOR. Rapamycin can cause hyperlipidaemia clinically, and we hypothesised that this may be mediated via an effect of mTOR on SREBP-2. Herein, we found that SREBP-2 activation and HMG-CoA Reductase gene expression were unaffected by rapamycin treatment. However, LDL-receptor gene expression was decreased by rapamycin, suggesting that this may contribute to the hyperlipidaemia observed in rapamycin-treated patients. Rapamycin did not affect mRNA stability, so the decrease in LDL-receptor gene expression is likely to be occurring at the transcriptional level, although independently of SREBP-2

  14. Phytosterol glycosides reduce cholesterol absorption in humans

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B.; Anderson Spearie, Catherine L.; Ostlund, Richard E.

    2009-01-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received ∼300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4–5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6 ± 4.8% (P lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content. PMID:19246636

  15. Pectin penta-oligogalacturonide reduces cholesterol accumulation by promoting bile acid biosynthesis and excretion in high-cholesterol-fed mice.

    Science.gov (United States)

    Zhu, Ru-Gang; Sun, Yan-Di; Hou, Yu-Ting; Fan, Jun-Gang; Chen, Gang; Li, Tuo-Ping

    2017-06-25

    Haw pectin penta-oligogalacturonide (HPPS) has important role in improving cholesterol metabolism and promoting the conversion of cholesterol to bile acids (BA) in mice fed high-cholesterol diet (HCD). However, the mechanism is not clear. This study aims to investigate the effects of HPPS on cholesterol accumulation and the regulation of hepatic BA synthesis and transport in HCD-fed mice. Results showed that HPPS significantly decreased plasma and hepatic TC levels but increased plasma high-density lipoprotein cholesterol (HDL-C) and apolipoprotein A-I (apoA-I) levels, compared to HCD. BA analysis showed that HPPS markedly decreased hepatic and small intestine BA levels but increased the gallbladder BA levels, and finally decreased the total BA pool size, compared to HCD. Studies of molecular mechanism revealed that HPPS promoted hepatic ATP-binding cassette transporter A1 (ABCA1), ATP-binding cassette transporter G1 (ABCG1), and scavenger receptor BI (SR-BI) expression but did not affect ATB binding cassette transporter G5/G8 (ABCG5/8) expression. HPPS inactivated hepatic farnesoid X receptor (FXR) and target genes expression, which resulted in significant increase of cholesterol 7α-hydroxylase 1 (CYP7A1) and sterol 12α-hydroxylase (CYP8B1) expression, with up-regulations of 204.2% and 33.5% for mRNA levels, respectively, compared with HCD. In addition, HPPS markedly enhanced bile salt export pump (BSEP) expression but didn't affect the sodium/taurocholate co-transporting polypeptide (NTCP) expression. In conclusion, the study revealed that HPPS reduced cholesterol accumulation by promoting BA synthesis in the liver and excretion in the feces, and might promote macrophage-to-liver reverse cholesterol transport (RCT) but did not liver-to-fecal RCT. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Trust your gut: galvanizing nutritional interest in intestinal cholesterol metabolism for protection against cardiovascular diseases.

    Science.gov (United States)

    Wegner, Casey J; Kim, Bohkyung; Lee, Jiyoung

    2013-01-16

    Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.

  17. Trust Your Gut: Galvanizing Nutritional Interest in Intestinal Cholesterol Metabolism for Protection Against Cardiovascular Diseases

    Directory of Open Access Journals (Sweden)

    Jiyoung Lee

    2013-01-01

    Full Text Available Recent studies have demonstrated that the intestine is a key target organ for overall health and longevity. Complementing these studies is the discovery of the trans-intestinal cholesterol efflux pathway and the emerging role of the intestine in reverse cholesterol transport. The surfacing dynamics of the regulation of cholesterol metabolism in the intestine provides an attractive platform for intestine-specific nutritional intervention strategies to lower blood cholesterol levels for protection against cardiovascular diseases. Notably, there is mounting evidence that stimulation of pathways associated with calorie restriction may have a large effect on the regulation of cholesterol removal by the intestine. However, intestinal energy metabolism, specifically the idiosyncrasies surrounding intestinal responses to energy deprivation, is poorly understood. The goal of this paper is to review recent insights into cholesterol regulation by the intestine and to discuss the potential for positive regulation of intestine-driven cholesterol removal through the nutritional induction of pathways associated with calorie restriction.

  18. Anthocyanin prevents CD40-activated proinflammatory signaling in endothelial cells by regulating cholesterol distribution.

    Science.gov (United States)

    Xia, Min; Ling, Wenhua; Zhu, Huilian; Wang, Qing; Ma, Jing; Hou, Mengjun; Tang, Zhihong; Li, Lan; Ye, Qinyuan

    2007-03-01

    Intracellular tumor necrosis factor receptor-associated factors (TRAFs) translocation to lipid rafts is a key element in CD40-induced signaling. The purpose of this study was to investigate the influence of anthocyanin on CD40-mediated proinflammatory events in human endothelial cells and the underlying possible molecular mechanism. Treatment of endothelial cells with anthocyanin prevented from CD40-induced proinflammatory status, measured by production of IL-6, IL-8, and monocyte chemoattractant protein-1 through inhibiting CD40-induced nuclear factor-kappaB (NF-kappaB) activation. TRAF-2 played pivotal role in CD40-NF-kappaB pathway as TRAF-2 small interference RNA (siRNA) diminished CD40-induced NF-kappaB activation and inflammation. TRAF-2 overexpression increased CD40-mediated NF-kappaB activation. Moreover, TRAF-2 almost totally recruited to lipid rafts after stimulation by CD40 ligand and depletion of cholesterol diminished CD40-mediated NF-kappaB activation. Exposure to anthocyanin not only interrupted TRAF-2 recruitment to lipid rafts but also decreased cholesterol content in Triton X-100 insoluble lipid rafts. However, anthocyanin did not influence the interaction between CD40 ligand and CD40 receptor. Our findings suggest that anthocyanin protects from CD40-induced proinflammatory signaling by preventing TRAF-2 translocation to lipid rafts through regulation of cholesterol distribution, which thereby may represent a mechanism that would explain the anti-inflammatory response of anthocyanin.

  19. MTOR-Driven Metabolic Reprogramming Regulates Legionella pneumophila Intracellular Niche Homeostasis

    Science.gov (United States)

    Abshire, Camille F.; Roy, Craig R.

    2016-01-01

    Vacuolar bacterial pathogens are sheltered within unique membrane-bound organelles that expand over time to support bacterial replication. These compartments sequester bacterial molecules away from host cytosolic immunosurveillance pathways that induce antimicrobial responses. The mechanisms by which the human pulmonary pathogen Legionella pneumophila maintains niche homeostasis are poorly understood. We uncovered that the Legionella-containing vacuole (LCV) required a sustained supply of host lipids during expansion. Lipids shortage resulted in LCV rupture and initiation of a host cell death response, whereas excess of host lipids increased LCVs size and housing capacity. We found that lipids uptake from serum and de novo lipogenesis are distinct redundant supply mechanisms for membrane biogenesis in Legionella-infected macrophages. During infection, the metabolic checkpoint kinase Mechanistic Target of Rapamycin (MTOR) controlled lipogenesis through the Serum Response Element Binding Protein 1 and 2 (SREBP1/2) transcription factors. In Legionella-infected macrophages a host-driven response that required the Toll-like receptors (TLRs) adaptor protein Myeloid differentiation primary response gene 88 (Myd88) dampened MTOR signaling which in turn destabilized LCVs under serum starvation. Inactivation of the host MTOR-suppression pathway revealed that L. pneumophila sustained MTOR signaling throughout its intracellular infection cycle by a process that required the upstream regulator Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K) and one or more Dot/Icm effector proteins. Legionella-sustained MTOR signaling facilitated LCV expansion and inhibition of the PI3K-MTOR-SREPB1/2 axis through pharmacological or genetic interference or by activation of the host MTOR-suppression response destabilized expanding LCVs, which in turn triggered cell death of infected macrophages. Our work identified a host metabolic requirement for LCV homeostasis and demonstrated that L

  20. Genetic regulation by NLA and microRNA827 for maintaining nitrate-dependent phosphate homeostasis in arabidopsis.

    Directory of Open Access Journals (Sweden)

    Surya Kant

    2011-03-01

    Full Text Available Plants need abundant nitrogen and phosphorus for higher yield. Improving plant genetics for higher nitrogen and phosphorus use efficiency would save potentially billions of dollars annually on fertilizers and reduce global environmental pollution. This will require knowledge of molecular regulators for maintaining homeostasis of these nutrients in plants. Previously, we reported that the NITROGEN LIMITATION ADAPTATION (NLA gene is involved in adaptive responses to low-nitrogen conditions in Arabidopsis, where nla mutant plants display abrupt early senescence. To understand the molecular mechanisms underlying NLA function, two suppressors of the nla mutation were isolated that recover the nla mutant phenotype to wild type. Map-based cloning identified these suppressors as the phosphate (Pi transport-related genes PHF1 and PHT1.1. In addition, NLA expression is shown to be regulated by the low-Pi induced microRNA miR827. Pi analysis revealed that the early senescence in nla mutant plants was due to Pi toxicity. These plants accumulated over five times the normal Pi content in shoots specifically under low nitrate and high Pi but not under high nitrate conditions. Also the Pi overaccumulator pho2 mutant shows Pi toxicity in a nitrate-dependent manner similar to the nla mutant. Further, the nitrate and Pi levels are shown to have an antagonistic crosstalk as displayed by their differential effects on flowering time. The results demonstrate that NLA and miR827 have pivotal roles in regulating Pi homeostasis in plants in a nitrate-dependent fashion.

  1. Lipoprotein cholesterol uptake mediates upregulation of bile acid synthesis by increasing cholesterol 7a-hydroxylase but not sterol 27- hydroxylase gene expression in cultured rat hepatocytes.

    NARCIS (Netherlands)

    Post, S.M.; Twisk, J.W.R.; van der Fits, L.T.E.; Wit, E.C.M.; Hoekman, M.F.M.; Mager, W.H.; Princen, H.M.G.

    1999-01-01

    Lipoproteins may supply substrate for the formation of bile acids, and the amount of hepatic cholesterol can regulate bile-acid synthesis and increase cholesterol 7α-hydroxylase expression. However, the effect of lipoprotein cholesterol on sterol 27-hydroxylase expression and the role of different

  2. The monocyte counts to HDL cholesterol ratio in obese and lean patients with polycystic ovary syndrome.

    Science.gov (United States)

    Usta, Akin; Avci, Eyup; Bulbul, Cagla Bahar; Kadi, Hasan; Adali, Ertan

    2018-04-10

    Women with polycystic ovary syndrome are more likely to suffer from obesity, insulin resistance, and chronic low-grade inflammation. In fact, the excessive activation of monocytes exacerbates oxidative stress and inflammation. However, high-density lipoprotein cholesterol neutralizes the pro-inflammatory and pro-oxidant effects of monocytes. The aim of this study is to investigate whether monocyte counts to high-density lipoprotein cholesterol ratio can predict the inflammatory condition in patients with polycystic ovary syndrome. In this cross-sectional study, a total of 124 women (61 of them with polycystic ovary syndrome and 63 age-matched healthy volunteers) were included in the study population. Obese polycystic ovary syndrome patients (n = 30) with a body mass index of ≥25 kg/m 2 and lean polycystic ovary syndrome patients (n = 31) with a body mass index of polycystic ovary syndrome were significantly higher than in control subjects (p = 0.0018). Moreover, a regression analysis revealed that body mass index, the homeostasis model assessment of insulin resistance and the high sensitivity C-reactive protein levels were confounding factors that affected the monocyte counts to high density lipoprotein cholesterol values. Additionally, a univariate and multivariate logistic regression analysis demonstrated that the increased monocyte counts to high density lipoprotein cholesterol values were more sensitive than the other known risk factors (such as increased body mass index, homeostasis model assessment of insulin resistance and high sensitive C-reactive protein levels) in the prediction of the inflammation in patients with polycystic ovary syndrome. The present study demonstrated that the monocyte count to high density lipoprotein cholesterol may be a novel and useful predictor of the presence of polycystic ovary syndrome.

  3. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  4. Cyclic di-AMP regulation of osmotic homeostasis is essential in Group B Streptococcus.

    Directory of Open Access Journals (Sweden)

    Laura Devaux

    2018-04-01

    Full Text Available Cyclic nucleotides are universally used as secondary messengers to control cellular physiology. Among these signalling molecules, cyclic di-adenosine monophosphate (c-di-AMP is a specific bacterial second messenger recognized by host cells during infections and its synthesis is assumed to be necessary for bacterial growth by controlling a conserved and essential cellular function. In this study, we sought to identify the main c-di-AMP dependent pathway in Streptococcus agalactiae, the etiological agent of neonatal septicaemia and meningitis. By conditionally inactivating dacA, the only diadenyate cyclase gene, we confirm that c-di-AMP synthesis is essential in standard growth conditions. However, c-di-AMP synthesis becomes rapidly dispensable due to the accumulation of compensatory mutations. We identified several mutations restoring the viability of a ΔdacA mutant, in particular a loss-of-function mutation in the osmoprotectant transporter BusAB. Identification of c-di-AMP binding proteins revealed a conserved set of potassium and osmolyte transporters, as well as the BusR transcriptional factor. We showed that BusR negatively regulates busAB transcription by direct binding to the busAB promoter. Loss of BusR repression leads to a toxic busAB expression in absence of c-di-AMP if osmoprotectants, such as glycine betaine, are present in the medium. In contrast, deletion of the gdpP c-di-AMP phosphodiesterase leads to hyperosmotic susceptibility, a phenotype dependent on a functional BusR. Taken together, we demonstrate that c-di-AMP is essential for osmotic homeostasis and that the predominant mechanism is dependent on the c-di-AMP binding transcriptional factor BusR. The regulation of osmotic homeostasis is likely the conserved and essential function of c-di-AMP, but each species has evolved specific c-di-AMP mechanisms of osmoregulation to adapt to its environment.

  5. IRAK-M regulation and function in host defense and immune homeostasis

    Directory of Open Access Journals (Sweden)

    Leah L.N. Hubbard

    2010-06-01

    Full Text Available Antigen presenting cells (APCs of the innate immune system sense a wide range of pathogens via pattern recognition receptors (PRRs. Engagement of certain PRRs can induce production of pro-inflammatory mediators that facilitate effective clearance of pathogen. Toll-like receptors (TLRs are a well described group of PRRs that belong to the TLR/Interleukin-1 receptor (IL-1R superfamily. However, TLR/IL-1R induction of pro-inflammatory mediators must be regulated to prevent excessive inflammation and tissue damage. One molecule of recent interest that is known to inhibit TLR/IL-1R signaling is interleukin-1 receptor associated kinase (IRAK-M, also known as IRAK-3. IRAK-M is expressed in a number of immune and epithelial cells types, and through its inhibition of pro-inflammatory cytokine production, IRAK-M can regulate immune homeostasis and tolerance in a number of infectious and non-infectious diseases. Furthermore, use of IRAK-M deficient animals has increased our understanding of the importance of IRAK-M in regulating immune responsiveness to a variety of pathogens. Although IRAK-M expression is typically induced through TLR signaling, IRAK-M can also be expressed in response to various endogenous and exogenous soluble factors as well as cell surface and intracellular signaling molecules. This review will focus on clinical scenarios in which expression of IRAK-M is beneficial (as in early sepsis and those situations where IRAK-M expression is harmful to the host (as in cancer and following bone marrow transplant. There is strong rationale for therapeutic targeting of IRAK-M for clinical benefit. However, effective targeting will require a greater understanding of the transcriptional regulation of this gene.

  6. Cholesterol in unusual places

    Energy Technology Data Exchange (ETDEWEB)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J, E-mail: John.Katsaras@nrc.gc.ca, E-mail: Norbert.Kucerka@nrc.gc.ca

    2010-11-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  7. Cholesterol in unusual places

    International Nuclear Information System (INIS)

    Kucerka, N; Nieh, M P; Marquardt, D; Harroun, T A; Wassail, S R; Katsaras, J

    2010-01-01

    Cholesterol is an essential component of mammalian cells, and is required for building and maintaining cell membranes, regulating their fluidity, and possibly acting as an antioxidant. Cholesterol has also been implicated in cell signaling processes, where it has been suggested that it triggers the formation of lipid rafts in the plasma membrane. Aside from cholesterol's physiological roles, what is also becoming clear is its poor affinity for lipids with unsaturated fatty acids as opposed to saturated lipids, such as sphingomyelin with which it forms rafts. We previously reported the location of cholesterol in membranes with varying degrees of acyl chain unsaturation as determined by neutron diffraction studies (Harroun et al 2006 Biochemistry 45, 1227; Harroun et al 2008 Biochemistry 47, 7090). In bilayers composed of phosphatidylcholine (PC) molecules with a saturated acyl chain at the sn-1 position or a monounsaturated acyl chain at both sn-1 and sn-2 positions, cholesterol was found in its much-accepted 'upright' position. However, in dipolyunsaturated 1,2-diarachidonyl phosphatidylcholine (20:4-20:4PC) membranes the molecule was found sequestered in the center of the bilayers. In further experiments, mixing l-palmitoyl-2-oleoyl phosphatidylcholine (16:0-18:1 PC) with 20:4-20:4PC resulted in cholesterol reverting to its upright orientation at approximately 40 mol% 16:0-18:1 PC. Interestingly, the same effect was achieved with only 5 mol% 1,2-dimyristoyl phosphatidylchoile (14:0-14:0PC).

  8. Expression of Peroxisome Proliferator-Activated Receptor-γ in Key Neuronal Subsets Regulating Glucose Metabolism and Energy Homeostasis

    OpenAIRE

    Sarruf, David A.; Yu, Fang; Nguyen, Hong T.; Williams, Diana L.; Printz, Richard L.; Niswender, Kevin D.; Schwartz, Michael W.

    2008-01-01

    In addition to increasing insulin sensitivity and adipogenesis, peroxisome proliferator-activated receptor (PPAR)-γ agonists cause weight gain and hyperphagia. Given the central role of the brain in the control of energy homeostasis, we sought to determine whether PPARγ is expressed in key brain areas involved in metabolic regulation. Using immunohistochemistry, PPARγ distribution and its colocalization with neuron-specific protein markers were investigated in rat and mouse brain sections spa...

  9. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle.

    Science.gov (United States)

    Shestopalov, Valery I; Panchin, Yuri; Tarasova, Olga S; Gaynullina, Dina; Kovalzon, Vladimir M

    2017-01-01

    During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1) hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1 -/- mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx) in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.

  10. Pannexins Are Potential New Players in the Regulation of Cerebral Homeostasis during Sleep-Wake Cycle

    Directory of Open Access Journals (Sweden)

    Valery I. Shestopalov

    2017-07-01

    Full Text Available During brain homeostasis, both neurons and astroglia release ATP that is rapidly converted to adenosine in the extracellular space. Pannexin-1 (Panx1 hemichannels represent a major conduit of non-vesicular ATP release from brain cells. Previous studies have shown that Panx1−/− mice possess severe disruption of the sleep-wake cycle. Here, we review experimental data supporting the involvement of pannexins (Panx in the coordination of fundamental sleep-associated brain processes, such as neuronal activity and regulation of cerebrovascular tone. Panx1 hemichannels are likely implicated in the regulation of the sleep-wake cycle via an indirect effect of released ATP on adenosine receptors and through interaction with other somnogens, such as IL-1β, TNFα and prostaglandin D2. In addition to the recently established role of Panx1 in the regulation of endothelium-dependent arterial dilation, similar signaling pathways are the major cellular component of neurovascular coupling. The new discovered role of Panx in sleep regulation may have broad implications in coordinating neuronal activity and homeostatic housekeeping processes during the sleep-wake cycle.

  11. Development of iron homeostasis in infants and young children.

    Science.gov (United States)

    Lönnerdal, Bo

    2017-12-01

    Healthy, term, breastfed infants usually have adequate iron stores that, together with the small amount of iron that is contributed by breast milk, make them iron sufficient until ≥6 mo of age. The appropriate concentration of iron in infant formula to achieve iron sufficiency is more controversial. Infants who are fed formula with varying concentrations of iron generally achieve sufficiency with iron concentrations of 2 mg/L (i.e., with iron status that is similar to that of breastfed infants at 6 mo of age). Regardless of the feeding choice, infants' capacity to regulate iron homeostasis is important but less well understood than the regulation of iron absorption in adults, which is inverse to iron status and strongly upregulated or downregulated. Infants who were given daily iron drops compared with a placebo from 4 to 6 mo of age had similar increases in hemoglobin concentrations. In addition, isotope studies have shown no difference in iron absorption between infants with high or low hemoglobin concentrations at 6 mo of age. Together, these findings suggest a lack of homeostatic regulation of iron homeostasis in young infants. However, at 9 mo of age, homeostatic regulatory capacity has developed although, to our knowledge, its extent is not known. Studies in suckling rat pups showed similar results with no capacity to regulate iron homeostasis at 10 d of age when fully nursing, but such capacity occurred at 20 d of age when pups were partially weaned. The major iron transporters in the small intestine divalent metal-ion transporter 1 (DMT1) and ferroportin were not affected by pup iron status at 10 d of age but were strongly affected by iron status at 20 d of age. Thus, mechanisms that regulate iron homeostasis are developed at the time of weaning. Overall, studies in human infants and experimental animals suggest that iron homeostasis is absent or limited early in infancy largely because of a lack of regulation of the iron transporters DMT1 and ferroportin

  12. Chromatin-Bound MDM2 Regulates Serine Metabolism and Redox Homeostasis Independently of p53.

    Science.gov (United States)

    Riscal, Romain; Schrepfer, Emilie; Arena, Giuseppe; Cissé, Madi Y; Bellvert, Floriant; Heuillet, Maud; Rambow, Florian; Bonneil, Eric; Sabourdy, Frédérique; Vincent, Charles; Ait-Arsa, Imade; Levade, Thierry; Thibaut, Pierre; Marine, Jean-Christophe; Portais, Jean-Charles; Sarry, Jean-Emmanuel; Le Cam, Laurent; Linares, Laetitia K

    2016-06-16

    The mouse double minute 2 (MDM2) oncoprotein is recognized as a major negative regulator of the p53 tumor suppressor, but growing evidence indicates that its oncogenic activities extend beyond p53. Here, we show that MDM2 is recruited to chromatin independently of p53 to regulate a transcriptional program implicated in amino acid metabolism and redox homeostasis. Identification of MDM2 target genes at the whole-genome level highlights an important role for ATF3/4 transcription factors in tethering MDM2 to chromatin. MDM2 recruitment to chromatin is a tightly regulated process that occurs during oxidative stress and serine/glycine deprivation and is modulated by the pyruvate kinase M2 (PKM2) metabolic enzyme. Depletion of endogenous MDM2 in p53-deficient cells impairs serine/glycine metabolism, the NAD(+)/NADH ratio, and glutathione (GSH) recycling, impacting their redox state and tumorigenic potential. Collectively, our data illustrate a previously unsuspected function of chromatin-bound MDM2 in cancer cell metabolism. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Regulation of Telomere Homeostasis during Epstein-Barr virus Infection and Immortalization.

    Science.gov (United States)

    Kamranvar, Siamak A; Masucci, Maria G

    2017-08-09

    The acquisition of unlimited proliferative potential is dependent on the activation of mechanisms for telomere maintenance, which counteracts telomere shortening and the consequent triggering of the DNA damage response, cell cycle arrest, and apoptosis. The capacity of Epstein Barr virus (EBV) to infect B-lymphocytes in vitro and transform the infected cells into autonomously proliferating immortal cell lines underlies the association of this human gamma-herpesvirus with a broad variety of lymphoid and epithelial cell malignancies. Current evidence suggests that both telomerase-dependent and -independent pathways of telomere elongation are activated in the infected cells during the early and late phases of virus-induced immortalization. Here we review the interaction of EBV with different components of the telomere maintenance machinery and the mechanisms by which the virus regulates telomere homeostasis in proliferating cells. We also discuss how these viral strategies may contribute to malignant transformation.

  14. Mucosal innate immune cells regulate both gut homeostasis and intestinal inflammation.

    Science.gov (United States)

    Kurashima, Yosuke; Goto, Yoshiyuki; Kiyono, Hiroshi

    2013-12-01

    Continuous exposure of intestinal mucosal surfaces to diverse microorganisms and their metabolites reflects the biological necessity for a multifaceted, integrated epithelial and immune cell-mediated regulatory system. The development and function of the host cells responsible for the barrier function of the intestinal surface (e.g., M cells, Paneth cells, goblet cells, and columnar epithelial cells) are strictly regulated through both positive and negative stimulation by the luminal microbiota. Stimulation by damage-associated molecular patterns and commensal bacteria-derived microbe-associated molecular patterns provokes the assembly of inflammasomes, which are involved in maintaining the integrity of the intestinal epithelium. Mucosal immune cells located beneath the epithelium play critical roles in regulating both the mucosal barrier and the relative composition of the luminal microbiota. Innate lymphoid cells and mast cells, in particular, orchestrate the mucosal regulatory system to create a mutually beneficial environment for both the host and the microbiota. Disruption of mucosal homeostasis causes intestinal inflammation such as that seen in inflammatory bowel disease. Here, we review the recent research on the biological interplay among the luminal microbiota, epithelial cells, and mucosal innate immune cells in both healthy and pathological conditions. © 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Reduced absorption and enhanced synthesis of cholesterol in patients with cystic fibrosis: a preliminary study of plasma sterols.

    Science.gov (United States)

    Gelzo, Monica; Sica, Concetta; Elce, Ausilia; Dello Russo, Antonio; Iacotucci, Paola; Carnovale, Vincenzo; Raia, Valeria; Salvatore, Donatello; Corso, Gaetano; Castaldo, Giuseppe

    2016-09-01

    Low cholesterol is typically observed in the plasma of patients with cystic fibrosis (CF) contrasting with the subcellular accumulation of cholesterol demonstrated in CF cells and in mice models. However, the homeostasis of cholesterol has not been well investigated in patients with CF. We studied the plasma of 26 patients with CF and 33 unaffected controls campesterol and β-sitosterol as markers of intestinal absorption and lathosterol as a marker of de novo cholesterol biosynthesis by gas chromatography (GC-FID and GC-MS). Plasma campesterol and β-sitosterol results were significantly (p=0.01) lower while plasma lathosterol was significantly higher (p=0.001) in patients with CF as compared to control subjects. Plasma cholesterol results were significantly lower (p=0.01) in CF patients. Our data suggest that the impaired intestinal absorption of exogenous sterols in patients with CF stimulates the endogenous synthesis of cholesterol, but the levels of total cholesterol in plasma remain lower. This may be due to the CFTR dysfunction that reduces cholesterol blood excretion causing the accumulation of cholesterol in liver cells and in other tissues contributing to trigger CF chronic inflammation.

  16. Membrane Cholesterol Modulates Superwarfarin Toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  17. Inulin and Fibersol-2 Combined Have Hypolipidemic Effects on High Cholesterol Diet-Induced Hyperlipidemia in Hamsters

    Directory of Open Access Journals (Sweden)

    Wen-Ching Huang

    2016-03-01

    Full Text Available The resistant carbohydrates, inulin, and Fibersol-2, belong to soluble dietary fibers and are considered important prebiotics that maintain biological functions, including glucose homeostasis, lipid regulation, colon disease prevention, and prebiotics characteristics. However, few studies have investigated Fibersol-2 alone or in combination with inulin to assess a pooled effect on modulation of hyperlipidemia. We aimed to investigate the effects of this combined supplement (defined as InF on hamsters fed a 0.2% cholesterol and 10% lard diet (i.e., high-cholesterol diet, HCD to induce hyperlipidemia. A total of 40 male hamsters were randomly assigned to five groups (n = 8 per group for treatment: standard diet, vehicle (control; or vehicle or InF supplementation by oral gavage at 0, 864, 1727, or 2591 mg/kg/day for eight weeks, designated HCD, InF-1X, InF-2X, and InF-3X groups, respectively. The hypolipidemic efficacy and safety of InF supplementation was assessed by serum lipid indexes, hepatic and fecal lipid content, and histology. InF supplementation significantly improved serum levels of triacylglycerol (TG and low-density lipoprotein cholesterol (LDL-C and the ratio of LDL-C/HDL-C after two-week treatment, and reduced serum total cholesterol (TC levels after four-week administration. After eight-week supplementation, InF supplementation dose-dependently improved serum levels of TC, TG, HDL-C, and LDL-C; LDL-C/HDL-C ratio; and hepatic TC and TG levels. It inhibited TC absorption by feces elimination. Our study provides experiment-based evidence to support that this prebiotics remedy may be useful in preventing or treating hyperlipidemia.

  18. Regulation of calcium homeostasis in activated human neutrophils ...

    African Journals Online (AJOL)

    Objectives. The objectives of the current study were to: (i) present an integrated model for the restoration of calcium homeostasis in activated human neutrophils based on current knowledge and recent research; and (ii) identify potential targets for the modulation of calcium fluxes in activated neutrophils based on this model ...

  19. Phytosterol glycosides reduce cholesterol absorption in humans.

    Science.gov (United States)

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Anderson Spearie, Catherine L; Ostlund, Richard E

    2009-04-01

    Dietary phytosterols inhibit intestinal cholesterol absorption and regulate whole body cholesterol excretion and balance. However, they are biochemically heterogeneous and a portion is glycosylated in some foods with unknown effects on biological activity. We tested the hypothesis that phytosterol glycosides reduce cholesterol absorption in humans. Phytosterol glycosides were extracted and purified from soy lecithin in a novel two-step process. Cholesterol absorption was measured in a series of three single-meal tests given at intervals of 2 wk to each of 11 healthy subjects. In a randomized crossover design, participants received approximately 300 mg of added phytosterols in the form of phytosterol glycosides or phytosterol esters, or placebo in a test breakfast also containing 30 mg cholesterol-d7. Cholesterol absorption was estimated by mass spectrometry of plasma cholesterol-d7 enrichment 4-5 days after each test. Compared with the placebo test, phytosterol glycosides reduced cholesterol absorption by 37.6+/-4.8% (Pphytosterol esters 30.6+/-3.9% (P=0.0001). These results suggest that natural phytosterol glycosides purified from lecithin are bioactive in humans and should be included in methods of phytosterol analysis and tables of food phytosterol content.

  20. Insulin resistance in human subjects having impaired glucose regulation

    International Nuclear Information System (INIS)

    Khan, S.H.; Khan, F.A.; Ijaz, A.

    2007-01-01

    To determine insulin resistance in human subjects having impaired glucose regulation (IGR) by Homeostasis Model Assessment for Insulin Resistance (HOMA-IR). A total of 100 subjects with impaired glucose regulation were selected for evaluation of metabolic syndrome as per the criteria of National Cholesterol Education Program, Adult Treatment Panel III (NCEP, ATP III), along with 47 healthy age and gender-matched controls. Physical examination to determine blood pressure and waist circumference was carried out and so was sampling for plasma glucose, serum triglycerides, HDL-cholesterol and insulin. Insulin resistance was calculated by the HOMA-IR. Finally, subjects with and without metabolic syndrome were compared with controls (n=47), using one-way ANOVA for studying insulin resistance between groups, with Tukey's post-hoc comparison. The frequency of finding metabolic syndrome in cases of IGR remained 47%. The insulin resistance demonstrated stepwise worsening from control population (mean=1.54, 95 % CI: 1.77 - 2.37) to subjects suffering from only IGR (mean=2.07, 95 % CI: 1.77- 2.37) to metabolic syndrome (mean=2.67, 95 %, CI: 2.34 - 3.00) (p < 0.001). Patients with impaired glucose regulation may have significant insulin resistance. It is, thus, recommended that a vigorous search be made to measure insulin resistance in all cases diagnosed to have impaired glucose regulation. (author)

  1. Transcriptional Regulation of Arabidopsis MIR168a and ARGONAUTE1 Homeostasis in Abscisic Acid and Abiotic Stress Responses1[W

    Science.gov (United States)

    Li, Wei; Cui, Xiao; Meng, Zhaolu; Huang, Xiahe; Xie, Qi; Wu, Heng; Jin, Hailing; Zhang, Dabing; Liang, Wanqi

    2012-01-01

    The accumulation of a number of small RNAs in plants is affected by abscisic acid (ABA) and abiotic stresses, but the underlying mechanisms are poorly understood. The miR168-mediated feedback regulatory loop regulates ARGONAUTE1 (AGO1) homeostasis, which is crucial for gene expression modulation and plant development. Here, we reveal a transcriptional regulatory mechanism by which MIR168 controls AGO1 homeostasis during ABA treatment and abiotic stress responses in Arabidopsis (Arabidopsis thaliana). Plants overexpressing MIR168a and the AGO1 loss-of-function mutant ago1-27 display ABA hypersensitivity and drought tolerance, while the mir168a-2 mutant shows ABA hyposensitivity and drought hypersensitivity. Both the precursor and mature miR168 were induced under ABA and several abiotic stress treatments, but no obvious decrease for the target of miR168, AGO1, was shown under the same conditions. However, promoter activity analysis indicated that AGO1 transcription activity was increased under ABA and drought treatments, suggesting that transcriptional elevation of MIR168a is required for maintaining a stable AGO1 transcript level during the stress response. Furthermore, we showed both in vitro and in vivo that the transcription of MIR168a is directly regulated by four abscisic acid-responsive element (ABRE) binding factors, which bind to the ABRE cis-element within the MIR168a promoter. This ABRE motif is also found in the promoter of MIR168a homologs in diverse plant species. Our findings suggest that transcriptional regulation of miR168 and posttranscriptional control of AGO1 homeostasis may play an important and conserved role in stress response and signal transduction in plants. PMID:22247272

  2. Impact of high cholesterol and endoplasmic reticulum stress on metabolic diseases: An updated mini-review

    Directory of Open Access Journals (Sweden)

    Erdi Sozen

    2017-08-01

    Full Text Available Endoplasmic reticulum (ER is the major site of protein folding and calcium storage. Beside the role of ER in protein homeostasis, it controls the cholesterol production and lipid-membrane biosynthesis as well as surviving and cell death signaling mechanisms in the cell. It is well-documented that elevated plasma cholesterol induces adverse effects in cardiovascular diseases (CVDs, liver disorders, such as non-alcoholic fatty liver disease (NAFLD, non-alcoholic steatosis hepatitis (NASH, and metabolic diseases which are associated with oxidative and ER stress. Recent animal model and human studies have showed high cholesterol and ER stress as an emerging factors involved in the development of many metabolic diseases. In this review, we will summarize the crucial effects of hypercholesterolemia and ER stress response in the pathogenesis of CVDs, NAFLD/NASH, diabetes and obesity which are major health problems in western countries. Keywords: Endoplasmic reticulum stress, High cholesterol, Cardiovascular diseases, Non-alcoholic fatty liver disease, Non-alcoholic steatosis hepatitis

  3. Mitotic spindle defects and chromosome mis-segregation induced by LDL/cholesterol-implications for Niemann-Pick C1, Alzheimer's disease, and atherosclerosis.

    Directory of Open Access Journals (Sweden)

    Antoneta Granic

    Full Text Available Elevated low-density lipoprotein (LDL-cholesterol is a risk factor for both Alzheimer's disease (AD and Atherosclerosis (CVD, suggesting a common lipid-sensitive step in their pathogenesis. Previous results show that AD and CVD also share a cell cycle defect: chromosome instability and up to 30% aneuploidy-in neurons and other cells in AD and in smooth muscle cells in atherosclerotic plaques in CVD. Indeed, specific degeneration of aneuploid neurons accounts for 90% of neuronal loss in AD brain, indicating that aneuploidy underlies AD neurodegeneration. Cell/mouse models of AD develop similar aneuploidy through amyloid-beta (Aß inhibition of specific microtubule motors and consequent disruption of mitotic spindles. Here we tested the hypothesis that, like upregulated Aß, elevated LDL/cholesterol and altered intracellular cholesterol homeostasis also causes chromosomal instability. Specifically we found that: 1 high dietary cholesterol induces aneuploidy in mice, satisfying the hypothesis' first prediction, 2 Niemann-Pick C1 patients accumulate aneuploid fibroblasts, neurons, and glia, demonstrating a similar aneugenic effect of intracellular cholesterol accumulation in humans 3 oxidized LDL, LDL, and cholesterol, but not high-density lipoprotein (HDL, induce chromosome mis-segregation and aneuploidy in cultured cells, including neuronal precursors, indicating that LDL/cholesterol directly affects the cell cycle, 4 LDL-induced aneuploidy requires the LDL receptor, but not Aß, showing that LDL works differently than Aß, with the same end result, 5 cholesterol treatment disrupts the structure of the mitotic spindle, providing a cell biological mechanism for its aneugenic activity, and 6 ethanol or calcium chelation attenuates lipoprotein-induced chromosome mis-segregation, providing molecular insights into cholesterol's aneugenic mechanism, specifically through its rigidifying effect on the cell membrane, and potentially explaining why ethanol

  4. Djhsp90s are crucial regulators during planarian regeneration and tissue homeostasis.

    Science.gov (United States)

    Dong, Zimei; Chu, Gengbo; Sima, Yingxu; Chen, Guangwen

    2018-04-15

    Heat shock protein 90 family members (HSP90s), as molecular chaperones, have conserved roles in the physiological processes of eukaryotes regulating cytoprotection, increasing host resistance and so on. However, whether HSP90s affect regeneration in animals is unclear. Planarians are emerging models for studying regeneration in vivo. Here, the roles of three hsp90 genes from planarian Dugesia japonica are investigated by WISH and RNAi. The results show that: (1) Djhsp90s expressions are induced by heat and cold shock, tissue damage and ionic liquid; (2) Djhsp90s mRNA are mainly distributed each side of the body in intact worms as well as blastemas in regenerative worms; (3) the worms show head regression, lysis, the body curling and the regeneration arrest or even failure after Djhsp90s RNAi; (4) Djhsp90s are involved in autophagy and locomotion of the body. The research results suggest that Djhsp90s are not only conserved in cytoprotection, but also involved in homeostasis maintenance and regeneration process by regulating different pathways in planarians. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. Garlic Lowers Blood Pressure in Hypertensive Individuals, Regulates Serum Cholesterol, and Stimulates Immunity: An Updated Meta-analysis and Review.

    Science.gov (United States)

    Ried, Karin

    2016-02-01

    Garlic has been shown to have cardiovascular protective and immunomodulatory properties. We updated a previous meta-analysis on the effect of garlic on blood pressure and reviewed the effect of garlic on cholesterol and immunity. We searched the Medline database for randomized controlled trials (RCTs) published between 1955 and December 2013 on the effect of garlic preparations on blood pressure. In addition, we reviewed the effect of garlic on cholesterol and immunity. Our updated meta-analysis on the effect of garlic on blood pressure, which included 20 trials with 970 participants, showed a mean ± SE decrease in systolic blood pressure (SBP) of 5.1 ± 2.2 mm Hg (P garlic on blood lipids, which included 39 primary RCTs and 2300 adults treated for a minimum of 2 wk, suggested garlic to be effective in reducing total and LDL cholesterol by 10% if taken for >2 mo by individuals with slightly elevated concentrations [e.g., total cholesterol >200 mg/dL (>5.5 mmol/L)]. Garlic has immunomodulating effects by increasing macrophage activity, natural killer cells, and the production of T and B cells. Clinical trials have shown garlic to significantly reduce the number, duration, and severity of upper respiratory infections. Our review suggests that garlic supplements have the potential to lower blood pressure in hypertensive individuals, to regulate slightly elevated cholesterol concentrations, and to stimulate the immune system. Garlic supplements are highly tolerated and may be considered as a complementary treatment option for hypertension, slightly elevated cholesterol, and stimulation of immunity. Future long-term trials are needed to elucidate the effect of garlic on cardiovascular morbidity and mortality. © 2016 American Society for Nutrition.

  6. L-Cysteine-induced up-regulation of the low-density lipoprotein receptor is mediated via a transforming growth factor-alpha signalling pathway.

    Science.gov (United States)

    Tanaka, Yuma; Shimada, Masaya; Nagaoka, Satoshi

    2014-02-14

    Sulphur-containing amino acids regulate plasma cholesterol levels in animals and humans. However, their mechanism of action remains unclear. Low-density lipoprotein receptor (LDLR) plays an important role in cholesterol metabolism. We therefore investigated the effects of sulphur-containing amino acids on the expression of LDLR in hepatocytes. HepG2 cells were cultured in Dulbecco's Modified Eagle's Medium with or without sulphur-containing amino acids and cysteine-containing compounds. We found that L-cysteine increased LDLR mRNA and enhanced LDLR gene promoter activity through the extracellular-signal-related kinase and p38 mitogen-activated protein kinase signalling pathways in HepG2 cells. Moreover, we observed that L-cysteine stimulated the release of transforming growth factor-alpha (TGF-α) and that TGF-α increased the LDLR mRNA levels. This study provides a report of the L-cysteine mediated up-regulation of the LDLR expression via TGF-α signalling pathway. Our findings provide insights into cholesterol homeostasis and amino acid signalling. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Cholesterol enhances amyloid {beta} deposition in mouse retina by modulating the activities of A{beta}-regulating enzymes in retinal pigment epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jiying [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Ohno-Matsui, Kyoko, E-mail: k.ohno.oph@tmd.ac.jp [Department of Ophthalmology and Visual Science, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan); Morita, Ikuo [Section of Cellular Physiological Chemistry, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519 (Japan)

    2012-08-10

    Highlights: Black-Right-Pointing-Pointer Cholesterol-treated RPE produces more A{beta} than non-treated RPE. Black-Right-Pointing-Pointer Neprilysin expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer {alpha}-Secretase expression and activity decreased in cholesterol-treated RPE. Black-Right-Pointing-Pointer Cholesterol-enriched diet induced subRPE deposits in aged mice. Black-Right-Pointing-Pointer A{beta} were present in cholesterol-enriched-diet-induced subRPE deposits in aged mice. -- Abstract: Subretinally-deposited amyloid {beta} (A{beta}) is a main contributor of developing age-related macular degeneration (AMD). However, the mechanism causing A{beta} deposition in AMD eyes is unknown. Hypercholesterolemia is a significant risk for developing AMD. Thus, we investigated the effects of cholesterol on A{beta} production in retinal pigment epithelial (RPE) cells in vitro and in the mouse retina in vivo. RPE cells isolated from senescent (12-month-old) C57BL/6 mice were treated with 10 {mu}g/ml cholesterol for 48 h. A{beta} amounts in culture supernatants were measured by ELISA. Activity and expression of enzymes and proteins that regulate A{beta} production were examined by activity assay and real time PCR. The retina of mice fed cholesterol-enriched diet was examined by transmission electron microscopy. Cholesterol significantly increased A{beta} production in cultured RPE cells. Activities of A{beta} degradation enzyme; neprilysin (NEP) and anti-amyloidogenic secretase; {alpha}-secretase were significantly decreased in cell lysates of cholesterol-treated RPE cells compared to non-treated cells, but there was no change in the activities of {beta}- or {gamma}-secretase. mRNA levels of NEP and {alpha}-secretase (ADAM10 and ADAM17) were significantly lower in cholesterol-treated RPE cells than non-treated cells. Senescent (12-month-old) mice fed cholesterol-enriched chow developed subRPE deposits containing A{beta}, whereas

  8. Novel role of a triglyceride-synthesizing enzyme: DGAT1 at the crossroad between triglyceride and cholesterol metabolism.

    Science.gov (United States)

    Sachdev, Vinay; Leopold, Christina; Bauer, Raimund; Patankar, Jay V; Iqbal, Jahangir; Obrowsky, Sascha; Boverhof, Renze; Doktorova, Marcela; Scheicher, Bernhard; Goeritzer, Madeleine; Kolb, Dagmar; Turnbull, Andrew V; Zimmer, Andreas; Hoefler, Gerald; Hussain, M Mahmood; Groen, Albert K; Kratky, Dagmar

    2016-09-01

    Acyl-CoA:diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in triacylglycerol (TG) biosynthesis. Here we show that genetic deficiency and pharmacological inhibition of DGAT1 in mice alters cholesterol metabolism. Cholesterol absorption, as assessed by acute cholesterol uptake, was significantly decreased in the small intestine and liver upon DGAT1 deficiency/inhibition. Ablation of DGAT1 in the intestine (I-DGAT1(-/-)) alone is sufficient to cause these effects. Consequences of I-DGAT1 deficiency phenocopy findings in whole-body DGAT1(-/-) and DGAT1 inhibitor-treated mice. We show that deficiency/inhibition of DGAT1 affects cholesterol metabolism via reduced chylomicron size and increased trans-intestinal cholesterol excretion. These effects are independent of cholesterol uptake at the apical surface of enterocytes but mediated through altered dietary fatty acid metabolism. Our findings provide insight into a novel role of DGAT1 and identify a pathway by which intestinal DGAT1 deficiency affects whole-body cholesterol homeostasis in mice. Targeting intestinal DGAT1 may represent a novel approach for treating hypercholesterolemia. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Modulation of intestinal sulfur assimilation metabolism regulates iron homeostasis

    Science.gov (United States)

    Hudson, Benjamin H.; Hale, Andrew T.; Irving, Ryan P.; Li, Shenglan; York, John D.

    2018-01-01

    Sulfur assimilation is an evolutionarily conserved pathway that plays an essential role in cellular and metabolic processes, including sulfation, amino acid biosynthesis, and organismal development. We report that loss of a key enzymatic component of the pathway, bisphosphate 3′-nucleotidase (Bpnt1), in mice, both whole animal and intestine-specific, leads to iron-deficiency anemia. Analysis of mutant enterocytes demonstrates that modulation of their substrate 3′-phosphoadenosine 5′-phosphate (PAP) influences levels of key iron homeostasis factors involved in dietary iron reduction, import and transport, that in part mimic those reported for the loss of hypoxic-induced transcription factor, HIF-2α. Our studies define a genetic basis for iron-deficiency anemia, a molecular approach for rescuing loss of nucleotidase function, and an unanticipated link between nucleotide hydrolysis in the sulfur assimilation pathway and iron homeostasis. PMID:29507250

  10. Cholesterol synthesis by human fetal hepatocytes: effect of lipoproteins

    International Nuclear Information System (INIS)

    Carr, B.R.; Simpson, E.R.

    1984-01-01

    The purpose of the present investigation was to determine the effect of various lipoproteins on the rate of cholesterol synthesis of human fetal liver cells maintained in culture. This was accomplished by measuring the rate of incorporation of tritium from tritiated water or carbon 14-labeled acetate into cholesterol in human fetal liver cells. Optimal conditions for each assay were determined. When human fetal liver cells were maintained in the presence of low-density lipoprotein, cholesterol synthesis was inhibited in a concentration-dependent fashion. Intermediate--density lipoprotein and very-low-density lipoprotein also suppressed cholesterol synthesis in human fetal liver cells. In contrast, high-density lipoprotein stimulated cholesterol synthesis in human fetal liver cells. The results of the present as well as our previous investigations suggest that multiple interrelationships exist between fetal liver cholesterol synthesis and lipoprotein-cholesterol utilization by the human fetal adrenal gland and that these processes serve to regulate the lipoprotein-cholesterol levels in fetal plasma

  11. Protein complexes and cholesterol in the control of late endosomal dynamicsCholesterol and multi-protein complexes in the control of late endosomal dynamics

    NARCIS (Netherlands)

    Kant, Rik Henricus Nicolaas van der

    2013-01-01

    Late endosomal transport is disrupted in several diseases such as Niemann-Pick type C, ARC syndrome and Alzheimer’s disease. This thesis describes the regulation of late endosomal dynamics by cholesterol and multi-protein complexes. We find that cholesterol acts as a cellular tomtom that steers the

  12. A whole-body model for glycogen regulation reveals a critical role for substrate cycling in maintaining blood glucose homeostasis.

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2011-12-01

    Full Text Available Timely, and sometimes rapid, metabolic adaptation to changes in food supply is critical for survival as an organism moves from the fasted to the fed state, and vice versa. These transitions necessitate major metabolic changes to maintain energy homeostasis as the source of blood glucose moves away from ingested carbohydrates, through hepatic glycogen stores, towards gluconeogenesis. The integration of hepatic glycogen regulation with extra-hepatic energetics is a key aspect of these adaptive mechanisms. Here we use computational modeling to explore hepatic glycogen regulation under fed and fasting conditions in the context of a whole-body model. The model was validated against previous experimental results concerning glycogen phosphorylase a (active and glycogen synthase a dynamics. The model qualitatively reproduced physiological changes that occur during transition from the fed to the fasted state. Analysis of the model reveals a critical role for the inhibition of glycogen synthase phosphatase by glycogen phosphorylase a. This negative regulation leads to high levels of glycogen synthase activity during fasting conditions, which in turn increases substrate (futile cycling, priming the system for a rapid response once an external source of glucose is restored. This work demonstrates that a mechanistic understanding of the design principles used by metabolic control circuits to maintain homeostasis can benefit from the incorporation of mathematical descriptions of these networks into "whole-body" contextual models that mimic in vivo conditions.

  13. Carbohydrate restriction and dietary cholesterol modulate the expression of HMG-CoA reductase and the LDL receptor in mononuclear cells from adult men

    Directory of Open Access Journals (Sweden)

    Volek Jeff S

    2007-11-01

    Full Text Available Abstract The liver is responsible for controlling cholesterol homeostasis in the body. HMG-CoA reductase and the LDL receptor (LDL-r are involved in this regulation and are also ubiquitously expressed in all major tissues. We have previously shown in guinea pigs that there is a correlation in gene expression of HMG-CoA reductase and the LDL-r between liver and mononuclear cells. The present study evaluated human mononuclear cells as a surrogate for hepatic expression of these genes. The purpose was to evaluate the effect of dietary carbohydrate restriction with low and high cholesterol content on HMG-CoA reductase and LDL-r mRNA expression in mononuclear cells. All subjects were counseled to consume a carbohydrate restricted diet with 10–15% energy from carbohydrate, 30–35% energy from protein and 55–60% energy from fat. Subjects were randomly assigned to either EGG (640 mg/d additional dietary cholesterol or SUB groups [equivalent amount of egg substitute (0 dietary cholesterol contributions per day] for 12 weeks. At the end of the intervention, there were no changes in plasma total or LDL cholesterol (LDL-C compared to baseline (P > 0.10 or differences in plasma total or LDL-C between groups. The mRNA abundance for HMG-CoA reductase and LDL-r were measured in mononuclear cells using real time PCR. The EGG group showed a significant decrease in HMG-CoA reductase mRNA (1.98 ± 1.26 to 1.32 ± 0.92 arbitrary units P

  14. MiRNA-mediated regulation of cell signaling and homeostasis in the early mouse embryo.

    Science.gov (United States)

    Pernaute, Barbara; Spruce, Thomas; Rodriguez, Tristan A; Manzanares, Miguel

    2011-02-15

    At the time of implantation the mouse embryo is composed of three tissues the epiblast, trophectoderm and primitive endoderm. As development progresses the epiblast goes on to form the foetus whilst the trophectoderm and primitive endoderm give rise to extra-embryonic structures with important roles in embryo patterning and nutrition. Dramatic changes in gene expression occur during early embryo development and these require regulation at different levels. miRNAs are small non coding RNAs that have emerged over the last decade as important post-transcriptional repressors of gene expression. The roles played by miRNAs during early mammalian development are only starting to be elucidated. In order to gain insight into the function of miRNAs in the different lineages of the early mouse embryo we have analysed in depth the phenotype of embryos and extra-embryonic stem cells mutant for the miRNA maturation protein Dicer. This study revealed that miRNAs are involved in regulating cell signaling and homeostasis in the early embryo. Specifically, we identified a role for miRNAs in regulating the Erk signaling pathway in the extra-embryonic endoderm, cell cycle progression in extra-embryonic tissues and apoptosis in the epiblast.

  15. IMB2026791, a Xanthone, Stimulates Cholesterol Efflux by Increasing the Binding of Apolipoprotein A-I to ATP-Binding Cassette Transporter A1

    Directory of Open Access Journals (Sweden)

    Zijian Xie

    2012-03-01

    Full Text Available It is known that the ATP-binding cassette transporter A1 (ABCA1 plays a major role in cholesterol homeostasis and high density lipoprotein (HDL metabolism. Several laboratories have demonstrated that ABCA1 binding to lipid-poor apolipoprotein A-I (apoA-I will mediate the assembly of nascent HDL and cellular cholesterol efflux, which suggests a possible receptor-ligand interaction between ABCA1 and apoA-I. In this study, a cell-based-ELISA-like high-throughput screening (HTS method was developed to identify the synthetic and natural compounds that can regulate binding activity of ABCA1 to apoA-I. The cell-based-ELISA-like high-throughput screen was conducted in a 96-well format using Chinese hamster ovary (CHO cells stably transfected with ABCA1 pIRE2-EGFP (Enhanced Green Fluorecence Protein expression vector and the known ABCA1 inhibitor glibenclamide as the antagonist control. From 2,600 compounds, a xanthone compound (IMB 2026791 was selected using this HTS assay, and it was proved as an apoA-I binding agonist to ABCA1 by a flow cytometry assay and western blot analysis. The [3H] cholesterol efflux assay of IMB2026791 treated ABCA1-CHO cells and PMA induced THP-1 macrophages (human acute monocytic leukemia cell further confirmed the compound as an accelerator of cholesterol efflux in a dose-dependent manner with an EC50 of 25.23 μM.

  16. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    OpenAIRE

    Tomaro-Duchesneau, Catherine; Jones, Mitchell L.; Shah, Divya; Jain, Poonam; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and ch...

  17. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells.

    Science.gov (United States)

    Bose, T; Cieślar-Pobuda, A; Wiechec, E

    2015-02-19

    Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca(2+) influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca(2+) homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.

  18. Activating transcription factor 3 regulates immune and metabolic homeostasis

    Czech Academy of Sciences Publication Activity Database

    Ryneš, J.; Donohoe, C. D.; Frommolt, P.; Brodesser, S.; Jindra, Marek; Uhlířová, M.

    2012-01-01

    Roč. 32, č. 19 (2012), s. 3949-3962 ISSN 0270-7306 R&D Projects: GA ČR(CZ) GD204/09/H058 Institutional support: RVO:60077344 Keywords : metabolic homeostasis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.372, year: 2012

  19. The homeostasis solution – Mechanical homeostasis in architecturally homeostatic buildings

    International Nuclear Information System (INIS)

    Wang, Lin-Shu; Ma, Peizheng

    2016-01-01

    Highlights: • Architectural homeostatic buildings (AHBs) make sense because of the laws of physics. • However, high efficiency can be obtained only with AHBs and equipment considered as systems. • Mechanical homeostasis facilitates AHB-equipment system synergy with heat extraction. • Entropically speaking a building needs neither energy nor a fixed amount of heat, but its homeostatic existence. • Homeostatic buildings can reduce building energy consumption from 80% to 90%. - Abstract: We already know, for energy-saving potential, the necessary architectural features in well-designed buildings: high performance building envelope, sufficient interior thermal mass, and hydronic-network activated radiant surfaces for cooling and heating. Buildings with these features may be referred to as architecturally homeostatic buildings (AHBs); such a building-system is thermally semi-autonomous in the sense that its temperature variation stays within a certain range even without conditioning equipment, and, with conditioning equipment in operation, its thermal regulation is handled by its hydronic heat-distribution-network for controlling the temperature level of the building. At the present time conventional HVAC equipment is used for maintaining the heat-distribution-network: this arrangement, however, has resulted in great energy saving only for AHBs with accessible natural water bodies. In operation of general AHBs, a case is made here for a new kind of mechanical equipment having the attribute of mechanical homeostasis (MH). MH is a new energy transformation concept in a triadic framework. Superlative energy efficiency is predicted as a result of combined improvements in higher triadCOPs and lower total (inducted + removed) heat rates—evincing existence of synergy in architectural and mechanical homeostasis, which together will be referred to as the homeostasis solution.

  20. FAT/CD36: a major regulator of neuronal fatty acid sensing and energy homeostasis in rats and mice.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose; Musatov, Serguei; Magnan, Christophe; Levin, Barry E

    2013-08-01

    Hypothalamic "metabolic-sensing" neurons sense glucose and fatty acids (FAs) and play an integral role in the regulation of glucose, energy homeostasis, and the development of obesity and diabetes. Using pharmacologic agents, we previously found that ~50% of these neurons responded to oleic acid (OA) by using the FA translocator/receptor FAT/CD36 (CD36). For further elucidation of the role of CD36 in neuronal FA sensing, ventromedial hypothalamus (VMH) CD36 was depleted using adeno-associated viral (AAV) vector expressing CD36 short hairpin RNA (shRNA) in rats. Whereas their neuronal glucosensing was unaffected by CD36 depletion, the percent of neurons that responded to OA was decreased specifically in glucosensing neurons. A similar effect was seen in total-body CD36-knockout mice. Next, weanling rats were injected in the VMH with CD36 AAV shRNA. Despite significant VMH CD36 depletion, there was no effect on food intake, body weight gain, or total carcass adiposity on chow or 45% fat diets. However, VMH CD36-depleted rats did have increased plasma leptin and subcutaneous fat deposition and markedly abnormal glucose tolerance. These results demonstrate that CD36 is a critical factor in both VMH neuronal FA sensing and the regulation of energy and glucose homeostasis.

  1. Pharmacological modulation of mitochondrial calcium homeostasis.

    Science.gov (United States)

    Arduino, Daniela M; Perocchi, Fabiana

    2018-01-10

    Mitochondria are pivotal organelles in calcium (Ca 2+ ) handling and signalling, constituting intracellular checkpoints for numerous processes that are vital for cell life. Alterations in mitochondrial Ca 2+ homeostasis have been linked to a variety of pathological conditions and are critical in the aetiology of several human diseases. Efforts have been taken to harness mitochondrial Ca 2+ transport mechanisms for therapeutic intervention, but pharmacological compounds that direct and selectively modulate mitochondrial Ca 2+ homeostasis are currently lacking. New avenues have, however, emerged with the breakthrough discoveries on the genetic identification of the main players involved in mitochondrial Ca 2+ influx and efflux pathways and with recent hints towards a deep understanding of the function of these molecular systems. Here, we review the current advances in the understanding of the mechanisms and regulation of mitochondrial Ca 2+ homeostasis and its contribution to physiology and human disease. We also introduce and comment on the recent progress towards a systems-level pharmacological targeting of mitochondrial Ca 2+ homeostasis. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  2. CREBH Regulates Systemic Glucose and Lipid Metabolism

    Directory of Open Access Journals (Sweden)

    Yoshimi Nakagawa

    2018-05-01

    Full Text Available The cyclic adenosine monophosphate (cAMP-responsive element-binding protein H (CREBH, encoded by CREB3L3 is a membrane-bound transcriptional factor that primarily localizes in the liver and small intestine. CREBH governs triglyceride metabolism in the liver, which mediates the changes in gene expression governing fatty acid oxidation, ketogenesis, and apolipoproteins related to lipoprotein lipase (LPL activation. CREBH in the small intestine reduces cholesterol transporter gene Npc1l1 and suppresses cholesterol absorption from diet. A deficiency of CREBH in mice leads to severe hypertriglyceridemia, fatty liver, and atherosclerosis. CREBH, in synergy with peroxisome proliferator-activated receptor α (PPARα, has a crucial role in upregulating Fgf21 expression, which is implicated in metabolic homeostasis including glucose and lipid metabolism. CREBH binds to and functions as a co-activator for both PPARα and liver X receptor alpha (LXRα in regulating gene expression of lipid metabolism. Therefore, CREBH has a crucial role in glucose and lipid metabolism in the liver and small intestine.

  3. Cholesterol Metabolism and Weight Reduction in Subjects with Mild Obstructive Sleep Apnoea: A Randomised, Controlled Study

    Directory of Open Access Journals (Sweden)

    Maarit Hallikainen

    2013-01-01

    Full Text Available To evaluate whether parameters of obstructive sleep apnoea (OSA associate with cholesterol metabolism before and after weight reduction, 42 middle-aged overweight subjects with mild OSA were randomised to intensive lifestyle intervention (N=23 or to control group (N=18 with routine lifestyle counselling only. Cholesterol metabolism was evaluated with serum noncholesterol sterol ratios to cholesterol, surrogate markers of cholesterol absorption (cholestanol and plant sterols and synthesis (cholestenol, desmosterol, and lathosterol at baseline and after 1-year intervention. At baseline, arterial oxygen saturation (SaO2 was associated with serum campesterol (P<0.05 and inversely with desmosterol ratios (P<0.001 independently of gender, BMI, and homeostasis model assessment index of insulin resistance (HOMA-IR. Apnoea-hypopnoea index (AHI was not associated with cholesterol metabolism. Weight reduction significantly increased SaO2and serum cholestanol and decreased AHI and serum cholestenol ratios. In the groups combined, the changes in AHI were inversely associated with changes of cholestanol and positively with cholestenol ratios independent of gender and the changes of BMI and HOMA-IR (P<0.05. In conclusion, mild OSA seemed to be associated with cholesterol metabolism independent of BMI and HOMA-IR. Weight reduction increased the markers of cholesterol absorption and decreased those of cholesterol synthesis in the overweight subjects with mild OSA.

  4. Astragalus polysaccharides lowers plasma cholesterol through mechanisms distinct from statins.

    Directory of Open Access Journals (Sweden)

    Yunjiu Cheng

    Full Text Available To determine the efficacy and underlying mechanism of Astragalus polysaccharides (APS on plasma lipids in hypercholesterolemia hamsters. The effect of APS (0.25 g/kg/d on plasma and liver lipids, fecal bile acids and neutral sterol, cholesterol absorption and synthesis, HMG-CoA reductase activity, and gene and protein expressions in the liver and small intestine was investigated in twenty-four hypercholesterolemia hamsters. Treatment periods lasted for three months. APS significantly lowered plasma total cholesterol by 45.8%, triglycerides by 30%, and low-density lipoprotein-cholesterol by 47.4%, comparable to simvastatin. Further examinations revealed that APS reduced total cholesterol and triglycerides in the liver, increased fecal bile acid and neutral sterol excretion, inhibited cholesterol absorption, and by contrast, increased hepatic cholesterol synthesis and HMG-CoA reductase activity. Plasma total cholesterol or low-density lipoprotein-cholesterol levels were significantly correlated with cholesterol absorption rates. APS up-regulated cholesterol-7α-hydroxylase and LDL-receptor gene expressions. These new findings identify APS as a potential natural cholesterol lowering agent, working through mechanisms distinct from statins.

  5. [Glucose homeostasis and gut-brain connection].

    Science.gov (United States)

    De Vadder, Filipe; Mithieux, Gilles

    2015-02-01

    Since the XIX(th) century, the brain has been known for its role in regulating food intake (via the control of hunger sensation) and glucose homeostasis. Further interest has come from the discovery of gut hormones, which established a clear link between the gut and the brain in regulating glucose and energy homeostasis. The brain has two particular structures, the hypothalamus and the brainstem, which are sensitive to information coming either from peripheral organs or from the gut (via circulating hormones or nutrients) about the nutritional status of the organism. However, the efforts for a better understanding of these mechanisms have allowed to unveil a new gut-brain neural axis as a key regulator of the metabolic status of the organism. Certain nutrients control the hypothalamic homeostatic function via this axis. In this review, we describe how the gut is connected to the brain via different neural pathways, and how the interplay between these two organs drives the energy balance. © 2015 médecine/sciences – Inserm.

  6. Extra-adrenal glucocorticoid synthesis: immune regulation and aspects on local organ homeostasis.

    Science.gov (United States)

    Talabér, Gergely; Jondal, Mikael; Okret, Sam

    2013-11-05

    Systemic glucocorticoids (GCs) mainly originate from de novo synthesis in the adrenal cortex under the control of the hypothalamus-pituitary-adrenal (HPA)-axis. However, research during the last 1-2 decades has revealed that additional organs express the necessary enzymes and have the capacity for de novo synthesis of biologically active GCs. This includes the thymus, intestine, skin and the brain. Recent research has also revealed that locally synthesized GCs most likely act in a paracrine or autocrine manner and have significant physiological roles in local homeostasis, cell development and immune cell activation. In this review, we summarize the nature, regulation and known physiological roles of extra-adrenal GC synthesis. We specifically focus on the thymus in which GC production (by both developing thymocytes and epithelial cells) has a role in the maintenance of proper immunological function. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Activating Transcription Factor 3 Regulates Immune and Metabolic Homeostasis

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D.; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek

    2012-01-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins. PMID:22851689

  8. Activating transcription factor 3 regulates immune and metabolic homeostasis.

    Science.gov (United States)

    Rynes, Jan; Donohoe, Colin D; Frommolt, Peter; Brodesser, Susanne; Jindra, Marek; Uhlirova, Mirka

    2012-10-01

    Integration of metabolic and immune responses during animal development ensures energy balance, permitting both growth and defense. Disturbed homeostasis causes organ failure, growth retardation, and metabolic disorders. Here, we show that the Drosophila melanogaster activating transcription factor 3 (Atf3) safeguards metabolic and immune system homeostasis. Loss of Atf3 results in chronic inflammation and starvation responses mounted primarily by the larval gut epithelium, while the fat body suffers lipid overload, causing energy imbalance and death. Hyperactive proinflammatory and stress signaling through NF-κB/Relish, Jun N-terminal kinase, and FOXO in atf3 mutants deregulates genes important for immune defense, digestion, and lipid metabolism. Reducing the dose of either FOXO or Relish normalizes both lipid metabolism and gene expression in atf3 mutants. The function of Atf3 is conserved, as human ATF3 averts some of the Drosophila mutant phenotypes, improving their survival. The single Drosophila Atf3 may incorporate the diversified roles of two related mammalian proteins.

  9. Mechanism for maintaining homeostasis in the immune system of the intestine.

    Science.gov (United States)

    Taniguchi, Yoshie; Yoshioka, Noriko; Nakata, Kazue; Nishizawa, Takashi; Inagawa, Hiroyuki; Kohchi, Chie; Soma, Gen-Ichiro

    2009-11-01

    Every organism possesses a mechanism for maintaining homeostasis. We have focused on the immune system as a system that helps maintain homeostasis of the body, and particularly on the intestine as the largest organ of immunity in the body. We have also focused our research on the mechanism that responds to foreign substances in the intestine, especially the toll-like receptors (TLR). The activation of myeloid differentiation primary response gene 88 (MyD88) signal transduction as a response to TLR in the intestine is believed to contribute to the maintenance of homeostasis of the body through the homeostasis of the intestine. Furthermore, significant findings were reported in which signal transduction from TLR4 was essential for the maintenance and regulation of the intestine. These results strongly suggest the possibility that homeostasis in the intestine is maintained by TLR4, and signaling by TLR4 after exposure to lipopolysaccharide (LPS) probably has a role in regulating homeostasis. It is expected that the prevention and treatment of various diseases using TLR4 will continue to develop. As LPS is a substance that enhances the activity of TLR4, it will also attract attention as a valuable substance in its own right.

  10. The ABC of cholesterol transport

    NARCIS (Netherlands)

    Plösch, Torsten

    2004-01-01

    Cholesterol fulfills an indispensable role in mammalian physiology. It is an important constituent of all cell membranes. Furthermore, it is the precursor of steroid hormones, which regulate a variety of physiological functions, and of bile salts, which are necessary for the generation of bile flow

  11. Cognition, learning behaviour and hippocampal synaptic plasticity are not disrupted in mice over-expressing the cholesterol transporter ABCG1

    Directory of Open Access Journals (Sweden)

    Eadie Brennan D

    2009-02-01

    Full Text Available Abstract Background Cognitive deficits are a hallmark feature of both Down Syndrome (DS and Alzheimer's Disease (AD. Extra copies of the genes on chromosome 21 may also play an important role in the accelerated onset of AD in DS individuals. Growing evidence suggests an important function for cholesterol in the pathogenesis of AD, particularly in APP metabolism and production of Aβ peptides. The ATP-Binding Cassette-G1 (ABCG1 transporter is located on chromosome 21, and participates in the maintenance of tissue cholesterol homeostasis. Results To assess the role of ABCG1 in DS-related cognition, we evaluated the cognitive performance of mice selectively over-expressing the ABCG1 gene from its endogenous regulatory signals. Both wild-type and ABCG1 transgenic mice performed equivalently on several behavioral tests, including measures of anxiety, as well as on reference and working memory tasks. No deficits in hippocampal CA1 synaptic plasticity as determined with electrophysiological studies were apparent in mice over-expressing ABCG1. Conclusion These findings indicate that although ABCG1 may play a role in maintaining cellular or tissue cholesterol homeostasis, it is unlikely that excess ABCG1 expression contributes to the cognitive deficits in DS individuals.

  12. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis.

    Science.gov (United States)

    Baker, Natasha; Sohn, Jihee; Tuan, Rocky S

    2015-12-01

    Stem cells are considered an important resource for tissue repair and regeneration. Their utilization in regenerative medicine will be aided by mechanistic insight into their responsiveness to external stimuli. It is likely that, similar to all other cells, an initial determinant of stem cell responsiveness to external stimuli is the organization of signaling molecules in cell membrane rafts. The clustering of signaling molecules in these cholesterol-rich membrane microdomains can affect the activity, specificity, cross-talk and amplification of cell signaling. Membrane rafts fall into two broad categories, non-caveolar and caveolar, based on the absence or presence, respectively, of caveolin scaffolding proteins. We have recently demonstrated that caveolin-1 (Cav-1) expression increases during, and knockdown of Cav-1 expression enhances, osteogenic differentiation of human bone marrow derived mesenchymal stem cells (MSCs). The increase in Cav-1 expression observed during osteogenesis is likely a negative feedback mechanism. We hypothesize that focal adhesion signaling pathways such as PI3K/Akt signaling may be negatively regulated by Cav-1 during human MSC osteogenesis. Human bone marrow MSCs were isolated from femoral heads obtained after total hip arthroplasty. MSCs were incubated in standard growth medium alone or induced to osteogenically differentiate by the addition of supplements (β-glycerophosphate, ascorbic acid, dexamethasone, and 1,25-dihydroxyvitamin D3). The activation of and requirement for PI3K/Akt signaling in MSC osteogenesis were assessed by immunoblotting for phosphorylated Akt, and treatment with the PI3K inhibitor LY294002 and Akt siRNA, respectively. The influences of Cav-1 and cholesterol membrane rafts on PI3K/Akt signaling were investigated by treatment with Cav-1 siRNA, methyl-β-cyclodextrin, or cholesterol oxidase, followed by cellular sub-fractionation and/or immunoblotting for phosphorylated Akt. LY294002 and Akt siRNA inhibited MSC

  13. Circulating PCSK9 affects serum LDL and cholesterol levels more than SREBP-2 expression.

    Science.gov (United States)

    Mohammadi, Asghar; Shabani, Mohamad; Naseri, Faezeh; Hosseni, Bita; Soltanmohammadi, Elham; Piran, Sadegh; Najafi, Mohammad

    2017-07-01

    Cholesterol homeostasis is dependent upon the sterol regulatory element binding protein 2 (SREBP-2) regulatory system and the functioning of plasma proprotein convertase subtilisin/kexin type 9 (PCSK9). Many studies have also reported that low density lipoprotein receptor (LDLR) levels in cellular membranes are related to the functioning of these proteins. The aim of this study was to investigate the association of lipid profiles with circulating PCSK9 protein values and SREBP-2 expression levels in normal subjects. The study involved 120 randomly chosen healthy subjects. Their lipid profiles were measured using routine laboratory techniques, and the plasma PCSK9 protein and SREBP-2 expression levels were determined by ELISA and real time quantitative PCR methods, respectively. A statistical analysis was carried out using a statistical software package. Linear regression analyses showed a significant correlation between total cholesterol and PCSK9 (3.54 ± 1.31 ng/mL), as well as between total cholesterol and SREBP-2 (0.1-35.38) (p = 0.002 and p = 0.02, respectively). Furthermore, multiple regression analyses showed strict correlations between PCSK9 and cholesterol-related parameters especially the total cholesterol/HDL-C ratio (β = 3.53, p = 0.001). There was no significant correlation between circulating PCSK9 and SREBP-2 expression levels (r = 1.2, p = 0.3). The study results revealed that serum cholesterol-related parameters are strictly associated with plasma PCSK9 values, suggesting that PCSK9 function has a greater effect on serum total cholesterol levels than SREBP-2 expression does. Furthermore, the total cholesterol/HDL-C ratio was a better indicator for evaluating PCSK9 level than total cholesterol.

  14. Regulation of T Cell Homeostasis and Responses by Pten

    Directory of Open Access Journals (Sweden)

    Ryan H. Newton

    2012-06-01

    Full Text Available The generation of lipid products catalyzed by PI3K is critical for normal T cell homeostasis and a productive immune response. PI3K can be activated in response to antigen receptor, costimulatory, cytokine and chemokine signals. Moreover, dysregulation of this pathway frequently occurs in T cell lymphomas and is implicated in lymphoproliferative autoimmune disease. Akt acts as a central mediator of PI3K signals, downstream of which is the mTOR pathway, controlling cell growth and metabolism. Members of the Foxo family of transcription factors are also regulated by Akt, thus linking control over homing and migration of T cells, as well cell cycle entry, apoptosis, and DNA damage and oxidative stress responses, to PI3K signaling. PTEN, first identified as a tumor suppressor gene, encodes a lipid phosphatase that, by catalyzing the reverse of the PI3K reaction, directly opposes PI3K signaling. However, PTEN may have other functions as well, and recent reports have suggested roles for PTEN as a tumor suppressor independent of its effects on PI3K signaling. Through the use of models in which Pten is deleted specifically in T cells, it is becoming increasingly clear that control over autoimmunity and lymphomagenesis by PTEN involves multi-faceted functions of this molecule at multiple stages of T cell development.

  15. Membrane cholesterol mediates the cellular effects of monolayer graphene substrates.

    Science.gov (United States)

    Kitko, Kristina E; Hong, Tu; Lazarenko, Roman M; Ying, Da; Xu, Ya-Qiong; Zhang, Qi

    2018-02-23

    Graphene possesses extraordinary properties that promise great potential in biomedicine. However, fully leveraging these properties requires close contact with the cell surface, raising the concern of unexpected biological consequences. Computational models have demonstrated that graphene preferentially interacts with cholesterol, a multifunctional lipid unique to eukaryotic membranes. Here we demonstrate an interaction between graphene and cholesterol. We find that graphene increases cell membrane cholesterol and potentiates neurotransmission, which is mediated by increases in the number, release probability, and recycling rate of synaptic vesicles. In fibroblasts grown on graphene, we also find an increase in cholesterol, which promotes the activation of P2Y receptors, a family of receptor regulated by cholesterol. In both cases, direct manipulation of cholesterol levels elucidates that a graphene-induced cholesterol increase underlies the observed potentiation of each cell signaling pathway. These findings identify cholesterol as a mediator of graphene's cellular effects, providing insight into the biological impact of graphene.

  16. The Hippo-YAP Pathway Regulates 3D Organ Formation and Homeostasis.

    Science.gov (United States)

    Ishihara, Erika; Nishina, Hiroshi

    2018-04-17

    The vertebrate body shape is formed by the specific sizes and shapes of its resident tissues and organs, whose alignments are essential for proper functioning. To maintain tissue and organ shape, and thereby function, it is necessary to remove senescent, transformed, and/or damaged cells, which impair function and can lead to tumorigenesis. However, the molecular mechanisms underlying three-dimensional (3D) organ formation and homeostasis are not fully clear. Yes-associated protein (YAP) is a transcriptional co-activator that is involved in organ size control and tumorigenesis. Recently, we reported that YAP is essential for proper 3D body shape through regulation of cell tension by using a unique medaka fish mutant, hirame ( hir ). In Madin–Darby canine kidney (MDCK) epithelial cells, active YAP-transformed cells are eliminated apically when surrounded by normal cells. Furthermore, in a mosaic mouse model, active YAP-expressing damaged hepatocytes undergo apoptosis and are eliminated from the liver. Thus, YAP functions in quantitative and quality control in organogenesis. In this review, we describe the various roles of YAP in vertebrates, including in the initiation of liver cancer.

  17. Potential impact of policy regulation and generic competition on sales of cholesterol lowering medication, antidepressants and acid blocking agents in Belgium.

    Science.gov (United States)

    Fraeyman, J; Van Hal, G; De Loof, H; Remmen, R; De Meyer, G R Y; Beutels, P

    2012-01-01

    Pharmaceutical expenditures are increasing as a proportion of health expenditures in most rich countries. Antidepressants, acid blocking agents and cholesterol lowering medication are major contributors to medicine sales around the globe. We aimed to document the possible impact of policy regulations and generic market penetration on the evolution of sales volume and average cost per unit (Defined Daily Doses and packages) of antidepressants, acid blocking agents and cholesterol lowering medication. We extracted data from the IMS health database regarding the public price and sales volume of the antidepressants (selective serotonin reuptake inhibitors (SSRI's), monoamine oxidase inhibitors (MAOl's) and tricyclic and remaining antidepressants (TCA's)), acid blocking agents (proton pump inhibitors (PPl's) and H2 receptor antagonists) and cholesterol lowering medication (statins and fibrates) in Belgium between 1995 and 2009. We describe these sales data in relation to various national policy measures which were systematically searched in official records. Our analysis suggests that particular policy regulations have had immediate impact on sales figures and expenditures on pharmaceuticals in Belgium: changes in reimbursement conditions, a public tender and entry of generic competitors in a reference pricing system. However, possible sustainable effects seem to be counteracted by other mechanisms such as marketing strategies, prescribing behaviour, brand loyalty and the entry of pseudogenerics. It is likely that demand-side measures have a more sustainable impact on expenditure. Compared with other European countries, generic penetration in Belgium remains low. Alternative policy regulations aimed at enlarging the generic market and influencing pharmaceutical expenditures deserve consideration. This should include policies aiming to influence physicians' prescribing and a shared responsibility of pharmacists, physicians and patients towards expenditures.

  18. [Zinc signaling : a novel regulatory system on bone homeostasis, and immune and allergic responses].

    Science.gov (United States)

    Fukada, Toshiyuki; Nishida, Keigo; Yamasaki, Satoru; Hojyo, Shintaro

    2012-11-01

    Zinc (Zn) is an essential trace element that is required for proliferation, differentiation, and variety of cellular functions, and unbalanced homeostasis of Zn ion (Zn(2 + )) results in health problems such as abnormal bone formation and immunodeficiency. Recent studies have shed light on important roles of Zn(2 + )as a signaling mediator, called Zn signal. Zn(2 + )homeostasis is regulated through Zn transporters and cation channels. Advances of genetic and molecular approaches have revealed that Zn signal regulates mammalian physiology and pathogenesis. We will address that Zn signal undoubtedly contributes to our health, by highlighting it in bone homeostasis and immune regulation, and discuss that the "Zn signal axis" selectively controls intracellular signal transduction to fine-tune cellular functions.

  19. A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans.

    Science.gov (United States)

    Walker, Amy K; Jacobs, René L; Watts, Jennifer L; Rottiers, Veerle; Jiang, Karen; Finnegan, Deirdre M; Shioda, Toshi; Hansen, Malene; Yang, Fajun; Niebergall, Lorissa J; Vance, Dennis E; Tzoneva, Monika; Hart, Anne C; Näär, Anders M

    2011-11-11

    Sterol regulatory element-binding proteins (SREBPs) activate genes involved in the synthesis and trafficking of cholesterol and other lipids and are critical for maintaining lipid homeostasis. Aberrant SREBP activity, however, can contribute to obesity, fatty liver disease, and insulin resistance, hallmarks of metabolic syndrome. Our studies identify a conserved regulatory circuit in which SREBP-1 controls genes in the one-carbon cycle, which produces the methyl donor S-adenosylmethionine (SAMe). Methylation is critical for the synthesis of phosphatidylcholine (PC), a major membrane component, and we find that blocking SAMe or PC synthesis in C. elegans, mouse liver, and human cells causes elevated SREBP-1-dependent transcription and lipid droplet accumulation. Distinct from negative regulation of SREBP-2 by cholesterol, our data suggest a feedback mechanism whereby maturation of nuclear, transcriptionally active SREBP-1 is controlled by levels of PC. Thus, nutritional or genetic conditions limiting SAMe or PC production may activate SREBP-1, contributing to human metabolic disorders. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Dietary and biliary cholesterol absorption in rats. Effect of dietary cholesterol level and cholesterol saturation of bile

    International Nuclear Information System (INIS)

    Wilson, M.D.

    1985-01-01

    The principal objective of this research was to determine if cholesterol introduced into the duodenum of rats in a micellar form as occurs with bile, is absorbed more efficiently than cholesterol presented in a nonmicellar form, as occurs with dietary cholesterol. Cholesterol absorption was measured during the constant intraduodenal infusion of liquid diets ([ 14 C] cholesterol) and artificial biles ([ 3 H] cholesterol) in thoracic lymph duct cannulated rats. Percentage absorption was calculated by dividing the rate of appearance of radiolabeled cholesterol in lymph by its rate of infusion when lymph cholesterol specific activity was constant. Results provide strong evidence that under certain conditions biliary cholesterol is more efficiently absorbed than is dietary cholesterol, and that this differential must be considered when evaluating the influence of diet or drug therapy on cholesterol absorption

  1. Dietary Wheat Bran Oil Is Equally as Effective as Rice Bran Oil in Reducing Plasma Cholesterol.

    Science.gov (United States)

    Lei, Lin; Chen, Jingnan; Liu, Yuwei; Wang, Lijun; Zhao, Guohua; Chen, Zhen-Yu

    2018-03-21

    Rice bran oil (RBO) possesses a plasma cholesterol-lowering activity, while effect of wheat bran oil (WBO) on plasma cholesterol remains unknown. The present study compared the cholesterol-lowering activity of WBO with that of RBO in hamsters. Fifty-four male hamsters were divided into seven groups fed either a noncholesterol diet (NCD) or one of six high-cholesterol diets, namely HCD diet (0.2% cholesterol +9.5% lard), HCD+C diet (0.2% cholesterol +9.5% lard +0.5% cholestyramine), WL diet (0.2% cholesterol +4.8% Lard +4.8% WBO), WH diet (0.2% cholesterol +9.5% WBO), RL diet (0.2% cholesterol +4.8% Lard +4.8% RBO), and RH diet (0.2% cholesterol +9.5% RBO). Plasma total cholesterol (TC) in HCD group was 327.4 ± 31.8 mg/dL, while plasma TC in two WBO and two RBO groups was 242.2 ± 20.8, 243.1 ± 31.7, 257.1 ± 16.3, and 243.4 ± 46.0 mg/dL, respectively, leading to a decrease in plasma TC by 22-26% ( P cholesterol-lowering potency was seen between WBO and RBO. Plasma cholesterol-lowering activity of WBO and RBO was accompanied by down-regulation of hepatic 3-hydroxy-3-methylglutaryl-CoA reductase and fatty acid synthase, while up-regulation of cholesterol-7α-hydroxylase. WL, WH, RL, and RH diets increased the fecal excretion of total neutral sterols by 72.8%, 106.9%, 5.4%, and 36.8% ( P cholesterol absorption via down-regulation of intestinal Niemann-Pick C1 like 1 protein, acyl CoA:cholesterol acyltransferase 2, and ATP binding cassette transporter 5. In summary, WBO was equally effective as RBO in decreasing plasma cholesterol in hypercholesterolemia hamsters.

  2. Central role for ferritin in the day/night regulation of iron homeostasis in marine phytoplankton

    Science.gov (United States)

    Botebol, Hugo; Lesuisse, Emmanuel; Šuták, Robert; Six, Christophe; Lozano, Jean-Claude; Schatt, Philippe; Vergé, Valérie; Kirilovsky, Amos; Morrissey, Joe; Léger, Thibaut; Camadro, Jean-Michel; Gueneugues, Audrey; Bowler, Chris; Blain, Stéphane; Bouget, François-Yves

    2015-01-01

    In large regions of the open ocean, iron is a limiting resource for phytoplankton. The reduction of iron quota and the recycling of internal iron pools are among the diverse strategies that phytoplankton have evolved to allow them to grow under chronically low ambient iron levels. Phytoplankton species also have evolved strategies to cope with sporadic iron supply such as long-term storage of iron in ferritin. In the picophytoplanktonic species Ostreococcus we report evidence from observations both in the field and in laboratory cultures that ferritin and the main iron-binding proteins involved in photosynthesis and nitrate assimilation pathways show opposite diurnal expression patterns, with ferritin being maximally expressed during the night. Biochemical and physiological experiments using a ferritin knock-out line subsequently revealed that this protein plays a central role in the diel regulation of iron uptake and recycling and that this regulation of iron homeostasis is essential for cell survival under iron limitation. PMID:26553998

  3. Skin barrier homeostasis in atopic dermatitis: feedback regulation of kallikrein activity.

    Directory of Open Access Journals (Sweden)

    Reiko J Tanaka

    Full Text Available Atopic dermatitis (AD is a widely spread cutaneous chronic disease characterised by sensitive reactions (eg. eczema to normally innocuous elements. Although relatively little is understood about its underlying mechanisms due to its complexity, skin barrier dysfunction has been recognised as a key factor in the development of AD. Skin barrier homeostasis requires tight control of the activity of proteases, called kallikreins (KLKs, whose activity is regulated by a complex network of protein interactions that remains poorly understood despite its pathological importance. Characteristic symptoms of AD include the outbreak of inflammation triggered by external (eg. mechanical and chemical stimulus and the persistence and aggravation of inflammation even if the initial stimulus disappears. These characteristic symptoms, together with some experimental data, suggest the presence of positive feedback regulation for KLK activity by inflammatory signals. We developed simple mathematical models for the KLK activation system to study the effects of feedback loops and carried out bifurcation analysis to investigate the model behaviours corresponding to inflammation caused by external stimulus. The model analysis confirmed that the hypothesised core model mechanisms capture the essence of inflammation outbreak by a defective skin barrier. Our models predicted the outbreaks of inflammation at weaker stimulus and its longer persistence in AD patients compared to healthy control. We also proposed a novel quantitative indicator for inflammation level by applying principal component analysis to microarray data. The model analysis reproduced qualitative AD characteristics revealed by this indicator. Our results strongly implicate the presence and importance of feedback mechanisms in KLK activity regulation. We further proposed future experiments that may provide informative data to enhance the system-level understanding on the regulatory mechanisms of skin barrier

  4. Free fatty acid receptors act as nutrient sensors to regulate energy homeostasis.

    Science.gov (United States)

    Ichimura, Atsuhiko; Hirasawa, Akira; Hara, Takafumi; Tsujimoto, Gozoh

    2009-09-01

    Free fatty acids (FFAs) have been demonstrated to act as ligands of several G-protein-coupled receptors (GPCRs) (FFAR1, FFAR2, FFAR3, GPR84, and GPR120). These fatty acid receptors are proposed to play critical roles in a variety of types of physiological homeostasis. FFAR1 and GPR120 are activated by medium- and long-chain FFAs. GPR84 is activated by medium-chain, but not long-chain, FFAs. In contrast, FFAR2 and FFAR3 are activated by short-chain FFAs. FFAR1 is expressed mainly in pancreatic beta-cells and mediates insulin secretion, whereas GPR120 is expressed abundantly in the intestine and promotes the secretion of glucagon-like peptide-1 (GLP-1). FFAR3 is expressed in enteroendocrine cells and regulates host energy balance through effects that are dependent upon the gut microbiota. In this review, we summarize the identification, structure, and pharmacology of these receptors and present an essential overview of the current understanding of their physiological roles.

  5. The kinase TBK1 functions in dendritic cells to regulate T cell homeostasis, autoimmunity, and antitumor immunity.

    Science.gov (United States)

    Xiao, Yichuan; Zou, Qiang; Xie, Xiaoping; Liu, Ting; Li, Haiyan S; Jie, Zuliang; Jin, Jin; Hu, Hongbo; Manyam, Ganiraju; Zhang, Li; Cheng, Xuhong; Wang, Hui; Marie, Isabelle; Levy, David E; Watowich, Stephanie S; Sun, Shao-Cong

    2017-05-01

    Dendritic cells (DCs) are crucial for mediating immune responses but, when deregulated, also contribute to immunological disorders, such as autoimmunity. The molecular mechanism underlying the function of DCs is incompletely understood. In this study, we have identified TANK-binding kinase 1 (TBK1), a master innate immune kinase, as an important regulator of DC function. DC-specific deletion of Tbk1 causes T cell activation and autoimmune symptoms and also enhances antitumor immunity in animal models of cancer immunotherapy. The TBK1-deficient DCs have up-regulated expression of co-stimulatory molecules and increased T cell-priming activity. We further demonstrate that TBK1 negatively regulates the induction of a subset of genes by type I interferon receptor (IFNAR). Deletion of IFNAR1 could largely prevent aberrant T cell activation and autoimmunity in DC-conditional Tbk1 knockout mice. These findings identify a DC-specific function of TBK1 in the maintenance of immune homeostasis and tolerance. © 2017 Xiao et al.

  6. Cholesterol in brain disease: sometimes determinant and frequently implicated

    Science.gov (United States)

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  7. Sensing the environment: regulation of local and global homeostasis by the skin's neuroendocrine system.

    Science.gov (United States)

    Slominski, Andrzej T; Zmijewski, Michal A; Skobowiat, Cezary; Zbytek, Blazej; Slominski, Radomir M; Steketee, Jeffery D

    2012-01-01

    endings to alert the brain on changes in the epidermal or dermal environments, or alternatively to activate other coordinating centers by direct (spinal cord) neurotransmission without brain involvement. Furthermore, rapid and reciprocal communications between epidermal and dermal and adnexal compartments are also mediated by neurotransmission including antidromic modes of conduction. In conclusion, skin cells and skin as an organ coordinate and/or regulate not only peripheral but also global homeostasis.

  8. Cholesterol-induced conformational changes in the sterol-sensing domain of the Scap protein suggest feedback mechanism to control cholesterol synthesis.

    Science.gov (United States)

    Gao, Yansong; Zhou, Yulian; Goldstein, Joseph L; Brown, Michael S; Radhakrishnan, Arun

    2017-05-26

    Scap is a polytopic protein of endoplasmic reticulum (ER) membranes that transports sterol regulatory element-binding proteins to the Golgi complex for proteolytic activation. Cholesterol accumulation in ER membranes prevents Scap transport and decreases cholesterol synthesis. Previously, we provided evidence that cholesterol inhibition is initiated when cholesterol binds to loop 1 of Scap, which projects into the ER lumen. Within cells, this binding causes loop 1 to dissociate from loop 7, another luminal Scap loop. However, we have been unable to demonstrate this dissociation when we added cholesterol to isolated complexes of loops 1 and 7. We therefore speculated that the dissociation requires a conformational change in the intervening polytopic sequence separating loops 1 and 7. Here we demonstrate such a change using a protease protection assay in sealed membrane vesicles. In the absence of cholesterol, trypsin or proteinase K cleaved cytosolic loop 4, generating a protected fragment that we visualized with a monoclonal antibody against loop 1. When cholesterol was added to these membranes, cleavage in loop 4 was abolished. Because loop 4 is part of the so-called sterol-sensing domain separating loops 1 and 7, these results support the hypothesis that cholesterol binding to loop 1 alters the conformation of the sterol-sensing domain. They also suggest that this conformational change helps transmit the cholesterol signal from loop 1 to loop 7, thereby allowing separation of the loops and facilitating the feedback inhibition of cholesterol synthesis. These insights suggest a new structural model for cholesterol-mediated regulation of Scap activity. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. What's Cholesterol?

    Science.gov (United States)

    ... LDL. Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  10. Temozolomide, sirolimus and chloroquine is a new therapeutic combination that synergizes to disrupt lysosomal function and cholesterol homeostasis in GBM cells.

    Science.gov (United States)

    Hsu, Sanford P C; Kuo, John S; Chiang, Hsin-Chien; Wang, Hsin-Ell; Wang, Yu-Shan; Huang, Cheng-Chung; Huang, Yi-Chun; Chi, Mau-Shin; Mehta, Minesh P; Chi, Kwan-Hwa

    2018-01-23

    Glioblastoma (GBM) cells are characterized by high phagocytosis, lipogenesis, exocytosis activities, low autophagy capacity and high lysosomal demand are necessary for survival and invasion. The lysosome stands at the cross roads of lipid biosynthesis, transporting, sorting between exogenous and endogenous cholesterol. We hypothesized that three already approved drugs, the autophagy inducer, sirolimus (rapamycin, Rapa), the autophagy inhibitor, chloroquine (CQ), and DNA alkylating chemotherapy, temozolomide (TMZ) could synergize against GBM. This repurposed triple therapy combination induced GBM apoptosis in vitro and inhibited GBM xenograft growth in vivo . Cytotoxicity is caused by induction of lysosomal membrane permeabilization and release of hydrolases, and may be rescued by cholesterol supplementation. Triple treatment inhibits lysosomal function, prevents cholesterol extraction from low density lipoprotein (LDL), and causes clumping of lysosome associated membrane protein-1 (LAMP-1) and lipid droplets (LD) accumulation. Co-treatment of the cell lines with inhibitor of caspases and cathepsin B only partially reverse of cytotoxicities, while N-acetyl cysteine (NAC) can be more effective. A combination of reactive oxygen species (ROS) generation from cholesterol depletion are the early event of underling mechanism. Cholesterol repletion abolished the ROS production and reversed the cytotoxicity from QRT treatment. The shortage of free cholesterol destabilizes lysosomal membranes converting aborted autophagy to apoptosis through either direct mitochondria damage or cathepsin B release. This promising anti-GBM triple therapy combination severely decreases mitochondrial function, induces lysosome-dependent apoptotic cell death, and is now poised for further clinical testing and validation.

  11. Distinct Roles for Intestinal Epithelial Cell-Specific Hdac1 and Hdac2 in the Regulation of Murine Intestinal Homeostasis.

    Science.gov (United States)

    Gonneaud, Alexis; Turgeon, Naomie; Boudreau, François; Perreault, Nathalie; Rivard, Nathalie; Asselin, Claude

    2016-02-01

    The intestinal epithelium responds to and transmits signals from the microbiota and the mucosal immune system to insure intestinal homeostasis. These interactions are in part conveyed by epigenetic modifications, which respond to environmental changes. Protein acetylation is an epigenetic signal regulated by histone deacetylases, including Hdac1 and Hdac2. We have previously shown that villin-Cre-inducible intestinal epithelial cell (IEC)-specific Hdac1 and Hdac2 deletions disturb intestinal homeostasis. To determine the role of Hdac1 and Hdac2 in the regulation of IEC function and the establishment of the dual knockout phenotype, we have generated villin-Cre murine models expressing one Hdac1 allele without Hdac2, or one Hdac2 allele without Hdac1. We have also investigated the effect of short-term deletion of both genes in naphtoflavone-inducible Ah-Cre and tamoxifen-inducible villin-Cre(ER) mice. Mice with one Hdac1 allele displayed normal tissue architecture, but increased sensitivity to DSS-induced colitis. In contrast, mice with one Hdac2 allele displayed intestinal architecture defects, increased proliferation, decreased goblet cell numbers as opposed to Paneth cells, increased immune cell infiltration associated with fibrosis, and increased sensitivity to DSS-induced colitis. In comparison to dual knockout mice, intermediary activation of Notch, mTOR, and Stat3 signaling pathways was observed. While villin-Cre(ER) Hdac1 and Hdac2 deletions led to an impaired epithelium and differentiation defects, Ah-Cre-mediated deletion resulted in blunted proliferation associated with the induction of a DNA damage response. Our results suggest that IEC determination and intestinal homeostasis are highly dependent on Hdac1 and Hdac2 activity levels, and that changes in the IEC acetylome may alter the mucosal environment. © 2015 Wiley Periodicals, Inc.

  12. Human immunodeficiency virus impairs reverse cholesterol transport from macrophages.

    Directory of Open Access Journals (Sweden)

    Zahedi Mujawar

    2006-10-01

    Full Text Available Several steps of HIV-1 replication critically depend on cholesterol. HIV infection is associated with profound changes in lipid and lipoprotein metabolism and an increased risk of coronary artery disease. Whereas numerous studies have investigated the role of anti-HIV drugs in lipodystrophy and dyslipidemia, the effects of HIV infection on cellular cholesterol metabolism remain uncharacterized. Here, we demonstrate that HIV-1 impairs ATP-binding cassette transporter A1 (ABCA1-dependent cholesterol efflux from human macrophages, a condition previously shown to be highly atherogenic. In HIV-1-infected cells, this effect was mediated by Nef. Transfection of murine macrophages with Nef impaired cholesterol efflux from these cells. At least two mechanisms were found to be responsible for this phenomenon: first, HIV infection and transfection with Nef induced post-transcriptional down-regulation of ABCA1; and second, Nef caused redistribution of ABCA1 to the plasma membrane and inhibited internalization of apolipoprotein A-I. Binding of Nef to ABCA1 was required for down-regulation and redistribution of ABCA1. HIV-infected and Nef-transfected macrophages accumulated substantial amounts of lipids, thus resembling foam cells. The contribution of HIV-infected macrophages to the pathogenesis of atherosclerosis was supported by the presence of HIV-positive foam cells in atherosclerotic plaques of HIV-infected patients. Stimulation of cholesterol efflux from macrophages significantly reduced infectivity of the virions produced by these cells, and this effect correlated with a decreased amount of virion-associated cholesterol, suggesting that impairment of cholesterol efflux is essential to ensure proper cholesterol content in nascent HIV particles. These results reveal a previously unrecognized dysregulation of intracellular lipid metabolism in HIV-infected macrophages and identify Nef and ABCA1 as the key players responsible for this effect. Our findings

  13. Peripheral Serotonin: a New Player in Systemic Energy Homeostasis

    Science.gov (United States)

    Namkung, Jun; Kim, Hail; Park, Sangkyu

    2015-01-01

    Whole body energy balance is achieved through the coordinated regulation of energy intake and energy expenditure in various tissues including liver, muscle and adipose tissues. A positive energy imbalance by excessive energy intake or insufficient energy expenditure results in obesity and related metabolic diseases. Although there have been many obesity treatment trials aimed at the reduction of energy intake, these strategies have achieved only limited success because of their associated adverse effects. An ancient neurotransmitter, serotonin is among those traditional pharmacological targets for anti-obesity treatment because it exhibits strong anorectic effect in the brain. However, recent studies suggest the new functions of peripheral serotonin in energy homeostasis ranging from the endocrine regulation by gut-derived serotonin to the autocrine/paracrine regulation by adipocyte-derived serotonin. Here, we discuss the role of serotonin in the regulation of energy homeostasis and introduce peripheral serotonin as a possible target for anti-obesity treatment. PMID:26628041

  14. CHF: circulatory homeostasis gone awry.

    Science.gov (United States)

    Weber, Karl T; Burlew, Brad S; Davis, Richard C; Newman, Kevin P; D'Cruz, Ivan A; Hawkins, Ralph G; Wall, Barry M; Parker, Robert B

    2002-01-01

    The role of the renin-angiotensin-aldosterone system (RAAS) is integral to salt and water retention, particularly by the kidneys. Over time, positive sodium balance leads first to intra- and then to extravascular volume expansion, with subsequent symptomatic heart failure. This report examines the role of the RAAS in regulating a less well recognized component essential to circulatory homeostasis--central blood volume. The regulation of central blood volume draws on integrative cardiorenal physiology and a key role played by the RAAS in its regulation. In presenting insights into the role of the RAAS in regulating central blood volume, this review also addresses other sodium-retaining states with a predisposition to edema formation, such as cirrhosis and nephrosis. (c)2002 CHF, Inc

  15. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  16. The emerging role of lysosomes in copper homeostasis.

    Science.gov (United States)

    Polishchuk, Elena V; Polishchuk, Roman S

    2016-09-01

    The lysosomal system operates as a focal point where a number of important physiological processes such as endocytosis, autophagy and nutrient sensing converge. One of the key functions of lysosomes consists of regulating the metabolism/homeostasis of metals. Metal-containing components are carried to the lysosome through incoming membrane flows, while numerous transporters allow metal ions to move across the lysosome membrane. These properties enable lysosomes to direct metal fluxes to the sites where metal ions are either used by cellular components or sequestered. Copper belongs to a group of metals that are essential for the activity of vitally important enzymes, although it is toxic when in excess. Thus, copper uptake, supply and intracellular compartmentalization have to be tightly regulated. An increasing number of publications have indicated that these processes involve lysosomes. Here we review studies that reveal the expanding role of the lysosomal system as a hub for the control of Cu homeostasis and for the regulation of key Cu-dependent processes in health and disease.

  17. Reactive Oxygen Species and Mitochondrial Homeostasis as Regulators of Stem Cell Fate and Function.

    Science.gov (United States)

    Tan, Darren Q; Suda, Toshio

    2018-07-10

    The precise role and impact of reactive oxygen species (ROS) in stem cells, which are essential for lifelong tissue homeostasis and regeneration, remain of significant interest to the field. The long-term regenerative potential of a stem cell compartment is determined by the delicate balance between quiescence, self-renewal, and differentiation, all of which can be influenced by ROS levels. Recent Advances: The past decade has seen a growing appreciation for the importance of ROS and redox homeostasis in various stem cell compartments, particularly those of hematopoietic, neural, and muscle tissues. In recent years, the importance of proteostasis and mitochondria in relation to stem cell biology and redox homeostasis has garnered considerable interest. Here, we explore the reciprocal relationship between ROS and stem cells, with significant emphasis on mitochondria as a core component of redox homeostasis. We discuss how redox signaling, involving cell-fate determining protein kinases and transcription factors, can control stem cell function and fate. We also address the impact of oxidative stress on stem cells, especially oxidative damage of lipids, proteins, and nucleic acids. We further discuss ROS management in stem cells, and present recent evidence supporting the importance of mitochondrial activity and its modulation (via mitochondrial clearance, biogenesis, dynamics, and distribution [i.e., segregation and transfer]) in stem cell redox homeostasis. Therefore, elucidating the intricate links between mitochondria, cellular metabolism, and redox homeostasis is envisioned to be critical for our understanding of ROS in stem cell biology and its therapeutic relevance in regenerative medicine. Antioxid. Redox Signal. 00, 000-000.

  18. Role of the endocannabinoid system in food intake, energy homeostasis and regulation of the endocrine pancreas.

    Science.gov (United States)

    Li, Chen; Jones, Peter M; Persaud, Shanta J

    2011-03-01

    The endocannabinoid system (ECS) is a signalling cascade consisting of CB1 and CB2 receptors, and enzymes for the synthesis and degradation of endogenous ligands for these receptors. Central CB1 receptors have been most widely studied since they play key roles in energy homeostasis and rimonabant, a CB1 receptor antagonist, was used clinically to treat obesity. Less is known about CB2 receptors, but their abundant expression by lymphocytes and macrophages has led to suggestions of their importance in immune and inflammatory reactions. More recently, it has become apparent that both CB1 and CB2 receptors are more widely expressed than originally thought, and the capacity of endocannabinoids to regulate energy balance also occurs through their interactions with cannabinoid receptors on a variety of peripheral tissues. In general, pathological overactivation of the ECS contributes to weight gain, reduced sensitivity to insulin and glucose intolerance, and blockade of CB1 receptors reduces body weight through increased secretion of anorectic signals and improved insulin sensitivity. However, the notion that the ECS per se is detrimental to energy homeostasis is an oversimplification, since activation of cannabinoid receptors expressed by islet cells can stimulate insulin secretion, which is obviously beneficial under conditions of impaired glucose tolerance or type 2 diabetes. We propose that under normal physiological conditions cannabinoid signalling in the endocrine pancreas is a bona fide mechanism of regulating insulin secretion to maintain blood glucose levels, but that energy balance becomes dysregulated with excessive food intake, leading to adipogenesis and fat accumulation through enhanced cannabinoid synthesis. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    International Nuclear Information System (INIS)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei

    2011-01-01

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (− 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (− 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  20. Regulation of brain copper homeostasis by the brain barrier systems: Effects of Fe-overload and Fe-deficiency

    Energy Technology Data Exchange (ETDEWEB)

    Monnot, Andrew D.; Behl, Mamta; Ho, Sanna; Zheng, Wei, E-mail: wzheng@purdue.edu

    2011-11-15

    Maintaining brain Cu homeostasis is vital for normal brain function. The role of systemic Fe deficiency (FeD) or overload (FeO) due to metabolic diseases or environmental insults in Cu homeostasis in the cerebrospinal fluid (CSF) and brain tissues remains unknown. This study was designed to investigate how blood-brain barrier (BBB) and blood-SCF barrier (BCB) regulated Cu transport and how FeO or FeD altered brain Cu homeostasis. Rats received an Fe-enriched or Fe-depleted diet for 4 weeks. FeD and FeO treatment resulted in a significant increase (+ 55%) and decrease (- 56%) in CSF Cu levels (p < 0.05), respectively; however, neither treatment had any effect on CSF Fe levels. The FeD, but not FeO, led to significant increases in Cu levels in brain parenchyma and the choroid plexus. In situ brain perfusion studies demonstrated that the rate of Cu transport into the brain parenchyma was significantly faster in FeD rats (+ 92%) and significantly slower (- 53%) in FeO rats than in controls. In vitro two chamber Transwell transepithelial transport studies using primary choroidal epithelial cells revealed a predominant efflux of Cu from the CSF to blood compartment by the BCB. Further ventriculo-cisternal perfusion studies showed that Cu clearance by the choroid plexus in FeD animals was significantly greater than control (p < 0.05). Taken together, our results demonstrate that both the BBB and BCB contribute to maintain a stable Cu homeostasis in the brain and CSF. Cu appears to enter the brain primarily via the BBB and is subsequently removed from the CSF by the BCB. FeD has a more profound effect on brain Cu levels than FeO. FeD increases Cu transport at the brain barriers and prompts Cu overload in the CNS. The BCB plays a key role in removing the excess Cu from the CSF.

  1. The perilipin homologue, lipid storage droplet 2, regulates sleep homeostasis and prevents learning impairments following sleep loss.

    Directory of Open Access Journals (Sweden)

    Matthew S Thimgan

    2010-08-01

    Full Text Available Extended periods of waking result in physiological impairments in humans, rats, and flies. Sleep homeostasis, the increase in sleep observed following sleep loss, is believed to counter the negative effects of prolonged waking by restoring vital biological processes that are degraded during sleep deprivation. Sleep homeostasis, as with other behaviors, is influenced by both genes and environment. We report here that during periods of starvation, flies remain spontaneously awake but, in contrast to sleep deprivation, do not accrue any of the negative consequences of prolonged waking. Specifically, the homeostatic response and learning impairments that are a characteristic of sleep loss are not observed following prolonged waking induced by starvation. Recently, two genes, brummer (bmm and Lipid storage droplet 2 (Lsd2, have been shown to modulate the response to starvation. bmm mutants have excess fat and are resistant to starvation, whereas Lsd2 mutants are lean and sensitive to starvation. Thus, we hypothesized that bmm and Lsd2 may play a role in sleep regulation. Indeed, bmm mutant flies display a large homeostatic response following sleep deprivation. In contrast, Lsd2 mutant flies, which phenocopy aspects of starvation as measured by low triglyceride stores, do not exhibit a homeostatic response following sleep loss. Importantly, Lsd2 mutant flies are not learning impaired after sleep deprivation. These results provide the first genetic evidence, to our knowledge, that lipid metabolism plays an important role in regulating the homeostatic response and can protect against neuronal impairments induced by prolonged waking.

  2. Transcriptional regulation of rod photoreceptor homeostasis revealed by in vivo NRL targetome analysis.

    Directory of Open Access Journals (Sweden)

    Hong Hao

    Full Text Available A stringent control of homeostasis is critical for functional maintenance and survival of neurons. In the mammalian retina, the basic motif leucine zipper transcription factor NRL determines rod versus cone photoreceptor cell fate and activates the expression of many rod-specific genes. Here, we report an integrated analysis of NRL-centered gene regulatory network by coupling chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-Seq data from Illumina and ABI platforms with global expression profiling and in vivo knockdown studies. We identified approximately 300 direct NRL target genes. Of these, 22 NRL targets are associated with human retinal dystrophies, whereas 95 mapped to regions of as yet uncloned retinal disease loci. In silico analysis of NRL ChIP-Seq peak sequences revealed an enrichment of distinct sets of transcription factor binding sites. Specifically, we discovered that genes involved in photoreceptor function include binding sites for both NRL and homeodomain protein CRX. Evaluation of 26 ChIP-Seq regions validated their enhancer functions in reporter assays. In vivo knockdown of 16 NRL target genes resulted in death or abnormal morphology of rod photoreceptors, suggesting their importance in maintaining retinal function. We also identified histone demethylase Kdm5b as a novel secondary node in NRL transcriptional hierarchy. Exon array analysis of flow-sorted photoreceptors in which Kdm5b was knocked down by shRNA indicated its role in regulating rod-expressed genes. Our studies identify candidate genes for retinal dystrophies, define cis-regulatory module(s for photoreceptor-expressed genes and provide a framework for decoding transcriptional regulatory networks that dictate rod homeostasis.

  3. Intracellular cholesterol level regulates sensitivity of glioblastoma cells against temozolomide-induced cell death by modulation of caspase-8 activation via death receptor 5-accumulation and activation in the plasma membrane lipid raft.

    Science.gov (United States)

    Yamamoto, Yutaro; Tomiyama, Arata; Sasaki, Nobuyoshi; Yamaguchi, Hideki; Shirakihara, Takuya; Nakashima, Katsuhiko; Kumagai, Kosuke; Takeuchi, Satoru; Toyooka, Terushige; Otani, Naoki; Wada, Kojiro; Narita, Yoshitaka; Ichimura, Koichi; Sakai, Ryuichi; Namba, Hiroki; Mori, Kentaro

    2018-01-01

    Development of resistance against temozolomide (TMZ) in glioblastoma (GBM) after continuous treatment with TMZ is one of the critical problems in clinical GBM therapy. Intracellular cholesterol regulates cancer cell biology, but whether intracellular cholesterol is involved in TMZ resistance of GBM cells remains unclear. The involvement of intracellular cholesterol in acquired resistance against TMZ in GBM cells was investigated. Intracellular cholesterol levels were measured in human U251 MG cells with acquired TMZ resistance (U251-R cells) and TMZ-sensitive control U251 MG cells (U251-Con cells), and found that the intracellular cholesterol level was significantly lower in U251-R cells than in U251-Con cells. In addition, treatment by intracellular cholesterol remover, methyl-beta cyclodextrin (MβCD), or intracellular cholesterol inducer, soluble cholesterol (Chol), regulated TMZ-induced U251-Con cell death in line with changes in intracellular cholesterol level. Involvement of death receptor 5 (DR5), a death receptor localized in the plasma membrane, was evaluated. TMZ without or with MβCD and/or Chol caused accumulation of DR5 into the plasma membrane lipid raft and formed a complex with caspase-8, an extrinsic caspase cascade inducer, reflected in the induction of cell death. In addition, treatment with caspase-8 inhibitor or knockdown of DR5 dramatically suppressed U251-Con cell death induced by combination treatment with TMZ, MβCD, and Chol. Combined treatment of Chol with TMZ reversed the TMZ resistance of U251-R cells and another GBM cell model with acquired TMZ resistance, whereas clinical antihypercholesterolemia agents at physiological concentrations suppressed TMZ-induced cell death of U251-Con cells. These findings suggest that intracellular cholesterol level affects TMZ treatment of GBM mediated via a DR5-caspase-8 mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. What Is Cholesterol?

    Science.gov (United States)

    ... of Cholesterol There are two main types of cholesterol: LDL and HDL. The cholesterol blood test tells how much of each kind you have. Most cholesterol is LDL (low-density lipoprotein) cholesterol. This type is most ...

  5. γδ T cells producing interleukin-17A regulate adipose regulatory T cell homeostasis and thermogenesis.

    Science.gov (United States)

    Kohlgruber, Ayano C; Gal-Oz, Shani T; LaMarche, Nelson M; Shimazaki, Moto; Duquette, Danielle; Nguyen, Hung N; Mina, Amir I; Paras, Tyler; Tavakkoli, Ali; von Andrian, Ulrich; Banks, Alexander S; Shay, Tal; Brenner, Michael B; Lynch, Lydia

    2018-05-01

    γδ T cells are situated at barrier sites and guard the body from infection and damage. However, little is known about their roles outside of host defense in nonbarrier tissues. Here, we characterize a highly enriched tissue-resident population of γδ T cells in adipose tissue that regulate age-dependent regulatory T cell (T reg ) expansion and control core body temperature in response to environmental fluctuations. Mechanistically, innate PLZF + γδ T cells produced tumor necrosis factor and interleukin (IL) 17 A and determined PDGFRα + and Pdpn + stromal-cell production of IL-33 in adipose tissue. Mice lacking γδ T cells or IL-17A exhibited decreases in both ST2 + T reg cells and IL-33 abundance in visceral adipose tissue. Remarkably, these mice also lacked the ability to regulate core body temperature at thermoneutrality and after cold challenge. Together, these findings uncover important physiological roles for resident γδ T cells in adipose tissue immune homeostasis and body-temperature control.

  6. Reference intervals for serum total cholesterol, HDL cholesterol and ...

    African Journals Online (AJOL)

    Reference intervals of total cholesterol, HDL cholesterol and non-HDL cholesterol concentrations were determined on 309 blood donors from an urban and peri-urban population of Botswana. Using non-parametric methods to establish 2.5th and 97.5th percentiles of the distribution, the intervals were: total cholesterol 2.16 ...

  7. Free cholesterol is a potent regulator of lipid transfer protein function

    International Nuclear Information System (INIS)

    Morton, R.E.

    1988-01-01

    This study investigates the effect of altered lipoprotein free cholesterol (FC) content on the transfer of cholesteryl ester (CE) and triglyceride (TG) from very low- (VLDL), low- (LDL), and high-(HDL) density lipoproteins by the plasma-derived lipid transfer protein (LTP). The FC content of VLDL and HDL was selectively altered by incubating these lipoproteins with FC/phospholipid dispersions of varying composition. FC-modified lipoproteins were then equilibrated with [3H] TG, [14C]CE-labeled lipoproteins of another class to facilitate the subsequent modification of the radiolabeled donor lipoproteins. LTP was added and the extent of radiolabeled TG and CE transfer determined after 1 h. With either LDL or VLDL as lipid donor, an increase in the FC content of these lipoproteins caused a concentration-dependent inhibition (up to 50%) of CE transfer from these particles, without any significant effect on TG transfer. In contrast, with HDL as donor, increasing the HDL FC content had little effect on CE transfer from HDL, but markedly stimulated (up to 2.5-fold) the transfer of TG. This differential effect of FC on the unidirectional transfer of radiolabeled lipids from VLDL and HDL led to marked effects on LTP-facilitated net mass transfer of lipids. During long-term incubation of a constant amount of LTP with FC-modified VLDL and HDL, the extent of net mass transfer was linearly related to lipoprotein FC content; a 4-fold increase in FC content resulted in a 3-fold stimulation of the CE mass transferred to VLDL, which was coupled to an equimolar, reciprocal transfer of TG mass to HDL. Since lipid transfer between lipoproteins is integral to the process of reverse cholesterol transport, we conclude that lipoprotein FC levels are a potent, positive regulator of the pathways involved in sterol clearance. FC may modulate lipid transfer by altering the availability of CE and TG to LTP at the lipoprotein surface

  8. Oxidative stress homeostasis in grapevine (Vitis vinifera L.

    Directory of Open Access Journals (Sweden)

    Luisa C Carvalho

    2015-03-01

    Full Text Available Plants can maintain growth and reproductive success by sensing changes in the environment and reacting through mechanisms at molecular, cellular, physiological and developmental levels. Each stress condition prompts a unique response although some overlap between the reactions to abiotic stress (drought, heat, cold, salt or high light and to biotic stress (pathogens does occur. A common feature in the response to all stresses is the onset of oxidative stress, through the production of reactive oxygen species (ROS. As hydrogen peroxide and superoxide are involved in stress signaling, a tight control in ROS homeostasis requires a delicate balance of systems involved in their generation and degradation. If the plant lacks the capacity to generate scavenging potential, this can ultimately lead to death. In grapevine, antioxidant homeostasis can be considered at whole plant levels and during the development cycle. The most striking example lies in berries and their derivatives, such as wine, with nutraceutical properties associated with their antioxidant capacity. Antioxidant homeostasis is tightly regulated in leaves, assuring a positive balance between photosynthesis and respiration, explaining the tolerance of many grapevine varieties to extreme environments.In this review we will focus on antioxidant metabolites, antioxidant enzymes, transcriptional regulation and cross-talk with hormones prompted by abiotic stress conditions. We will also discuss three situations that require specific homeostasis balance: biotic stress, the oxidative burst in berries at veraison and in vitro systems. The genetic plasticity of the antioxidant homeostasis response put in evidence by the different levels of tolerance to stress presented by grapevine varieties will be addressed. The gathered information is relevant to foster varietal adaptation to impending climate changes, to assist breeders in choosing the more adapted varieties and to suitable viticulture

  9. How cholesterol interacts with proteins and lipids during its intracellular transport

    DEFF Research Database (Denmark)

    Wüstner, Daniel; Solanko, Katarzyna

    2015-01-01

    as well as by non-vesicular sterol exchange between organelles. In this article, we will review recent progress in elucidating sterol-lipid and sterol-protein interactions contributing to proper sterol transport in living cells. We outline recent biophysical models of cholesterol distribution and dynamics...... for characterization of sterol-protein interactions and for monitoring intracellular sterol transport. Finally, we review recent work on the molecular mechanisms underlying lipoprotein-mediated cholesterol import into mammalian cells and describe the process of cellular cholesterol efflux. Overall, we emphasize how......Sterols, as cholesterol in mammalian cells and ergosterol in fungi, are indispensable molecules for proper functioning and nanoscale organization of the plasma membrane. Synthesis, uptake and efflux of cholesterol are regulated by a variety of protein-lipid and protein-protein interactions...

  10. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis.

    Science.gov (United States)

    Byberg, S; Hansen, A-L S; Christensen, D L; Vistisen, D; Aadahl, M; Linneberg, A; Witte, D R

    2012-09-01

    Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. The study comprised 771 participants from the Danish, population-based cross-sectional 'Health2008' study. Sleep duration and sleep quality were measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA(1c), two measures of insulin sensitivity (the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity), the homeostasis model assessment of β-cell function and glucose tolerance status. Associations of sleep duration and sleep quality with markers of glucose homeostasis and tolerance were analysed by multiple linear and logistic regression. A 1-h increment in sleep duration was associated with a 0.3 mmol/mol (0.3%) decrement in HbA(1c) and a 25% reduction in the risk of having impaired glucose regulation. Further, a 1-point increment in sleep quality was associated with a 2% increase in both the insulin sensitivity index(0,120) and homeostasis model assessment of insulin sensitivity, as well as a 1% decrease in homeostasis model assessment of β-cell function. In the present study, shorter sleep duration was mainly associated with later alterations in glucose homeostasis, whereas poorer sleep quality was mainly associated with earlier alterations in glucose homeostasis. Thus, adopting healthy sleep habits may benefit glucose metabolism in healthy populations. © 2012 The Authors. Diabetic Medicine © 2012 Diabetes UK.

  11. The role of CDX2 in intestinal homeostasis and inflammation

    DEFF Research Database (Denmark)

    Coskun, Mehmet; Troelsen, Jesper Thorvald; Nielsen, Ole Haagen

    2011-01-01

    a causal role in a large number of diseases and developmental disorders. Inflammatory bowel disease (IBD) is characterized by a chronically inflamed mucosa caused by dysregulation of the intestinal immune homeostasis. The aetiology of IBD is thought to be a combination of genetic and environmental factors......, including luminal bacteria. The Caudal-related homeobox transcription factor 2 (CDX2) is critical in early intestinal differentiation and has been implicated as a master regulator of the intestinal homeostasis and permeability in adults. When expressed, CDX2 modulates a diverse set of processes including...... of the intestinal homeostasis and further to reveal its potential role in inflammation....

  12. ATP binding cassette G1-dependent cholesterol efflux during inflammation.

    Science.gov (United States)

    de Beer, Maria C; Ji, Ailing; Jahangiri, Anisa; Vaughan, Ashley M; de Beer, Frederick C; van der Westhuyzen, Deneys R; Webb, Nancy R

    2011-02-01

    ATP binding cassette transporter G1 (ABCG1) mediates the transport of cellular cholesterol to HDL, and it plays a key role in maintaining macrophage cholesterol homeostasis. During inflammation, HDL undergoes substantial remodeling, acquiring lipid changes and serum amyloid A (SAA) as a major apolipoprotein. In the current study, we investigated whether remodeling of HDL that occurs during acute inflammation impacts ABCG1-dependent efflux. Our data indicate that lipid free SAA acts similarly to apolipoprotein A-I (apoA-I) in mediating sequential efflux from ABCA1 and ABCG1. Compared with normal mouse HDL, acute phase (AP) mouse HDL containing SAA exhibited a modest but significant 17% increase in ABCG1-dependent efflux. Interestingly, AP HDL isolated from mice lacking SAA (SAAKO mice) was even more effective in promoting ABCG1 efflux. Hydrolysis with Group IIA secretory phospholipase A(2) (sPLA(2)-IIA) significantly reduced the ability of AP HDL from SAAKO mice to serve as a substrate for ABCG1-mediated cholesterol transfer, indicating that phospholipid (PL) enrichment, and not the presence of SAA, is responsible for alterations in efflux. AP human HDL, which is not PL-enriched, was somewhat less effective in mediating ABCG1-dependent efflux compared with normal human HDL. Our data indicate that inflammatory remodeling of HDL impacts ABCG1-dependent efflux independent of SAA.

  13. Telomere Homeostasis: Interplay with Magnesium

    Directory of Open Access Journals (Sweden)

    Donogh Maguire

    2018-01-01

    Full Text Available Telomere biology, a key component of the hallmarks of ageing, offers insight into dysregulation of normative ageing processes that accompany age-related diseases such as cancer. Telomere homeostasis is tightly linked to cellular metabolism, and in particular with mitochondrial physiology, which is also diminished during cellular senescence and normative physiological ageing. Inherent in the biochemistry of these processes is the role of magnesium, one of the main cellular ions and an essential cofactor in all reactions that use ATP. Magnesium plays an important role in many of the processes involved in regulating telomere structure, integrity and function. This review explores the mechanisms that maintain telomere structure and function, their influence on circadian rhythms and their impact on health and age-related disease. The pervasive role of magnesium in telomere homeostasis is also highlighted.

  14. Energy homeostasis regulatory peptides in hibernating grizzly bears.

    Science.gov (United States)

    Gardi, János; Nelson, O Lynne; Robbins, Charles T; Szentirmai, Eva; Kapás, Levente; Krueger, James M

    2011-05-15

    Grizzly bears (Ursus arctos horribilis) are inactive for up to 6 months during hibernation. They undergo profound seasonal changes in food intake, body mass, and energy expenditure. The circa-annual regulation of metabolism is poorly understood. In this study, we measured plasma ghrelin, leptin, obestatin, and neuropeptide-Y (NPY) levels, hormones known to be involved in the regulation of energy homeostasis, in ten grizzly bears. Blood samples were collected during the active summer period, early hibernation and late hibernation. Plasma levels of leptin, obestatin, and NPY did not change between the active and the hibernation periods. Plasma total ghrelin and desacyl-ghrelin concentrations significantly decreased during the inactive winter period compared to summer levels. The elevated ghrelin levels may help enhance body mass during pre-hibernation, while the low plasma ghrelin concentrations during hibernation season may contribute to the maintenance of hypophagia, low energy utilization and behavioral inactivity. Our results suggest that ghrelin plays a potential role in the regulation of metabolic changes and energy homeostasis during hibernation in grizzly bears. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Directory of Open Access Journals (Sweden)

    Frédéric Raymond

    Full Text Available Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF diet that has a high (H or a low (L protein-to-carbohydrate (P/C ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words.

  16. Consequences of exchanging carbohydrates for proteins in the cholesterol metabolism of mice fed a high-fat diet.

    Science.gov (United States)

    Raymond, Frédéric; Wang, Long; Moser, Mireille; Metairon, Sylviane; Mansourian, Robert; Zwahlen, Marie-Camille; Kussmann, Martin; Fuerholz, Andreas; Macé, Katherine; Chou, Chieh Jason

    2012-01-01

    Consumption of low-carbohydrate, high-protein, high-fat diets lead to rapid weight loss but the cardioprotective effects of these diets have been questioned. We examined the impact of high-protein and high-fat diets on cholesterol metabolism by comparing the plasma cholesterol and the expression of cholesterol biosynthesis genes in the liver of mice fed a high-fat (HF) diet that has a high (H) or a low (L) protein-to-carbohydrate (P/C) ratio. H-P/C-HF feeding, compared with L-P/C-HF feeding, decreased plasma total cholesterol and increased HDL cholesterol concentrations at 4-wk. Interestingly, the expression of genes involved in hepatic steroid biosynthesis responded to an increased dietary P/C ratio by first down-regulation (2-d) followed by later up-regulation at 4-wk, and the temporal gene expression patterns were connected to the putative activity of SREBF1 and 2. In contrast, Cyp7a1, the gene responsible for the conversion of cholesterol to bile acids, was consistently up-regulated in the H-P/C-HF liver regardless of feeding duration. Over expression of Cyp7a1 after 2-d and 4-wk H-P/C-HF feeding was connected to two unique sets of transcription regulators. At both time points, up-regulation of the Cyp7a1 gene could be explained by enhanced activations and reduced suppressions of multiple transcription regulators. In conclusion, we demonstrated that the hypocholesterolemic effect of H-P/C-HF feeding coincided with orchestrated changes of gene expressions in lipid metabolic pathways in the liver of mice. Based on these results, we hypothesize that the cholesterol lowering effect of high-protein feeding is associated with enhanced bile acid production but clinical validation is warranted. (246 words).

  17. Serine racemase is expressed in islets and contributes to the regulation of glucose homeostasis.

    Science.gov (United States)

    Lockridge, Amber D; Baumann, Daniel C; Akhaphong, Brian; Abrenica, Alleah; Miller, Robert F; Alejandro, Emilyn U

    2016-11-01

    NMDA receptors (NMDARs) have recently been discovered as functional regulators of pancreatic β-cell insulin secretion. While these excitatory receptor channels have been extensively studied in the brain for their role in synaptic plasticity and development, little is known about how they work in β-cells. In neuronal cells, NMDAR activation requires the simultaneous binding of glutamate and a rate-limiting co-agonist, such as D-serine. D-serine levels and availability in most of the brain rely on endogenous synthesis by the enzyme serine racemase (Srr). Srr transcripts have been reported in human and mouse islets but it is not clear whether Srr is functionally expressed in β-cells or what its role in the pancreas might be. In this investigation, we reveal that Srr protein is highly expressed in primary human and mouse β-cells. Mice with whole body deletion of Srr (Srr KO) show improved glucose tolerance through enhanced insulin secretory capacity, possibly through Srr-mediated alterations in islet NMDAR expression and function. We observed elevated insulin sensitivity in some animals, suggesting Srr metabolic regulation in other peripheral organs as well. Srr expression in neonatal and embryonic islets, and adult deficits in Srr KO pancreas weight and islet insulin content, point toward a potential role for Srr in pancreatic development. These data reveal the first evidence that Srr may regulate glucose homeostasis in peripheral tissues and provide circumstantial evidence that D-serine may be an endogenous islet NMDAR co-agonist in β-cells.

  18. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Lei [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Xiao, Yongsheng [Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States); Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu [Environmental Toxicology Graduate Program, University of California, Riverside, CA 92521-0403 (United States); Department of Chemistry, University of California, Riverside, CA 92521-0403 (United States)

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  19. The cholesterol space of the rat; L'espace cholesterol du rat

    Energy Technology Data Exchange (ETDEWEB)

    Chevallier, F [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1959-07-01

    The experiments consisted in feeding daily to rats the same mass of radioactive cholesterol, over variable time intervals. From the evolution of the specific radioactivity of cholesterol carbon-14 in the organs as a function of time, information relative to the transport of cholesterol in the organism may be obtained. 1) The cholesterol space, defined as the group of molecules capable of being transferred from the organs into the serum and vice versa, represents at the most 50 per cent of the total cholesterol of the adult rat. 2) The incessant interchange between the tissual and the serum cholesterol renews entirely or for the most part the cholesterol molecules contained in the following organs: spleen, heart, adipose tissue, suprarenal glands, lungs, bone marrow, liver, erythrocytes. For a second group of organs: skin, testicles, kidneys, colon, bones, muscles, only a fraction of their cholesterol is renewable by this process. No transfer can be detected at the level of the brain. 3) The relative speeds of the various means of appearance (absorption, synthesis) and disappearance (excretion, transformation) of the cholesterol from its space are such that a stationary isotopic state is established around the eighth day, when the animal absorbs 5 milligrams of radioactive cholesterol daily. (author) [French] Les experiences ont consiste a faire ingerer quotidiennement une meme masse de cholesterol radioactif a des rats, durant des laps de temps variables. L'evolution de la radioactivite specifique du carbone-14 du cholesterol des organes en fonction du temps permet d'obtenir des renseignements relatifs au transport du cholesterol dans l'organisme. 1) L'espace cholesterol defini comme l'ensemble des molecules susceptibles d'etre transferees des organes dans le serum, et vice-versa, represente au plus 50 pour cent du cholesterol total du rat adulte. 2) Le va et vient incessant entre le cholesterol tissulaire et le cholesterol serique renouvelle en totalite ou en

  20. Redox and Ionic Homeostasis Regulations against Oxidative, Salinity and Drought Stress in Wheat (A Systems Biology Approach

    Directory of Open Access Journals (Sweden)

    Zahid Hussain Shah

    2017-10-01

    Full Text Available Systems biology and omics has provided a comprehensive understanding about the dynamics of the genome, metabolome, transcriptome, and proteome under stress. In wheat, abiotic stresses trigger specific networks of pathways involved in redox and ionic homeostasis as well as osmotic balance. These networks are considerably more complicated than those in model plants, and therefore, counter models are proposed by unifying the approaches of omics and stress systems biology. Furthermore, crosstalk among these pathways is monitored by the regulation and streaming of transcripts and genes. In this review, we discuss systems biology and omics as a promising tool to study responses to oxidative, salinity, and drought stress in wheat.

  1. Complementary Cholesterol-Lowering Response of a Phytosterol/α-Lipoic Acid Combination in Obese Zucker Rats.

    Science.gov (United States)

    Rideout, Todd C; Carrier, Bradley; Wen, Shin; Raslawsky, Amy; Browne, Richard W; Harding, Scott V

    2016-01-01

    To investigate the cholesterol-lowering effectiveness of a phytosterol/α-lipoic acid (PS/αLA) therapy, thirty-two male Zucker rats were randomly assigned to 1 of 4 diets for 30 days: (i) high fat diet (HF, 40% energy from fat); (ii) HF diet supplemented with 3% phytosterols; (iii) HF diet supplemented with 0.25% αLA; or (iv) HF diet supplemented with PS (3%) and αLA (0.25%, PS/αLA). Compared with the HF diet, combination PS/αLA proved more effective in reducing non-HDL cholesterol (-55%) than either the PS (-24%) or the αLA (-25%) therapies alone. PS supplementation did not affect LDL particle number, however, αLA supplementation reduced LDL particle number when supplemented alone (-47%) or in combination with PS (-54%). Compared with the HF-fed animals, evidence of increased HDL-particle number was evident in all treatment groups to a similar extent (21-22%). PS-mediated interruption of intestinal cholesterol absorption was evident by increased fecal cholesterol loss (+52%) and compensatory increase in HMG-CoA reductase mRNA (1.6 fold of HF), however, αLA supplementation did not affect fecal cholesterol loss. Hepatic mRNA and protein expression patterns suggested that αLA modulated multiple aspects of cholesterol homeostasis including reduced synthesis (HMG-CoA reductase mRNA, 0.7 fold of HF), reduced bile acid synthesis (CYP7a1 expression, 0.17 of HF), and increased cholesterol clearance (reduced PCSK9 mRNA, 0.5 fold of HF; increased LDLr protein, 2 fold of HF). Taken together, this data suggests that PS and αLA work through unique and complementary mechanisms to provide a superior and more comprehensive cholesterol lowering response than either therapy alone.

  2. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  3. Tuning of redox regulatory mechanisms, reactive oxygen species and redox homeostasis under salinity stress

    Directory of Open Access Journals (Sweden)

    Hossain eSazzad

    2016-05-01

    Full Text Available Soil salinity is a crucial environmental constraint which limits biomass production at many sites on a global scale. Saline growth conditions cause osmotic and ionic imbalances, oxidative stress and perturb metabolism, e.g. the photosynthetic electron flow. The plant ability to tolerate salinity is determined by multiple biochemical and physiological mechanisms protecting cell functions, in particular by regulating proper water relations and maintaining ion homeostasis. Redox homeostasis is a fundamental cell property. Its regulation includes control of reactive oxygen species (ROS generation, sensing deviation from and readjustment of the cellular redox state. All these redox related functions have been recognized as decisive factors in salinity acclimation and adaptation. This review focuses on the core response of plants to overcome the challenges of salinity stress through regulation of ROS generation and detoxification systems and to maintain redox homeostasis. Emphasis is given to the role of NADH oxidase (RBOH, alternative oxidase (AOX, the plastid terminal oxidase (PTOX and the malate valve with the malate dehydrogenase isoforms under salt stress. Overwhelming evidence assigns an essential auxiliary function of ROS and redox homeostasis to salinity acclimation of plants.

  4. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    Directory of Open Access Journals (Sweden)

    Catherine Tomaro-Duchesneau

    2014-01-01

    Full Text Available Excess cholesterol is associated with cardiovascular diseases (CVD, an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic.

  5. A Dual-Sensing Receptor Confers Robust Cellular Homeostasis

    Directory of Open Access Journals (Sweden)

    Hannah Schramke

    2016-06-01

    Full Text Available Cells have evolved diverse mechanisms that maintain intracellular homeostasis in fluctuating environments. In bacteria, control is often exerted by bifunctional receptors acting as both kinase and phosphatase to regulate gene expression, a design known to provide robustness against noise. Yet how such antagonistic enzymatic activities are balanced as a function of environmental change remains poorly understood. We find that the bifunctional receptor that regulates K+ uptake in Escherichia coli is a dual sensor, which modulates its autokinase and phosphatase activities in response to both extracellular and intracellular K+ concentration. Using mathematical modeling, we show that dual sensing is a superior strategy for ensuring homeostasis when both the supply of and demand for a limiting resource fluctuate. By engineering standards, this molecular control system displays a strikingly high degree of functional integration, providing a reference for the vast numbers of receptors for which the sensing strategy remains elusive.

  6. Localization and movement of newly synthesized cholesterol in rat ovarian granulosa cells

    International Nuclear Information System (INIS)

    Lange, Y.; Schmit, V.M.; Schreiber, J.R.

    1988-01-01

    The distribution and movement of cholesterol were studied in granulosa cells from the ovaries of estrogen-stimulated hypophysectomized immature rats cultured in serum-free medium. Plasma membrane cholesterol was distinguished from intracellular cholesterol with cholesterol oxidase, an enzyme that converts cell surface cholesterol to cholestenone, leaving intracellular cholesterol untouched. Using this approach we showed that 82% of unesterified cholesterol was associated with the plasma membrane in granulosa cells cultured for 48 h in serum-free medium in both the presence and absence of added androstenedione and FSH. FSH and androstenedione stimulated a marked increase in steroid hormone (progestin) production. The movement of newly synthesized cholesterol to the plasma membrane also was followed using cholesterol oxidase. Newly synthesized cholesterol reached the plasma membrane too rapidly to be measured in unstimulated cells (t1/2 less than 20 min); however, in cells stimulated by FSH and androstenedione, this rate was considerably slower (t1/2 approximately 2h). Therefore, cholesterol movement to the plasma membrane appears to be regulated by gonadotropins in these cells. We tested whether steroid biosynthesis used all cell cholesterol pools equally. To this end we administered [3H]acetate and [14C]acetate at different times and determined their relative specific contents in various steroids after defined intervals. The relative ages of the steroids (youngest to oldest) were: lanosterol, progestins, intracellular cholesterol, and plasma membrane cholesterol. This finding suggests that progestins use newly synthesized intracellular cholesterol in preference to preexisting intracellular or cell surface cholesterol

  7. Liver immunology and its role in inflammation and homeostasis.

    Science.gov (United States)

    Robinson, Mark W; Harmon, Cathal; O'Farrelly, Cliona

    2016-05-01

    The human liver is usually perceived as a non-immunological organ engaged primarily in metabolic, nutrient storage and detoxification activities. However, we now know that the healthy liver is also a site of complex immunological activity mediated by a diverse immune cell repertoire as well as non-hematopoietic cell populations. In the non-diseased liver, metabolic and tissue remodeling functions require elements of inflammation. This inflammation, in combination with regular exposure to dietary and microbial products, creates the potential for excessive immune activation. In this complex microenvironment, the hepatic immune system tolerates harmless molecules while at the same time remaining alert to possible infectious agents, malignant cells or tissue damage. Upon appropriate immune activation to challenge by pathogens or tissue damage, mechanisms to resolve inflammation are essential to maintain liver homeostasis. Failure to clear 'dangerous' stimuli or regulate appropriately activated immune mechanisms leads to pathological inflammation and disrupted tissue homeostasis characterized by the progressive development of fibrosis, cirrhosis and eventual liver failure. Hepatic inflammatory mechanisms therefore have a spectrum of roles in the healthy adult liver; they are essential to maintain tissue and organ homeostasis and, when dysregulated, are key drivers of the liver pathology associated with chronic infection, autoimmunity and malignancy. In this review, we explore the changing perception of inflammation and inflammatory mediators in normal liver homeostasis and propose targeting of liver-specific immune regulation pathways as a therapeutic approach to treat liver disease.

  8. Antidiabetic phospholipid-nuclear receptor complex reveals the mechanism for phospholipid-driven gene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Musille, Paul M; Pathak, Manish C; Lauer, Janelle L; Hudson, William H; Griffin, Patrick R; Ortlund, Eric A [Emory-MED; (Scripps)

    2013-01-31

    The human nuclear receptor liver receptor homolog-1 (LRH-1) has an important role in controlling lipid and cholesterol homeostasis and is a potential target for the treatment of diabetes and hepatic diseases. LRH-1 is known to bind phospholipids, but the role of phospholipids in controlling LRH-1 activation remains highly debated. Here we describe the structure of both apo LRH-1 and LRH-1 in complex with the antidiabetic phospholipid dilauroylphosphatidylcholine (DLPC). Together with hydrogen-deuterium exchange MS and functional data, our studies show that DLPC binding is a dynamic process that alters co-regulator selectivity. We show that the lipid-free receptor undergoes previously unrecognized structural fluctuations, allowing it to interact with widely expressed co-repressors. These observations enhance our understanding of LRH-1 regulation and highlight its importance as a new therapeutic target for controlling diabetes.

  9. Cholesterol-lowering effects of dietary pomegranate extract and inulin in mice fed an obesogenic diet.

    Science.gov (United States)

    Yang, Jieping; Zhang, Song; Henning, Susanne M; Lee, Rupo; Hsu, Mark; Grojean, Emma; Pisegna, Rita; Ly, Austin; Heber, David; Li, Zhaoping

    2018-02-01

    It has been demonstrated in animal studies that both polyphenol-rich pomegranate extract (PomX) and the polysaccharide inulin, ameliorate metabolic changes induced by a high-fat diet, but little is known about the specific mechanisms. This study evaluated the effect of PomX (0.25%) and inulin (9%) alone or in combination on cholesterol and lipid metabolism in mice. Male C57BL/6 J mice were fed high-fat/high-sucrose [HF/HS (32% energy from fat, 25% energy from sucrose)] diets supplemented with PomX (0.25%) and inulin (9%) alone or in combination for 4 weeks. At the end of intervention, serum and hepatic cholesterol, triglyceride levels, hepatic gene expression of key regulators of cholesterol and lipid metabolism as well as fecal cholesterol and bile acid excretion were determined. Dietary supplementation of the HF/HS diet with PomX and inulin decreased hepatic and serum total cholesterol. Supplementation with PomX and inulin together resulted in lower hepatic and serum total cholesterol compared to individual treatments. Compared to HF/HS control, PomX increased gene expression of Cyp7a1 and Cyp7b1, key regulators of bile acid synthesis pathways. Inulin decreased gene expression of key regulators of cholesterol de novo synthesis Srebf2 and Hmgcr and significantly increased fecal elimination of total bile acids and neutral sterols. Only PomX in combination with inulin reduced liver and lipid weight significantly compared to the HF/HS control group. PomX showed a trend to decrease liver triglyceride (TG) levels, while inulin or PomX-inulin combination had no effect on either serum or liver TG levels. Dietary PomX and inulin supplementation decreased hepatic and serum total cholesterol by different mechanisms and the combination leading to a significant enhancement of the cholesterol-lowering effect. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. The tumor necrosis factor-alpha-induced protein 8 family in immune homeostasis and inflammatory cancer diseases.

    Science.gov (United States)

    Luan, Y Y; Yao, Y M; Sheng, Z Y

    2013-01-01

    Within the immune system homeostasis is maintained by a myriad of mechanisms that include the regulation of immune cell activation and programmed cell death. The breakdown of immune homeostasis may lead to fatal inflammatory diseases. We set out to identify genes of tumor necrosis factor-alpha-induced protein 8 (TNFAIP8) family that has a functional role in the process of immune homeostasis. Tumor necrosis factor-alpha-induced protein 8 (TNFAIP8), which functions as an oncogenic molecule, is also associated with enhanced cell survival and inhibition of apoptosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) governs immune homeostasis in both the innate and adaptive immune system and prevents hyper-responsiveness by negatively regulating signaling via T cell receptors and Toll-like receptors (TLRs). There also exist two highly homologous but uncharacterized proteins, TIPE1 and TIPE3. This review is an attempt to provide a summary of TNFAIP8 family associated with immune homeostasis and inflammatory cancer diseases.

  11. The transcription factor Jdp2 controls bone homeostasis and antibacterial immunity by regulating osteoclast and neutrophil differentiation.

    Science.gov (United States)

    Maruyama, Kenta; Fukasaka, Masahiro; Vandenbon, Alexis; Saitoh, Tatsuya; Kawasaki, Takumi; Kondo, Takeshi; Yokoyama, Kazunari K; Kidoya, Hiroyasu; Takakura, Nobuyuki; Standley, Daron; Takeuchi, Osamu; Akira, Shizuo

    2012-12-14

    Jdp2 is an AP-1 family transcription factor that regulates the epigenetic status of histones. Previous in vitro studies revealed that Jdp2 is involved in osteoclastogenesis. However, the roles of Jdp2 in vivo and its pleiotropic functions are largely unknown. Here we generated Jdp2(-/-) mice and discovered its crucial roles not only in bone metabolism but also in differentiation of neutrophils. Jdp2(-/-) mice exhibited osteopetrosis resulting from impaired osteoclastogenesis. Jdp2(-/-) neutrophils were morphologically normal but had impaired surface expression of Ly6G, bactericidal function, and apoptosis. We also found that ATF3 was an inhibitor of neutrophil differentiation and that Jdp2 directly suppresses its expression via inhibition of histone acetylation. Strikingly, Jdp2(-/-) mice were highly susceptible to Staphylococcus aureus and Candida albicans infection. Thus, Jdp2 plays pivotal roles in in vivo bone homeostasis and host defense by regulating osteoclast and neutrophil differentiation. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Si-Jun-Zi Decoction Treatment Promotes the Restoration of Intestinal Function after Obstruction by Regulating Intestinal Homeostasis

    Directory of Open Access Journals (Sweden)

    Xiangyang Yu

    2014-01-01

    Full Text Available Intestinal obstruction is a common disease requiring abdominal surgery with significant morbidity and mortality. Currently, an effective medical treatment for obstruction, other than surgical resection or decompression, does not exist. Si-Jun-Zi Decoction is a famous Chinese medicine used to replenish qi and invigorate the functions of the spleen. Modern pharmacological studies show that this prescription can improve gastrointestinal function and strengthen immune function. In this study, we investigated the effects of a famous Chinese herbal formula, Si-Jun-Zi Decoction, on the restoration of intestinal function after the relief of obstruction in a rabbit model. We found that Si-Jun-Zi Decoction could reduce intestinal mucosal injury while promoting the recovery of the small intestine. Further, Si-Jun-Zi Decoction could regulate the intestinal immune system. Our results suggest that Si-Jun-Zi Decoction promotes the restoration of intestinal function after obstruction by regulating intestinal homeostasis. Our observations indicate that Si-Jun-Zi Decoction is potentially a therapeutic drug for intestinal obstruction.

  13. The hedgehog receptor patched is involved in cholesterol transport.

    Directory of Open Access Journals (Sweden)

    Michel Bidet

    Full Text Available Sonic hedgehog (Shh signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened.Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol.Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation.

  14. SR-BI: Linking Cholesterol and Lipoprotein Metabolism with Breast and Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Jorge L. Gutierrez-Pajares

    2016-10-01

    Full Text Available Studies have demonstrated the significant role of cholesterol and lipoprotein metabolism in the progression of cancer. The SCARB1 gene encodes the scavenger receptor class B type I (SR-BI, which is an 82-kDa glycoprotein with two transmembrane domains separated by a large extracellular loop. SR-BI plays an important role in the regulation of cholesterol exchange between cells and high-density lipoproteins. Accordingly, hepatic SR-BI has been shown to play an essential role in the regulation of the reverse cholesterol transport pathway, which promotes the removal and excretion of excess body cholesterol. In the context of atherosclerosis, SR-BI has been implicated in the regulation of intracellular signaling, lipid accumulation, foam cell formation, and cellular apoptosis. Furthermore, since lipid metabolism is a relevant target for cancer treatment, recent studies have focused on examining the role of SR-BI in this pathology. While signaling pathways have initially been explored in non-tumoral cells, studies with cancer cells have now demonstrated SR-BI’s function in tumor progression. In this review, we will discuss the role of SR-BI during tumor development and malignant progression. In addition, we will provide insights into the transcriptional and post-transcriptional regulation of the SCARB1 gene. Overall, studying the role of SR-BI in tumor development and progression should allow us to gain useful information for the development of new therapeutic strategies.

  15. An Essential Role of Hrs/Vps27 in Endosomal Cholesterol Trafficking

    Directory of Open Access Journals (Sweden)

    Ximing Du

    2012-01-01

    Full Text Available The endosomal sorting complex required for transport (ESCRT plays a crucial role in the degradation of ubiquitinated endosomal membrane proteins. Here, we report that Hrs, a key protein of the ESCRT-0 complex, is required for the transport of low-density lipoprotein-derived cholesterol from endosomes to the endoplasmic reticulum. This function of Hrs in cholesterol transport is distinct from its previously defined role in lysosomal sorting and downregulation of membrane receptors via the ESCRT pathway. In line with this, knocking down other ESCRT proteins does not cause prominent endosomal cholesterol accumulation. Importantly, the localization and biochemical properties of key cholesterol-sorting proteins, NPC1 and NPC2, appear to be unchanged upon Hrs knockdown. Our data identify Hrs as a regulator of endosomal cholesterol trafficking and provide additional insights into the budding of intralumenal vesicles.

  16. Loss of Subcellular Lipid Transport Due to ARV1 Deficiency Disrupts Organelle Homeostasis and Activates the Unfolded Protein Response*

    Science.gov (United States)

    Shechtman, Caryn F.; Henneberry, Annette L.; Seimon, Tracie A.; Tinkelenberg, Arthur H.; Wilcox, Lisa J.; Lee, Eunjee; Fazlollahi, Mina; Munkacsi, Andrew B.; Bussemaker, Harmen J.; Tabas, Ira; Sturley, Stephen L.

    2011-01-01

    The ARV1-encoded protein mediates sterol transport from the endoplasmic reticulum (ER) to the plasma membrane. Yeast ARV1 mutants accumulate multiple lipids in the ER and are sensitive to pharmacological modulators of both sterol and sphingolipid metabolism. Using fluorescent and electron microscopy, we demonstrate sterol accumulation, subcellular membrane expansion, elevated lipid droplet formation, and vacuolar fragmentation in ARV1 mutants. Motif-based regression analysis of ARV1 deletion transcription profiles indicates activation of Hac1p, an integral component of the unfolded protein response (UPR). Accordingly, we show constitutive splicing of HAC1 transcripts, induction of a UPR reporter, and elevated expression of UPR targets in ARV1 mutants. IRE1, encoding the unfolded protein sensor in the ER lumen, exhibits a lethal genetic interaction with ARV1, indicating a viability requirement for the UPR in cells lacking ARV1. Surprisingly, ARV1 mutants expressing a variant of Ire1p defective in sensing unfolded proteins are viable. Moreover, these strains also exhibit constitutive HAC1 splicing that interacts with DTT-mediated perturbation of protein folding. These data suggest that a component of UPR induction in arv1Δ strains is distinct from protein misfolding. Decreased ARV1 expression in murine macrophages also results in UPR induction, particularly up-regulation of activating transcription factor-4, CHOP (C/EBP homologous protein), and apoptosis. Cholesterol loading or inhibition of cholesterol esterification further elevated CHOP expression in ARV1 knockdown cells. Thus, loss or down-regulation of ARV1 disturbs membrane and lipid homeostasis, resulting in a disruption of ER integrity, one consequence of which is induction of the UPR. PMID:21266578

  17. miR-182 Regulates Metabolic Homeostasis by Modulating Glucose Utilization in Muscle

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2016-07-01

    Full Text Available Understanding the fiber-type specification and metabolic switch in skeletal muscle provides insights into energy metabolism in physiology and diseases. Here, we show that miR-182 is highly expressed in fast-twitch muscle and negatively correlates with blood glucose level. miR-182 knockout mice display muscle loss, fast-to-slow fiber-type switching, and impaired glucose metabolism. Mechanistic studies reveal that miR-182 modulates glucose utilization in muscle by targeting FoxO1 and PDK4, which control fuel selection via the pyruvate dehydrogenase complex (PDHC. Short-term high-fat diet (HFD feeding reduces muscle miR-182 levels by tumor necrosis factor α (TNFα, which contributes to the upregulation of FoxO1/PDK4. Restoration of miR-182 expression in HFD-fed mice induces a faster muscle phenotype, decreases muscle FoxO1/PDK4 levels, and improves glucose metabolism. Together, our work establishes miR-182 as a critical regulator that confers robust and precise controls on fuel usage and glucose homeostasis. Our study suggests that a metabolic shift toward a faster and more glycolytic phenotype is beneficial for glucose control.

  18. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    Energy Technology Data Exchange (ETDEWEB)

    Fujimoto, Michiko [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Hayashi, Teruo, E-mail: thayashi@mail.nih.gov [Cellular Stress Signaling Unit, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States); Su, Tsung-Ping, E-mail: tsu@intra.nida.nih.gov [Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, MD 21224 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer The endoplasmic reticulum subdomain termed MAM associates with mitochondria. Black-Right-Pointing-Pointer The biophysical role of lipids in the MAM-mitochondria association is unknown. Black-Right-Pointing-Pointer The in vitro membrane association assay was used to examine the role of lipids. Black-Right-Pointing-Pointer Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP{sub 3} receptor-mediated Ca{sup 2+} influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-{beta}-cyclodextrin (M{beta}C) significantly increases the association between MAMs and mitochondria, whereas M{beta}C saturated with cholesterol does not change the association. {sup 14}C-Serine pulse-labeling demonstrated that the treatment of living cells with M{beta}C decreases the level of de novo synthesized {sup 14}C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of

  19. The role of cholesterol in the association of endoplasmic reticulum membranes with mitochondria

    International Nuclear Information System (INIS)

    Fujimoto, Michiko; Hayashi, Teruo; Su, Tsung-Ping

    2012-01-01

    Highlights: ► The endoplasmic reticulum subdomain termed MAM associates with mitochondria. ► The biophysical role of lipids in the MAM–mitochondria association is unknown. ► The in vitro membrane association assay was used to examine the role of lipids. ► Cholesterol was found to negatively regulate the association. -- Abstract: The unique endoplasmic reticulum (ER) subdomain termed the mitochondria-associated ER membrane (MAM) engages the physical connection between the ER and the mitochondrial outer membrane and plays a role in regulating IP 3 receptor-mediated Ca 2+ influx and the phospholipid transport between the two organelles. The MAM contains certain signaling and membrane-tethering proteins but also lipids including cholesterol. The biophysical role of lipids at the MAM, specifically in the physical interaction between the MAM of the ER and mitochondria, remains not totally clarified. Here we employed the in vitro membrane association assay to investigate the role of cholesterol in the association between MAMs and mitochondria. The purified MAMs and mitochondria were mixed in vitro in a test tube and then the physical association of the two subcellular organelles was quantified indirectly by measuring the presence of the MAM-specific protein sigma-1 receptors in the mitochondria fraction. Purified MAMs contained free cholesterol approximately 7 times higher than that in microsomes. We found that depletion of cholesterol in MAMs with methyl-β-cyclodextrin (MβC) significantly increases the association between MAMs and mitochondria, whereas MβC saturated with cholesterol does not change the association. 14 C-Serine pulse-labeling demonstrated that the treatment of living cells with MβC decreases the level of de novo synthesized 14 C-phosphatidylserine (PtSer) and concomitantly increases greatly the synthesis of 14 C-phosphatidylethanolamine (PtEt). Apparently, cholesterol depletion increased the PtSer transport from MAMs to mitochondria. Our

  20. IL-36/LXR axis modulates cholesterol metabolism and immune defense to Mycobacterium tuberculosis.

    Science.gov (United States)

    Ahsan, Fadhil; Maertzdorf, Jeroen; Guhlich-Bornhof, Ute; Kaufmann, Stefan H E; Moura-Alves, Pedro

    2018-01-24

    Mycobacterium tuberculosis (Mtb) is a life-threatening pathogen in humans. Bacterial infection of macrophages usually triggers strong innate immune mechanisms, including IL-1 cytokine secretion. The newer member of the IL-1 family, IL-36, was recently shown to be involved in cellular defense against Mtb. To unveil the underlying mechanism of IL-36 induced antibacterial activity, we analyzed its role in the regulation of cholesterol metabolism, together with the involvement of Liver X Receptor (LXR) in this process. We report that, in Mtb-infected macrophages, IL-36 signaling modulates cholesterol biosynthesis and efflux via LXR. Moreover, IL-36 induces the expression of cholesterol-converting enzymes and the accumulation of LXR ligands, such as oxysterols. Ultimately, both IL-36 and LXR signaling play a role in the regulation of antimicrobial peptides expression and in Mtb growth restriction. These data provide novel evidence for the importance of IL-36 and cholesterol metabolism mediated by LXR in cellular host defense against Mtb.

  1. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression

    Directory of Open Access Journals (Sweden)

    Duan Rui-Dong

    2010-04-01

    Full Text Available Abstract Background Curcumin is a polyphenol and the one of the principle curcuminoids of the spice turmeric. Its antioxidant, anti-cancer and anti-inflammatory effects have been intensively studied. Previous in vivo studies showed that administration of curcumin also decreased cholesterol levels in the blood, and the effects were considered to be related to upregulation of LDL receptor. However, since plasma cholesterol levels are also influenced by the uptake of cholesterol in the gut, which is mediated by a specific transporter Niemann-Pick Cl-like 1 (NPC1L1 protein, the present study is to investigate whether curcumin affects cholesterol uptake in the intestinal Caco-2 cells. Methods Caco-2 cells were cultured to confluence. The micelles composed of bile salt, monoolein, and 14C-cholesterol were prepared. We first incubated the cells with the micelles in the presence and absence of ezetimibe, the specific inhibitor of NPC1L1, to see whether the uptake of the cholesterol in the cells was mediated by NPC1L1. We then pretreated the cells with curcumin at different concentrations for 24 h followed by examination of the changes of cholesterol uptake in these curcumin-treated cells. Finally we determined whether curcumin affects the expression of NPC1L1 by both Western blot analysis and qPCR quantification. Results We found that the uptake of radioactive cholesterol in Caco-2 cells was inhibited by ezetimibe in a dose-dependent manner. The results indicate that the uptake of cholesterol in this study was mediated by NPC1L1. We then pretreated the cells with 25-100 μM curcumin for 24 h and found that such a treatment dose-dependently inhibited cholesterol uptake with 40% inhibition obtained by 100 μM curcumin. In addition, we found that the curcumin-induced inhibition of cholesterol uptake was associated with significant decrease in the levels of NPC1L1 protein and NPC1L1 mRNA, as analyzed by Western blot and qPCR, respectively. Conclusion

  2. Curcumin inhibits cholesterol uptake in Caco-2 cells by down-regulation of NPC1L1 expression.

    Science.gov (United States)

    Feng, Dan; Ohlsson, Lena; Duan, Rui-Dong

    2010-04-19

    Curcumin is a polyphenol and the one of the principle curcuminoids of the spice turmeric. Its antioxidant, anti-cancer and anti-inflammatory effects have been intensively studied. Previous in vivo studies showed that administration of curcumin also decreased cholesterol levels in the blood, and the effects were considered to be related to upregulation of LDL receptor. However, since plasma cholesterol levels are also influenced by the uptake of cholesterol in the gut, which is mediated by a specific transporter Niemann-Pick Cl-like 1 (NPC1L1) protein, the present study is to investigate whether curcumin affects cholesterol uptake in the intestinal Caco-2 cells. Caco-2 cells were cultured to confluence. The micelles composed of bile salt, monoolein, and 14C-cholesterol were prepared. We first incubated the cells with the micelles in the presence and absence of ezetimibe, the specific inhibitor of NPC1L1, to see whether the uptake of the cholesterol in the cells was mediated by NPC1L1. We then pretreated the cells with curcumin at different concentrations for 24 h followed by examination of the changes of cholesterol uptake in these curcumin-treated cells. Finally we determined whether curcumin affects the expression of NPC1L1 by both Western blot analysis and qPCR quantification. We found that the uptake of radioactive cholesterol in Caco-2 cells was inhibited by ezetimibe in a dose-dependent manner. The results indicate that the uptake of cholesterol in this study was mediated by NPC1L1. We then pretreated the cells with 25-100 muM curcumin for 24 h and found that such a treatment dose-dependently inhibited cholesterol uptake with 40% inhibition obtained by 100 muM curcumin. In addition, we found that the curcumin-induced inhibition of cholesterol uptake was associated with significant decrease in the levels of NPC1L1 protein and NPC1L1 mRNA, as analyzed by Western blot and qPCR, respectively. Curcumin inhibits cholesterol uptake through suppression of NPC1L1

  3. Cholesterol Transporters ABCA1 and ABCG1 Gene Expression in Peripheral Blood Mononuclear Cells in Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Zahra Tavoosi

    2015-01-01

    Full Text Available ABCA1 and ABCG1 genes encode the cholesterol transporter proteins that play a key role in cholesterol and phospholipids homeostasis. This study was aimed at evaluating and comparing ABCA1 and ABCG1 genes expression in metabolic syndrome patients and healthy individuals. This case-control study was performed on 36 patients with metabolic syndrome and the same number of healthy individuals in Hamadan (west of Iran during 2013-2014. Total RNA was extracted from mononuclear cells and purified using RNeasy Mini Kit column. The expression of ABCA1 and ABCG1 genes was performed by qRT-PCR. Lipid profile and fasting blood glucose were measured using colorimetric procedures. ABCG1 expression in metabolic syndrome patients was significantly lower (about 75% compared to that of control group, while for ABCA1 expression, there was no significant difference between the two studied groups. Comparison of other parameters such as HDL-C, FBS, BMI, waist circumference, and systolic and diastolic blood pressure between metabolic syndrome patients and healthy individuals showed significant differences (P<0.05. Decrease in ABCG1 expression in metabolic syndrome patients compared to healthy individuals suggests that hyperglycemia, related metabolites, and hyperlipidemia over the transporter capacity resulted in decreased expression of ABCG1. Absence of a significant change in ABCA1 gene expression between two groups can indicate a different regulation mechanism for ABCA1 expression.

  4. Pseudomonas aeruginosa Trent and zinc homeostasis.

    Science.gov (United States)

    Davies, Corey B; Harrison, Mark D; Huygens, Flavia

    2017-09-01

    Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  5. Origins and Hallmarks of Macrophages: Development, Homeostasis, and Disease

    Science.gov (United States)

    Wynn, Thomas A.; Chawla, Ajay; Pollard, Jeffrey W.

    2013-01-01

    Preface Macrophages the most plastic cells of the hematopoietic system are found in all tissues and exhibit great functional diversity. They have roles in development, homeostasis, tissue repair, and immunity. While anatomically distinct, resident tissue macrophages exhibit different transcriptional profiles, and functional capabilities, they are all required for the maintenance of homeostasis. However, these reparative and homeostatic functions can be subverted by chronic insults, resulting in a causal association of macrophages with disease states. In this review, we discuss how macrophages regulate normal physiology and development and provide several examples of their pathophysiologic roles in disease. We define the “hallmarks” of macrophages performing particular functions, taking into account novel insights into the diversity of their lineages, identity, and regulation. This diversity is essential to understand because macrophages have emerged as important therapeutic targets in many important human diseases. PMID:23619691

  6. Cholesterol testing and results

    Science.gov (United States)

    ... your cholesterol is in this normal range. LDL (Bad) Cholesterol LDL cholesterol is sometimes called "bad" cholesterol. ... to 3.3 mmol/l) are desired. VLDL (Bad) Cholesterol VLDL contains the highest amount of triglycerides. ...

  7. Cholesterol Facts and Statistics

    Science.gov (United States)

    ... Managing High Cholesterol Cholesterol-lowering Medicine High Cholesterol Statistics and Maps High Cholesterol Facts High Cholesterol Maps ... Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart ...

  8. Cholesterol regulates the endoplasmic reticulum exit of the major membrane protein P0 required for peripheral myelin compaction.

    Science.gov (United States)

    Saher, Gesine; Quintes, Susanne; Möbius, Wiebke; Wehr, Michael C; Krämer-Albers, Eva-Maria; Brügger, Britta; Nave, Klaus-Armin

    2009-05-13

    Rapid impulse conduction requires electrical insulation of axons by myelin, a cholesterol-rich extension of the glial cell membrane with a characteristic composition of proteins and lipids. Mutations in several myelin protein genes cause endoplasmic reticulum (ER) retention and disease, presumably attributable to failure of misfolded proteins to pass the ER quality control. Because many myelin proteins partition into cholesterol-rich membrane rafts, their interaction with cholesterol could potentially be part of the ER quality control system. Here, we provide in vitro and in vivo evidence that the major peripheral myelin protein P0 requires cholesterol for exiting the ER and reaching the myelin compartment. Cholesterol dependency of P0 trafficking in heterologous cells is mediated by a cholesterol recognition/interaction amino acid consensus (CRAC) motif. Mutant mice lacking cholesterol biosynthesis in Schwann cells suffer from severe hypomyelination with numerous uncompacted myelin stretches. This demonstrates that high-level cholesterol coordinates P0 export with myelin membrane synthesis, which is required for the correct stoichiometry of myelin components and for myelin compaction.

  9. Roquin--a multifunctional regulator of immune homeostasis.

    Science.gov (United States)

    Schaefer, J S; Klein, J R

    2016-03-01

    Roquin-1 (Rc3h1) is an E3 ubiquitin ligase originally discovered in a mutational screen for genetic factors contributory to systemic lupus erythematosus-like symptoms in mice. A single base-pair mutation in the Rc3h1 gene resulted in the manifestation of autoantibody production and sustained immunological inflammation characterized by excessive T follicular helper cell activation and formation of germinal centers. Subsequent studies have uncovered a multifactorial process by which Roquin-1 contributes to the maintenance of immune homeostasis. Through its interactions with partner proteins, Roquin-1 targets mRNAs for decay with inducible costimulator being a primary target. In this review, we discuss newly discovered functions of Roquin-1 in the immune system and inflammation, and in disease manifestation, and discuss avenues of further research. A model is presented for the role of Roquin in health and disease.

  10. Impact of intermittent fasting on glucose homeostasis.

    Science.gov (United States)

    Varady, Krista A

    2016-07-01

    This article provides an overview of the most recent human trials that have examined the impact of intermittent fasting on glucose homeostasis. Our literature search retrieved one human trial of alternate day fasting, and three trials of Ramadan fasting published in the past 12 months. Current evidence suggests that 8 weeks of alternate day fasting that produces mild weight loss (4% from baseline) has no effect on glucose homeostasis. As for Ramadan fasting, decreases in fasting glucose, insulin, and insulin resistance have been noted after 4 weeks in healthy normal weight individuals with mild weight loss (1-2% from baseline). However, Ramadan fasting may have little impact on glucoregulatory parameters in women with polycystic ovarian syndrome who failed to observe weight loss. Whether intermittent fasting is an effective means of regulating glucose homeostasis remains unclear because of the scarcity of studies in this area. Large-scale, longer-term randomized controlled trials will be required before the use of fasting can be recommended for the prevention and treatment of metabolic diseases.

  11. The Chemical Potential of Plasma Membrane Cholesterol: Implications for Cell Biology.

    Science.gov (United States)

    Ayuyan, Artem G; Cohen, Fredric S

    2018-02-27

    Cholesterol is abundant in plasma membranes and exhibits a variety of interactions throughout the membrane. Chemical potential accounts for thermodynamic consequences of molecular interactions, and quantifies the effective concentration (i.e., activity) of any substance participating in a process. We have developed, to our knowledge, the first method to measure cholesterol chemical potential in plasma membranes. This was accomplished by complexing methyl-β-cyclodextrin with cholesterol in an aqueous solution and equilibrating it with an organic solvent containing dissolved cholesterol. The chemical potential of cholesterol was thereby equalized in the two phases. Because cholesterol is dilute in the organic phase, here activity and concentration were equivalent. This equivalence allowed the amount of cholesterol bound to methyl-β-cyclodextrin to be converted to cholesterol chemical potential. Our method was used to determine the chemical potential of cholesterol in erythrocytes and in plasma membranes of nucleated cells in culture. For erythrocytes, the chemical potential did not vary when the concentration was below a critical value. Above this value, the chemical potential progressively increased with concentration. We used standard cancer lines to characterize cholesterol chemical potential in plasma membranes of nucleated cells. This chemical potential was significantly greater for highly metastatic breast cancer cells than for nonmetastatic breast cancer cells. Chemical potential depended on density of the cancer cells. A method to alter and fix the cholesterol chemical potential to any value (i.e., a cholesterol chemical potential clamp) was also developed. Cholesterol content did not change when cells were clamped for 24-48 h. It was found that the level of activation of the transcription factor STAT3 increased with increasing cholesterol chemical potential. The cholesterol chemical potential may regulate signaling pathways. Copyright © 2018. Published by

  12. Non-classical mechanisms of transcriptional regulation by the vitamin D receptor: insights into calcium homeostasis, immune system regulation and cancer chemoprevention.

    Science.gov (United States)

    Dimitrov, Vassil; Salehi-Tabar, Reyhaneh; An, Beum-Soo; White, John H

    2014-10-01

    Hormonal 1,25-dihydroxyvitamin D [1,25(OH)2D] signals through the nuclear vitamin D receptor (VDR), a ligand-regulated transcription factor. Gene expression profiling studies have revealed that 1,25(OH)2D signaling through the VDR can lead to activation or repression of target gene transcription in roughly equal proportions. Classically, transcriptional regulation by the VDR, similar to other nuclear receptors, has been characterized by its capacity to recognize high affinity cognate vitamin D response elements (VDREs), located in the regulatory regions of target genes. Several biochemical studies revealed that the VDRE-bound receptor recruits a series of coregulatory proteins, leading to transactivation of adjacent target genes. However, genome-wide and other analyses of VDR binding have revealed that a subset of VDR binding sites does not contain VDREs, and that VDREs are not associated with transcriptionally repressed VDR target genes. Work over the last ∼20 years and in particular recent findings have revealed a diverse array of mechanisms by which VDR can form complexes with several other classes of transcriptional activators, leading to repression of gene transcription. Moreover, these efforts have led to several insights into the molecular basis for the physiological regulation of calcium homeostasis, immune system function and cancer chemoprevention by 1,25(OH)2D/VDR signaling. This article is part of a Special Issue entitled '16th Vitamin D Workshop'. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Brain Cholesterol Synthesis and Metabolism is Progressively Disturbed in the R6/1 Mouse Model of Huntington's Disease: A Targeted GC-MS/MS Sterol Analysis.

    Science.gov (United States)

    Kreilaus, Fabian; Spiro, Adena S; Hannan, Anthony J; Garner, Brett; Jenner, Andrew M

    2015-01-01

    Cholesterol has essential functions in neurological processes that require tight regulation of synthesis and metabolism. Perturbed cholesterol homeostasis has been demonstrated in Huntington's disease, however the exact role of these changes in disease pathogenesis is not fully understood. This study aimed to comprehensively examine changes in cholesterol biosynthetic precursors, metabolites and oxidation products in the striatum and cortex of the R6/1 transgenic mouse model of Huntington's disease. We also aimed to characterise the progression of the physical phenotype in these mice. GC-MS/MS was used to quantify a broad range of sterols in the striatum and cortex of R6/1 and wild type mice at 6, 12, 20, 24 and 28 weeks of age. Motor dysfunction was assessed over 28 weeks using the RotaRod and the hind-paw clasping tests. 24(S)-Hydroxycholesterol and 27-hydroxycholesterol were the major cholesterol metabolites that significantly changed in R6/1 mice. These changes were specifically localised to the striatum and were detected at the end stages of the disease. Cholesterol synthetic precursors (lathosterol and lanosterol) were significantly reduced in the cortex and striatum by 6 weeks of age, prior to the onset of motor dysfunction, as well as the cognitive and affective abnormalities previously reported. Elevated levels of desmosterol, a substrate of delta(24)-sterol reductase (DHCR24), were also detected in R6/1 mice at the end time-point. Female R6/1 mice exhibited a milder weight loss and hind paw clasping phenotype compared to male R6/1 mice, however, no difference in the brain sterol profile was detected between sexes. Several steps in cholesterol biosynthetic and metabolic pathways are differentially altered in the R6/1 mouse brain as the disease progresses and this is most severe in the striatum. This provides further insights into early molecular mediators of HD onset and disease progression and identifies candidate molecular targets for novel therapeutic

  14. Non-HDL Cholesterol is a More Superior Predictor of Small-Dense LDL Cholesterol than LDL Cholesterol in Japanese Subjects with TG Levels <400 mg/dL.

    Science.gov (United States)

    Moriyama, Kengo; Takahashi, Eiko

    2016-09-01

    The Japan Atherosclerosis Society (JAS) guidelines for the diagnosis and treatment of hyperlipidemia in Japanese adults recommend using low-density lipoprotein cholesterol (LDL-C) calculated by Friedewald formula (F_LDL-C) for subjects with triglyceride (TG) levels <400 mg/dL and non-high-density lipoprotein cholesterol (non-HDL-C) levels for subjects with TG levels ≥400 mg/dL. Because small-dense LDL particles are more atherogenic than large LDL particles, we sought the better lipid parameter which was more reflective of the high small-dense LDL-C (sdLDL-C) levels in subjects with TG levels <400 mg/dL. This study included 769 Japanese subjects who met our inclusion criteria and underwent an annual health examination, including sdLDL-C analyses. The correlation coefficient of non-HDL-C for sdLDL-C (r=0.760) was significantly higher than that of F_LDL-C (r=0.601). The area under the curve (95% confidence interval) was 0.771 (0.731, 0.811) for F_LDL-C and 0.871 (0.842, 0.901) for non HDL-C, which showed significantly higher predictive value for more than fourth quartile value of sdLDL-C (46 mg/dL). The optimal cut-off point of non-HDL-C was 158 mg/dL. Even in subjects stratified by waist circumstance, homeostasis model assessment of insulin resistance, TG, and F_LDL-C levels and non-HDL-C showed stronger relationships with sdLDL-C than F_LDL-C. Moreover, non-HDL-C showed a better relationship with sdLDL-C than total cholesterol (TC), TC/HDL-C, and non-HDL-C/HDL-C. Our data suggested that non-HDL-C is superior to F_LDL-C and one of the reliable surrogate lipid markers of sdLDL-C in Japanese subjects with TG levels <400 mg/dL.

  15. Cholesterol can modulate mitochondrial aquaporin-8 expression in human hepatic cells.

    Science.gov (United States)

    Danielli, Mauro; Capiglioni, Alejo M; Marrone, Julieta; Calamita, Giuseppe; Marinelli, Raúl A

    2017-05-01

    Hepatocyte mitochondrial aquaporin-8 (mtAQP8) works as a multifunctional membrane channel protein that facilitates the uptake of ammonia for its detoxification to urea as well as the mitochondrial release of hydrogen peroxide. Since early oligonucleotide microarray studies in liver of cholesterol-fed mice showed an AQP8 downregulation, we tested whether alterations of cholesterol content per se modulate mtAQP8 expression in human hepatocyte-derived Huh-7 cells. Cholesterol loading with methyl-β-cyclodextrin (mβCD):cholesterol complexes downregulated the proteolytic activation of cholesterol-responsive sterol regulatory element-binding protein (SREBP) transcriptions factors 1 and 2, and the expression of the target gene 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCR). Under such conditions, mtAQP8 mRNA and protein expressions were significantly reduced. In contrast, cholesterol depletion using mβCD alone increased SREBP-1 and 2 activation and upregulated HMGCR and mtAQP8 mRNA and protein expressions. The results suggest that cholesterol can regulate transcriptionally human hepatocyte mtAQP8 expression likely via SREBPs. The functional implications of our findings are discussed. © 2017 IUBMB Life, 69(5):341-346, 2017. © 2017 International Union of Biochemistry and Molecular Biology.

  16. Once and for all, LXRα and LXRβ are gatekeepers of the endocrine system.

    Science.gov (United States)

    Maqdasy, Salwan; Trousson, Amalia; Tauveron, Igor; Volle, David H; Baron, Silvère; Lobaccaro, Jean-Marc A

    2016-06-01

    Liver X receptors (LXRs) α and β are nuclear receptors whose transcriptional activity is regulated by oxysterols, the oxidized forms of cholesterol. Described in the late 1990s as lipid sensors, both LXRs regulate cholesterol and fatty acid homeostasis. Over the years, deep phenotypic analyses of mouse models deficient for LXRα and/or LXRβ have pointed out various other physiological functions including glucose homeostasis, immunology, and neuroprotection. This review enlightens the "endocrine" functions of LXRs; they deeply impact plasma glucose directly and by modulating insulin signaling, renin-angiotensin-aldosterone axis, thyroid and pituitary hormone levels, and bone homeostasis. Besides, LXR signaling is also involved in adrenal physiology, steroid synthesis, and male and female reproduction. Hence, LXRs are definitely involved in the endocrine system and could thus be considered as endocrine receptors, even though oxysterols do not fully correspond to the definition of hormones. Finally, because they are ligand-regulated transcription factors, LXRs are potential pharmacological targets with promising beneficial metabolic effects. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. miR-21 regulates triglyceride and cholesterol metabolism in non-alcoholic fatty liver disease by targeting HMGCR.

    Science.gov (United States)

    Sun, Chuanzheng; Huang, Feizhou; Liu, Xunyang; Xiao, Xuefei; Yang, Mingshi; Hu, Gui; Liu, Huaizheng; Liao, Liangkan

    2015-03-01

    Non-alcoholic fatty liver disease (NAFLD) has emerged as a public health issue with a prevalence of 15-30% in Western populations and 6-25% in Asian populations. Certain studies have revealed the alteration of microRNA (miRNA or miR) profiles in NAFLD and it has been suggested that miR-21 is associated with NAFLD. In the present study, we measured the serum levels of miR-21 in patients with NAFLD and also performed in vitro experiments using a cellular model of NAFLD to further investigate the effects of miR-21 on triglyceride and cholesterol metabolism. Furthermore, a novel target through which miR-21 exerts its effects on NAFLD was identified. The results revealed that the serum levels of miR-21 were lower in patients with NAFLD compared with the healthy controls. In addition, 3-hydroxy-3-methylglutaryl-co-enzyme A reductase (HMGCR) expression was increased in the serum of patients with NAFLD both at the mRNA and protein level. To mimic the NAFLD condition in vitro, HepG2 cells were treated with palmitic acid (PA) and oleic acid (OA). Consistent with the results obtained in the in vivo experiments, the expression levels of miR-21 were decreased and those of HMGCR were increased in the in vitro model of NAFLD. Luciferase reporter assay revealed that HMGCR was a direct target of miR-21 and that miR-21 exerted an effect on both HMGCR transcript degradation and protein translation. Furthermore, the results from the in vitro experiments revealed that miR-21 decreased the levels of triglycerides (TG), free cholesterol (FC) and total cholesterol (TC) in the PA/OA-treated HepG2 cells and that this effect was attenuated by HMGCR overexpression. Taken together, to the best of our knowledge, the present study is the first to report that miR-21 regulates triglyceride and cholesterol metabolism in an in vitro model of NAFLD, and that this effect is achieved by the inhibition of HMGCR expression. We speculate that miR-21 may be a useful biomarker for the diagnosis and

  18. Role of Hepatic Lipase and Endothelial Lipase in High-Density Lipoprotein-Mediated Reverse Cholesterol Transport

    NARCIS (Netherlands)

    Annema, Wijtske; Tietge, Uwe J. F.

    Reverse cholesterol transport (RCT) constitutes a key part of the atheroprotective properties of high-density lipoproteins (HDL). Hepatic lipase (HL) and endothelial lipase (EL) are negative regulators of plasma HDL cholesterol levels. Although overexpression of EL decreases overall

  19. Effects of NS lactobacillus strains on lipid metabolism of rats fed a high-cholesterol diet

    Science.gov (United States)

    2013-01-01

    Background Elevated serum cholesterol level is generally considered to be a risk factor for the development of cardiovascular diseases which seriously threaten human health. The cholesterol-lowering effects of lactic acid bacteria have recently become an area of great interest and controversy for many researchers. In this study, we investigated the effects of two NS lactobacillus strains, Lactobacillus plantarum NS5 and Lactobacillus delbrueckii subsp. bulgaricus NS12, on lipid metabolism of rats fed a high cholesterol diet. Methods Thirty-two SD rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The NS lactobacillus treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum NS5 or Lactobacillus delbrueckii subsp. bulgaricus NS12 in drinking water. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat weights, serum and liver cholesterol and lipid levels, intestinal microbiota and liver mRNA expression levels related to cholesterol metabolism were analyzed. Liver lipid deposition and adipocyte size were evaluated histologically. Results Compared with rats fed a high cholesterol diet, serum total cholesterol, low-density lipoprotein cholesterol, apolipoprotein B and free fatty acids levels were decreased and apolipoprotein A-I level was increased in NS5 or NS12 strain treated rats, and with no significant change in high-density lipoprotein cholesterol level. Liver cholesterol and triglyceride levels were also significantly decreased in NS lactobacillus strains treated groups. Meanwhile, the NS lactobacillus strains obviously alleviated hepatic injuries, decreased liver lipid deposition and reduced adipocyte size of high cholesterol diet fed rats. NS lactobacillus strains restored the changes in intestinal microbiota compositions, such as the increase in Bacteroides and the decrease in Clostridium. NS lactobacillus strains also regulated the mRNA expression

  20. Ergothioneine Maintains Redox and Bioenergetic Homeostasis Essential for Drug Susceptibility and Virulence of Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Vikram Saini

    2016-01-01

    Full Text Available The mechanisms by which Mycobacterium tuberculosis (Mtb maintains metabolic equilibrium to survive during infection and upon exposure to antimycobacterial drugs are poorly characterized. Ergothioneine (EGT and mycothiol (MSH are the major redox buffers present in Mtb, but the contribution of EGT to Mtb redox homeostasis and virulence remains unknown. We report that Mtb WhiB3, a 4Fe-4S redox sensor protein, regulates EGT production and maintains bioenergetic homeostasis. We show that central carbon metabolism and lipid precursors regulate EGT production and that EGT modulates drug sensitivity. Notably, EGT and MSH are both essential for redox and bioenergetic homeostasis. Transcriptomic analyses of EGT and MSH mutants indicate overlapping but distinct functions of EGT and MSH. Last, we show that EGT is critical for Mtb survival in both macrophages and mice. This study has uncovered a dynamic balance between Mtb redox and bioenergetic homeostasis, which critically influences Mtb drug susceptibility and pathogenicity.

  1. Molecular aspects of bacterial pH sensing and homeostasis

    Science.gov (United States)

    Krulwich, Terry A.; Sachs, George; Padan, Etana

    2011-01-01

    Diverse mechanisms for pH-sensing and cytoplasmic pH homeostasis enable most bacteria to tolerate or grow at external pH values that are outside the cytoplasmic pH range they must maintain for growth. The most extreme cases are exemplified by the extremophiles that inhabit environments whose pH is below 3 or above 11. Here we describe how recent insights into the structure and function of key molecules and their regulators reveal novel strategies of bacterial pH-homeostasis. These insights may help us better target certain pathogens and better harness the capacities of environmental bacteria. PMID:21464825

  2. Domain 4 (D4 of Perfringolysin O to Visualize Cholesterol in Cellular Membranes—The Update

    Directory of Open Access Journals (Sweden)

    Masashi Maekawa

    2017-03-01

    Full Text Available The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine. Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4 of Perfringolysin O (PFO, theta toxin, a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  3. Domain 4 (D4) of Perfringolysin O to Visualize Cholesterol in Cellular Membranes-The Update.

    Science.gov (United States)

    Maekawa, Masashi

    2017-03-03

    The cellular membrane of eukaryotes consists of phospholipids, sphingolipids, cholesterol and membrane proteins. Among them, cholesterol is crucial for various cellular events (e.g., signaling, viral/bacterial infection, and membrane trafficking) in addition to its essential role as an ingredient of steroid hormones, vitamin D, and bile acids. From a micro-perspective, at the plasma membrane, recent emerging evidence strongly suggests the existence of lipid nanodomains formed with cholesterol and phospholipids (e.g., sphingomyelin, phosphatidylserine). Thus, it is important to elucidate how cholesterol behaves in membranes and how the behavior of cholesterol is regulated at the molecular level. To elucidate the complexed characteristics of cholesterol in cellular membranes, a couple of useful biosensors that enable us to visualize cholesterol in cellular membranes have been recently developed by utilizing domain 4 (D4) of Perfringolysin O (PFO, theta toxin), a cholesterol-binding toxin. This review highlights the current progress on development of novel cholesterol biosensors that uncover new insights of cholesterol in cellular membranes.

  4. Multilevel control of glucose homeostasis by adenylyl cyclase 8

    NARCIS (Netherlands)

    Raoux, Matthieu; Vacher, Pierre; Papin, Julien; Picard, Alexandre; Kostrzewa, Elzbieta; Devin, Anne; Gaitan, Julien; Limon, Isabelle; Kas, Martien J.; Magnan, Christophe; Lang, Jochen

    2015-01-01

    Aims/hypothesis: Nutrient homeostasis requires integration of signals generated by glucose metabolism and hormones. Expression of the calcium-stimulated adenylyl cyclase ADCY8 is regulated by glucose and the enzyme is capable of integrating signals from multiple pathways. It may thus have an

  5. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam; Noutsi, Bakiza Kamal; Chaieb, Saharoui

    2016-01-01

    to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration

  6. High blood cholesterol levels

    Science.gov (United States)

    Cholesterol - high; Lipid disorders; Hyperlipoproteinemia; Hyperlipidemia; Dyslipidemia; Hypercholesterolemia ... There are many types of cholesterol. The ones talked about most are: ... lipoprotein (HDL) cholesterol -- often called "good" cholesterol ...

  7. Macrophage ABCA2 deletion modulates intracellular cholesterol deposition, affects macrophage apoptosis, and decreases early atherosclerosis in LDL receptor knockout mice.

    Science.gov (United States)

    Calpe-Berdiel, Laura; Zhao, Ying; de Graauw, Marjo; Ye, Dan; van Santbrink, Peter J; Mommaas, A Mieke; Foks, Amanda; Bot, Martine; Meurs, Illiana; Kuiper, Johan; Mack, Jody T; Van Eck, Miranda; Tew, Kenneth D; van Berkel, Theo J C

    2012-08-01

    The ABCA2 transporter shares high structural homology to ABCA1, which is crucial for the removal of excess cholesterol from macrophages and, by extension, in atherosclerosis. It has been suggested that ABCA2 sequesters cholesterol inside the lysosomes, however, little is known of the macrophage-specific role of ABCA2 in regulating lipid homeostasis in vivo and in modulating susceptibility to atherosclerosis. Chimeras with dysfunctional macrophage ABCA2 were generated by transplantation of bone marrow from ABCA2 knockout (KO) mice into irradiated LDL receptor (LDLr) KO mice. Interestingly, lack of ABCA2 in macrophages resulted in a diminished lesion size in the aortic root (-24.5%) and descending thoracic aorta (-36.6%) associated with a 3-fold increase in apoptotic cells, as measured by both caspase 3 and TUNEL. Upon oxidized LDL exposure, macrophages from wildtype (WT) transplanted animals developed filipin-positive droplets in lysosomal-like compartments, corresponding to free cholesterol (FC) accumulation. In contrast, ABCA2-deficient macrophages displayed an abnormal diffuse distribution of FC over peripheral regions. The accumulation of neutral sterols in lipid droplets was increased in ABCA2-deficient macrophages, but primarily in cytoplasmic clusters and not in lysosomes. Importantly, apoptosis of oxLDL loaded macrophages lacking ABCA2 was increased 2.7-fold, probably as a consequence of the broad cellular distribution of FC. Lack of functional ABCA2 generates abnormalities in intracellular lipid distribution/trafficking in macrophages consistent with its lysosomal sequestering role, leading to an increased susceptibility to apoptosis in response to oxidized lipids and reduced atherosclerotic lesion development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  8. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Chen, Huan; Wu, Rongrong; Xu, Guangzhi; Fang, Xu; Qiu, Xiaoli; Guo, Hongyin; Tian, Bing; Hua, Yuejin

    2010-01-01

    Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.

  9. DR2539 is a novel DtxR-like regulator of Mn/Fe ion homeostasis and antioxidant enzyme in Deinococcus radiodurans

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Huan [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China); Wu, Rongrong [Department of Cardiology, Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310009 (China); Xu, Guangzhi [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Fang, Xu; Qiu, Xiaoli; Guo, Hongyin [Zhejiang Institute of Microbiology, Zhejiang Province, Hangzhou 310012 (China); Tian, Bing, E-mail: tianbing@zju.edu.cn [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China); Hua, Yuejin, E-mail: yjhua@zju.edu.cn [Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Hangzhou 310029 (China)

    2010-05-28

    Transcriptional regulators of the diphtheria toxin repressor (DtxR) family control the expression of genes involved in the uptake of iron and manganese, which is not only necessitous nutrients but also was suggested to be essential for intracellular redox cycling of microorganisms. We identified a unique DtxR homologue (DR2539) with special characteristics from Deinococcus radiodurans, which is known for its extreme resistance to radiation and oxidants. The dr2539 mutant showed higher resistance to hydrogen peroxide than the wild-type strain R1. Intracellular catalase activity assay and semiquantitative PCR analysis demonstrated that this DtxR is a negative regulator of catalase (katE). Furthermore, quantitative real-time PCR, global transcription profile and inductively coupled plasma-mass spectrometry analysis showed that the DtxR is involved in the regulation of antioxidant system by maintaining the intracellular Mn/Fe ion homeostasis of D. radiodurans. However, unlike the other DtxR homologues, the DtxR of D. radiodurans acts as a negative regulator of a Mn transporter gene (dr2283) and as a positive regulator of Fe-dependent transporter genes (dr1219, drb0125) in D. radiodurans.

  10. Steryl ester synthesis, storage and hydrolysis: A contribution to sterol homeostasis.

    Science.gov (United States)

    Korber, Martina; Klein, Isabella; Daum, Günther

    2017-12-01

    Sterols are essential lipids of all eukaryotic cells, appearing either as free sterols or steryl esters. Besides other regulatory mechanisms, esterification of sterols and hydrolysis of steryl esters serve to buffer both an excess and a lack of free sterols. In this review, the esterification process, the storage of steryl esters and their mobilization will be described. Several model organisms are discussed but the focus was set on mammals and the yeast Saccharomyces cerevisiae. The contribution of imbalanced cholesterol homeostasis to several human diseases, namely Wolman disease, cholesteryl ester storage disease, atherosclerosis and Alzheimer's disease, Niemann-Pick type C and Tangier disease is described. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. p300/CBP as a Key Nutritional Sensor for Hepatic Energy Homeostasis and Liver Fibrosis

    Directory of Open Access Journals (Sweden)

    Weilei Yao

    2018-01-01

    Full Text Available The overwhelming frequency of metabolic diseases such as obesity and diabetes are closely related to liver diseases, which might share common pathogenic signaling processes. These metabolic disorders in the presence of inflammatory response seem to be triggered by and to reside in the liver, which is the central metabolic organ that plays primary roles in regulating lipid and glucose homeostasis upon alterations of metabolic conditions. Recently, abundant emerging researches suggested that p300 and CREB binding protein (CBP are crucial regulators of energy homeostasis and liver fibrosis through both their acetyltransferase activities and transcriptional coactivators. Plenty of recent findings demonstrated the potential roles of p300/CBP in mammalian metabolic homeostasis in response to nutrients. This review is focused on the different targets and functions of p300/CBP in physiological and pathological processes, including lipogenesis, lipid export, gluconeogenesis, and liver fibrosis, also provided some nutrients as the regulator of p300/CBP for nutritional therapeutic approaches to treat liver diseases.

  12. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    KAUST Repository

    Mandal, Pritam

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  13. Corn silk extract improves cholesterol metabolism in C57BL/6J mouse fed high-fat diets.

    Science.gov (United States)

    Cha, Jae Hoon; Kim, Sun Rim; Kang, Hyun Joong; Kim, Myung Hwan; Ha, Ae Wha; Kim, Woo Kyoung

    2016-10-01

    Corn silk (CS) extract contains large amounts of maysin, which is a major flavonoid in CS. However, studies regarding the effect of CS extract on cholesterol metabolism is limited. Therefore, the purpose of this study was to determine the effect of CS extract on cholesterol metabolism in C57BL/6J mouse fed high-fat diets. Normal-fat group fed 7% fat diet, high-fat (HF) group fed 25% fat diet, and high-fat with corn silk (HFCS) group were orally administered CS extract (100 mg/kg body weight) daily. Serum and hepatic levels of total lipids, triglycerides, and total cholesterol as well as serum free fatty acid, glucose, and insulin levels were determined. The mRNA expression levels of acyl-CoA: cholesterol acyltransferase (ACAT), cholesterol 7-alpha hydroxylase (CYP7A1), farnesoid X receptor (FXR), lecithin cholesterol acyltransferase (LCAT), low-density lipoprotein receptor, 3-hyroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase), adiponectin, leptin, and tumor necrosis factor α were determined. Oral administration of CS extract with HF improved serum glucose and insulin levels as well as attenuated HF-induced fatty liver. CS extracts significantly elevated mRNA expression levels of adipocytokines and reduced mRNA expression levels of HMG-CoA reductase, ACAT, and FXR. The mRNA expression levels of CYP7A1 and LCAT between the HF group and HFCS group were not statistically different. CS extract supplementation with a high-fat diet improves levels of adipocytokine secretion and glucose homeostasis. CS extract is also effective in decreasing the regulatory pool of hepatic cholesterol, in line with decreased blood and hepatic levels of cholesterol though modulation of mRNA expression levels of HMG-CoA reductase, ACAT, and FXR.

  14. Cholesterol IQ Quiz

    Science.gov (United States)

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Jul 5,2017 Begin the quiz ... What Your Cholesterol Levels Mean Common Misconceptions Cholesterol IQ Quiz • HDL, LDL, and Triglycerides • Causes of High ...

  15. Plasma cholesterol and endogenous cholesterol synthesis during refeeding in anorexia nervosa.

    Science.gov (United States)

    Feillet, F; Feillet-Coudray, C; Bard, J M; Parra, H J; Favre, E; Kabuth, B; Fruchart, J C; Vidailhet, M

    2000-04-01

    Normal or high levels of cholesterol have been measured in patients with anorexia nervosa (AN). Given that cholesterol intake in AN is usually very low, the reasons for this anomaly are not clearly understood. We studied lipid and lipoprotein profiles and endogenous cholesterol synthesis, estimated by serum lathosterol, in a population of 14 girls with AN, before and during a period of 30 days refeeding. The initial body mass index (BMI) of the patients was 13.41+/-1.62 kg/m(2). No changes were observed during refeeding in endocrine parameters (ACTH, cortisol and estradiol). At Day 0 the lipids data measured here showed normal levels of triglycerides, and total cholesterol at the upper limits of the normal range (5.44+/-1 mmol/l). At this time, total and LDL cholesterol were negatively correlated with transthyretin and BMI. Serum lathosterol (a precursor in cholesterol synthesis pathway) increased significantly (5.99+/-1.75 (Day 0) vs. 8.39+/-2.96 (Day 30); P=0.02) while there was a significant decrease in apo B (0.79+/-0.33 (Day 0) vs. 0. 60+/-0.17 g/l (Day 30), P=0.02) with refeeding. Thus, patients with initial high cholesterol levels have the worst nutritional status and high cholesterol levels are not related to a de novo synthesis. This profile returns to normal with refeeding. An increase of cellular cholesterol uptake may be responsible for this apparently paradoxical evolution with increase of cholesterol synthesis and decrease of apo B during renutrition.

  16. Role of Membrane Cholesterol Levels in Activation of Lyn upon Cell Detachment

    Directory of Open Access Journals (Sweden)

    Takao Morinaga

    2018-06-01

    Full Text Available Cholesterol, a major component of the plasma membrane, determines the physicalproperties of biological membranes and plays a critical role in the assembly of membranemicrodomains. Enrichment or deprivation of membrane cholesterol affects the activities of manysignaling molecules at the plasma membrane. Cell detachment changes the structure of the plasmamembrane and influences the localizations of lipids, including cholesterol. Recent studies showedthat cell detachment changes the activities of a variety of signaling molecules. We previously reportedthat the localization and the function of the Src-family kinase Lyn are critically regulated by itsmembrane anchorage through lipid modifications. More recently, we found that the localization andthe activity of Lyn were changed upon cell detachment, although the manners of which vary betweencell types. In this review, we highlight the changes in the localization of Lyn and a role of cholesterolin the regulation of Lyn’s activation following cell detachment.

  17. Cholesterol metabolism and serum non-cholesterol sterols: summary of 13 plant stanol ester interventions.

    Science.gov (United States)

    Hallikainen, Maarit; Simonen, Piia; Gylling, Helena

    2014-04-27

    The efficacy and safety of plant stanols added to food products as serum cholesterol lowering agents have been demonstrated convincingly, but their effects on cholesterol metabolism and on serum non-cholesterol sterols is less evaluated. The aim of this study was to assess the validity of serum non-cholesterol sterols and squalene as bioindices of cholesterol synthesis and absorption, and to examine how the individual serum non-cholesterol sterols respond to consumption of plant stanols. We collected all randomized, controlled plant stanol ester (STAEST) interventions in which serum cholestanol, plant sterols campesterol and sitosterol, and at least two serum cholesterol precursors had been analysed. According to these criteria, there was a total of 13 studies (total 868 subjects without lipid-lowering medication; plant stanol doses varied from 0.8 to 8.8 g/d added in esterified form; the duration of the studies varied from 4 to 52 weeks). Serum non-cholesterol sterols were assayed with gas-liquid chromatography, cholesterol synthesis with the sterol balance technique, and fractional cholesterol absorption with the dual continuous isotope feeding method. The results demonstrated that during the control and the STAEST periods, the serum plant sterol/cholesterol- and the cholestanol/cholesterol-ratios reflected fractional cholesterol absorption, and the precursor sterol/cholesterol-ratios reflected cholesterol synthesis. Plant sterol levels were dose-dependently reduced by STAEST so that 2 g of plant stanols reduced serum campesterol/cholesterol-ratio on average by 32%. Serum cholestanol/cholesterol-ratio was reduced less frequently than those of the plant sterols by STAEST, and the cholesterol precursor sterol ratios did not change consistently in the individual studies emphasizing the importance of monitoring more than one surrogate serum marker. Serum non-cholesterol sterols are valid markers of cholesterol absorption and synthesis even during cholesterol

  18. Conserved microRNA miR-8 in fat body regulates innate immune homeostasis in Drosophila.

    Science.gov (United States)

    Choi, In Kyou; Hyun, Seogang

    2012-05-01

    Antimicrobial peptides (AMPs) constitute a major arm of the innate immune system across diverse organisms. In Drosophila, septic injury by microbial pathogens rapidly induces the production of the AMPs in fat body via well elucidated pathways such as Toll and IMD. However, several epithelial tissues were reported to locally express AMPs without septic injury via poorly characterized ways. Here, we report that microRNA miR-8 regulates the levels of AMPs basally expressed in Drosophila. The levels of AMPs such as Drosomycin and Diptericin are significantly increased in miR-8 null animals in non-pathogen stimulated conditions. Analysis of various larval tissues revealed that the increase of Drosomycin is fat body specific. Supporting this observation, re-introduction of miR-8 only in the fat body restored the altered AMP expression in miR-8 null flies. Although loss of miR-8 impedes PI3K in the fat body, inhibition of PI3K does not phenocopy the AMP expression of miR-8 null flies, indicating that miR-8 regulates AMP independently of PI3K. Together, our findings suggest a role of miR-8 in systemic immune homeostasis in generally non-pathogenic conditions in flies. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. LDL: The "Bad" Cholesterol

    Science.gov (United States)

    ... There are two main types of cholesterol: LDL (bad) cholesterol and HDL (good) cholesterol: LDL stands for low-density lipoproteins. It is called the "bad" cholesterol because a high LDL level leads to ...

  20. Partial restoration of mutant enzyme homeostasis in three distinct lysosomal storage disease cell lines by altering calcium homeostasis.

    Directory of Open Access Journals (Sweden)

    Ting-Wei Mu

    2008-02-01

    Full Text Available A lysosomal storage disease (LSD results from deficient lysosomal enzyme activity, thus the substrate of the mutant enzyme accumulates in the lysosome, leading to pathology. In many but not all LSDs, the clinically most important mutations compromise the cellular folding of the enzyme, subjecting it to endoplasmic reticulum-associated degradation instead of proper folding and lysosomal trafficking. A small molecule that restores partial mutant enzyme folding, trafficking, and activity would be highly desirable, particularly if one molecule could ameliorate multiple distinct LSDs by virtue of its mechanism of action. Inhibition of L-type Ca2+ channels, using either diltiazem or verapamil-both US Food and Drug Administration-approved hypertension drugs-partially restores N370S and L444P glucocerebrosidase homeostasis in Gaucher patient-derived fibroblasts; the latter mutation is associated with refractory neuropathic disease. Diltiazem structure-activity studies suggest that it is its Ca2+ channel blocker activity that enhances the capacity of the endoplasmic reticulum to fold misfolding-prone proteins, likely by modest up-regulation of a subset of molecular chaperones, including BiP and Hsp40. Importantly, diltiazem and verapamil also partially restore mutant enzyme homeostasis in two other distinct LSDs involving enzymes essential for glycoprotein and heparan sulfate degradation, namely alpha-mannosidosis and type IIIA mucopolysaccharidosis, respectively. Manipulation of calcium homeostasis may represent a general strategy to restore protein homeostasis in multiple LSDs. However, further efforts are required to demonstrate clinical utility and safety.

  1. Beneficial autoimmunity at body surfaces - immune surveillance and rapid type 2 immunity regulate tissue homeostasis and cancer.

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress - a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis.

  2. Cyclic glycine-proline regulates IGF-1 homeostasis by altering the binding of IGFBP-3 to IGF-1

    Science.gov (United States)

    Guan, Jian; Gluckman, Peter; Yang, Panzao; Krissansen, Geoff; Sun, Xueying; Zhou, Yongzhi; Wen, Jingyuan; Phillips, Gemma; Shorten, Paul R.; McMahon, Chris D.; Wake, Graeme C.; Chan, Wendy H. K.; Thomas, Mark F.; Ren, April; Moon, Steve; Liu, Dong-Xu

    2014-03-01

    The homeostasis of insulin-like growth factor-1 (IGF-1) is essential for metabolism, development and survival. Insufficient IGF-1 is associated with poor recovery from wounds whereas excessive IGF-1 contributes to growth of tumours. We have shown that cyclic glycine-proline (cGP), a metabolite of IGF-1, can normalise IGF-1 function by showing its efficacy in improving the recovery from ischemic brain injury in rats and inhibiting the growth of lymphomic tumours in mice. Further investigation in cell culture suggested that cGP promoted the activity of IGF-1 when it was insufficient, but inhibited the activity of IGF-1 when it was excessive. Mathematical modelling revealed that the efficacy of cGP was a modulated IGF-1 effect via changing the binding of IGF-1 to its binding proteins, which dynamically regulates the balance between bioavailable and non-bioavailable IGF-1. Our data reveal a novel mechanism of auto-regulation of IGF-1, which has physiological and pathophysiological consequences and potential pharmacological utility.

  3. The influence of bile acids homeostasis by cryptotanshinone ...

    African Journals Online (AJOL)

    The homeostasis of bile acids can be tightly regulated through feed-back and feed-forward regula- tion pathways. Bile acids exert their toxicity towards cells at high concentrations, and the accumulation of bile acids can induce the severe damage towards liver cells 2. Bile acids have been reported to induce cell injury.

  4. Home-Use Tests - Cholesterol

    Science.gov (United States)

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  5. MicroRNAs and Periodontal Homeostasis.

    Science.gov (United States)

    Luan, X; Zhou, X; Trombetta-eSilva, J; Francis, M; Gaharwar, A K; Atsawasuwan, P; Diekwisch, T G H

    2017-05-01

    MicroRNAs (miRNAs) are a group of small RNAs that control gene expression in all aspects of eukaryotic life, primarily through RNA silencing mechanisms. The purpose of the present review is to introduce key miRNAs involved in periodontal homeostasis, summarize the mechanisms by which they affect downstream genes and tissues, and provide an introduction into the therapeutic potential of periodontal miRNAs. In general, miRNAs function synergistically to fine-tune the regulation of biological processes and to remove expression noise rather than by causing drastic changes in expression levels. In the periodontium, miRNAs play key roles in development and periodontal homeostasis and during the loss of periodontal tissue integrity as a result of periodontal disease. As part of the anabolic phase of periodontal homeostasis and periodontal development, miRNAs direct periodontal fibroblasts toward alveolar bone lineage differentiation and new bone formation through WNT, bone morphogenetic protein, and Notch signaling pathways. miRNAs contribute equally to the catabolic aspect of periodontal homeostasis as they affect osteoclastogenesis and osteoclast function, either by directly promoting osteoclast activity or by inhibiting osteoclast signaling intermediaries or through negative feedback loops. Their small size and ability to target multiple regulatory networks of related sets of genes have predisposed miRNAs to become ideal candidates for drug delivery and tissue regeneration. To address the immense therapeutic potential of miRNAs and their antagomirs, an ever growing number of delivery approaches toward clinical applications have been developed, including nanoparticle carriers and secondary structure interference inhibitor systems. However, only a fraction of the miRNAs involved in periodontal health and disease are known today. It is anticipated that continued research will lead to a more comprehensive understanding of the periodontal miRNA world, and a systematic

  6. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    Science.gov (United States)

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Monocytes of patients with familial hypercholesterolemia show alterations in cholesterol metabolism

    Directory of Open Access Journals (Sweden)

    Soufi Muhidien

    2008-11-01

    Full Text Available Abstract Background Elevated plasma cholesterol promotes the formation of atherosclerotic lesions in which monocyte-derived lipid-laden macrophages are frequently found. To analyze, if circulating monocytes already show increased lipid content and differences in lipoprotein metabolism, we compared monocytes from patients with Familial Hypercholesterolemia (FH with those from healthy individuals. Methods Cholesterol and oxidized cholesterol metabolite serum levels of FH and of healthy, gender/age matched control subjects were measured by combined gas chromatography – mass spectroscopy. Monocytes from patients with FH and from healthy subjects were isolated by antibody-assisted density centrifugation. Gene expression profiles of isolated monocytes were measured using Affymetrix HG-U 133 Plus 2.0 microarrays. We compared monocyte gene expression profiles from FH patients with healthy controls using a Welch T-test with correction for multiple testing (p Results Using microarray analysis we found in FH patients a significant up-regulation of 1,617 genes and a down-regulation of 701 genes compared to monocytes from healthy individuals. These include genes of proteins that are involved in the uptake, biosynthesis, disposition, and cellular efflux of cholesterol. In addition, plasma from FH patients contains elevated amounts of sterols and oxysterols. An increased uptake of oxidized as well as of native LDL by FH monocytes combined with a down-regulation of NPC1 and ABCA1 explains the lipid accumulation observed in these cells. Conclusion Our data demonstrate that circulating FH monocytes show differences in cell physiology that may contribute to the early onset of atherosclerosis in this disease.

  8. The role of gut microbiota in immune homeostasis and autoimmunity.

    Science.gov (United States)

    Wu, Hsin-Jung; Wu, Eric

    2012-01-01

    Keeping a delicate balance in the immune system by eliminating invading pathogens, while still maintaining self-tolerance to avoid autoimmunity, is critical for the body's health. The gut microbiota that resides in the gastrointestinal tract provides essential health benefits to its host, particularly by regulating immune homeostasis. Moreover, it has recently become obvious that alterations of these gut microbial communities can cause immune dysregulation, leading to autoimmune disorders. Here we review the advances in our understanding of how the gut microbiota regulates innate and adaptive immune homeostasis, which in turn can affect the development of not only intestinal but also systemic autoimmune diseases. Exploring the interaction of gut microbes and the host immune system will not only allow us to understand the pathogenesis of autoimmune diseases but will also provide us new foundations for the design of novel immuno- or microbe-based therapies.

  9. Deletion of Lkb1 in pro-opiomelanocortin neurons impairs peripheral glucose homeostasis in mice.

    Science.gov (United States)

    Claret, Marc; Smith, Mark A; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J; Colom, André; Valet, Philippe; Cani, Patrice D; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L; Giese, K Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L; Carling, David; Withers, Dominic J

    2011-03-01

    AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca(2+)-calmodulin-dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte-stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons.

  10. Rational Targeting of Cellular Cholesterol in Diffuse Large B-Cell Lymphoma (DLBCL) Enabled by Functional Lipoprotein Nanoparticles: A Therapeutic Strategy Dependent on Cell of Origin.

    Science.gov (United States)

    Rink, Jonathan S; Yang, Shuo; Cen, Osman; Taxter, Tim; McMahon, Kaylin M; Misener, Sol; Behdad, Amir; Longnecker, Richard; Gordon, Leo I; Thaxton, C Shad

    2017-11-06

    Cancer cells have altered metabolism and, in some cases, an increased demand for cholesterol. It is important to identify novel, rational treatments based on biology, and cellular cholesterol metabolism as a potential target for cancer is an innovative approach. Toward this end, we focused on diffuse large B-cell lymphoma (DLBCL) as a model because there is differential cholesterol biosynthesis driven by B-cell receptor (BCR) signaling in germinal center (GC) versus activated B-cell (ABC) DLBCL. To specifically target cellular cholesterol homeostasis, we employed high-density lipoprotein-like nanoparticles (HDL NP) that can generally reduce cellular cholesterol by targeting and blocking cholesterol uptake through the high-affinity HDL receptor, scavenger receptor type B-1 (SCARB1). As we previously reported, GC DLBCL are exquisitely sensitive to HDL NP as monotherapy, while ABC DLBCL are less sensitive. Herein, we report that enhanced BCR signaling and resultant de novo cholesterol synthesis in ABC DLBCL drastically reduces the ability of HDL NPs to reduce cellular cholesterol and induce cell death. Therefore, we combined HDL NP with the BCR signaling inhibitor ibrutinib and the SYK inhibitor R406. By targeting both cellular cholesterol uptake and BCR-associated de novo cholesterol synthesis, we achieved cellular cholesterol reduction and induced apoptosis in otherwise resistant ABC DLBCL cell lines. These results in lymphoma demonstrate that reduction of cellular cholesterol is a powerful mechanism to induce apoptosis. Cells rich in cholesterol require HDL NP therapy to reduce uptake and molecularly targeted agents that inhibit upstream pathways that stimulate de novo cholesterol synthesis, thus, providing a new paradigm for rationally targeting cholesterol metabolism as therapy for cancer.

  11. The membrane stress response buffers lethal effects of lipid disequilibrium by reprogramming the protein homeostasis network.

    Science.gov (United States)

    Thibault, Guillaume; Shui, Guanghou; Kim, Woong; McAlister, Graeme C; Ismail, Nurzian; Gygi, Steven P; Wenk, Markus R; Ng, Davis T W

    2012-10-12

    Lipid composition can differ widely among organelles and even between leaflets of a membrane. Lipid homeostasis is critical because disequilibrium can have disease outcomes. Despite their importance, mechanisms maintaining lipid homeostasis remain poorly understood. Here, we establish a model system to study the global effects of lipid imbalance. Quantitative lipid profiling was integral to monitor changes to lipid composition and for system validation. Applying global transcriptional and proteomic analyses, a dramatically altered biochemical landscape was revealed from adaptive cells. The resulting composite regulation we term the "membrane stress response" (MSR) confers compensation, not through restoration of lipid composition, but by remodeling the protein homeostasis network. To validate its physiological significance, we analyzed the unfolded protein response (UPR), one facet of the MSR and a key regulator of protein homeostasis. We demonstrate that the UPR maintains protein biogenesis, quality control, and membrane integrity-functions otherwise lethally compromised in lipid dysregulated cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism.

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle.

  13. Lactate rescues neuronal sodium homeostasis during impaired energy metabolism

    Science.gov (United States)

    Karus, Claudia; Ziemens, Daniel; Rose, Christine R

    2015-01-01

    Recently, we established that recurrent activity evokes network sodium oscillations in neurons and astrocytes in hippocampal tissue slices. Interestingly, metabolic integrity of astrocytes was essential for the neurons' capacity to maintain low sodium and to recover from sodium loads, indicating an intimate metabolic coupling between the 2 cell types. Here, we studied if lactate can support neuronal sodium homeostasis during impaired energy metabolism by analyzing whether glucose removal, pharmacological inhibition of glycolysis and/or addition of lactate affect cellular sodium regulation. Furthermore, we studied the effect of lactate on sodium regulation during recurrent network activity and upon inhibition of the glial Krebs cycle by sodium-fluoroacetate. Our results indicate that lactate is preferentially used by neurons. They demonstrate that lactate supports neuronal sodium homeostasis and rescues the effects of glial poisoning by sodium-fluoroacetate. Altogether, they are in line with the proposed transfer of lactate from astrocytes to neurons, the so-called astrocyte-neuron-lactate shuttle. PMID:26039160

  14. Analysis of vegetative homeostasis state of elite handball players

    Directory of Open Access Journals (Sweden)

    Y.N. Prystupa

    2015-12-01

    Full Text Available Purpose: to study characteristics and dynamic of elite handball players’ physiological indicators. Material: In experiment elite handball players (n=112, age 18-35 years participated. For determination of vegetative homeostasis state we analyzed variability of heart rhythm. The researches were conducted in laboratory conditions in rest state, in lying position during 5 minutes. Results: it was found that organism’s adaptation reactions to training loads go with different tension of regulation systems. At the end of competition period there appears hyper-kinetic syndrome. It witnessed insufficiency of means, which permit to maintain optimal regulation of cardio-vascular system and increase its functional potentials. Conclusions: indicators of cardio-vascular system and their dynamic w3itnessed maintaining of high level of handball players’ organism hemodynamic provisioning. High level of vegetative homeostasis pointed at certain degree of sportsmen’s fitness. Such state is sufficient for preservation of high potential of sympathetic -adrenaline system and overcoming of fatigue processes.

  15. Iron deficiency regulated OsOPT7 is essential for iron homeostasis in rice.

    Science.gov (United States)

    Bashir, Khurram; Ishimaru, Yasuhiro; Itai, Reiko Nakanishi; Senoura, Takeshi; Takahashi, Michiko; An, Gynheung; Oikawa, Takaya; Ueda, Minoru; Sato, Aiko; Uozumi, Nobuyuki; Nakanishi, Hiromi; Nishizawa, Naoko K

    2015-05-01

    The molecular mechanism of iron (Fe) uptake and transport in plants are well-characterized; however, many components of Fe homeostasis remain unclear. We cloned iron-deficiency-regulated oligopeptide transporter 7 (OsOPT7) from rice. OsOPT7 localized to the plasma membrane and did not transport Fe(III)-DMA or Fe(II)-NA and GSH in Xenopus laevis oocytes. Furthermore OsOPT7 did not complement the growth of yeast fet3fet4 mutant. OsOPT7 was specifically upregulated in response to Fe-deficiency. Promoter GUS analysis revealed that OsOPT7 expresses in root tips, root vascular tissue and shoots as well as during seed development. Microarray analysis of OsOPT7 knockout 1 (opt7-1) revealed the upregulation of Fe-deficiency-responsive genes in plants grown under Fe-sufficient conditions, despite the high Fe and ferritin concentrations in shoot tissue indicating that Fe may not be available for physiological functions. Plants overexpressing OsOPT7 do not exhibit any phenotype and do not accumulate more Fe compared to wild type plants. These results indicate that OsOPT7 may be involved in Fe transport in rice.

  16. The membrane as the gatekeeper of infection: Cholesterol in host-pathogen interaction.

    Science.gov (United States)

    Kumar, G Aditya; Jafurulla, Md; Chattopadhyay, Amitabha

    2016-09-01

    The cellular plasma membrane serves as a portal for the entry of intracellular pathogens. An essential step for an intracellular pathogen to gain entry into a host cell therefore is to be able to cross the cell membrane. In this review, we highlight the role of host membrane cholesterol in regulating the entry of intracellular pathogens using insights obtained from work on the interaction of Leishmania and Mycobacterium with host cells. The entry of these pathogens is known to be dependent on host membrane cholesterol. Importantly, pathogen entry is inhibited either upon depletion (or complexation), or enrichment of membrane cholesterol. In other words, an optimum level of host membrane cholesterol is necessary for efficient infection by pathogens. In this overall context, we propose a general mechanism, based on cholesterol-induced conformational changes, involving cholesterol binding sites in host cell surface receptors that are implicated in this process. A therapeutic strategy targeting modulation of membrane cholesterol would have the advantage of avoiding the commonly encountered problem of drug resistance in tackling infection by intracellular pathogens. Insights into the role of host membrane cholesterol in pathogen entry would be instrumental in the development of novel therapeutic strategies to effectively tackle intracellular pathogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Cholesterol Transport Revisited : A New Turbo Mechanism to Drive Cholesterol Excretion

    NARCIS (Netherlands)

    de Boer, Jan Freark; Kuipers, Folkert; Groen, Albert K.

    A fine-tuned balance between cholesterol uptake and excretion by the body is pivotal to maintain health and to remain free from the deleterious consequences of cholesterol accumulation such as cardiovascular disease. The pathways involved in intracellular and extracellular cholesterol transport are

  18. Cholesterol (image)

    Science.gov (United States)

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  19. Effects of dietary fucoxanthin on cholesterol metabolism in diabetic/obese KK-Ay mice

    Directory of Open Access Journals (Sweden)

    Beppu Fumiaki

    2012-09-01

    down-regulation of LDLR and SR-B1, resulted in increased serum cholesterol in the mice.

  20. The regulation of cell growth and survival by aldosterone.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2012-02-01

    The steroid hormone aldosterone is synthesized from cholesterol, mainly in the zona glomerulosa of the adrenal cortex. Aldosterone exerts its effects in the epithelial tissues of the kidney and colon and in non-epithelial tissues such as the brain and cardiovasculature. The genomic response to aldosterone involves dimerization of the mineralocorticoid receptor (MR), dissociation of heat shock proteins from MR, translocation of the aldosterone-MR complex to the nucleus and the concomitant regulation of gene expression. Rapid responses to aldosterone occur within seconds to minutes, do not involve transcription or translation and can modulate directly or indirectly the later genomic responses. Aside from the well-known effects of aldosterone on the regulation of sodium and water homeostasis, aldosterone can also produce deleterious structural changes in tissues by inducing hypertrophy and the dysregulation of proliferation and apoptosis, leading to fibrosis and tissue remodelling. Here we discuss the involvement of aldosterone-mediated rapid signalling cascades in the development of disease states such as chronic kidney disease and heart failure, and the antagonists that can inhibit these pathophysiological responses.

  1. The regulation of cell growth and survival by aldosterone.

    LENUS (Irish Health Repository)

    Dooley, Ruth

    2011-01-01

    The steroid hormone aldosterone is synthesized from cholesterol, mainly in the zona glomerulosa of the adrenal cortex. Aldosterone exerts its effects in the epithelial tissues of the kidney and colon and in non-epithelial tissues such as the brain and cardiovasculature. The genomic response to aldosterone involves dimerization of the mineralocorticoid receptor (MR), dissociation of heat shock proteins from MR, translocation of the aldosterone-MR complex to the nucleus and the concomitant regulation of gene expression. Rapid responses to aldosterone occur within seconds to minutes, do not involve transcription or translation and can modulate directly or indirectly the later genomic responses. Aside from the well-known effects of aldosterone on the regulation of sodium and water homeostasis, aldosterone can also produce deleterious structural changes in tissues by inducing hypertrophy and the dysregulation of proliferation and apoptosis, leading to fibrosis and tissue remodelling. Here we discuss the involvement of aldosterone-mediated rapid signalling cascades in the development of disease states such as chronic kidney disease and heart failure, and the antagonists that can inhibit these pathophysiological responses.

  2. Control of Immune Cell Homeostasis and Function by lncRNAs.

    Science.gov (United States)

    Mowel, Walter K; Kotzin, Jonathan J; McCright, Sam J; Neal, Vanessa D; Henao-Mejia, Jorge

    2018-01-01

    The immune system is composed of diverse cell types that coordinate responses to infection and maintain tissue homeostasis. In each of these cells, extracellular cues determine highly specific epigenetic landscapes and transcriptional profiles to promote immunity while maintaining homeostasis. New evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in epigenetic and transcriptional regulation in mammals. Thus, lncRNAs have emerged as key regulatory molecules of immune cell gene expression programs in response to microbial and tissue-derived cues. We review here how lncRNAs control the function and homeostasis of cell populations during immune responses, emphasizing the diverse molecular mechanisms by which lncRNAs tune highly contextualized transcriptional programs. In addition, we discuss the new challenges faced in interrogating lncRNA mechanisms and function in the immune system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Treating patients with low high-density lipoprotein cholesterol: choices, issues and opportunities

    Directory of Open Access Journals (Sweden)

    Watts Gerald F

    2001-05-01

    Full Text Available Abstract Three clinical trials have recently focused on the benefits of lipid-regulating therapy in populations with normocholesterolaemia and low high-density lipoprotein (HDL-cholesterol. Two secondary prevention studies (Veterans Affairs HDL-Cholesterol Intervention Trial [VA-HIT] and Bezafibrate Infarction Prevention [BIP] trial testified to the efficacy of fibrates in decreasing cardiovascular events, particularly in patients with coexisting risk factors, including hypertriglyceridaemia. The Air Force/Texas Coronary Atherosclerosis Prevention Study (AFCAPS/TexCAPS demonstrated that a statin could decrease acute coronary events in patients with isolated low HDL-cholesterol in a primary prevention setting. The absolute risk reduction in coronary events in the VA-HIT study compares favourably with those reported from the statin-based Cholesterol and Recurrent Events (CARE and Long-term Intervention with Pravastatin in Ischaemic Disease (LIPID trials. The absolute risk reduction in AFCAPS-TexCAPS is similar to that in West of Scotland Coronary Pravastatin Study (WOSCOPS. Recommendations are given concerning lifestyle and pharmacological management of low HDL-cholesterol. Optimal management also requires review of current treatment targets for HDL-cholesterol and triglycerides levels.

  4. Impact of Dietary Cholesterol on the Pathophysiology of Infectious and Autoimmune Disease

    Directory of Open Access Journals (Sweden)

    Catherine J. Andersen

    2018-06-01

    Full Text Available Cellular cholesterol metabolism, lipid raft formation, and lipoprotein interactions contribute to the regulation of immune-mediated inflammation and response to pathogens. Lipid pathways have been implicated in the pathogenesis of bacterial and viral infections, whereas altered lipid metabolism may contribute to immune dysfunction in autoimmune diseases, such as systemic lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Interestingly, dietary cholesterol may exert protective or detrimental effects on risk, progression, and treatment of different infectious and autoimmune diseases, although current findings suggest that these effects are variable across populations and different diseases. Research evaluating the effects of dietary cholesterol, often provided by eggs or as a component of Western-style diets, demonstrates that cholesterol-rich dietary patterns affect markers of immune inflammation and cellular cholesterol metabolism, while additionally modulating lipoprotein profiles and functional properties of HDL. Further, cholesterol-rich diets appear to differentially impact immunomodulatory lipid pathways across human populations of variable metabolic status, suggesting that these complex mechanisms may underlie the relationship between dietary cholesterol and immunity. Given the Dietary Guidelines for Americans 2015–2020 revision to no longer include limitations on dietary cholesterol, evaluation of dietary cholesterol recommendations beyond the context of cardiovascular disease risk is particularly timely. This review provides a comprehensive and comparative analysis of significant and controversial studies on the role of dietary cholesterol and lipid metabolism in the pathophysiology of infectious disease and autoimmune disorders, highlighting the need for further investigation in this developing area of research.

  5. The Causative Gene in Chanarian Dorfman Syndrome Regulates Lipid Droplet Homeostasis in C. elegans.

    Directory of Open Access Journals (Sweden)

    Meng Xie

    2015-06-01

    Full Text Available AMP-activated kinase (AMPK is a key regulator of many cellular mechanisms required for adjustment to various stresses induced by the changing environment. In C. elegans dauer larvae AMPK-null mutants expire prematurely due to hyperactive Adipose Triglyceride Lipase (ATGL-1 followed by rapid depletion of triglyceride stores. We found that the compromise of one of the three C. elegans orthologues of human cgi-58 significantly improves the survival of AMPK-deficient dauers. We also provide evidence that C. elegans CGI-58 acts as a co-activator of ATGL-1, while it also functions cooperatively to maintain regular lipid droplet structure. Surprisingly, we show that it also acts independently of ATGL-1 to restrict lipid droplet coalescence by altering the surface abundance and composition of long chain (C20 polyunsaturated fatty acids (PUFAs. Our data reveal a novel structural role of CGI-58 in maintaining lipid droplet homeostasis through its effects on droplet composition, morphology and lipid hydrolysis; a conserved function that may account for some of the ATGL-1-independent features unique to Chanarin-Dorfman Syndrome.

  6. Cholesterol Test

    Science.gov (United States)

    ... artery disease. Other names for a cholesterol test: Lipid profile, Lipid panel What is it used for? If you ... Clinic [Internet]. Mayo Foundation for Medical Education and Research; c1998-2017.Cholesterol Test: Overview; 2016 Jan 12 [ ...

  7. Endogenous cholesterol synthesis, fecal steroid excretion and serum lanosterol in subjects with high or low response of serum cholesterol to dietary cholesterol

    NARCIS (Netherlands)

    Beynen, A.C.; Katan, M.B.; Gent, van C.M.

    1986-01-01

    In this study we addressed the question whether hypo- and hyper-responders to dietary cholesterol differ with regard to the flexibility of endogenous cholesterol synthesis after changes in cholesterol intake. Whole-body cholesterol synthesis was measured as faecal excretion of neutral steroids and

  8. Central insulin action in energy and glucose homeostasis.

    Science.gov (United States)

    Plum, Leona; Belgardt, Bengt F; Brüning, Jens C

    2006-07-01

    Insulin has pleiotropic biological effects in virtually all tissues. However, the relevance of insulin signaling in peripheral tissues has been studied far more extensively than its role in the brain. An evolving body of evidence indicates that in the brain, insulin is involved in multiple regulatory mechanisms including neuronal survival, learning, and memory, as well as in regulation of energy homeostasis and reproductive endocrinology. Here we review insulin's role as a central homeostatic signal with regard to energy and glucose homeostasis and discuss the mechanisms by which insulin communicates information about the body's energy status to the brain. Particular emphasis is placed on the controversial current debate about the similarities and differences between hypothalamic insulin and leptin signaling at the molecular level.

  9. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun

    2011-04-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  10. NKS1, Na+- and K+-sensitive 1, regulates ion homeostasis in an SOS-independent pathway in Arabidopsis

    KAUST Repository

    Choi, Wonkyun; Baek, Dongwon; Oh, Dongha; Park, Jiyoung; Hong, Hyewon; Kim, Woeyeon; Bohnert, Hans Jü rgen; Bressan, Ray Anthony; Park, Hyeongcheol; Yun, Daejin

    2011-01-01

    An Arabidopsis thaliana mutant, nks1-1, exhibiting enhanced sensitivity to NaCl was identified in a screen of a T-DNA insertion population in the genetic background of Col-0 gl1 sos3-1. Analysis of the genome sequence in the region flanking the T-DNA left border indicated two closely linked mutations in the gene encoded at locus At4g30996. A second allele, nks1-2, was obtained from the Arabidopsis Biological Resource Center. NKS1 mRNA was detected in all parts of wild-type plants but was not detected in plants of either mutant, indicating inactivation by the mutations. Both mutations in NKS1 were associated with increased sensitivity to NaCl and KCl, but not to LiCl or mannitol. NaCl sensitivity was associated with nks1 mutations in Arabidopsis lines expressing either wild type or alleles of SOS1, SOS2 or SOS3. The NaCl-sensitive phenotype of the nks1-2 mutant was complemented by expression of a full-length NKS1 allele from the CaMV35S promoter. When grown in medium containing NaCl, nks1 mutants accumulated more Na+ than wild type and K +/Na+ homeostasis was perturbed. It is proposed NKS1, a plant-specific gene encoding a 19 kDa endomembrane-localized protein of unknown function, is part of an ion homeostasis regulation pathway that is independent of the SOS pathway. © 2011 Elsevier Ltd. All rights reserved.

  11. The Role of ATP in Sleep Regulation

    Directory of Open Access Journals (Sweden)

    Sachiko eChikahisa

    2011-12-01

    Full Text Available One of the functions of sleep is to maintain energy balance in the brain. There are a variety of hypotheses related to how metabolic pathways interact with sleep/wake regulation. A major finding that demonstrates an interaction between sleep and metabolic homeostasis is the involvement of adenosine in sleep homeostasis. An accumulation of adenosine is supplied from ATP, which can act as an energy currency in the cell. Extracellularly, ATP can act as an activity-dependent signaling molecule, especially in regard to communication between neurons and glia, including astrocytes. Furthermore, the intracellular AMP/ATP ratio controls the activity of AMP-activated protein kinase (AMPK, which is a potent energy regulator and is recently reported to play a role in the regulation of sleep homeostasis. Brain ATP may support multiple functions in the regulation of the sleep/wake cycle and sleep homeostasis.

  12. Cholesterol modulates CFTR confinement in the plasma membrane of primary epithelial cells.

    Science.gov (United States)

    Abu-Arish, Asmahan; Pandzic, Elvis; Goepp, Julie; Matthes, Elizabeth; Hanrahan, John W; Wiseman, Paul W

    2015-07-07

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a plasma-membrane anion channel that, when mutated, causes the disease cystic fibrosis. Although CFTR has been detected in a detergent-resistant membrane fraction prepared from airway epithelial cells, suggesting that it may partition into cholesterol-rich membrane microdomains (lipid rafts), its compartmentalization has not been demonstrated in intact cells and the influence of microdomains on CFTR lateral mobility is unknown. We used live-cell imaging, spatial image correlation spectroscopy, and k-space image correlation spectroscopy to examine the aggregation state of CFTR and its dynamics both within and outside microdomains in the plasma membrane of primary human bronchial epithelial cells. These studies were also performed during treatments that augment or deplete membrane cholesterol. We found two populations of CFTR molecules that were distinguishable based on their dynamics at the cell surface. One population showed confinement and had slow dynamics that were highly cholesterol dependent. The other, more abundant population was less confined and diffused more rapidly. Treatments that deplete the membrane of cholesterol caused the confined fraction and average number of CFTR molecules per cluster to decrease. Elevating cholesterol had the opposite effect, increasing channel aggregation and the fraction of channels displaying confinement, consistent with CFTR recruitment into cholesterol-rich microdomains with dimensions below the optical resolution limit. Viral infection caused the nanoscale microdomains to fuse into large platforms and reduced CFTR mobility. To our knowledge, these results provide the first biophysical evidence for multiple CFTR populations and have implications for regulation of their surface expression and channel function. Copyright © 2015 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  13. Intestinal cholesterol transport: Measuring cholesterol absorption and its reverse

    NARCIS (Netherlands)

    Jakulj, L.

    2013-01-01

    Intestinal cholesterol transport might serve as an attractive future target for cardiovascular disease reduction, provided that underlying molecular mechanisms are more extensively elucidated, combined with improved techniques to measure changes in cholesterol fluxes and their possible

  14. Central Nervous System Demyelination and Remyelination is Independent from Systemic Cholesterol Level in Theiler's Murine Encephalomyelitis.

    Science.gov (United States)

    Raddatz, Barbara B; Sun, Wenhui; Brogden, Graham; Sun, Yanyong; Kammeyer, Patricia; Kalkuhl, Arno; Colbatzky, Florian; Deschl, Ulrich; Naim, Hassan Y; Baumgärtner, Wolfgang; Ulrich, Reiner

    2016-01-01

    High dietary fat and/or cholesterol intake is a risk factor for multiple diseases and has been debated for multiple sclerosis. However, cholesterol biosynthesis is a key pathway during myelination and disturbances are described in demyelinating diseases. To address the possible interaction of dyslipidemia and demyelination, cholesterol biosynthesis gene expression, composition of the body's major lipid repositories and Paigen diet-induced, systemic hypercholesterolemia were examined in Theiler's murine encephalomyelitis (TME) using histology, immunohistochemistry, serum clinical chemistry, microarrays and high-performance thin layer chromatography. TME-virus (TMEV)-infected mice showed progressive loss of motor performance and demyelinating leukomyelitis. Gene expression associated with cholesterol biosynthesis was overall down-regulated in the spinal cord of TMEV-infected animals. Spinal cord levels of galactocerebroside and sphingomyelin were reduced on day 196 post TMEV infection. Paigen diet induced serum hypercholesterolemia and hepatic lipidosis. However, high dietary fat and cholesterol intake led to no significant differences in clinical course, inflammatory response, astrocytosis, and the amount of demyelination and remyelination in the spinal cord of TMEV-infected animals. The results suggest that down-regulation of cholesterol biosynthesis is a transcriptional marker for demyelination, quantitative loss of myelin-specific lipids, but not cholesterol occurs late in chronic demyelination, and serum hypercholesterolemia exhibited no significant effect on TMEV infection. © 2015 International Society of Neuropathology.

  15. [Bone homeostasis and Mechano biology.

    Science.gov (United States)

    Nakashima, Tomoki

    The weight-bearing exercises help to build bones and to maintain them strength. Bone is constantly renewed by the balanced action of osteoblastic bone formation and osteoclastic bone resorption both of which mainly occur at the bone surface. This restructuring process called "bone remodeling" is important not only for normal bone mass and strength, but also for mineral homeostasis. Bone remodeling is stringently regulated by communication between bone component cells such as osteoclasts, osteoblasts and osteocytes. An imbalance of this process is often linked to various bone diseases. During bone remodeling, resorption by osteoclasts precedes bone formation by osteoblasts. Based on the osteocyte location within the bone matrix and the cellular morphology, it is proposed that osteocytes potentially contribute to the regulation of bone remodeling in response to mechanical and endocrine stimuli.

  16. Biogenesis of plasma membrane cholesterol

    International Nuclear Information System (INIS)

    Lange, Y.

    1986-01-01

    A striking feature of the molecular organization of eukaryotic cells is the singular enrichment of their plasma membranes in sterols. The authors studies are directed at elucidating the mechanisms underlying this inhomogeneous disposition. Cholesterol oxidase catalyzes the oxidation of plasma membrane cholesterol in intact cells, leaving intracellular cholesterol pools untouched. With this technique, the plasma membrane was shown to contain 95% of the unesterified cholesterol of cultured human fibroblasts. Cholesterol synthesized from [ 3 H] acetate moved to the plasma membrane with a half-time of 1 h at 37 0 C. They used equilibrium gradient centrifugation of homogenates of biosynthetically labeled, cholesterol oxidase treated cells to examine the distribution of newly synthesized sterols among intracellular pools. Surprisingly, lanosterol, a major precursor of cholesterol, and intracellular cholesterol both peaked at much lower buoyant density than did 3-hydroxy-3-methylglutaryl-CoA reductase. This suggests that cholesterol biosynthesis is not taken to completion in the endoplasmic reticulum. The cholesterol in the buoyant fraction eventually moved to the plasma membrane. Digitonin treatment increased the density of the newly synthesized cholesterol fractions, indicating that nascent cholesterol in transit is associated with cholesterol-rich membranes. The authors are testing the hypothesis that the pathway of cholesterol biosynthesis is spatially organized in various intracellular membranes such that the sequence of biosynthetic steps both concentrates the sterol and conveys it to the plasma membrane

  17. Cholesterol Perturbation in Mice Results in p53 Degradation and Axonal Pathology through p38 MAPK and Mdm2 Activation.

    Directory of Open Access Journals (Sweden)

    Qingyu Qin

    Full Text Available Perturbation of lipid metabolism, especially of cholesterol homeostasis, can be catastrophic to mammalian brain, as it has the highest level of cholesterol in the body. This notion is best illustrated by the severe progressive neurodegeneration in Niemann-Pick Type C (NPC disease, one of the lysosomal storage diseases, caused by mutations in the NPC1 or NPC2 gene. In this study, we found that growth cone collapse induced by genetic or pharmacological disruption of cholesterol egress from late endosomes/lysosomes was directly related to a decrease in axonal and growth cone levels of the phosphorylated form of the tumor suppressor factor p53. Cholesterol perturbation-induced growth cone collapse and decrease in phosphorylated p53 were reduced by inhibition of p38 mitogen-activated protein kinase (MAPK and murine double minute (Mdm2 E3 ligase. Growth cone collapse induced by genetic (npc1-/- or pharmacological modification of cholesterol metabolism was Rho kinase (ROCK-dependent and associated with increased RhoA protein synthesis; both processes were significantly reduced by P38 MAPK or Mdm2 inhibition. Finally, in vivo ROCK inhibition significantly increased phosphorylated p53 levels and neurofilaments in axons, and axonal bundle size in npc1-/- mice. These results indicate that NPC-related and cholesterol perturbation-induced axonal pathology is associated with an abnormal signaling pathway consisting in p38 MAPK activation leading to Mdm2-mediated p53 degradation, followed by ROCK activation. These results also suggest new targets for pharmacological treatment of NPC disease and other diseases associated with disruption of cholesterol metabolism.

  18. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  19. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Directory of Open Access Journals (Sweden)

    Natalia Gustavsson

    Full Text Available BACKGROUND: Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. METHODOLOGY/PRINCIPAL FINDINGS: In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. CONCLUSIONS: Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  20. Neuronal calcium sensor synaptotagmin-9 is not involved in the regulation of glucose homeostasis or insulin secretion.

    Science.gov (United States)

    Gustavsson, Natalia; Wang, Xiaorui; Wang, Yue; Seah, Tingting; Xu, Jun; Radda, George K; Südhof, Thomas C; Han, Weiping

    2010-11-09

    Insulin secretion is a complex and highly regulated process. It is well established that cytoplasmic calcium is a key regulator of insulin secretion, but how elevated intracellular calcium triggers insulin granule exocytosis remains unclear, and we have only begun to define the identities of proteins that are responsible for sensing calcium changes and for transmitting the calcium signal to release machineries. Synaptotagmins are primarily expressed in brain and endocrine cells and exhibit diverse calcium binding properties. Synaptotagmin-1, -2 and -9 are calcium sensors for fast neurotransmitter release in respective brain regions, while synaptotagmin-7 is a positive regulator of calcium-dependent insulin release. Unlike the three neuronal calcium sensors, whose deletion abolished fast neurotransmitter release, synaptotagmin-7 deletion resulted in only partial loss of calcium-dependent insulin secretion, thus suggesting that other calcium-sensors must participate in the regulation of insulin secretion. Of the other synaptotagmin isoforms that are present in pancreatic islets, the neuronal calcium sensor synaptotagmin-9 is expressed at the highest level after synaptotagmin-7. In this study we tested whether synaptotagmin-9 participates in the regulation of glucose-stimulated insulin release by using pancreas-specific synaptotagmin-9 knockout (p-S9X) mice. Deletion of synaptotagmin-9 in the pancreas resulted in no changes in glucose homeostasis or body weight. Glucose tolerance, and insulin secretion in vivo and from isolated islets were not affected in the p-S9X mice. Single-cell capacitance measurements showed no difference in insulin granule exocytosis between p-S9X and control mice. Thus, synaptotagmin-9, although a major calcium sensor in the brain, is not involved in the regulation of glucose-stimulated insulin release from pancreatic β-cells.

  1. Setting sail for glucose homeostasis with the AKAP150-PP2B-anchor.

    Science.gov (United States)

    Teo, Adrian Kee Keong; Kulkarni, Rohit N

    2012-10-17

    Glucose-stimulated insulin secretion, controlled by multiple protein phosphorylation events, is critical for the regulation of glucose homeostasis. Protein kinase A (PKA) is known to play a role in β cell physiology, but the role of its anchoring protein is not fully understood. Hinke et al (2012) illustrate the significance of A-kinase anchoring protein 150 in tethering protein phosphatase 2B to mediate nutrient-stimulated insulin secretion and thus modulate glucose homeostasis.

  2. Deletion of Lkb1 in Pro-Opiomelanocortin Neurons Impairs Peripheral Glucose Homeostasis in Mice

    Science.gov (United States)

    Claret, Marc; Smith, Mark A.; Knauf, Claude; Al-Qassab, Hind; Woods, Angela; Heslegrave, Amanda; Piipari, Kaisa; Emmanuel, Julian J.; Colom, André; Valet, Philippe; Cani, Patrice D.; Begum, Ghazala; White, Anne; Mucket, Phillip; Peters, Marco; Mizuno, Keiko; Batterham, Rachel L.; Giese, K. Peter; Ashworth, Alan; Burcelin, Remy; Ashford, Michael L.; Carling, David; Withers, Dominic J.

    2011-01-01

    OBJECTIVE AMP-activated protein kinase (AMPK) signaling acts as a sensor of nutrients and hormones in the hypothalamus, thereby regulating whole-body energy homeostasis. Deletion of Ampkα2 in pro-opiomelanocortin (POMC) neurons causes obesity and defective neuronal glucose sensing. LKB1, the Peutz-Jeghers syndrome gene product, and Ca2+-calmodulin–dependent protein kinase kinase β (CaMKKβ) are key upstream activators of AMPK. This study aimed to determine their role in POMC neurons upon energy and glucose homeostasis regulation. RESEARCH DESIGN AND METHODS Mice lacking either Camkkβ or Lkb1 in POMC neurons were generated, and physiological, electrophysiological, and molecular biology studies were performed. RESULTS Deletion of Camkkβ in POMC neurons does not alter energy homeostasis or glucose metabolism. In contrast, female mice lacking Lkb1 in POMC neurons (PomcLkb1KO) display glucose intolerance, insulin resistance, impaired suppression of hepatic glucose production, and altered expression of hepatic metabolic genes. The underlying cellular defect in PomcLkb1KO mice involves a reduction in melanocortin tone caused by decreased α-melanocyte–stimulating hormone secretion. However, Lkb1-deficient POMC neurons showed normal glucose sensing, and body weight was unchanged in PomcLkb1KO mice. CONCLUSIONS Our findings demonstrate that LKB1 in hypothalamic POMC neurons plays a key role in the central regulation of peripheral glucose metabolism but not body-weight control. This phenotype contrasts with that seen in mice lacking AMPK in POMC neurons with defects in body-weight regulation but not glucose homeostasis, which suggests that LKB1 plays additional functions distinct from activating AMPK in POMC neurons. PMID:21266325

  3. Regulation of dendritic cell development by GM-CSF: molecular control and implications for immune homeostasis and therapy.

    Science.gov (United States)

    van de Laar, Lianne; Coffer, Paul J; Woltman, Andrea M

    2012-04-12

    Dendritic cells (DCs) represent a small and heterogeneous fraction of the hematopoietic system, specialized in antigen capture, processing, and presentation. The different DC subsets act as sentinels throughout the body and perform a key role in the induction of immunogenic as well as tolerogenic immune responses. Because of their limited lifespan, continuous replenishment of DC is required. Whereas the importance of GM-CSF in regulating DC homeostasis has long been underestimated, this cytokine is currently considered a critical factor for DC development under both steady-state and inflammatory conditions. Regulation of cellular actions by GM-CSF depends on the activation of intracellular signaling modules, including JAK/STAT, MAPK, PI3K, and canonical NF-κB. By directing the activity of transcription factors and other cellular effector proteins, these pathways influence differentiation, survival and/or proliferation of uncommitted hematopoietic progenitors, and DC subset-specific precursors, thereby contributing to specific aspects of DC subset development. The specific intracellular events resulting from GM-CSF-induced signaling provide a molecular explanation for GM-CSF-dependent subset distribution as well as clues to the specific characteristics and functions of GM-CSF-differentiated DCs compared with DCs generated by fms-related tyrosine kinase 3 ligand. This knowledge can be used to identify therapeutic targets to improve GM-CSF-dependent DC-based strategies to regulate immunity.

  4. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    Science.gov (United States)

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases. © 2014 médecine/sciences – Inserm.

  5. Coordinated zinc homeostasis is essential for the wild-type virulence of Brucella abortus.

    Science.gov (United States)

    Sheehan, Lauren M; Budnick, James A; Roop, R Martin; Caswell, Clayton C

    2015-05-01

    Metal homeostasis in bacterial cells is a highly regulated process requiring intricately coordinated import and export, as well as precise sensing of intracellular metal concentrations. The uptake of zinc (Zn) has been linked to the virulence of Brucella abortus; however, the capacity of Brucella strains to sense Zn levels and subsequently coordinate Zn homeostasis has not been described. Here, we show that expression of the genes encoding the zinc uptake system ZnuABC is negatively regulated by the Zn-sensing Fur family transcriptional regulator, Zur, by direct interactions between Zur and the promoter region of znuABC. Moreover, the MerR-type regulator, ZntR, controls the expression of the gene encoding the Zn exporter ZntA by binding directly to its promoter. Deletion of zur or zntR alone did not result in increased zinc toxicity in the corresponding mutants; however, deletion of zntA led to increased sensitivity to Zn but not to other metals, such as Cu and Ni, suggesting that ZntA is a Zn-specific exporter. Strikingly, deletion of zntR resulted in significant attenuation of B. abortus in a mouse model of chronic infection, and subsequent experiments revealed that overexpression of zntA in the zntR mutant is the molecular basis for its decreased virulence. The importance of zinc uptake for Brucella pathogenesis has been demonstrated previously, but to date, there has been no description of how overall zinc homeostasis is maintained and genetically controlled in the brucellae. The present work defines the predominant zinc export system, as well as the key genetic regulators of both zinc uptake and export in Brucella abortus. Moreover, the data show the importance of precise coordination of the zinc homeostasis systems as disregulation of some elements of these systems leads to the attenuation of Brucella virulence in a mouse model. Overall, this study advances our understanding of the essential role of zinc in the pathogenesis of intracellular bacteria

  6. Sleep duration and sleep quality are associated differently with alterations of glucose homeostasis

    DEFF Research Database (Denmark)

    Byberg, Stine; Hansen, Anne-Louise Smidt; Christensen, Dirk Lund

    2012-01-01

    Abstract Aims  Studies suggest that inadequate sleep duration and poor sleep quality increase the risk of impaired glucose regulation and diabetes. However, associations with specific markers of glucose homeostasis are less well explained. The objective of this study was to explore possible...... associations of sleep duration and sleep quality with markers of glucose homeostasis and glucose tolerance status in a healthy population-based study sample. Methods  The study comprised 771 participants from the Danish, population-based cross-sectional ‘Health2008’ study. Sleep duration and sleep quality were...... measured by self-report. Markers of glucose homeostasis were derived from a 3-point oral glucose tolerance test and included fasting plasma glucose, 2-h plasma glucose, HbA1c, two measures of insulin sensitivity (the insulin sensitivity index0,120 and homeostasis model assessment of insulin sensitivity...

  7. Bile acid sequestrants

    DEFF Research Database (Denmark)

    Hansen, Morten; Sonne, David P; Knop, Filip K

    2014-01-01

    Bile acids are synthesized in the liver from cholesterol and have traditionally been recognized for their role in absorption of lipids and in cholesterol homeostasis. In recent years, however, bile acids have emerged as metabolic signaling molecules that are involved in the regulation of lipid...... and glucose metabolism, and possibly energy homeostasis, through activation of the bile acid receptors farnesoid X receptor (FXR) and TGR5. Bile acid sequestrants (BASs) constitute a class of drugs that bind bile acids in the intestine to form a nonabsorbable complex resulting in interruption...... of the enterohepatic circulation. This increases bile acid synthesis and consequently reduces serum low-density lipoprotein cholesterol. Also, BASs improve glycemic control in patients with type 2 diabetes. Despite a growing understanding of the impact of BASs on glucose metabolism, the mechanisms behind their glucose...

  8. Endogenous Vascular Endothelial Growth Factor-A (VEGF-A) Maintains Endothelial Cell Homeostasis by Regulating VEGF Receptor-2 Transcription*

    Science.gov (United States)

    E, Guangqi; Cao, Ying; Bhattacharya, Santanu; Dutta, Shamit; Wang, Enfeng; Mukhopadhyay, Debabrata

    2012-01-01

    Vascular endothelial growth factor A (VEGF-A) is one of the most important factors controlling angiogenesis. Although the functions of exogenous VEGF-A have been widely studied, the roles of endogenous VEGF-A remain unclear. Here we focused on the mechanistic functions of endogenous VEGF-A in endothelial cells. We found that it is complexed with VEGF receptor 2 (VEGFR-2) and maintains a basal expression level for VEGFR-2 and its downstream signaling activation. Endogenous VEGF-A also controls expression of key endothelial specific genes including VEGFR-2, Tie-2, and vascular endothelial cadherin. Of importance, endogenous VEGF-A differs from exogenous VEGF-A by regulating VEGFR-2 transcription through mediation of FoxC2 binding to the FOX:ETS motif, and the complex formed by endogenous VEGF-A with VEGFR-2 is localized within the EEA1 (early endosome antigen 1) endosomal compartment. Taken together, our results emphasize the importance of endogenous VEGF-A in endothelial cells by regulating key vascular proteins and maintaining the endothelial homeostasis. PMID:22167188

  9. Unfolded Protein Response-regulated Drosophila Fic (dFic) Protein Reversibly AMPylates BiP Chaperone during Endoplasmic Reticulum Homeostasis*

    Science.gov (United States)

    Ham, Hyeilin; Woolery, Andrew R.; Tracy, Charles; Stenesen, Drew; Krämer, Helmut; Orth, Kim

    2014-01-01

    Drosophila Fic (dFic) mediates AMPylation, a covalent attachment of adenosine monophosphate (AMP) from ATP to hydroxyl side chains of protein substrates. Here, we identified the endoplasmic reticulum (ER) chaperone BiP as a substrate for dFic and mapped the modification site to Thr-366 within the ATPase domain. The level of AMPylated BiP in Drosophila S2 cells is high during homeostasis, whereas the level of AMPylated BiP decreases upon the accumulation of misfolded proteins in the ER. Both dFic and BiP are transcriptionally activated upon ER stress, supporting the role of dFic in the unfolded protein response pathway. The inactive conformation of BiP is the preferred substrate for dFic, thus endorsing a model whereby AMPylation regulates the function of BiP as a chaperone, allowing acute activation of BiP by deAMPylation during an ER stress response. These findings not only present the first substrate of eukaryotic AMPylator but also provide a target for regulating the unfolded protein response, an emerging avenue for cancer therapy. PMID:25395623

  10. Beneficial Autoimmunity at Body Surfaces – Immune Surveillance and Rapid Type 2 Immunity Regulate Tissue Homeostasis and Cancer

    Science.gov (United States)

    Dalessandri, Tim; Strid, Jessica

    2014-01-01

    Epithelial cells (ECs) line body surface tissues and provide a physicochemical barrier to the external environment. Frequent microbial and non-microbial challenges such as those imposed by mechanical disruption, injury or exposure to noxious environmental substances including chemicals, carcinogens, ultraviolet-irradiation, or toxins cause activation of ECs with release of cytokines and chemokines as well as alterations in the expression of cell-surface ligands. Such display of epithelial stress is rapidly sensed by tissue-resident immunocytes, which can directly interact with self-moieties on ECs and initiate both local and systemic immune responses. ECs are thus key drivers of immune surveillance at body surface tissues. However, ECs have a propensity to drive type 2 immunity (rather than type 1) upon non-invasive challenge or stress – a type of immunity whose regulation and function still remain enigmatic. Here, we review the induction and possible role of type 2 immunity in epithelial tissues and propose that rapid immune surveillance and type 2 immunity are key regulators of tissue homeostasis and carcinogenesis. PMID:25101088

  11. The Arachidonic Acid Metabolome Serves as a Conserved Regulator of Cholesterol Metabolism

    NARCIS (Netherlands)

    Demetz, Egon; Schroll, Andrea; Auer, Kristina; Heim, Christiane; Patsch, Josef R.; Eller, Philipp; Theurl, Markus; Theurl, Igor; Theurl, Milan; Seifert, Markus; Lener, Daniela; Stanzl, Ursula; Haschka, David; Asshoff, Malte; Dichtl, Stefanie; Nairz, Manfred; Huber, Eva; Stadlinger, Martin; Moschen, Alexander R.; Li, Xiaorong; Pallweber, Petra; Scharnagl, Hubert; Stojakovic, Tatjana; Maerz, Winfried; Kleber, Marcus E.; Garlaschelli, Katia; Uboldi, Patrizia; Catapano, Alberico L.; Stellaard, Frans; Rudling, Mats; Kuba, Keiji; Imai, Yumiko; Arita, Makoto; Schuetz, John D.; Pramstaller, Peter P.; Tietge, Uwe J. F.; Trauner, Michael; Norata, Giuseppe D.; Claudel, Thierry; Hicks, Andrew A.; Weiss, Guenter; Tancevski, Ivan

    2014-01-01

    Cholesterol metabolism is closely interrelated with cardiovascular disease in humans. Dietary supplementation with omega-6 polyunsaturated fatty acids including arachidonic acid (AA) was shown to favorably affect plasma LDL-C and HDL-C. However, the underlying mechanisms are poorly understood. By

  12. Reelin secreted by GABAergic neurons regulates glutamate receptor homeostasis.

    Directory of Open Access Journals (Sweden)

    Cecilia Gonzalez Campo

    that reelin is a trans-neuronal messenger secreted by GABAergic neurons that regulates NMDARs homeostasis in postnatal hippocampus. Defects in reelin secretion could play a major role in the development of neuropsychiatric disorders, particularly those associated with deregulation of NMDARs such as schizophrenia.

  13. TMEM199 Deficiency Is a Disorder of Golgi Homeostasis Characterized by Elevated Aminotransferases, Alkaline Phosphatase, and Cholesterol and Abnormal Glycosylation

    NARCIS (Netherlands)

    Jansen, Jos C.; Timal, Sharita; van Scherpenzeel, Monique; Michelakakis, Helen; Vicogne, Dorothée; Ashikov, Angel; Moraitou, Marina; Hoischen, Alexander; Huijben, Karin; Steenbergen, Gerry; van den Boogert, Marjolein A. W.; Porta, Francesco; Calvo, Pier Luigi; Mavrikou, Mersyni; Cenacchi, Giovanna; van den Bogaart, Geert; Salomon, Jody; Holleboom, Adriaan G.; Rodenburg, Richard J.; Drenth, Joost P. H.; Huynen, Martijn A.; Wevers, Ron A.; Morava, Eva; Foulquier, François; Veltman, Joris A.; Lefeber, Dirk J.

    2016-01-01

    Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously

  14. Gastrointestinal Transit Time, Glucose Homeostasis and Metabolic Health: Modulation by Dietary Fibers.

    Science.gov (United States)

    Müller, Mattea; Canfora, Emanuel E; Blaak, Ellen E

    2018-02-28

    Gastrointestinal transit time may be an important determinant of glucose homeostasis and metabolic health through effects on nutrient absorption and microbial composition, among other mechanisms. Modulation of gastrointestinal transit may be one of the mechanisms underlying the beneficial health effects of dietary fibers. These effects include improved glucose homeostasis and a reduced risk of developing metabolic diseases such as obesity and type 2 diabetes mellitus. In this review, we first discuss the regulation of gastric emptying rate, small intestinal transit and colonic transit as well as their relation to glucose homeostasis and metabolic health. Subsequently, we briefly address the reported health effects of different dietary fibers and discuss to what extent the fiber-induced health benefits may be mediated through modulation of gastrointestinal transit.

  15. Role of FAT/CD36 in fatty acid sensing, energy, and glucose homeostasis regulation in DIO and DR rats.

    Science.gov (United States)

    Le Foll, Christelle; Dunn-Meynell, Ambrose A; Levin, Barry E

    2015-02-01

    Hypothalamic fatty acid (FA) sensing neurons alter their activity utilizing the FA translocator/receptor, FAT/CD36. Depletion of ventromedial hypothalamus (VMH) CD36 with adeno-associated viral vector expressing CD36 shRNA (AAV CD36 shRNA) leads to redistribution of adipose stores and insulin resistance in outbred rats. This study assessed the requirement of VMH CD36-mediated FA sensing for the regulation of energy and glucose homeostasis in postnatal day 5 (P5) and P21 selectively bred diet-induced obese (DIO) and diet-resistant (DR) rats using VMH AAV CD36 shRNA injections. P5 CD36 depletion altered VMH neuronal FA sensing predominantly in DIO rats. After 10 wk on a 45% fat diet, DIO rats injected with VMH AAV CD36 shRNA at P21 ate more and gained more weight than DIO AAV controls, while DR AAV CD36 shRNA-injected rats gained less weight than DR AAV controls. VMH CD36 depletion increased inguinal fat pad weights and leptin levels in DIO and DR rats. Although DR AAV CD36 shRNA-injected rats became as obese as DIO AAV controls, only DIO control and CD36 depleted rats became insulin-resistant on a 45% fat diet. VMH CD36 depletion stunted linear growth in DIO and DR rats. DIO rats injected with AAV CD36 shRNA at P5 had increased fat mass, mostly due to a 45% increase in subcutaneous fat. They were also insulin-resistant with an associated 71% increase of liver triglycerides. These results demonstrate that VMH CD36-mediated FA sensing is a critical factor in the regulation of energy and glucose homeostasis and fat deposition in DIO and DR rats.

  16. Ursodeoxycholic acid lowers bile lithogenicity by regulating SCP2 expression in rabbit cholesterol gallstone models

    Science.gov (United States)

    Cui, Yunfeng; Li, Zhonglian; Zhao, Erpeng; Zhang, Ju; Cui, Naiqiang

    2012-01-01

    Aims: We designed this study to get insight into the disorder of lipid metabolism during cholesterol gallstone formation and evaluate the effect of ursodeoxycholic acid on the improvement of bile lithogenicity and on expression of lipid related genes. Methods: Rabbit cholesterol gallstone models were induced by high cholesterol diet. Bile, blood and liver tissues were obtained from rabbits after 0, 1, 2, 3, 4 and 5 weeks. Bile and blood lipids were measured enzymatically. 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGCR), cytochrome P450, family 7, subfamily A, polypeptide 1 (CYP7A1) and sterol carrier protein 2 (SCP2) mRNA expressions were detected by using quantitative real-time RT-PCR. Cholesterol saturation index (CSI) was calculated by using Carey table to represent the bile lithogenicity. Results: Rates of gallstone formation of the 4 and 5 week treatment groups were 100 %, but that of the ursodeoxycholic acid treatment group was only 33.3 %. Expression of HMGCR and SCP2 mRNA in the 4 week group was upregulated and that of CYP7A1 mRNA decreased as compared with the 0 week group. Ursodeoxycholic acid could significantly extend nucleation time of bile and lower CSI. Ursodeoxycholic acid could reduce the expression of SCP2, but couldn't influence expression of HMGCR and CYP7A1. Conclusions: Abnormal expression of HMGCR, CYP7A1 and SCP2 might lead to high lithogenicity of bile. Ursodeoxycholic acid could improve bile lipids and lower bile lithogenicity, thereby reducing the incidence of gallstones. So it might be a good preventive drug for cholesterol gallstones. PMID:27847447

  17. Regulation of CD4+ T-Cell Function by Membrane Cholesterol

    Science.gov (United States)

    2012-03-13

    and intracellular synthesis [Lehoux et al 1985]. Early studies using in vivo administration of radio-labeled squalene, a late cholesterol...mice expressing the HA of PR8/A/34 influenza virus in the pancreatic -cells (RAG2 KO, RIP-PR8/HA Tg mice) leads to fulminate autoimmune diabetes within...transgenic mouse model in which infusion of influenza PR8/HA-specific T-effector cells (from a TCR- PR8/HA Tg mouse) induces fulminate diabetes, we found

  18. Effect of hypocholesterolemia on cholesterol synthesis in small intestine of diabetic rats

    International Nuclear Information System (INIS)

    Feingold, K.R.; Moser, A.H.

    1987-01-01

    Studies by our and other laboratories have demonstrated that cholesterol synthesis is increased in the small intestine of insulinopenic diabetic animals. In normal animals, many factors have been shown to regulate cholesterol synthesis in the small intestine, including changes in plasma cholesterol levels. The purpose of this study was to determine the effect of lowering plasma cholesterol levels on small intestine cholesterol synthesis in streptozocin-induced diabetic rats. In diabetic rats, 4-aminopyrazolo[3,4-d]pyrimidine (4-APP)-induced hypocholesterolemia (plasma cholesterol levels less than 20 mg/dl) resulted in a 2.5-fold increase in small intestine cholesterol synthesis, which was most marked in the distal small intestine, decreasing proximally. In the distal small intestine the incorporation of 3 H 2 O into cholesterol was 0.28 +/- 0.04 mumol.h-1.g-1 in diabetic rats versus 1.60 +/- 0.38 in diabetic rats administered 4-APP (P less than .01). This stimulation of cholesterol synthesis occurred in the upper villus, middle villus, and crypt cells isolated from the middle intestine of the 4-APP-treated diabetic animals. In agreement with these observations, functional hypocholesterolemia due to Triton WR-1339 administration also stimulated cholesterol synthesis 2.5-fold in the small intestine of normal and diabetic animals. In the distal small intestine, cholesterol synthesis was 0.43 +/- 0.10 mumol.h-1.g-1 in the diabetic rats versus 1.08 +/- 0.21 in diabetic rats treated with Triton WR-1339 (P less than .05). In both the 4-APP and Triton WR-1339 experiments, the response of the diabetic rats was similar to that observed in normal rats

  19. Tongue and Taste Organ Biology and Function: Homeostasis Maintained by Hedgehog Signaling.

    Science.gov (United States)

    Mistretta, Charlotte M; Kumari, Archana

    2017-02-10

    The tongue is an elaborate complex of heterogeneous tissues with taste organs of diverse embryonic origins. The lingual taste organs are papillae, composed of an epithelium that includes specialized taste buds, the basal lamina, and a lamina propria core with matrix molecules, fibroblasts, nerves, and vessels. Because taste organs are dynamic in cell biology and sensory function, homeostasis requires tight regulation in specific compartments or niches. Recently, the Hedgehog (Hh) pathway has emerged as an essential regulator that maintains lingual taste papillae, taste bud and progenitor cell proliferation and differentiation, and neurophysiological function. Activating or suppressing Hh signaling, with genetic models or pharmacological agents used in cancer treatments, disrupts taste papilla and taste bud integrity and can eliminate responses from taste nerves to chemical stimuli but not to touch or temperature. Understanding Hh regulation of taste organ homeostasis contributes knowledge about the basic biology underlying taste disruptions in patients treated with Hh pathway inhibitors.

  20. The Xenobiotic Transporter Mdr1 Enforces T Cell Homeostasis in the Presence of Intestinal Bile Acids.

    Science.gov (United States)

    Cao, Wei; Kayama, Hisako; Chen, Mei Lan; Delmas, Amber; Sun, Amy; Kim, Sang Yong; Rangarajan, Erumbi S; McKevitt, Kelly; Beck, Amanda P; Jackson, Cody B; Crynen, Gogce; Oikonomopoulos, Angelos; Lacey, Precious N; Martinez, Gustavo J; Izard, Tina; Lorenz, Robin G; Rodriguez-Palacios, Alex; Cominelli, Fabio; Abreu, Maria T; Hommes, Daniel W; Koralov, Sergei B; Takeda, Kiyoshi; Sundrud, Mark S

    2017-12-19

    CD4 + T cells are tightly regulated by microbiota in the intestine, but whether intestinal T cells interface with host-derived metabolites is less clear. Here, we show that CD4 + T effector (Teff) cells upregulated the xenobiotic transporter, Mdr1, in the ileum to maintain homeostasis in the presence of bile acids. Whereas wild-type Teff cells upregulated Mdr1 in the ileum, those lacking Mdr1 displayed mucosal dysfunction and induced Crohn's disease-like ileitis following transfer into Rag1 -/- hosts. Mdr1 mitigated oxidative stress and enforced homeostasis in Teff cells exposed to conjugated bile acids (CBAs), a class of liver-derived emulsifying agents that actively circulate through the ileal mucosa. Blocking ileal CBA reabsorption in transferred Rag1 -/- mice restored Mdr1-deficient Teff cell homeostasis and attenuated ileitis. Further, a subset of ileal Crohn's disease patients displayed MDR1 loss of function. Together, these results suggest that coordinated interaction between mucosal Teff cells and CBAs in the ileum regulate intestinal immune homeostasis. Copyright © 2017 Elsevier Inc. All rights reserved.