WorldWideScience

Sample records for regulates cardiomyocyte growth

  1. Regulation of cardiomyocyte autophagy by calcium.

    Science.gov (United States)

    Shaikh, Soni; Troncoso, Rodrigo; Criollo, Alfredo; Bravo-Sagua, Roberto; García, Lorena; Morselli, Eugenia; Cifuentes, Mariana; Quest, Andrew F G; Hill, Joseph A; Lavandero, Sergio

    2016-04-15

    Calcium signaling plays a crucial role in a multitude of events within the cardiomyocyte, including cell cycle control, growth, apoptosis, and autophagy. With respect to calcium-dependent regulation of autophagy, ion channels and exchangers, receptors, and intracellular mediators play fundamental roles. In this review, we discuss calcium-dependent regulation of cardiomyocyte autophagy, a lysosomal mechanism that is often cytoprotective, serving to defend against disease-related stress and nutrient insufficiency. We also highlight the importance of the subcellular distribution of calcium and related proteins, interorganelle communication, and other key signaling events that govern cardiomyocyte autophagy. Copyright © 2016 the American Physiological Society.

  2. Innervating sympathetic neurons regulate heart size and the timing of cardiomyocyte cell cycle withdrawal.

    Science.gov (United States)

    Kreipke, R E; Birren, S J

    2015-12-01

    Sympathetic drive to the heart is a key modulator of cardiac function and interactions between heart tissue and innervating sympathetic fibres are established early in development. Significant innervation takes place during postnatal heart development, a period when cardiomyocytes undergo a rapid transition from proliferative to hypertrophic growth. The question of whether these innervating sympathetic fibres play a role in regulating the modes of cardiomyocyte growth was investigated using 6-hydroxydopamine (6-OHDA) to abolish early sympathetic innervation of the heart. Postnatal chemical sympathectomy resulted in rats with smaller hearts, indicating that heart growth is regulated by innervating sympathetic fibres during the postnatal period. In vitro experiments showed that sympathetic interactions resulted in delays in markers of cardiomyocyte maturation, suggesting that changes in the timing of the transition from hyperplastic to hypertrophic growth of cardiomyocytes could underlie changes in heart size in the sympathectomized animals. There was also an increase in the expression of Meis1, which has been linked to cardiomyocyte cell cycle withdrawal, suggesting that sympathetic signalling suppresses cell cycle withdrawal. This signalling involves β-adrenergic activation, which was necessary for sympathetic regulation of cardiomyocyte proliferation and hypertrophy. The effect of β-adrenergic signalling on cardiomyocyte hypertrophy underwent a developmental transition. While young postnatal cardiomyocytes responded to isoproterenol (isoprenaline) with a decrease in cell size, mature cardiomyocytes showed an increase in cell size in response to the drug. Together, these results suggest that early sympathetic effects on proliferation modulate a key transition between proliferative and hypertrophic growth of the heart and contribute to the sympathetic regulation of adult heart size. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  3. Doxorubicin impairs the insulin-like growth factor-1 system and causes insulin-like growth factor-1 resistance in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Patrizia Fabbi

    Full Text Available Insulin-like growth factor-1 (IGF-1 promotes the survival of cardiomyocytes by activating type 1 IGF receptor (IGF-1R. Within the myocardium, IGF-1 action is modulated by IGF binding protein-3 (IGFBP-3, which sequesters IGF-1 away from IGF-1R. Since cardiomyocyte apoptosis is implicated in anthracycline cardiotoxicity, we investigated the effects of the anthracycline, doxorubicin, on the IGF-1 system in H9c2 cardiomyocytes.Besides inducing apoptosis, concentrations of doxorubicin comparable to those observed in patients after bolus infusion (0.1-1 µM caused a progressive decrease in IGF-1R and increase in IGFBP-3 expression. Exogenous IGF-1 was capable to rescue cardiomyocytes from apoptosis triggered by 0.1 and 0.5 µM, but not 1 µM doxorubicin. The loss of response to IGF-1 was paralleled by a significant reduction in IGF-1 availability and signaling, as assessed by free hormone levels in conditioned media and Akt phosphorylation in cell lysates, respectively. Doxorubicin also dose-dependently induced p53, which is known to repress the transcription of IGF1R and induce that of IGFBP3. Pre-treatment with the p53 inhibitor, pifithrin-α, prevented apoptosis and the changes in IGF-1R and IGFBP-3 elicited by doxorubicin. The decrease in IGF-1R and increase in IGFBP-3, as well as apoptosis, were also antagonized by pre-treatment with the antioxidant agents, N-acetylcysteine, dexrazoxane, and carvedilol.Doxorubicin down-regulates IGF-1R and up-regulates IGFBP-3 via p53 and oxidative stress in H9c2 cells. This leads to resistance to IGF-1 that may contribute to doxorubicin-initiated apoptosis. Further studies are needed to confirm these findings in human cardiomyocytes and explore the possibility of manipulating the IGF-1 axis to protect against anthracycline cardiotoxicity.

  4. Effect of hepatocyte growth factor and angiotensin II on rat cardiomyocyte hypertrophy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ai-Lan [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Ou, Cai-Wen [The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); He, Zhao-Chu [Department of Cardiology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou (China); Liu, Qi-Cai [Experimental Medical Research Center, Guangzhou Medical University, Guangzhou (China); Dong, Qi [Department of Physiology, Guangzhou Medical University, Guangzhou (China); Chen, Min-Sheng [Guangzhou Key Laboratory of Cardiovascular Disease, Guangzhou Institute of Cardiovascular Disease, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou (China)

    2012-10-15

    Angiotensin II (Ang II) plays an important role in cardiomyocyte hypertrophy. The combined effect of hepatocyte growth factor (HGF) and Ang II on cardiomyocytes is unknown. The present study was designed to determine the effect of HGF on cardiomyocyte hypertrophy and to explore the combined effect of HGF and Ang II on cardiomyocyte hypertrophy. Primary cardiomyocytes were isolated from neonatal rat hearts and cultured in vitro. Cells were treated with Ang II (1 µM) alone, HGF (10 ng/mL) alone, and Ang II (1 µM) plus HGF (10 ng/mL) for 24, 48, and 72 h. The amount of [{sup 3}H]-leucine incorporation was then measured to evaluate protein synthesis. The mRNA levels of β-myosin heavy chain and atrial natriuretic factor were determined by real-time PCR to evaluate the presence of fetal phenotypes of gene expression. The cell size of cardiomyocytes was also studied. Ang II (1 µM) increased cardiomyocyte hypertrophy. Similar to Ang II, treatment with 1 µM HGF promoted cardiomyocyte hypertrophy. Moreover, the combination of 1 µM Ang II and 10 ng/mL HGF clearly induced a combined pro-hypertrophy effect on cardiomyocytes. The present study demonstrates for the first time a novel, combined effect of HGF and Ang II in promoting cardiomyocyte hypertrophy.

  5. Atrial natriuretic peptide regulates Ca channel in early developmental cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Lin Miao

    Full Text Available BACKGROUND: Cardiomyocytes derived from murine embryonic stem (ES cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP in regulation of membrane potentials and Ca(2+ currents has not been investigated in developmental cardiomyocytes. METHODOLOGY/PRINCIPAL FINDINGS: We investigated the role of ANP in regulating L-type Ca(2+ channel current (I(CaL in different developmental stages of cardiomyocytes derived from ES cells. ANP decreased the frequency of action potentials (APs in early developmental stage (EDS cardiomyocytes, embryonic bodies (EB as well as whole embryo hearts. ANP exerted an inhibitory effect on basal I(CaL in about 70% EDS cardiomyocytes tested but only in about 30% late developmental stage (LDS cells. However, after stimulation of I(CaL by isoproterenol (ISO in LDS cells, ANP inhibited the response in about 70% cells. The depression of I(CaL induced by ANP was not affected by either Nomega, Nitro-L-Arginine methyl ester (L-NAME, a nitric oxide synthetase (NOS inhibitor, or KT5823, a cGMP-dependent protein kinase (PKG selective inhibitor, in either EDS and LDS cells; whereas depression of I(CaL by ANP was entirely abolished by erythro-9-(2-Hydroxy-3-nonyl adenine (EHNA, a selective inhibitor of type 2 phosphodiesterase(PDE2 in most cells tested. CONCLUSION/SIGNIFICANCES: Taken together, these results indicate that ANP induced depression of action potentials and I(CaL is due to activation of particulate guanylyl cyclase (GC, cGMP production and cGMP-activation of PDE2 mediated depression of adenosine 3', 5'-cyclic monophophate (cAMP-cAMP-dependent protein kinase (PKA in early cardiomyogenesis.

  6. Exposure to rosiglitazone, a PPAR-γ agonist, in late gestation reduces the abundance of factors regulating cardiac metabolism and cardiomyocyte size in the sheep fetus.

    Science.gov (United States)

    Lie, Shervi; Hui, Melisa; McMillen, I Caroline; Muhlhausler, Beverly S; Posterino, Giuseppe S; Dunn, Stacey L; Wang, Kimberley C; Botting, Kimberley J; Morrison, Janna L

    2014-03-15

    It is unknown whether cardiomyocyte hypertrophy and the transition to fatty acid oxidation as the main source of energy after birth is dependent on the maturation of the cardiomyocytes' metabolic system, or on the limitation of substrate availability before birth. This study aimed to investigate whether intrafetal administration of a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, rosiglitazone, during late gestation can stimulate the expression of factors regulating cardiac growth and metabolism in preparation for birth, and the consequences of cardiac contractility in the fetal sheep at ∼140 days gestation. The mRNA expression and protein abundance of key factors regulating growth and metabolism were quantified using quantitative RT-PCR and Western blot analysis, respectively. Cardiac contractility was determined by measuring the Ca(2+) sensitivity and maximum Ca(2+)-activated force of skinned cardiomyocyte bundles. Rosiglitazone-treated fetuses had a lower cardiac abundance of insulin-signaling molecules, including insulin receptor-β, insulin receptor substrate-1 (IRS-1), phospho-IRS-1 (Tyr-895), phosphatidylinositol 3-kinase (PI3K) regulatory subunit p85, PI3K catalytic subunit p110α, phospho-3-phosphoinositide-dependent protein kinase 1 (Ser-241), protein kinase B (Akt-1), phospho-Akt (Ser-273), PKCζ, phospho-PKCζ(Thr-410), Akt substrate 160 kDa (AS160), phospho-AS160 (Thr-642), and glucose transporter type-4. Additionally, cardiac abundance of regulators of fatty acid β-oxidation, including adiponectin receptor 1, AMPKα, phospho-AMPKα (Thr-172), phospho-acetyl CoA carboxylase (Ser-79), carnitine palmitoyltransferase-1, and PGC-1α was lower in the rosiglitazone-treated group. Rosiglitazone administration also resulted in a decrease in cardiomyocyte size. Rosiglitazone administration in the late-gestation sheep fetus resulted in a decreased abundance of factors regulating cardiac glucose uptake, fatty acid β-oxidation, and

  7. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    Science.gov (United States)

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Predictive model identifies key network regulators of cardiomyocyte mechano-signaling.

    Directory of Open Access Journals (Sweden)

    Philip M Tan

    2017-11-01

    Full Text Available Mechanical strain is a potent stimulus for growth and remodeling in cells. Although many pathways have been implicated in stretch-induced remodeling, the control structures by which signals from distinct mechano-sensors are integrated to modulate hypertrophy and gene expression in cardiomyocytes remain unclear. Here, we constructed and validated a predictive computational model of the cardiac mechano-signaling network in order to elucidate the mechanisms underlying signal integration. The model identifies calcium, actin, Ras, Raf1, PI3K, and JAK as key regulators of cardiac mechano-signaling and characterizes crosstalk logic imparting differential control of transcription by AT1R, integrins, and calcium channels. We find that while these regulators maintain mostly independent control over distinct groups of transcription factors, synergy between multiple pathways is necessary to activate all the transcription factors necessary for gene transcription and hypertrophy. We also identify a PKG-dependent mechanism by which valsartan/sacubitril, a combination drug recently approved for treating heart failure, inhibits stretch-induced hypertrophy, and predict further efficacious pairs of drug targets in the network through a network-wide combinatorial search.

  9. Passage-restricted differentiation potential of mesenchymal stem cells into cardiomyocyte-like cells

    International Nuclear Information System (INIS)

    Zhang Fabao; Li Li; Fang Bo; Zhu Dingliang; Yang Huangtian; Gao Pingjin

    2005-01-01

    Mesenchymal stem cells (MSCs) have limited ability to differentiate into cardiomyocytes and the factors affect this process are not fully understood. In this study, we investigated the passage (P)-related transdifferentiation potential of MSCs into cardiomyocyte-like cells and its relationship to the proliferation ability. After 5-azacytidine treatment, only P4 but not P1 and P8 rat bone marrow MSCs (rMSCs) showed formation of myotube and expressed cardiomyocyte-associated markers. The growth property analysis showed P4 rMSCs had a growth-arrest appearance, while P1 and P8 rMSCs displayed an exponential growth pattern. When the rapid proliferation of P1 and P8 rMSCs was inhibited by 5-bromo-2-deoxyuridine, a mitosis inhibitor, only P1, not P8 rMSCs, differentiated into cardiomyocyte-like cells after 5-azacytidine treatment. These results demonstrate that the differentiation ability of rMSCs into cardiomyocytes is in proliferation ability-dependent and passage-restricted patterns. These findings reveal a novel regulation on the transdifferentiation of MSCs and provide useful information for exploiting the clinical therapeutic potential of MSCs

  10. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells

    Directory of Open Access Journals (Sweden)

    Can Chen

    2018-01-01

    Full Text Available Stem cell transplantation is one of most valuable methods in the treatment of myocardial infarction, and adipose-derived stem cells (ASCs are becoming a hot topic in medical research. Previous studies have shown that ASCs can be differentiated into cardiomyocyte-like cells, but the efficiency and survival rates are low. We investigated the role and mechanism of microRNA-1 (miR-1 in the differentiation of ASCs into cardiomyocyte-like cells. ASCs and cardiomyocytes were isolated from neonatal rats. We constructed lentivirus for overexpressing miR-1 and used DAPT, an antagonist of the Notch1 pathway, for in vitro analyses. We performed cocultures with ASCs and cardiomyocytes. The differentiation efficiency of ASCs was detected by cell-specific surface antigens. Our results showed that miR-1 can promote the expression of Notch1 and reduce the expression of Hes1, a Notch pathway factor, and overexpression of miR-1 can promote the differentiation of ASCs into cardiomyocyte-like cells, which may occur by regulating Notch1 and Hes1.

  11. Sildenafil prevents the up-regulation of transient receptor potential canonical channels in the development of cardiomyocyte hypertrophy

    International Nuclear Information System (INIS)

    Kiso, Hironori; Ohba, Takayoshi; Iino, Kenji; Sato, Kazuhiro; Terata, Yutaka; Murakami, Manabu; Ono, Kyoichi; Watanabe, Hiroyuki; Ito, Hiroshi

    2013-01-01

    Highlights: •Transient receptor potential canonical (TRPC1, 3 and 6) are up-regulated by ET-1. •Sildenafil inhibited hypertrophic responses (BNP, Ca entry, NFAT activation). •Sildenafil suppressed TRPC1, 3 and 6 expression. -- Abstract: Background: Transient receptor potential canonical (TRPCs) channels are up-regulated in the development of cardiac hypertrophy. Sildenafil inhibits TRPC6 activation and expression, leading to the prevention of cardiac hypertrophy. However, the effects of sildenafil on the expression of other TRPCs remain unknown. We hypothesized that in addition to its effects of TRPC6, sildenafil blocks the up-regulation of other TRPC channels to suppress cardiomyocyte hypertrophy. Methods and results: In cultured neonatal rat cardiomyocytes, a 48 h treatment with 10 nM endothelin (ET)-1 induced hypertrophic responses characterized by nuclear factor of activated T cells activation and enhancement of brain natriuretic peptide expression and cell surface area. Co-treatment with sildenafil (1 μM, 48 h) inhibited these ET-1-induced hypertrophic responses. Although ET-1 enhanced the gene expression of TRPCs, sildenafil inhibited the enhanced gene expression of TRPC1, C3 and C6. Moreover, co-treatment with sildenafil abolished the augmentation of SOCE in the hypertrophied cardiomyocytes. Conclusions: These results suggest that sildenafil inhibits cardiomyocyte hypertrophy by suppressing the up-regulation of TRPC expression

  12. SIRT1 Functions as an Important Regulator of Estrogen-Mediated Cardiomyocyte Protection in Angiotensin II-Induced Heart Hypertrophy

    Directory of Open Access Journals (Sweden)

    Tao Shen

    2014-01-01

    Full Text Available Background. Sirtuin 1 (SIRT1 is a member of the sirtuin family, which could activate cell survival machinery and has been shown to be protective in regulation of heart function. Here, we determined the mechanism by which SIRT1 regulates Angiotensin II- (AngII- induced cardiac hypertrophy and injury in vivo and in vitro. Methods. We analyzed SIRT1 expression in the hearts of control and AngII-induced mouse hypertrophy. Female C57BL/6 mice were ovariectomized and pretreated with 17β-estradiol to measure SIRT1 expression. Protein synthesis, cardiomyocyte surface area analysis, qRT-PCR, TUNEL staining, and Western blot were performed on AngII-induced mouse heart hypertrophy samples and cultured neonatal rat ventricular myocytes (NRVMs to investigate the function of SIRT1. Results. SIRT1 expression was slightly upregulated in AngII-induced mouse heart hypertrophy in vivo and in vitro, accompanied by elevated cardiomyocyte apoptosis. SIRT1 overexpression relieves AngII-induced cardiomyocyte hypertrophy and apoptosis. 17β-Estradiol was able to protect cardiomyocytes from AngII-induced injury with a profound upregulation of SIRT1 and activation of AMPK. Moreover, estrogen receptor inhibitor ICI 182,780 and SIRT1 inhibitor niacinamide could block SIRT1’s protective effect. Conclusions. These results indicate that SIRT1 functions as an important regulator of estrogen-mediated cardiomyocyte protection during AngII-induced heart hypertrophy and injury.

  13. Microtubular stability affects pVHL-mediated regulation of HIF-1alpha via the p38/MAPK pathway in hypoxic cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Miao Teng

    Full Text Available BACKGROUND: Our previous research found that structural changes of the microtubule network influence glycolysis in cardiomyocytes by regulating the hypoxia-inducible factor (HIF-1α during the early stages of hypoxia. However, little is known about the underlying regulatory mechanism of the changes of HIF-1α caused by microtubule network alternation. The von Hippel-Lindau tumor suppressor protein (pVHL, as a ubiquitin ligase, is best understood as a negative regulator of HIF-1α. METHODOLOGY/PRINCIPAL FINDINGS: In primary rat cardiomyocytes and H9c2 cardiac cells, microtubule-stabilization was achieved by pretreating with paclitaxel or transfection of microtubule-associated protein 4 (MAP4 overexpression plasmids and microtubule-depolymerization was achieved by pretreating with colchicine or transfection of MAP4 siRNA before hypoxia treatment. Recombinant adenovirus vectors for overexpressing pVHL or silencing of pVHL expression were constructed and transfected in primary rat cardiomyocytes and H9c2 cells. With different microtubule-stabilizing and -depolymerizing treaments, we demonstrated that the protein levels of HIF-1α were down-regulated through overexpression of pVHL and were up-regulated through knockdown of pVHL in hypoxic cardiomyocytes. Importantly, microtubular structure breakdown activated p38/MAPK pathway, accompanied with the upregulation of pVHL. In coincidence, we found that SB203580, a p38/MAPK inhibitor decreased pVHL while MKK6 (Glu overexpression increased pVHL in the microtubule network altered-hypoxic cardiomyocytes and H9c2 cells. CONCLUSIONS/SIGNIFICANCE: This study suggests that pVHL plays an important role in the regulation of HIF-1α caused by the changes of microtubular structure and the p38/MAPK pathway participates in the process of pVHL change following microtubule network alteration in hypoxic cardiomyocytes.

  14. Axin1 up-regulated 1 accelerates stress-induced cardiomyocytes apoptosis through activating Wnt/β-catenin signaling.

    Science.gov (United States)

    Ye, Xing; Lin, Junyi; Lin, Zebin; Xue, Aimin; Li, Liliang; Zhao, Ziqin; Liu, Li; Shen, Yiwen; Cong, Bin

    2017-10-15

    Stress-induced cardiomyocyte apoptosis contributes to the pathogenesis of a variety of cardiovascular diseases, but how stress induces cardiomyocyte apoptosis remains largely unclear. The present study aims to investigate the effects of Axin1 up-regulated 1 (Axud1), a novel pro-apoptotic protein, on the cardiomyocyte survival and the underlying mechanisms. To this end, a rat model under restraint stress (RS) was established and in vitro stress-induced cardiomyocytes culture was achieved. Our data showed that Axud1 was upregulated in the rat myocardia after exposure to RS. Anti-apoptotic Bcl-2 was decreased, whereas pro-apoptotic Bax and Cleaved caspase-3 (Cc3) were increased in a time-dependent manner. The Wnt/β-catenin signaling was observed to be interestingly activated in heart undergoing RS. In addition, the treatment of norepinephrine (NE) to in vitro cardiomyocytes increased Axud1 level and induced cell apoptosis. Wnt/β-catenin signaling was consistently activated. Knockdown of Axud1 using specific siRNA blunted NE-induced cardiomyocytes apoptosis and also inactivated the Wnt/β-catenin signaling. XAV-939, an inhibitor of Wnt/β-catenin signaling, partially reversed the pro-apoptotic effect of NE. In conclusion, Axud1 accelerated stress-induced cardiomyocytes apoptosis through activation of Wnt/β-catenin signaling pathway. Our data provided novel evidence that therapeutic strategies against Axud1 or Wnt/β-catenin signaling might be promising in relation to RS-induced myocardial injury. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Cardiomyocyte hypertrophy induced by Endonuclease G deficiency requires reactive oxygen radicals accumulation and is inhibitable by the micropeptide humanin.

    Science.gov (United States)

    Blasco, Natividad; Cámara, Yolanda; Núñez, Estefanía; Beà, Aida; Barés, Gisel; Forné, Carles; Ruíz-Meana, Marisol; Girón, Cristina; Barba, Ignasi; García-Arumí, Elena; García-Dorado, David; Vázquez, Jesús; Martí, Ramon; Llovera, Marta; Sanchis, Daniel

    2018-06-01

    The endonuclease G gene (Endog), which codes for a mitochondrial nuclease, was identified as a determinant of cardiac hypertrophy. How ENDOG controls cardiomyocyte growth is still unknown. Thus, we aimed at finding the link between ENDOG activity and cardiomyocyte growth. Endog deficiency induced reactive oxygen species (ROS) accumulation and abnormal growth in neonatal rodent cardiomyocytes, altering the AKT-GSK3β and Class-II histone deacethylases (HDAC) signal transduction pathways. These effects were blocked by ROS scavengers. Lack of ENDOG reduced mitochondrial DNA (mtDNA) replication independently of ROS accumulation. Because mtDNA encodes several subunits of the mitochondrial electron transport chain, whose activity is an important source of cellular ROS, we investigated whether Endog deficiency compromised the expression and activity of the respiratory chain complexes but found no changes in these parameters nor in ATP content. MtDNA also codes for humanin, a micropeptide with possible metabolic functions. Nanomolar concentrations of synthetic humanin restored normal ROS levels and cell size in Endog-deficient cardiomyocytes. These results support the involvement of redox signaling in the control of cardiomyocyte growth by ENDOG and suggest a pathway relating mtDNA content to the regulation of cell growth probably involving humanin, which prevents reactive oxygen radicals accumulation and hypertrophy induced by Endog deficiency. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rui Xiang

    2012-02-01

    Full Text Available MicroRNAs (miRNAs have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92 cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2 is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  17. The miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation of mouse embryonic cardiomyocytes.

    Science.gov (United States)

    Xiang, Rui; Lei, Han; Chen, Mianzhi; Li, Qinwei; Sun, Huan; Ai, Jianzhong; Chen, Tielin; Wang, Honglian; Fang, Yin; Zhou, Qin

    2012-02-01

    MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3' untranslated regions (3'UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3'UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3'UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

  18. Fractalkine depresses cardiomyocyte contractility.

    Directory of Open Access Journals (Sweden)

    David Taube

    Full Text Available Our laboratory reported that male mice with cardiomyocyte-selective knockout of the prostaglandin E2 EP4 receptor sub-type (EP4 KO exhibit reduced cardiac function. Gene array on left ventricles (LV showed increased fractalkine, a chemokine implicated in heart failure. We therefore hypothesized that fractalkine is regulated by PGE2 and contributes to depressed contractility via alterations in intracellular calcium.Fractalkine was measured in LV of 28-32 week old male EP4 KO and wild type controls (WT by ELISA and the effect of PGE2 on fractalkine secretion was measured in cultured neonatal cardiomyocytes and fibroblasts. The effect of fractalkine on contractility and intracellular calcium was determined in Fura-2 AM-loaded, electrical field-paced cardiomyocytes. Cardiomyocytes (AVM from male C57Bl/6 mice were treated with fractalkine and responses measured under basal conditions and after isoproterenol (Iso stimulation.LV fractalkine was increased in EP4 KO mice but surprisingly, PGE2 regulated fractalkine secretion only in fibroblasts. Fractalkine treatment of AVM decreased both the speed of contraction and relaxation under basal conditions and after Iso stimulation. Despite reducing contractility after Iso stimulation, fractalkine increased the Ca(2+ transient amplitude but decreased phosphorylation of cardiac troponin I, suggesting direct effects on the contractile machinery.Fractalkine depresses myocyte contractility by mechanisms downstream of intracellular calcium.

  19. 17β-Estradiol-induced interaction of ERα with NPPA regulates gene expression in cardiomyocytes.

    Science.gov (United States)

    Mahmoodzadeh, Shokoufeh; Pham, Thi Hang; Kuehne, Arne; Fielitz, Britta; Dworatzek, Elke; Kararigas, Georgios; Petrov, George; Davidson, Mercy M; Regitz-Zagrosek, Vera

    2012-12-01

    17β-Oestradiol (E2) and its receptors (ERα and ERβ) are important regulators of physiological and pathological processes in the cardiovascular system. ER act in concert with other regulatory factors mediating oestrogenic effects. However, the underlying mechanisms modulating ER transcriptional activity are not fully elucidated. To gain better understanding of E2-induced ERα action in the human heart, we aimed to identify and functionally analyse interaction partners of ERα. Using yeast two-hybrid assays with a human heart cDNA library, we identified atrial natriuretic peptide precursor A (NPPA), a well-known cardiac hypertrophy marker, as a novel ERα interaction partner interacting in an E2-dependent manner. Mutation analyses and immunofluorescence data indicated that the LXXLL motif within NPPA is necessary for its E2-induced interaction with ERα, its action as a co-repressor of ERα, and its translocation into the nucleus of human and rat cardiomyocytes. Expression analysis and chromatin immunoprecipitation assays in a human left ventricular cardiomyocyte cell line, AC16, showed that NPPA interacts with E2/ERα, suppressing the transcriptional activity of ERα on E2-target genes, such as NPPA, connexin43, αactinin-2, nuclear factor of activated T-cells, and collagens I and III. We characterize for the first time an E2-regulated interaction of NPPA with ERα in cardiomyocytes, that may be crucial in physiological and/or pathological cardiac processes, thereby representing a potential therapeutic target.

  20. Renal hypertension prevents run training modification of cardiomyocyte diastolic Ca2+ regulation in male rats.

    Science.gov (United States)

    Palmer, B M; Lynch, J M; Snyder, S M; Moore, R L

    2001-06-01

    The combined effects of endurance run training and renal hypertension on cytosolic Ca2+ concentration ([Ca2+]c) dynamics and Na+-dependent Ca2+ regulation in rat left ventricular cardiomyocytes were examined. Male Fischer 344 rats underwent stenosis of the left renal artery [hypertensive (Ht), n = 18] or a sham operation [normotensive (Nt), n = 20]. One-half of the rats from each group were treadmill trained for >16 wk. Cardiomyocyte fura 2 fluorescence ratio transients were recorded for 7 min during electrical pacing at 0.5 Hz, 2 mM extracellular Ca2+ concentration, and 29 degrees C. The rate of [Ca2+]c decline was not changed by run training in the Nt group but was reduced in the Ht group. At 7 min, cardiomyocytes were exposed to 10 mM caffeine in the absence of Na+ and Ca2+, which triggered sarcoplasmic reticular Ca2+ release and suppressed Ca2+ efflux via Na+/Ca2+ exchanger. External Na+ was then added, and Na+-dependent Ca2+ efflux rate was recorded. Treadmill training significantly enhanced Na+-dependent Ca2+ efflux rate under these conditions in the Nt group but not in the Ht group. These data provide evidence that renal hypertension prevents the normal run training-induced modifications in diastolic [Ca2+]c regulation mechanisms, including Na+/Ca2+ exchanger.

  1. Prostanoid Receptors Involved in Regulation of the Beating Rate of Neonatal Rat Cardiomyocytes

    Science.gov (United States)

    Mechiche, Hakima; Grassin-Delyle, Stanislas; Robinet, Arnaud; Nazeyrollas, Pierre; Devillier, Philippe

    2012-01-01

    Although prostanoids are known to be involved in regulation of the spontaneous beating rate of cultured neonatal rat cardiomyocytes, the various subtypes of prostanoid receptors have not been investigated in detail. In our experiments, prostaglandin (PG)F2α and prostanoid FP receptor agonists (fluprostenol, latanoprost and cloprostenol) produced a decrease in the beating rate. Two prostanoid IP receptor agonists (iloprost and beraprost) induced first a marked drop in the beating rate and then definitive abrogation of beating. In contrast, the prostanoid DP receptor agonists (PGD2 and BW245C) and TP receptor agonists (U-46619) produced increases in the beating rate. Sulprostone (a prostanoid EP1 and EP3 receptor agonist) induced marked increases in the beating rate, which were suppressed by SC-19220 (a selective prostanoid EP1 antagonist). Butaprost (a selective prostanoid EP2 receptor agonist), misoprostol (a prostanoid EP2 and EP3 receptor agonist), 11-deoxy-PGE1 (a prostanoid EP2, EP3 and EP4 receptor agonist) did not alter the beating rate. Our results strongly suggest that prostanoid EP1 receptors are involved in positive regulation of the beating rate. Prostanoid EP1 receptor expression was confirmed by western blotting with a selective antibody. Hence, neonatal rat cardiomyocytes express both prostanoid IP and FP receptors (which negatively regulate the spontaneous beating rate) and prostanoid TP, DP1 and EP1 receptors (which positively regulate the spontaneous beating rate). PMID:22984630

  2. Nerves Regulate Cardiomyocyte Proliferation and Heart Regeneration.

    Science.gov (United States)

    Mahmoud, Ahmed I; O'Meara, Caitlin C; Gemberling, Matthew; Zhao, Long; Bryant, Donald M; Zheng, Ruimao; Gannon, Joseph B; Cai, Lei; Choi, Wen-Yee; Egnaczyk, Gregory F; Burns, Caroline E; Burns, C Geoffrey; MacRae, Calum A; Poss, Kenneth D; Lee, Richard T

    2015-08-24

    Some organisms, such as adult zebrafish and newborn mice, have the capacity to regenerate heart tissue following injury. Unraveling the mechanisms of heart regeneration is fundamental to understanding why regeneration fails in adult humans. Numerous studies have revealed that nerves are crucial for organ regeneration, thus we aimed to determine whether nerves guide heart regeneration. Here, we show using transgenic zebrafish that inhibition of cardiac innervation leads to reduction of myocyte proliferation following injury. Specifically, pharmacological inhibition of cholinergic nerve function reduces cardiomyocyte proliferation in the injured hearts of both zebrafish and neonatal mice. Direct mechanical denervation impairs heart regeneration in neonatal mice, which was rescued by the administration of neuregulin 1 (NRG1) and nerve growth factor (NGF) recombinant proteins. Transcriptional analysis of mechanically denervated hearts revealed a blunted inflammatory and immune response following injury. These findings demonstrate that nerve function is required for both zebrafish and mouse heart regeneration. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Growth hormone secretagogues protect mouse cardiomyocytes from in vitro ischemia/reperfusion injury through regulation of intracellular calcium.

    Directory of Open Access Journals (Sweden)

    Yi Ma

    Full Text Available BACKGROUND: Ischemic heart disease is a leading cause of mortality. To study this disease, ischemia/reperfusion (I/R models are widely used to mimic the process of transient blockage and subsequent recovery of cardiac coronary blood supply. We aimed to determine whether the presence of the growth hormone secretagogues, ghrelin and hexarelin, would protect/improve the function of heart from I/R injury and to examine the underlying mechanisms. METHODOLOGY/PRINCIPAL FINDINGS: Isolated hearts from adult male mice underwent 20 min global ischemia and 30 min reperfusion using a Langendorff apparatus. Ghrelin (10 nM or hexarelin (1 nM was introduced into the perfusion system either 10 min before or after ischemia, termed pre- and post-treatments. In freshly isolated cardiomyocytes from these hearts, single cell shortening, intracellular calcium ([Ca(2+](i transients and caffeine-releasable sarcoplasmic reticulum (SR Ca(2+ were measured. In addition, RT-PCR and Western blots were used to examine the expression level of GHS receptor type 1a (GHS-R1a, and phosphorylated phospholamban (p-PLB, respectively. Ghrelin and hexarelin pre- or post-treatments prevented the significant reduction in the cell shortening, [Ca(2+](i transient amplitude and caffeine-releasable SR Ca(2+ content after I/R through recovery of p-PLB. GHS-R1a antagonists, [D-Lys3]-GHRP-6 (200 nM and BIM28163 (100 nM, completely blocked the effects of GHS on both cell shortening and [Ca(2+](i transients. CONCLUSION/SIGNIFICANCE: Through activation of GHS-R1a, ghrelin and hexarelin produced a positive inotropic effect on ischemic cardiomyocytes and protected them from I/R injury probably by protecting or recovering p-PLB (and therefore SR Ca(2+ content to allow the maintenance or recovery of normal cardiac contractility. These observations provide supporting evidence for the potential therapeutic application of ghrelin and hexarelin in patients with cardiac I/R injury.

  4. Cardiomyocyte Regeneration

    Directory of Open Access Journals (Sweden)

    Toshio Nakanishi

    2013-01-01

    Full Text Available The heart was initially believed to be a terminally differentiated organ; once the cardiomyocytes died, no recovery could be made to replace the dead cells. However, around a decade ago, the concept of cardiac stem cells (CSCs in adult hearts was proposed. CSCs differentiate into cardiomyocytes, keeping the heart functioning. Studies have proved the existence of stem cells in the heart. These somatic stem cells have been studied for use in cardiac regeneration. Moreover, recently, induced pluripotent stem cells (iPSCs were invented, and methodologies have now been developed to induce stable cardiomyocyte differentiation and purification of mature cardiomyocytes. A reprogramming method has also been applied to direct reprogramming using cardiac fibroblasts into cardiomyocytes. Here, we address cardiomyocyte differentiation of CSCs and iPSCs. Furthermore, we describe the potential of CSCs in regenerative biology and regenerative medicine.

  5. FOG-2 mediated recruitment of the NuRD complex regulates cardiomyocyte proliferation during heart development.

    Science.gov (United States)

    Garnatz, Audrey S; Gao, Zhiguang; Broman, Michael; Martens, Spencer; Earley, Judy U; Svensson, Eric C

    2014-11-01

    FOG-2 is a multi-zinc finger protein that binds the transcriptional activator GATA4 and modulates GATA4-mediated regulation of target genes during heart development. Our previous work has demonstrated that the Nucleosome Remodeling and Deacetylase (NuRD) complex physically interacts with FOG-2 and is necessary for FOG-2 mediated repression of GATA4 activity in vitro. However, the relevance of this interaction for FOG-2 function in vivo has remained unclear. In this report, we demonstrate the importance of FOG-2/NuRD interaction through the generation and characterization of mice homozygous for a mutation in FOG-2 that disrupts NuRD binding (FOG-2(R3K5A)). These mice exhibit a perinatal lethality and have multiple cardiac malformations, including ventricular and atrial septal defects and a thin ventricular myocardium. To investigate the etiology of the thin myocardium, we measured the rate of cardiomyocyte proliferation in wild-type and FOG-2(R3K5A) developing hearts. We found cardiomyocyte proliferation was reduced by 31±8% in FOG-2(R3K5A) mice. Gene expression analysis indicated that the cell cycle inhibitor Cdkn1a (p21(cip1)) is up-regulated 2.0±0.2-fold in FOG-2(R3K5A) hearts. In addition, we demonstrate that FOG-2 can directly repress the activity of the Cdkn1a gene promoter, suggesting a model by which FOG-2/NuRD promotes ventricular wall thickening by repression of this cell cycle inhibitor. Consistent with this notion, the genetic ablation of Cdkn1a in FOG-2(R3K5A) mice leads to an improvement in left ventricular function and a partial rescue of left ventricular wall thickness. Taken together, our results define a novel mechanism in which FOG-2/NuRD interaction is required for cardiomyocyte proliferation by directly down-regulating the cell cycle inhibitor Cdkn1a during heart development. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Up-regulation of miR-26a promotes apoptosis of hypoxic rat neonatal cardiomyocytes by repressing GSK-3β protein expression.

    Science.gov (United States)

    Suh, Jong Hui; Choi, Eunmi; Cha, Min-Ji; Song, Byeong-Wook; Ham, Onju; Lee, Se-Yeon; Yoon, Cheesoon; Lee, Chang-Yeon; Park, Jun-Hee; Lee, Sun Hee; Hwang, Ki-Chul

    2012-06-29

    Myocardial ischemia is the major cause of morbidity and mortality due to cardiovascular diseases. This disease is a severe stress condition that causes extensive biochemical changes which trigger cardiac cell death. Stress conditions such as deprivation of glucose and oxygen activate the endoplasmic reticulum in the cytoplasm of cells, including cardiomyocytes, to generate and propagate apoptotic signals in response to these conditions. microRNAs (miRNAs) are a class of small non-coding RNAs that mediate posttranscriptional gene silencing. The miRNAs play important roles in regulating cardiac physiological and pathological events such as hypertrophy, apoptosis, and heart failure. However, the roles of miRNAs in reactive oxygen species (ROS)-mediated injury on cardiomyocytes are uncertain. In this study, we identified at the apoptotic concentration of H(2)O(2), miR-26a expression was increased. To determine the potential roles of miR-26a in H(2)O(2)-mediated cardiac apoptosis, miR-26a expression was regulated by a miR-26a or an anti-miR-26a. Overexpression of miR-26a increased apoptosis as determined by upregulation of Annexin V/PI positive cell population, caspase-3 activity and expression of pro-apoptotic signal molecules, whereas inhibition of miR-26a reduced apoptosis. We identified GSK3B as a direct downstream target of miR-26a. Furthermore, miR-26a attenuated viability and increased caspase-3 activity in normal cardiomyocytes. This study demonstrates that miR-26a promotes ROS-induced apoptosis in cardiomyocytes. Thus, miR-26a affects ROS-mediated gene regulation and cellular injury response. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    Science.gov (United States)

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis

    2017-01-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746

  8. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    Directory of Open Access Journals (Sweden)

    Melisa Gomez-Velazquez

    2017-08-01

    Full Text Available Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  9. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.

    Science.gov (United States)

    Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel

    2017-08-01

    Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.

  10. The Role of Sulfur Dioxide in the Regulation of Mitochondrion-Related Cardiomyocyte Apoptosis in Rats with Isopropylarterenol-Induced Myocardial Injury

    Directory of Open Access Journals (Sweden)

    Junbao Du

    2013-05-01

    Full Text Available The authors investigated the regulatory effects of sulfur dioxide (SO2 on myocardial injury induced by isopropylarterenol (ISO hydrochloride and its mechanisms. Wistar rats were divided into four groups: control group, ISO group, ISO plus SO2 group, and SO2 only group. Cardiac function was measured and cardiomyocyte apoptosis was detected. Bcl-2, bax and cytochrome c (cytc expressions, and caspase-9 and caspase-3 activities in the left ventricular tissues were examined in the rats. The opening status of myocardial mitochondrial permeability transition pore (MPTP and membrane potential were analyzed. The results showed that ISO-treated rats developed heart dysfunction and cardiac injury. Furthermore, cardiomyocyte apoptosis in the left ventricular tissues was augmented, left ventricular tissue bcl-2 expression was down-regulated, bax expression was up-regulated, mitochondrial membrane potential was significantly reduced, MPTP opened, cytc release from mitochondrion into cytoplasm was significantly increased, and both caspase-9 and caspase-3 activities were increased. Administration of an SO2 donor, however, markedly improved heart function and relieved myocardial injury of the ISO-treated rats; it lessened cardiomyocyte apoptosis, up-regulated myocardial bcl-2, down-regulated bax expression, stimulated mitochondrial membrane potential, closed MPTP, and reduced cytc release as well as caspase-9 and caspase-3 activities in the left ventricular tissue. Hence, SO2 attenuated myocardial injury in association with the inhibition of apoptosis in myocardial tissues, and the bcl-2/cytc/caspase-9/caspase-3 pathway was possibly involved in this process.

  11. [Expression of connective tissue growth factor in cardiomyocyte of young rats with heart failure and benazepril intervention].

    Science.gov (United States)

    Zhang, Qin; Yi, Qi-jian; Qian, Yong-ru; Li, Rong; Deng, Bing; Wang, Qiao

    2006-10-01

    Ventricular remodeling is an important pathologic progress in almost all end stage heart failure (HF), and it is characterized by ventricular thickening and cardiac fibrosis with poor prognosis. The connective tissue growth factor (CTGF), a new growth factor with multi-function, has an important role in fibrosis of tissue and organs. It has been demonstrated that angiotensin-converting enzyme inhibitor (ACEI) can prevent the development of cardiomyocyte from remodeling and improve cardiac function. Researchers try to test the hypothesis that cardiac function improvement attributable to ACEI is associated with inhibiting expression of CTGF in patients with HF. The aim of this study was to observe changes in CTGF expression in cardiomyocyte of young rats with HF and effect of benazepril on CTGF. The animal model of HF was established by constriction of abdominal aorta. Five weeks old rats were randomly divided into 3 groups after 6 weeks of operation: (1) HF group without treatment (n = 15); (2) HF group where rats were treated with benazepril (n = 15); (3) sham-operated group (n = 15) where rats were administered benazepril through direct gastric gavage. After 4 weeks of treatment, the high frequency ultrasound was performed. The expression of CTGF was detected by immunohistochemistry and semi-quantative reverse transcription-polymerase chain reaction. Compared with the sham-operated group, left ventricular diastolic dimension (LVEDD), left ventricular systolic dimension (LVESD), interventricular septal thickness at end-diastole (IVSTd), interventricular septal thickness at end-systole (IVSTs), left ventricular posterior wall thickness at end-diastole (LVPWTd), left ventricular posterior wall thickness at end-systole (LVPWTs), left ventricular relative weight (LVRW), and right ventricular relative weight (RVRW) were all increased (P benazepril when compared with HF group without treatment. LVESD, IVSTd, IVSTs, LVPWTd, LVPWTs, LVRW and RVRW were higher (P benazepril

  12. Rapamycin and CHIR99021 Coordinate Robust Cardiomyocyte Differentiation From Human Pluripotent Stem Cells Via Reducing p53-Dependent Apoptosis.

    Science.gov (United States)

    Qiu, Xiao-Xu; Liu, Yang; Zhang, Yi-Fan; Guan, Ya-Na; Jia, Qian-Qian; Wang, Chen; Liang, He; Li, Yong-Qin; Yang, Huang-Tian; Qin, Yong-Wen; Huang, Shuang; Zhao, Xian-Xian; Jing, Qing

    2017-10-02

    Cardiomyocytes differentiated from human pluripotent stem cells can serve as an unexhausted source for a cellular cardiac disease model. Although small molecule-mediated cardiomyocyte differentiation methods have been established, the differentiation efficiency is relatively unsatisfactory in multiple lines due to line-to-line variation. Additionally, hurdles including line-specific low expression of endogenous growth factors and the high apoptotic tendency of human pluripotent stem cells also need to be overcome to establish robust and efficient cardiomyocyte differentiation. We used the H9-human cardiac troponin T-eGFP reporter cell line to screen for small molecules that promote cardiac differentiation in a monolayer-based and growth factor-free differentiation model. We found that collaterally treating human pluripotent stem cells with rapamycin and CHIR99021 during the initial stage was essential for efficient and reliable cardiomyocyte differentiation. Moreover, this method maintained consistency in efficiency across different human embryonic stem cell and human induced pluripotent stem cell lines without specifically optimizing multiple parameters (the efficiency in H7, H9, and UQ1 human induced pluripotent stem cells is 98.3%, 93.3%, and 90.6%, respectively). This combination also increased the yield of cardiomyocytes (1:24) and at the same time reduced medium consumption by about 50% when compared with the previous protocols. Further analysis indicated that inhibition of the mammalian target of rapamycin allows efficient cardiomyocyte differentiation through overcoming p53-dependent apoptosis of human pluripotent stem cells during high-density monolayer culture via blunting p53 translation and mitochondrial reactive oxygen species production. We have demonstrated that mammalian target of rapamycin exerts a stage-specific and multifaceted regulation over cardiac differentiation and provides an optimized approach for generating large numbers of functional

  13. Distinctive Roles of Canonical and Noncanonical Wnt Signaling in Human Embryonic Cardiomyocyte Development

    Directory of Open Access Journals (Sweden)

    Silvia Mazzotta

    2016-10-01

    Full Text Available Wnt signaling is a key regulator of vertebrate heart development; however, specific roles for human cardiomyocyte development remain uncertain. Here we use human embryonic stem cells (hESCs to analyze systematically in human cardiomyocyte development the expression of endogenous Wnt signaling components, monitor pathway activity, and dissect stage-specific requirements for canonical and noncanonical Wnt signaling mechanisms using small-molecule inhibitors. Our analysis suggests that WNT3 and WNT8A, via FZD7 and canonical signaling, regulate BRACHYURY expression and mesoderm induction; that WNT5A/5B, via ROR2 and noncanonical signaling, regulate MESP1 expression and cardiovascular development; and that later in development WNT2, WNT5A/5B, and WNT11, via FZD4 and FZD6, regulate functional cardiomyocyte differentiation via noncanonical Wnt signaling. Our findings confirm in human development previously proposed roles for canonical Wnt signaling in sequential stages of vertebrate cardiomyogenesis, and identify more precise roles for noncanonical signaling and for individual Wnt signal and Wnt receptor genes in human cardiomyocyte development.

  14. Mena associates with Rac1 and modulates connexin 43 remodeling in cardiomyocytes.

    Science.gov (United States)

    Ram, Rashmi; Wescott, Andrew P; Varandas, Katherine; Dirksen, Robert T; Blaxall, Burns C

    2014-01-01

    Mena, a member of the Ena/VASP family of actin regulatory proteins, modulates microfilaments and interacts with cytoskeletal proteins associated with heart failure. Mena is localized at the intercalated disc (ICD) of adult cardiac myocytes, colocalizing with numerous cytoskeletal proteins. Mena's role in the maintainence of mechanical myocardial stability at the cardiomyocyte ICD remains unknown. We hypothesized that Mena may modulate signals from the sarcolemma to the actin cytoskeleton at the ICD to regulate the expression and localization of connexin 43 (Cx43). The small GTPase Rac1 plays a pivotal role in the regulation of actin cytoskeletal reorganization and mediating morphological and transcriptional changes in cardiomyocytes. We found that Mena is associated with active Rac1 in cardiomyocytes and that RNAi knockdown of Mena increased Rac1 activity significantly. Furthermore, Mena knockdown increased Cx43 expression and altered Cx43 localization and trafficking at the ICD, concomitant with faster intercellular communication, as assessed by dye transfer between cardiomyocyte pairs. In mice overexpressing constitutively active Rac1, left ventricular Mena expression was increased significantly, concomitant with lateral redistribution of Cx43. These results suggest that Mena is a critical regulator of the ICD and is required for normal localization of Cx43 in part via regulation of Rac1.

  15. Intracellular diffusion restrictions in isolated cardiomyocytes from rainbow trout

    Directory of Open Access Journals (Sweden)

    Birkedal Rikke

    2009-12-01

    trout heart lacks mitochondrial creatine kinase tightly coupled to respiration. This argues against diffusion restriction by the outer mitochondrial membrane. These results from rainbow trout cardiomyocytes resemble those from other low-performance hearts such as neonatal rat and rabbit hearts. Thus, it seems that metabolic regulation is related to cardiac performance, and it is likely that rainbow trout can be used as a model animal for further studies of the localization and role of diffusion restrictions in low-performance hearts.

  16. The Adipokine Chemerin Induces Apoptosis in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Diego Rodríguez-Penas

    2015-08-01

    Full Text Available Background: The adipokine chemerin has been associated with cardiovascular disease. We investigated the effects of chemerin on viability and intracellular signalling in murine cardiomyocytes, and the effects of insulin and TNF-α on cardiomyocyte chemerin production. Methods: Hoechst dye vital staining and cell cycle analysis were used to analyse the viability of murine cardiac cells in culture. Western blot was used to explore the phosphorylation of AKT and caspase-9 activity in neonatal rat cardiomyocytes and HL-1 cells. Finally, RT-qPCR, ELISA and western blot were performed to examine chemerin and CMKLR1 expression after insulin and TNF-α treatment in cardiac cells. Results: Chemerin treatment increased apoptosis, reduced phosphorylation of AKT at Thr308 and increased caspase-9 activity in murine cardiomyocytes. Insulin treatment lowered chemerin and CMKLR1 mRNA and protein levels, and the amount of chemerin in the cell media, while TNF-α treatment increased chemerin mRNA and protein levels but decreased expression of the CMKLR1 gene. Conclusion: Chemerin induces apoptosis, reduces AKT phosphorylation and increases the cleavage of caspase-9 in murine cardiomyocytes. The expression of chemerin is regulated by important metabolic (insulin and inflammatory (TNF-α mediators at cardiac level. Our results suggest that chemerin could play a role in the physiopathology of cardiac diseases.

  17. Decreased inward rectifier potassium current IK1 in dystrophin-deficient ventricular cardiomyocytes.

    Science.gov (United States)

    Rubi, Lena; Koenig, Xaver; Kubista, Helmut; Todt, Hannes; Hilber, Karlheinz

    2017-03-04

    Kir2.x channels in ventricular cardiomyocytes (most prominently Kir2.1) account for the inward rectifier potassium current I K1 , which controls the resting membrane potential and the final phase of action potential repolarization. Recently it was hypothesized that the dystrophin-associated protein complex (DAPC) is important in the regulation of Kir2.x channels. To test this hypothesis, we investigated potential I K1 abnormalities in dystrophin-deficient ventricular cardiomyocytes derived from the hearts of Duchenne muscular dystrophy mouse models. We found that I K1 was substantially diminished in dystrophin-deficient cardiomyocytes when compared to wild type myocytes. This finding represents the first functional evidence for a significant role of the DAPC in the regulation of Kir2.x channels.

  18. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    International Nuclear Information System (INIS)

    Zhang, Pengpeng; Shan, Tizhong; Liang, Xinrong; Deng, Changyan; Kuang, Shihuan

    2014-01-01

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor flox/flox mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor flox/flox mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function

  19. MicroRNA-1 overexpression blunts cardiomyocyte hypertrophy elicited by thyroid hormone.

    Science.gov (United States)

    Diniz, Gabriela Placoná; Lino, Caroline Antunes; Moreno, Camila Rodrigues; Senger, Nathalia; Barreto-Chaves, Maria Luiza Morais

    2017-12-01

    It is well-known that increased thyroid hormone (TH) levels induce cardiomyocyte growth. MicroRNAs (miRNAs) have been identified as key players in cardiomyocyte hypertrophy, which is associated with increased risk of heart failure. In this study, we evaluated the miR-1 expression in TH-induced cardiac hypertrophy, as well as the potential involvement of miR-1 in cardiomyocyte hypertrophy elicited by TH in vitro. The possible role of type 1 angiotensin II receptor (AT1R) in the effect promoted by TH in miR-1 expression was also evaluated. Neonatal rat cardiac myocytes (NRCMs) were treated with T 3 for 24 hr and Wistar rats were subjected to hyperthyroidism for 14 days combined or not with AT1R blocker. Real Time RT-PCR analysis indicated that miR-1 expression was decreased in cardiac hypertrophy in response to TH in vitro and in vivo, and this effect was unchanged by AT1R blocker. In addition, HDAC4, which is target of miR-1, was increased in NRCMs after T 3 treatment. A gain-of-function study revealed that overexpression of miR-1 prevented T 3 -induced cardiomyocyte hypertrophy and reduced HADC4 mRNA levels in NRCMs. In vivo experiments confirmed the downregulation of miR-1 in cardiac tissue from hyperthyroid animals, which was accompanied by increased HDAC4 mRNA levels. In addition, HDAC inhibitor prevented T 3 -induced cardiomyocyte hypertrophy. Our data reveal a new mechanistic insight into cardiomyocyte growth in response to TH, suggesting that miR-1 plays a role in cardiomyocyte hypertrophy induced by TH potentially via targeting HADC4. © 2017 Wiley Periodicals, Inc.

  20. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Saygili, Erol, E-mail: erol.saygili@med.uni-duesseldorf.de [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Saygili, Esra [Clinic for Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, D-40225 Düsseldorf (Germany); Rackauskas, Gediminas [Department of Cardiovascular Medicine, Vilnius University Hospital Santariskiu Klinikos, Vilnius University (Lithuania); Marx, Nikolaus [Department of Cardiology, University RWTH Aachen, Pauwelsstr. 30, D-52074 Aachen (Germany); Kelm, Malte; Rana, Obaida R. [Division of Cardiology, Pulmonology, and Vascular Medicine, University Hospital Düsseldorf, Moorenstrasse 5, D-40225 Düsseldorf (Germany)

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  1. Hsp60 and p70S6K form a complex in human cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Kroupskaya I. V.

    2011-02-01

    Full Text Available Molecular chaperon Hsp60 and protein kinase p70S6K play an important functional role in the regulation of cardiomyocytes vital function or apoptosis. Aim. To study a possibility of in vivo complex formation between Hsp60 and p70S6K in cardiomyocytes. Methods. Co-immunoprecipitation, Western-blot analysis. Results. We have identified in vivo interaction between molecular chaperone Hsp60 and two isoforms of proteinkinase p70S6K in human myocardium, normal and affected by cardiomyopathy. Conclusions. The results obtained suggest a possible participation of molecular chaperon Hsp60 in regulation of p70S6K activity in stressinduced apoptotic signaling pathway in cardiomyocytes.

  2. Aldosterone down-regulates the slowly activated delayed rectifier potassium current in adult guinea pig cardiomyocytes.

    Science.gov (United States)

    Lv, Yankun; Bai, Song; Zhang, Hua; Zhang, Hongxue; Meng, Jing; Li, Li; Xu, Yanfang

    2015-12-01

    There is emerging evidence that the mineralocorticoid hormone aldosterone is associated with arrhythmias in cardiovascular disease. However, the effect of aldosterone on the slowly activated delayed rectifier potassium current (IK s ) remains poorly understood. The present study was designed to investigate the modulation of IK s by aldosterone. Adult guinea pigs were treated with aldosterone for 28 days via osmotic pumps. Standard glass microelectrode recordings and whole-cell patch-clamp techniques were used to record action potentials in papillary muscles and IK s in ventricular cardiomyocytes. The aldosterone-treated animals exhibited a prolongation of the QT interval and action potential duration with a higher incidence of early afterdepolarizations. Patch-clamp recordings showed a significant down-regulation of IK s density in the ventricular myocytes of these treated animals. These aldosterone-induced electrophysiological changes were fully prevented by a combined treatment with spironolactone, a mineralocorticoid receptor (MR) antagonist. In addition, in in vitro cultured ventricular cardiomyocytes, treatment with aldosterone (sustained exposure for 24 h) decreased the IK s density in a concentration-dependent manner. Furthermore, a significant corresponding reduction in the mRNA/protein expression of IKs channel pore and auxiliary subunits, KCNQ1 and KCNE1 was detected in ventricular tissue from the aldosterone-treated animals. Aldosterone down-regulates IK s by inhibiting the expression of KCNQ1 and KCNE1, thus delaying the ventricular repolarization. These results provide new insights into the mechanism underlying K(+) channel remodelling in heart disease and may explain the highly beneficial effects of MR antagonists in HF. © 2015 The British Pharmacological Society.

  3. Human embryonic stem cell derived mesenchymal progenitors express cardiac markers but do not form contractile cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Christophe M Raynaud

    Full Text Available Mesenchymal progenitors or stromal cells have shown promise as a therapeutic strategy for a range of diseases including heart failure. In this context, we explored the growth and differentiation potential of mesenchymal progenitors (MPs derived in vitro from human embryonic stem cells (hESCs. Similar to MPs isolated from bone marrow, hESC derived MPs (hESC-MPs efficiently differentiated into archetypical mesenchymal derivatives such as chondrocytes and adipocytes. Upon treatment with 5-Azacytidine or TGF-β1, hESC-MPs modified their morphology and up-regulated expression of key cardiac transcription factors such as NKX2-5, MEF2C, HAND2 and MYOCD. Nevertheless, NKX2-5+ hESC-MP derivatives did not form contractile cardiomyocytes, raising questions concerning the suitability of these cells as a platform for cardiomyocyte replacement therapy. Gene profiling experiments revealed that, although hESC-MP derived cells expressed a suite of cardiac related genes, they lacked the complete repertoire of genes associated with bona fide cardiomyocytes. Our results suggest that whilst agents such as TGF-β1 and 5-Azacytidine can induce expression of cardiac related genes, but treated cells retain a mesenchymal like phenotype.

  4. Taurine ameliorated homocysteine-induced H9C2 cardiomyocyte apoptosis by modulating endoplasmic reticulum stress.

    Science.gov (United States)

    Zhang, Zhimin; Zhao, Lianyou; Zhou, Yanfen; Lu, Xuanhao; Wang, Zhengqiang; Wang, Jipeng; Li, Wei

    2017-05-01

    Homocysteine (Hcy)-triggered endoplasmic reticulum (ER) stress-mediated endothelial cell apoptosis has been suggested as a cause of Hcy-dependent vascular injury. However, whether ER stress is the molecular mechanism linking Hcy and cardiomyocytes death is unclear. Taurine has been reported to exert cardioprotective effects via various mechanisms. However, whether taurine protects against Hcy-induced cardiomyocyte death by attenuating ER stress is unknown. This study aimed to evaluate the opposite effects of taurine on Hcy-induced cardiomyocyte apoptosis and their underlying mechanisms. Our results demonstrated that low-dose or short-term Hcy treatment increased the expression of glucose-regulated protein 78 (GRP78) and activated protein kinase RNA-like ER kinase (PERK), inositol-requiring enzyme 1 (IRE1), and activating transcription factor 6 (ATF6), which in turn prevented apoptotic cell death. High-dose Hcy or prolonged Hcy treatment duration significantly up-regulated levels of C/EBP homologous protein (CHOP), cleaved caspase-12, p-c-Jun N-terminal kinase (JNK), and then triggered apoptotic events. High-dose Hcy also resulted in a decrease in mitochondrial membrane potential (Δψm) and an increase in cytoplasmic cytochrome C and the expression of cleaved caspase-9. Pretreatment of cardiomyocytes with sodium 4-phenylbutyric acid (an ER stress inhibitor) significantly inhibited Hcy-induced apoptosis. Furthermore, blocking the PERK pathway partly alleviated Hcy-induced ER stress-modulated cardiomyocyte apoptosis, and down-regulated the levels of Bax and cleaved caspase-3. Experimental taurine pretreatment inhibited the expression of ER stress-related proteins, and protected against apoptotic events triggered by Hcy-induced ER stress. Taken together, our results suggest that Hcy triggered ER stress in cardiomyocytes, which was the crucial molecular mechanism mediating Hcy-induced cardiomyocyte apoptosis, and the adverse effect of Hcy could be prevented by taurine.

  5. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival.

    Science.gov (United States)

    Lin, Zhiqiang; Zhou, Pingzhu; von Gise, Alexander; Gu, Fei; Ma, Qing; Chen, Jinghai; Guo, Haidong; van Gorp, Pim R R; Wang, Da-Zhi; Pu, William T

    2015-01-02

    Yes-associated protein (YAP), the nuclear effector of Hippo signaling, regulates cellular growth and survival in multiple organs, including the heart, by interacting with TEA (transcriptional enhancer activator)-domain sequence-specific DNA-binding proteins. Recent studies showed that YAP stimulates cardiomyocyte proliferation and survival. However, the direct transcriptional targets through which YAP exerts its effects are poorly defined. To identify direct YAP targets that mediate its mitogenic and antiapoptotic effects in the heart. We identified direct YAP targets by combining differential gene expression analysis in YAP gain- and loss-of-function with genome-wide identification of YAP-bound loci using chromatin immunoprecipitation and high throughput sequencing. This screen identified Pik3cb, encoding p110β, a catalytic subunit of phosphoinositol-3-kinase, as a candidate YAP effector that promotes cardiomyocyte proliferation and survival. YAP and TEA-domain occupied a conserved enhancer within the first intron of Pik3cb, and this enhancer drove YAP-dependent reporter gene expression. Yap gain- and loss-of-function studies indicated that YAP is necessary and sufficient to activate the phosphoinositol-3-kinase-Akt pathway. Like Yap, Pik3cb gain-of-function stimulated cardiomyocyte proliferation, and Pik3cb knockdown dampened YAP mitogenic activity. Reciprocally, impaired heart function in Yap loss-of-function was significantly rescued by adeno-associated virus-mediated Pik3cb expression. Pik3cb is a crucial direct target of YAP, through which the YAP activates phosphoinositol-3-kinase-AKT pathway and regulates cardiomyocyte proliferation and survival. © 2014 American Heart Association, Inc.

  6. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Sundaravadivel Balasubramanian

    2010-07-01

    Full Text Available The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring

  7. Simultaneous Assessment of Cardiomyocyte DNA Synthesis and Ploidy: A Method to Assist Quantification of Cardiomyocyte Regeneration and Turnover.

    Science.gov (United States)

    Richardson, Gavin D

    2016-05-23

    Although it is accepted that the heart has a limited potential to regenerate cardiomyocytes following injury and that low levels of cardiomyocyte turnover occur during normal ageing, quantification of these events remains challenging. This is in part due to the rarity of the process and the fact that multiple cellular sources contribute to myocardial maintenance. Furthermore, DNA duplication within cardiomyocytes often leads to a polyploid cardiomyocyte and only rarely leads to new cardiomyocytes by cellular division. In order to accurately quantify cardiomyocyte turnover discrimination between these processes is essential. The protocol described here employs long term nucleoside labeling in order to label all nuclei which have arisen as a result of DNA replication and cardiomyocyte nuclei identified by utilizing nuclei isolation and subsequent PCM1 immunolabeling. Together this allows the accurate and sensitive identification of the nucleoside labeling of the cardiomyocyte nuclei population. Furthermore, 4',6-diamidino-2-phenylindole labeling and analysis of nuclei ploidy, enables the discrimination of neo-cardiomyocyte nuclei from nuclei which have incorporated nucleoside during polyploidization. Although this method cannot control for cardiomyocyte binucleation, it allows a rapid and robust quantification of neo-cardiomyocyte nuclei while accounting for polyploidization. This method has a number of downstream applications including assessing the potential therapeutics to enhance cardiomyocyte regeneration or investigating the effects of cardiac disease on cardiomyocyte turnover and ploidy. This technique is also compatible with additional downstream immunohistological techniques, allowing quantification of nucleoside incorporation in all cardiac cell types.

  8. Mammalian target of rapamycin is essential for cardiomyocyte survival and heart development in mice

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Pengpeng [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Shan, Tizhong; Liang, Xinrong [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States); Deng, Changyan [Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Kuang, Shihuan, E-mail: skuang@purdue.edu [Department of Animal Sciences, Purdue University, West Lafayette, IN 47907 (United States)

    2014-09-12

    Highlights: • mTOR is a critical regulator of many biological processes yet its function in heart is not well understood. • MCK-Cre/Mtor{sup flox/flox} mice were established to delete Mtor in cardiomyocytes. • The mTOR-mKO mice developed normally but die prematurely within 5 weeks after birth due to heart disease. • The mTOR-mKO mice had dilated myocardium and increased cell death. • mTOR-mKO hearts had reduced expression of metabolic genes and activation of mTOR target proteins. - Abstract: Mammalian target of rapamycin (mTOR) is a critical regulator of protein synthesis, cell proliferation and energy metabolism. As constitutive knockout of Mtor leads to embryonic lethality, the in vivo function of mTOR in perinatal development and postnatal growth of heart is not well defined. In this study, we established a muscle-specific mTOR conditional knockout mouse model (mTOR-mKO) by crossing MCK-Cre and Mtor{sup flox/flox} mice. Although the mTOR-mKO mice survived embryonic and perinatal development, they exhibited severe postnatal growth retardation, cardiac muscle pathology and premature death. At the cellular level, the cardiac muscle of mTOR-mKO mice had fewer cardiomyocytes due to apoptosis and necrosis, leading to dilated cardiomyopathy. At the molecular level, the cardiac muscle of mTOR-mKO mice expressed lower levels of fatty acid oxidation and glycolysis related genes compared to the WT littermates. In addition, the mTOR-mKO cardiac muscle had reduced Myh6 but elevated Myh7 expression, indicating cardiac muscle degeneration. Furthermore, deletion of Mtor dramatically decreased the phosphorylation of S6 and AKT, two key targets downstream of mTORC1 and mTORC2 mediating the normal function of mTOR. These results demonstrate that mTOR is essential for cardiomyocyte survival and cardiac muscle function.

  9. Deficiency of insulin-like growth factor 1 reduces vulnerability to chronic alcohol intake-induced cardiomyocyte mechanical dysfunction: role of AMPK.

    Science.gov (United States)

    Ge, Wei; Li, Qun; Turdi, Subat; Wang, Xiao-Ming; Ren, Jun

    2011-08-01

    Circulating insulin-like growth factor I (IGF-1) levels are closely associated with cardiac performance although the role of IGF-1 in alcoholic cardiac dysfunction is unknown. This study was designed to evaluate the impact of severe liver IGF-1 deficiency (LID) on chronic alcohol-induced cardiomyocyte contractile and intracellular Ca(2+) dysfunction. Adult male C57 and LID mice were placed on a 4% alcohol diet for 15 weeks. Cardiomyocyte contractile and intracellular Ca(2+) properties were evaluated including peak shortening (PS), maximal velocity of shortening/relengthening (±dL/dt), time-to-relengthening (TR(90) ), change in fura-fluorescence intensity (ΔFFI) and intracellular Ca(2+) decay. Levels of apoptotic regulators caspase-3, Bcl-2 and c-Jun NH2-terminal kinase (JNK), the ethanol metabolizing enzyme mitochondrial aldehyde dehydrogenase (ALDH2), as well as the cellular fuel gauge AMP-activated protein kinase (AMPK) were evaluated. Chronic alcohol intake enlarged myocyte cross-sectional area, reduced PS, ± dL/dt and ΔFFI as well as prolonged TR(90) and intracellular Ca(2+) decay, the effect of which was greatly attenuated by IGF-1 deficiency. The beneficial effect of LID against alcoholic cardiac mechanical defect was ablated by IGF-1 replenishment. Alcohol intake increased caspase-3 activity/expression although it down-regulated Bcl-2, ALDH2 and pAMPK without affecting JNK and AMPK. IGF-1 deficiency attenuated alcoholism-induced responses in all these proteins with the exception of Bcl-2. In addition, the AMPK agonist 5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside abrogated short-term ethanol incubation-elicited cardiac mechanical dysfunction. Taken together, these data suggested that IGF-1 deficiency may reduce the sensitivity to ethanol-induced myocardial mechanical dysfunction. Our data further depicted a likely role of Caspase-3, ALDH2 and AMPK activation in IGF-1 deficiency induced 'desensitization' of alcoholic cardiomyopathy. © 2011 The

  10. MicroRNA-145 suppresses ROS-induced Ca2+ overload of cardiomyocytes by targeting CaMKIIδ

    International Nuclear Information System (INIS)

    Cha, Min-Ji; Jang, Jin-Kyung; Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon; Lee, Chang Yeon; Park, Jun-Hee; Lee, Jiyun; Seo, Hyang-Hee; Choi, Eunhyun; Jeon, Woo-min; Hwang, Hye Jin; Shin, Hyun-Taek

    2013-01-01

    Highlights: •CaMKIIδ mediates H 2 O 2 -induced Ca 2+ overload in cardiomyocytes. •miR-145 can inhibit Ca 2+ overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca 2+ ) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca 2+ signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca 2+ -mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H 2 O 2 -mediated Ca 2+ overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca 2+ overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca 2+ -related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca 2+ overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses

  11. Excitation model of pacemaker cardiomyocytes of cardiac conduction system

    Science.gov (United States)

    Grigoriev, M.; Babich, L.

    2015-11-01

    Myocardium includes typical and atypical cardiomyocytes - pacemakers, which form the cardiac conduction system. Excitation from the atrioventricular node in normal conditions is possible only in one direction. Retrograde direction of pulses is impossible. The most important prerequisite for the work of cardiomyocytes is the anatomical integrity of the conduction system. Changes in contractile force of the cardiomyocytes, which appear periodically, are due to two mechanisms of self-regulation - heterometric and homeometric. Graphic course of the excitation pulse propagation along the heart muscle more accurately reveals the understanding of the arrhythmia mechanism. These models have the ability to visualize the essence of excitation dynamics. However, they do not have the proper forecasting function for result estimation. Integrative mathematical model enables further investigation of general laws of the myocardium active behavior, allows for determination of the violation mechanism of electrical and contractile function of cardiomyocytes. Currently, there is no full understanding of the topography of pacemakers and ionic mechanisms. There is a need for the development of direction of mathematical modeling and comparative studies of the electrophysiological arrangement of cells of atrioventricular connection and ventricular conduction system.

  12. Cardiomyocyte Overexpression of FABP4 Aggravates Pressure Overload-Induced Heart Hypertrophy.

    Directory of Open Access Journals (Sweden)

    Ji Zhang

    Full Text Available Fatty acid binding protein 4 (FABP4 is a member of the intracellular lipid-binding protein family, responsible for the transportation of fatty acids. It is considered to express mainly in adipose tissues, and be strongly associated with inflammation, obesity, diabetes and cardiovasculardiseases. Here we report that FABP4 is also expressed in cardiomyocytes and plays an important role in regulating heart function under pressure overload. We generated heart-specific transgenic FABP4 (FABP4-TG mice using α myosin-heavy chain (α-MHC promoter and human FABP4 sequence, resulting in over-expression of FABP4 in cardiomyocytes. The FABP4-TG mice displayed normal cardiac morphology and contractile function. When they were subjected to the transverse aorta constriction (TAC procedure, the FABP4-TG mice developed more cardiac hypertrophy correlated with significantly increased ERK phosphorylation, compared with wild type controls. FABP4 over-expression in cardiomyocytes activated phosphor-ERK signal and up-regulate the expression of cardiac hypertrophic marker genes. Conversely, FABP4 induced phosphor-ERK signal and hypertrophic gene expressions can be markedly inhibited by an ERK inhibitor PD098059 as well as the FABP4 inhibitor BMS309403. These results suggest that FABP4 over-expression in cardiomyocytes can aggravate the development of cardiac hypertrophy through the activation of ERK signal pathway.

  13. Nucleolin is regulated both at the level of transcription and translation

    International Nuclear Information System (INIS)

    Bicknell, Katrina; Brooks, Gavin; Kaiser, Pete; Chen Hongying; Dove, Brian K.; Hiscox, Julian A.

    2005-01-01

    Nucleolin is a multi-functional protein that is located to the nucleolus. In tissue culture cells, the stability of nucleolin is related to the proliferation status of the cell. During development, rat cardiomyocytes proliferate actively with increases in the mass of the heart being due to both hyperplasia and hypertrophy. The timing of this shift in the phenotype of the myocyte from one capable of undergoing hyperplasia to one that can grow only by hypertrophy occurs within 4 days of post-natal development. Thus, cardiomyocytes are an ideal model system in which to study the regulation of nucleolin during growth in vivo. Using Western blot and quantitative RT-PCR (TaqMan) we found that the amount of nucleolin is regulated both at the level of transcription and translation during the development of the cardiomyocyte. However, in cells which had exited the cell cycle and were subsequently given a hypertrophic stimulus, nucleolin was regulated post-transcriptionally

  14. Dedifferentiation, Proliferation, and Redifferentiation of Adult Mammalian Cardiomyocytes After Ischemic Injury.

    Science.gov (United States)

    Wang, Wei Eric; Li, Liangpeng; Xia, Xuewei; Fu, Wenbin; Liao, Qiao; Lan, Cong; Yang, Dezhong; Chen, Hongmei; Yue, Rongchuan; Zeng, Cindy; Zhou, Lin; Zhou, Bin; Duan, Dayue Darrel; Chen, Xiongwen; Houser, Steven R; Zeng, Chunyu

    2017-08-29

    Adult mammalian hearts have a limited ability to generate new cardiomyocytes. Proliferation of existing adult cardiomyocytes (ACMs) is a potential source of new cardiomyocytes. Understanding the fundamental biology of ACM proliferation could be of great clinical significance for treating myocardial infarction (MI). We aim to understand the process and regulation of ACM proliferation and its role in new cardiomyocyte formation of post-MI mouse hearts. β-Actin-green fluorescent protein transgenic mice and fate-mapping Myh6-MerCreMer-tdTomato/lacZ mice were used to trace the fate of ACMs. In a coculture system with neonatal rat ventricular myocytes, ACM proliferation was documented with clear evidence of cytokinesis observed with time-lapse imaging. Cardiomyocyte proliferation in the adult mouse post-MI heart was detected by cell cycle markers and 5-ethynyl-2-deoxyuridine incorporation analysis. Echocardiography was used to measure cardiac function, and histology was performed to determine infarction size. In vitro, mononucleated and bi/multinucleated ACMs were able to proliferate at a similar rate (7.0%) in the coculture. Dedifferentiation proceeded ACM proliferation, which was followed by redifferentiation. Redifferentiation was essential to endow the daughter cells with cardiomyocyte contractile function. Intercellular propagation of Ca 2+ from contracting neonatal rat ventricular myocytes into ACM daughter cells was required to activate the Ca 2+ -dependent calcineurin-nuclear factor of activated T-cell signaling pathway to induce ACM redifferentiation. The properties of neonatal rat ventricular myocyte Ca 2+ transients influenced the rate of ACM redifferentiation. Hypoxia impaired the function of gap junctions by dephosphorylating its component protein connexin 43, the major mediator of intercellular Ca 2+ propagation between cardiomyocytes, thereby impairing ACM redifferentiation. In vivo, ACM proliferation was found primarily in the MI border zone. An ischemia

  15. Naturally Engineered Maturation of Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Gaetano J. Scuderi

    2017-05-01

    Full Text Available Ischemic heart disease remains one of the most prominent causes of mortalities worldwide with heart transplantation being the gold-standard treatment option. However, due to the major limitations associated with heart transplants, such as an inadequate supply and heart rejection, there remains a significant clinical need for a viable cardiac regenerative therapy to restore native myocardial function. Over the course of the previous several decades, researchers have made prominent advances in the field of cardiac regeneration with the creation of in vitro human pluripotent stem cell-derived cardiomyocyte tissue engineered constructs. However, these engineered constructs exhibit a functionally immature, disorganized, fetal-like phenotype that is not equivalent physiologically to native adult cardiac tissue. Due to this major limitation, many recent studies have investigated approaches to improve pluripotent stem cell-derived cardiomyocyte maturation to close this large functionality gap between engineered and native cardiac tissue. This review integrates the natural developmental mechanisms of cardiomyocyte structural and functional maturation. The variety of ways researchers have attempted to improve cardiomyocyte maturation in vitro by mimicking natural development, known as natural engineering, is readily discussed. The main focus of this review involves the synergistic role of electrical and mechanical stimulation, extracellular matrix interactions, and non-cardiomyocyte interactions in facilitating cardiomyocyte maturation. Overall, even with these current natural engineering approaches, pluripotent stem cell-derived cardiomyocytes within three-dimensional engineered heart tissue still remain mostly within the early to late fetal stages of cardiomyocyte maturity. Therefore, although the end goal is to achieve adult phenotypic maturity, more emphasis must be placed on elucidating how the in vivo fetal microenvironment drives cardiomyocyte

  16. Polycystin-2-dependent control of cardiomyocyte autophagy.

    Science.gov (United States)

    Criollo, Alfredo; Altamirano, Francisco; Pedrozo, Zully; Schiattarella, Gabriele G; Li, Dan L; Rivera-Mejías, Pablo; Sotomayor-Flores, Cristian; Parra, Valentina; Villalobos, Elisa; Battiprolu, Pavan K; Jiang, Nan; May, Herman I; Morselli, Eugenia; Somlo, Stefan; de Smedt, Humbert; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2018-05-01

    Considerable evidence points to critical roles of intracellular Ca 2+ homeostasis in the modulation and control of autophagic activity. Yet, underlying molecular mechanisms remain unknown. Mutations in the gene (pkd2) encoding polycystin-2 (PC2) are associated with autosomal dominant polycystic kidney disease (ADPKD), the most common inherited nephropathy. PC2 has been associated with impaired Ca 2+ handling in cardiomyocytes and indirect evidence suggests that this protein may be involved in autophagic control. Here, we investigated the role for PC2 as an essential regulator of Ca 2+ homeostasis and autophagy. Activation of autophagic flux triggered by mTOR inhibition either pharmacologically (rapamycin) or by means of nutrient depletion was suppressed in cells depleted of PC2. Moreover, cardiomyocyte-specific PC2 knockout mice (αMhc-cre;Pkd2 F/F mice) manifested impaired autophagic flux in the setting of nutrient deprivation. Stress-induced autophagy was blunted by intracellular Ca 2+ chelation using BAPTA-AM, whereas removal of extracellular Ca 2+ had no effect, pointing to a role of intracellular Ca 2+ homeostasis in stress-induced cardiomyocyte autophagy. To determine the link between stress-induced autophagy and PC2-induced Ca 2+ mobilization, we over-expressed either wild-type PC2 (WT) or a Ca 2+ -channel deficient PC2 mutant (PC2-D509V). PC2 over-expression increased autophagic flux, whereas PC2-D509V expression did not. Importantly, autophagy induction triggered by PC2 over-expression was attenuated by BAPTA-AM, supporting a model of PC2-dependent control of autophagy through intracellular Ca 2+ . Furthermore, PC2 ablation was associated with impaired Ca 2+ handling in cardiomyocytes marked by partial depletion of sarcoplasmic reticulum Ca 2+ stores. Finally, we provide evidence that Ca 2+ -mediated autophagy elicited by PC2 is a mechanism conserved across multiple cell types. Together, this study unveils PC2 as a novel regulator of autophagy acting

  17. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells

    NARCIS (Netherlands)

    Giacomelli, Elisa; Bellin, Milena; Sala, Luca; Van Meer, Berend J.; Tertoolen, Leon G.J.; Orlova, Valeria V.; Mummery, Christine L.

    2017-01-01

    Cardiomyocytes and endothelial cells in the heart are in close proximity and in constant dialogue. Endothelium regulates the size of the heart, supplies oxygen to the myocardium and secretes factors that support cardiomyocyte function. Robust and predictive cardiac disease models that faithfully

  18. Up-regulation of alpha-smooth muscle actin in cardiomyocytes from non-hypertrophic and non-failing transgenic mouse hearts expressing N-terminal truncated cardiac troponin I

    Directory of Open Access Journals (Sweden)

    Stephanie Kern

    2014-01-01

    Full Text Available We previously reported that a restrictive N-terminal truncation of cardiac troponin I (cTnI-ND is up-regulated in the heart in adaptation to hemodynamic stresses. Over-expression of cTnI-ND in the hearts of transgenic mice revealed functional benefits such as increased relaxation and myocardial compliance. In the present study, we investigated the subsequent effect on myocardial remodeling. The alpha-smooth muscle actin (α-SMA isoform is normally expressed in differentiating cardiomyocytes and is a marker for myocardial hypertrophy in adult hearts. Our results show that in cTnI-ND transgenic mice of between 2 and 3 months of age (young adults, a significant level of α-SMA is expressed in the heart as compared with wild-type animals. Although blood vessel density was increased in the cTnI-ND heart, the mass of smooth muscle tissue did not correlate with the increased level of α-SMA. Instead, immunocytochemical staining and Western blotting of protein extracts from isolated cardiomyocytes identified cardiomyocytes as the source of increased α-SMA in cTnI-ND hearts. We further found that while a portion of the up-regulated α-SMA protein was incorporated into the sarcomeric thin filaments, the majority of SMA protein was found outside of myofibrils. This distribution pattern suggests dual functions for the up-regulated α-SMA as both a contractile component to affect contractility and as possible effector of early remodeling in non-hypertrophic, non-failing cTnI-ND hearts.

  19. Importance of Thickness in Human Cardiomyocyte Network for Effective Electrophysiological Stimulation Using On-Chip Extracellular Microelectrodes

    Science.gov (United States)

    Hamada, Tomoyo; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-06-01

    We have developed a three-dimensionally controlled in vitro human cardiomyocyte network assay for the measurements of drug-induced conductivity changes and the appearance of fatal arrhythmia such as ventricular tachycardia/fibrillation for more precise in vitro predictive cardiotoxicity. To construct an artificial conductance propagation model of a human cardiomyocyte network, first, we examined the cell concentration dependence of the cell network heights and found the existence of a height limit of cell networks, which was double-layer height, whereas the cardiomyocytes were effectively and homogeneously cultivated within the microchamber maintaining their spatial distribution constant and their electrophysiological conductance and propagation were successfully recorded using a microelectrode array set on the bottom of the microchamber. The pacing ability of a cardiomyocyte's electrophysiological response has been evaluated using microelectrode extracellular stimulation, and the stimulation for pacing also successfully regulated the beating frequencies of two-layered cardiomyocyte networks, whereas monolayered cardiomyocyte networks were hardly stimulated by the external electrodes using the two-layered cardiomyocyte stimulation condition. The stability of the lined-up shape of human cardiomyocytes within the rectangularly arranged agarose microchambers was limited for a two-layered cardiomyocyte network because their stronger force generation shrunk those cells after peeling off the substrate. The results indicate the importance of fabrication technology of thickness control of cellular networks for effective extracellular stimulation and the potential concerning thick cardiomyocyte networks for long-term cultivation.

  20. Shock Wave Therapy Promotes Cardiomyocyte Autophagy and Survival during Hypoxia

    Directory of Open Access Journals (Sweden)

    Ling Du

    2017-06-01

    Full Text Available Background: Autophagy plays an important role in cardiovascular disease. Controversy still exists regarding the effect of autophagy on ischemic/hypoxic myocardium. Cardiac shock wave therapy (CSWT is an effective alternative treatment for refractory ischemic heart disease. Whether CSWT can regulate cardiomyocyte autophagy under hypoxic conditions is not clear. We established a myocardial hypoxia model using the H9c2 cell line and performed shock waves (SWs treatment to evaluate the effect of SW on autophagy. Methods: The H9c2 cells were incubated under hypoxic conditions, and SW treatment was then performed at energies of 0.02, 0.05, or 0.10 mJ/mm2. The cell viability and intracellular ATP level were examined. Western blot analysis was used to assess the expression of LC3B, AMPK, mTOR, Beclin-1, Sirt1, and HIF-1α. Autophagic vacuoles were visualized by monodansylcadaverine staining. Results: After the 24-hour hypoxic period, cardiomyocyte viability and ATP levels were decreased and autophagy was significantly increased in H9c2 cells. SW treatment with an energy of 0.05 mJ/mm2 significantly increased the cellular viability, ATP level, LC3B-II/I, and number of autophagic vacuoles. In addition, phosphorylated AMPK and Sirt1 were increased and phosphorylated mTOR and HIF-1α were decreased after SW treatment. Conclusion: SW treatment can potentially promote cardiomyocyte autophagy during hypoxia and protect cardiomyocyte function by regulating the AMPK/mTOR pathway.

  1. Hypoxia changes the expression of the epidermal growth factor (EGF) system in human hearts and cultured cardiomyocytes

    DEFF Research Database (Denmark)

    Munk, Mathias; Memon, Ashfaque Ahmed; Goetze, Jens Peter

    2012-01-01

    by treatment with trastuzumab (20 nM). This resulted in inhibition of cardiomyocyte proliferation, but interestingly only in hypoxic cells. Co-treatment of HL-1 cells with HB-EGF (10 nM) but not with NRG-1 (5 ng/ml) rescued the cardiomyocytes from HER2 inhibition. HL-1 cardiomyocytes exposed to hypoxia...... revealed nuclear translocation of activated MAPK and the activity of this downstream signaling molecule was decreased by HER2 inhibition (20 nM trastuzumab), and re-established by HB-EGF (10 nM). CONCLUSIONS/SIGNIFICANCE: Hypoxia in the human heart alters the expression of the EGF system. Mimicking the HER...

  2. CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart

    NARCIS (Netherlands)

    M. Gomez-Velazquez (Melisa); C. Badia-Careaga (Claudio); Lechuga-Vieco, A.V. (Ana Victoria); Nieto-Arellano, R. (Rocio); Tena, J.J. (Juan J.); Rollan, I. (Isabel); Alvarez, A. (Alba); Torroja, C. (Carlos); Caceres, E.F. (Eva F.); Roy, A. (Anna); N.J. Galjart (Niels); Delgado-Olguin, P. (Paul); F. Sánchez-Cabo (Fátima); Enriquez, J.A. (Jose Antonio); Gomez-Skarmeta, J.L. (Jose Luis); M. Manzanares (Miguel)

    2017-01-01

    textabstractCardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such

  3. Skeletal muscle-derived progenitors capable of differentiating into cardiomyocytes proliferate through myostatin-independent TGF-β family signaling

    International Nuclear Information System (INIS)

    Nomura, Tetsuya; Ueyama, Tomomi; Ashihara, Eishi; Tateishi, Kento; Asada, Satoshi; Nakajima, Norio; Isodono, Koji; Takahashi, Tomosaburo; Matsubara, Hiroaki; Oh, Hidemasa

    2008-01-01

    The existence of skeletal muscle-derived stem cells (MDSCs) has been suggested in mammals; however, the signaling pathways controlling MDSC proliferation remain largely unknown. Here we report the isolation of myosphere-derived progenitor cells (MDPCs) that can give rise to beating cardiomyocytes from adult skeletal muscle. We identified that follistatin, an antagonist of TGF-β family members, was predominantly expressed in MDPCs, whereas myostatin was mainly expressed in myogenic cells and mature skeletal muscle. Although follistatin enhanced the replicative growth of MDPCs through Smad2/3 inactivation and cell cycle progression, disruption of myostatin did not increase the MDPC proliferation. By contrast, inhibition of activin A (ActA) or growth differentiation factor 11 (GDF11) signaling dramatically increased MDPC proliferation via down-regulation of p21 and increases in the levels of cdk2/4 and cyclin D1. Thus, follistatin may be an effective progenitor-enhancing agent neutralizing ActA and GDF11 signaling to regulate the growth of MDPCs in skeletal muscle

  4. MicroRNA-145 suppresses ROS-induced Ca{sup 2+} overload of cardiomyocytes by targeting CaMKIIδ

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Min-Ji [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jang, Jin-Kyung [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); Ham, Onju; Song, Byeong-Wook; Lee, Se-Yeon [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Lee, Chang Yeon; Park, Jun-Hee [Department of Integrated Omics for Biomedical Sciences, Graduate School, Yonsei University, 50 Yonsei-ro, Seodamun-gu, Seoul 120-759 (Korea, Republic of); Lee, Jiyun; Seo, Hyang-Hee [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Choi, Eunhyun [Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University Health System, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Jeon, Woo-min [Department of Animal Resource, Sahmyook University, Seoul 139-742 (Korea, Republic of); Hwang, Hye Jin [Cardiovascular Research Institute, Yonsei University College of Medicine, 250 Seongsanno, Seodamun-gu, Seoul 120-752 (Korea, Republic of); Shin, Hyun-Taek [College of Pharmacy, Sookmyung Women’s University, 52 HyoChangWon-Gil, Yongsan-ku, Seoul 140-742 (Korea, Republic of); and others

    2013-06-14

    Highlights: •CaMKIIδ mediates H{sub 2}O{sub 2}-induced Ca{sup 2+} overload in cardiomyocytes. •miR-145 can inhibit Ca{sup 2+} overload. •A luciferase assay confirms that miR-145 functions as a CaMKIIδ-targeting miRNA. •Overexpression of miR-145 regulates CaMKIIδ-related genes and ameliorates apoptosis. -- Abstract: A change in intracellular free calcium (Ca{sup 2+}) is a common signaling mechanism of reperfusion-induced cardiomyocyte death. Calcium/calmodulin dependent protein kinase II (CaMKII) is a critical regulator of Ca{sup 2+} signaling and mediates signaling pathways responsible for functions in the heart including hypertrophy, apoptosis, arrhythmia, and heart disease. MicroRNAs (miRNA) are involved in the regulation of cell response, including survival, proliferation, apoptosis, and development. However, the roles of miRNAs in Ca{sup 2+}-mediated apoptosis of cardiomyocytes are uncertain. Here, we determined the potential role of miRNA in the regulation of CaMKII dependent apoptosis and explored its underlying mechanism. To determine the potential roles of miRNAs in H{sub 2}O{sub 2}-mediated Ca{sup 2+} overload, we selected and tested 6 putative miRNAs that targeted CaMKIIδ, and showed that miR-145 represses CaMKIIδ protein expression and Ca{sup 2+} overload. We confirmed CaMKIIδ as a direct downstream target of miR-145. Furthermore, miR-145 regulates Ca{sup 2+}-related signals and ameliorates apoptosis. This study demonstrates that miR-145 regulates reactive oxygen species (ROS)-induced Ca{sup 2+} overload in cardiomyocytes. Thus, miR-145 affects ROS-mediated gene regulation and cellular injury responses.

  5. Calcineurin B homologous protein 3 negatively regulates cardiomyocyte hypertrophy via inhibition of glycogen synthase kinase 3 phosphorylation.

    Science.gov (United States)

    Kobayashi, Soushi; Nakamura, Tomoe Y; Wakabayashi, Shigeo

    2015-07-01

    Cardiac hypertrophy is a leading cause of serious heart diseases. Although many signaling molecules are involved in hypertrophy, the functions of some proteins in this process are still unknown. Calcineurin B homologous protein 3 (CHP3)/tescalcin is an EF-hand Ca(2+)-binding protein that is abundantly expressed in the heart; however, the function of CHP3 is unclear. Here, we aimed to identify the cardiac functions of CHP3. CHP3 was expressed in hearts at a wide range of developmental stages and was specifically detected in neonatal rat ventricular myocytes (NRVMs) but not in cardiac fibroblasts in culture. Moreover, knockdown of CHP3 expression using adenoviral-based RNA interference in NRVMs resulted in enlargement of cardiomyocyte size, concomitant with increased expression of a pathological hypertrophy marker ANP. This same treatment elevated glycogen synthase kinase (GSK3α/β) phosphorylation, which is known to inhibit GSK3 function. In contrast, CHP3 overexpression blocked the insulin-induced phosphorylation of GSK3α/β without affecting the phosphorylation of Akt, which is an upstream kinase of GSK3α/β, in HEK293 cells, and it inhibited both IGF-1-induced phosphorylation of GSK3β and cardiomyocyte hypertrophy in NRVMs. Co-immunoprecipitation experiments revealed that GSK3β interacted with CHP3. However, a Ca(2+)-binding-defective mutation of CHP3 (CHP3-D123A) also interacted with GSK3β and had the same inhibitory effect on GSK3α/β phosphorylation, suggesting that the action of CHP3 was independent of Ca(2+). These findings suggest that CHP3 functions as a novel negative regulator of cardiomyocyte hypertrophy via inhibition of GSK3α/β phosphorylation and subsequent enzymatic activation of GSK3α/β. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Cardiac-specific overexpression of insulin-like growth factor I (IGF-1) rescues lipopolysaccharide-induced cardiac dysfunction and activation of stress signaling in murine cardiomyocytes.

    Science.gov (United States)

    Zhao, Peng; Turdi, Subat; Dong, Feng; Xiao, Xiaoyan; Su, Guohai; Zhu, Xinglei; Scott, Glenda I; Ren, Jun

    2009-07-01

    Lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, plays a key role in cardiac dysfunction in sepsis. Low circulating levels of insulin-like growth factor 1 (IGF-1) are found in sepsis, although the influence of IGF-1 on septic cardiac defect is unknown. This study was designed to examine the impact of IGF-1 on LPS-induced cardiac contractile and intracellular Ca2+ dysfunction, activation of stress signal and endoplasmic reticulum (ER) stress. Mechanical and intracellular Ca2+ properties were examined in cardiomyocytes from Fast Violet B and cardiac-specific IGF-1 overexpression mice treated with or without LPS (4 mg kg(-1), 6 h). Reactive oxygen species (ROS), protein carbonyl formation and apoptosis were measured. Activation of mitogen-activated protein kinase pathways (p38, c-jun N-terminal kinase [JNK] and extracellular signal-related kinase [ERK]), ER stress and apoptotic markers were evaluated using Western blot analysis. Our results revealed decreased peak shortening and maximal velocity of shortening/relengthening and prolonged duration of relengthening in LPS-treated Fast Violet B cardiomyocytes associated with reduced intracellular Ca2+ decay. Accumulation of ROS protein carbonyl and apoptosis were elevated after LPS treatment. Western blot analysis revealed activated p38 and JNK, up-regulated Bax, and the ER stress markers GRP78 and Gadd153 in LPS-treated mouse hearts without any change in ERK and Bcl-2. Total protein expression of p38, JNK, and ERK was unaffected by either LPS or IGF-1. Interestingly, these LPS-induced changes in mechanical and intracellular Ca2+ properties, ROS, protein carbonyl, apoptosis, stress signal activation, and ER stress markers were effectively ablated by IGF-1. In vitro LPS exposure (1 microg mL(-1)) produced cardiomyocyte mechanical dysfunction reminiscent of the in vivo setting, which was alleviated by exogenous IGF-1 (50 nM). These data collectively suggested a beneficial of IGF-1 in

  7. Mast cells regulate myofilament calcium sensitization and heart function after myocardial infarction.

    Science.gov (United States)

    Ngkelo, Anta; Richart, Adèle; Kirk, Jonathan A; Bonnin, Philippe; Vilar, Jose; Lemitre, Mathilde; Marck, Pauline; Branchereau, Maxime; Le Gall, Sylvain; Renault, Nisa; Guerin, Coralie; Ranek, Mark J; Kervadec, Anaïs; Danelli, Luca; Gautier, Gregory; Blank, Ulrich; Launay, Pierre; Camerer, Eric; Bruneval, Patrick; Menasche, Philippe; Heymes, Christophe; Luche, Elodie; Casteilla, Louis; Cousin, Béatrice; Rodewald, Hans-Reimer; Kass, David A; Silvestre, Jean-Sébastien

    2016-06-27

    Acute myocardial infarction (MI) is a severe ischemic disease responsible for heart failure and sudden death. Inflammatory cells orchestrate postischemic cardiac remodeling after MI. Studies using mice with defective mast/stem cell growth factor receptor c-Kit have suggested key roles for mast cells (MCs) in postischemic cardiac remodeling. Because c-Kit mutations affect multiple cell types of both immune and nonimmune origin, we addressed the impact of MCs on cardiac function after MI, using the c-Kit-independent MC-deficient (Cpa3(Cre/+)) mice. In response to MI, MC progenitors originated primarily from white adipose tissue, infiltrated the heart, and differentiated into mature MCs. MC deficiency led to reduced postischemic cardiac function and depressed cardiomyocyte contractility caused by myofilament Ca(2+) desensitization. This effect correlated with increased protein kinase A (PKA) activity and hyperphosphorylation of its targets, troponin I and myosin-binding protein C. MC-specific tryptase was identified to regulate PKA activity in cardiomyocytes via protease-activated receptor 2 proteolysis. This work reveals a novel function for cardiac MCs modulating cardiomyocyte contractility via alteration of PKA-regulated force-Ca(2+) interactions in response to MI. Identification of this MC-cardiomyocyte cross-talk provides new insights on the cellular and molecular mechanisms regulating the cardiac contractile machinery and a novel platform for therapeutically addressable regulators. ©2016 Ngkelo et al.

  8. Evidence for Cardiomyocyte Renewal in Humans

    Energy Technology Data Exchange (ETDEWEB)

    Bergmann, O; Bhardwaj, R D; Bernard, S; Zdunek, S; Barnabe-Heider, F; Walsh, S; Zupicich, J; Alkass, K; Buchholz, B A; Druid, H; Jovinge, S; Frisen, J

    2008-10-14

    It has been difficult to establish whether we are limited to the heart muscle cells we are born with or if cardiomyocytes are generated also later in life. We have taken advantage of the integration of {sup 14}C, generated by nuclear bomb tests during the Cold War, into DNA to establish the age of cardiomyocytes in humans. We report that cardiomyocytes renew, with a gradual decrease from 1% turning over annually at the age of 20 to 0.3% at the age of 75. Less than 50% of cardiomyocytes are exchanged during a normal lifespan. The capacity to generate cardiomyocytes in the adult human heart suggests that it may be rational to work towards the development of therapeutic strategies aiming to stimulate this process in cardiac pathologies.

  9. Dedifferentiation and proliferation of mammalian cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2010-09-01

    Full Text Available It has long been thought that mammalian cardiomyocytes are terminally-differentiated and unable to proliferate. However, myocytes in more primitive animals such as zebrafish are able to dedifferentiate and proliferate to regenerate amputated cardiac muscle.Here we test the hypothesis that mature mammalian cardiomyocytes retain substantial cellular plasticity, including the ability to dedifferentiate, proliferate, and acquire progenitor cell phenotypes. Two complementary methods were used: 1 cardiomyocyte purification from rat hearts, and 2 genetic fate mapping in cardiac explants from bi-transgenic mice. Cardiomyocytes isolated from rodent hearts were purified by multiple centrifugation and Percoll gradient separation steps, and the purity verified by immunostaining and RT-PCR. Within days in culture, purified cardiomyocytes lost their characteristic electrophysiological properties and striations, flattened and began to divide, as confirmed by proliferation markers and BrdU incorporation. Many dedifferentiated cardiomyocytes went on to express the stem cell antigen c-kit, and the early cardiac transcription factors GATA4 and Nkx2.5. Underlying these changes, inhibitory cell cycle molecules were suppressed in myocyte-derived cells (MDCs, while microRNAs known to orchestrate proliferation and pluripotency increased dramatically. Some, but not all, MDCs self-organized into spheres and re-differentiated into myocytes and endothelial cells in vitro. Cell fate tracking of cardiomyocytes from 4-OH-Tamoxifen-treated double-transgenic MerCreMer/ZEG mouse hearts revealed that green fluorescent protein (GFP continues to be expressed in dedifferentiated cardiomyocytes, two-thirds of which were also c-kit(+.Contradicting the prevailing view that they are terminally-differentiated, postnatal mammalian cardiomyocytes are instead capable of substantial plasticity. Dedifferentiation of myocytes facilitates proliferation and confers a degree of stemness

  10. Down-regulation of hypoxia-inducible factor-1 alpha and vascular endothelial growth factor by HEXIM1 attenuates myocardial angiogenesis in hypoxic mice.

    Science.gov (United States)

    Yoshikawa, Noritada; Shimizu, Noriaki; Ojima, Hidenori; Kobayashi, Hiroshi; Hosono, Osamu; Tanaka, Hirotoshi

    2014-10-24

    Pulmonary hypertension (PH) sustains elevation of pulmonary vascular resistance and ultimately leads to right ventricular (RV) hypertrophy and failure and death. Recently, proangiogenic factors hypoxia-inducible factor-1 alpha (HIF-1α) and vascular endothelial growth factor (VEGF) have been known to promote left ventricular myocardial angiogenesis and lead to cardiac hypertrophy, and this would be involved in RV hypertrophy of PH patients. Previously, we revealed that overexpression of HEXIM1 prevents endothelin-1-induced cardiomyocyte hypertrophy and hypertrophic genes expression, and that cardiomyocyte-specific HEXIM1 transgenic mice ameliorates RV hypertrophy in hypoxia-induced PH model. Given these results, here we analyzed the effect of HEXIM1 on the expression of HIF-1α and VEGF and on myocardial angiogenesis of RV in PH. We revealed that overexpression of HEXIM1 prevented hypoxia-induced expression of HIF-1α protein and its target genes including VEGF in the cultured cardiac myocytes and fibroblasts, and that cardiomyocyte-specific HEXIM1 transgenic mice repressed RV myocardial angiogenesis in hypoxia-induced PH model. Thus, we conclude that HEXIM1 could prevent RV hypertrophy, at least in part, via suppression of myocardial angiogenesis through down-regulation of HIF-1α and VEGF in the myocardium under hypoxic condition. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Basal and β-Adrenergic Cardiomyocytes Contractility Dysfunction Induced by Dietary Protein Restriction is Associated with Downregulation of SERCA2a Expression and Disturbance of Endoplasmic Reticulum Ca2+ Regulation in Rats

    Directory of Open Access Journals (Sweden)

    Arlete R. Penitente

    2014-07-01

    Full Text Available Background: The mechanisms responsible for the cardiac dysfunction associated with dietary protein restriction (PR are poorly understood. Thus, this study was designed to evaluate the effects of PR on calcium kinetics, basal and β-adrenergic contractility in murine ventricular cardiomyocytes. Methods: After breastfeeding male Fisher rats were distributed into a control group (CG, n = 20 and a protein-restricted group (PRG, n = 20, receiving isocaloric diets for 35 days containing 15% and 6% protein, respectively. Biometric and hemodynamic variables were measured. After euthanasia left ventricles (LV were collected for histopathological evaluation, SERCA2a expression, cardiomyocytes contractility and Ca2+sparks analysis. Results: PRG animals showed reduced general growth, increased heart rate and arterial pressure. These animals presented extracellular matrix expansion and disorganization, cardiomyocytes hypotrophy, reduced amplitudes of shortening and maximum velocity of contraction and relaxation at baseline and after β-adrenergic stimulation. Reduced SERCA2a expression as well as higher frequency and lower amplitude of Ca2+sparks were observed in PRG cardiomyocytes. Conclusion: The observations reveal that protein restriction induces marked myocardial morphofunctional damage. The pathological changes of cardiomyocyte mechanics suggest the potential involvement of the β-adrenergic system, which is possibly associated with changes in SERCA2a expression and disturbances in Ca2+ intracellular kinetics.

  12. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes

    NARCIS (Netherlands)

    Yu, Hongjuan; Tigchelaar, Wardit; Koonen, Debby P. Y.; Patel, Hemal H.; de Boer, Rudolf A.; van Gilst, Wiek H.; Westenbrink, B. Daan; Sillje, Herman H. W.

    2013-01-01

    A kinase interacting protein 1 (AKIP1) is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The

  13. Role of heterotrimeric G protein and calcium in cardiomyocyte hypertrophy induced by IGF-1.

    Science.gov (United States)

    Carrasco, Loreto; Cea, Paola; Rocco, Paola; Peña-Oyarzún, Daniel; Rivera-Mejias, Pablo; Sotomayor-Flores, Cristian; Quiroga, Clara; Criollo, Alfredo; Ibarra, Cristian; Chiong, Mario; Lavandero, Sergio

    2014-04-01

    In the heart, insulin-like growth factor-1 (IGF-1) is a peptide with pro-hypertrophic and anti-apoptotic actions. The pro-hypertrophic properties of IGF-1 have been attributed to the extracellular regulated kinase (ERK) pathway. Recently, we reported that IGF-1 also increases intracellular Ca(2+) levels through a pertussis toxin (PTX)-sensitive G protein. Here we investigate whether this Ca(2+) signal is involved in IGF-1-induced cardiomyocyte hypertrophy. Our results show that the IGF-1-induced increase in Ca(2+) level is abolished by the IGF-1 receptor tyrosine kinase inhibitor AG538, PTX and the peptide inhibitor of Gβγ signaling, βARKct. Increases in the activities of Ca(2+) -dependent enzymes calcineurin, calmodulin kinase II (CaMKII), and protein kinase Cα (PKCα) were observed at 5 min after IGF-1 exposure. AG538, PTX, βARKct, and the dominant negative PKCα prevented the IGF-1-dependent phosphorylation of ERK1/2. Participation of calcineurin and CaMKII in ERK phosphorylation was discounted. IGF-1-induced cardiomyocyte hypertrophy, determined by cell size and β-myosin heavy chain (β-MHC), was prevented by AG538, PTX, βARKct, dominant negative PKCα, and the MEK1/2 inhibitor PD98059. Inhibition of calcineurin with CAIN did not abolish IGF-1-induced cardiac hypertrophy. We conclude that IGF-1 induces hypertrophy in cultured cardiomyocytes by activation of the receptor tyrosine kinase activity/βγ-subunits of a PTX-sensitive G protein/Ca(2+) /PKCα/ERK pathway without the participation of calcineurin. © 2013 Wiley Periodicals, Inc.

  14. Role of alpha- and beta-adrenergic receptors in cardiomyocyte differentiation from murine-induced pluripotent stem cells.

    Science.gov (United States)

    Li, Xiao-Li; Zeng, Di; Chen, Yan; Ding, Lu; Li, Wen-Ju; Wei, Ting; Ou, Dong-Bo; Yan, Song; Wang, Bin; Zheng, Qiang-Sun

    2017-02-01

    Induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a promising source of cells for regenerative heart disease therapies, but progress towards their use has been limited by their low differentiation efficiency and high cellular heterogeneity. Previous studies have demonstrated expression of adrenergic receptors (ARs) in stem cells after differentiation; however, roles of ARs in fate specification of stem cells, particularly in cardiomyocyte differentiation and development, have not been characterized. Murine-induced pluripotent stem cells (miPSCs) were cultured in hanging drops to form embryoid bodies, cells of which were then differentiated into cardiomyocytes. To determine whether ARs regulated miPSC differentiation into cardiac lineages, effects of the AR agonist, epinephrine (EPI), on miPSC differentiation and underlying signalling mechanisms, were evaluated. Treatment with EPI, robustly enhanced miPSC cardiac differentiation, as indicated by increased expression levels of cardiac-specific markers, GATA4, Nkx2.5 and Tnnt2. Although β-AR signalling is the foremost signalling pathway in cardiomyocytes, EPI-enhanced cardiac differentiation depended more on α-AR signalling than β-AR signalling. In addition, selective activation of α 1 -AR signalling with specific agonists induced vigorous cardiomyocyte differentiation, whereas selective activation of α 2 - or β-AR signalling induced no or less differentiation, respectively. EPI- and α 1 -AR-dependent cardiomyocyte differentiation from miPSCs occurred through specific promotion of CPC proliferation via the MEK-ERK1/2 pathway and regulation of miPS cell-cycle progression. These results demonstrate that activation of ARs, particularly of α 1 -ARs, promoted miPSC differentiation into cardiac lineages via MEK-ERK1/2 signalling. © 2016 John Wiley & Sons Ltd.

  15. miR-138 protects cardiomyocytes from hypoxia-induced apoptosis via MLK3/JNK/c-jun pathway

    Energy Technology Data Exchange (ETDEWEB)

    He, Siyi; Liu, Peng; Jian, Zhao; Li, Jingwei; Zhu, Yun; Feng, Zezhou; Xiao, Yingbin, E-mail: xiaoyb@vip.sina.com

    2013-11-29

    Highlights: •First time to find miR-138 is up-regulated in hypoxic cardiomyocytes. •First time to find miR-138 targets MLK3 and regulates JNK/c-jun pathway. •Rare myocardial biopsy of patients with CHD were collected. •Both silence and overexpression of miR-138 were implemented. •Various methods were used to detect cell function. -- Abstract: Cardiomyocytes experience a series of complex endogenous regulatory mechanisms against apoptosis induced by chronic hypoxia. MicroRNAs are a class of endogenous small non-coding RNAs that regulate cellular pathophysiological processes. Recently, microRNA-138 (miR-138) has been found related to hypoxia, and beneficial for cell proliferation. Therefore, we intend to study the role of miR-138 in hypoxic cardiomyocytes and the main mechanism. Myocardial samples of patients with congenital heart disease (CHD) were collected to test miR-138 expression. Agomir or antagomir of miR-138 was transfected into H9C2 cells to investigate its effect on cell apoptosis. Higher miR-138 expression was observed in patients with cyanotic CHD, and its expression gradually increased with prolonged hypoxia time in H9C2 cells. Using MTT and LDH assays, cell growth was significantly greater in the agomir group than in the negative control (NC) group, while antagomir decreased cell survival. Dual luciferase reporter gene and Western-blot results confirmed MLK3 was a direct target of miR-138. It was found that miR-138 attenuated hypoxia-induced apoptosis using TUNEL, Hoechst staining and Annexin V-PE/7-AAD flow cytometry analysis. We further detected expression of apoptosis-related proteins. In the agomir group, the level of pro-apoptotic proteins such as cleaved-caspase-3, cleaved-PARP and Bad significantly reduced, while Bcl-2 and Bcl-2/Bax ratio increased. Opposite changes were observed in the antagomir group. Downstream targets of MLK3, JNK and c-jun, were also suppressed by miR-138. Our study demonstrates that up-regulation of miR-138 plays

  16. Cellular Injury of Cardiomyocytes during Hepatocyte Growth Factor Gene Transfection with Ultrasound-Triggered Bubble Liposome Destruction

    Directory of Open Access Journals (Sweden)

    Kazuo Komamura

    2011-01-01

    Full Text Available We transfected naked HGF plasmid DNA into cultured cardiomyocytes using a sonoporation method consisting of ultrasound-triggered bubble liposome destruction. We examined the effects on transfection efficiency of three concentrations of bubble liposome (1×106, 1×107, 1×108/mL, three concentrations of HGF DNA (60, 120, 180 μg/mL, two insonification times (30, 60 sec, and three incubation times (15, 60, 120 min. We found that low concentrations of bubble liposome and low concentrations of DNA provided the largest amount of the HGF protein expression by the sonoporated cardiomyocytes. Variation of insonification and incubation times did not affect the amount of product. Following insonification, cardiomyocytes showed cellular injury, as determined by a dye exclusion test. The extent of injury was most severe with the highest concentration of bubble liposome. In conclusion, there are some trade-offs between gene transfection efficiency and cellular injury using ultrasound-triggered bubble liposome destruction as a method for gene transfection.

  17. Mechanisms of greater cardiomyocyte functions on conductive nanoengineered composites for cardiovascular applications

    Directory of Open Access Journals (Sweden)

    Stout DA

    2012-11-01

    Full Text Available David A Stout,1,2 Jennie Yoo,2 Adriana Noemi Santiago-Miranda,3 Thomas J Webster1,41School of Engineering, 2Division of Biology and Medicine, Brown University, Providence, RI, 3Department of Chemical Engineering, University of Puerto Rico, Mayagües, PR, 4Department of Orthopedics, Brown University, Providence, RI, USABackground: Recent advances in nanotechnology (materials with at least one dimension between 1 nm and 100 nm have led to the use of nanomaterials in numerous medical device applications. Recently, nanomaterials have been used to create innovative biomaterials for cardiovascular applications. Specifically, carbon nanofibers (CNF embedded in poly(lactic-co-glycolic-acid (PLGA have been shown to promote cardiomyocyte growth compared with conventional polymer substrates, but the mechanisms involved in such events remain unknown. The aim of this study was to determine the basic mechanism of cell growth on these novel nanocomposites.Methods: CNF were added to biodegradable PLGA (50:50 PGA:PLA weight ratio to increase the conductivity, mechanical and cytocompatibility properties of pure PLGA. For this reason, different PLGA to CNF ratios (100:0, 75:25, 50:50, 25:75, and 0:100 wt% with different PLGA densities (0.1, 0.05, 0.025, and 0.0125 g/mL were used, and their compatibility with cardiomyocytes was assessed.Results: Throughout all the cytocompatibility experiments, cardiomyocytes were viable and expressed important biomarkers, including cardiac troponin T, connexin-43, and alpha-sarcomeric actin (α-SCA. Adhesion and proliferation experiments indicated that a PLGA density of 0.025 g/mL with a PLGA to CNF ratio of 75:25 and 50:50 (wt% promoted the best overall cell growth, ie, a 55% increase in cardiomyocyte density after 120 hours compared with pure PLGA and a 75% increase compared with the control at the same time point for 50:50 (wt%. The PLGA:CNF materials were conductive, and their conductivity increased as greater amounts of CNF

  18. High Fibroblast Growth Factor 23 concentrations in experimental renal failure impair calcium handling in cardiomyocytes.

    Science.gov (United States)

    Verkaik, Melissa; Oranje, Maarten; Abdurrachim, Desiree; Goebel, Max; Gam, Zeineb; Prompers, Jeanine J; Helmes, Michiel; Ter Wee, Pieter M; van der Velden, Jolanda; Kuster, Diederik W; Vervloet, Marc G; Eringa, Etto C

    2018-04-01

    The overwhelming majority of patients with chronic kidney disease (CKD) die prematurely before reaching end-stage renal disease, mainly due to cardiovascular causes, of which heart failure is the predominant clinical presentation. We hypothesized that CKD-induced increases of plasma FGF23 impair cardiac diastolic and systolic function. To test this, mice were subjected to 5/6 nephrectomy (5/6Nx) or were injected with FGF23 for seven consecutive days. Six weeks after surgery, plasma FGF23 was higher in 5/6Nx mice compared to sham mice (720 ± 31 vs. 256 ± 3 pg/mL, respectively, P = 0.034). In cardiomyocytes isolated from both 5/6Nx and FGF23 injected animals the rise of cytosolic calcium during systole was slowed (-13% and -19%, respectively) as was the decay of cytosolic calcium during diastole (-15% and -21%, respectively) compared to controls. Furthermore, both groups had similarly decreased peak cytosolic calcium content during systole. Despite lower cytosolic calcium contents in CKD or FGF23 pretreated animals, no changes were observed in contractile parameters of cardiomyocytes between the groups. Expression of calcium handling proteins and cardiac troponin I phosphorylation were similar between groups. Blood pressure, the heart weight:tibia length ratio, α-MHC/β-MHC ratio and ANF mRNA expression, and systolic and diastolic function as measured by MRI did not differ between groups. In conclusion, the rapid, CKD-induced rise in plasma FGF23 and the similar decrease in cardiomyocyte calcium transients in modeled kidney disease and following 1-week treatment with FGF23 indicate that FGF23 partly mediates cardiomyocyte dysfunction in CKD. © 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  19. The soluble guanylyl cyclase activator bay 58-2667 selectively limits cardiomyocyte hypertrophy.

    Directory of Open Access Journals (Sweden)

    Jennifer C Irvine

    Full Text Available Although evidence now suggests cGMP is a negative regulator of cardiac hypertrophy, the direct consequences of the soluble guanylyl cyclase (sGC activator BAY 58-2667 on cardiac remodeling, independent of changes in hemodynamic load, has not been investigated. In the present study, we tested the hypothesis that the NO(•-independent sGC activator BAY 58-2667 inhibits cardiomyocyte hypertrophy in vitro. Concomitant impact of BAY 58-2667 on cardiac fibroblast proliferation, and insights into potential mechanisms of action, were also sought. Results were compared to the sGC stimulator BAY 41-2272.Neonatal rat cardiomyocytes were incubated with endothelin-1 (ET(1, 60nmol/L in the presence and absence of BAY 41-2272 and BAY 58-2667 (0.01-0.3 µmol/L. Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. The impact of both sGC ligands on basal and stimulated cardiac fibroblast proliferation in vitro was also determined.We now demonstrate that BAY 58-2667 (0.01-0.3 µmol/L elicited concentration-dependent antihypertrophic actions, inhibiting ET(1-mediated increases in cardiomyocyte 2D area and de novo protein synthesis, as well as suppressing ET(1-induced cardiomyocyte superoxide generation. This was accompanied by potent increases in cardiomyocyte cGMP accumulation and activity of its downstream signal, vasodilator-stimulated phosphoprotein (VASP, without elevating cardiomyocyte cAMP. In contrast, submicromolar concentrations of BAY 58-2667 had no effect on basal or stimulated cardiac fibroblast proliferation. Indeed, only at concentrations ≥10 µmol/L was inhibition of cardiac fibrosis seen in vitro. The effects of BAY 58-2667 in both cell types were mimicked by BAY 41-2272.Our results demonstrate that BAY 58-2667 elicits protective, cardiomyocyte-selective effects in vitro. These actions are associated with sGC activation and are evident in the absence of confounding hemodynamic factors, at low (submicromolar

  20. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation

    Energy Technology Data Exchange (ETDEWEB)

    Ganji, Yasaman [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of); Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Li, Qian [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Quabius, Elgar Susanne [Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel (Germany); Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel (Germany); Böttner, Martina [Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel (Germany); Selhuber-Unkel, Christine, E-mail: cse@tf.uni-kiel.de [Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel (Germany); Kasra, Mehran [Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran (Iran, Islamic Republic of)

    2016-02-01

    Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation. - Highlights: • Biodegradable polyurethane/gold nanocomposites for cardiomyocyte adhesion are proposed. • The nanocomposite scaffolds are porous and electrical stimulation enhances cell adhesion. • Expression levels of functional myocardium genes were upregulated after electrical stimulation.

  1. Analysis of cardiomyocyte movement in the developing murine heart

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, Hisayuki [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Yuasa, Shinsuke, E-mail: yuasa@a8.keio.jp [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Tabata, Hidenori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Tohyama, Shugo; Seki, Tomohisa; Egashira, Toru; Hayashiji, Nozomi; Hattori, Fumiyuki; Kusumoto, Dai; Kunitomi, Akira; Takei, Makoto; Kashimura, Shin; Yozu, Gakuto; Shimojima, Masaya; Motoda, Chikaaki; Muraoka, Naoto [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan); Nakajima, Kazunori [Department of Anatomy, Keio University School of Medicine, Tokyo (Japan); Sakaue-Sawano, Asako; Miyawaki, Atsushi [Life Function and Dynamics, ERATO, JST, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Laboratory for Cell Function and Dynamics, Advanced Technology Development Group, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-city, Saitama 351-0198 (Japan); Fukuda, Keiichi [Department of Cardiology, Keio University School of Medicine, Tokyo (Japan)

    2015-09-04

    The precise assemblage of several types of cardiac precursors controls heart organogenesis. The cardiac precursors show dynamic movement during early development and then form the complicated heart structure. However, cardiomyocyte movements inside the newly organized mammalian heart remain unclear. We previously established the method of ex vivo time-lapse imaging of the murine heart to study cardiomyocyte behavior by using the Fucci (fluorescent ubiquitination-based cell cycle indicator) system, which can effectively label individual G1, S/G2/M, and G1/S-transition phase nuclei in living cardiomyocytes as red, green, and yellow, respectively. Global analysis of gene expression in Fucci green positive ventricular cardiomyocytes confirmed that cell cycle regulatory genes expressed in G1/S, S, G2/M, and M phase transitions were upregulated. Interestingly, pathway analysis revealed that many genes related to the cell cycle were significantly upregulated in the Fucci green positive ventricular cardiomyocytes, while only a small number of genes related to cell motility were upregulated. Time-lapse imaging showed that murine proliferating cardiomyocytes did not exhibit dynamic movement inside the heart, but stayed on site after entering the cell cycle. - Highlights: • We directly visualized cardiomyocyte movement inside the developing murine heart. • Cell cycle related genes were upregulated in the proliferating cardiomyocytes. • Time-lapse imaging revealed that proliferating murine cardiomyocytes stayed in place. • Murine ventricular cardiomyocytes proliferate on site during development.

  2. Hypoxia activates muscle-restricted coiled-coil protein (MURC) expression via transforming growth factor-β in cardiac myocytes.

    Science.gov (United States)

    Shyu, Kou-Gi; Cheng, Wen-Pin; Wang, Bao-Wei; Chang, Hang

    2014-03-01

    The expression of MURC (muscle-restricted coiled-coil protein), a hypertrophy-regulated gene, increases during pressure overload. Hypoxia can cause myocardial hypertrophy; however, how hypoxia affects the regulation of MURC in cardiomyocytes undergoing hypertrophy is still unknown. The aim of the present study was to test the hypothesis that hypoxia induces MURC expression in cardiomyocytes during hypertrophy. The expression of MURC was evaluated in cultured rat neonatal cardiomyocytes subjected to hypoxia and in an in vivo model of AMI (acute myocardial infarction) to induce myocardial hypoxia in adult rats. MURC protein and mRNA expression were significantly enhanced by hypoxia. MURC proteins induced by hypoxia were significantly blocked after the addition of PD98059 or ERK (extracellular-signal-regulated kinase) siRNA 30 min before hypoxia. Gel-shift assay showed increased DNA-binding activity of SRF (serum response factor) after hypoxia. PD98059, ERK siRNA and an anti-TGF-β (transforming growth factor-β) antibody abolished the SRF-binding activity enhanced by hypoxia or exogenous administration of TGF-β. A luciferase promoter assay demonstrated increased transcriptional activity of SRF in cardiomyocytes by hypoxia. Increased βMHC (β-myosin heavy chain) and BNP (B-type natriuretic peptide) protein expression and increased protein synthesis was identified after hypoxia with the presence of MURC in hypertrophic cardiomyocytes. MURC siRNA inhibited the hypertrophic marker protein expression and protein synthesis induced by hypoxia. AMI in adult rats also demonstrated increased MURC protein expression in the left ventricular myocardium. In conclusion, hypoxia in cultured rat neonatal cardiomyocytes increased MURC expression via the induction of TGF-β, SRF and the ERK pathway. These findings suggest that MURC plays a role in hypoxia-induced hypertrophy in cardiomyocytes.

  3. Creating a Structurally Realistic Finite Element Geometric Model of a Cardiomyocyte to Study the Role of Cellular Architecture in Cardiomyocyte Systems Biology.

    Science.gov (United States)

    Rajagopal, Vijay; Bass, Gregory; Ghosh, Shouryadipta; Hunt, Hilary; Walker, Cameron; Hanssen, Eric; Crampin, Edmund; Soeller, Christian

    2018-04-18

    With the advent of three-dimensional (3D) imaging technologies such as electron tomography, serial-block-face scanning electron microscopy and confocal microscopy, the scientific community has unprecedented access to large datasets at sub-micrometer resolution that characterize the architectural remodeling that accompanies changes in cardiomyocyte function in health and disease. However, these datasets have been under-utilized for investigating the role of cellular architecture remodeling in cardiomyocyte function. The purpose of this protocol is to outline how to create an accurate finite element model of a cardiomyocyte using high resolution electron microscopy and confocal microscopy images. A detailed and accurate model of cellular architecture has significant potential to provide new insights into cardiomyocyte biology, more than experiments alone can garner. The power of this method lies in its ability to computationally fuse information from two disparate imaging modalities of cardiomyocyte ultrastructure to develop one unified and detailed model of the cardiomyocyte. This protocol outlines steps to integrate electron tomography and confocal microscopy images of adult male Wistar (name for a specific breed of albino rat) rat cardiomyocytes to develop a half-sarcomere finite element model of the cardiomyocyte. The procedure generates a 3D finite element model that contains an accurate, high-resolution depiction (on the order of ~35 nm) of the distribution of mitochondria, myofibrils and ryanodine receptor clusters that release the necessary calcium for cardiomyocyte contraction from the sarcoplasmic reticular network (SR) into the myofibril and cytosolic compartment. The model generated here as an illustration does not incorporate details of the transverse-tubule architecture or the sarcoplasmic reticular network and is therefore a minimal model of the cardiomyocyte. Nevertheless, the model can already be applied in simulation-based investigations into the

  4. Heme Oxygenase-1/Carbon Monoxide System and Embryonic Stem Cell Differentiation and Maturation into Cardiomyocytes

    Science.gov (United States)

    Suliman, Hagir B.; Zobi, Fabio

    2016-01-01

    Abstract Aims: The differentiation of embryonic stem (ES) cells into energetically efficient cardiomyocytes contributes to functional cardiac repair and is envisioned to ameliorate progressive degenerative cardiac diseases. Advanced cell maturation strategies are therefore needed to create abundant mature cardiomyocytes. In this study, we tested whether the redox-sensitive heme oxygenase-1/carbon monoxide (HO-1/CO) system, operating through mitochondrial biogenesis, acts as a mechanism for ES cell differentiation and cardiomyocyte maturation. Results: Manipulation of HO-1/CO to enhance mitochondrial biogenesis demonstrates a direct pathway to ES cell differentiation and maturation into beating cardiomyocytes that express adult structural markers. Targeted HO-1/CO interventions up- and downregulate specific cardiogenic transcription factors, transcription factor Gata4, homeobox protein Nkx-2.5, heart- and neural crest derivatives-expressed protein 1, and MEF2C. HO-1/CO overexpression increases cardiac gene expression for myosin regulatory light chain 2, atrial isoform, MLC2v, ANP, MHC-β, and sarcomere α-actinin and the major mitochondrial fusion regulators, mitofusin 2 and MICOS complex subunit Mic60. This promotes structural mitochondrial network expansion and maturation, thereby supporting energy provision for beating embryoid bodies. These effects are prevented by silencing HO-1 and by mitochondrial reactive oxygen species scavenging, while disruption of mitochondrial biogenesis and mitochondrial DNA depletion by loss of mitochondrial transcription factor A compromise infrastructure. This leads to failure of cardiomyocyte differentiation and maturation and contractile dysfunction. Innovation: The capacity to augment cardiomyogenesis via a defined mitochondrial pathway has unique therapeutic potential for targeting ES cell maturation in cardiac disease. Conclusion: Our findings establish the HO-1/CO system and redox regulation of mitochondrial biogenesis as

  5. Identification, Selection, and Enrichment of Cardiomyocyte Precursors

    Directory of Open Access Journals (Sweden)

    Bianca Ferrarini Zanetti

    2013-01-01

    Full Text Available The large-scale production of cardiomyocytes is a key step in the development of cell therapy and tissue engineering to treat cardiovascular diseases, particularly those caused by ischemia. The main objective of this study was to establish a procedure for the efficient production of cardiomyocytes by reprogramming mesenchymal stem cells from adipose tissue. First, lentiviral vectors expressing neoR and GFP under the control of promoters expressed specifically during cardiomyogenesis were constructed to monitor cell reprogramming into precardiomyocytes and to select cells for amplification and characterization. Cellular reprogramming was performed using 5′-azacytidine followed by electroporation with plasmid pOKS2a, which expressed Oct4, Sox2, and Klf4. Under these conditions, GFP expression began only after transfection with pOKS2a, and less than 0.015% of cells were GFP+. These GFP+ cells were selected for G418 resistance to find molecular markers of cardiomyocytes by RT-PCR and immunocytochemistry. Both genetic and protein markers of cardiomyocytes were present in the selected cells, with some variations among them. Cell doubling time did not change after selection. Together, these results indicate that enrichment with vectors expressing GFP and neoR under cardiomyocyte-specific promoters can produce large numbers of cardiomyocyte precursors (CMPs, which can then be differentiated terminally for cell therapy and tissue engineering.

  6. Engineered Biomaterials Control Differentiation and Proliferation of Human-Embryonic-Stem-Cell-Derived Cardiomyocytes via Timed Notch Activation

    Directory of Open Access Journals (Sweden)

    Jason C. Tung

    2014-03-01

    Full Text Available For cell-based treatments of myocardial infarction, a better understanding of key developmental signaling pathways and more robust techniques for producing cardiomyocytes are required. Manipulation of Notch signaling has promise as it plays an important role during cardiovascular development, but previous studies presented conflicting results that Notch activation both positively and negatively regulates cardiogenesis. We developed surface- and microparticle-based Notch-signaling biomaterials that function in a time-specific activation-tunable manner, enabling precise investigation of Notch activation at specific developmental stages. Using our technologies, a biphasic effect of Notch activation on cardiac differentiation was found: early activation in undifferentiated human embryonic stem cells (hESCs promotes ectodermal differentiation, activation in specified cardiovascular progenitor cells increases cardiac differentiation. Signaling also induces cardiomyocyte proliferation, and repeated doses of Notch-signaling microparticles further enhance cardiomyocyte population size. These results highlight the diverse effects of Notch activation during cardiac development and provide approaches for generating large quantities of cardiomyocytes.

  7. Mutations in Alström protein impair terminal differentiation of cardiomyocytes.

    Science.gov (United States)

    Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P

    2014-03-04

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest.

  8. The location of energetic compartments affects energetic communication in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rikke eBirkedal

    2014-09-01

    Full Text Available The heart relies on accurate regulation of mitochondrial energy supply to match energy demand. The main regulators are Ca2+ and feedback of ADP and Pi. Regulation via feedback has intrigued for decades. First, the heart exhibits a remarkable metabolic stability. Second, diffusion of ADP and other molecules is restricted specifically in heart and red muscle, where a fast feedback is needed the most. To explain the regulation by feedback, compartmentalization must be taken into account. Experiments and theoretical approaches suggest that cardiomyocyte energetic compartmentalization is elaborate with barriers obstructing diffusion in the cytosol and at the level of the mitochondrial outer membrane (MOM. A recent study suggests the barriers are organized in a lattice with dimensions in agreement with those of intracellular structures. Here, we discuss the possible location of these barriers. The more plausible scenario includes a barrier at the level of MOM. Much research has focused on how the permeability of MOM itself is regulated, and the importance of the creatine kinase system to facilitate energetic communication. We hypothesize that at least part of the diffusion restriction at the MOM level is not by MOM itself, but due to the close physical association between the sarcoplasmic reticulum (SR and mitochondria. This will explain why animals with a disabled creatine kinase system exhibit rather mild phenotype modifications. Mitochondria are hubs of energetics, but also ROS production and signaling. The close association between SR and mitochondria may form a diffusion barrier to ADP added outside a permeabilised cardiomyocyte. But in vivo, it is the structural basis for the mitochondrial-SR coupling that is crucial for the regulation of mitochondrial Ca2+-transients to regulate energetics, and for avoiding Ca2+-overload and irreversible opening of the mitochondrial permeability transition pore.

  9. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    Directory of Open Access Journals (Sweden)

    Craig Bolte

    Full Text Available Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2 plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  10. [Octanol preconditioning alleviates mouse cardiomyocyte swelling induced by simulated ischemia/reperfusion challenge in vitro].

    Science.gov (United States)

    Luo, Yukun; Fang, Jun; Fan, Lin; Lin, Chaogui; Chen, Zhaoyang; Chen, Lianglong

    2012-10-01

    To investigate the role of connexin 43-formed hemichannels in cell volume regulation induced by simulated ischemia/reperfusion (SI/R). Mouse cardiomyocytes isolated on a Langendorff apparatus with enzyme solution were aliquoted into control, SI/R and SI/R +octanol groups. Calcein-AM was used to stain the cells and the cell volume was measured with confocal microscope by stack scanning. Trypan blue was used to measure the cell viability after the treatments. Calcein-AM staining and cofocal microscopy yielded stable and reproducible results for cell volume measurement. Mouse cardiomyocytes subjected to simulated SI/R showed obvious cell swelling as compared with the control cells [(126∓6)% vs 100%, Poctanol preconditioning significantly attenuated the cell swelling [(113∓6)%, Poctanol preconditioning obviously reduced the viability of the cells with SI/R challenge [(31∓2)%, Poctanol can alleviate the cell swelling to enhance the viability of the cardiomyocytes following SI/R.

  11. Electricity regulation and economic growth

    OpenAIRE

    Costa, M. Teresa (Maria Teresa), 1951-; Garcia-Quevedo, Jose; Trujillo-Baute, Elisa

    2018-01-01

    The main objective of this paper is to analyse the effect of electricity regulation on economic growth. Although the relationship between electricity consumption and economic growth has been extensively analysed in the empirical literature, this framework has not been used to estimate the effect of electricity regulation on economic growth. Understanding this effect is essential for the assessment of regulatory policy. Specifically, we assess the effects of two major areas of regulation, rene...

  12. Prenatal Mechanistic Target of Rapamycin Complex 1 (m TORC1) Inhibition by Rapamycin Treatment of Pregnant Mice Causes Intrauterine Growth Restriction and Alters Postnatal Cardiac Growth, Morphology, and Function.

    Science.gov (United States)

    Hennig, Maria; Fiedler, Saskia; Jux, Christian; Thierfelder, Ludwig; Drenckhahn, Jörg-Detlef

    2017-08-04

    Fetal growth impacts cardiovascular health throughout postnatal life in humans. Various animal models of intrauterine growth restriction exhibit reduced heart size at birth, which negatively influences cardiac function in adulthood. The mechanistic target of rapamycin complex 1 (mTORC1) integrates nutrient and growth factor availability with cell growth, thereby regulating organ size. This study aimed at elucidating a possible involvement of mTORC1 in intrauterine growth restriction and prenatal heart growth. We inhibited mTORC1 in fetal mice by rapamycin treatment of pregnant dams in late gestation. Prenatal rapamycin treatment reduces mTORC1 activity in various organs at birth, which is fully restored by postnatal day 3. Rapamycin-treated neonates exhibit a 16% reduction in body weight compared with vehicle-treated controls. Heart weight decreases by 35%, resulting in a significantly reduced heart weight/body weight ratio, smaller left ventricular dimensions, and reduced cardiac output in rapamycin- versus vehicle-treated mice at birth. Although proliferation rates in neonatal rapamycin-treated hearts are unaffected, cardiomyocyte size is reduced, and apoptosis increased compared with vehicle-treated neonates. Rapamycin-treated mice exhibit postnatal catch-up growth, but body weight and left ventricular mass remain reduced in adulthood. Prenatal mTORC1 inhibition causes a reduction in cardiomyocyte number in adult hearts compared with controls, which is partially compensated for by an increased cardiomyocyte volume, resulting in normal cardiac function without maladaptive left ventricular remodeling. Prenatal rapamycin treatment of pregnant dams represents a new mouse model of intrauterine growth restriction and identifies an important role of mTORC1 in perinatal cardiac growth. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Quantitative Non-canonical Amino Acid Tagging (QuaNCAT) Proteomics Identifies Distinct Patterns of Protein Synthesis Rapidly Induced by Hypertrophic Agents in Cardiomyocytes, Revealing New Aspects of Metabolic Remodeling*

    Science.gov (United States)

    Liu, Rui; Kenney, Justin W.; Manousopoulou, Antigoni; Johnston, Harvey E.; Kamei, Makoto; Woelk, Christopher H.; Xie, Jianling; Schwarzer, Michael; Proud, Christopher G.

    2016-01-01

    Cardiomyocytes undergo growth and remodeling in response to specific pathological or physiological conditions. In the former, myocardial growth is a risk factor for cardiac failure and faster protein synthesis is a major factor driving cardiomyocyte growth. Our goal was to quantify the rapid effects of different pro-hypertrophic stimuli on the synthesis of specific proteins in ARVC and to determine whether such effects are caused by alterations on mRNA abundance or the translation of specific mRNAs. Cardiomyocytes have very low rates of protein synthesis, posing a challenging problem in terms of studying changes in the synthesis of specific proteins, which also applies to other nondividing primary cells. To study the rates of accumulation of specific proteins in these cells, we developed an optimized version of the Quantitative Noncanonical Amino acid Tagging LC/MS proteomic method to label and selectively enrich newly synthesized proteins in these primary cells while eliminating the suppressive effects of pre-existing and highly abundant nonisotope-tagged polypeptides. Our data revealed that a classical pathologic (phenylephrine; PE) and the recently identified insulin stimulus that also contributes to the development of pathological cardiac hypertrophy (insulin), both increased the synthesis of proteins involved in, e.g. glycolysis, the Krebs cycle and beta-oxidation, and sarcomeric components. However, insulin increased synthesis of many metabolic enzymes to a greater extent than PE. Using a novel validation method, we confirmed that synthesis of selected candidates is indeed up-regulated by PE and insulin. Synthesis of all proteins studied was up-regulated by signaling through mammalian target of rapamycin complex 1 without changes in their mRNA levels, showing the key importance of translational control in the rapid effects of hypertrophic stimuli. Expression of PKM2 was up-regulated in rat hearts following TAC. This isoform possesses specific regulatory

  14. Tri-iodo-l-thyronine promotes the maturation of human cardiomyocytes-derived from induced pluripotent stem cells.

    Science.gov (United States)

    Yang, Xiulan; Rodriguez, Marita; Pabon, Lil; Fischer, Karin A; Reinecke, Hans; Regnier, Michael; Sniadecki, Nathan J; Ruohola-Baker, Hannele; Murry, Charles E

    2014-07-01

    Cardiomyocytes derived from human induced pluripotent stem cells (hiPSC-CMs) have great potential as a cell source for therapeutic applications such as regenerative medicine, disease modeling, drug screening, and toxicity testing. This potential is limited, however, by the immature state of the cardiomyocytes acquired using current protocols. Tri-iodo-l-thyronine (T3) is a growth hormone that is essential for optimal heart growth. In this study, we investigated the effect of T3 on hiPSC-CM maturation. A one-week treatment with T3 increased cardiomyocyte size, anisotropy, and sarcomere length. T3 treatment was associated with reduced cell cycle activity, manifest as reduced DNA synthesis and increased expression of the cyclin-dependent kinase inhibitor p21. Contractile force analyses were performed on individual cardiomyocytes using arrays of microposts, revealing an almost two-fold higher force per-beat after T3 treatment and also an enhancement in contractile kinetics. This improvement in force generation was accompanied by an increase in rates of calcium release and reuptake, along with a significant increase in sarcoendoplasmic reticulum ATPase expression. Finally, although mitochondrial genomes were not numerically increased, extracellular flux analysis showed a significant increase in maximal mitochondrial respiratory capacity and respiratory reserve capability after T3 treatment. Using a broad spectrum of morphological, molecular, and functional parameters, we conclude that T3 is a driver for hiPSC-CM maturation. T3 treatment may enhance the utility of hiPSC-CMs for therapy, disease modeling, or drug/toxicity screens. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. PGC-1α and Reactive Oxygen Species Regulate Human Embryonic Stem Cell-Derived Cardiomyocyte Function

    NARCIS (Netherlands)

    Birket, Matthew J.; Casini, Simona; Kosmidis, Georgios; Elliott, David A.; Gerencser, Akos A.; Baartscheer, Antonius; Schumacher, Cees; Mastroberardino, Pier G.; Elefanty, Andrew G.; Stanley, Ed G.; Mummery, Christine L.

    2013-01-01

    Diminished mitochondrial function is causally related to some heart diseases. Here, we developed a human disease model based on cardiomyocytes from human embryonic stem cells (hESCs), in which an important pathway of mitochondrial gene expression was inactivated. Repression of PGC-1α, which is

  16. Cardiac injury of the newborn mammalian heart accelerates cardiomyocyte terminal differentiation

    DEFF Research Database (Denmark)

    Zebrowski, David C.; Jensen, Charlotte H.; Becker, Robert

    2017-01-01

    exhibited midbody formation consistent with successful abscission, whereas those from 3 day-old cardiomyocytes after apical resection exhibited midbody formation consistent with abscission failure. Lastly, injured hearts failed to fully regenerate as evidenced by persistent scarring and reduced wall motion......After birth cardiomyocytes undergo terminal differentiation, characterized by binucleation and centrosome disassembly, rendering the heart unable to regenerate. Yet, it has been suggested that newborn mammals regenerate their hearts after apical resection by cardiomyocyte proliferation. Thus, we...... increased rate of binucleation there was a nearly 2-fold increase in the number of cardiomyocytes in mitosis indicating that the majority of injury-induced cardiomyocyte cell cycle activity results in binucleation, not proliferation. Concurrently, cardiomyocytes undergoing cytokinesis from embryonic hearts...

  17. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    International Nuclear Information System (INIS)

    Chen, Rui; Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping; Liu, Chao; Lin, Zhoumeng; Xie, Wei-Bing; Wang, Huijun

    2016-01-01

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  18. DNA damage-inducible transcript 4 (DDIT4) mediates methamphetamine-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Rui [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Department of Forensic Medicine, Guangdong Medical University, Dongguan 523808 (China); Wang, Bin; Chen, Ling; Cai, Dunpeng; Li, Bing; Chen, Chuanxiang; Huang, Enping [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Liu, Chao [Guangzhou Forensic Science Institute, Guangzhou 510030 (China); Lin, Zhoumeng [Institute of Computational Comparative Medicine and Department of Anatomy and Physiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506 (United States); Xie, Wei-Bing, E-mail: xieweib@126.com [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China); Wang, Huijun, E-mail: hjwang711@yahoo.cn [Department of Forensic Medicine, School of Basic Medical Science, Southern Medical University, Guangzhou 510515 (China)

    2016-03-15

    Methamphetamine (METH) is an amphetamine-like psychostimulant that is commonly abused. Previous studies have shown that METH can induce damages to the nervous system and recent studies suggest that METH can also cause adverse and potentially lethal effects on the cardiovascular system. Recently, we demonstrated that DNA damage-inducible transcript 4 (DDIT4) regulates METH-induced neurotoxicity. However, the role of DDIT4 in METH-induced cardiotoxicity remains unknown. We hypothesized that DDIT4 may mediate METH-induced autophagy and apoptosis in cardiomyocytes. To test the hypothesis, we examined DDIT4 protein expression in cardiomyocytes and in heart tissues of rats exposed to METH with Western blotting. We also determined the effects on METH-induced autophagy and apoptosis after silencing DDIT4 expression with synthetic siRNA with or without pretreatment of a mTOR inhibitor rapamycin in cardiomyocytes using Western blot analysis, fluorescence microscopy and TUNEL staining. Our results showed that METH exposure increased DDIT4 expression and decreased phosphorylation of mTOR that was accompanied with increased autophagy and apoptosis both in vitro and in vivo. These effects were normalized after silencing DDIT4. On the other hand, rapamycin promoted METH-induced autophagy and apoptosis in DDIT4 knockdown cardiomyocytes. These results suggest that DDIT4 mediates METH-induced autophagy and apoptosis through mTOR signaling pathway in cardiomyocytes. - Highlights: • METH exposure increases DDIT4 expression in cardiomyocytes. • DDIT4 mediates METH-induced autophagy and apoptosis in cardiomyocytes. • DDIT4 silencing protects cardiomyocytes against METH-caused autophagy and apoptosis.

  19. Directed Differentiation of Zebrafish Pluripotent Embryonic Cells to Functional Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yao Xiao

    2016-09-01

    Full Text Available A cardiomyocyte differentiation in vitro system from zebrafish embryos remains to be established. Here, we have determined pluripotency window of zebrafish embryos by analyzing their gene-expression patterns of pluripotency factors together with markers of three germ layers, and have found that zebrafish undergoes a very narrow period of pluripotency maintenance from zygotic genome activation to a brief moment after oblong stage. Based on the pluripotency and a combination of appropriate conditions, we established a rapid and efficient method for cardiomyocyte generation in vitro from primary embryonic cells. The induced cardiomyocytes differentiated into functional and specific cardiomyocyte subtypes. Notably, these in vitro generated cardiomyocytes exhibited typical contractile kinetics and electrophysiological features. The system provides a new paradigm of cardiomyocyte differentiation from primary embryonic cells in zebrafish. The technology provides a new platform for the study of heart development and regeneration, in addition to drug discovery, disease modeling, and assessment of cardiotoxic agents.

  20. Genetic enrichment of cardiomyocytes derived from mouse ...

    African Journals Online (AJOL)

    Genetic enrichment of cardiomyocytes derived from mouse embryonic stem cells. WJ He, SC Li, LL Ye, H Liu, QW Wang, WD Han, XB Fu, ZL Chen. Abstract. Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a variety of cell lineages in vitro, including cardiomyocytes. Successful applications of ...

  1. File list: Pol.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.05.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.05.AllAg.Cardiomyocytes.bed ...

  2. File list: Pol.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.20.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.20.AllAg.Cardiomyocytes.bed ...

  3. File list: Pol.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.10.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.10.AllAg.Cardiomyocytes.bed ...

  4. File list: Pol.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Pol.CDV.50.AllAg.Cardiomyocytes mm9 RNA polymerase Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Pol.CDV.50.AllAg.Cardiomyocytes.bed ...

  5. File list: Oth.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.50.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.50.AllAg.Cardiomyocytes.bed ...

  6. File list: Oth.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.05.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.05.AllAg.Cardiomyocytes.bed ...

  7. File list: Oth.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.20.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.20.AllAg.Cardiomyocytes.bed ...

  8. File list: Oth.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available Oth.CDV.10.AllAg.Cardiomyocytes mm9 TFs and others Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/Oth.CDV.10.AllAg.Cardiomyocytes.bed ...

  9. Tuning the conductivity and inner structure of electrospun fibers to promote cardiomyocyte elongation and synchronous beating.

    Science.gov (United States)

    Liu, Yaowen; Lu, Jinfu; Xu, Guisen; Wei, Jiaojun; Zhang, Zhibin; Li, Xiaohong

    2016-12-01

    The key to addressing the challenges facing cardiac tissue engineering is the integration of physical, chemical, and electrical cues into scaffolds. Aligned and conductive scaffolds have been fabricated as synthetic microenvironments to improve the function of cardiomyocytes. However, up to now, the influence of conductive capability and inner structure of fibrous scaffolds have not been determined on the cardiomyocyte morphologies and beating patterns. In the current study, highly aligned fibers were fabricated with loaded up to 6% of carbon nanotubes (CNTs) to modulate the electrical conductivity, while blend and coaxial electrospinning were utilized to create a bulk distribution of CNTs in fiber matrices and a spatial embedment in fiber cores, respectively. Conductive networks were formed in the fibrous scaffolds after the inoculation of over 3% CNTs, and the increase in the conductivity could maintain the cell viabilities, induce the cell elongation, enhance the production of sarcomeric α-actinin and troponin I, and promote the synchronous beating of cardiomyocytes. Although the conductivity of blend fibers is slightly higher than that of coaxial fibers with the same CNT loadings, the lower exposures to CNTs resulted in higher cell viability, elongation, extracellular matrix secretion and beating rates for cardiomyocytes on coaxial fibers. Taken altogether, core-sheath fibers with loaded 5% of CNTs in the fiber cores facilitated the cardiomyocyte growth with a production of organized contractile proteins and a pulsation frequency close to that of the atrium. It is suggested that electrospun scaffolds that couple conductivity and fibrous structure considerations may provide optimal stimuli to foster cell morphology and functions for myocardial regeneration or establishment of in vitro cardiomyocyte culture platform for drug screening. Copyright © 2016. Published by Elsevier B.V.

  10. Ursodeoxycholic acid protects cardiomyocytes against cobalt chloride induced hypoxia by regulating transcriptional mediator of cells stress hypoxia inducible factor 1α and p53 protein.

    Science.gov (United States)

    Mohamed, Anis Syamimi; Hanafi, Noorul Izzati; Sheikh Abdul Kadir, Siti Hamimah; Md Noor, Julina; Abdul Hamid Hasani, Narimah; Ab Rahim, Sharaniza; Siran, Rosfaiizah

    2017-10-01

    In hepatocytes, ursodeoxycholic acid (UDCA) activates cell signalling pathways such as p53, intracellular calcium ([Ca 2+ ] i ), and sphingosine-1-phosphate (S1P)-receptor via Gα i -coupled-receptor. Recently, UDCA has been shown to protect the heart against hypoxia-reoxygenation injury. However, it is not clear whether UDCA cardioprotection against hypoxia acts through a transcriptional mediator of cells stress, HIF-1α and p53. Therefore, in here, we aimed to investigate whether UDCA could protect cardiomyocytes (CMs) against hypoxia by regulating expression of HIF-1α, p53, [Ca 2+ ] i , and S1P-Gα i -coupled-receptor. Cardiomyocytes were isolated from newborn rats (0-2 days), and hypoxia was induced by using cobalt chloride (CoCl 2 ). Cardiomyocytes were treated with UDCA and cotreated with either FTY720 (S1P-receptor agonist) or pertussis toxin (PTX; Gα i inhibitor). Cells were subjected for proliferation assay, beating frequency, QuantiGene Plex assay, western blot, immunofluorescence, and calcium imaging. Our findings showed that UDCA counteracted the effects of CoCl 2 on cell viability, beating frequency, HIF-1α, and p53 protein expression. We found that these cardioprotection effects of UDCA were similar to FTY720, S1P agonist. Furthermore, we observed that UDCA protects CMs against CoCl 2 -induced [Ca 2+ ] i dynamic alteration. Pharmacological inhibition of the Gα i -sensitive receptor did not abolish the cardioprotection of UDCA against CoCl 2 detrimental effects, except for cell viability and [Ca 2+ ] i . Pertussis toxin is partially effective in inhibiting UDCA protection against CoCl 2 effects on CM cell viability. Interestingly, PTX fully inhibits UDCA cardioprotection on CoCl 2 -induced [Ca 2+ ] i dynamic changes. We conclude that UDCA cardioprotection against CoCl 2 -induced hypoxia is similar to FTY720, and its actions are not fully mediated by the Gα i -coupled protein sensitive pathways. Ursodeoxycholic acid is the most hydrophilic bile

  11. Functional interaction between bicarbonate transporters and carbonic anhydrase modulates lactate uptake into mouse cardiomyocytes.

    Science.gov (United States)

    Peetz, Jan; Barros, L Felipe; San Martín, Alejandro; Becker, Holger M

    2015-07-01

    Blood-derived lactate is a precious energy substrate for the heart muscle. Lactate is transported into cardiomyocytes via monocarboxylate transporters (MCTs) together with H(+), which couples lactate uptake to cellular pH regulation. In this study, we have investigated how the interplay between different acid/base transporters and carbonic anhydrases (CA), which catalyze the reversible hydration of CO2, modulates the uptake of lactate into isolated mouse cardiomyocytes. Lactate transport was estimated both as lactate-induced acidification and as changes in intracellular lactate levels measured with a newly developed Förster resonance energy transfer (FRET) nanosensor. Recordings of intracellular pH showed an increase in the rate of lactate-induced acidification when CA was inhibited by 6-ethoxy-2-benzothiazolesulfonamide (EZA), while direct measurements of lactate flux demonstrated a decrease in MCT transport activity, when CA was inhibited. The data indicate that catalytic activity of extracellular CA increases lactate uptake and counteracts intracellular lactate-induced acidification. We propose a hypothetical model, in which HCO3 (-), formed from cell-derived CO2 at the outer surface of the cardiomyocyte plasma membrane by membrane-anchored, extracellular CA, is transported into the cell via Na(+)/HCO3 (-) cotransport to counteract intracellular acidification, while the remaining H(+) stabilizes extracellular pH at the surface of the plasma membrane during MCT activity to enhance lactate influx into cardiomyocytes.

  12. [Rat cardiomyocyte remodeling after neonatal cryptosporidiosis. II. Elongation, excessive polyploidization and HIF-1alpha overexpression].

    Science.gov (United States)

    Anatskaia, O V; Sidorenko, N V; Matveev, I V; Kropotov, A V; Vinogradov, A E

    2012-01-01

    Retrospective epidemyological studies evidence that infant diseases leave survivors with an increased susceptibility to cardiovascular diseases in later life. At the same time, the mechanisms of this link remain poorly understood. Based on medical statistics reporting that infectious gastroenteritis is the most common cause of maladies in babies, infants and children, we analysed the effects of moderate cryptosporidial gastroenteritis on the heart and ventricular cardiomyocyte remodelling in rats of the first month of life. The disease was challenged by a worldwide human protozoic pathogen Cryptosporidium parvum (Apicomplexa, Sporozoa). The main symptoms manifested in the growth retardation moderate diarrhea. Using real-time PCR, cytophotometry, confocal microscopy and image analysis, we indicated that cryptosporidiosis was associated, with the atrophy heart and the elongation, narrowing, protein content decrease and hyperpolyploidization of cardiomyocytes and the moderate overexpression of hypoxia inducible factor 1alpha (HIF-1alpha) mRNA. Cardiomyocyte shape remodeling and heart atrophy presented in all age groups. The severity of these changes, hovewer, declined gradually from younger to older groups. In contrast, hyperpolyploidization and HIF-1alpha mRNA overexpression were registered mainly among animals aged between 6 and 13 days, and were barely detected and non-significant in older age groups. In the rat the time period covering 6-13 days after birth is known to coincide with the intensive cardiomyocyte polyploidization and the switch from proliferation to hypertrophy. Thus, our data indicate that neonatal cryptosporidiosis may be potential cardiovascular diseases risk factor and that one of the critical time windows for the growing heart covers the time period when cardiomyocyte undergo polyploidization.

  13. Process for producing vegetative and tuber growth regulator

    Science.gov (United States)

    Stutte, Gary W. (Inventor); Yorio, Neil C. (Inventor)

    1999-01-01

    A process of making a vegetative and tuber growth regulator. The vegetative and tuber growth regulator is made by growing potato plants in a recirculating hydroponic system for a sufficient time to produce the growth regulator. Also, the use of the vegetative and growth regulator on solanaceous plants, tuber forming plants and ornamental seedlings by contacting the roots or shoots of the plant with a sufficient amount of the growth regulator to regulate the growth of the plant and one more of canopy size, plant height, stem length, internode number and presence of tubers in fresh mass. Finally, a method for regulating the growth of potato plants using a recirculating hydroponic system is described.

  14. SurR9C84A protects and recovers human cardiomyocytes from hypoxia induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Ashok, Ajay [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia); Department of Pathology, Case Western Reserve University, 2103 Cornell Rd. WRB 5128, Cleveland, OH 44106-7288 (United States); Kanwar, Jagat Rakesh [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia); Krishnan, Uma Maheswari [Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), School of Chemical & Biotechnology (SCBT), SASTRA University, Thanjavur 613401 (India); Kanwar, Rupinder Kaur, E-mail: rupinder.kanwar@deakin.edu.au [Nanomedicine-Laboratory of Immunology and Molecular Biomedical Research (NLIMBR), School of Medicine (SoM), Faculty of Health, Centre for Molecular and Medical Research - C-MMR, Deakin University, Waurn Ponds, Victoria 3216 (Australia)

    2017-01-01

    Survivin, as an anti-apoptotic protein and a cell cycle regulator, is recently gaining importance for its regenerative potential in salvaging injured hypoxic cells of vital organs such as heart. Different strategies are being employed to upregulate survivin expression in dying hypoxic cardiomyocytes. We investigated the cardioprotective potential of a cell permeable survivin mutant protein SurR9C84A, for the management of hypoxia mediated cardiomyocyte apoptosis, in a novel and clinically relevant model employing primary human cardiomyocytes (HCM). The aim of this research work was to study the efficacy and mechanism of SurR9C84A facilitated cardioprotection and regeneration in hypoxic HCM. To mimic hypoxic microenvironment in vitro, well characterized HCM were treated with 100 µm (48 h) cobalt chloride to induce hypoxia. Hypoxia induced (HI) HCM were further treated with SurR9C84A (1 µg/mL) in order to analyse its cardioprotective efficacy. Confocal microscopy showed rapid internalization of SurR9C84A and scanning electron microscopy revealed the reinstatement of cytoskeleton projections in HI HCM. SurR9C84A treatment increased cell viability, reduced cell death via, apoptosis (Annexin-V assay), and downregulated free cardiac troponin T and MMP-9 expression. SurR9C84A also upregulated the expression of proliferation markers (PCNA and Ki-67) and downregulated mitochondrial depolarization and ROS levels thereby, impeding cell death. Human Apoptosis Array further revealed that SurR9C84A downregulated expression of pro-apoptotic markers and augmented expression of HSPs and HTRA2/Omi. SurR9C84A treatment led to enhanced levels of survivin, VEGF, PI3K and pAkt. SurR9C84A proved non-toxic to normoxic HCM, as validated through unaltered cell proliferation and other marker levels. Its pre-treatment exhibited lesser susceptibility to hypoxia/damage. SurR9C84A holds a promising clinical potential for human cardiomyocyte survival and proliferation following hypoxic injury

  15. File list: His.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.05.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX305918...,SRX305920,SRX1121699,SRX305919 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.05.AllAg.Cardiomyocytes.bed ...

  16. File list: His.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.50.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX305918...,SRX305920,SRX305919,SRX1121699 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.50.AllAg.Cardiomyocytes.bed ...

  17. File list: His.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.20.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX112169...9,SRX305918,SRX305920,SRX305919 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.20.AllAg.Cardiomyocytes.bed ...

  18. File list: His.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available His.CDV.10.AllAg.Cardiomyocytes mm9 Histone Cardiovascular Cardiomyocytes SRX112169...9,SRX305919,SRX305918,SRX305920 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/His.CDV.10.AllAg.Cardiomyocytes.bed ...

  19. Coupling primary and stem cell–derived cardiomyocytes in an in vitro model of cardiac cell therapy

    Science.gov (United States)

    Aratyn-Schaus, Yvonne; Pasqualini, Francesco S.; Yuan, Hongyan; McCain, Megan L.; Ye, George J.C.; Sheehy, Sean P.; Campbell, Patrick H.

    2016-01-01

    The efficacy of cardiac cell therapy depends on the integration of existing and newly formed cardiomyocytes. Here, we developed a minimal in vitro model of this interface by engineering two cell microtissues (μtissues) containing mouse cardiomyocytes, representing spared myocardium after injury, and cardiomyocytes generated from embryonic and induced pluripotent stem cells, to model newly formed cells. We demonstrated that weaker stem cell–derived myocytes coupled with stronger myocytes to support synchronous contraction, but this arrangement required focal adhesion-like structures near the cell–cell junction that degrade force transmission between cells. Moreover, we developed a computational model of μtissue mechanics to demonstrate that a reduction in isometric tension is sufficient to impair force transmission across the cell–cell boundary. Together, our in vitro and in silico results suggest that mechanotransductive mechanisms may contribute to the modest functional benefits observed in cell-therapy studies by regulating the amount of contractile force effectively transmitted at the junction between newly formed and spared myocytes. PMID:26858266

  20. File list: ALL.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.20.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX1...121699,SRX305918,SRX305920,SRX305919,SRX1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.CDV.20.AllAg.Cardiomyocytes.bed ...

  1. File list: ALL.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.50.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX3...05918,SRX305920,SRX305919,SRX1121699,SRX1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.CDV.50.AllAg.Cardiomyocytes.bed ...

  2. File list: ALL.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available ALL.CDV.05.AllAg.Cardiomyocytes mm9 All antigens Cardiovascular Cardiomyocytes SRX3...05918,SRX305920,SRX1121699,SRX305919,SRX1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/ALL.CDV.05.AllAg.Cardiomyocytes.bed ...

  3. Prolyl hydroxylation regulates protein degradation, synthesis, and splicing in human induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Stoehr, Andrea; Yang, Yanqin; Patel, Sajni; Evangelista, Alicia M; Aponte, Angel; Wang, Guanghui; Liu, Poching; Boylston, Jennifer; Kloner, Philip H; Lin, Yongshun; Gucek, Marjan; Zhu, Jun; Murphy, Elizabeth

    2016-06-01

    Protein hydroxylases are oxygen- and α-ketoglutarate-dependent enzymes that catalyse hydroxylation of amino acids such as proline, thus linking oxygen and metabolism to enzymatic activity. Prolyl hydroxylation is a dynamic post-translational modification that regulates protein stability and protein-protein interactions; however, the extent of this modification is largely uncharacterized. The goals of this study are to investigate the biological consequences of prolyl hydroxylation and to identify new targets that undergo prolyl hydroxylation in human cardiomyocytes. We used human induced pluripotent stem cell-derived cardiomyocytes in combination with pulse-chase amino acid labelling and proteomics to analyse the effects of prolyl hydroxylation on protein degradation and synthesis. We identified 167 proteins that exhibit differences in degradation with inhibition of prolyl hydroxylation by dimethyloxalylglycine (DMOG); 164 were stabilized. Proteins involved in RNA splicing such as serine/arginine-rich splicing factor 2 (SRSF2) and splicing factor and proline- and glutamine-rich (SFPQ) were stabilized with DMOG. DMOG also decreased protein translation of cytoskeletal and sarcomeric proteins such as α-cardiac actin. We searched the mass spectrometry data for proline hydroxylation and identified 134 high confidence peptides mapping to 78 unique proteins. We identified SRSF2, SFPQ, α-cardiac actin, and cardiac titin as prolyl hydroxylated. We identified 29 prolyl hydroxylated proteins that showed a significant difference in either protein degradation or synthesis. Additionally, we performed next-generation RNA sequencing and showed that the observed decrease in protein synthesis was not due to changes in mRNA levels. Because RNA splicing factors were prolyl hydroxylated, we investigated splicing ± inhibition of prolyl hydroxylation and detected 369 alternative splicing events, with a preponderance of exon skipping. This study provides the first extensive

  4. Electrospun Gelatin–Chondroitin Sulfate Scaffolds Loaded with Platelet Lysate Promote Immature Cardiomyocyte Proliferation

    Directory of Open Access Journals (Sweden)

    Francesca Saporito

    2018-02-01

    Full Text Available The aim of the present work was the development of heart patches based on gelatin (G and chondroitin sulfate (CS to be used as implants to improve heart recovery after corrective surgery for critical congenital heart defects (CHD. Patches were prepared by means of electrospinning to obtain nanofibrous scaffolds and they were loaded with platelet lysate (PL as a source of growth factors to further enhance the repair process. Scaffolds were characterized for morphology and mechanical properties and for the capability to support in vitro adhesion and proliferation of dermal fibroblasts in order to assess the system’s general biocompatibility. Adhesion and proliferation of endothelial cells and cardiac cells (cardiomyocytes and cardiac fibroblasts from rat fetuses onto PL-loaded patches was evaluated. Patches presented good elasticity and high stiffness suitable for in vivo adaptation to heart contraction. CS improved adhesion and proliferation of dermal fibroblasts, as proof of their biocompatibility. Moreover, they enhanced the adhesion and proliferation of endothelial cells, a crucial mediator of cardiac repair. Cell adhesion and proliferation could be related to elastic properties, which could favor cell motility. The presence of platelet lysate and CS was crucial for the adhesion and proliferation of cardiac cells and, in particular, of cardiomyocytes: G/CS scaffold embedded with PL appeared to selectively promote proliferation in cardiomyocytes but not cardiac fibroblasts. In conclusion, G/CS scaffold seems to be a promising system to assist myocardial-repair processes in young patient, preserving cardiomyocyte viability and preventing cardiac fibroblast proliferation, likely reducing subsequent uncontrolled collagen deposition by fibroblasts following repair.

  5. Frequency of mononuclear diploid cardiomyocytes underlies natural variation in heart regeneration.

    Science.gov (United States)

    Patterson, Michaela; Barske, Lindsey; Van Handel, Ben; Rau, Christoph D; Gan, Peiheng; Sharma, Avneesh; Parikh, Shan; Denholtz, Matt; Huang, Ying; Yamaguchi, Yukiko; Shen, Hua; Allayee, Hooman; Crump, J Gage; Force, Thomas I; Lien, Ching-Ling; Makita, Takako; Lusis, Aldons J; Kumar, S Ram; Sucov, Henry M

    2017-09-01

    Adult mammalian cardiomyocyte regeneration after injury is thought to be minimal. Mononuclear diploid cardiomyocytes (MNDCMs), a relatively small subpopulation in the adult heart, may account for the observed degree of regeneration, but this has not been tested. We surveyed 120 inbred mouse strains and found that the frequency of adult mononuclear cardiomyocytes was surprisingly variable (>7-fold). Cardiomyocyte proliferation and heart functional recovery after coronary artery ligation both correlated with pre-injury MNDCM content. Using genome-wide association, we identified Tnni3k as one gene that influences variation in this composition and demonstrated that Tnni3k knockout resulted in elevated MNDCM content and increased cardiomyocyte proliferation after injury. Reciprocally, overexpression of Tnni3k in zebrafish promoted cardiomyocyte polyploidization and compromised heart regeneration. Our results corroborate the relevance of MNDCMs in heart regeneration. Moreover, they imply that intrinsic heart regeneration is not limited nor uniform in all individuals, but rather is a variable trait influenced by multiple genes.

  6. Stringency of environmental regulation and aquaculture growth

    DEFF Research Database (Denmark)

    Gedefaw Abate, Tenaw; Nielsen, Rasmus; Tveterås, Ragnar

    2016-01-01

    remarkable growth in aquaculture while others have stagnated or even declined have not been determined. In this article, we investigate whether environmental regulations have an impact on aquaculture growth. Using a cross-country regression analysis, we show that stringent environmental regulations......During the last three decades, aquaculture has been the fastest growing animal-food-producing sector in the world, accounting for half of the present seafood supply. However, there is a significant growth disparity among aquaculture-producing countries. The reasons why some countries have achieved...... are negatively related to aquaculture growth, whereas GDP growth has a positive effect. Countries often face a difficult balancing act between growth and environmental considerations when devising regulations. Our empirical results suggest that stricter environmental regulations in developed countries have...

  7. File list: NoD.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.10.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.CDV.10.AllAg.Cardiomyocytes.bed ...

  8. File list: NoD.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.05.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.CDV.05.AllAg.Cardiomyocytes.bed ...

  9. File list: NoD.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available NoD.CDV.50.AllAg.Cardiomyocytes mm9 No description Cardiovascular Cardiomyocytes ht...tp://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/NoD.CDV.50.AllAg.Cardiomyocytes.bed ...

  10. File list: InP.CDV.10.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.10.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.10.AllAg.Cardiomyocytes.bed ...

  11. File list: InP.CDV.05.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.05.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.05.AllAg.Cardiomyocytes.bed ...

  12. File list: InP.CDV.20.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.20.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.20.AllAg.Cardiomyocytes.bed ...

  13. File list: InP.CDV.50.AllAg.Cardiomyocytes [Chip-atlas[Archive

    Lifescience Database Archive (English)

    Full Text Available InP.CDV.50.AllAg.Cardiomyocytes mm9 Input control Cardiovascular Cardiomyocytes SRX...1121694 http://dbarchive.biosciencedbc.jp/kyushu-u/mm9/assembled/InP.CDV.50.AllAg.Cardiomyocytes.bed ...

  14. Identification of transcripts regulated by CUG-BP, Elav-like family member 1 (CELF1 in primary embryonic cardiomyocytes by RNA-seq

    Directory of Open Access Journals (Sweden)

    Yotam Blech-Hermoni

    2015-12-01

    Full Text Available CUG-BP, Elav-like family member 1 (CELF1 is a multi-functional RNA binding protein that regulates pre-mRNA alternative splicing in the nucleus, as well as polyadenylation status, mRNA stability, and translation in the cytoplasm [1]. Dysregulation of CELF1 has been implicated in cardiomyopathies in myotonic dystrophy type 1 and diabetes [2–5], but the targets of CELF1 regulation in the heart have not been systematically investigated. We previously demonstrated that in the developing heart CELF1 expression is restricted to the myocardium and peaks during embryogenesis [6–8]. To identify transcripts regulated by CELF1 in the embryonic myocardium, RNA-seq was used to compare the transcriptome of primary embryonic cardiomyocytes following siRNA-mediated knockdown of CELF1 to that of controls. Raw data files of the RNA-seq reads have been deposited in NCBI's Gene Expression Omnibus [9] under the GEO Series accession number GSE67360. These data can be used to identify transcripts whose levels or alternative processing (i.e., alternative splicing or polyadenylation site usage are regulated by CELF1, and should provide insight into the pathways and processes modulated by this important RNA binding protein during normal heart development and during cardiac pathogenesis.

  15. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    International Nuclear Information System (INIS)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling

    2015-01-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H 2 O 2 production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling

  16. Rcan1-1L overexpression induces mitochondrial autophagy and improves cell survival in angiotensin II-exposed cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Duan, Hongyan; Li, Yongqiang; Yan, Lijie; Yang, Haitao; Wu, Jintao; Qian, Peng; Li, Bing; Wang, Shanling, E-mail: shanglingwang@126.com

    2015-07-01

    Mitochondrial autophagy is an important adaptive stress response and can be modulated by various key molecules. A previous study found that the regulator of calcineurin 1-1L (Rcan1-1L) may regulate mitochondrial autophagy and cause mitochondria degradation in neurocytes. However, the effect of Rcan1-1L on cardiomyocytes has not been determined. In the present study, we aimed to investigate the role of Rcan1-1L in angiotensin II (Ang II)-exposed human cardiomyocytes. Above all, Human adult cardiac myocytes (HACMs) were exposed to 200 nmol/L Ang II for 4 days. Enhanced H{sub 2}O{sub 2} production, cytochrome C release and mitochondrial permeability were observed in these cells, which were blocked by valsartan. Consistently, Ang II exposure significantly reduced cardiomyocyte viability. However, transfection of Rcan1-1L vector promoted cell viability and ameliorated the apoptosis caused by Ang II. Rcan1-1L clearly promoted mitochondrial autophagy in HACMs, with elevated autophagy protein (ATG) 5 and light chain 3 (LC3) expression. Transient mitochondrial biogenesis and reduced cytochrome C release was also induced by Rcan1-1L. Additionally, Rcan1-1L significantly inhibited calcineurin/nuclear factor of activated T cells (NFAT) signaling. We thus conclude that Rcan1-1L may play a protective role in Ang II-treated cardiomyocytes through the induction of mitochondrial autophagy, and may be an alternative method of cardiac protection. - Highlights: • Transfection of Rcan1-1L into HACMs promoted cell viability and reduced apoptosis. • Transfection of Rcan1-1L promoted mitochondrial autophagy in HACMs. • Rcan1-1L inhibited the calcineurin/nuclear factor of activated T cells signaling.

  17. Measuring Fast Calcium Fluxes in Cardiomyocytes

    Science.gov (United States)

    Golebiewska, Urszula; Scarlata, Suzanne

    2011-01-01

    Cardiomyocytes have multiple Ca2+ fluxes of varying duration that work together to optimize function 1,2. Changes in Ca2+ activity in response to extracellular agents is predominantly regulated by the phospholipase Cβ- Gαq pathway localized on the plasma membrane which is stimulated by agents such as acetylcholine 3,4. We have recently found that plasma membrane protein domains called caveolae5,6 can entrap activated Gαq7. This entrapment has the effect of stabilizing the activated state of Gαq and resulting in prolonged Ca2+ signals in cardiomyocytes and other cell types8. We uncovered this surprising result by measuring dynamic calcium responses on a fast scale in living cardiomyocytes. Briefly, cells are loaded with a fluorescent Ca2+ indicator. In our studies, we used Ca2+ Green (Invitrogen, Inc.) which exhibits an increase in fluorescence emission intensity upon binding of calcium ions. The fluorescence intensity is then recorded for using a line-scan mode of a laser scanning confocal microscope. This method allows rapid acquisition of the time course of fluorescence intensity in pixels along a selected line, producing several hundreds of time traces on the microsecond time scale. These very fast traces are transferred into excel and then into Sigmaplot for analysis, and are compared to traces obtained for electronic noise, free dye, and other controls. To dissect Ca2+ responses of different flux rates, we performed a histogram analysis that binned pixel intensities with time. Binning allows us to group over 500 traces of scans and visualize the compiled results spatially and temporally on a single plot. Thus, the slow Ca2+ waves that are difficult to discern when the scans are overlaid due to different peak placement and noise, can be readily seen in the binned histograms. Very fast fluxes in the time scale of the measurement show a narrow distribution of intensities in the very short time bins whereas longer Ca2+ waves show binned data with a broad

  18. Inward rectifier potassium channels in the HL-1 cardiomyocyte-derived cell line.

    Science.gov (United States)

    Goldoni, Dana; Zhao, YouYou; Green, Brian D; McDermott, Barbara J; Collins, Anthony

    2010-11-01

    HL-1 is a line of immortalized cells of cardiomyocyte origin that are a useful complement to native cardiomyocytes in studies of cardiac gene regulation. Several types of ion channel have been identified in these cells, but not the physiologically important inward rectifier K(+) channels. Our aim was to identify and characterize inward rectifier K(+) channels in HL-1 cells. External Ba(2+) (100 µM) inhibited 44 ± 0.05% (mean ± s.e.m., n = 11) of inward current in whole-cell patch-clamp recordings. The reversal potential of the Ba(2+)-sensitive current shifted with external [K(+)] as expected for K(+)-selective channels. The slope conductance of the inward Ba(2+)-sensitive current increased with external [K(+)]. The apparent Kd for Ba(2+) was voltage dependent, ranging from 15 µM at -150  mV to 148 µM at -75  mV in 120  mM external K(+). This current was insensitive to 10 µM glybenclamide. A component of whole-cell current was sensitive to 150 µM 4,4'-diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), although it did not correspond to the Ba(2+)-sensitive component. The effect of external 1 mM Cs(+) was similar to that of Ba(2+). Polymerase chain reaction using HL-1 cDNA as template and primers specific for the cardiac inward rectifier K(ir)2.1 produced a fragment of the expected size that was confirmed to be K(ir)2.1 by DNA sequencing. In conclusion, HL-1 cells express a current that is characteristic of cardiac inward rectifier K(+) channels, and express K(ir)2.1 mRNA. This cell line may have use as a system for studying inward rectifier gene regulation in a cardiomyocyte phenotype. © 2010 Wiley-Liss, Inc.

  19. AKIP1 expression modulates mitochondrial function in rat neonatal cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hongjuan Yu

    Full Text Available A kinase interacting protein 1 (AKIP1 is a molecular regulator of protein kinase A and nuclear factor kappa B signalling. Recent evidence suggests AKIP1 is increased in response to cardiac stress, modulates acute ischemic stress response, and is localized to mitochondria in cardiomyocytes. The mitochondrial function of AKIP1 is, however, still elusive. Here, we investigated the mitochondrial function of AKIP1 in a neonatal cardiomyocyte model of phenylephrine (PE-induced hypertrophy. Using a seahorse flux analyzer we show that PE stimulated the mitochondrial oxygen consumption rate (OCR in cardiomyocytes. This was partially dependent on PE mediated AKIP1 induction, since silencing of AKIP1 attenuated the increase in OCR. Interestingly, AKIP1 overexpression alone was sufficient to stimulate mitochondrial OCR and in particular ATP-linked OCR. This was also true when pyruvate was used as a substrate, indicating that it was independent of glycolytic flux. The increase in OCR was independent of mitochondrial biogenesis, changes in ETC density or altered mitochondrial membrane potential. In fact, the respiratory flux was elevated per amount of ETC, possibly through enhanced ETC coupling. Furthermore, overexpression of AKIP1 reduced and silencing of AKIP1 increased mitochondrial superoxide production, suggesting that AKIP1 modulates the efficiency of electron flux through the ETC. Together, this suggests that AKIP1 overexpression improves mitochondrial function to enhance respiration without excess superoxide generation, thereby implicating a role for AKIP1 in mitochondrial stress adaptation. Upregulation of AKIP1 during different forms of cardiac stress may therefore be an adaptive mechanism to protect the heart.

  20. Polycystin-1 Is a Cardiomyocyte Mechanosensor That Governs L-Type Ca2+ Channel Protein Stability.

    Science.gov (United States)

    Pedrozo, Zully; Criollo, Alfredo; Battiprolu, Pavan K; Morales, Cyndi R; Contreras-Ferrat, Ariel; Fernández, Carolina; Jiang, Nan; Luo, Xiang; Caplan, Michael J; Somlo, Stefan; Rothermel, Beverly A; Gillette, Thomas G; Lavandero, Sergio; Hill, Joseph A

    2015-06-16

    L-type calcium channel activity is critical to afterload-induced hypertrophic growth of the heart. However, the mechanisms governing mechanical stress-induced activation of L-type calcium channel activity are obscure. Polycystin-1 (PC-1) is a G protein-coupled receptor-like protein that functions as a mechanosensor in a variety of cell types and is present in cardiomyocytes. We subjected neonatal rat ventricular myocytes to mechanical stretch by exposing them to hypo-osmotic medium or cyclic mechanical stretch, triggering cell growth in a manner dependent on L-type calcium channel activity. RNAi-dependent knockdown of PC-1 blocked this hypertrophy. Overexpression of a C-terminal fragment of PC-1 was sufficient to trigger neonatal rat ventricular myocyte hypertrophy. Exposing neonatal rat ventricular myocytes to hypo-osmotic medium resulted in an increase in α1C protein levels, a response that was prevented by PC-1 knockdown. MG132, a proteasomal inhibitor, rescued PC-1 knockdown-dependent declines in α1C protein. To test this in vivo, we engineered mice harboring conditional silencing of PC-1 selectively in cardiomyocytes (PC-1 knockout) and subjected them to mechanical stress in vivo (transverse aortic constriction). At baseline, PC-1 knockout mice manifested decreased cardiac function relative to littermate controls, and α1C L-type calcium channel protein levels were significantly lower in PC-1 knockout hearts. Whereas control mice manifested robust transverse aortic constriction-induced increases in cardiac mass, PC-1 knockout mice showed no significant growth. Likewise, transverse aortic constriction-elicited increases in hypertrophic markers and interstitial fibrosis were blunted in the knockout animals PC-1 is a cardiomyocyte mechanosensor that is required for cardiac hypertrophy through a mechanism that involves stabilization of α1C protein. © 2015 American Heart Association, Inc.

  1. Defects of mtDNA Replication Impaired Mitochondrial Biogenesis During Trypanosoma cruzi Infection in Human Cardiomyocytes and Chagasic Patients: The Role of Nrf1/2 and Antioxidant Response

    Science.gov (United States)

    Wan, Xianxiu; Gupta, Shivali; Zago, Maria P.; Davidson, Mercy M.; Dousset, Pierre; Amoroso, Alejandro; Garg, Nisha Jain

    2012-01-01

    Background Mitochondrial dysfunction is a key determinant in chagasic cardiomyopathy development in mice; however, its relevance in human Chagas disease is not known. We determined if defects in mitochondrial biogenesis and dysregulation of peroxisome proliferator-activated receptor gamma (PPARγ) coactivator-1 (PGC-1)–regulated transcriptional pathways constitute a mechanism or mechanisms underlying mitochondrial oxidative-phosphorylation (OXPHOS) deficiency in human Chagas disease. Methods and Results We utilized human cardiomyocytes and left-ventricular tissue from chagasic and other cardiomyopathy patients and healthy donors (n>6/group). We noted no change in citrate synthase activity, yet mRNA and/or protein levels of subunits of the respiratory complexes were significantly decreased in Trypanosoma cruzi–infected cardiomyocytes (0 to 24 hours) and chagasic hearts. We observed increased mRNA and decreased nuclear localization of PGC-1-coactivated transcription factors, yet the expression of genes for PPARγ-regulated fatty acid oxidation and nuclear respiratory factor (NRF1/2)–regulated mtDNA replication and transcription machinery was enhanced in infected cardiomyocytes and chagasic hearts. The D-loop formation was normal or higher, but mtDNA replication and mtDNA content were decreased by 83% and 40% to 65%, respectively. Subsequently, we noted that reactive oxygen species (ROS), oxidative stress, and mtDNA oxidation were significantly increased, yet NRF1/2-regulated antioxidant gene expression remained compromised in infected cardiomyocytes and chagasic hearts. Conclusions The replication of mtDNA was severely compromised, resulting in a significant loss of mtDNA and expression of OXPHOS genes in T cruzi–infected cardiomyocytes and chagasic hearts. Our data suggest increased ROS generation and selective functional incapacity of NRF2-mediated antioxidant gene expression played a role in the defects in mtDNA replication and unfitness of mtDNA for

  2. Anti-apoptotic effect of heat shock protein 90 on hypoxia-mediated cardiomyocyte damage is mediated via the phosphatidylinositol 3-kinase/AKT pathway.

    Science.gov (United States)

    Wang, Wei; Peng, Yizhi; Wang, Yuanyuan; Zhao, Xiaohui; Yuan, Zhiqiang

    2009-09-01

    1. Hypoxia-induced cardiomyocyte apoptosis contributes significantly to cardiac dysfunction following trauma, shock and burn injury. There is evidence that heat shock protein (HSP) 90 is anti-apoptotic in cardiomyocytes subjected to a variety of apoptotic stimuli. Because HSP90 acts as an upstream regulator of the serine/threonine protein kinase Akt survival pathway during cellular stress, we hypothesized that HSP90 exerts a cardioprotective effect via the phosphatidylinositol 3-kinase (PI3-K)/Akt pathway. 2. Neonatal rat cardiomyocytes were subjected to normoxia or hypoxia in the absence or presence of the HSP90 inhibitor geldanamycin (1 μg/mL). Cardiomyocyte apoptosis was assessed by release of lactate dehydrogenase (LDH), terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end-labelling (TUNEL) staining and caspase 3 activity. Expression of HSP90, Akt, Bad and cytochrome c release was determined by western blot analysis. 3. Following exposure of cells to hypoxia, HSP90 was markedly elevated in a time-dependent manner, reaching a peak at 6 h (eightfold increase). Geldanamycin significantly increased hypoxia-induced release of LDH by 114%, the percentage of apoptotic cardiomyocytes by 102% and caspase 3 activity by 78%. Pretreatment of cells with geldanamycin also suppressed phosphorylation of both Akt and its downstream target Bad, but promoted the mitochondrial release of cytochrome c. 4. In conclusion, HSP90 activity is enhanced in cardiomyocytes following hypoxic insult. The anti-apoptotic effect of HSP90 on cardiomyocytes subjected to hypoxia is mediated, at least in part, by the PI3-K/Akt pathway. Key words: apoptosis, cardiomyocyte, heart failure, heat shock protein 90, hypoxia, phosphatidylinositol 3-kinase/Akt signalling pathway, serine/threonine protein kinase Akt.

  3. Bioinspired onion epithelium-like structure promotes the maturation of cardiomyocytes derived from human pluripotent stem cells.

    Science.gov (United States)

    Xu, Cong; Wang, Li; Yu, Yue; Yin, Fangchao; Zhang, Xiaoqing; Jiang, Lei; Qin, Jianhua

    2017-08-22

    Organized cardiomyocyte alignment is critical to maintain the mechanical properties of the heart. In this study, we present a new and simple strategy to fabricate a biomimetic microchip designed with an onion epithelium-like structure and investigate the guided behavior of human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) on the substrate. The hiPSC-CMs were observed to be confined by the three dimensional surficial features morphologically, analogous to the in vivo microenvironment, and exhibited an organized anisotropic alignment on the onion epithelium-like structure with good beating function. The calcium imaging of hiPSC-CMs demonstrated a more mature Ca 2+ spark pattern as well. Furthermore, the expression of sarcomere genes (TNNI3, MYH6 and MYH7), potassium channel genes (KCNE1 and KCNH2), and calcium channel genes (RYR2) was significantly up-regulated on the substrate with an onion epithelium-like structure instead of the surface without the structure, indicating a more matured status of cardiomyocytes induced by this structure. It appears that the biomimetic micropatterned structure, analogous to in vivo cellular organization, is an important factor that might promote the maturation of hiPSC-CMs, providing new biological insights to guide hiPSC-CM maturation by biophysical factors. The established approach may offer an effective in vitro model for investigating cardiomyocyte differentiation, maturation and tissue engineering applications.

  4. Dystrophin-deficient cardiomyocytes derived from human urine: New biologic reagents for drug discovery

    Directory of Open Access Journals (Sweden)

    Xuan Guan

    2014-03-01

    Full Text Available The ability to extract somatic cells from a patient and reprogram them to pluripotency opens up new possibilities for personalized medicine. Induced pluripotent stem cells (iPSCs have been employed to generate beating cardiomyocytes from a patient's skin or blood cells. Here, iPSC methods were used to generate cardiomyocytes starting from the urine of a patient with Duchenne muscular dystrophy (DMD. Urine was chosen as a starting material because it contains adult stem cells called urine-derived stem cells (USCs. USCs express the canonical reprogramming factors c-myc and klf4, and possess high telomerase activity. Pluripotency of urine-derived iPSC clones was confirmed by immunocytochemistry, RT-PCR and teratoma formation. Urine-derived iPSC clones generated from healthy volunteers and a DMD patient were differentiated into beating cardiomyocytes using a series of small molecules in monolayer culture. Results indicate that cardiomyocytes retain the DMD patient's dystrophin mutation. Physiological assays suggest that dystrophin-deficient cardiomyocytes possess phenotypic differences from normal cardiomyocytes. These results demonstrate the feasibility of generating cardiomyocytes from a urine sample and that urine-derived cardiomyocytes retain characteristic features that might be further exploited for mechanistic studies and drug discovery.

  5. (Re-)programming of subtype specific cardiomyocytes.

    Science.gov (United States)

    Hausburg, Frauke; Jung, Julia Jeannine; Hoch, Matti; Wolfien, Markus; Yavari, Arash; Rimmbach, Christian; David, Robert

    2017-10-01

    Adult cardiomyocytes (CMs) possess a highly restricted intrinsic regenerative potential - a major barrier to the effective treatment of a range of chronic degenerative cardiac disorders characterized by cellular loss and/or irreversible dysfunction and which underlies the majority of deaths in developed countries. Both stem cell programming and direct cell reprogramming hold promise as novel, potentially curative approaches to address this therapeutic challenge. The advent of induced pluripotent stem cells (iPSCs) has introduced a second pluripotent stem cell source besides embryonic stem cells (ESCs), enabling even autologous cardiomyocyte production. In addition, the recent achievement of directly reprogramming somatic cells into cardiomyocytes is likely to become of great importance. In either case, different clinical scenarios will require the generation of highly pure, specific cardiac cellular-subtypes. In this review, we discuss these themes as related to the cardiovascular stem cell and programming field, including a focus on the emergent topic of pacemaker cell generation for the development of biological pacemakers and in vitro drug testing. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Common marmoset embryonic stem cell can differentiate into cardiomyocytes

    International Nuclear Information System (INIS)

    Chen Hao; Hattori, Fumiyuki; Murata, Mitsushige; Li Weizhen; Yuasa, Shinsuke; Onizuka, Takeshi; Shimoji, Kenichiro; Ohno, Yohei; Sasaki, Erika; Kimura, Kensuke; Hakuno, Daihiko

    2008-01-01

    Common marmoset monkeys have recently attracted much attention as a primate research model, and are preferred to rhesus and cynomolgus monkeys due to their small bodies, easy handling and efficient breeding. We recently reported the establishment of common marmoset embryonic stem cell (CMESC) lines that could differentiate into three germ layers. Here, we report that our CMESC can also differentiate into cardiomyocytes and investigated their characteristics. After induction, FOG-2 was expressed, followed by GATA4 and Tbx20, then Nkx2.5 and Tbx5. Spontaneous beating could be detected at days 12-15. Immunofluorescent staining and ultrastructural analyses revealed that they possessed characteristics typical of functional cardiomyocytes. They showed sinus node-like action potentials, and the beating rate was augmented by isoproterenol stimulation. The BrdU incorporation assay revealed that CMESC-derived cardiomyocytes retained a high proliferative potential for up to 24 weeks. We believe that CMESC-derived cardiomyocytes will advance preclinical studies in cardiovascular regenerative medicine

  7. Mutations in Alström Protein Impair Terminal Differentiation of Cardiomyocytes

    OpenAIRE

    Shenje, Lincoln T.; Andersen, Peter; Halushka, Marc K.; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B.; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A. S.; Chen, Yan; Chelko, Stephen; Crosson, Jane E.

    2014-01-01

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inher...

  8. Functional Differences in Engineered Myocardium from Embryonic Stem Cell-Derived versus Neonatal Cardiomyocytes

    NARCIS (Netherlands)

    Feinberg, Adam W.; Ripplinger, Crystal M.; van der Meer, Peter; Sheehy, Sean P.; Domian, Ibrahim; Chien, Kenneth R.; Parker, Kevin Kit

    2013-01-01

    Stem cell-derived cardiomyocytes represent unique tools for cell-and tissue-based regenerative therapies, drug discovery and safety, and studies of fundamental heart-failure mechanisms. However, the degree to which stem cell-derived cardiomyocytes compare to mature cardiomyocytes is often debated.

  9. Blueberry polyphenols prevent cardiomyocyte death by preventing calpain activation and oxidative stress.

    Science.gov (United States)

    Louis, Xavier Lieben; Thandapilly, Sijo Joseph; Kalt, Wilhelmina; Vinqvist-Tymchuk, Melinda; Aloud, Basma Milad; Raj, Pema; Yu, Liping; Le, Hoa; Netticadan, Thomas

    2014-08-01

    The purpose of this study was to examine the efficacy of an aqueous wild blueberry extract and five wild blueberry polyphenol fractions on an in vitro model of heart disease. Adult rat cardiomyocytes were pretreated with extract and fractions, and then exposed to norepinephrine (NE). Cardiomyocyte hypertrophy, cell death, oxidative stress, apoptosis and cardiomyocyte contractile function as well as the activities of calpain, superoxide dismutase (SOD) and catalase (CAT) were measured in cardiomyocytes treated with and without NE and blueberry fraction (BF). Four of five blueberry fractions prevented cell death and cardiomyocyte hypertrophy induced by NE. Total phenolic fraction was used for all further analysis. The NE-induced increase in oxidative stress, nuclear condensation, calpain activity and lowering of SOD and CAT activities were prevented upon pretreatment with BF. Reduced contractile function was also significantly improved with BF pretreatment. Blueberry polyphenols prevent NE-induced adult cardiomyocyte hypertrophy and cell death. The protective effects of BF may be in part attributed to a reduction in calpain activity and oxidative stress.

  10. In Vitro Differentiation of Human Mesenchymal Stem Cells into Functional Cardiomyocyte-like Cells.

    Science.gov (United States)

    Szaraz, Peter; Gratch, Yarden S; Iqbal, Farwah; Librach, Clifford L

    2017-08-09

    Myocardial infarction and the subsequent ischemic cascade result in the extensive loss of cardiomyocytes, leading to congestive heart failure, the leading cause of mortality worldwide. Mesenchymal stem cells (MSCs) are a promising option for cell-based therapies to replace current, invasive techniques. MSCs can differentiate into mesenchymal lineages, including cardiac cell types, but complete differentiation into functional cells has not yet been achieved. Previous methods of differentiation were based on pharmacological agents or growth factors. However, more physiologically relevant strategies can also enable MSCs to undergo cardiomyogenic transformation. Here, we present a differentiation method using MSC aggregates on cardiomyocyte feeder layers to produce cardiomyocyte-like contracting cells. Human umbilical cord perivascular cells (HUCPVCs) have been shown to have a greater differentiation potential than commonly investigated MSC types, such as bone marrow MSCs (BMSCs). As an ontogenetically younger source, we investigated the cardiomyogenic potential of first-trimester (FTM) HUCPVCs compared to older sources. FTM HUCPVCs are a novel, rich source of MSCs that retain their in utero immunoprivileged properties when cultured in vitro. Using this differentiation protocol, FTM and term HUCPVCs achieved significantly increased cardiomyogenic differentiation compared to BMSCs, as indicated by the increased expression of cardiomyocyte markers (i.e., myocyte enhancer factor 2C, cardiac troponin T, heavy chain cardiac myosin, signal regulatory protein α, and connexin 43). They also maintained significantly lower immunogenicity, as demonstrated by their lower HLA-A expression and higher HLA-G expression. Applying aggregate-based differentiation, FTM HUCPVCs showed increased aggregate formation potential and generated contracting cells clusters within 1 week of co-culture on cardiac feeder layers, becoming the first MSC type to do so. Our results demonstrate that this

  11. [Over-expression of BDNF inhibits angiotensin II-induced apoptosis of cardiomyocytes in SD rats].

    Science.gov (United States)

    Cao, Jingli; Wu, Yingfeng; Liu, Geming; Li, Zhenlong

    2018-03-01

    Objective To investigate the role and molecular mechanism of brain-derived neurotrophic factor (BDNF) against the process of cardiomyocyte hypertrophy and apoptosis. Methods Cardiomyocyte hypertrophy were estabolished by angiotensin II (Ang II) in neonatal cardiomyocytes in vitro and incomplete ligature of abdominal aorta of SD rats in vivo. BDNF over-expressing recombinant vector pcDNA5-BDNF was transfected into cardiomyocytes by liposomes. Immunofluorescence staining was used to detect the effect of BDNF transfection on the surface area of myocardial cells. The effect of BDNF transfection on the apoptosis of cardiomyocytes was assayed by flow cytometry. Real-time fluorescent quantitative PCR was performed to detect the effect of over-expression of BDNF on the expressions of atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) mRNAs in cardiomyocytes. Western blot assay was used to observe the changes of BDNF, ANP and BNP, calmodulin kinase 2 (CaMK2) and phosphorylated calmodulin kinase 2 (p-CaMK2), calcineurin (CaN), p-CaN, nuclear factor of activated T cells 3 (NFATC3) and p-NFATC3 protein expressions in the myocardial tissues and cardiomyocytes. Results The expression of BDNF protein increased significantly in cardiac hypertrophy animal and cell models in a time-dependent manner. Compared with the untransfected control cardiomyocytes, the surface area of cardiomyocytes, the rate of apoptosis, the levels of ANP and BNP mRNA and protein expression, the levels of p-CaMK2 and CaN protein in the BDNF over-expressed cardiomyocytes were remarkably reduced, while the level of p-NFATC3 protein rose significantly. Conclusion BDNF inhibits the apoptosis of cardiomyocytes induced by Ang II, and it plays the role by inhibiting CaMK2 and CaN signaling pathways.

  12. β3-adrenergic receptor activation induces TGFβ1 expression in cardiomyocytes via the PKG/JNK/c-Jun pathway.

    Science.gov (United States)

    Xu, Zhongcheng; Wu, Jimin; Xin, Junzhou; Feng, Yenan; Hu, Guomin; Shen, Jing; Li, Mingzhe; Zhang, Youyi; Xiao, Han; Wang, Li

    2018-06-05

    In heart failure, the expression of cardiac β 3 -adrenergic receptors (β 3 -ARs) increases. However, the precise role of β 3 -AR signaling within cardiomyocytes remains unclear. Transforming growth factor β1 (TGFβ1) is a crucial cytokine mediating the cardiac remodeling that plays a causal role in the progression of heart failure. Here, we set out to determine the effect of β 3 -AR activation on TGFβ1 expression in rat cardiomyocytes and examine the underlying mechanism. The selective β 3 -AR agonist BRL37344 induced an increase in TGFβ1 expression and the phosphorylation of c-Jun N-terminal kinase (JNK) and c-Jun in β 3 -AR-overexpressing cardiomyocytes. Those effects of BRL37344 were suppressed by a β 3 -AR antagonist. Moreover, the inhibition of JNK and c-Jun activity by a JNK inhibitor and c-Jun siRNA blocked the increase in TGFβ1 expression upon β 3 -AR activation. A protein kinase G (PKG) inhibitor also attenuated β 3 -AR-agonist-induced TGFβ1 expression and the phosphorylation of JNK and c-Jun. In conclusion, the β 3 -AR activation in cardiomyocytes increases the expression of TGFβ1 via the PKG/JNK/c-Jun pathway. These results help us further understand the role of β 3 -AR signaling in heart failure. Copyright © 2018 Elsevier Inc. All rights reserved.

  13. Engineering adolescence: maturation of human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Yang, Xiulan; Pabon, Lil; Murry, Charles E

    2014-01-31

    The discovery of human pluripotent stem cells (hPSCs), including both human embryonic stem cells and human-induced pluripotent stem cells, has opened up novel paths for a wide range of scientific studies. The capability to direct the differentiation of hPSCs into functional cardiomyocytes has provided a platform for regenerative medicine, development, tissue engineering, disease modeling, and drug toxicity testing. Despite exciting progress, achieving the optimal benefits has been hampered by the immature nature of these cardiomyocytes. Cardiac maturation has long been studied in vivo using animal models; however, finding ways to mature hPSC cardiomyocytes is only in its initial stages. In this review, we discuss progress in promoting the maturation of the hPSC cardiomyocytes, in the context of our current knowledge of developmental cardiac maturation and in relation to in vitro model systems such as rodent ventricular myocytes. Promising approaches that have begun to be examined in hPSC cardiomyocytes include long-term culturing, 3-dimensional tissue engineering, mechanical loading, electric stimulation, modulation of substrate stiffness, and treatment with neurohormonal factors. Future studies will benefit from the combinatorial use of different approaches that more closely mimic nature's diverse cues, which may result in broader changes in structure, function, and therapeutic applicability.

  14. Imaging alterations of cardiomyocyte cAMP microdomains in disease

    Directory of Open Access Journals (Sweden)

    Alexander eFroese

    2015-08-01

    Full Text Available 3’,5’-cyclic adenosine monophosphate (cAMP is an important second messenger which regulates heart function by acting in distinct subcellular microdomains. Recent years have provided deeper mechanistic insights into compartmentalized cAMP signaling and its link to cardiac disease. In this mini review, we summarize newest developments in this field achieved by cutting-edge biochemical and biophysical techniques. We further compile the data from different studies into a bigger picture of so far uncovered alterations in cardiomyocyte cAMP microdomains which occur in compensated cardiac hypertrophy and chronic heart failure. Finally, future research directions and translational perspectives are briefly discussed.

  15. SIRT1 Suppresses Doxorubicin-Induced Cardiotoxicity by Regulating the Oxidative Stress and p38MAPK Pathways

    Directory of Open Access Journals (Sweden)

    Yang Ruan

    2015-02-01

    Full Text Available Background: SIRT1, which belongs to the Sirtuin family of NAD-dependent enzymes, plays diverse roles in aging, metabolism, and disease biology. It could regulate cell survival and has been shown to be a protective factor in heart function. Hence, we verified the mechanism by which SIRT1 regulates doxorubicin induced cardiomyocyte injury in vivo and in vitro. Methods: We analyzed SIRT1 expression in doxorubicin-induced neonatal rat cardiomyocyte injury model and adult mouse heart failure model. SIRT1 was over-expressed in cultured neonatal rat cardiomyocyte by adenovirus mediated gene transfer. SIRT1 agonist resveratrol was used to treat the doxorubicin-induced heart failure mouse model. Echocardiography, reactive oxygen species (ROS production, TUNEL, qRT-PCR, and Western blotting were performed to analyze cell survival, oxidative stress, and inflammatory signal pathways in cardiomyocytes. Results: SIRT1 expression was down-regulated in doxorubicin induced cardiomocyte injury, accompanied by elevated oxidative stress and cell apoptosis. SIRT1 over-expression reduced doxorubicin induced cardiomyocyte apoptosis with the attenuated ROS production. SIRT1 also reduced cell apoptosis by inhibition of p38MAPK phosphorylation and caspase-3 activation. The SIRT1 agonist resveratrol was able to prevent doxorubicin-induced heart function loss. Moreover, the SIRT1 inhibitor niacinamide could reverse SIRT1's protective effect in cultured neonatal rat cardiomyocytes. Conclusions: These results support the role of SIRT1 as an important regulator of cardiomyocyte apoptosis during doxorubicin-induced heart injury, which may represent a potential therapeutic target for doxorubicin-induced cardiomyopathy.

  16. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Congying [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Dong, Ruolan [Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 (China); Chen, Chen [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Hong, E-mail: hong.wang1988@yahoo.com [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China); Wang, Dao Wen, E-mail: dwwang@tjh.tjmu.edu.cn [Departments of Internal Medicine and Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (China)

    2015-12-25

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejection fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.

  17. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality

    International Nuclear Information System (INIS)

    Xia, Congying; Dong, Ruolan; Chen, Chen; Wang, Hong; Wang, Dao Wen

    2015-01-01

    Compromised cardiac fatty acid oxidation (FAO) induced energy deprivation is a critical cause of cardiac dysfunction in sepsis. Acyl-CoA thioesterase 1 (ACOT1) is involved in regulating cardiac energy production via altering substrate metabolism. This study aims to clarify whether ACOT1 has a potency to ameliorate septic myocardial dysfunction via enhancing cardiac FAO. Transgenic mice with cardiomyocyte specific expression of ACOT1 (αMHC-ACOT1) and their wild type (WT) littermates were challenged with Escherichia coli lipopolysaccharide (LPS; 5 mg/kg i.p.) and myocardial function was assessed 6 h later using echocardiography and hemodynamics. Deteriorated cardiac function evidenced by reduction of the percentage of left ventricular ejection fraction and fractional shortening after LPS administration was significantly attenuated by cardiomyocyte specific expression of ACOT1. αMHC-ACOT1 mice exhibited a markedly increase in glucose utilization and cardiac FAO compared with LPS-treated WT mice. Suppression of cardiac peroxisome proliferator activated receptor alpha (PPARa) and PPARγ-coactivator-1α (PGC1a) signaling observed in LPS-challenged WT mice was activated by the presence of ACOT1. These results suggest that ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction, possibly through activating PPARa/PGC1a signaling. - Highlights: • ACOT1 has potential therapeutic values to protect heart from sepsis mediated dysfunction. • ACOT1 can regulate PPARa/PGC1a signaling pathway. • We first generate the transgenic mice with cardiomyocyte specific expression of ACOT1.

  18. Microscale Generation of Cardiospheres Promotes Robust Enrichment of Cardiomyocytes Derived from Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Doan C. Nguyen

    2014-08-01

    Full Text Available Cardiomyocytes derived from human pluripotent stem cells (hPSCs are a promising cell source for regenerative medicine, disease modeling, and drug discovery, all of which require enriched cardiomyocytes, ideally ones with mature phenotypes. However, current methods are typically performed in 2D environments that produce immature cardiomyocytes within heterogeneous populations. Here, we generated 3D aggregates of cardiomyocytes (cardiospheres from 2D differentiation cultures of hPSCs using microscale technology and rotary orbital suspension culture. Nearly 100% of the cardiospheres showed spontaneous contractility and synchronous intracellular calcium transients. Strikingly, from starting heterogeneous populations containing ∼10%–40% cardiomyocytes, the cell population within the generated cardiospheres featured ∼80%–100% cardiomyocytes, corresponding to an enrichment factor of up to 7-fold. Furthermore, cardiomyocytes from cardiospheres exhibited enhanced structural maturation in comparison with those from a parallel 2D culture. Thus, generation of cardiospheres represents a simple and robust method for enrichment of cardiomyocytes in microtissues that have the potential use in regenerative medicine as well as other applications.

  19. Solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation: piece by piece.

    Science.gov (United States)

    Lundy, David J; Lee, Desy S; Hsieh, Patrick C H

    2017-03-01

    There is a growing need for in vitro models which can serve as platforms for drug screening and basic research. Human adult cardiomyocytes cannot be readily obtained or cultured, and so pluripotent stem cell-derived cardiomyocytes appear to be an attractive option. Unfortunately, these cells are structurally and functionally immature-more comparable to foetal cardiomyocytes than adult. A recent study by Ruan et al ., provides new insights into accelerating the maturation process and takes us a step closer to solving the puzzle of pluripotent stem cell-derived cardiomyocyte maturation.

  20. Overexpressed connective tissue growth factor in cardiomyocytes attenuates left ventricular remodeling induced by angiotensin II perfusion.

    Science.gov (United States)

    Zhang, Ying; Yan, Hua; Guang, Gong-Chang; Deng, Zheng-Rong

    2017-01-01

    To evaluate the improving effects of specifically overexpressed connective tissue growth factor (CTGF) in cardiomyocytes on mice with hypertension induced by angiotensin II (AngII) perfusion, 24 transgenic mice with cardiac-restricted overexpression of CTGF (Tg-CTGF) were divided into two equal groups that were perfused with acetic acid and AngII, respectively, for 7 days. Another 24 cage-control wild-type C57BL/6 mice (NLC) were divided and treated identically. Blood pressure was detected by caudal artery cannulation. Cardiac structural and functional changes were observed by echocardiography. Cardiac fibrosis was detected by Masson staining. After AngII perfusion, blood pressures of NLC and Tg-CTGF mice, especially those of the formers, significantly increased. Compared with NLC + AngII group, Tg-CTGF + AngII group had significantly lower left ventricular posterior wall thickness at end-diastole and left ventricular posterior wall thickness at end-systole as well as significantly higher left ventricular end-systolic diameter and left ventricular end-diastolic diameter (P tissues (P < 0.05). Tg-CTGF can protect AngII-induced cardiac remodeling of mice with hypertension by mitigating inflammatory response. CTGF may be a therapy target for hypertension-induced myocardial fibrosis, but the detailed mechanism still needs in-depth studies.

  1. Group B streptococcal beta-hemolysin/cytolysin directly impairs cardiomyocyte viability and function.

    Directory of Open Access Journals (Sweden)

    Mary E Hensler

    Full Text Available BACKGROUND: Group B Streptococcus (GBS is a leading cause of neonatal sepsis where myocardial dysfunction is an important contributor to poor outcome. Here we study the effects of the GBS pore-forming beta-hemolysin/cytolysin (Bh/c exotoxin on cardiomyocyte viability, contractility, and calcium transients. METHODOLOGY/PRINCIPAL FINDINGS: HL-1 cardiomyocytes exposed to intact wild-type (WT or isogenic Deltabeta h/c mutant GBS, or to cell-free extracts from either strain, were assessed for viability by trypan blue exclusion and for apoptosis by TUNEL staining. Functionality of exposed cardiomyocytes was analyzed by visual quantitation of the rate and extent of contractility. Mitochondrial membrane polarization was measured in TMRE-loaded cells exposed to GBS beta h/c. Effects of GBS beta h/c on calcium transients were studied in fura-2AM-loaded primary rat ventricular cardiomyocytes. Exposure of HL-1 cardiomyocytes to either WT GBS or beta h/c extracts significantly reduced both rate and extent of contractility and later induced necrotic and apoptotic cell death. No effects on cardiomyocyte viability or function were observed after treatment with Deltabeta h/c mutant bacteria or extracts. The beta h/c toxin was associated with complete and rapid loss of detectable calcium transients in primary neonatal rat ventricular cardiomyocytes and induced a loss of mitochondrial membrane polarization. These effects on viability and function were abrogated by the beta h/c inhibitor, dipalmitoyl phosphatidylcholine (DPPC. CONCLUSIONS/SIGNIFICANCE: Our data show a rapid loss of cardiomyocyte viability and function induced by GBS beta h/c, and these deleterious effects are inhibited by DPPC, a normal constituent of human pulmonary surfactant.. These findings have clinical implications for the cardiac dysfunction observed in neonatal GBS infections.

  2. Electrophysiological properties and calcium handling of embryonic stem cell-derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jae Boum Youm

    2016-03-01

    Full Text Available Embryonic stem cell-derived cardiomyocytes (ESC-CMs hold great interest in many fields of research including clinical applications such as stem cell and gene therapy for cardiac repair or regeneration. ESC-CMs are also used as a platform tool for pharmacological tests or for investigations of cardiac remodeling. ESC-CMs have many different aspects of morphology, electrophysiology, calcium handling, and bioenergetics compared with adult cardiomyocytes. They are immature in morphology, similar to sinus nodal-like in the electrophysiology, higher contribution of trans-sarcolemmal Ca2+ influx to Ca2+ handling, and higher dependence on anaerobic glycolysis. Here, I review a detailed electrophysiology and Ca2+ handling features of ESC-CMs during differentiation into adult cardiomyocytes to gain insights into how all the developmental changes are related to each other to display cardinal features of developing cardiomyocytes.

  3. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    Energy Technology Data Exchange (ETDEWEB)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Hidalgo, Cecilia [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Lavandero, Sergio, E-mail: slavander@uchile.cl [Centro FONDAP Estudios Moleculares de la Celula, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Facultad de Ciencias Quimicas y Farmaceuticas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile); Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago 8380492 (Chile)

    2009-10-09

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal {alpha}-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  4. The transcription factor MEF2C mediates cardiomyocyte hypertrophy induced by IGF-1 signaling

    International Nuclear Information System (INIS)

    Munoz, Juan Pablo; Collao, Andres; Chiong, Mario; Maldonado, Carola; Adasme, Tatiana; Carrasco, Loreto; Ocaranza, Paula; Bravo, Roberto; Gonzalez, Leticia; Diaz-Araya, Guillermo; Hidalgo, Cecilia; Lavandero, Sergio

    2009-01-01

    Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal α-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.

  5. Direct Interaction of CaVβ with Actin Up-regulates L-type Calcium Currents in HL-1 Cardiomyocytes*

    Science.gov (United States)

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E.; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-01-01

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. PMID:25533460

  6. Effects of gamma-ray radiation on activity and apoptosis of rat cardiomyocytes in vitro

    International Nuclear Information System (INIS)

    Hu Shunying; Jiang Changsheng; Chen Guowei; Duan Haifeng; Wang Rongliang; Wu Bin; Guo Zikuan; Wang Lisheng

    2007-01-01

    Objective: It is reported that radiation-induced myocardial degeneration in the rat is preceded by changes in capillary structure and function. The aim of the present study is to investigate direct effect of gamma ray radiation on activity and apoptosis of cultured rat cardiomyocytes in vitro. Methods: The study was performed using primary cell cultures of cardiomyocytes isolated from hearts of now-born rats. After being cultured for 72h in vitro, cardiomyocytes were irradiated with single dose of 5 Gy, 10 Gy, 20 Gy of gamma ray respectively. At 48h post-irradiation, the concentration of LDH in the supernatant of cell culture was tested using methods introduced by International Federation of clinical chemistry (IFCC), and apoptosis was determined with flow cytometry. The viability of myocytes was determined with crystal violet test and MTT test at 48h and 120h post-irradiation respectively. Results: LDH concentration in the supernatant of cell culture of cardiomyocytes were increased significantly with the irradiation dose augment. Flow cytometry confirmed the induction of apoptosis in response to different gamma ray doses irradiation at 48h after irradiation. The viable cardiomyocytes irradiated by gamma ray were significantly declined at 120h after irradiation compared to un-irradiated cells, however there were no significant difference between two groups at 48h post-irradiation. Dose-effect relationship was demonstrated between cardiomyocyte apoptosis, viability and irradiation dose in the study. Conclusion: The study demonstrates gamma ray radiation can cause direct damage to cultured cardiomyocytes, including inhibiting activity and inducing apoptosis of cardiomyocytes in vitro, which shows dose effect relationship. The mechanism of gamma ray irradiation induced injury to cardiomyocytes should be investigated further. (authors)

  7. Oxidative stress and cardiomyocyte necrosis with elevated serum troponins: pathophysiologic mechanisms.

    Science.gov (United States)

    Robinson, Antwon D; Ramanathan, Kodangudi B; McGee, Jesse E; Newman, Kevin P; Weber, Karl T

    2011-08-01

    The progressive nature of heart failure is linked to multiple factors, including an ongoing loss of cardiomyocytes and necrosis. Necrotic cardiomyocytes leave behind several footprints: the spillage of their contents leading to elevations in serum troponins; and morphologic evidence of tissue repair with scarring. The pathophysiologic origins of cardiomyocyte necrosis relates to neurohormonal activation, including the adrenergic nervous system. Catecholamine-initiated excessive intracellular Ca accumulation and mitochondria Ca overloading in particular initiate a mitochondriocentric signal-transducer-effector pathway to necrosis and which includes the induction of oxidative stress and opening of their inner membrane permeability transition pore. Hypokalemia, ionized hypocalcemia and hypomagnesemia, where consequent elevations in parathyroid hormone further account for excessive intracellular Ca accumulation, hypozincemia and hyposelenemia each compromise metalloenzyme-based antioxidant defenses. The necrotic loss of cardiomyocytes and adverse structural remodeling of myocardium is related to the central role played by a mitochondriocentric pathway initiated by neurohormonal activation.

  8. Structural phenotyping of stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Pasqualini, Francesco Silvio; Sheehy, Sean Paul; Agarwal, Ashutosh; Aratyn-Schaus, Yvonne; Parker, Kevin Kit

    2015-03-10

    Structural phenotyping based on classical image feature detection has been adopted to elucidate the molecular mechanisms behind genetically or pharmacologically induced changes in cell morphology. Here, we developed a set of 11 metrics to capture the increasing sarcomere organization that occurs intracellularly during striated muscle cell development. To test our metrics, we analyzed the localization of the contractile protein α-actinin in a variety of primary and stem-cell derived cardiomyocytes. Further, we combined these metrics with data mining algorithms to unbiasedly score the phenotypic maturity of human-induced pluripotent stem cell-derived cardiomyocytes. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Cardiomyocyte-Restricted Deletion of PPARβ/δ in PPARα-Null Mice Causes Impaired Mitochondrial Biogenesis and Defense, but No Further Depression of Myocardial Fatty Acid Oxidation

    Directory of Open Access Journals (Sweden)

    Jian Liu

    2011-01-01

    Full Text Available It is well documented that PPARα and PPARβ/δ share overlapping functions in regulating myocardial lipid metabolism. However, previous studies demonstrated that cardiomyocyte-restricted PPARβ/δ deficiency in mice leads to severe cardiac pathological development, whereas global PPARα knockout shows a benign cardiac phenotype. It is unknown whether a PPARα-null background would alter the pathological development in mice with cardiomyocyte-restricted PPARβ/δ deficiency. In the present study, a mouse model with long-term PPARβ/δ deficiency in PPARα-null background showed a comparably reduced cardiac expression of lipid metabolism to those of single PPAR-deficient mouse models. The PPARα-null background did not rescue or aggravate the cardiac pathological development linked to cardiomyocyte-restricted PPARβ/δ deficiency. Moreover, PPARα-null did not alter the phenotypic development in adult mice with the short-term deletion of PPARβ/δ in their hearts, which showed mitochondrial abnormalities, depressed cardiac performance, and cardiac hypertrophy with attenuated expression of key factors in mitochondrial biogenesis and defense. The present study demonstrates that cardiomyocyte-restricted deletion of PPARβ/δ in PPARα-null mice causes impaired mitochondrial biogenesis and defense, but no further depression of fatty acid oxidation. Therefore, PPARβ/δ is essential for maintaining mitochondrial biogenesis and defense in cardiomyocytes independent of PPARα.

  10. Glucocorticoid Induced Leucine Zipper inhibits apoptosis of cardiomyocytes by doxorubicin

    International Nuclear Information System (INIS)

    Aguilar, David; Strom, Joshua; Chen, Qin M.

    2014-01-01

    Doxorubicin (Dox) is an indispensable chemotherapeutic agent for the treatment of various forms of neoplasia such as lung, breast, ovarian, and bladder cancers. Cardiotoxicity is a major concern for patients receiving Dox therapy. Previous work from our laboratory indicated that glucocorticoids (GCs) alleviate Dox-induced apoptosis in cardiomyocytes. Here we have found Glucocorticoid-Induced Leucine Zipper (GILZ) to be a mediator of GC-induced cytoprotection. GILZ was found to be induced in cardiomyocytes by GC treatment. Knocking down of GILZ using siRNA resulted in cancelation of GC-induced cytoprotection against apoptosis by Dox treatment. Overexpressing GILZ by transfection was able to protect cells from apoptosis induced by Dox as measured by caspase activation, Annexin V binding and morphologic changes. Western blot analyses indicate that GILZ overexpression prevented cytochrome c release from mitochondria and cleavage of caspase-3. When bcl-2 family proteins were examined, we found that GILZ overexpression causes induction of the pro-survival protein Bcl-xL. Since siRNA against Bcl-xL reverses GC induced cytoprotection, Bcl-xL induction represents an important event in GILZ-induced cytoprotection. Our data suggest that GILZ functions as a cytoprotective gene in cardiomyocytes. - Highlights: • Corticosteroids act as a cytoprotective agent in cardiomyocytes • Corticosteroids induce GILZ expression in cardiomyocytes • Elevated GILZ results in resistance against apoptosis induced by doxorubicin • GILZ induces Bcl-xL protein without inducing Bcl-xL mRNA

  11. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes.

    Science.gov (United States)

    Naito, Daisuke; Ogata, Takehiro; Hamaoka, Tetsuro; Nakanishi, Naohiko; Miyagawa, Kotaro; Maruyama, Naoki; Kasahara, Takeru; Taniguchi, Takuya; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2015-12-15

    Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function. Copyright © 2015 the American Physiological Society.

  12. A novel type of self-beating cardiomyocytes in adult mouse ventricles

    International Nuclear Information System (INIS)

    Omatsu-Kanbe, Mariko; Matsuura, Hiroshi

    2009-01-01

    This study was designed to investigate the presence of resident heart cells that are distinct from terminally-differentiated cardiomyocytes. Adult mouse heart was coronary perfused with collagenase, and ventricles were excised and further digested. After spinning cardiomyocyte-containing fractions down, the supernatant fraction was collected and cultured without adding any chemicals. Two to five days after plating, some of rounded cells adhered to the culture dish, gradually changed their shape and then started self-beating. These self-beating cells did not appreciably proliferate but underwent a further morphological maturation process to form highly branched shapes with many projections. These cells were mostly multinucleated, well sarcomeric-organized and expressed cardiac marker proteins, defined as atypically-shaped cardiomyocytes (ACMs). Patch-clamp experiments revealed that ACMs exhibited spontaneous action potentials arising from the preceding slow diastolic depolarization. We thus found a novel type of resident heart cells in adult cardiac ventricles that spontaneously develop into self-beating cardiomyocytes.

  13. High Uric Acid Induces Insulin Resistance in Cardiomyocytes In Vitro and In Vivo.

    Directory of Open Access Journals (Sweden)

    Li Zhi

    Full Text Available Clinical studies have shown hyperuricemia strongly associated with insulin resistance as well as cardiovascular disease. Direct evidence of how high uric acid (HUA affects insulin resistance in cardiomyocytes, but the pathological mechanism of HUA associated with cardiovascular disease remains to be clarified. We aimed to examine the effect of HUA on insulin sensitivity in cardiomyocytes and on insulin resistance in hyperuricemic mouse model. We exposed primary cardiomyocytes and a rat cardiomyocyte cell line, H9c2 cardiomyocytes, to HUA, then quantified glucose uptake with a fluorescent glucose analog, 2-NBDG, after insulin challenge and detected reactive oxygen species (ROS production. Western blot analysis was used to examine the levels of insulin receptor (IR, phosphorylated insulin receptor substrate 1 (IRS1, Ser307 and phospho-Akt (Ser473. We monitored the impact of HUA on insulin resistance, insulin signaling and IR, phospho-IRS1 (Ser307 and phospho-Akt levels in myocardial tissue of an acute hyperuricemia mouse model established by potassium oxonate treatment. HUA inhibited insulin-induced glucose uptake in H9c2 and primary cardiomyocytes. It increased ROS production; pretreatment with N-acetyl-L-cysteine (NAC, a ROS scavenger, reversed HUA-inhibited glucose uptake induced by insulin. HUA exposure directly increased the phospho-IRS1 (Ser307 response to insulin and inhibited that of phospho-Akt in H9C2 cardiomyocytes, which was blocked by NAC. Furthermore, the acute hyperuricemic mice model showed impaired glucose tolerance and insulin tolerance accompanied by increased phospho-IRS1 (Ser307 and inhibited phospho-Akt response to insulin in myocardial tissues. HUA inhibited insulin signaling and induced insulin resistance in cardiomyocytes in vitro and in vivo, which is a novel potential mechanism of hyperuricemic-related cardiovascular disease.

  14. c-kitpos GATA-4 high rat cardiac stem cells foster adult cardiomyocyte survival through IGF-1 paracrine signalling.

    Directory of Open Access Journals (Sweden)

    Nanako Kawaguchi

    2010-12-01

    Full Text Available Resident c-kit positive (c-kitpos cardiac stem cells (CSCs could be considered the most appropriate cell type for myocardial regeneration therapies. However, much is still unknown regarding their biological properties and potential.We produced clones of high and low expressing GATA-4 CSCs from long-term bulk-cultured c-kitpos CSCs isolated from adult rat hearts. When c-kitpos GATA-4 high expressing clonal CSCs (cCSCs were co-cultured with adult rat ventricular cardiomyocytes, we observed increased survival and contractility of the cardiomyocytes, compared to cardiomyocytes cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low expressing cCSCs. When analysed by ELISA, the concentration of IGF-1 was significantly increased in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-cultures and there was a significant correlation between IGF-1 concentration and cardiomyocyte survival. We showed the activation of the IGF-1 receptor and its downstream molecular targets in cardiomyocytes co-cultured with c-kitpos GATA-4 high cCSCs but not in cardiomyocytes that were cultured alone, co-cultured with fibroblasts or c-kitpos GATA-4 low cCSCs. Addition of a blocking antibody specific to the IGF-1 receptor inhibited the survival of cardiomyocytes and prevented the activation of its signalling in cardiomyocytes in the c-kitpos GATA-4 high cCSC/cardiomyocyte co-culture system. IGF-1 supplementation or IGF-1 high conditioned medium taken from the co-culture of c-kitpos GATA-4 high cCSCs plus cardiomyocytes did extend the survival and contractility of cardiomyocytes cultured alone and cardiomyocytes co-cultured with c-kitpos GATA-4 low cCSCs.c-kitpos GATA-4 high cCSCs exert a paracrine survival effect on cardiomyocytes through induction of the IGF-1R and signalling pathway.

  15. Disturbance of cardiac gene expression and cardiomyocyte structure predisposes Mecp2-null mice to arrhythmias

    Science.gov (United States)

    Hara, Munetsugu; Takahashi, Tomoyuki; Mitsumasu, Chiaki; Igata, Sachiyo; Takano, Makoto; Minami, Tomoko; Yasukawa, Hideo; Okayama, Satoko; Nakamura, Keiichiro; Okabe, Yasunori; Tanaka, Eiichiro; Takemura, Genzou; Kosai, Ken-ichiro; Yamashita, Yushiro; Matsuishi, Toyojiro

    2015-01-01

    Methyl-CpG-binding protein 2 (MeCP2) is an epigenetic regulator of gene expression that is essential for normal brain development. Mutations in MeCP2 lead to disrupted neuronal function and can cause Rett syndrome (RTT), a neurodevelopmental disorder. Previous studies reported cardiac dysfunction, including arrhythmias in both RTT patients and animal models of RTT. In addition, recent studies indicate that MeCP2 may be involved in cardiac development and dysfunction, but its role in the developing and adult heart remains unknown. In this study, we found that Mecp2-null ESCs could differentiate into cardiomyocytes, but the development and further differentiation of cardiovascular progenitors were significantly affected in MeCP2 deficiency. In addition, we revealed that loss of MeCP2 led to dysregulation of endogenous cardiac genes and myocardial structural alterations, although Mecp2-null mice did not exhibit obvious cardiac functional abnormalities. Furthermore, we detected methylation of the CpG islands in the Tbx5 locus, and showed that MeCP2 could target these sequences. Taken together, these results suggest that MeCP2 is an important regulator of the gene-expression program responsible for maintaining normal cardiac development and cardiomyocyte structure. PMID:26073556

  16. Gene regulation by growth factors

    International Nuclear Information System (INIS)

    Metz, R.; Gorham, J.; Siegfried, Z.; Leonard, D.; Gizang-Ginsberg, E.; Thompson, M.A.; Lawe, D.; Kouzarides, T.; Vosatka, R.; MacGregor, D.; Jamal, S.; Greenberg, M.E.; Ziff, E.B.

    1988-01-01

    To coordinate the proliferation and differentiation of diverse cell types, cells of higher eukaryotes communicate through the release of growth factors. These peptides interact with specific transmembrane receptors of other cells and thereby generate intracellular messengers. The many changes in cellular physiology and activity that can be induced by growth factors imply that growth factor-induced signals can reach the nucleus and control gene activity. Moreover, current evidence also suggests that unregulated signaling along such pathways can induce aberrant proliferation and the formation of tumors. This paper reviews investigations of growth factor regulation of gene expression conducted by the authors' laboratory

  17. Myostatin induces interstitial fibrosis in the heart via TAK1 and p38.

    Science.gov (United States)

    Biesemann, Nadine; Mendler, Luca; Kostin, Sawa; Wietelmann, Astrid; Borchardt, Thilo; Braun, Thomas

    2015-09-01

    Myostatin, a member of the TGF-β superfamily of secreted growth factors, is a negative regulator of skeletal muscle growth. In the heart, it is expressed at lower levels compared to skeletal muscle but up-regulated under disease conditions. Cre recombinase-mediated inactivation of myostatin in adult cardiomyocytes leads to heart failure and increased mortality but cardiac function of surviving mice is restored after several weeks probably due to compensatory expression in non-cardiomyocytes. To study long-term effects of increased myostatin expression in the heart and to analyze the putative crosstalk between cardiomyocytes and fibroblasts, we overexpressed myostatin in cardiomyocytes. Increased expression of myostatin in heart muscle cells caused interstitial fibrosis via activation of the TAK-1-MKK3/6-p38 signaling pathway, compromising cardiac function in older mice. Our results uncover a novel role of myostatin in the heart and highlight the necessity for tight regulation of myostatin to maintain normal heart function.

  18. EFFECTS OF AEROBIC TRAINING ON THE CARDIOMYOCYTES OF THE RIGHT ATRIUM OF MICE

    Directory of Open Access Journals (Sweden)

    Vanessa Gonçalves Coutinho de Oliveira

    Full Text Available ABSTRACT Introduction: Polypeptide hormones (natriuretic peptides, NPs are secreted by the cardiac atria and play an important role in the regulation of blood pressure. Objective: To evaluate the effects of aerobic training on the secretory apparatus of NPs in cardiomyocytes of the right atrium. Methods: Nine-month-old mice were divided in two groups (n=10: control group (CG and trained group (TG. The training protocol was performed on a motor treadmill for 8 weeks. Systolic blood pressure was measured at the beginning of the experiment (9 months of age and at moment of the sacrifice (11 months of age. Electron micrographs were used to quantify the following variables: the quantitative density and area of NP granules, the relative volumes of the mitochondria, endoplasmic reticulum, and Golgi complex and the relative volume of euchromatin in the nucleus and the number of pores per 10 µm of the nuclear membrane. The results were compared by Student's t test (p< 0.05. Results: The cardiomyocytes obtained from TG mice showed increased density and sectional area of secretory granules of NP, higher relative volume of endoplasmic reticulum, mitochondria, and Golgi complex compared with the CG mice. Furthermore, the quantitative density of nuclear pores and the relative volume of euchromatin in the nucleus were significantly higher compared with the CG mice. Conclusion: Aerobic training caused hypertrophy of the secretory apparatus in the cardiomyocytes of right atrium, which could explain the intense synthesis of natriuretic peptides in trained mice with respect to the untrained mice.

  19. Pim-1 Kinase Phosphorylates Cardiac Troponin I and Regulates Cardiac Myofilament Function

    Directory of Open Access Journals (Sweden)

    Ni Zhu

    2018-03-01

    Full Text Available Background/Aims: Pim-1 is a serine/threonine kinase that is highly expressed in the heart, and exerts potent cardiac protective effects through enhancing survival, proliferation, and regeneration of cardiomyocytes. Its myocardial specific substrates, however, remain unknown. In the present study, we aim to investigate whether Pim-1 modulates myofilament activity through phosphorylation of cardiac troponin I (cTnI, a key component in regulating myofilament function in the heart. Methods: Coimmunoprecipitation and immunofluorescent assays were employed to investigate the interaction of Pim-1 with cTnI in cardiomyocytes. Biochemical, site directed mutagenesis, and mass spectrometric analyses were utilized to identify the phosphorylation sites of Pim1 in cTnI. Myofilament functional assay using skinned cardiac fiber was used to assess the effect of Pim1-mediated phosphorylation on cardiac myofilament activity. Lastly, the functional significance of Pim1-mediated cTnI in heart disease was determined in diabetic mice. Results: We found that Pim-1 specifically interacts with cTnI in cardiomyocytes and this interaction leads to Pim1-mediated cTnI phosphorylation, predominantly at Ser23/24 and Ser150. Furthermore, our functional assay demonstrated that Pim-1 induces a robust phosphorylation of cTnI within the troponin complex, thus leading to a decreased Ca2+ sensitivity. Insulin-like growth factor 1 (IGF-1, a peptide growth factor that has been shown to stimulate myocardial contractility, markedly induces cTnI phosphorylation at Ser23/24 and Ser150 through increasing Pim-1 expression in cardiomyocytes. In a high-fat diabetic mice model, the expression of Pim1 in the heart is significantly decreased, which is accompanied by a decreased phosphorylation of cTnI at Ser23/24 and Ser150, further implicating the pathological significance of the Pim1/cTnI axis in the development of diabetic cardiomyopathy. Conclusion: Our results demonstrate that Pim-1 is a

  20. HSF1 phosphorylation by ERK/GSK3 suppresses RNF126 to sustain IGF-IIR expression for hypertension-induced cardiomyocyte hypertrophy.

    Science.gov (United States)

    Huang, Chih-Yang; Lee, Fa-Lun; Peng, Shu-Fen; Lin, Kuan-Ho; Chen, Ray-Jade; Ho, Tsung-Jung; Tsai, Fu-Jen; Padma, Vijaya V; Kuo, Wei-Wen; Huang, Chih-Yang

    2018-02-01

    Hypertension-induced cardiac hypertrophy and apoptosis are major characteristics of early-stage heart failure (HF). Inhibition of extracellular signal-regulated kinases (ERK) efficaciously suppressed angiotensin II (ANG II)-induced cardiomyocyte hypertrophy and apoptosis by blocking insulin-like growth factor II receptor (IGF-IIR) signaling. However, the detailed mechanism by which ANG II induces ERK-mediated IGF-IIR signaling remains elusive. Here, we found that ANG II activated ERK to upregulate IGF-IIR expression via the angiotensin II type I receptor (AT 1 R). ERK activation subsequently phosphorylates HSF1 at serine 307, leading to a secondary phosphorylation by glycogen synthase kinase III (GSK3) at serine 303. Moreover, we found that ANG II mediated ERK/GSK3-induced IGF-IIR protein stability by downregulating the E3 ubiquitin ligase of IGF-IIR RING finger protein CXXVI (RNF126). The expression of RNF126 decreased following ANG II-induced HSF1 S303 phosphorylation, resulting in IGF-IIR protein stability and increased cardiomyocyte injury. Inhibition of GSK3 significantly alleviated ANG II-induced cardiac hypertrophy in vivo and in vitro. Taken together, these results suggest that HSF1 phosphorylation stabilizes IGF-IIR protein stability by downregulating RNF126 during cardiac hypertrophy. ANG II activates ERK/GSK3 to phosphorylate HSF1, resulting in RNF126 degradation, which stabilizes IGF-IIR protein expression and eventually results in cardiac hypertrophy. HSF1 could be a valuable therapeutic target for cardiac diseases among hypertensive patients. © 2017 Wiley Periodicals, Inc.

  1. Cardiomyocyte architectural plasticity in fetal, neonatal, and adult pig hearts delineated with diffusion tensor MRI.

    Science.gov (United States)

    Zhang, Lei; Allen, John; Hu, Lingzhi; Caruthers, Shelton D; Wickline, Samuel A; Chen, Junjie

    2013-01-15

    Cardiomyocyte organization is a critical determinant of coordinated cardiac contractile function. Because of the acute opening of the pulmonary circulation, the relative workload of the left ventricle (LV) and right ventricle (RV) changes substantially immediately after birth. We hypothesized that three-dimensional cardiomyocyte architecture might be required to adapt rapidly to accommodate programmed perinatal changes of cardiac function. Isolated fixed hearts from pig fetuses or pigs at midgestation, preborn, postnatal day 1 (P1), postnatal day 5, postnatal day 14 (P14), and adulthood (n = 5 for each group) were acquired for diffusion-weighted magnetic resonance imaging. Cardiomyocyte architecture was visualized by three-dimensional fiber tracking and was quantitatively evaluated by the measured helix angle (α(h)). Upon the completion of MRI, hearts were sectioned and stained with hematoxylin/eosin (H&E) to evaluate cardiomyocyte alignment, with picrosirius red to evaluate collagen content, and with anti-Ki67 to evaluate postnatal cell proliferation. The helical architecture of cardiomyocyte was observed as early as the midgestational period. Postnatal changes of cardiomyocyte architecture were observed from P1 to P14, which primary occurred in the septum and RV free wall (RVFW). In the septum, the volume ratio of LV- vs. RV-associated cardiomyocytes rapidly changed from RV-LV balanced pattern at birth to LV dominant pattern by P14. In the RVFW, subendocardial α(h) decreased by ~30° from P1 to P14. These findings indicate that the helical architecture of cardiomyocyte is developed as early as the midgestation period. Substantial and rapid adaptive changes in cardiac microarchitecture suggested considerable developmental plasticity of cardiomyocyte form and function in the postnatal period in response to altered cardiac mechanical function.

  2. Doxorubicin Blocks Cardiomyocyte Autophagic Flux by Inhibiting Lysosome Acidification.

    Science.gov (United States)

    Li, Dan L; Wang, Zhao V; Ding, Guanqiao; Tan, Wei; Luo, Xiang; Criollo, Alfredo; Xie, Min; Jiang, Nan; May, Herman; Kyrychenko, Viktoriia; Schneider, Jay W; Gillette, Thomas G; Hill, Joseph A

    2016-04-26

    The clinical use of doxorubicin is limited by cardiotoxicity. Histopathological changes include interstitial myocardial fibrosis and the appearance of vacuolated cardiomyocytes. Whereas dysregulation of autophagy in the myocardium has been implicated in a variety of cardiovascular diseases, the role of autophagy in doxorubicin cardiomyopathy remains poorly defined. Most models of doxorubicin cardiotoxicity involve intraperitoneal injection of high-dose drug, which elicits lethargy, anorexia, weight loss, and peritoneal fibrosis, all of which confound the interpretation of autophagy. Given this, we first established a model that provokes modest and progressive cardiotoxicity without constitutional symptoms, reminiscent of the effects seen in patients. We report that doxorubicin blocks cardiomyocyte autophagic flux in vivo and in cardiomyocytes in culture. This block was accompanied by robust accumulation of undegraded autolysosomes. We go on to localize the site of block as a defect in lysosome acidification. To test the functional relevance of doxorubicin-triggered autolysosome accumulation, we studied animals with diminished autophagic activity resulting from haploinsufficiency for Beclin 1. Beclin 1(+/-) mice exposed to doxorubicin were protected in terms of structural and functional changes within the myocardium. Conversely, animals overexpressing Beclin 1 manifested an amplified cardiotoxic response. Doxorubicin blocks autophagic flux in cardiomyocytes by impairing lysosome acidification and lysosomal function. Reducing autophagy initiation protects against doxorubicin cardiotoxicity. © 2016 American Heart Association, Inc.

  3. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  4. A polysaccharide of Dendrobium officinale ameliorates H2O2-induced apoptosis in H9c2 cardiomyocytes via PI3K/AKT and MAPK pathways.

    Science.gov (United States)

    Zhang, Jing-Yi; Guo, Ying; Si, Jin-Ping; Sun, Xiao-Bo; Sun, Gui-Bo; Liu, Jing-Jing

    2017-11-01

    Dendrobium officinale is one valuable traditional Chinese medicine, which has skyscraping medicinal value. Polysaccharide is the main active ingredient in D. officinale; its antioxidant activity is a hot research topic nowadays. Oxidative stress plays an important role in the pathological progress of a variety of cardiovascular disease, as one of key factors of cardiomyocyte apoptosis. This research adopts a model of H 2 O 2 induction-H9c2 cardiomyocytes apoptosis, aiming to study the effect of Dendrobium officinale Polysaccharide (DOP-GY) for cardiomyocyte apoptosis caused by oxidative stress and its possible mechanism. Our results showed that pretreatment of DOP-GY (low dose: 6.25μg/mL, medium dose: 12.5μg/mL, high dose: 25μg/mL) followed by a 2h incubation with 200μM H 2 O 2 elevated the survival rate, cutted the LDH leakage, reduced lipid peroxidation damage, improved the activity of the endogenous antioxidant enzymes. In addition, the pretreatment of DOP-GY significantly inhibited the production of ROS, declined of the mitochondrial membrane potential, down-regulated pro-apoptosis protein and up-regulated anti-apoptosis protein. The protective effect was correlated with the PI3K/Akt and MAPK signal pathway. Collectively, these observations suggest that DOY-GY has the potential to exert cardioprotective effects against H 2 O 2 -induced H9c2 cardiomyocyte apoptosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Direct interaction of CaVβ with actin up-regulates L-type calcium currents in HL-1 cardiomyocytes.

    Science.gov (United States)

    Stölting, Gabriel; de Oliveira, Regina Campos; Guzman, Raul E; Miranda-Laferte, Erick; Conrad, Rachel; Jordan, Nadine; Schmidt, Silke; Hendriks, Johnny; Gensch, Thomas; Hidalgo, Patricia

    2015-02-20

    Expression of the β-subunit (CaVβ) is required for normal function of cardiac L-type calcium channels, and its up-regulation is associated with heart failure. CaVβ binds to the α1 pore-forming subunit of L-type channels and augments calcium current density by facilitating channel opening and increasing the number of channels in the plasma membrane, by a poorly understood mechanism. Actin, a key component of the intracellular trafficking machinery, interacts with Src homology 3 domains in different proteins. Although CaVβ encompasses a highly conserved Src homology 3 domain, association with actin has not yet been explored. Here, using co-sedimentation assays and FRET experiments, we uncover a direct interaction between CaVβ and actin filaments. Consistently, single-molecule localization analysis reveals streaklike structures composed by CaVβ2 that distribute over several micrometers along actin filaments in HL-1 cardiomyocytes. Overexpression of CaVβ2-N3 in HL-1 cells induces an increase in L-type current without altering voltage-dependent activation, thus reflecting an increased number of channels in the plasma membrane. CaVβ mediated L-type up-regulation, and CaVβ-actin association is prevented by disruption of the actin cytoskeleton with cytochalasin D. Our study reveals for the first time an interacting partner of CaVβ that is directly involved in vesicular trafficking. We propose a model in which CaVβ promotes anterograde trafficking of the L-type channels by anchoring them to actin filaments in their itinerary to the plasma membrane. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Differentiation of mouse embryonic stem cells into cardiomyocytes via the hanging-drop and mass culture methods.

    Science.gov (United States)

    Fuegemann, Christopher J; Samraj, Ajoy K; Walsh, Stuart; Fleischmann, Bernd K; Jovinge, Stefan; Breitbach, Martin

    2010-12-01

    Herein, we describe two protocols for the in vitro differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. mESCs are pluripotent and can be differentiated into cells of all three germ layers, including cardiomyocytes. The methods described here facilitate the differentiation of mESCs into the different cardiac subtypes (atrial-, ventricular-, nodal-like cells). The duration of cell culture determines whether preferentially early- or late-developmental stage cardiomyocytes can be obtained preferentially. This approach allows the investigation of cardiomyocyte development and differentiation in vitro, and also allows for the enrichment and isolation of physiologically intact cardiomyocytes for transplantation purposes. © 2010 by John Wiley & Sons, Inc.

  7. By Targeting Stat3 microRNA-17-5p Promotes Cardiomyocyte Apoptosis in Response to Ischemia Followed by Reperfusion

    Directory of Open Access Journals (Sweden)

    Weijie Du

    2014-08-01

    Full Text Available Background: Several studies have confirmed the role of microRNAs in regulating ischemia/reperfusion-induced cardiac injury (I/R-I. MiR-17-5p has been regarded as an oncomiR in the development of cancer. However, its potential role in cardiomyocytes has not been exploited. The aim of this study is to investigate the role of miR-17-5p in I/R-I and the underlying mechanism through targeting Stat3, a key surviving factor in cardiomyocytes. Methods: MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium bromide assay was used to detect the cell viability. ELISA and TUNEL were performed to measure apoptosis of neonatal rat ventricular cardiomyocytes (NRVCs. Infarct area was estimated by TTC (triphenyltetrazolium chloride and Evans blue staining. Western blot analysis was employed to detect the Stat3 and p-Stat3 levels and real-time RT-PCR was used to quantify miR-17-5p level. Results: The miR-17-5p level was significantly up-regulated in I/R-I mice and in NRVCs under oxidative stress. Overexpression of miR-17-5p aggravated cardiomyocyte injury with reduced cell viability and enhanced apoptotic cell death induced by H2O2, whereas inhibition of miR-17-5p by its antisense AMO-17-5p abrogated the deleterious changes. Moreover, the locked nucleic acid-modified antisense (LNA-anti-miR-17-5p markedly decreased the infarct area and apoptosis induced by I/R-I in mice. Furthermore, overexpression of miR-17-5p diminished the p-Stat3 level in response to H2O2. The results from Western blot analysis and luciferase reporter gene assay confirmed Stat3 as a target gene for miR-17-5p. Conclusion: Upregulation of miR-17-5p promotes apoptosis induced by oxidative stress via targeting Stat3, accounting partially for I/R-I.

  8. Evaluation of Optogenetic Electrophysiology Tools in Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susann Björk

    2017-11-01

    Full Text Available Current cardiac drug safety assessments focus on hERG channel block and QT prolongation for evaluating arrhythmic risks, whereas the optogenetic approach focuses on the action potential (AP waveform generated by a monolayer of human cardiomyocytes beating synchronously, thus assessing the contribution of several ion channels on the overall drug effect. This novel tool provides arrhythmogenic sensitizing by light-induced pacing in combination with non-invasive, all-optical measurements of cardiomyocyte APs and will improve assessment of drug-induced electrophysiological aberrancies. With the help of patch clamp electrophysiology measurements, we aimed to investigate whether the optogenetic modifications alter human cardiomyocytes' electrophysiology and how well the optogenetic analyses perform against this gold standard. Patch clamp electrophysiology measurements of non-transduced stem cell-derived cardiomyocytes compared to cells expressing the commercially available optogenetic constructs Optopatch and CaViar revealed no significant changes in action potential duration (APD parameters. Thus, inserting the optogenetic constructs into cardiomyocytes does not significantly affect the cardiomyocyte's electrophysiological properties. When comparing the two methods against each other (patch clamp vs. optogenetic imaging we found no significant differences in APD parameters for the Optopatch transduced cells, whereas the CaViar transduced cells exhibited modest increases in APD-values measured with optogenetic imaging. Thus, to broaden the screen, we combined optogenetic measurements of membrane potential and calcium transients with contractile motion measured by video motion tracking. Furthermore, to assess how optogenetic measurements can predict changes in membrane potential, or early afterdepolarizations (EADs, cells were exposed to cumulating doses of E-4031, a hERG potassium channel blocker, and drug effects were measured at both spontaneous and

  9. Human-induced pluripotent stem cell-derived cardiomyocytes from cardiac progenitor cells: effects of selective ion channel blockade.

    Science.gov (United States)

    Altomare, Claudia; Pianezzi, Enea; Cervio, Elisabetta; Bolis, Sara; Biemmi, Vanessa; Benzoni, Patrizia; Camici, Giovanni G; Moccetti, Tiziano; Barile, Lucio; Vassalli, Giuseppe

    2016-12-01

    Human-induced pluripotent stem cell (hiPSC)-derived cardiomyocytes are likely to revolutionize electrophysiological approaches to arrhythmias. Recent evidence suggests the somatic cell origin of hiPSCs may influence their differentiation potential. Owing to their cardiomyogenic potential, cardiac-stromal progenitor cells (CPCs) are an interesting cellular source for generation of hiPSC-derived cardiomyocytes. The effect of ionic current blockade in hiPSC-derived cardiomyocytes generated from CPCs has not been characterized yet. Human-induced pluripotent stem cell-derived cardiomyocytes were generated from adult CPCs and skin fibroblasts from the same individuals. The effect of selective ionic current blockade on spontaneously beating hiPSC-derived cardiomyocytes was assessed using multi-electrode arrays. Cardiac-stromal progenitor cells could be reprogrammed into hiPSCs, then differentiated into hiPSC-derived cardiomyocytes. Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin showed higher upregulation of cardiac-specific genes compared with those of fibroblastic origin. Human-induced pluripotent stem cell-derived cardiomyocytes of both somatic cell origins exhibited sensitivity to tetrodotoxin, a blocker of Na +  current (I Na ), nifedipine, a blocker of L-type Ca 2+  current (I CaL ), and E4031, a blocker of the rapid component of delayed rectifier K +  current (I Kr ). Human-induced pluripotent stem cell-derived cardiomyocytes of cardiac origin exhibited sensitivity to JNJ303, a blocker of the slow component of delayed rectifier K +  current (I Ks ). In hiPSC-derived cardiomyocytes of cardiac origin, I Na , I CaL , I Kr , and I Ks were present as tetrodotoxin-, nifedipine-, E4031-, and JNJ303-sensitive currents, respectively. Although cardiac differentiation efficiency was improved in hiPSCs of cardiac vs. non-cardiac origin, no major functional differences were observed between hiPSC-derived cardiomyocytes of different somatic

  10. Early Administration of Glutamine Protects Cardiomyocytes from Post-Cardiac Arrest Acidosis

    Directory of Open Access Journals (Sweden)

    Yan-Ren Lin

    2016-01-01

    Full Text Available Postcardiac arrest acidosis can decrease survival. Effective medications without adverse side effects are still not well characterized. We aimed to analyze whether early administration of glutamine could improve survival and protect cardiomyocytes from postcardiac arrest acidosis using animal and cell models. Forty Wistar rats with postcardiac arrest acidosis (blood pH < 7.2 were included. They were divided into study (500 mg/kg L-alanyl-L-glutamine, n=20 and control (normal saline, n=20 groups. Each of the rats received resuscitation. The outcomes were compared between the two groups. In addition, cardiomyocytes derived from human induced pluripotent stem cells were exposed to HBSS with different pH levels (7.3 or 6.5 or to culture medium (control. Apoptosis-related markers and beating function were analyzed. We found that the duration of survival was significantly longer in the study group (p<0.05. In addition, in pH 6.5 or pH 7.3 HBSS buffer, the expression levels of cell stress (p53 and apoptosis (caspase-3, Bcl-xL markers were significantly lower in cardiomyocytes treated with 50 mM L-glutamine than those without L-glutamine (RT-PCR. L-glutamine also increased the beating function of cardiomyocytes, especially at the lower pH level (6.5. More importantly, glutamine decreased cardiomyocyte apoptosis and increased these cells’ beating function at a low pH level.

  11. The Cardiomyocyte RNA-Binding Proteome: Links to Intermediary Metabolism and Heart Disease

    Directory of Open Access Journals (Sweden)

    Yalin Liao

    2016-08-01

    Full Text Available RNA functions through the dynamic formation of complexes with RNA-binding proteins (RBPs in all clades of life. We determined the RBP repertoire of beating cardiomyocytic HL-1 cells by jointly employing two in vivo proteomic methods, mRNA interactome capture and RBDmap. Together, these yielded 1,148 RBPs, 391 of which are shared with all other available mammalian RBP repertoires, while 393 are thus far unique to cardiomyocytes. RBDmap further identified 568 regions of RNA contact within 368 RBPs. The cardiomyocyte mRNA interactome composition reflects their unique biology. Proteins with roles in cardiovascular physiology or disease, mitochondrial function, and intermediary metabolism are all highly represented. Notably, we identified 73 metabolic enzymes as RBPs. RNA-enzyme contacts frequently involve Rossmann fold domains with examples in evidence of both, mutual exclusivity of, or compatibility between RNA binding and enzymatic function. Our findings raise the prospect of previously hidden RNA-mediated regulatory interactions among cardiomyocyte gene expression, physiology, and metabolism.

  12. Ca2+-regulatory proteins in cardiomyocytes from the right ventricle in children with congenital heart disease

    Directory of Open Access Journals (Sweden)

    Wu Yihe

    2012-04-01

    Full Text Available Abstract Background Hypoxia and hypertrophy are the most frequent pathophysiological consequence of congenital heart disease (CHD which can induce the alteration of Ca2+-regulatory proteins and inhibit cardiac contractility. Few studies have been performed to examine Ca2+-regulatory proteins in human cardiomyocytes from the hypertrophic right ventricle with or without hypoxia. Methods Right ventricle tissues were collected from children with tetralogy of Fallot [n = 25, hypoxia and hypertrophy group (HH group], pulmonary stenosis [n = 25, hypertrophy group (H group], or small isolated ventricular septal defect [n = 25, control group (C group] during open-heart surgery. Paraffin sections of tissues were stained with 3,3′-dioctadecyloxacarbocyanine perchlorate to measure cardiomyocyte size. Expression levels of Ca2+-regulatory proteins [sarcoplasmic reticulum Ca2+-ATPase (SERCA2a, ryanodine receptor (RyR2, sodiumcalcium exchanger (NCX, sarcolipin (SLN and phospholamban (PLN] were analysed by means of real-time PCR, western blot, or immunofluorescence. Additionally, phosphorylation level of RyR and PLN and activity of protein phosphatase (PP1 were evaluated using western blot. Results Mild cardiomyocyte hypertrophy of the right ventricle in H and HH groups was confirmed by comparing cardiomyocyte size. A significant reduction of SERCA2a in mRNA (P16-phosphorylated PLN was down-regulated (PP Conclusions The decreased SERCA2a mRNA may be a biomarker of the pathological process in the early stage of cyanotic CHD with the hypertrophic right ventricle. A combination of hypoxia and hypertrophy can induce the adverse effect of PLN-Ser16 dephosphorylation. Increased PP1 could result in the decreased PLN-Ser16 and inhibition of PP1 is a potential therapeutic target for heart dysfunction in pediatrics.

  13. Chemical Growth Regulators for Guayule Plants

    Science.gov (United States)

    Dastoor, M. N.; Schubert, W. W.; Petersen, G. R.

    1982-01-01

    Test Tubes containing Guayule - tissue cultures were used in experiments to test effects of chemical-growth regulators. The shoots grew in response to addition of 2-(3,4-dichlorophenoxy)-triethylamine (triethylamine (TEA) derivative) to agar medium. Preliminary results indicate that a class of compounds that promotes growth in soil may also promote growth in a culture medium. Further experiments are needed to define the effect of the TEA derivative.

  14. 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes

    Science.gov (United States)

    Cheng, Jin; Ding, Qian; Wang, Jia; Deng, Lin; Yang, Lu; Tao, Lei; Lei, Haihong; Lu, Shaoping

    2016-01-01

    Heart disease is one of the deadliest diseases causing mortality due to the limited regenerative capability of highly differentiated cardiomyocytes. Stem cell-based therapy in tissue engineering is one of the most exciting and rapidly growing areas and raises promising prospects for cardiac repair. In this study, we have synthesized FITC-mesoporous silica nanoparticles (FMSNs) based on a sol-gel method (known as Stöber's method) as a drug delivery platform to transport 5-azacytidine in P19 embryonic carcinoma stem cells. The surfactant CTAB is utilized as a liquid crystal template to self-aggregate into micelles, resulting in the synthesis of MSNs. Based on the cell viability assay, treatment with FMSNs + 5-azacytidine resulted in much more significant inhibition of the proliferation than 5-azacytidine alone. To study the mechanism, we have tested the differentiation genes and cardiac marker genes in P19 cells and found that these genes have been up-regulated in P19 embryonic carcinoma stem cells treated with FMSNs + 5-azacytidine + poly(allylamine hydrochloride) (PAH), with the changes of histone modifications on the regulatory region. In conclusion, with FMSNs as drug delivery platforms, 5-azacytidine can be more efficiently delivered into stem cells and can be used to monitor and track the transfection process in situ to clarify their effects on stem cell functions and the differentiation process, which can serve as a promising tool in tissue engineering and other biomedical fields.

  15. Autonomous and Non-autonomous Defects Underlie Hypertrophic Cardiomyopathy in BRAF-Mutant hiPSC-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Rebecca Josowitz

    2016-09-01

    Full Text Available Germline mutations in BRAF cause cardio-facio-cutaneous syndrome (CFCS, whereby 40% of patients develop hypertrophic cardiomyopathy (HCM. As the role of the RAS/MAPK pathway in HCM pathogenesis is unclear, we generated a human induced pluripotent stem cell (hiPSC model for CFCS from three patients with activating BRAF mutations. By cell sorting for SIRPα and CD90, we generated a method to examine hiPSC-derived cell type-specific phenotypes and cellular interactions underpinning HCM. BRAF-mutant SIRPα+/CD90− cardiomyocytes displayed cellular hypertrophy, pro-hypertrophic gene expression, and intrinsic calcium-handling defects. BRAF-mutant SIRPα−/CD90+ cells, which were fibroblast-like, exhibited a pro-fibrotic phenotype and partially modulated cardiomyocyte hypertrophy through transforming growth factor β (TGFβ paracrine signaling. Inhibition of TGFβ or RAS/MAPK signaling rescued the hypertrophic phenotype. Thus, cell autonomous and non-autonomous defects underlie HCM due to BRAF mutations. TGFβ inhibition may be a useful therapeutic option for patients with HCM due to RASopathies or other etiologies.

  16. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    International Nuclear Information System (INIS)

    Chien, Peter Tzu-Yu; Lin, Chih-Chung; Hsiao, Li-Der; Yang, Chuen-Mao

    2015-01-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE 2 release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO-1

  17. Induction of HO-1 by carbon monoxide releasing molecule-2 attenuates thrombin-induced COX-2 expression and hypertrophy in primary human cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Chien, Peter Tzu-Yu [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Lin, Chih-Chung; Hsiao, Li-Der [Department of Anesthetics, Chang Gung Memorial Hospital at Lin-Kou and College of Medicine, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan (China); Yang, Chuen-Mao, E-mail: chuenmao@mail.cgu.edu.tw [Department of Physiology and Pharmacology and Health Ageing Research Center, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Kwei-Shan, Tao-Yuan, Taiwan (China); Research Center for Industry of Human Ecology and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Tao-Yuan, Taiwan (China)

    2015-12-01

    Carbon monoxide (CO) is one of the cytoprotective byproducts of heme oxygenase (HO)-1 and exerts anti-inflammatory action in various models. However, the detailed mechanisms underlying CO-induced HO-1 expression in primary human cardiomyocytes remain largely unidentified. We used primary left ventricle myocytes as a model and applied CO releasing molecule (CORM)-2 to investigate the relationship of CO and HO-1 expression. We herein used Western blot, real-time PCR, promoter activity and EIA to investigate the role of HO-1 expression protecting against thrombin-mediated responses. We found that thrombin-induced COX-2 expression, PGE{sub 2} release and cardiomyocyte hypertrophy markers (increase in ANF/BNP, α-actin expression and cell surface area) was attenuated by pretreatment with CORM-2 which was partially reversed by hemoglobin (Hb) or ZnPP (an inhibitor of HO-1 activity), suggesting that HO-1/CO system may be of clinical importance to ameliorate heart failure through inhibition of inflammatory responses. CORM-2-induced HO-1 protein expression, mRNA and promoter was attenuated by pretreatment with the inhibitors of Pyk2 (PF431396), PDGFR (AG1296), PI3K (LY294002), Akt (SH-5), p38 (SB202530), JNK1/2 (SP600125), FoxO1 (AS1842856) and Sp1 (mithramycin A). The involvement of these signaling components was further confirmed by transfection with respective siRNAs, consistent with those of pharmacological inhibitors. These results suggested that CORM-2-induced HO-1 expression is mediated through a Pyk2/PDGFR/PI3K/Akt/FoxO1/Sp1-dependent manner and exerts a cytoprotective effect in human cardiomyocytes. - Graphical abstract: In summary, CORM-2 treatment induces Pyk2 transactivated PDGFR, which induces PI3K/Akt/MAPK activation, and then recruits Sp1/Foxo1 transcriptional factors to regulate HO-1 gene expression in primary human cardiomyocytes. - Highlights: • CORM-2 induces HO-1 expression. • Pyk2-dependent PDGFR activates PI3K/Akt/MAPK pathway in CORM-2-induced HO

  18. A BAG3 chaperone complex maintains cardiomyocyte function during proteotoxic stress.

    Science.gov (United States)

    Judge, Luke M; Perez-Bermejo, Juan A; Truong, Annie; Ribeiro, Alexandre Js; Yoo, Jennie C; Jensen, Christina L; Mandegar, Mohammad A; Huebsch, Nathaniel; Kaake, Robyn M; So, Po-Lin; Srivastava, Deepak; Pruitt, Beth L; Krogan, Nevan J; Conklin, Bruce R

    2017-07-20

    Molecular chaperones regulate quality control in the human proteome, pathways that have been implicated in many diseases, including heart failure. Mutations in the BAG3 gene, which encodes a co-chaperone protein, have been associated with heart failure due to both inherited and sporadic dilated cardiomyopathy. Familial BAG3 mutations are autosomal dominant and frequently cause truncation of the coding sequence, suggesting a heterozygous loss-of-function mechanism. However, heterozygous knockout of the murine BAG3 gene did not cause a detectable phenotype. To model BAG3 cardiomyopathy in a human system, we generated an isogenic series of human induced pluripotent stem cells (iPSCs) with loss-of-function mutations in BAG3. Heterozygous BAG3 mutations reduced protein expression, disrupted myofibril structure, and compromised contractile function in iPSC-derived cardiomyocytes (iPS-CMs). BAG3-deficient iPS-CMs were particularly sensitive to further myofibril disruption and contractile dysfunction upon exposure to proteasome inhibitors known to cause cardiotoxicity. We performed affinity tagging of the endogenous BAG3 protein and mass spectrometry proteomics to further define the cardioprotective chaperone complex that BAG3 coordinates in the human heart. Our results establish a model for evaluating protein quality control pathways in human cardiomyocytes and their potential as therapeutic targets and susceptibility factors for cardiac drug toxicity.

  19. TRPC4α and TRPC4β Similarly Affect Neonatal Cardiomyocyte Survival during Chronic GPCR Stimulation.

    Directory of Open Access Journals (Sweden)

    Nadine Kirschmer

    Full Text Available The Transient Receptor Potential Channel Subunit 4 (TRPC4 has been considered as a crucial Ca2+ component in cardiomyocytes promoting structural and functional remodeling in the course of pathological cardiac hypertrophy. TRPC4 assembles as homo or hetero-tetramer in the plasma membrane, allowing a non-selective Na+ and Ca2+ influx. Gαq protein-coupled receptor (GPCR stimulation is known to increase TRPC4 channel activity and a TRPC4-mediated Ca2+ influx which has been regarded as ideal Ca2+ source for calcineurin and subsequent nuclear factor of activated T-cells (NFAT activation. Functional properties of TRPC4 are also based on the expression of the TRPC4 splice variants TRPC4α and TRPC4β. Aim of the present study was to analyze cytosolic Ca2+ signals, signaling, hypertrophy and vitality of cardiomyocytes in dependence on the expression level of either TRPC4α or TRPC4β. The analysis of Ca2+ transients in neonatal rat cardiomyocytes (NRCs showed that TRPC4α and TRPC4β affected Ca2+ cycling in beating cardiomyocytes with both splice variants inducing an elevation of the Ca2+ transient amplitude at baseline and TRPC4β increasing the Ca2+ peak during angiotensin II (Ang II stimulation. NRCs infected with TRPC4β (Ad-C4β also responded with a sustained Ca2+ influx when treated with Ang II under non-pacing conditions. Consistent with the Ca2+ data, NRCs infected with TRPC4α (Ad-C4α showed an elevated calcineurin/NFAT activity and a baseline hypertrophic phenotype but did not further develop hypertrophy during chronic Ang II/phenylephrine stimulation. Down-regulation of endogenous TRPC4α reversed these effects, resulting in less hypertrophy of NRCs at baseline but a markedly increased hypertrophic enlargement after chronic agonist stimulation. Ad-C4β NRCs did not exhibit baseline calcineurin/NFAT activity or hypertrophy but responded with an increased calcineurin/NFAT activity after GPCR stimulation. However, this effect was not

  20. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    International Nuclear Information System (INIS)

    Abu-Issa, Radwan

    2015-01-01

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development

  1. Rac1 modulates cardiomyocyte adhesion during mouse embryonic development

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Issa, Radwan, E-mail: rabuissa@umich.edu

    2015-01-24

    Highlights: • Conditional knockout of Rac1 using Nkx2.5 Cre line is lethal at E13.5. • The myocardium of the mutant is thin and disorganized. • The phenotype is not due to cardiomyocyte low proliferation or apoptosis. • The phenotype is due to specific defect in cardiomyocyte adhesion. - Abstract: Rac1, a member of the Rho subfamily of small GTPases, is involved in morphogenesis and differentiation of many cell types. Here we define a role of Rac1 in cardiac development by specifically deleting Rac1 in the pre-cardiac mesoderm using the Nkx2.5-Cre transgenic driver line. Rac1-conditional knockout embryos initiate heart development normally until embryonic day 11.5 (E11.5); their cardiac mesoderm is specified, and the heart tube is formed and looped. However, by E12.5-E13.5 the mutant hearts start failing and embryos develop edema and hemorrhage which is probably the cause for the lethality observed soon after. The hearts of Rac1-cKO embryos exhibit disorganized and thin myocardial walls and defects in outflow tract alignment. No significant differences of cardiomyocyte death or proliferation were found between developing control and mutant embryos. To uncover the role of Rac1 in the heart, E11.5 primary heart cells were cultured and analyzed in vitro. Rac1-deficient cardiomyocytes were less spread, round and loosely attached to the substrate and to each other implying that Rac1-mediated signaling is required for appropriate cell–cell and/or cellmatrix adhesion during cardiac development.

  2. Genetic enrichment of cardiomyocytes derived from mouse ...

    African Journals Online (AJOL)

    Jane

    2011-06-22

    Jun 22, 2011 ... Pluripotent embryonic stem cells (ESC) have the ability to differentiate into a ... We describe a simple method to generate relatively pure cardiomyocytes from mouse ... In this study, we described the generation of transgenic.

  3. β-Adrenergic receptor stimulation inhibits proarrhythmic alternans in postinfarction border zone cardiomyocytes: a computational analysis.

    Science.gov (United States)

    Tomek, Jakub; Rodriguez, Blanca; Bub, Gil; Heijman, Jordi

    2017-08-01

    The border zone (BZ) of the viable myocardium adjacent to an infarct undergoes extensive autonomic and electrical remodeling and is prone to repolarization alternans-induced cardiac arrhythmias. BZ remodeling processes may promote or inhibit Ca 2+ and/or repolarization alternans and may differentially affect ventricular arrhythmogenesis. Here, we used a detailed computational model of the canine ventricular cardiomyocyte to study the determinants of alternans in the BZ and their regulation by β-adrenergic receptor (β-AR) stimulation. The BZ model developed Ca 2+ transient alternans at slower pacing cycle lengths than the control model, suggesting that the BZ may promote spatially heterogeneous alternans formation in an infarcted heart. β-AR stimulation abolished alternans. By evaluating all combinations of downstream β-AR stimulation targets, we identified both direct (via ryanodine receptor channels) and indirect [via sarcoplasmic reticulum (SR) Ca 2+ load] modulation of SR Ca 2+ release as critical determinants of Ca 2+ transient alternans. These findings were confirmed in a human ventricular cardiomyocyte model. Cell-to-cell coupling indirectly modulated the likelihood of alternans by affecting the action potential upstroke, reducing the trigger for SR Ca 2+ release in one-dimensional strand simulations. However, β-AR stimulation inhibited alternans in both single and multicellular simulations. Taken together, these data highlight a potential antiarrhythmic role of sympathetic hyperinnervation in the BZ by reducing the likelihood of alternans and provide new insights into the underlying mechanisms controlling Ca 2+ transient and repolarization alternans. NEW & NOTEWORTHY We integrated, for the first time, postmyocardial infarction electrical and autonomic remodeling in a detailed, validated computer model of β-adrenergic stimulation in ventricular cardiomyocytes. Here, we show that β-adrenergic stimulation inhibits alternans and provide novel insights

  4. Reverse engineering life: physical and chemical mimetics for controlled stem cell differentiation into cardiomyocytes.

    Science.gov (United States)

    Skuse, Gary R; Lamkin-Kennard, Kathleen A

    2013-01-01

    Our ability to manipulate stem cells in order to induce differentiation along a desired developmental pathway has improved immeasurably in recent years. That is in part because we have a better understanding of the intracellular and extracellular signals that regulate differentiation. However, there has also been a realization that stem cell differentiation is not regulated only by chemical signals but also by the physical milieu in which a particular stem cell exists. In this regard we are challenged to mimic both chemical and physical environments. Herein we describe a method to induce stem cell differentiation into cardiomyocytes using a combination of chemical and physical cues. This method can be applied to produce differentiated cells for research and potentially for cell-based therapy of cardiomyopathies.

  5. Neonatal Transplantation Confers Maturation of PSC-Derived Cardiomyocytes Conducive to Modeling Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Gun-Sik Cho

    2017-01-01

    Full Text Available Summary: Pluripotent stem cells (PSCs offer unprecedented opportunities for disease modeling and personalized medicine. However, PSC-derived cells exhibit fetal-like characteristics and remain immature in a dish. This has emerged as a major obstacle for their application for late-onset diseases. We previously showed that there is a neonatal arrest of long-term cultured PSC-derived cardiomyocytes (PSC-CMs. Here, we demonstrate that PSC-CMs mature into adult CMs when transplanted into neonatal hearts. PSC-CMs became similar to adult CMs in morphology, structure, and function within a month of transplantation into rats. The similarity was further supported by single-cell RNA-sequencing analysis. Moreover, this in vivo maturation allowed patient-derived PSC-CMs to reveal the disease phenotype of arrhythmogenic right ventricular cardiomyopathy, which manifests predominantly in adults. This study lays a foundation for understanding human CM maturation and pathogenesis and can be instrumental in PSC-based modeling of adult heart diseases. : Pluripotent stem cell (PSC-derived cells remain fetal like, and this has become a major impediment to modeling adult diseases. Cho et al. find that PSC-derived cardiomyocytes mature into adult cardiomyocytes when transplanted into neonatal rat hearts. This method can serve as a tool to understand maturation and pathogenesis in human cardiomyocytes. Keywords: cardiomyocyte, maturation, iPS, cardiac progenitor, neonatal, disease modeling, cardiomyopathy, ARVC, T-tubule, calcium transient, sarcomere shortening

  6. Induced pluripotent stem cell-derived cardiac progenitors differentiate to cardiomyocytes and form biosynthetic tissues.

    Directory of Open Access Journals (Sweden)

    Nicolas Christoforou

    Full Text Available The mammalian heart has little capacity to regenerate, and following injury the myocardium is replaced by non-contractile scar tissue. Consequently, increased wall stress and workload on the remaining myocardium leads to chamber dilation, dysfunction, and heart failure. Cell-based therapy with an autologous, epigenetically reprogrammed, and cardiac-committed progenitor cell source could potentially reverse this process by replacing the damaged myocardium with functional tissue. However, it is unclear whether cardiac progenitor cell-derived cardiomyocytes are capable of attaining levels of structural and functional maturity comparable to that of terminally-fated cardiomyocytes. Here, we first describe the derivation of mouse induced pluripotent stem (iPS cells, which once differentiated allow for the enrichment of Nkx2-5(+ cardiac progenitors, and the cardiomyocyte-specific expression of the red fluorescent protein. We show that the cardiac progenitors are multipotent and capable of differentiating into endothelial cells, smooth muscle cells and cardiomyocytes. Moreover, cardiac progenitor selection corresponds to cKit(+ cell enrichment, while cardiomyocyte cell-lineage commitment is concomitant with dual expression of either cKit/Flk1 or cKit/Sca-1. We proceed to show that the cardiac progenitor-derived cardiomyocytes are capable of forming electrically and mechanically coupled large-scale 2D cell cultures with mature electrophysiological properties. Finally, we examine the cell progenitors' ability to form electromechanically coherent macroscopic tissues, using a physiologically relevant 3D culture model and demonstrate that following long-term culture the cardiomyocytes align, and form robust electromechanical connections throughout the volume of the biosynthetic tissue construct. We conclude that the iPS cell-derived cardiac progenitors are a robust cell source for tissue engineering applications and a 3D culture platform for pharmacological

  7. Anti-aging effects of vitamin C on human pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Kim, Yoon Young; Ku, Seung-Yup; Huh, Yul; Liu, Hung-Ching; Kim, Seok Hyun; Choi, Young Min; Moon, Shin Yong

    2013-10-01

    Human pluripotent stem cells (hPSCs) have arisen as a source of cells for biomedical research due to their developmental potential. Stem cells possess the promise of providing clinicians with novel treatments for disease as well as allowing researchers to generate human-specific cellular metabolism models. Aging is a natural process of living organisms, yet aging in human heart cells is difficult to study due to the ethical considerations regarding human experimentation as well as a current lack of alternative experimental models. hPSC-derived cardiomyocytes (CMs) bear a resemblance to human cardiac cells and thus hPSC-derived CMs are considered to be a viable alternative model to study human heart cell aging. In this study, we used hPSC-derived CMs as an in vitro aging model. We generated cardiomyocytes from hPSCs and demonstrated the process of aging in both human embryonic stem cell (hESC)- and induced pluripotent stem cell (hiPSC)-derived CMs. Aging in hESC-derived CMs correlated with reduced membrane potential in mitochondria, the accumulation of lipofuscin, a slower beating pattern, and the downregulation of human telomerase RNA (hTR) and cell cycle regulating genes. Interestingly, the expression of hTR in hiPSC-derived CMs was not significantly downregulated, unlike in hESC-derived CMs. In order to delay aging, vitamin C was added to the cultured CMs. When cells were treated with 100 μM of vitamin C for 48 h, anti-aging effects, specifically on the expression of telomere-related genes and their functionality in aging cells, were observed. Taken together, these results suggest that hPSC-derived CMs can be used as a unique human cardiomyocyte aging model in vitro and that vitamin C shows anti-aging effects in this model.

  8. Effect of bionic electrical stimulation on the differentiation of embryonic stem cells into cardiomyocytes in the presence myocardial cells in vitro

    Directory of Open Access Journals (Sweden)

    Li-na ZHENG

    2011-08-01

    Full Text Available Objective To investigate the effects of electrical stimulation on the differentiation of embryonic stem cells(ESCs into cardiomyocytes in the presence of myocardial cells in vitro.Methods ESCs and neonate rat cardiomyocytes were isolated and cultured.These cells of primary culture were divided into 5 groups according to whether or not electric stimulation was given and the presence of cardiomyocytes: control group,stimulation group,cardiomyocytes group,stimulation+ cardiomyocyte conditioned medium group,and stimulation+cardiomyocytes group.Expression of troponin T(cTnT in the differentiated cells from ESCs was examined by immunofluoresence on the 5th,7th and 14th day.Results In the group co-cultured with myocardial cell and electrical stimulation,the differentiating ratio of cardiomyocytes derived from ESCs and expressing cTnT was 40.00%±2.39%,and it was higher than that in control group(2.00%±1.60%,stimulation group(3.00%±2.00%,cardiomyocytes group(28.70%±4.06%,stimulation+cardiomyocyte conditioned medium group(17.10%±2.23%,P < 0.05.Conclusion Bionic electric stimulation promotes the differentiation of ESCs into cardiomyocyte in a microenvironment consisting of myocardial cells.

  9. Lentiviral vectors and protocols for creation of stable hESC lines for fluorescent tracking and drug resistance selection of cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hiroko Kita-Matsuo

    Full Text Available Developmental, physiological and tissue engineering studies critical to the development of successful myocardial regeneration therapies require new ways to effectively visualize and isolate large numbers of fluorescently labeled, functional cardiomyocytes.Here we describe methods for the clonal expansion of engineered hESCs and make available a suite of lentiviral vectors for that combine Blasticidin, Neomycin and Puromycin resistance based drug selection of pure populations of stem cells and cardiomyocytes with ubiquitous or lineage-specific promoters that direct expression of fluorescent proteins to visualize and track cardiomyocytes and their progenitors. The phospho-glycerate kinase (PGK promoter was used to ubiquitously direct expression of histone-2B fused eGFP and mCherry proteins to the nucleus to monitor DNA content and enable tracking of cell migration and lineage. Vectors with T/Brachyury and alpha-myosin heavy chain (alphaMHC promoters targeted fluorescent or drug-resistance proteins to early mesoderm and cardiomyocytes. The drug selection protocol yielded 96% pure cardiomyocytes that could be cultured for over 4 months. Puromycin-selected cardiomyocytes exhibited a gene expression profile similar to that of adult human cardiomyocytes and generated force and action potentials consistent with normal fetal cardiomyocytes, documenting these parameters in hESC-derived cardiomyocytes and validating that the selected cells retained normal differentiation and function.The protocols, vectors and gene expression data comprise tools to enhance cardiomyocyte production for large-scale applications.

  10. SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition.

    Science.gov (United States)

    Jia, Zhuqing; Wang, Jiaji; Shi, Qiong; Liu, Siyu; Wang, Weiping; Tian, Yuyao; Lu, Qin; Chen, Ping; Ma, Kangtao; Zhou, Chunyan

    2016-02-01

    Sepsis-induced cardiac apoptosis is one of the major pathogenic factors in myocardial dysfunction. As it enhances numerous proinflammatory factors, lipopolysaccharide (LPS) is considered the principal mediator in this pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore the mechanisms involved in LPS-induced cardiomyocyte apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat cardiomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced cardiomyocyte apoptosis by activating the BCL-2 family pathway. The apoptosis process enhanced by overexpression of SOX6 or PDCD4, was rescued by the cardiac-abundant miR-499. Overexpression of miR-499 protected the cardiomyocytes against LPS-induced apoptosis. In brief, our results demonstrate the existence of a miR-499-SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes in response to LPS stimulation.

  11. Cardiomyocytes undergo apoptosis in human immunodeficiency virus cardiomyopathy through mitochondrion- and death receptor-controlled pathways.

    Science.gov (United States)

    Twu, Cheryl; Liu, Nancy Q; Popik, Waldemar; Bukrinsky, Michael; Sayre, James; Roberts, Jaclyn; Rania, Shammas; Bramhandam, Vishnu; Roos, Kenneth P; MacLellan, W Robb; Fiala, Milan

    2002-10-29

    We investigated 18 AIDS hearts (5 with and 13 without cardiomyopathy) by using immunocytochemistry and computerized image analysis regarding the roles of HIV-1 proteins and tumor necrosis factor ligands in HIV cardiomyopathy (HIVCM). HIVCM and cardiomyocyte apoptosis were significantly related to each other and to the expression by inflammatory cells of gp120 and tumor necrosis factor-alpha. In HIVCM heart, active caspase 9, a component of the mitochondrion-controlled apoptotic pathway, and the elements of the death receptor-mediated pathway, tumor necrosis factor-alpha and Fas ligand, were expressed strongly on macrophages and weakly on cardiomyocytes. HIVCM showed significantly greater macrophage infiltration and cardiomyocyte apoptosis rate compared with non-HIVCM. HIV-1 entered cultured neonatal rat ventricular myocytes by macropinocytosis but did not replicate. HIV-1- or gp120-induced apoptosis of rat myocytes through a mitochondrion-controlled pathway, which was inhibited by heparin, AOP-RANTES, or pertussis toxin, suggesting that cardiomyocyte apoptosis is induced by signaling through chemokine receptors. In conclusion, in patients with HIVCM, cardiomyocytes die through both mitochondrion- and death receptor-controlled apoptotic pathways.

  12. GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules

    Science.gov (United States)

    Hur, Eun-Mi; Saijilafu; Lee, Byoung Dae; Kim, Seong-Jin; Xu, Wen-Lin; Zhou, Feng-Quan

    2011-01-01

    Suppression of glycogen synthase kinase 3 (GSK3) activity in neurons yields pleiotropic outcomes, causing both axon growth promotion and inhibition. Previous studies have suggested that specific GSK3 substrates, such as adenomatous polyposis coli (APC) and collapsin response mediator protein 2 (CRMP2), support axon growth by regulating the stability of axonal microtubules (MTs), but the substrate(s) and mechanisms conveying axon growth inhibition remain elusive. Here we show that CLIP (cytoplasmic linker protein)-associated protein (CLASP), originally identified as a MT plus end-binding protein, displays both plus end-binding and lattice-binding activities in nerve growth cones, and reveal that the two MT-binding activities regulate axon growth in an opposing manner: The lattice-binding activity mediates axon growth inhibition induced by suppression of GSK3 activity via preventing MT protrusion into the growth cone periphery, whereas the plus end-binding property supports axon extension via stabilizing the growing ends of axonal MTs. We propose a model in which CLASP transduces GSK3 activity levels to differentially control axon growth by coordinating the stability and configuration of growth cone MTs. PMID:21937714

  13. Differentiation of Rat bone marrow Mesenchymal stem cells into Adipocytes and Cardiomyocytes after treatment with platelet lysate.

    Science.gov (United States)

    Homayouni Moghadam, Farshad; Tayebi, Tahereh; Barzegar, Kazem

    2016-01-01

    Mesenchymal stem cells (MSCs) are multipotential cells and their therapeutic potency is under intense investigation. Studying the effect of different induction factors on MSCs could increase our knowledge about the differentiation potency of these cells. One of the most important sources of these factors in mammalian body is platelet. Platelet lysate (PL) contains many growth factors and therefore, it can be used as a differentiation inducer. In the present study, the effect of PL on differentiation of rat bone marrow MSCs into cardiomyocytes was studied. To study the differentiation-inducing effect of PL, MSCs were treated with 2.5, 5 and 10% PL. Early results of this study showed that PL in high concentrations (10%) induces adipogenic differentiation of MSCs. Therefore, to evaluate differentiation to cardiomyocytes, MSCs were cultured in media containing lower levels of PL (2.5% and 5%) and then cardiomyogenic differentiation was induced by treatment with 5-azacytidine. Differentiation of MSCs was evaluated using direct observation of beating cells, immunostaining and real-time PCR techniques. The results of qPCR showed that treatment with PL alone increased the expression of cardiac alpha actinin (CAA) being predictable by earlier observation of beating cells in PL-treated groups. The results of staining assays against cardiac alpha actinin also showed that there were stained cells in PL-treated groups. The results of the present study showed that PL is a powerful induction factor for differentiation of MSCs into different cell lines such as cardiomyocytes and adipocytes.

  14. Effect of growth regulators on growth, flowering and rhizome yield of ...

    African Journals Online (AJOL)

    Field experiments were conducted in 2001 and 2002, to study the effect of foliar application of growth regulators on growth; flowering and rhizome yield of ginger (Zingiber officinale Rosc.). Treatments consisted of gibberellic acid (GA3) at 0,150 and 300 ppm; ethrel at 0,100 and 200 ppm and cycocel (CCC) at 0,250 ppm ...

  15. Acoustical sensing of cardiomyocyte cluster beating

    Energy Technology Data Exchange (ETDEWEB)

    Tymchenko, Nina; Kunze, Angelika [Dept. of Applied Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Dahlenborg, Kerstin [Cellectis, 413 46 Göteborg (Sweden); Svedhem, Sofia, E-mail: sofia.svedhem@chalmers.se [Dept. of Applied Physics, Chalmers University of Technology, 412 96 Göteborg (Sweden); Steel, Daniella [Cellectis, 413 46 Göteborg (Sweden)

    2013-06-14

    Highlights: •An example of the application of QCM-D to live cell studies. •Detection of human pluripotent stem cell-derived cardiomyocyte cluster beating. •Clusters were studied in a thin liquid film and in a large liquid volume. •The QCM-D beating profile provides an individual fingerprint of the hPS-CMCs. -- Abstract: Spontaneously beating human pluripotent stem cell-derived cardiomyocytes clusters (CMCs) represent an excellent in vitro tool for studies of human cardiomyocyte function and for pharmacological cardiac safety assessment. Such testing typically requires highly trained operators, precision plating, or large cell quantities, and there is a demand for real-time, label-free monitoring of small cell quantities, especially rare cells and tissue-like structures. Array formats based on sensing of electrical or optical properties of cells are being developed and in use by the pharmaceutical industry. A potential alternative to these techniques is represented by the quartz crystal microbalance with dissipation monitoring (QCM-D) technique, which is an acoustic surface sensitive technique that measures changes in mass and viscoelastic properties close to the sensor surface (from nm to μm). There is an increasing number of studies where QCM-D has successfully been applied to monitor properties of cells and cellular processes. In the present study, we show that spontaneous beating of CMCs on QCM-D sensors can be clearly detected, both in the frequency and the dissipation signals. Beating rates in the range of 66–168 bpm for CMCs were detected and confirmed by simultaneous light microscopy. The QCM-D beating profile was found to provide individual fingerprints of the hPS-CMCs. The presented results point towards acoustical assays for evaluation cardiotoxicity.

  16. Immaturity of human stem-cell-derived cardiomyocytes in culture: fatal flaw or soluble problem?

    NARCIS (Netherlands)

    Veerman, Christiaan C.; Kosmidis, Georgios; Mummery, Christine L.; Casini, Simona; Verkerk, Arie O.; Bellin, Milena

    2015-01-01

    Cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are increasingly used to model cardiac disease, test drug efficacy and for safety pharmacology. Nevertheless, a major hurdle to more extensive use is their immaturity and similarity to fetal rather than adult cardiomyocytes. Here, we

  17. Tampering with springs: phosphorylation of titin affecting the mechanical function of cardiomyocytes.

    Science.gov (United States)

    Hamdani, Nazha; Herwig, Melissa; Linke, Wolfgang A

    2017-06-01

    Reversible post-translational modifications of various cardiac proteins regulate the mechanical properties of the cardiomyocytes and thus modulate the contractile performance of the heart. The giant protein titin forms a continuous filament network in the sarcomeres of striated muscle cells, where it determines passive tension development and modulates active contraction. These mechanical properties of titin are altered through post-translational modifications, particularly phosphorylation. Titin contains hundreds of potential phosphorylation sites, the functional relevance of which is only beginning to emerge. Here, we provide a state-of-the-art summary of the phosphorylation sites in titin, with a particular focus on the elastic titin spring segment. We discuss how phosphorylation at specific amino acids can reduce or increase the stretch-induced spring force of titin, depending on where the spring region is phosphorylated. We also review which protein kinases phosphorylate titin and how this phosphorylation affects titin-based passive tension in cardiomyocytes. A comprehensive overview is provided of studies that have measured altered titin phosphorylation and titin-based passive tension in myocardial samples from human heart failure patients and animal models of heart disease. As our understanding of the broader implications of phosphorylation in titin progresses, this knowledge could be used to design targeted interventions aimed at reducing pathologically increased titin stiffness in patients with stiff hearts.

  18. Mena/VASP and αII-Spectrin complexes regulate cytoplasmic actin networks in cardiomyocytes and protect from conduction abnormalities and dilated cardiomyopathy.

    Science.gov (United States)

    Benz, Peter M; Merkel, Carla J; Offner, Kristin; Abeßer, Marco; Ullrich, Melanie; Fischer, Tobias; Bayer, Barbara; Wagner, Helga; Gambaryan, Stepan; Ursitti, Jeanine A; Adham, Ibrahim M; Linke, Wolfgang A; Feller, Stephan M; Fleming, Ingrid; Renné, Thomas; Frantz, Stefan; Unger, Andreas; Schuh, Kai

    2013-08-12

    In the heart, cytoplasmic actin networks are thought to have important roles in mechanical support, myofibrillogenesis, and ion channel function. However, subcellular localization of cytoplasmic actin isoforms and proteins involved in the modulation of the cytoplasmic actin networks are elusive. Mena and VASP are important regulators of actin dynamics. Due to the lethal phenotype of mice with combined deficiency in Mena and VASP, however, distinct cardiac roles of the proteins remain speculative. In the present study, we analyzed the physiological functions of Mena and VASP in the heart and also investigated the role of the proteins in the organization of cytoplasmic actin networks. We generated a mouse model, which simultaneously lacks Mena and VASP in the heart. Mena/VASP double-deficiency induced dilated cardiomyopathy and conduction abnormalities. In wild-type mice, Mena and VASP specifically interacted with a distinct αII-Spectrin splice variant (SH3i), which is in cardiomyocytes exclusively localized at Z- and intercalated discs. At Z- and intercalated discs, Mena and β-actin localized to the edges of the sarcomeres, where the thin filaments are anchored. In Mena/VASP double-deficient mice, β-actin networks were disrupted and the integrity of Z- and intercalated discs was markedly impaired. Together, our data suggest that Mena, VASP, and αII-Spectrin assemble cardiac multi-protein complexes, which regulate cytoplasmic actin networks. Conversely, Mena/VASP deficiency results in disrupted β-actin assembly, Z- and intercalated disc malformation, and induces dilated cardiomyopathy and conduction abnormalities.

  19. Insulin protects apoptotic cardiomyocytes from hypoxia/reoxygenation injury through the sphingosine kinase/sphingosine 1-phosphate axis.

    Directory of Open Access Journals (Sweden)

    Huan Yu

    Full Text Available OBJECTIVE: Experimental and clinical studies have shown that administration of insulin during reperfusion is cardioprotective, but the mechanisms underlying this effect are still unknown. In this study, the ability of insulin to protect apoptotic cardiomyocytes from hypoxia/reoxygenation injury using the sphingosine kinase/sphingosine 1-phosphate axis was investigated. METHODS AND RESULTS: Rat cardiomyocytes were isolated and subjected to hypoxia and reoxygenation. [γ-32P] ATP was used to assess sphingosine kinase activity. Insulin was found to increase sphingosine kinase activity. Immunocytochemistry and Western blot analysis showed changes in the subcellular location of sphingosine kinase 1 from cytosol to the membrane in cardiomyocytes. Insulin caused cardiomyocytes to accumulate of S1P in a dose-dependent manner. FRET efficiency showed that insulin also transactivates the S1P1 receptor. TUNEL staining showed that administration of insulin during reoxygenation could to reduce the rate of reoxygenation-induced apoptosis, which is a requirement for SphK 1 activity. It also reduced the rate of activation of the S1P receptor and inhibited hypoxia/reoxygenation-induced cell death in cardiomyocytes. CONCLUSION: The sphingosine kinase 1/sphingosine 1-phosphate/S1P receptor axis is one pathway through which insulin protects rat cardiomyocytes from apoptosis induced by hypoxia/reoxygenation injury.

  20. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    NARCIS (Netherlands)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; van Meer, Berend; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G. J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes

  1. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    International Nuclear Information System (INIS)

    Minegishi, Yoshiki; Sakai, Yasuo; Yahara, Yasuhito; Akiyama, Haruhiko; Yoshikawa, Hideki; Hosokawa, Ko; Tsumaki, Noriyuki

    2014-01-01

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1 Δchon cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone

  2. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  3. Scalable Electrophysiological Investigation of iPS Cell-Derived Cardiomyocytes Obtained by a Lentiviral Purification Strategy

    Directory of Open Access Journals (Sweden)

    Stephanie Friedrichs

    2015-01-01

    Full Text Available Disease-specific induced pluripotent stem (iPS cells can be generated from patients and differentiated into functional cardiomyocytes for characterization of the disease and for drug screening. In order to obtain pure cardiomyocytes for automated electrophysiological investigation, we here report a novel non-clonal purification strategy by using lentiviral gene transfer of a puromycin resistance gene under the control of a cardiac-specific promoter. We have applied this method to our previous reported wild-type and long QT syndrome 3 (LQTS 3-specific mouse iPS cells and obtained a pure cardiomyocyte population. These cells were investigated by action potential analysis with manual and automatic planar patch clamp technologies, as well as by recording extracellular field potentials using a microelectrode array system. Action potentials and field potentials showed the characteristic prolongation at low heart rates in LQTS 3-specific, but not in wild-type iPS cell-derived cardiomyocytes. Hence, LQTS 3-specific cardiomyocytes can be purified from iPS cells with a lentiviral strategy, maintain the hallmarks of the LQTS 3 disease and can be used for automated electrophysiological characterization and drug screening.

  4. The primary cilium coordinates early cardiogenesis and hedgehog signaling in cardiomyocyte differentiation

    DEFF Research Database (Denmark)

    Clement, Christian A; Kristensen, Stine G; Møllgård, Kjeld

    2009-01-01

    Defects in the assembly or function of primary cilia, which are sensory organelles, are tightly coupled to developmental defects and diseases in mammals. Here, we investigated the function of the primary cilium in regulating hedgehog signaling and early cardiogenesis. We report that the pluripotent...... P19.CL6 mouse stem cell line, which can differentiate into beating cardiomyocytes, forms primary cilia that contain essential components of the hedgehog pathway, including Smoothened, Patched-1 and Gli2. Knockdown of the primary cilium by Ift88 and Ift20 siRNA or treatment with cyclopamine...... development. These data support the conclusion that cardiac primary cilia are crucial in early heart development, where they partly coordinate hedgehog signaling....

  5. Mitochondrial p38β and manganese superoxide dismutase interaction mediated by estrogen in cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Han Liu

    Full Text Available While etiology behind the observed acceleration of ischemic heart disease in postmenopausal women is poorly understood, collective scientific data suggest cardioprotective effects of the endogenous female sex hormone, estrogen. We have previously shown that 17β-estradiol (E2 protects cardiomyocytes exposed to hypoxia-reoxygenation (H/R by inhibiting p38α - p53 signaling in apoptosis and activating pro-survival p38β mitogen activated protein kinase (p38β MAPK, leading to suppression of reactive oxygen species (ROS post H/R. However, little is known about the mechanism behind the antioxidant actions of E2-dependent p38β. The aim of this study is to determine whether the cytoprotection by estrogen involves regulation of manganese superoxide dismutase (MnSOD, a major mitochondrial ROS scavenging enzyme, via cardiac p38β.We identified mitochondrial p38β by immunocytochemistry and by immunoblotting in mitochondria isolated from neonatal cardiomyocytes of Sprague-Dawley rats. E2 facilitated the mitochondrial localization of the active form of the kinase, phosphorylated p38β (p-p38β. E2 also reduced the H/R-induced mitochondrial membrane potential decline, augmented the MnSOD activity and suppressed anion superoxide generation, while the dismutase protein expression remained unaltered. Co-immunoprecipitation studies showed physical association between MnSOD and p38β. p38β phosphorylated MnSOD in an E2-dependent manner in in-vitro kinase assays.This work demonstrates for the first time a mitochondrial pool of active p38β and E2-mediated phosphorylation of MnSOD by the kinase. The results shed light on the mechanism behind the cytoprotective actions of E2 in cardiomyocytes under oxidative stress.

  6. Growth Conditions Regulate the Requirements for Caulobacter Chromosome Segregation

    DEFF Research Database (Denmark)

    Shebelut, Conrad W.; Jensen, Rasmus Bugge; Gitai, Zemer

    2009-01-01

    Growth environments are important metabolic and developmental regulators. Here we demonstrate a growth environment-dependent effect on Caulobacter chromosome segregation of a small-molecule inhibitor of the MreB bacterial actin cytoskeleton. Our results also implicate ParAB as important segregation...... determinants, suggesting that multiple distinct mechanisms can mediate Caulobacter chromosome segregation and that their relative contributions can be environmentally regulated....

  7. In vitro model to study the effects of matrix stiffening on Ca2+ handling and myofilament function in isolated adult rat cardiomyocytes.

    Science.gov (United States)

    van Deel, Elza D; Najafi, Aref; Fontoura, Dulce; Valent, Erik; Goebel, Max; Kardux, Kim; Falcão-Pires, Inês; van der Velden, Jolanda

    2017-07-15

    This paper describes a novel model that allows exploration of matrix-induced cardiomyocyte adaptations independent of the passive effect of matrix rigidity on cardiomyocyte function. Detachment of adult cardiomyocytes from the matrix enables the study of matrix effects on cell shortening, Ca 2+ handling and myofilament function. Cell shortening and Ca 2+ handling are altered in cardiomyocytes cultured for 24 h on a stiff matrix. Matrix stiffness-impaired cardiomyocyte contractility is reversed upon normalization of extracellular stiffness. Matrix stiffness-induced reduction in unloaded shortening is more pronounced in cardiomyocytes isolated from obese ZSF1 rats with heart failure with preserved ejection fraction compared to lean ZSF1 rats. Extracellular matrix (ECM) stiffening is a key element of cardiac disease. Increased rigidity of the ECM passively inhibits cardiac contraction, but if and how matrix stiffening also actively alters cardiomyocyte contractility is incompletely understood. In vitro models designed to study cardiomyocyte-matrix interaction lack the possibility to separate passive inhibition by a stiff matrix from active matrix-induced alterations of cardiomyocyte properties. Here we introduce a novel experimental model that allows exploration of cardiomyocyte functional alterations in response to matrix stiffening. Adult rat cardiomyocytes were cultured for 24 h on matrices of tuneable stiffness representing the healthy and the diseased heart and detached from their matrix before functional measurements. We demonstrate that matrix stiffening, independent of passive inhibition, reduces cell shortening and Ca 2+ handling but does not alter myofilament-generated force. Additionally, detachment of adult cultured cardiomyocytes allowed the transfer of cells from one matrix to another. This revealed that stiffness-induced cardiomyocyte changes are reversed when matrix stiffness is normalized. These matrix stiffness-induced changes in cardiomyocyte

  8. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy

    Directory of Open Access Journals (Sweden)

    Jiankai Zhang

    2016-07-01

    Full Text Available Background: Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. Methods: BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-κB p65 and phosphorylated NF-κB p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-κB were activated by BAG3 overexpression, and the NF-κB inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. Conclusion: these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-κB signaling pathway in hypoxia-injured cardiomyocytes.

  9. Bioreactor cultivation enhances NTEB formation and differentiation of NTES cells into cardiomyocytes.

    Science.gov (United States)

    Lü, Shuanghong; Liu, Sheng; He, Wenjun; Duan, Cuimi; Li, Yanmin; Liu, Zhiqiang; Zhang, Ye; Hao, Tong; Wang, Yanmeng; Li, Dexue; Wang, Changyong; Gao, Shaorong

    2008-09-01

    Autogenic embryonic stem cells established from somatic cell nuclear transfer (SCNT) embryos have been proposed as unlimited cell sources for cell transplantation-based treatment of many genetic and degenerative diseases, which can eliminate the immune rejection that occurs after transplantation. In the present study, pluripotent nuclear transfer ES (NTES) cell lines were successfully established from different strains of mice. One NTES cell line, NT1, with capacity of germline transmission, was used to investigate in vitro differentiation into cardiomyocytes. To optimize differentiation conditions for mass production of embryoid bodies (NTEBs) from NTES cells, a slow-turning lateral vessel (STLV) rotating bioreactor was used for culturing the NTES cells to produce NTEBs compared with a conventional static cultivation method. Our results demonstrated that the NTEBs formed in STLV bioreactor were more uniform in size, and no large necrotic centers with most of the cells in NTEBs were viable. Differentiation of the NTEBs formed in both the STLV bioreactor and static culture into cardiomyocytes was induced by ascorbic acid, and the results demonstrated that STLV-produced NTEBs differentiated into cardiomyocytes more efficiently. Taken together, our results suggested that STLV bioreactor provided a more ideal culture condition, which can facilitate the formation of better quality NTEBs and differentiation into cardiomyocytes more efficiently in vitro.

  10. Coculturing with endothelial cells promotes in vitro maturation and electrical coupling of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Pasquier, Jennifer; Gupta, Renuka; Rioult, Damien; Hoarau-Véchot, Jessica; Courjaret, Raphael; Machaca, Khaled; Al Suwaidi, Jassim; Stanley, Edouard G; Rafii, Shahin; Elliott, David A; Abi Khalil, Charbel; Rafii, Arash

    2017-06-01

    Pluripotent human embryonic stem cells (hESC) are a promising source of repopulating cardiomyocytes. We hypothesized that we could improve maturation of cardiomyocytes and facilitate electrical interconnections by creating a model that more closely resembles heart tissue; that is, containing both endothelial cells (ECs) and cardiomyocytes. We induced cardiomyocyte differentiation in the coculture of an hESC line expressing the cardiac reporter NKX2.5-green fluorescent protein (GFP), and an Akt-activated EC line (E4 + ECs). We quantified spontaneous beating rates, synchrony, and coordination between different cardiomyocyte clusters using confocal imaging of Fura Red-detected calcium transients and computer-assisted image analysis. After 8 days in culture, 94% ± 6% of the NKX2-5GFP + cells were beating when hESCs embryonic bodies were plated on E4 + ECs compared with 34% ± 12.9% for controls consisting of hESCs cultured on BD Matrigel (BD Biosciences) without ECs at Day 11 in culture. The spatial organization of beating areas in cocultures was different. The GFP + cardiomyocytes were close to the E4 + ECs. The average beats/min of the cardiomyocytes in coculture was faster and closer to physiologic heart rates compared with controls (50 ± 14 [n = 13] vs 25 ± 9 [n = 8]; p < 0.05). The coculture with ECs led to synchronized beating relying on the endothelial network, as illustrated by the loss of synchronization upon the disruption of endothelial bridges. The coculturing of differentiating cardiomyocytes with Akt-activated ECs but not EC-conditioned media results in (1) improved efficiency of the cardiomyocyte differentiation protocol and (2) increased maturity leading to better intercellular coupling with improved chronotropy and synchrony. Copyright © 2017. Published by Elsevier Inc.

  11. Warts signaling controls organ and body growth through regulation of ecdysone

    DEFF Research Database (Denmark)

    Møller, Morten Erik; Nagy, Stanislav; Gerlach, Stephan Uwe

    2017-01-01

    Coordination of growth between individual organs and the whole body is essential during development to produce adults with appropriate size and proportions [1, 2]. How local organ-intrinsic signals and nutrient-dependent systemic factors are integrated to generate correctly proportioned organisms...... under different environmental conditions is poorly understood. In Drosophila, Hippo/Warts signaling functions intrinsically to regulate tissue growth and organ size [3, 4], whereas systemic growth is controlled via antagonistic interactions of the steroid hormone ecdysone and nutrient-dependent insulin....../insulin-like growth factor (IGF) (insulin) signaling [2, 5]. The interplay between insulin and ecdysone signaling regulates systemic growth and controls organismal size. Here, we show that Warts (Wts; LATS1/2) signaling regulates systemic growth in Drosophila by activating basal ecdysone production, which negatively...

  12. Manipulation-free cultures of human iPSC-derived cardiomyocytes offer a novel screening method for cardiotoxicity.

    Science.gov (United States)

    Rajasingh, Sheeja; Isai, Dona Greta; Samanta, Saheli; Zhou, Zhi-Gang; Dawn, Buddhadeb; Kinsey, William H; Czirok, Andras; Rajasingh, Johnson

    2018-04-05

    Induced pluripotent stem cell (iPSC)-based cardiac regenerative medicine requires the efficient generation, structural soundness and proper functioning of mature cardiomyocytes, derived from the patient's somatic cells. The most important functional property of cardiomyocytes is the ability to contract. Currently available methods routinely used to test and quantify cardiomyocyte function involve techniques that are labor-intensive, invasive, require sophisticated instruments or can adversely affect cell vitality. We recently developed optical flow imaging method analyses and quantified cardiomyocyte contractile kinetics from video microscopic recordings without compromising cell quality. Specifically, our automated particle image velocimetry (PIV) analysis of phase-contrast video images captured at a high frame rate yields statistical measures characterizing the beating frequency, amplitude, average waveform and beat-to-beat variations. Thus, it can be a powerful assessment tool to monitor cardiomyocyte quality and maturity. Here we demonstrate the ability of our analysis to characterize the chronotropic responses of human iPSC-derived cardiomyocytes to a panel of ion channel modulators and also to doxorubicin, a chemotherapy agent with known cardiotoxic side effects. We conclude that the PIV-derived beat patterns can identify the elongation or shortening of specific phases in the contractility cycle, and the obtained chronotropic responses are in accord with known clinical outcomes. Hence, this system can serve as a powerful tool to screen the new and currently available pharmacological compounds for cardiotoxic effects.

  13. Zinc-induced cardiomyocyte relaxation in a rat model of hyperglycemia is independent of myosin isoform

    Directory of Open Access Journals (Sweden)

    Yi Ting

    2012-11-01

    Full Text Available Abstract It has been reported previously that diabetic cardiomyopathy can be inhibited or reverted with chronic zinc supplementation. In the current study, we hypothesized that total cardiac calcium and zinc content is altered in early onset diabetes mellitus characterized in part as hyperglycemia (HG and that exposure of zinc ion (Zn2+ to isolated cardiomyocytes would enhance contraction-relaxation function in HG more so than in nonHG controls. To better control for differential cardiac myosin isoform expression as occurs in rodents after β-islet cell necrosis, hypothyroidism was induced in 16 rats resulting in 100% β-myosin heavy chain expression in the heart. β-Islet cell necrosis was induced in half of the rats by streptozocin administration. After 6 wks of HG, both HG and nonHG controls rats demonstrated similar myofilament performance measured as thin filament calcium sensitivity, native thin filament velocity in the myosin motility assay and contractile velocity and power. Extracellular Zn2+ reduced cardiomyocyte contractile function in both groups, but enhanced relaxation function significantly in the HG group compared to controls. Most notably, a reduction in diastolic sarcomere length with increasing pacing frequencies, i.e., incomplete relaxation, was more pronounced in the HG compared to controls, but was normalized with extracellular Zn2+ application. This is a novel finding implicating that the detrimental effect of HG on cardiomyocyte Ca2+ regulation can be amelioration by Zn2+. Among the many post-translational modifications examined, only phosphorylation of ryanodine receptor (RyR at S-2808 was significantly higher in HG compared to nonHG. We did not find in our hypothyroid rats any differentiating effects of HG on myofibrillar protein phosphorylation, lysine acetylation, O-linked N-acetylglucosamine and advanced glycated end-products, which are often implicated as complicating factors in cardiac performance due to HG. Our

  14. Thymosin beta 4 protects cardiomyocytes from oxidative stress by targeting anti-oxidative enzymes and anti-apoptotic genes.

    Directory of Open Access Journals (Sweden)

    Chuanyu Wei

    Full Text Available Thymosin beta-4 (Tβ4 is a ubiquitous protein with many properties relating to cell proliferation and differentiation that promotes wound healing and modulates inflammatory mediators. The mechanism by which Tβ4 modulates cardiac protection under oxidative stress is not known. The purpose of this study is to dissect the cardioprotective mechanism of Tβ4 on H(2O(2 induced cardiac damage.Rat neonatal cardiomyocytes with or without Tβ4 pretreatment were exposed to H(2O(2 and expression of antioxidant, apoptotic, and anti-inflammatory genes was evaluated by quantitative real-time PCR and western blotting. ROS levels were estimated by DCF-DA using fluorescent microscopy and fluorimetry. Selected antioxidant, anti-inflammatory and antiapoptotic genes were silenced by siRNA transfections in neonatal cardiomyocytes and effect of Tβ4 on H(2O(2-induced cardiac damage was evaluated.Pre-treatment of Tβ4 resulted in reduction of the intracellular ROS levels induced by H(2O(2 in cardiomyocytes. Tβ4 pretreatment also resulted in an increase in the expression of antiapoptotic proteins and reduction of Bax/BCl(2 ratio in the cardiomyocytes. Pretreatment with Tβ4 resulted in stimulating the expression of antioxidant enzymes copper/zinc SOD and catalase in cardiomyocytes at both transcription and translation levels. Tβ4 treatment resulted in the increased expression of anti-apoptotic and anti-inflammatory genes. Silencing of Cu/Zn SOD and catalase gene resulted in apoptotic cell death in the cardiomyocytes which was prevented by treatment with Tβ4.This is the first report that demonstrates the effect of Tβ4 on cardiomyocytes and its capability to selectively upregulate anti-oxidative enzymes, anti-inflammatory genes, and antiapoptotic enzymes in the neonatal cardiomyocytes thus preventing cell death thereby protecting the myocardium. Tβ4 treatment resulted in decreased oxidative stress and inflammation in the myocardium under oxidative stress.

  15. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy

    Directory of Open Access Journals (Sweden)

    Ilse A. E. Bollen

    2017-12-01

    Full Text Available Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca2+-sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  16. Cardiomyocyte Hypocontractility and Reduced Myofibril Density in End-Stage Pediatric Cardiomyopathy.

    Science.gov (United States)

    Bollen, Ilse A E; van der Meulen, Marijke; de Goede, Kyra; Kuster, Diederik W D; Dalinghaus, Michiel; van der Velden, Jolanda

    2017-01-01

    Dilated cardiomyopathy amongst children (pediatric cardiomyopathy, pediatric CM) is associated with a high morbidity and mortality. Because little is known about the pathophysiology of pediatric CM, treatment is largely based on adult heart failure therapy. The reason for high morbidity and mortality is largely unknown as well as data on cellular pathomechanisms is limited. Here, we assessed cardiomyocyte contractility and protein expression to define cellular pathomechanisms in pediatric CM. Explanted heart tissue of 11 pediatric CM patients and 18 controls was studied. Contractility was measured in single membrane-permeabilized cardiomyocytes and protein expression was assessed with gel electrophoresis and western blot analysis. We observed increased Ca 2+ -sensitivity of myofilaments which was due to hypophosphorylation of cardiac troponin I, a feature commonly observed in adult DCM. We also found a significantly reduced maximal force generating capacity of pediatric CM cardiomyocytes, as well as a reduced passive force development over a range of sarcomere lengths. Myofibril density was reduced in pediatric CM compared to controls. Correction of maximal force and passive force for myofibril density normalized forces in pediatric CM cardiomyocytes to control values. This implies that the hypocontractility was caused by the reduction in myofibril density. Unlike in adult DCM we did not find an increase in compliant titin isoform expression in end-stage pediatric CM. The limited ability of pediatric CM patients to maintain myofibril density might have contributed to their early disease onset and severity.

  17. Business regulation and economic growth in the Western Balkan countries

    Directory of Open Access Journals (Sweden)

    Engjell PERE

    2013-06-01

    Full Text Available Actually economic policies in many countries aimed to stimulate their economic growth, particularly after negative impact of the global economic crisis. In this regards, fiscal regulation are an important aspect of those policies, that can promote or obstacle the economic growth in general. In this point of view this paper aims to analyze the system of administration rules in different Western Balkans Countries, (which includes Albania, Bosnia & Herzegovina, Croatia, Kosovo, Macedonia (FYROM, Montenegro and Serbia. Moreover, a special attention is given investigation of the regulation and administrative facilitation aspects of doing business in the above-mentioned countries, whether this system stimulates, or not, the development of private business and economic growth.The paper is divided into three main sections. The first part provides a retrospective of economic growth in the Western Balkan countries and the dependence of this growth on global economic development. The second part proceeds with the investigations of the impact of administrative regulation on economic growth. The third part, based on an econometric model, will analyze the correlation between economic growth and elaborated indicators which present the level of business administrative regulation system. Furthermore, this last section discusses the results and concludes. In this analysis, the paper is based substantially on the data base of "Doing Business 2013" (World Bank.

  18. The Counter-Regulation of Atherogenesis: a Role for Interleukin-33

    Directory of Open Access Journals (Sweden)

    Pavel Kuneš

    2010-01-01

    Full Text Available The recently recognized cytokine interleukin-33 and its receptor ST2 play a favorable role during atherogenesis by inducing a Th1→Th2 shift of the immune response. IL-33 also protects the failing human heart from harmful biomechanical forces which lead to cardiomyocyte hypertrophy and exaggerated interstitial fibrosis. IL-33 inevitably displays side effects common to other Th2 cytokines, the most grave of which is a predisposition to allergic reactions. IL-33 is a nuclear transcription factor of endothelial cells. As such, it is abundant in nonproliferating vessels. Its down-regulation is required for angiogenesis, which may be profitable in wound healing or deleterious in tumor growth.

  19. Involvement of atypical protein kinase C in the regulation of cardiac glucose and long-chain fatty acid uptake

    Directory of Open Access Journals (Sweden)

    Daphna D.J. Habets

    2012-09-01

    Full Text Available Aim: The signaling pathways involved in the regulation of cardiac GLUT4 translocation/glucose uptake and CD36 translocation/ long-chain fatty acid uptake are not fully understood. We compared in heart/muscle-specific PKC-λ knockout mice the roles of atypical PKCs (PKC-ζ and PKC-λ in regulating cardiac glucose and fatty acid uptake. Results: Neither insulin-stimulated nor AMPK-mediated glucose and fatty acid uptake were inhibited upon genetic PKC-λ ablation in cardiomyocytes. In contrast, myristoylated PKC-ζ pseudosubstrate inhibited both insulin-stimulated and AMPK-mediated glucose and fatty acid uptake by >80% in both wild-type and PKC-λ-knockout cardiomyocytes. In PKC-λ knockout cardiomyocytes, PKC-ζ is the sole remaining atypical PKC isoform, and its expression level is not different from wild-type cardiomyocytes, in which it contributes to 29% and 17% of total atypical PKC expression and phosphorylation, respectively. Conclusion: Taken together, atypical PKCs are necessary for insulin-stimulated and AMPK-mediated glucose uptake into the heart, as well as for insulin-stimulated and AMPK-mediated fatty acid uptake. However, the residual PKC-ζ activity in PKC-λ-knockout cardiomyocytes is sufficient to allow optimal stimulation of glucose and fatty acid uptake, indicating that atypical PKCs are necessary but not rate-limiting in the regulation of cardiac substrate uptake and that PKC-λ and PKC-ζ have interchangeable functions in these processes.

  20. Overexpression of KCNJ2 in induced pluripotent stem cell-derived cardiomyocytes for the assessment of QT-prolonging drugs

    Directory of Open Access Journals (Sweden)

    Min Li

    2017-06-01

    Full Text Available Human induced pluripotent stem cell (hiPSC-derived cardiomyocytes hold great potentials to predict pro-arrhythmic risks in preclinical cardiac safety screening, although the hiPSC cardiomyocytes exhibit rather immature functional and structural characteristics, including spontaneous activity. Our physiological characterization and mathematical simulation showed that low expression of the inward-rectifier potassium (IK1 channel is a determinant of spontaneous activity. To understand impact of the low IK1 expression on the pharmacological properties, we tested if transduction of hiPSC-derived cardiomyocytes with KCNJ2, which encodes the IK1 channel, alters pharmacological response to cardiac repolarization processes. The transduction of KCNJ2 resulted in quiescent hiPSC-derived cardiomyocytes, which need pacing to elicit action potentials. Significant prolongation of paced action potential duration in KCNJ2-transduced hiPSC-derived cardiomyocytes was stably measured at 0.1 μM E-4031, although the same concentration of E-4031 ablated firing of non-treated hiPSC-derived cardiomyocytes. These results in single cells were confirmed by mathematical simulations. Using the hiPSC-derived cardiac sheets with KCNJ2-transduction, we also investigated effects of a range of drugs on field potential duration recorded at 1 Hz. The KCNJ2 overexpression in hiPSC-derived cardiomyocytes may contribute to evaluate a part of QT-prolonging drugs at toxicological concentrations with high accuracy.

  1. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    Science.gov (United States)

    Wang, Xiaohong; Li, Qinglu; Hu, Qingsong; Suntharalingam, Piradeep; From, Arthur H L; Zhang, Jianyi

    2014-01-01

    Insulin-like growth factor 1 (IGF-1) and hepatocyte growth factor (HGF) are two potent cell survival and regenerative factors in response to myocardial injury (MI). We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD) ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV) function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF) (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, Pcell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, Pcell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  2. The effect of plant growth regulators, explants and cultivars on ...

    African Journals Online (AJOL)

    To achieve the best explants and media for spinach tissue culture, the effects of two different plant growth regulators, two explants and cultivars on adventitious shoot regeneration were tested. The Analysis of Variance (ANOVA) showed that the effects of plant growth regulators on spinach tissue culture were significant; ...

  3. Enhancement of Cellular Antioxidant-Defence Preserves Diastolic Dysfunction via Regulation of Both Diastolic Zn2+ and Ca2+ and Prevention of RyR2-Leak in Hyperglycemic Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Erkan Tuncay

    2014-01-01

    Full Text Available We examined whether cellular antioxidant-defence enhancement preserves diastolic dysfunction via regulation of both diastolic intracellular free Zn2+ and Ca2+ levels (Zn2+i and Ca2+i levels N-acetyl cysteine (NAC treatment (4 weeks of diabetic rats preserved altered cellular redox state and also prevented diabetes-induced tissue damage and diastolic dysfunction with marked normalizations in the resting Zn2+i and Ca2+i. The kinetic parameters of transient changes in Zn2+ and Ca2+ under electrical stimulation and the spatiotemporal properties of Zn2+ and Ca2+ sparks in resting cells are found to be normal in the treated diabetic group. Biochemical analysis demonstrated that the NAC treatment also antagonized hyperphosphorylation of cardiac ryanodine receptors (RyR2 and significantly restored depleted protein levels of both RyR2 and calstabin2. Incubation of cardiomyocytes with 10 µM ZnCl2 exerted hyperphosphorylation in RyR2 as well as higher phosphorphorylations in both PKA and CaMKII in a concentration-dependent manner, similar to hyperglycemia. Our present data also showed that a subcellular oxidative stress marker, NF-κB, can be activated if the cells are exposed directly to Zn2+. We thus for the first time report that an enhancement of antioxidant defence in diabetics via directly targeting heart seems to prevent diastolic dysfunction due to modulation of RyR2 macromolecular-complex thereby leading to normalized Ca2+i and Zn2+i in cardiomyocytes.

  4. Cyp26b1 within the growth plate regulates bone growth in juvenile mice

    Energy Technology Data Exchange (ETDEWEB)

    Minegishi, Yoshiki [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Department of Plastic and Reconstructive Surgery, University of Fukui Hospital, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui 910-1193 (Japan); Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Sakai, Yasuo [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Plastic Surgery, Bellland General Hospital, 500-3 Higashiyama Naka-ku, Sakai, Osaka 599-8247 (Japan); Yahara, Yasuhito [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Akiyama, Haruhiko [Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, 1-1 Yanagito, Gifu 501-1194 (Japan); Yoshikawa, Hideki [Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Hosokawa, Ko [Department of Plastic Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Tsumaki, Noriyuki, E-mail: ntsumaki@cira.kyoto-u.ac.jp [Department of Cell Growth and Differentiation, Center for iPS Cell Research and Application, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507 (Japan); Japan Science and Technology Agency, CREST, Tokyo 102-0075 (Japan)

    2014-11-07

    Highlights: • Retinoic acid and Cyp26b1 were oppositely localized in growth plate cartilage. • Cyp26b1 deletion in chondrocytes decreased bone growth in juvenile mice. • Cyp26b1 deletion reduced chondrocyte proliferation and growth plate height. • Vitamin A-depletion partially reversed growth plate abnormalities caused by Cyp26b1 deficiency. • Cyp26b1 regulates bone growth by controlling chondrocyte proliferation. - Abstract: Retinoic acid (RA) is an active metabolite of vitamin A and plays important roles in embryonic development. CYP26 enzymes degrade RA and have specific expression patterns that produce a RA gradient, which regulates the patterning of various structures in the embryo. However, it has not been addressed whether a RA gradient also exists and functions in organs after birth. We found localized RA activities in the diaphyseal portion of the growth plate cartilage were associated with the specific expression of Cyp26b1 in the epiphyseal portion in juvenile mice. To disturb the distribution of RA, we generated mice lacking Cyp26b1 specifically in chondrocytes (Cyp26b1{sup Δchon} cKO). These mice showed reduced skeletal growth in the juvenile stage. Additionally, their growth plate cartilage showed decreased proliferation rates of proliferative chondrocytes, which was associated with a reduced height in the zone of proliferative chondrocytes, and closed focally by four weeks of age, while wild-type mouse growth plates never closed. Feeding the Cyp26b1 cKO mice a vitamin A-deficient diet partially reversed these abnormalities of the growth plate cartilage. These results collectively suggest that Cyp26b1 in the growth plate regulates the proliferation rates of chondrocytes and is responsible for the normal function of the growth plate and growing bones in juvenile mice, probably by limiting the RA distribution in the growth plate proliferating zone.

  5. Overexpression of BAG3 Attenuates Hypoxia-Induced Cardiomyocyte Apoptosis by Inducing Autophagy.

    Science.gov (United States)

    Zhang, Jiankai; He, Zhangyou; Xiao, Wenjian; Na, Qingqing; Wu, Tianxiu; Su, Kaixin; Cui, Xiaojun

    2016-01-01

    Hypoxia is a well-known factor in the promotion of apoptosis, which contributes to the development of numerous cardiac diseases, such as heart failure and myocardial infarction. Inhibiting apoptosis is an important therapeutic strategy for the treatment of related heart diseases caused by ischemia/hypoxic injury. Previous studies have demonstrated that BAG3 plays an important role in cardiomyocyte apoptosis and survival. However, the role of BAG3 in hypoxia-induced cardiomyocyte apoptosis remains to be clarified. Here, we demonstrate that BAG3 is induced by hypoxia stimuli in cultured cardiomyocytes. BAG3 expression level was measured in H9c2 cells treated with hypoxia for 48 h. Cell proliferation and apoptosis were tested using MTT assay and Annexin V FITC-PI staining assay, respectively. The mRNA or protein expression level of BAG3, LC3-I, LC3-II, Atg5, NF-x03BA;B p65 and phosphorylated NF-x03BA;B p65 were assessed by qRT-PCR and western blot assay, respectively. Resluts: Overexpression of BAG3 inhibited cell apoptosis and promoted proliferation in hypoxia-injured H9c2 cells. Furthermore, autophagy and NF-x03BA;B were activated by BAG3 overexpression, and the NF-x03BA;B inhibitor PDTC could inhibit the activation of autophagy induced by BAG3 overexpression. In addition, the autophagy inhibitor 3-MA partly impeded the inhibitory effect of BAG3 on hypoxia-induced cardiomyocyte apoptosis. these results suggested that overexpression of BAG3 promoted cell proliferation and inhibited apoptosis by activating autophagy though the NF-x03BA;B signaling pathway in hypoxia-injured cardiomyocytes. © 2016 The Author(s) Published by S. Karger AG, Basel.

  6. MicroRNA-145 protects cardiomyocytes against hydrogen peroxide (H₂O₂-induced apoptosis through targeting the mitochondria apoptotic pathway.

    Directory of Open Access Journals (Sweden)

    Ruotian Li

    Full Text Available MicroRNAs, a class of small and non-encoding RNAs that transcriptionally or post-transcriptionally modulate the expression of their target genes, has been implicated as critical regulatory molecules in many cardiovascular diseases, including ischemia/reperfusion induced cardiac injury. Here, we report microRNA-145, a tumor suppressor miRNA, can protect cardiomyocytes from hydrogen peroxide H₂O₂-induced apoptosis through targeting the mitochondrial pathway. Quantitative real-time PCR (qPCR demonstrated that the expression of miR-145 in either ischemia/reperfused mice myocardial tissues or H₂O₂-treated neonatal rat ventricle myocytes (NRVMs was markedly down-regulated. Over-expression of miR-145 significantly inhibited the H₂O₂-induced cellular apoptosis, ROS production, mitochondrial structure disruption as well as the activation of key signaling proteins in mitochondrial apoptotic pathway. These protective effects of miR-145 were abrogated by over-expression of Bnip3, an initiation factor of the mitochondrial apoptotic pathway in cardiomyocytes. Finally, we utilized both luciferase reporter assay and western blot analysis to identify Bnip3 as a direct target of miR-145. Our results suggest miR-145 plays an important role in regulating mitochondrial apoptotic pathway in heart challenged with oxidative stress. MiR-145 may represent a potential therapeutic target for treatment of oxidative stress-associated cardiovascular diseases, such as myocardial ischemia/reperfusion injury.

  7. Enhanced differentiation of human embryonic stem cells into cardiomyocytes by combining hanging drop culture and 5-azacytidine treatment.

    Science.gov (United States)

    Yoon, Byung Sun; Yoo, Seung Jun; Lee, Jeoung Eun; You, Seungkwon; Lee, Hoon Taek; Yoon, Hyun Soo

    2006-04-01

    Cell replacement therapy is a promising approach for the treatment of cardiac diseases. It is, however, challenged by a limited supply of appropriate cells. Therefore, we have investigated whether functional cardiomyocytes can be efficiently generated from human embryonic stem cells (hESCs). In this study, we developed an efficient protocol for the generation of functional cardiomyocytes from hESCs by combining hanging drop culture and 5-azacytidine, a well-known demethylating agent, and then evaluated the expression of cardiac-specific markers. hESCs were cultured both in the medium without or with 0.1, 1, or 10 microM of 5-azacytidine under a hanging drop culture. The expression of several cardiac-specific markers was determined by real-time PCR, RT-PCR, immunofluorescence, and confocal microscopy. To verify the structural and functional properties of hESC-derived cardiomyocytes, we performed electron microscopy and electrophysiological recording. The efficiency of beating cell generation was significantly improved in the hanging drop culture compared with that in suspension culture. Treatment of hESCs with 0.1 microM of 5-azacytidine for 1-3 days significantly increased the number of beating cells and simultaneously enhanced the expression of cardiac-specific markers. Transmission electron microscopy and electrophysiological recording showed that hESC-derived cardiomyocytes acquired structural and functional properties of cardiomyocytes. In conclusion, these results suggest that differentiation of hESCs into cardiomyocytes can be enhanced by the combination of hanging drop culture and 5-azacytidine treatment. Also the methylation status of genes related to cardiomyocyte development may play an important role in the differentiation of hESCs into cardiomyocytes.

  8. Epigenetic regulation of axon and dendrite growth

    Directory of Open Access Journals (Sweden)

    Ephraim F Trakhtenberg

    2012-03-01

    Full Text Available Neuroregenerative therapies for central nervous system (CNS injury, neurodegenerative disease, or stroke require axons of damaged neurons to grow and reinnervate their targets. However, mature mammalian CNS neurons do not regenerate their axons, limiting recovery in these diseases (Yiu and He, 2006. CNS’ regenerative failure may be attributable to the development of an inhibitory CNS environment by glial-associated inhibitory molecules (Yiu and He, 2006, and by various cell-autonomous factors (Sun and He, 2010. Intrinsic axon growth ability also declines developmentally (Li et al., 1995; Goldberg et al., 2002; Bouslama-Oueghlani et al., 2003; Blackmore and Letourneau, 2006 and is dependent on transcription (Moore et al., 2009. Although neurons’ intrinsic capacity for axon growth may depend in part on the panoply of expressed transcription factors (Moore and Goldberg, 2011, epigenetic factors such as the accessibility of DNA and organization of chromatin are required for downstream genes to be transcribed. Thus a potential approach to overcoming regenerative failure focuses on the epigenetic mechanisms regulating regenerative gene expression in the CNS. Here we review molecular mechanisms regulating the epigenetic state of DNA through chromatin modifications, their implications for regulating axon and dendrite growth, and important new directions for this field of study.

  9. HIV-1 subtype C unproductively infects human cardiomyocytes in vitro and induces apoptosis mitigated by an anti-Gp120 aptamer.

    Science.gov (United States)

    Lopes de Campos, Walter R; Chirwa, Nthato; London, Grace; Rotherham, Lia S; Morris, Lynn; Mayosi, Bongani M; Khati, Makobetsa

    2014-01-01

    HIV-associated cardiomyopathy (HIVCM) is of clinical concern in developing countries because of a high HIV-1 prevalence, especially subtype C, and limited access to highly active antiretroviral therapy (HAART). For these reasons, we investigated the direct and indirect effects of HIV-1 subtype C infection of cultured human cardiomyocytes and the mechanisms leading to cardiomyocytes damage; as well as a way to mitigate the damage. We evaluated a novel approach to mitigate HIVCM using a previously reported gp120 binding and HIV-1 neutralizing aptamer called UCLA1. We established a cell-based model of HIVCM by infecting human cardiomyocytes with cell-free HIV-1 or co-culturing human cardiomyocytes with HIV-infected monocyte derived macrophages (MDM). We discovered that HIV-1 subtype C unproductively (i.e. its life cycle is arrested after reverse transcription) infects cardiomyocytes. Furthermore, we found that HIV-1 initiates apoptosis of cardiomyocytes through caspase-9 activation, preferentially via the intrinsic or mitochondrial initiated pathway. CXCR4 receptor-using viruses were stronger inducers of apoptosis than CCR5 utilizing variants. Importantly, we discovered that HIV-1 induced apoptosis of cardiomyocytes was mitigated by UCLA1. However, UCLA1 had no protective effective on cardiomyocytes when apoptosis was triggered by HIV-infected MDM. When HIV-1 was treated with UCLA1 prior to infection of MDM, it failed to induce apoptosis of cardiomyocytes. These data suggest that HIV-1 causes a mitochondrial initiated apoptotic cascade, which signal through caspase-9, whereas HIV-1 infected MDM causes apoptosis predominantly via the death-receptor pathway, mediated by caspase-8. Furthermore the data suggest that UCLA1 protects cardiomyocytes from caspase-mediated apoptosis, directly by binding to HIV-1 and indirectly by preventing infection of MDM.

  10. Inflammatory and mitochondrial gene expression data in GPER-deficient cardiomyocytes from male and female mice

    Directory of Open Access Journals (Sweden)

    Hao Wang

    2017-02-01

    Full Text Available We previously showed that cardiomyocyte-specific G protein-coupled estrogen receptor (GPER gene deletion leads to sex-specific adverse effects on cardiac structure and function; alterations which may be due to distinct differences in mitochondrial and inflammatory processes between sexes. Here, we provide the results of Gene Set Enrichment Analysis (GSEA based on the DNA microarray data from GPER-knockout versus GPER-intact (intact cardiomyocytes. This article contains complete data on the mitochondrial and inflammatory response-related gene expression changes that were significant in GPER knockout versus intact cardiomyocytes from adult male and female mice. The data are supplemental to our original research article “Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER leads to left ventricular dysfunction and adverse remodeling: a sex-specific gene profiling” (Wang et al., 2016 [1]. Data have been deposited to the Gene Expression Omnibus (GEO database repository with the dataset identifier GSE86843.

  11. Regulation of intestinal mucosal growth by amino acids.

    Science.gov (United States)

    Ray, Ramesh M; Johnson, Leonard R

    2014-03-01

    Amino acids, especially glutamine (GLN) have been known for many years to stimulate the growth of small intestinal mucosa. Polyamines are also required for optimal mucosal growth, and the inhibition of ornithine decarboxylase (ODC), the first rate-limiting enzyme in polyamine synthesis, blocks growth. Certain amino acids, primarily asparagine (ASN) and GLN stimulate ODC activity in a solution of physiological salts. More importantly, their presence is also required before growth factors and hormones such as epidermal growth factor and insulin are able to increase ODC activity. ODC activity is inhibited by antizyme-1 (AZ) whose synthesis is stimulated by polyamines, thus, providing a negative feedback regulation of the enzyme. In the absence of amino acids mammalian target of rapamycin complex 1 (mTORC1) is inhibited, whereas, mTORC2 is stimulated leading to the inhibition of global protein synthesis but increasing the synthesis of AZ via a cap-independent mechanism. These data, therefore, explain why ASN or GLN is essential for the activation of ODC. Interestingly, in a number of papers, AZ has been shown to inhibit cell proliferation, stimulate apoptosis, or increase autophagy. Each of these activities results in decreased cellular growth. AZ binds to and accelerates the degradation of ODC and other proteins shown to regulate proliferation and cell death, such as Aurora-A, Cyclin D1, and Smad1. The correlation between the stimulation of ODC activity and the absence of AZ as influenced by amino acids is high. Not only do amino acids such as ASN and GLN stimulate ODC while inhibiting AZ synthesis, but also amino acids such as lysine, valine, and ornithine, which inhibit ODC activity, increase the synthesis of AZ. The question remaining to be answered is whether AZ inhibits growth directly or whether it acts by decreasing the availability of polyamines to the dividing cells. In either case, evidence strongly suggests that the regulation of AZ synthesis is the

  12. Evaluation of electrical propagation delay with cardiomyocytes by photosensitization reaction in vitro

    Science.gov (United States)

    Doi, Marika; Ogawa, Emiyu; Arai, Tsunenori

    2017-02-01

    In order to study cardiomyocyte electrical conduction damage by a photosensitization reaction (PR) mostly comes from outside of the cells in a few minutes after the PR, we studied propagation delay of contact action potential with cardiomyocyte by the PR. To determine appropriate PR condition for tachyarrhythmia ablation, a precise electrophysiological experiment in vitro has been preferable. We measured the contact action potential using a microelectrode array system of which information may be correct than conventional Ca2+ measurement. We investigated the propagation delays of an evoked potential to evaluate the electrical conduction damage by the PR. Rat cardiomyocytes were cultivated for 5-7 days on a dish with which 64 electrodes were patterned, in an incubator controlled to 37°C, 5% CO2. The following conditions were used for the PR: 40 μg/ml talapordfin sodium and 290 mW/cm2, 40-78 J/cm2 for an irradiation. A 2D map was obtained to visualize the propagation delays of the evoked potential. The propagation speed, which was calculated based on the measured propagation delays, was decreased by about 30-50% on average of all electrodes after the PR. Therefore, we think 2D propagation delays measurement of the evoked potential with contact action potential measuring system might be available to evaluate the acute electrical conduction damage of cardiomyocyte by the PR.

  13. Preparation of a recombinant adenoviral encoding human NIS gene and its specific expression in cardiomyocytes

    International Nuclear Information System (INIS)

    Wang Lihua; Zhang Miao; Guo Rui; Shi Shuo; Li Biao

    2012-01-01

    Objective: To construct a recombinant adenovirus vector containing the human NIS gene with the myosin light chain-2(MLC-2v) gene as the promoter and evaluate its specific expression and feasibility as a reporter gene in cardiomyocytes. Methods: MLC-2v promoter and NIS were subcloned into an adenovirus shuttle vector, and forwarded by homologous recombination in the bacteria BJ5183 containing AdEasy-1 plasmid. Positive recombinant adenovirus vector was selected, packaged and amplified in the HEK293 cells to obtain recombinant adenovirus Ad-MLC-NIS. Ad-cytomegalovirus (CMV)-NIS with cytomegalovirus as the promoter, Ad-MLC without NIS and Ad-NIS without promoter were constructed as the controls. Cardiomyocytes and non-cardiomyocytes were then infected by the adenovirus. The protein expression was tested by Western blot analysis. The function and features of NIS protein were evaluated by dynamic iodide uptake and NaClO 4 iodine uptake inhibition test in vitro. The viability and proliferation of cardiomyocytes after adenovirus transfection and radioiodine incubation were checked by trypan blue staining. Results: Recombinant NIS adenovirus was successfully constructed. Western blot analysis showed that the NIS protein was highly expressed in cardiomyocytes transfected with Ad-MLC-NIS, and all cells transfected with Ad-CMV-NIS. However, in non-cardiomyocytes transfected with Ad-MLC-NIS, little NIS protein was detected. Dynamic iodine uptake tests showed that the peaks of iodide uptake of the three different cell lines (H9C2, A549, U87 cell) transfected with Ad-MLC-NIS were 5844.0, 833.6 and 846.0 counts · min -1 , respectively. The iodide uptake function of H9C2 was inhibited by NaClO 4 . There was almost no change in cell viability and proliferation when the MOI was 100. Conclusions: Ad-MLC-NIS allows myocardial specific expression of an external gene, and the cardiomyocytes with NIS expression are capable of iodine uptake. Further research of NIS as a reporter gene in

  14. Graphene Sheet-Induced Global Maturation of Cardiomyocytes Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Wang, Jiaxian; Cui, Chang; Nan, Haiyan; Yu, Yuanfang; Xiao, Yini; Poon, Ellen; Yang, Gang; Wang, Xijie; Wang, Chenchen; Li, Lingsong; Boheler, Kenneth Richard; Ma, Xu; Cheng, Xin; Ni, Zhenhua; Chen, Minglong

    2017-08-09

    Human induced pluripotent stem cells (hiPSCs) can proliferate infinitely. Their ability to differentiate into cardiomyocytes provides abundant sources for disease modeling, drug screening and regenerative medicine. However, hiPSC-derived cardiomyocytes (hiPSC-CMs) display a low degree of maturation and fetal-like properties. Current in vitro differentiation methods do not mimic the structural, mechanical, or physiological properties of the cardiogenesis niche. Recently, we present an efficient cardiac maturation platform that combines hiPSCs monolayer cardiac differentiation with graphene substrate, which is a biocompatible and superconductive material. The hiPSCs lines were successfully maintained on the graphene sheets and were able to differentiate into functional cardiomyocytes. This strategy markedly increased the myofibril ultrastructural organization, elevated the conduction velocity, and enhanced both the Ca 2+ handling and electrophysiological properties in the absence of electrical stimulation. On the graphene substrate, the expression of connexin 43 increased along with the conduction velocity. Interestingly, the bone morphogenetic proteins signaling was also significantly activated during early cardiogenesis, confirmed by RNA sequencing analysis. Here, we reasoned that graphene substrate as a conductive biomimetic surface could facilitate the intrinsic electrical propagation, mimicking the microenvironment of the native heart, to further promote the global maturation of hiPSC-CMs. Our findings highlight the capability of electrically active substrates to influence cardiomyocyte development. We believe that application of graphene sheets will be useful for simple, fast, and scalable maturation of regenerated cardiomyocytes.

  15. Ihh signaling regulates mandibular symphysis development and growth.

    Science.gov (United States)

    Sugito, H; Shibukawa, Y; Kinumatsu, T; Yasuda, T; Nagayama, M; Yamada, S; Minugh-Purvis, N; Pacifici, M; Koyama, E

    2011-05-01

    Symphyseal secondary cartilage is important for mandibular development, but the molecular mechanisms underlying its formation remain largely unknown. Here we asked whether Indian hedgehog (Ihh) regulates symphyseal cartilage development and growth. By embryonic days 16.5 to 18.5, Sox9-expressing chondrocytes formed within condensed Tgfβ-1/Runx2-expressing mesenchymal cells at the prospective symphyseal joint site, and established a growth-plate-like structure with distinct Ihh, collagen X, and osteopontin expression patterns. In post-natal life, mesenchymal cells expressing the Ihh receptor Patched1 were present anterior to the Ihh-expressing secondary cartilage, proliferated, differentiated into chondrocytes, and contributed to anterior growth of alveolar bone. In Ihh-null mice, however, symphyseal development was defective, mainly because of enhanced chondrocyte maturation and reduced proliferation of chondroprogenitor cells. Proliferation was partially restored in dual Ihh;Gli3 mutants, suggesting that Gli3 is normally a negative regulator of symphyseal development. Thus, Ihh signaling is essential for symphyseal cartilage development and anterior mandibular growth.

  16. Paradoxically, iron overload does not potentiate doxorubicin-induced cardiotoxicity in vitro in cardiomyocytes and in vivo in mice

    Energy Technology Data Exchange (ETDEWEB)

    Guenancia, Charles [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Li, Na [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Hachet, Olivier [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Rigal, Eve [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cottin, Yves [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Cardiology Department, University Hospital, Dijon (France); Dutartre, Patrick; Rochette, Luc [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France); Vergely, Catherine, E-mail: cvergely@u-bourgogne.fr [INSERM UMR866, University of Burgundy, LPPCM, Faculties of Medicine and Pharmacy, Dijon (France)

    2015-04-15

    Doxorubicin (DOX) is known to induce serious cardiotoxicity, which is believed to be mediated by oxidative stress and complex interactions with iron. However, the relationship between iron and DOX-induced cardiotoxicity remains controversial and the role of iron chelation therapy to prevent cardiotoxicity is called into question. Firstly, we evaluated in vitro the effects of DOX in combination with dextran–iron on cell viability in cultured H9c2 cardiomyocytes and EMT-6 cancer cells. Secondly, we used an in vivo murine model of iron overloading (IO) in which male C57BL/6 mice received a daily intra-peritoneal injection of dextran–iron (15 mg/kg) for 3 weeks (D0–D20) and then (D21) a single sub-lethal intra-peritoneal injection of 6 mg/kg of DOX. While DOX significantly decreased cell viability in EMT-6 and H9c2, pretreatment with dextran–iron (125–1000 μg/mL) in combination with DOX, paradoxically limited cytotoxicity in H9c2 and increased it in EMT-6. In mice, IO alone resulted in cardiac hypertrophy (+ 22%) and up-regulation of brain natriuretic peptide and β-myosin heavy-chain (β-MHC) expression, as well as an increase in cardiac nitro-oxidative stress revealed by electron spin resonance spectroscopy. In DOX-treated mice, there was a significant decrease in left-ventricular ejection fraction (LVEF) and an up-regulation of cardiac β-MHC and atrial natriuretic peptide (ANP) expression. However, prior IO did not exacerbate the DOX-induced fall in LVEF and there was no increase in ANP expression. IO did not impair the capacity of DOX to decrease cancer cell viability and could even prevent some aspects of DOX cardiotoxicity in cardiomyocytes and in mice. - Highlights: • The effects of iron on cardiomyocytes were opposite to those on cancer cell lines. • In our model, iron overload did not potentiate anthracycline cardiotoxicity. • Chronic oxidative stress induced by iron could mitigate doxorubicin cardiotoxicity. • The role of iron in

  17. Effects of Electrical Stimulation in Sympathetic Neuron-Cardiomyocyte Co-cultures

    Science.gov (United States)

    Takeuchi, Akimasa; Tani, Hiromasa; Mori, Masahide; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    The sympathetic nervous system is one of the principal sources for regulating cardiovascular functions. Little is known, however, about the network-level interactions between sympathetic neurons and cardiomyocytes. In this study, a semi-separated co-culture system of superior cervical ganglion (SCG) neurons and ventricular myocytes (VMs) was developed by using a polydimethylsyloxane (PDMS) chamber placed on a microelectrode-array (MEA) substrate. Neurites of SCG neurons passed through a conduit of the chamber and reached VMs. Evoked activities of SCG neurons were observed from several electrodes immediately after applying constant-voltage stimulation (1 V, 1 ms, biphasic square pulses) to SCG neurons by using 32 electrodes. Furthermore, this stimulation was applied to SCG neurons at the frequency of 1, 5 and 10 Hz. After applying these three kinds of stimulations, mean minute contraction rate of VMs increased with an increase in the frequency of stimulation. These results suggest that changes in contraction rate of VMs after applying electrical stimulations to SCG neurons depend on frequencies of these stimulations and that the heart-regulating mechanisms as well as that in the body were formed in this co-culture system.

  18. Regulation of planar growth by the Arabidopsis AGC protein kinase UNICORN.

    Science.gov (United States)

    Enugutti, Balaji; Kirchhelle, Charlotte; Oelschner, Maxi; Torres Ruiz, Ramón Angel; Schliebner, Ivo; Leister, Dario; Schneitz, Kay

    2012-09-11

    The spatial coordination of growth is of central importance for the regulation of plant tissue architecture. Individual layers, such as the epidermis, are clonally propagated and structurally maintained by symmetric cell divisions that are oriented along the plane of the layer. The developmental control of this process is poorly understood. The simple cellular basis and sheet-like structure of Arabidopsis integuments make them an attractive model system to address planar growth. Here we report on the characterization of the Arabidopsis UNICORN (UCN) gene. Analysis of ucn integuments reveals localized distortion of planar growth, eventually resulting in an ectopic multicellular protrusion. In addition, ucn mutants exhibit ectopic growth in filaments and petals, as well as aberrant embryogenesis. We further show that UCN encodes an active AGC VIII kinase. Genetic, biochemical, and cell biological data suggest that UCN suppresses ectopic growth in integuments by directly repressing the KANADI transcription factor ABERRANT TESTA SHAPE. Our findings indicate that UCN represents a unique plant growth regulator that maintains planar growth of integuments by repressing a developmental regulator involved in the control of early integument growth and polarity.

  19. Symbiotic regulation of plant growth, development and reproduction

    Science.gov (United States)

    Russell J. Rodriguez; D. Carl Freeman; E. Durant McArthur; Yong Ok Kim; Regina S. Redman

    2009-01-01

    The growth and development of rice (Oryzae sativa) seedlings was shown to be regulated epigenetically by a fungal endophyte. In contrast to un-inoculated (nonsymbiotic) plants, endophyte colonized (symbiotic) plants preferentially allocated resources into root growth until root hairs were well established. During that time symbiotic roots expanded at...

  20. Sphingosine-1-phosphate promotes the differentiation of human umbilical cord mesenchymal stem cells into cardiomyocytes under the designated culturing conditions

    Directory of Open Access Journals (Sweden)

    Zhang Henggui

    2011-06-01

    Full Text Available Abstract Background It is of growing interest to develop novel approaches to initiate differentiation of mesenchymal stem cells (MSCs into cardiomyocytes. The purpose of this investigation was to determine if Sphingosine-1-phosphate (S1P, a native circulating bioactive lipid metabolite, plays a role in differentiation of human umbilical cord mesenchymal stem cells (HUMSCs into cardiomyocytes. We also developed an engineered cell sheet from these HUMSCs derived cardiomyocytes by using a temperature-responsive polymer, poly(N-isopropylacrylamide (PIPAAm cell sheet technology. Methods Cardiomyogenic differentiation of HUMSCs was performed by culturing these cells with either designated cardiomyocytes conditioned medium (CMCM alone, or with 1 μM S1P; or DMEM with 10% FBS + 1 μM S1P. Cardiomyogenic differentiation was determined by immunocytochemical analysis of expression of cardiomyocyte markers and patch clamping recording of the action potential. Results A cardiomyocyte-like morphology and the expression of α-actinin and myosin heavy chain (MHC proteins can be observed in both CMCM culturing or CMCM+S1P culturing groups after 5 days' culturing, however, only the cells in CMCM+S1P culture condition present cardiomyocyte-like action potential and voltage gated currents. A new approach was used to form PIPAAm based temperature-responsive culture surfaces and this successfully produced cell sheets from HUMSCs derived cardiomyocytes. Conclusions This study for the first time demonstrates that S1P potentiates differentiation of HUMSCs towards functional cardiomyocytes under the designated culture conditions. Our engineered cell sheets may provide a potential for clinically applicable myocardial tissues should promote cardiac tissue engineering research.

  1. DPP4 deficiency exerts protective effect against H2O2 induced oxidative stress in isolated cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Hui-Chun Ku

    Full Text Available Apart from the antihyperglycemic effects, DPP4 inhibitors and GLP-1 molecules are involved in the preservation of cardiac functions. We have demonstrated that DPP4-deficient rats possess resistance to endotoxemia and ischemia/reperfusion stress. However, whether the decrease of DPP4 activity simply augmented the GLP-1 signaling or that such decrease resulted in a change of cellular function remain unclear. Accordingly, we investigated the responses of H(2O(2-induced oxidative stress in adult wild-type and DPP4-deficient rats isolated cardiomyocytes. The coadministration of GLP-1 or DPP4 inhibitor was also performed to define the mechanisms. Cell viability, ROS concentration, catalase activity, glucose uptake, prosurvival, proapoptotic signaling, and contractile function were examined after cells exposed to H(2O(2. DPP4-deficient cardiomyocytes were found to be resistant to H(2O(2-induced cell death via activating AKT signaling, enhancing glucose uptake, preserving catalase activity, diminishing ROS level and proapoptotic signaling. GLP-1 concentration-dependently improved cell viability in wild-type cardiomyocyte against ROS stress, and the ceiling response concentration (200 nM was chosen for studies. GLP-1 was shown to decrease H(2O(2-induced cell death by its receptor-dependent AKT pathway in wild-type cardiomyocytes, but failed to cause further activation of AKT in DPP4-deficient cardiomyocytes. Acute treatment of DPP4 inhibitor only augmented the protective effect of low dose GLP-1, but failed to alter fuel utilization or ameliorate cell viability in wild-type cardiomyocytes after H(2O(2 exposure. The improvement of cell viability after H(2O(2 exposure was correlated with the alleviation of cellular contractile dysfunction in both DPP4-deficient and GLP-1 treated wild-type cardiomyocytes. These findings demonstrated that GLP-1 receptor-dependent pathway is important and exert protective effect in wild-type cardiomyocyte. Long term loss of

  2. Adrenaline and reactive oxygen species elicit proteome and energetic metabolism modifications in freshly isolated rat cardiomyocytes

    International Nuclear Information System (INIS)

    Costa, Vera Marisa; Silva, Renata; Tavares, Ludgero Canario; Vitorino, Rui; Amado, Francisco; Carvalho, Felix; Bastos, Maria de Lourdes; Carvalho, Marcia; Carvalho, Rui Albuquerque; Remiao, Fernando

    2009-01-01

    The sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are well recognized hallmarks of several cardiopathologic conditions, like cardiac ischemia/reperfusion (I/R) and heart failure (HF). The present work aimed to investigate the proteomics and energetic metabolism of cardiomyocytes incubated with ADR and/or ROS. To mimic pathologic conditions, freshly isolated calcium-tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (XXO)]. Two-dimensional electrophoresis with matrix-assisted laser desorption/ionization and time-of-flight mass spectrometer analysis were used to define protein spot alterations in the cardiomyocytes incubated with ADR and/or ROS. Moreover, the energetic metabolism and the activity of mitochondrial complexes were evaluated by nuclear magnetic resonance and spectrophotometric determinations, respectively. The protein extract was mainly constituted by cardiac mitochondrial proteins and the alterations found were included in five functional classes: (i) structural proteins, notably myosin light chain-2; (ii) redox regulation proteins, in particular superoxide dismutase (SOD); (iii) energetic metabolism proteins, encompassing ATP synthase alpha chain and dihydrolipoyllysine-residue acetyltransferase component of pyruvate dehydrogenase complex; (iv) stress response proteins, like the heat shock proteins; and (v) regulatory proteins, like cytochrome c and voltage-dependent anion channel 1. The XXO system elicited alterations in cardiac contractile proteins, as they showed high levels of cleavage, and also altered energetic metabolism, through increased lactate and alanine levels. The cardiomyocytes incubation with ADR resulted in an accentuated increase in mitochondrial complexes activity and the decrease in alanine/lactate ratio, thus reflecting a high

  3. Melatonin attenuates angiotensin II-induced cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway.

    Science.gov (United States)

    Su, Hongyan; Li, Jingyuan; Chen, Tongshuai; Li, Na; Xiao, Jie; Wang, Shujian; Guo, Xiaobin; Yang, Yi; Bu, Peili

    2016-11-01

    Melatonin is well known for its cardioprotective effects; however, whether melatonin exerts therapeutic effects on cardiomyocyte hypertrophy remains to be investigated, as do the mechanisms underlying these effects, if they exist. Cyclophilin A (CyPA) and its corresponding receptor, CD147, which exists in a variety of cells, play crucial roles in modulating reactive oxygen species (ROS) production. In this study, we explored the role of the CyPA/CD147 signaling pathway in angiotensin II (Ang II)-induced cardiomyocyte hypertrophy and the protective effects exerted by melatonin against Ang II-induced injury in cultured H9C2 cells. Cyclosporine A, a specific CyPA/CD147 signaling pathway inhibitor, was used to manipulate CyPA/CD147 activity. H9C2 cells were then subjected to Ang II or CyPA treatment in either the absence or presence of melatonin. Our results indicate that Ang II induces cardiomyocyte hypertrophy through the CyPA/CD147 signaling pathway and promotes ROS production, which can be blocked by melatonin pretreatment in a concentration-dependent manner, in cultured H9C2 cells and that CyPA/CD147 signaling pathway inhibition protects against Ang II-induced cardiomyocyte hypertrophy. The protective effects of melatonin against Ang II-induced cardiomyocyte hypertrophy depend at least partially on CyPA/CD147 inhibition.

  4. Atomic force microscopy observation of lipopolysaccharide-induced cardiomyocyte cytoskeleton reorganization.

    Science.gov (United States)

    Wang, Liqun; Chen, Tangting; Zhou, Xiang; Huang, Qiaobing; Jin, Chunhua

    2013-08-01

    We applied atomic force microscopy (AFM) to observe lipopolysaccharide (LPS)-induced intracellular cytoskeleton reorganization in primary cardiomyocytes from neonatal mouse. The nonionic detergent Triton X-100 was used to remove the membrane, soluble proteins, and organelles from the cell. The remaining cytoskeleton can then be directly visualized by AFM. Using three-dimensional technique of AFM, we were able to quantify the changes of cytoskeleton by the "density" and total "volume" of the cytoskeleton fibers. Compared to the control group, the density of cytoskeleton was remarkably decreased and the volume of cytoskeleton was significantly increased after LPS treatment, which suggests that LPS may induce the cytoskeleton reorganization and change the cardiomyocyte morphology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Regulation of cardiac remodeling by cardiac Na/K-ATPase isoforms

    Directory of Open Access Journals (Sweden)

    Lijun Catherine Liu

    2016-09-01

    Full Text Available Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1-3. The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1 the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2 the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  6. Selenium deficiency aggravates T-2 toxin-induced injury of primary neonatal rat cardiomyocytes through ER stress.

    Science.gov (United States)

    Xu, Jing; Pan, Shengchi; Gan, Fang; Hao, Shu; Liu, Dandan; Xu, Haibin; Huang, Kehe

    2018-04-01

    Keshan disease is a potentially fatal cardiomyopathy in humans. Selenium deficiency, T-2 toxin, and myocarditis virus are thought to be the major factors contributing to Keshan disease. But the relationship among these three factors is poorly described. This study aims to explore whether selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury and its underlying mechanism. Cardiomyocytes were isolated from neonatal rat and cultured at the physiological (2.0 μM) or lower concentrations of selenium with different concentrations of T-2 toxin. Our results showed that selenium deficiencies aggravated T-2 toxin-induced cardiomyocyte injury in a concentration-dependent manner as demonstrated by MTT bioassay, LDH activity, reactive oxygen species levels and caspase 3 protein expressions. T-2 toxin treatment significantly increased mRNA expressions for stress proteins GRP78 and CHOP in cardiomyocytes compared with the control. Selenium deficiencies further promoted GRP78, CHOP and p-eIF2α expressions. Knockdown of CHOP by the specific small interfering RNA eliminated the effect of selenium deficiencies on T-2 toxin-induced injury. It could be concluded that selenium deficiency aggravates T-2 toxin-induced cardiomyocyte injury through initiating more aggressive endoplasmic reticulum stress. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cardiomyocyte apoptosis vs autophagy with prolonged doxorubicin treatment: comparison with osteosarcoma cells.

    Science.gov (United States)

    Tacar, Oktay; Indumathy, Sivanjah; Tan, Mei Lin; Baindur-Hudson, Swati; Friedhuber, Anna M; Dass, Crispin R

    2015-02-01

    Doxorubicin (Dox) is a frontline chemotherapeutic against osteosarcoma (OS) that is plagued by side effects, particularly in the heart. The specific objective of this article is to investigate whether low-dose Dox treatment had pro-autophagic effects in cardiomyocytes as well as osteosarcoma cells. This study characterises apoptotic (Bax) and autophagic (Beclin-1) biomarker levels in human OS and cardiomyocyte cell lines as well as in various tissues when mice are exposed to low (1 mg/kg, thrice weekly) and high (3 mg/kg thrice weekly) dose Dox for a month. There was a decrease in Bax and increase in Beclin-1 in cardiac tissue in the high-dose group. Dox decreased Beclin-1 in the skin and liver, with no clear indication in the stomach, small intestine and testis. At low Dox doses of 10 and 100 nm in cardiomyocytes and OS cells, there is a pro-apoptotic effect, with a quicker response in the 100-nm condition, and a slower but steady increase of a pro-apoptotic response at the lower 10-nm dose. However, electron microscopy images revealed changes to human OS cells that resembled autophagy. Human prostate, breast and colorectal cells treated with 10-nm Dox showed ∼ 40% reduction in cell viability after 24 h. In culture, cells of both cardiomyocytes and OS revealed a predominant pro-apoptotic response at the expense of autophagy, although both seemed to be occurring in vivo. © 2014 Royal Pharmaceutical Society.

  8. Protective effects of novel single compound, Hirsutine on hypoxic neonatal rat cardiomyocytes.

    Science.gov (United States)

    Wu, Li Xin; Gu, Xian Feng; Zhu, Yi Chun; Zhu, Yi Zhun

    2011-01-10

    Uncaria rhynchophylla is a traditional Chinese herb that has been applied in China for treatment of ailments of the cardiovascular system, but little is known about its active constituents and effect in cardiomyocytes. In present study, we investigated the cardioprotective effect of 0.1μΜ, 1μΜ and 10μΜ Hirsutine isolated from the methanolic extracts of Uncaria rhynchophylla by high performance liquid chromatography (HPLC) on neonatal rat cardiomyocytes treated with hypoxia to determine the mechanism underlying the protective effect with regard to cardiac anti-oxidant enzymes and apoptosis genes. Hirsutine significantly increased the viability of cardiomyocytes injured by hypoxia. Gene expression levels of proapoptotic genes (Bax, Fas and caspase-3) were significantly downregulated compared with the hypoxic control group (P<0.05), whereas the expression level of Bcl-2 was upregulated following Hirsutine treatment (P<0.05). Correspondingly, Hirsutine treatment increased Bcl-2 protein level and decreased Bax protein level. Assay investigating cardiac anti-oxidant enzymes provided further evidence for the protective effect of Hirsutine, as indicated by the induction of the anti-oxidant enzymes superoxide dismutase. The results of present study suggest that the mechanism of action of Hirsutine in hypoxic neonatal rat cardiomyocytes may be related to its anti-oxidant and anti-apoptotic properties. This may open an avenue for developing novel candidate compounds with cardioprotectiveeffect from unique Chinese plant. Copyright © 2010 Elsevier B.V. All rights reserved.

  9. Intra-myocardial injection of both growth factors and heart derived Sca-1+/CD31- cells attenuates post-MI LV remodeling more than does cell transplantation alone: neither intervention enhances functionally significant cardiomyocyte regeneration.

    Directory of Open Access Journals (Sweden)

    Xiaohong Wang

    Full Text Available Insulin-like growth factor 1 (IGF-1 and hepatocyte growth factor (HGF are two potent cell survival and regenerative factors in response to myocardial injury (MI. We hypothesized that simultaneous delivery of IGF+HGF combined with Sca-1+/CD31- cells would improve the outcome of transplantation therapy in response to the altered hostile microenvironment post MI. One million adenovirus nuclear LacZ-labeled Sca-1+/CD31- cells were injected into the peri-infarction area after left anterior descending coronary artery (LAD ligation in mice. Recombinant mouse IGF-1+HGF was added to the cell suspension prior to the injection. The left ventricular (LV function was assessed by echocardiography 4 weeks after the transplantation. The cell engraftment, differentiation and cardiomyocyte regeneration were evaluated by histological analysis. Sca-1+/CD31- cells formed viable grafts and improved LV ejection fraction (EF (Control, 54.5+/-2.4; MI, 17.6+/-3.1; Cell, 28.2+/-4.2, n = 9, P<0.01. IGF+HGF significantly enhanced the benefits of cell transplantation as evidenced by increased EF (38.8+/-2.2; n = 9, P<0.01 and attenuated adverse structural remodeling. Furthermore, IGF+HGF supplementation increased the cell engraftment rate, promoted the transplanted cell survival, enhanced angiogenesis, and minimally stimulated endogenous cardiomyocyte regeneration in vivo. The in vitro experiments showed that IGF+HGF treatment stimulated Sca-1+/CD31- cell proliferation and inhibited serum free medium induced apoptosis. Supperarray profiling of Sca-1+/CD31- cells revealed that Sca-1+/CD31- cells highly expressed various trophic factor mRNAs and IGF+HGF treatment altered the mRNAs expression patterns of these cells. These data indicate that IGF-1+HGF could serve as an adjuvant to cell transplantation for myocardial repair by stimulating donor cell and endogenous cardiac stem cell survival, regeneration and promoting angiogenesis.

  10. Generation and purification of human stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Schwach, Verena; Passier, Robert

    2016-01-01

    © 2016 International Society of Differentiation Efficient and reproducible generation and purification of human stem cell-derived cardiomyocytes (CMs) is crucial for regenerative medicine, disease modeling, drug screening and study of developmental events during cardiac specification. Established

  11. Effects of plant growth regulators on callus, shoot and root formation ...

    African Journals Online (AJOL)

    Root and stem explants of fluted pumpkin were cultured in medium containing different types and concentrations of plant growth regulators (PGRs). The explants were observed for callus, root and shoot formation parameters after four months. Differences among explants, plant growth regulators and their interaction were ...

  12. Efficient and scalable purification of cardiomyocytes from human embryonic and induced pluripotent stem cells by VCAM1 surface expression.

    Directory of Open Access Journals (Sweden)

    Hideki Uosaki

    Full Text Available RATIONALE: Human embryonic and induced pluripotent stem cells (hESCs/hiPSCs are promising cell sources for cardiac regenerative medicine. To realize hESC/hiPSC-based cardiac cell therapy, efficient induction, purification, and transplantation methods for cardiomyocytes are required. Though marker gene transduction or fluorescent-based purification methods have been reported, fast, efficient and scalable purification methods with no genetic modification are essential for clinical purpose but have not yet been established. In this study, we attempted to identify cell surface markers for cardiomyocytes derived from hESC/hiPSCs. METHOD AND RESULT: We adopted a previously reported differentiation protocol for hESCs based on high density monolayer culture to hiPSCs with some modification. Cardiac troponin-T (TNNT2-positive cardiomyocytes appeared robustly with 30-70% efficiency. Using this differentiation method, we screened 242 antibodies for human cell surface molecules to isolate cardiomyocytes derived from hiPSCs and identified anti-VCAM1 (Vascular cell adhesion molecule 1 antibody specifically marked cardiomyocytes. TNNT2-positive cells were detected at day 7-8 after induction and 80% of them became VCAM1-positive by day 11. Approximately 95-98% of VCAM1-positive cells at day 11 were positive for TNNT2. VCAM1 was exclusive with CD144 (endothelium, CD140b (pericytes and TRA-1-60 (undifferentiated hESCs/hiPSCs. 95% of MACS-purified cells were positive for TNNT2. MACS purification yielded 5-10×10(5 VCAM1-positive cells from a single well of a six-well culture plate. Purified VCAM1-positive cells displayed molecular and functional features of cardiomyocytes. VCAM1 also specifically marked cardiomyocytes derived from other hESC or hiPSC lines. CONCLUSION: We succeeded in efficiently inducing cardiomyocytes from hESCs/hiPSCs and identifying VCAM1 as a potent cell surface marker for robust, efficient and scalable purification of cardiomyocytes from h

  13. Use of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes (hiPSC-CMs) to Monitor Compound Effects on Cardiac Myocyte Signaling Pathways.

    Science.gov (United States)

    Guo, Liang; Eldridge, Sandy; Furniss, Mike; Mussio, Jodie; Davis, Myrtle

    2015-09-01

    There is a need to develop mechanism-based assays to better inform risk of cardiotoxicity. Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are rapidly gaining acceptance as a biologically relevant in vitro model for use in drug discovery and cardiotoxicity screens. Utilization of hiPSC-CMs for mechanistic investigations would benefit from confirmation of the expression and activity of cellular pathways that are known to regulate cardiac myocyte viability and function. This unit describes an approach to demonstrate the presence and function of signaling pathways in hiPSC-CMs and the effects of treatments on these pathways. We present a workflow that employs protocols to demonstrate protein expression and functional integrity of signaling pathway(s) of interest and to characterize biological consequences of signaling modulation. These protocols utilize a unique combination of structural, functional, and biochemical endpoints to interrogate compound effects on cardiomyocytes. Copyright © 2015 John Wiley & Sons, Inc.

  14. Cation dyshomeostasis and cardiomyocyte necrosis: the Fleckenstein hypothesis revisited

    Science.gov (United States)

    Borkowski, Brian J.; Cheema, Yaser; Shahbaz, Atta U.; Bhattacharya, Syamal K.; Weber, Karl T.

    2011-01-01

    An ongoing loss of cardiomyocytes to apoptotic and necrotic cell death pathways contributes to the progressive nature of heart failure. The pathophysiological origins of necrotic cell loss relate to the neurohormonal activation that accompanies acute and chronic stressor states and which includes effector hormones of the adrenergic nervous system. Fifty years ago, Albrecht Fleckenstein and coworkers hypothesized the hyperadrenergic state, which accompanies such stressors, causes cardiomyocyte necrosis based on catecholamine-initiated excessive intracellular Ca2+ accumulation (EICA), and mitochondrial Ca2+ overloading in particular, in which the ensuing dysfunction and structural degeneration of these organelles leads to necrosis. In recent years, two downstream factors have been identified which, together with EICA, constitute a signal–transducer–effector pathway: (i) mitochondria-based induction of oxidative stress, in which the rate of reactive oxygen metabolite generation exceeds their rate of detoxification by endogenous antioxidant defences; and (ii) the opening of the mitochondrial inner membrane permeability transition pore (mPTP) followed by organellar swelling and degeneration. The pathogenesis of stress-related cardiomyopathy syndromes is likely related to this pathway. Other factors which can account for cytotoxicity in stressor states include: hypokalaemia; ionized hypocalcaemia and hypomagnesaemia with resultant elevations in parathyroid hormone serving as a potent mediator of EICA; and hypozincaemia with hyposelenaemia, which compromise antioxidant defences. Herein, we revisit the Fleckenstein hypothesis of EICA in leading to cardiomyocyte necrosis and the central role played by mitochondria. PMID:21398641

  15. Regenerative responses after mild heart injuries for cardiomyocyte proliferation in zebrafish

    Science.gov (United States)

    Itou, Junji; Akiyama, Ryutaro; Pehoski, Steve; Yu, Xiaodan; Kawakami, Hiroko; Kawakami, Yasuhiko

    2014-01-01

    Background The zebrafish heart regenerates after various severe injuries. Common processes of heart regeneration are cardiomyocyte proliferation, activation of epicardial tissue and neovascularization. In order to further characterize heart regeneration processes, we introduced milder injuries and compared responses to those induced by ventricular apex resection, a widely used injury method. We used scratching of the ventricular surface and puncturing of the ventricle with a fine tungsten needle as injury inducing techniques. Results Scratching the ventricular surface induced subtle cardiomyocyte proliferation and responses of the epicardium. Endothelial cell accumulation was limited to the surface of the heart. Ventricular puncture induced cardiomyocyte proliferation, endocardial and epicardial activation and neo-vascularization, similar to the resection method. However, the degree of the responses was milder, correlating with milder injury. Sham operation induced epicardial aldh1a2 expression but not tbx18 and WT1. Conclusions Puncturing the ventricle induces responses equivalent to resection at milder degrees in a shorter time frame and would be used as simple injury model. Scratching the ventricle did not induce heart regeneration and would be used for studying wound responses to epicardium. PMID:25074230

  16. Alignment of human cardiomyocytes on laser patterned biphasic core/shell nanowire assemblies

    International Nuclear Information System (INIS)

    Kiefer, Karin; Haidar, Ayman; Abdul-Khaliq, Hashim; Lee, Juseok; Martinez Miró, Marina; Kaan Akkan, Cagri; Cenk Aktas, Oral; Veith, Michael

    2014-01-01

    The management of end stage heart failure patients is only possible by heart transplantation or by the implantation of artificial hearts as a bridge for later transplantation. However, these therapeutic strategies are limited by a lack of donor hearts and by the associated complications, such as coagulation and infection, due to the used artificial mechanical circulatory assist devices. Therefore, new strategies for myocardial regenerative approaches are under extensive research to produce contractile myocardial tissue in the future to replace non-contractile myocardial ischemic and scarred tissue. Different approaches, such as cell transplantation, have been studied intensively. Although successful approaches have been observed, there are still limitations to the application. It is envisaged that myocardial tissue engineering can be used to help replace infarcted non-contractile tissue. The developed tissue should later mimic the aligned fibrillar structure of the extracellular matrix and provide important guidance cues for the survival, function and the needed orientation of cardiomyocytes. Nanostructured surfaces have been tested to provide a guided direction that cells can follow. In the present study, the cellular adhesion/alignment of human cardiomyocytes and the biocompatibility have been investigated after cultivation on different laser-patterned nanowires compared with unmodified nanowires. As a result, the nanostructured surfaces possessed good biocompatibility before and after laser modification. The laser-induced scalability of the pattern enabled the growth and orientation of the adhered myocardial tissue. Such approaches may be used to modify the surface of potential scaffolds to develop myocardial contractile tissue in the future. (paper)

  17. Overexpression of Cardiac-Specific Kinase TNNI3K Promotes Mouse Embryonic Stem Cells Differentiation into Cardiomyocytes.

    Science.gov (United States)

    Wang, Yin; Wang, Shi-Qiang; Wang, Li-Peng; Yao, Yu-Hong; Ma, Chun-Yan; Ding, Jin-Feng; Ye, Jue; Meng, Xian-Min; Li, Jian-Jun; Xu, Rui-Xia

    2017-01-01

    Backgroud/Aims: The biological function of cardiac troponin I-interacting kinase (TNNI3K), a cardiac-specific functional kinase, is largely unknown. We investigated the effect of human TNNI3K (hTNNI3K) on the differentiation of mouse embryonic stem cells (mESCs) into cardiomyocytes. First, the time-space expression of endogenous Tnni3k was detected by real-time polymerase chain reaction (PCR) and western blotting at 16 different time-points over a period of 28 days. Further, action potentials and calcium current with/without 5 µM nifedipine were measured by patch clamp for mESC-derived cardiomyocytes. HTNNI3K and mouse-derived siRNA were transfected into mESC using lentivirus vector to induce hTNNI3K overexpression and knock-down, respectively. The number of troponin-T (cTnT) positive cells was greater in the group with TNNI3K overexpression as compared to that in control group, while less such cells were detected in the mTnni3k knock-down group as evaluated on flow cytometry (FCM) and ImageXpress Micro system. After upregulation of connexin43, cardiac troponin-I (Ctni), Ctni, Gata4 were detected in mESCs with TNNI3K overexpression; however, overexpression of α-Actinin and Mlc2v was not detected. Interestingly, Ctnt, connexin40 and connexin45, the markers of ventricular, atrial, and pacemaker cells, respectively, were detected in by real-time PCR in TNNI3K overexpression group. our study indicated that TNNI3K overexpression promoted mESC differentiating into beating cardiomyocytes and induced up-regulating expression of cTnT by PKCε signal pathway, which suggested a modulation of TNNI3K activity as a potential therapeutic approach for ischemic cardiac disease. © 2017 The Author(s) Published by S. Karger AG, Basel.

  18. Growth rate regulated genes and their wide involvement in the Lactococcus lactis stress responses

    Directory of Open Access Journals (Sweden)

    Redon Emma

    2008-07-01

    Full Text Available Abstract Background The development of transcriptomic tools has allowed exhaustive description of stress responses. These responses always superimpose a general response associated to growth rate decrease and a specific one corresponding to the stress. The exclusive growth rate response can be achieved through chemostat cultivation, enabling all parameters to remain constant except the growth rate. Results We analysed metabolic and transcriptomic responses of Lactococcus lactis in continuous cultures at different growth rates ranging from 0.09 to 0.47 h-1. Growth rate was conditioned by isoleucine supply. Although carbon metabolism was constant and homolactic, a widespread transcriptomic response involving 30% of the genome was observed. The expression of genes encoding physiological functions associated with biogenesis increased with growth rate (transcription, translation, fatty acid and phospholipids metabolism. Many phages, prophages and transposon related genes were down regulated as growth rate increased. The growth rate response was compared to carbon and amino-acid starvation transcriptomic responses, revealing constant and significant involvement of growth rate regulations in these two stressful conditions (overlap 27%. Two regulators potentially involved in the growth rate regulations, llrE and yabB, have been identified. Moreover it was established that genes positively regulated by growth rate are preferentially located in the vicinity of replication origin while those negatively regulated are mainly encountered at the opposite, thus indicating the relationship between genes expression and their location on chromosome. Although stringent response mechanism is considered as the one governing growth deceleration in bacteria, the rigorous comparison of the two transcriptomic responses clearly indicated the mechanisms are distinct. Conclusion This work of integrative biology was performed at the global level using transcriptomic analysis

  19. Succinate modulates Ca(2+) transient and cardiomyocyte viability through PKA-dependent pathway.

    Science.gov (United States)

    Aguiar, Carla J; Andrade, Vanessa L; Gomes, Enéas R M; Alves, Márcia N M; Ladeira, Marina S; Pinheiro, Ana Cristina N; Gomes, Dawidson A; Almeida, Alvair P; Goes, Alfredo M; Resende, Rodrigo R; Guatimosim, Silvia; Leite, M Fatima

    2010-01-01

    GPR91 is an orphan G-protein-coupled receptor (GPCR) that has been characterized as a receptor for succinate, a citric acid cycle intermediate, in several tissues. In the heart, the role of succinate is unknown. We now report that rat ventricular cardiomyocytes express GPR91. We found that succinate, through GPR91, increases the amplitude and the rate of decline of global Ca(2+) transient, by increasing the phosphorylation levels of ryanodine receptor and phospholamban, two well known Ca(2+) handling proteins. The effects of succinate on Ca(2+) transient were abolished by pre-treatment with adenylyl cyclase and cAMP-dependent protein kinase (PKA) inhibitors. Direct PKA activation by succinate was further confirmed using a FRET-based A-kinase activity reporter. Additionally, succinate decreases cardiomyocyte viability through a caspase-3 activation pathway, effect also prevented by PKA inhibition. Taken together, these observations show that succinate acts as a signaling molecule in cardiomyocytes, modulating global Ca(2+) transient and cell viability through a PKA-dependent pathway. 2009 Elsevier Ltd. All rights reserved.

  20. Electrophysiological analysis of human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) using multi-electrode arrays (MEAs)

    NARCIS (Netherlands)

    Sala, Luca; Ward-van Oostwaard, Dorien; Tertoolen, Leon G.J.; Mummery, Christine L.; Bellin, Milena

    2017-01-01

    Cardiomyocytes can now be derived with high efficiency from both human embryonic and human induced-Pluripotent Stem Cells (hPSC). hPSC-derived cardiomyocytes (hPSC-CMs) are increasingly recognized as having great value for modeling cardiovascular diseases in humans, especially arrhythmia syndromes.

  1. A piezoelectric electrospun platform for in situ cardiomyocyte contraction analysis

    Science.gov (United States)

    Beringer, Laura Toth

    hyperpolarized state, proving their potential use as contractile analysis microdevices. The third and final aim of this dissertation was to be able to measure contraction events from both cultured cardiomyocytes and whole tissues in situ. Rat neonatal cardiomyocytes grew on the prepared collagen/PVDF-TrFe nanogenerators and yielded a distinct signal after 8 days of growth. These contractions were verified with live cell imaging and video recording. In addition, cardiomyocyte exposure to the drug isoproterenol increased contraction strength and frequency, which was reflected in the nanogenerator recordings. Frog whole heart and heart tissue slices also were interfaced with the fabricated nanogenerators and signals were recorded. The same held true for heart slices from male Sprague-Dawley rats. These signals were determined to be statistically different compared to the control baseline nanogenerator recordings in media in the absence of cell culture. Overall the fabricated nanogenerators have demonstrated their potential to be used as in situ analysis tools for contractile events and have potential in the field of personalized medicine and drug diagnostic assays. The facile fabrication and ease of setup to obtain the electrical voltage signal corresponding to the contractile events are what sets the nanogenerator apart from any polymer based sensor available today.

  2. Rapid Cellular Phenotyping of Human Pluripotent Stem Cell-Derived Cardiomyocytes using a Genetically Encoded Fluorescent Voltage Sensor

    Directory of Open Access Journals (Sweden)

    Jordan S. Leyton-Mange

    2014-02-01

    Full Text Available In addition to their promise in regenerative medicine, pluripotent stem cells have proved to be faithful models of many human diseases. In particular, patient-specific stem cell-derived cardiomyocytes recapitulate key features of several life-threatening cardiac arrhythmia syndromes. For both modeling and regenerative approaches, phenotyping of stem cell-derived tissues is critical. Cellular phenotyping has largely relied upon expression of lineage markers rather than physiologic attributes. This is especially true for cardiomyocytes, in part because electrophysiological recordings are labor intensive. Likewise, most optical voltage indicators suffer from phototoxicity, which damages cells and degrades signal quality. Here we present the use of a genetically encoded fluorescent voltage indicator, ArcLight, which we demonstrate can faithfully report transmembrane potentials in human stem cell-derived cardiomyocytes. We demonstrate the application of this fluorescent sensor in high-throughput, serial phenotyping of differentiating cardiomyocyte populations and in screening for drug-induced cardiotoxicity.

  3. Identification and purification of human induced pluripotent stem cell-derived atrial-like cardiomyocytes based on sarcolipin expression.

    Directory of Open Access Journals (Sweden)

    Rebecca Josowitz

    Full Text Available The use of human stem cell-derived cardiomyocytes to study atrial biology and disease has been restricted by the lack of a reliable method for stem cell-derived atrial cell labeling and purification. The goal of this study was to generate an atrial-specific reporter construct to identify and purify human stem cell-derived atrial-like cardiomyocytes. We have created a bacterial artificial chromosome (BAC reporter construct in which fluorescence is driven by expression of the atrial-specific gene sarcolipin (SLN. When purified using flow cytometry, cells with high fluorescence specifically express atrial genes and display functional calcium handling and electrophysiological properties consistent with atrial cardiomyocytes. Our data indicate that SLN can be used as a marker to successfully monitor and isolate hiPSC-derived atrial-like cardiomyocytes. These purified cells may find many applications, including in the study of atrial-specific pathologies and chamber-specific lineage development.

  4. Cardiotoxicity evaluation using human embryonic stem cells and induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Zhao, Qi; Wang, Xijie; Wang, Shuyan; Song, Zheng; Wang, Jiaxian; Ma, Jing

    2017-03-09

    Cardiotoxicity remains an important concern in drug discovery. Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) have become an attractive platform to evaluate cardiotoxicity. However, the consistency between human embryonic stem cell-derived cardiomyocytes (hESC-CMs) and human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) in prediction of cardiotoxicity has yet to be elucidated. Here we screened the toxicities of four representative drugs (E-4031, isoprenaline, quinidine, and haloperidol) using both hESC-CMs and hiPSC-CMs, combined with an impedance-based bioanalytical method. It showed that both hESC-CMs and hiPSC-CMs can recapitulate cardiotoxicity and identify the effects of well-characterized compounds. The combined platform of hPSC-CMs and an impedance-based bioanalytical method could improve preclinical cardiotoxicity screening, holding great potential for increasing drug development accuracy.

  5. The Extracts and Major Compounds Derived from Astragali Radix Alter Mitochondrial Bioenergetics in Cultured Cardiomyocytes: Comparison of Various Polar Solvents and Compounds

    Directory of Open Access Journals (Sweden)

    Yun Huang

    2018-05-01

    Full Text Available Astragali Radix (AR is a widely used “Qi-invigorating” herb in China for its tonic effects in strengthening biological tissues. The extract of AR contains abundant antioxidants, including astragalosides and isoflavonoids. However, very few reports have systematically measured the effects of the major components of AR on cell mitochondrial bioenergetics. Here, a systemic approach employing an extracellular flux analyzer was developed to evaluate mitochondrial respiration in cultured cardiomyocyte cells H9C2. The effects of different polar extractives, as well as of the major compounds of AR, were compared. The contents of astragaloside IV, calycosin, formononetin, and genistein in the AR extracts obtained by using water, 50% ethanol, and 90% ethanol were measured by liquid chromatograph-mass spectrometer (LC–MS. The antioxidant activities of the AR extracts, as well as of their major compounds, were determined by measuring the free radical scavenging activity and protective effects in tert-butyl hydroperoxide (tBHP-treated H9C2 cells. By monitoring the real-time oxygen consumption rate (OCR in tBHP-treated cardiomyocytes with a Seahorse extracellular flux analyzer, the tonic effects of the AR extracts and of their main compounds on mitochondrial bioenergetics were evaluated. AR water extracts possessed the strongest antioxidant activity and protective effects in cardiomyocytes exposed to oxidative stress. The protection was proposed to be mediated via increasing the spare respiratory capacity and mitochondrial ATP production in the stressed cells. The major compounds of AR, astragaloside IV and genistein, showed opposite effects in regulating mitochondrial bioenergetics. These results demonstrate that highly polar extracts of AR, especially astragaloside-enriched extracts, possess better tonic effects on mitochondrial bioenergetics of cultured cardiomyocytes than extracts with a lower polarity.

  6. Endogenous versus Exogenous Growth Factor Regulation of Articular Chondrocytes

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G.; Mercer, Scott; Eckert, George J.; Trippel, Stephen B.

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-ß1 stimulated these reparative functions, while endogenous TGF-ß1 had little effect. Endogenous TGF-ß1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-ß1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. PMID:24105960

  7. Activation of calcium-sensing receptor increases TRPC3 expression in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Shan-Li [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Sun, Ming-Rui [Department of Pharmacology, Qiqihaer Medical College, Qiqihaer 160001 (China); Li, Ting-Ting; Yin, Xin [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China); Xu, Chang-Qing [Department of Pathophysiology, Harbin Medical University, Harbin 150086 (China); Sun, Yi-Hua, E-mail: syh200415@126.com [Department of Clinical Laboratory, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086 (China)

    2011-03-11

    Research highlights: {yields} Calcium-sensing receptor (CaR) activation stimulates TRP channels. {yields} CaR promoted transient receptor potential C3 (TRPC3) expression. {yields} Adult rat ventricular myocytes display capacitative calcium entry (CCE), which was operated by TRPCs. {yields} TRPC channels activation induced by CaR activator sustained the increased [Ca{sup 2+}]{sub i} to evoke cardiomyocytes apoptosis. -- Abstract: Transient receptor potential (TRP) channels are expressed in cardiomyocytes, which gate a type of influx of extracellular calcium, the capacitative calcium entry. TRP channels play a role in mediating Ca{sup 2+} overload in the heart. Calcium-sensing receptors (CaR) are also expressed in rat cardiac tissue and promote the apoptosis of cardiomyocytes by Ca{sup 2+} overload. However, data about the link between CaR and TRP channels in rat heart are few. In this study, reverse transcriptase polymerase chain reaction (RT-PCR) and Western blotting were used to examine the expression of the TRP canonical proteins TRPC1 and TRPC3 in adult and neonatal rat cardiomyocytes. Laser scan confocal microscopy was used to detect intracellular [Ca{sup 2+}]{sub i} levels in isolated adult rat ventricular myocytes. The results showed that, in adult rat cardiomyocytes, the depletion of Ca{sup 2+} stores in the endoplasmic/sarcoplasmic reticulum (ER/SR) by thapsigargin induced a transient increase in [Ca{sup 2+}]{sub i} in the absence of [Ca{sup 2+}]{sub o} and the subsequent restoration of [Ca{sup 2+}]{sub o} sustained the increased [Ca{sup 2+}]{sub i} for a few minutes, whereas, the persisting elevation of [Ca{sup 2+}]{sub i} was reduced in the presence of the TRPC inhibitor SKF96365. The stimulation of CaR by its activator gadolinium chloride (GdCl{sub 3}) or spermine also resulted in the same effect and the duration of [Ca{sup 2+}]{sub i} increase was also shortened in the absence of [Ca{sup 2+}]{sub o}. In adult and neonatal rat cardiomyocytes, GdCl{sub 3

  8. Garlic extracts prevent oxidative stress, hypertrophy and apoptosis in cardiomyocytes: a role for nitric oxide and hydrogen sulfide

    Science.gov (United States)

    2012-01-01

    Background In ancient times, plants were recognized for their medicinal properties. Later, the arrival of synthetic drugs pushed it to the backstage. However, from being merely used for food, plants are now been widely explored for their therapeutic value. The current study explores the potential of skin and flesh extracts from a hard-necked Rocambole variety of purple garlic in preventing cardiomyocyte hypertrophy and cell death. Methods Norepinephrine (NE) was used to induce hypertrophy in adult rat cardiomyocytes pretreated with garlic skin and flesh extracts. Cell death was measured as ratio of rod to round shaped cardiomyocytes. Fluorescent probes were used to measure apoptosis and oxidative stress in cardiomyocytes treated with and without extracts and NE. Pharmacological blockade of nitric oxide (NO) and hydrogen sulfide (H2S) were used to elucidate the mechanism of action of garlic extracts. Garlic extract samples were also tested for alliin and allicin concentrations. Results Exposure of cardiomyocytes to NE induced an increase in cell size and cell death; this increase was significantly prevented upon treatment with garlic skin and flesh extracts. Norepinephrine increased apoptosis and oxidative stress in cardiomyocytes which was prevented upon pretreatment with skin and flesh extracts; NO, and H2S blockers significantly inhibited this beneficial effect. Allicin and alliin concentration were significantly higher in garlic flesh extract when compared to the skin extract. Conclusion These results suggest that both skin and flesh garlic extracts are effective in preventing NE induced cardiomyocyte hypertrophy and cell death. Reduction in oxidative stress may also play an important role in the anti-hypertrophic and anti-apoptotic properties of garlic extracts. These beneficial effects may in part be mediated by NO and H2S. PMID:22931510

  9. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Univ. of Southern California, Los Angeles, CA (United States)

    2017-10-20

    Objectives: Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass Brachypodium distachyon also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation. Description: The project is divided in three main parts: 1) Performing time-lapse imaging and growth measurement in B. distachyon and S. bicolor to determine growth rate dynamic during the day/night cycle. Identifying growth-associated genes whose expression patterns follow the observed growth dynamics using deep sequencing technology, 2) identifying regulators of these genes by screening for DNA-binding proteins interacting with the growth-associated gene promoters identified in Aim 1. Screens will be performed using a validated yeast-one hybrid strategy paired with a specifically designed B. distachyon and S. bicolor transcription factor libraries (1000 clones each), and 3) Selecting 50 potential growth regulators from the screen for downstream characterization. The selection will be made by using a sytems biology approach by calculating the connectivity between growth rate, rhythmic gene expression profiles and TF expression profile and determine which TF is likely part of a hub

  10. Examining the protective role of ErbB2 modulation in human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Eldridge, Sandy; Guo, Liang; Mussio, Jodie; Furniss, Mike; Hamre, John; Davis, Myrtle

    2014-10-01

    Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are being used as an in vitro model system in cardiac biology and in drug discovery (e.g., cardiotoxicity testing). Qualification of these cells for use in mechanistic investigations will require detailed evaluations of cardiomyocyte signaling pathways and cellular responses. ErbB signaling and the ligand neuregulin play critical roles in survival and functional integrity of cardiac myocytes. As such, we sought to characterize the expression and activity of the ErbB family of receptors. Antibody microarray analysis performed on cell lysates derived from maturing hiPSC-CMs detected expression of ∼570 signaling proteins. EGFR/ErbB1, HER2/ErbB2, and ErbB4, but not ErbB3 receptors, of the epidermal growth factor receptor family were confirmed by Western blot. Activation of ErbB signaling by neuregulin-1β (NRG, a natural ligand for ErbB4) and its modulation by trastuzumab (a monoclonal anti-ErbB2 antibody) and lapatinib (a small molecule ErbB2 tyrosine kinase inhibitor) were evaluated through assessing phosphorylation of AKT and Erk1/2, two major downstream kinases of ErbB signaling, using nanofluidic proteomic immunoassay. Downregulation of ErbB2 expression by siRNA silencing attenuated NRG-induced AKT and Erk1/2 phosphorylation. Activation of ErbB signaling with NRG, or inhibition with trastuzumab, alleviated or aggravated doxorubicin-induced cardiomyocyte damage, respectively, as assessed by a real-time cellular impedance analysis and ATP measurement. Collectively, these results support the expanded use of hiPSC-CMs to examine mechanisms of cardiotoxicity and support the value of using these cells in early assessments of cardiotoxicity or efficacy. Published by Oxford University Press on behalf of Toxicological Sciences 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  11. Effects of growth regulator herbicide on downy brome (Bromus tectorum) seed production

    Science.gov (United States)

    Previous research showed growth regulator herbicides, such as picloram and aminopyralid, have a sterilizing effect on Japanese brome (Bromus japonicus Thunb.) that can reduce this invasive annual grass’s seed production nearly 100%. This suggests growth regulators might be used to control invasive ...

  12. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog.

    Science.gov (United States)

    Zheng, Junying; Wei, Chih-Chang; Hase, Naoki; Shi, Ke; Killingsworth, Cheryl R; Litovsky, Silvio H; Powell, Pamela C; Kobayashi, Tsunefumi; Ferrario, Carlos M; Rab, Andras; Aban, Inmaculada; Collawn, James F; Dell'Italia, Louis J

    2014-01-01

    Cardiac ischemia and reperfusion (I/R) injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI). 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1) and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore-unrecognized chymase

  13. Chymase mediates injury and mitochondrial damage in cardiomyocytes during acute ischemia/reperfusion in the dog.

    Directory of Open Access Journals (Sweden)

    Junying Zheng

    Full Text Available Cardiac ischemia and reperfusion (I/R injury occurs because the acute increase in oxidative/inflammatory stress during reperfusion culminates in the death of cardiomyocytes. Currently, there is no drug utilized clinically that attenuates I/R injury in patients. Previous studies have demonstrated degranulation of mast cell contents into the interstitium after I/R. Using a dog model of I/R, we tested the role of chymase, a mast cell protease, in cardiomyocyte injury using a specific oral chymase inhibitor (CI. 15 adult mongrel dogs had left anterior descending artery occlusion for 60 min and reperfusion for 100 minutes. 9 dogs received vehicle and 6 were pretreated with a specific CI. In vivo cardiac microdialysis demonstrated a 3-fold increase in interstitial fluid chymase activity in I/R region that was significantly decreased by CI. CI pretreatment significantly attenuated loss of laminin, focal adhesion complex disruption, and release of troponin I into the circulation. Microarray analysis identified an I/R induced 17-fold increase in nuclear receptor subfamily 4A1 (NR4A1 and significantly decreased by CI. NR4A1 normally resides in the nucleus but can induce cell death on migration to the cytoplasm. I/R caused significant increase in NR4A1 protein expression and cytoplasmic translocation, and mitochondrial degradation, which were decreased by CI. Immunohistochemistry also revealed a high concentration of chymase within cardiomyocytes after I/R. In vitro, chymase added to culture HL-1 cardiomyocytes entered the cytoplasm and nucleus in a dynamin-dependent fashion, and promoted cytoplasmic translocation of NR4A1 protein. shRNA knockdown of NR4A1 on pre-treatment of HL-1 cells with CI significantly decreased chymase-induced cell death and mitochondrial damage. These results suggest that the beneficial effects of an orally active CI during I/R are mediated in the cardiac interstitium as well as within the cardiomyocyte due to a heretofore

  14. Automated patch clamp on mESC-derived cardiomyocytes for cardiotoxicity prediction.

    Science.gov (United States)

    Stoelzle, Sonja; Haythornthwaite, Alison; Kettenhofen, Ralf; Kolossov, Eugen; Bohlen, Heribert; George, Michael; Brüggemann, Andrea; Fertig, Niels

    2011-09-01

    Cardiovascular side effects are critical in drug development and have frequently led to late-stage project terminations or even drug withdrawal from the market. Physiologically relevant and predictive assays for cardiotoxicity are hence strongly demanded by the pharmaceutical industry. To identify a potential impact of test compounds on ventricular repolarization, typically a variety of ion channels in diverse heterologously expressing cells have to be investigated. Similar to primary cells, in vitro-generated stem cell-derived cardiomyocytes simultaneously express cardiac ion channels. Thus, they more accurately represent the native situation compared with cell lines overexpressing only a single type of ion channel. The aim of this study was to determine if stem cell-derived cardiomyocytes are suited for use in an automated patch clamp system. The authors show recordings of cardiac ion currents as well as action potential recordings in readily available stem cell-derived cardiomyocytes. Besides monitoring inhibitory effects of reference compounds on typical cardiac ion currents, the authors revealed for the first time drug-induced modulation of cardiac action potentials in an automated patch clamp system. The combination of an in vitro cardiac cell model with higher throughput patch clamp screening technology allows for a cost-effective cardiotoxicity prediction in a physiologically relevant cell system.

  15. Nanofiber-structured hydrogel yarns with pH-response capacity and cardiomyocyte-drivability for bio-microactuator application.

    Science.gov (United States)

    Wu, Shaohua; Duan, Bin; Qin, Xiaohong; Butcher, Jonathan T

    2017-09-15

    Polymeric hydrogels have great potential in soft biological micro-actuator applications. However, inappropriate micro-architecture, non-anisotropy, weak biomechanics, and inferior response behaviors limit their development. In this study, we designed and manufactured novel polyacrylonitrile (PAN)-based hydrogel yarns composed with uniaxially aligned nanofibers. The nanofibrous hydrogel yarns possessed anisotropic architecture and robust mechanical properties with flexibility, and could be assembled into defined scaffold structures by subsequent processes. The as-prepared hydrogel yarns showed excellent pH response behaviors, with around 100% maximum length and 900% maximum diameter changes, and the pH response was completed within several seconds. Moreover, the hydrogel yarns displayed unique cell-responsive abilities to promote the cell adhesion, proliferation, and smooth muscle differentiation of human adipose derived mesenchymal stem cells (HADMSC). Chicken cardiomyocytes were further seeded onto our nanofibrous hydrogel yarns to engineer living cell-based microactuators. Our results demonstrated that the uniaxially aligned nanofibrous networks within the hydrogel yarns were the key characteristics leading to the anisotropic organization of cardiac cells, and improved sarcomere organization, mimicking the cardiomyocyte bundles in the native myocardium. The construct is capable of sustaining spontaneous cardiomyocyte pumping behaviors for 7days. Our PAN-based nanofibrous hydrogel yarns are attractive for creating linear microactuators with pH-response capacity and biological microactuators with cardiomyocyte-drivability. A mechanically robust polyacrylonitrile-based nanofibrous hydrogel yarn is fabricated by using a modified electrospinning setup in combination with chemical modification processes. The as-prepared hydrogel yarn possesses a uniaxially aligned nanofiber microarchitecture and supports a rapid, pH-dependent expansion/contraction response within a few

  16. Rac1 GTPase regulates 11β hydroxysteroid dehydrogenase type 2 and fibrotic remodeling.

    Science.gov (United States)

    Lavall, Daniel; Schuster, Pia; Jacobs, Nadine; Kazakov, Andrey; Böhm, Michael; Laufs, Ulrich

    2017-05-05

    The aim of the study was to characterize the role of Rac1 GTPase for the mineralocorticoid receptor (MR)-mediated pro-fibrotic remodeling. Transgenic mice with cardiac overexpression of constitutively active Rac1 (RacET) develop an age-dependent phenotype with atrial dilatation, fibrosis, and atrial fibrillation. Expression of MR was similar in RacET and WT mice. The expression of 11β hydroxysteroid dehydrogenase type 2 (11β-HSD2) was age-dependently up-regulated in the atria and the left ventricles of RacET mice on mRNA and protein levels. Statin treatment inhibiting Rac1 geranylgeranylation reduced 11β-HSD2 up-regulation. Samples of human left atrial myocardium showed a positive correlation between Rac1 activity and 11β-HSD2 expression ( r = 0.7169). Immunoprecipitation showed enhanced Rac1-bound 11β-HSD2 relative to Rac1 expression in RacET mice that was diminished with statin treatment. Both basal and phorbol 12-myristate 13-acetate (PMA)-induced NADPH oxidase activity were increased in RacET and correlated positively with 11β-HSD2 expression ( r = 0.788 and r = 0.843, respectively). In cultured H9c2 cardiomyocytes, Rac1 activation with l-buthionine sulfoximine increased; Rac1 inhibition with NSC23766 decreased 11β-HSD2 mRNA and protein expression. Connective tissue growth factor (CTGF) up-regulation induced by aldosterone was prevented with NSC23766. Cardiomyocyte transfection with 11β-HSD2 siRNA abolished the aldosterone-induced CTGF up-regulation. Aldosterone-stimulated MR nuclear translocation was blocked by the 11β-HSD2 inhibitor carbenoxolone. In cardiac fibroblasts, nuclear MR translocation induced by aldosterone was inhibited with NSC23766 and spironolactone. NSC23766 prevented the aldosterone-induced proliferation and migration of cardiac fibroblasts and the up-regulation of CTGF and fibronectin. In conclusion, Rac1 GTPase regulates 11β-HSD2 expression, MR activation, and MR-mediated pro-fibrotic signaling. © 2017 by The American Society for

  17. Effect of plant growth regulators on production of alpha-linolenic ...

    Indian Academy of Sciences (India)

    Sujana Kokkiligadda

    2017-10-05

    Oct 5, 2017 ... MS received 13 October 2016; revised 22 March 2017; accepted 30 May 2017; ... Plant growth regulators; microalgae; Chlorella pyrenoidosa; alpha-linolenic acid. 1. ... the growth period by flocculation method [9] using alum.

  18. ISL1 protein transduction promotes cardiomyocyte differentiation from human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Hananeh Fonoudi

    Full Text Available BACKGROUND: Human embryonic stem cells (hESCs have the potential to provide an unlimited source of cardiomyocytes, which are invaluable resources for drug or toxicology screening, medical research, and cell therapy. Currently a number of obstacles exist such as the insufficient efficiency of differentiation protocols, which should be overcome before hESC-derived cardiomyocytes can be used for clinical applications. Although the differentiation efficiency can be improved by the genetic manipulation of hESCs to over-express cardiac-specific transcription factors, these differentiated cells are not safe enough to be applied in cell therapy. Protein transduction has been demonstrated as an alternative approach for increasing the efficiency of hESCs differentiation toward cardiomyocytes. METHODS: We present an efficient protocol for the differentiation of hESCs in suspension by direct introduction of a LIM homeodomain transcription factor, Islet1 (ISL1 recombinant protein into the cells. RESULTS: We found that the highest beating clusters were derived by continuous treatment of hESCs with 40 µg/ml recombinant ISL1 protein during days 1-8 after the initiation of differentiation. The treatment resulted in up to a 3-fold increase in the number of beating areas. In addition, the number of cells that expressed cardiac specific markers (cTnT, CONNEXIN 43, ACTININ, and GATA4 doubled. This protocol was also reproducible for another hESC line. CONCLUSIONS: This study has presented a new, efficient, and reproducible procedure for cardiomyocytes differentiation. Our results will pave the way for scaled up and controlled differentiation of hESCs to be used for biomedical applications in a bioreactor culture system.

  19. Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells.

    Directory of Open Access Journals (Sweden)

    Anders Waldenström

    Full Text Available BACKGROUND: Shedding microvesicles are membrane released vesicles derived directly from the plasma membrane. Exosomes are released membrane vesicles of late endosomal origin that share structural and biochemical characteristics with prostasomes. Microvesicles/exosomes can mediate messages between cells and affect various cell-related processes in their target cells. We describe newly detected microvesicles/exosomes from cardiomyocytes and depict some of their biological functions. METHODOLOGY/PRINCIPAL FINDINGS: Microvesicles/exosomes from media of cultured cardiomyocytes derived from adult mouse heart were isolated by differential centrifugation including preparative ultracentrifugation and identified by transmission electron microscopy and flow cytometry. They were surrounded by a bilayered membrane and flow cytometry revealed presence of both caveolin-3 and flotillin-1 while clathrin and annexin-2 were not detected. Microvesicle/exosome mRNA was identified and out of 1520 detected mRNA, 423 could be directly connected in a biological network. Furthermore, by a specific technique involving TDT polymerase, 343 different chromosomal DNA sequences were identified in the microvesicles/exosomes. Microvesicle/exosomal DNA transfer was possible into target fibroblasts, where exosomes stained for DNA were seen in the fibroblast cytosol and even in the nuclei. The gene expression was affected in fibroblasts transfected by microvesicles/exosomes and among 333 gene expression changes there were 175 upregulations and 158 downregulations compared with controls. CONCLUSIONS/SIGNIFICANCE: Our study suggests that microvesicles/exosomes released from cardiomyocytes, where we propose that exosomes derived from cardiomyocytes could be denoted "cardiosomes", can be involved in a metabolic course of events in target cells by facilitating an array of metabolism-related processes including gene expression changes.

  20. Role of microRNA-195 in cardiomyocyte apoptosis induced by ...

    Indian Academy of Sciences (India)

    drinking water and sterilized standard diet. The mice were ... was performed with the in situ cell death detection kit ... facturer's protocol to detect apoptotic cardiomyocytes. The ..... ulate the leakage of Cyt-c and initiate apoptosis through the.

  1. Inhibition of Rho - ROCK signaling induces apoptotic and non-apoptotic PS exposure in cardiomyocytes via inhibition of flippase

    NARCIS (Netherlands)

    Krijnen, Paul A. J.; Sipkens, Jessica A.; Molling, Johan W.; Rauwerda, Jan A.; Stehouwer, Coen D. A.; Muller, Alice; Paulus, Walter J.; van Nieuw Amerongen, Geerten P.; Hack, C. Erik; Verhoeven, Arthur J.; van Hinsbergh, Victor W. M.; Niessen, Hans W. M.

    2010-01-01

    Subsequent to myocardial infarction, cardiomyocytes within the infarcted areas and border zones expose phosphatidylserine (PS) in the outer plasma membrane leaflet (flip-flop). We showed earlier that in addition to apoptosis, this flip-flop can be reversible in cardiomyocytes. We now investigated a

  2. Sympathetic neurons modulate the beat rate of pluripotent cell-derived cardiomyocytes in vitro.

    Science.gov (United States)

    Takeuchi, Akimasa; Shimba, Kenta; Mori, Masahide; Takayama, Yuzo; Moriguchi, Hiroyuki; Kotani, Kiyoshi; Lee, Jong-Kook; Noshiro, Makoto; Jimbo, Yasuhiko

    2012-12-01

    Although stem cell-derived cardiomyocytes have great potential for the therapy of heart failure, it is unclear whether their function after grafting can be controlled by the host sympathetic nervous system, a component of the autonomic nervous system (ANS). Here we demonstrate the formation of functional connections between rat sympathetic superior cervical ganglion (SCG) neurons and pluripotent (P19.CL6) cell-derived cardiomyocytes (P19CMs) in compartmentalized co-culture, achieved using photolithographic microfabrication techniques. Formation of synapses between sympathetic neurons and P19CMs was confirmed by immunostaining with antibodies against β-3 tubulin, synapsin I and cardiac troponin-I. Changes in the beat rate of P19CMs were triggered after electrical stimulation of the co-cultured SCG neurons, and were affected by the pulse frequency of the electrical stimulation. Such changes in the beat rate were prevented when propranolol, a β-adrenoreceptor antagonist, was added to the culture medium. These results suggest that the beat rate of differentiated cardiomyocytes can be modulated by electrical stimulation of connected sympathetic neurons.

  3. Human Pluripotent Stem Cell-Derived Cardiomyocytes as Research and Therapeutic Tools

    Directory of Open Access Journals (Sweden)

    Ivana Acimovic

    2014-01-01

    Full Text Available Human pluripotent stem cells (hPSCs, namely, embryonic stem cells (ESCs and induced pluripotent stem cells (iPSCs, with their ability of indefinite self-renewal and capability to differentiate into cell types derivatives of all three germ layers, represent a powerful research tool in developmental biology, for drug screening, disease modelling, and potentially cell replacement therapy. Efficient differentiation protocols that would result in the cell type of our interest are needed for maximal exploitation of these cells. In the present work, we aim at focusing on the protocols for differentiation of hPSCs into functional cardiomyocytes in vitro as well as achievements in the heart disease modelling and drug testing on the patient-specific iPSC-derived cardiomyocytes (iPSC-CMs.

  4. 26S Proteasome regulation of Ankrd1/CARP in adult rat ventricular myocytes and human microvascular endothelial cells

    International Nuclear Information System (INIS)

    Samaras, Susan E.; Chen, Billy; Koch, Stephen R.; Sawyer, Douglas B.; Lim, Chee Chew; Davidson, Jeffrey M.

    2012-01-01

    Highlights: ► The 26S proteasome regulates Ankrd1 levels in cardiomyocytes and endothelial cells. ► Ankrd1 protein degrades 60-fold faster in endothelial cells than cardiomyocytes. ► Differential degradation appears related to nuclear vs. sarcolemmal localization. ► Endothelial cell density shows uncoupling of Ankrd1 mRNA and protein levels. -- Abstract: Ankyrin repeat domain 1 protein (Ankrd1), also known as cardiac ankyrin repeat protein (CARP), increases dramatically after tissue injury, and its overexpression improves aspects of wound healing. Reports that Ankrd1/CARP protein stability may affect cardiovascular organization, together with our findings that the protein is crucial to stability of the cardiomyocyte sarcomere and increased in wound healing, led us to compare the contribution of Ankrd1/CARP stability to its abundance. We found that the 26S proteasome is the dominant regulator of Ankrd1/CARP degradation, and that Ankrd1/CARP half-life is significantly longer in cardiomyocytes (h) than endothelial cells (min). In addition, higher endothelial cell density decreased the abundance of the protein without affecting steady state mRNA levels. Taken together, our data and that of others indicate that Ankrd1/CARP is highly regulated at multiple levels of its expression. The striking difference in protein half-life between a muscle and a non-muscle cell type suggests that post-translational proteolysis is correlated with the predominantly structural versus regulatory role of the protein in the two cell types.

  5. Herpesvirus-Mediated Delivery of a Genetically Encoded Fluorescent Ca2+ Sensor to Canine Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    János Prorok

    2009-01-01

    Full Text Available We report the development and application of a pseudorabies virus-based system for delivery of troponeon, a fluorescent Ca2+ sensor to adult canine cardiomyocytes. The efficacy of transduction was assessed by calculating the ratio of fluorescently labelled and nonlabelled cells in cell culture. Interaction of the virus vector with electrophysiological properties of cardiomyocytes was evaluated by the analysis of transient outward current (Ito, kinetics of the intracellular Ca2+ transients, and cell shortening. Functionality of transferred troponeon was verified by FRET analysis. We demonstrated that the transfer efficiency of troponeon to cultured adult cardiac myocytes was virtually 100%. We showed that even after four days neither the amplitude nor the kinetics of the Ito current was significantly changed and no major shifts occurred in parameters of [Ca2+]i transients. Furthermore, we demonstrated that infection of cardiomyocytes with the virus did not affect the morphology, viability, and physiological attributes of cells.

  6. MiR-139-3p is related to left ventricular hypertrophy and cardiomyocyte apoptosis in two-kidney one-clip hypertensive rats

    Directory of Open Access Journals (Sweden)

    Yang Xiaomin

    2015-01-01

    Full Text Available MicroRNAs (miRNAs are important post-transcriptional regulators of gene expression in many physiological and pathological processes. Previous studies have reported the role of miR-139-3p in cancer. However, its specific roles and functions in the heart undergoing hypertrophy have yet to be fully elucidated. In the present study, a significant upregulation of miR-139-3p expression was demonstrated in the left ventricular myocardium of two-kidney one-clip (2K1C hypertensive rats using microarray and quantitative real-time PCR (qRT-PCR. Based on computational analysis, we observed that miR-139-3p can control the expression of mitogen-activated protein kinase 1 (MAPK1 as a target gene, which is essential for the induction of cardiac hypertrophy and cardiomyocyte apoptosis. This study provides first information that the highly expressed miR-139-3p might be closely involved in MAPK1-mediated cardiac hypertrophy and cardiomyocyte apoptotic processes in 2K1C rat.

  7. Defined MicroRNAs Induce Aspects of Maturation in Mouse and Human Embryonic-Stem-Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Desy S. Lee

    2015-09-01

    Full Text Available Pluripotent-cell-derived cardiomyocytes have great potential for use in research and medicine, but limitations in their maturity currently constrain their usefulness. Here, we report a method for improving features of maturation in murine and human embryonic-stem-cell-derived cardiomyocytes (m/hESC-CMs. We found that coculturing m/hESC-CMs with endothelial cells improves their maturity and upregulates several microRNAs. Delivering four of these microRNAs, miR-125b-5p, miR-199a-5p, miR-221, and miR-222 (miR-combo, to m/hESC-CMs resulted in improved sarcomere alignment and calcium handling, a more negative resting membrane potential, and increased expression of cardiomyocyte maturation markers. Although this could not fully phenocopy all adult cardiomyocyte characteristics, these effects persisted for two months following delivery of miR-combo. A luciferase assay demonstrated that all four miRNAs target ErbB4, and siRNA knockdown of ErbB4 partially recapitulated the effects of miR-combo. In summary, a combination of miRNAs induced via endothelial coculture improved ESC-CM maturity, in part through suppression of ErbB4 signaling.

  8. High Glucose-Induced Cardiomyocyte Death May Be Linked to Unbalanced Branched-Chain Amino Acids and Energy Metabolism

    Directory of Open Access Journals (Sweden)

    Xi Zhang

    2018-04-01

    Full Text Available High glucose-induced cardiomyocyte death is a common symptom in advanced-stage diabetic patients, while its metabolic mechanism is still poorly understood. The aim of this study was to explore metabolic changes in high glucose-induced cardiomyocytes and the heart of streptozotocin-induced diabetic rats by 1H-NMR-based metabolomics. We found that high glucose can promote cardiomyocyte death both in vitro and in vivo studies. Metabolomic results show that several metabolites exhibited inconsistent variations in vitro and in vivo. However, we also identified a series of common metabolic changes, including increases in branched-chain amino acids (BCAAs: leucine, isoleucine and valine as well as decreases in aspartate and creatine under high glucose condition. Moreover, a reduced energy metabolism could also be a common metabolic characteristic, as indicated by decreases in ATP in vitro as well as AMP, fumarate and succinate in vivo. Therefore, this study reveals that a decrease in energy metabolism and an increase in BCAAs metabolism could be implicated in high glucose-induced cardiomyocyte death.

  9. Curcumin and its demethoxy derivatives possess p300 HAT inhibitory activity and suppress hypertrophic responses in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Yoichi Sunagawa

    2018-04-01

    Full Text Available The natural compound, curcumin (CUR, possesses several pharmacological properties, including p300-specific histone acetyltransferase (HAT inhibitory activity. In our previous study, we demonstrated that CUR could prevent the development of cardiac hypertrophy by inhibiting p300-HAT activity. Other major curcuminoids isolated from Curcuma longa including demethoxycurcumin (DMC and bisdemethoxycurcumin (BDMC are structural analogs of CUR. In present study, we first confirmed the effect of these three curcuminoid analogs on p300-HAT activity and cardiomyocyte hypertrophy.Our results showed that DMC and BDMC inhibited p300-HAT activity and cardiomyocyte hypertrophy to almost the same extent as CUR. As the three compounds have structural differences in methoxy groups at the 3-position of their phenol rings, our results suggest that these methoxy groups are not involved in the inhibitory effects on p300-HAT activity and cardiac hypertrophy. These findings provide useful insights into the structure–activity relationship and biological activity of curcuminoids for p300-HAT activity and cardiomyocyte hypertrophy. Keywords: Curcumin, Demethoxycurcumin, Bisdemethoxycurcumin, p300, Cardiomyocyte hypertrophy

  10. Neomysin inhibits Ca2+-stimulated phosphatidylinositol hydrolysis and protects cultured rat cardiomyocytes from Ca2+-dependent cell injury

    International Nuclear Information System (INIS)

    Babson, J.R.; Dougherty, J.M.

    1991-01-01

    Exposure of cultured rat cardiomyocytes to ionomycin and extracellular Ca 2+ leads to a rapid, sustained increase in intracellular free Ca 2+ as monitored by Ca 2+ -dependent phosphorylase a activation and to a subsequent loss of cardiomyocyte viability as determined by lactate dehydrogenase (LDH) leakage. The intracellular free Ca 2+ increase coincided with a rapid hydrolysis of phosphatidylinositol that preceded cell death. Phosphatidylinositol hydrolysis was monitored by the release of radiolabeled phosphoinositides from cardiomyocytes prelabeled with [2- 3 H]-myo-inositol. Neomycin, a known inhibitor of phospholipase C, inhibited the phosphatidylinositol hydrolysis and markedly reduced the extent of cell injury. Inhibitors of other Ca 2+ -activated processes, including intracellular proteases and phospholipase A 2 , had no effect on ionomycin-mediated cell injury. These data suggest that ionomycin-induced Ca 2+ -dependent cell injury in cultured cardiomyocytes may be due in part to the stimulation of phosphatidylinositol hydrolysis, presumably catalyzed by a Ca 2+ -dependent phospholipase C

  11. Regulation of dendrite growth and maintenance by exocytosis

    OpenAIRE

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential req...

  12. Recombinant adeno-associated virus-delivered hypoxia-inducible stanniocalcin-1 expression effectively inhibits hypoxia-induced cell apoptosis in cardiomyocytes.

    Science.gov (United States)

    Shi, Xin; Wang, Jianzhong; Qin, Yan

    2014-12-01

    Ischemia/hypoxia-induced oxidative stress is detrimental for the survival of cardiomyocytes and cardiac function. Stanniocalcin-1 (STC-1), a glycoprotein, has been found to play an inhibitory role in the production of reactive oxygen species (ROS). Here, we speculated that the overexpression of STC-1 might alleviate oxidative damage in cardiomyocytes under conditions of hypoxia. To control the expression of STC-1 in hypoxia, we constructed a recombinant adeno-associated virus (AAV) carrying the hypoxia-responsive element (HRE) to mediate hypoxia induction. Cardiomyocytes were infected with AAV-HRE-STC-1 and cultured in normoxic or hypoxic conditions, and STC-1 overexpression was only detected in hypoxic cultured cardiomyocytes by using quantitative real-time polymerase chain reaction and Western blot analysis. Using the 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, AAV-HRE-STC-1 infection was shown to significantly enhance cell survival under hypoxia. Hypoxia-induced cell apoptosis was inhibited by AAV-HRE-STC-1 infection by using the Annexin V-fluorescein isothiocyanate (FITC)/propidium iodide apoptosis assay. Moreover, the proapoptotic protein Caspase-3 and anti-apoptotic protein Bcl-2, which were dysregulated by hypoxia, were reversed by AAV-HRE-STC-1 infection. AAV-HRE-STC-1-mediated STC-1 overexpression markedly inhibited ROS production in cardiomyocytes cultured under hypoxic conditions. AAV-HRE-STC-1 infection significantly upregulated uncoupled protein 3 (UCP3), whereas silencing of UCP3 blocked the inhibitory effect of AAV-HRE-STC-1 on ROS production. In contrast, AAV-HRE-STC-1 infection had no effect on UCP2, and knockdown of UCP2 did not block the inhibitory effect of AAV-HRE-STC-1 on ROS production in the cardiomyocytes cultured under hypoxic conditions. Taken together, STC1 activates antioxidant pathway in cardiomyocytes through the induction of UCP3, implying that AAV-HRE-STC-1 has potential in the treatment of ischemic

  13. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    International Nuclear Information System (INIS)

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-01-01

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  14. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    Energy Technology Data Exchange (ETDEWEB)

    Zaja, Ivan [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bai, Xiaowen, E-mail: xibai@mcw.edu [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Bosnjak, Zeljko J. [Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States); Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226 (United States)

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  15. Endogenous versus exogenous growth factor regulation of articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Chan, Albert G; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2014-01-01

    Anabolic growth factors that regulate the function of articular chondrocytes are candidates for articular cartilage repair. Such factors may be delivered by pharmacotherapy in the form of exogenous proteins, or by gene therapy as endogenous proteins. It is unknown whether delivery method influences growth factor effectiveness in regulating articular chondrocyte reparative functions. We treated adult bovine articular chondrocytes with exogenous recombinant insulin-like growth factor-I (IGF-I) and transforming growth factor-beta1 (TGF-β1), or with the genes encoding these growth factors for endogenous production. Treatment effects were measured as change in chondrocyte DNA content, glycosaminoglycan production, and aggrecan gene expression. We found that IGF-I stimulated chondrocyte biosynthesis similarly when delivered by either exogenous or endogenous means. In contrast, exogenous TGF-β1 stimulated these reparative functions, while endogenous TGF-β1 had little effect. Endogenous TGF-β1 became more bioactive following activation of the transgene protein product. These data indicate that effective mechanisms of growth factor delivery for articular cartilage repair may differ for different growth factors. In the case of IGF-I, gene therapy or protein therapy appear to be viable options. In contrast, TGF-β1 gene therapy may be constrained by a limited ability of chondrocytes to convert latent complexes to an active form. Published 2013 by Wiley Periodicals, Inc. on behalf of the Orthopaedic Research Society. This article is a U.S. Government work and is in the public domain in the USA.

  16. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    Science.gov (United States)

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Engineered Microenvironments for the Maturation and Observation of Human Embryonic Stem Cell Derived Cardiomyocytes

    Science.gov (United States)

    Salick, Max R.

    The human heart is a dynamic system that undergoes substantial changes as it develops and adapts to the body's growing needs. To better understand the physiology of the heart, researchers have begun to produce immature heart muscle cells, or cardiomyocytes, from pluripotent stem cell sources with remarkable efficiency. These stem cell-derived cardiomyocytes hold great potential in the understanding and treatment of heart disease; however, even after prolonged culture, these cells continue to exhibit an immature phenotype, as indicated by poor sarcomere organization and calcium handling, among other features. The lack of maturation that is observed in these cardiomyocytes greatly limits their applicability towards drug screening, disease modeling, and cell therapy applications. The mechanical environment surrounding a cell has been repeatedly shown to have a large impact on that cell's behavior. For this reason, we have implemented micropatterning methods to mimic the level of alignment that occurs in the heart in vivo in order to study how this alignment may help the cells to produce a more mature sarcomere phenotype. It was discovered that the level of sarcomere organization of a cardiomyocyte can be strongly influenced by the micropattern lane geometry on which it adheres. Steps were taken to optimize this micropattern platform, and studies of protein organization, gene expression, and myofibrillogenesis were conducted. Additionally, a set of programs was developed to provide quantitative analysis of the level of sarcomere organization, as well as to assist with several other tissue engineering applications.

  18. Positron emission tomography imaging of cardiomyocyte apoptosis with a novel molecule probe [18F]FP-DPAZn2

    Science.gov (United States)

    Sun, Ting; Tang, Ganghua; Tian, Hua; Hu, Kongzhen; Yao, Shaobo; Su, Yifan; Wang, Changqian

    2015-01-01

    Cardiomyocyte apoptosis plays a causal role in the development and progression of heart failure. Currently, there is no effective imaging agent that can be used to detect cardiomyocyte apoptosis in vivo. To target phosphatidylserine (PS) on the surface of the dying cell, we synthesized a novel 18F-labeled Zn2+-dipicolylamine (DPA) analog, [18F]FP-DPAZn2, and evaluated it for noninvasive imaging of cardiomyocyte apoptosis. In vitro, the fluorescence imaging of dansyl-DPAZn2 was suitable for detecting cardiomyocyte apoptosis, which was confirmed by confocal immunofluorescence imaging, terminal dUTP nick-end labeling (TUNEL) assay, and western blot assay. The in vivo biodistribution showed that the uptake ratios of [18F]FP-DPAZn2 in the heart were 4.41±0.29% ID/g at 5 min, 2.40 ± 0.43% ID/g at 30 min, 1.63 ± 0.26% ID/g at 60 min, and 1.43% ± 0.07 ID/g at 120 min post-injection. In vivo, the [18F]FP-DPAZn2 PET images showed more cardiac accumulation of radioactivity 60 min post-injection in acute myocardial infarction (AMI) rats than in normal rats, which was consistent with the findings of a histological analysis of the rat cardiac tissues in vitro. [18F]FP-DPAZn2 PET imaging has the capability for myocardial apoptosis detection, but the method will require improved myocardial uptake for the noninvasive evaluation of cardiomyocyte apoptosis in clinical settings. PMID:26416423

  19. Effect of Berberine on PPARα/NO Activation in High Glucose- and Insulin-Induced Cardiomyocyte Hypertrophy

    Directory of Open Access Journals (Sweden)

    Mingfeng Wang

    2013-01-01

    Full Text Available Rhizoma coptidis, the root of Coptis chinensis Franch, has been used in China as a folk medicine in the treatment of diabetes for thousands of years. Berberine, one of the active ingredients of Rhizoma coptidis, has been reported to improve symptoms of diabetes and to treat experimental cardiac hypertrophy, respectively. The objective of this study was to evaluate the potential effect of berberine on cardiomyocyte hypertrophy in diabetes and its possible influence on peroxisome proliferator-activated receptor-α (PPARα/nitric oxide (NO signaling pathway. The cardiomyocyte hypertrophy induced by high glucose (25.5 mmol/L and insulin (0.1 μmol/L (HGI was characterized in rat primary cardiomyocyte by measuring the cell surface area, protein content, and atrial natriuretic factor mRNA expression level. Protein and mRNA expression were measured by western blot and real-time RT-PCR, respectively. The enzymatic activity of NO synthase (NOS was measured using a spectrophotometric assay, and NO concentration was measured using the Griess assay. HGI significantly induced cardiomyocyte hypertrophy and decreased the expression of PPARα and endothelial NOS at the mRNA and protein levels, which occurred in parallel with declining NOS activity and NO concentration. The effect of HGI was inhibited by berberine (0.1 to 100 μmol/L, fenofibrate (0.3 μmol/L, or L-arginine (100 μmol/L. MK886 (0.3 μmol/L, a selective PPARα antagonist, could abolish the effects of berberine and fenofibrate. NG-nitro-L-arginine-methyl ester (100 μmol/L, a NOS inhibitor, could block the effects of L-arginine, but only partially blocked the effects of berberine. These results suggest that berberine can blunt HGI-induced cardiomyocyte hypertrophy in vitro, through the activation of the PPARα/NO signaling pathway.

  20. Target of Rapamycin (TOR) Regulates Growth in Response to Nutritional Signals.

    Science.gov (United States)

    Weisman, Ronit

    2016-10-01

    All organisms can respond to the availability of nutrients by regulating their metabolism, growth, and cell division. Central to the regulation of growth in response to nutrient availability is the target of rapamycin (TOR) signaling that is composed of two structurally distinct complexes: TOR complex 1 (TORC1) and TOR complex 2 (TORC2). The TOR genes were first identified in yeast as target of rapamycin, a natural product of a soil bacterium, which proved beneficial as an immunosuppressive and anticancer drug and is currently being tested for a handful of other pathological conditions including diabetes, neurodegeneration, and age-related diseases. Studies of the TOR pathway unraveled a complex growth-regulating network. TOR regulates nutrient uptake, transcription, protein synthesis and degradation, as well as metabolic pathways, in a coordinated manner that ensures that cells grow or cease growth in response to nutrient availability. The identification of specific signals and mechanisms that stimulate TOR signaling is an active and exciting field of research that has already identified nitrogen and amino acids as key regulators of TORC1 activity. The signals, as well as the cellular functions of TORC2, are far less well understood. Additional open questions in the field concern the relationships between TORC1 and TORC2, as well as the links with other nutrient-responsive pathways. Here I review the main features of TORC1 and TORC2, with a particular focus on yeasts as model organisms.

  1. Formation of Cell-To-Cell Connection between Bone Marrow Cells and Isolated Rat Cardiomyocytes in a Cocultivation Model

    Czech Academy of Sciences Publication Activity Database

    Skopalík, J.; Pásek, Michal; Rychtárik, M.; Koristek, Z.; Gabrielová, E.; Sheer, P.; Matejovič, P.; Modrianský, M.; Klabusay, M.

    2014-01-01

    Roč. 5, č. 5 (2014), s. 1000185 ISSN 2157-7013 Institutional support: RVO:61388998 Keywords : bone marrow * mononuclear cells * isolated cardiomyocytes * cocultivation Subject RIV: BO - Biophysics http://omicsonline.org/ open - access /formation-of-celltocell-connection-between-bone-marrow-cells- and -isolated-rat-cardiomyocytes-2157-7013.1000185.php?aid=33364

  2. Effects of Multivitamins and Known Teratogens on Chick Cardiomyocytes Micromass Culture Assay

    Directory of Open Access Journals (Sweden)

    Samreen Memon

    2013-09-01

    Full Text Available   Objective(s: This study aimed to find out whether the chick cardiomyocyte micromass (MM system could be employed to predict the teratogenecity of common environmental factors. Different multivitamins and over the counter drugs were used in this study.   Materials and Methods: White Leghorn 5-day-old embryo hearts were dissected and trypsinized to produce a cardiomyocyte cell suspension in Dulbecco's Modified Eagle's Medium. The cultures were incubated at 370C in 5% CO2 in air, and observations were made at 24, 48 and 144 hr, for the detection of cell beating. Cellular viability was assessed using the resazurin assay and cell protein content was assessed by the kenacid blue assay. It was observed that while not affecting total cell number folic acid, vitamin C, sodium fluoride and ginseng did not significantly reduced cell activity and beating. However cadmium chloride significantly reduced the beating, cell viability and cell protein content in micromass cultures. Results: The results demonstrate the potential of the chick cardiomyocyte MM culture assay to identify teratogens/embryotoxins that alter morphology and function, which may result in either teratogenic outcome or cytotoxicity. Conclusion: This could form part of a screen for developmental toxicity related to cardiac function

  3. Automated grouping of action potentials of human embryonic stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Gorospe, Giann; Zhu, Renjun; Millrod, Michal A; Zambidis, Elias T; Tung, Leslie; Vidal, Rene

    2014-09-01

    Methods for obtaining cardiomyocytes from human embryonic stem cells (hESCs) are improving at a significant rate. However, the characterization of these cardiomyocytes (CMs) is evolving at a relatively slower rate. In particular, there is still uncertainty in classifying the phenotype (ventricular-like, atrial-like, nodal-like, etc.) of an hESC-derived cardiomyocyte (hESC-CM). While previous studies identified the phenotype of a CM based on electrophysiological features of its action potential, the criteria for classification were typically subjective and differed across studies. In this paper, we use techniques from signal processing and machine learning to develop an automated approach to discriminate the electrophysiological differences between hESC-CMs. Specifically, we propose a spectral grouping-based algorithm to separate a population of CMs into distinct groups based on the similarity of their action potential shapes. We applied this method to a dataset of optical maps of cardiac cell clusters dissected from human embryoid bodies. While some of the nine cell clusters in the dataset are presented with just one phenotype, the majority of the cell clusters are presented with multiple phenotypes. The proposed algorithm is generally applicable to other action potential datasets and could prove useful in investigating the purification of specific types of CMs from an electrophysiological perspective.

  4. Hypoxia decreases creatine uptake in cardiomyocytes, while creatine supplementation enhances HIF activation.

    Science.gov (United States)

    Santacruz, Lucia; Arciniegas, Antonio Jose Luis; Darrabie, Marcus; Mantilla, Jose G; Baron, Rebecca M; Bowles, Dawn E; Mishra, Rajashree; Jacobs, Danny O

    2017-08-01

    Creatine (Cr), phosphocreatine (PCr), and creatine kinases (CK) comprise an energy shuttle linking ATP production in mitochondria with cellular consumption sites. Myocytes cannot synthesize Cr: these cells depend on uptake across the cell membrane by a specialized creatine transporter (CrT) to maintain intracellular Cr levels. Hypoxia interferes with energy metabolism, including the activity of the creatine energy shuttle, and therefore affects intracellular ATP and PCr levels. Here, we report that exposing cultured cardiomyocytes to low oxygen levels rapidly diminishes Cr transport by decreasing V max and K m Pharmacological activation of AMP-activated kinase (AMPK) abrogated the reduction in Cr transport caused by hypoxia. Cr supplementation increases ATP and PCr content in cardiomyocytes subjected to hypoxia, while also significantly augmenting the cellular adaptive response to hypoxia mediated by HIF-1 activation. Our results indicate that: (1) hypoxia reduces Cr transport in cardiomyocytes in culture, (2) the cytoprotective effects of Cr supplementation are related to enhanced adaptive physiological responses to hypoxia mediated by HIF-1, and (3) Cr supplementation increases the cellular ATP and PCr content in RNCMs exposed to hypoxia. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  5. Changes in mitochondrial dynamics during ceramide-induced cardiomyocyte early apoptosis.

    Science.gov (United States)

    Parra, Valentina; Eisner, Veronica; Chiong, Mario; Criollo, Alfredo; Moraga, Francisco; Garcia, Alejandra; Härtel, Steffen; Jaimovich, Enrique; Zorzano, Antonio; Hidalgo, Cecilia; Lavandero, Sergio

    2008-01-15

    In cells, mitochondria are organized as a network of interconnected organelles that fluctuate between fission and fusion events (mitochondrial dynamics). This process is associated with cell death. We investigated whether activation of apoptosis with ceramides affects mitochondrial dynamics and promotes mitochondrial fission in cardiomyocytes. Neonatal rat cardiomyocytes were incubated with C(2)-ceramide or the inactive analog dihydro-C(2)-ceramide for up to 6 h. Three-dimensional images of cells loaded with mitotracker green were obtained by confocal microscopy. Dynamin-related protein-1 (Drp-1) and mitochondrial fission protein 1 (Fis1) distribution and levels were studied by immunofluorescence and western blot. Mitochondrial membrane potential (DeltaPsi(m)) and cytochrome c (cyt c) distribution were used as indexes of early activation of apoptosis. Cell viability and DNA fragmentation were determined by propidium iodide staining/flow cytometry, whereas cytotoxicity was evaluated by lactic dehydrogenase activity. To decrease the levels of the mitochondrial fusion protein mitofusin 2, we used an antisense adenovirus (AsMfn2). C(2)-ceramide, but not dihydro-C(2)-ceramide, promoted rapid fragmentation of the mitochondrial network in a concentration- and time-dependent manner. C(2)-ceramide also increased mitochondrial Drp-1 and Fis1 content, Drp-1 colocalization with Fis1, and caused early activation of apoptosis. AsMfn2 accentuated the decrease in DeltaPsi(m) and cyt c redistribution induced by C(2)-ceramide. Doxorubicin, which induces cardiomyopathy and apoptosis through ceramide generation, also stimulated mitochondrial fragmentation. Ceramides stimulate mitochondrial fission and this event is associated with early activation of cardiomyocyte apoptosis.

  6. Complete restoration of multiple dystrophin isoforms in genetically corrected Duchenne muscular dystrophy patient–derived cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Susi Zatti

    2014-01-01

    Full Text Available Duchenne muscular dystrophy (DMD–associated cardiac diseases are emerging as a major cause of morbidity and mortality in DMD patients, and many therapies for treatment of skeletal muscle failed to improve cardiac function. The reprogramming of patients' somatic cells into pluripotent stem cells, combined with technologies for correcting the genetic defect, possesses great potential for the development of new treatments for genetic diseases. In this study, we obtained human cardiomyocytes from DMD patient–derived, induced pluripotent stem cells genetically corrected with a human artificial chromosome carrying the whole dystrophin genomic sequence. Stimulation by cytokines was combined with cell culturing on hydrogel with physiological stiffness, allowing an adhesion-dependent maturation and a proper dystrophin expression. The obtained cardiomyocytes showed remarkable sarcomeric organization of cardiac troponin T and α-actinin, expressed cardiac-specific markers, and displayed electrically induced calcium transients lasting less than 1 second. We demonstrated that the human artificial chromosome carrying the whole dystrophin genomic sequence is stably maintained throughout the cardiac differentiation process and that multiple promoters of the dystrophin gene are properly activated, driving expression of different isoforms. These dystrophic cardiomyocytes can be a valuable source for in vitro modeling of DMD-associated cardiac disease. Furthermore, the derivation of genetically corrected, patient-specific cardiomyocytes represents a step toward the development of innovative cell and gene therapy approaches for DMD.

  7. Adrenaline in pro-oxidant conditions elicits intracellular survival pathways in isolated rat cardiomyocytes

    International Nuclear Information System (INIS)

    Costa, Vera Marisa; Silva, Renata; Ferreira, Rita; Amado, Francisco; Carvalho, Felix; Bastos, Maria Lourdes de; Albuquerque Carvalho, Rui; Carvalho, Marcia; Remiao, Fernando

    2009-01-01

    In several pathologic conditions, like cardiac ischemia/reperfusion, the sustained elevation of plasma and interstitial catecholamine levels, namely adrenaline (ADR), and the generation of reactive oxygen species (ROS) are hallmarks. The present work aimed to investigate in cardiomyocytes which intracellular signalling pathways are altered by ADR redox ability. To mimic pathologic conditions, freshly isolated calcium tolerant cardiomyocytes from adult rat were incubated with ADR alone or in the presence of a system capable of generating ROS [(xanthine with xanthine oxidase) (X/XO)]. ADR elicited a pro-oxidant signal with generation of reactive species, which was largely magnified by the ROS generating system. However, no change in cardiomyocytes viability was observed. The pro-oxidant signal promoted the translocation to the nucleus of the transcription factors, Heat shock factor-1 (HSF-1) and Nuclear factor-κB (NF-κB). In addition, proteasome activity was compromised in the experimental groups where the generation of reactive species occurred. The decrease in the proteasome activity of the ADR group resulted from its redox sensitivity, since the activity was recovered by adding the ROS scavenger, tiron. Proteasome inhibition seemed to elicit an increase in HSP70 levels. Furthermore, retention of mitochondrial cytochrome c and inhibition of caspase 3 activity were observed by X/XO incubation in presence or absence of ADR. In conclusion, in spite of all the insults inflicted to the cardiomyocytes, they were capable to activate intracellular responses that enabled their survival. These mechanisms, namely the pathways altered by catecholamine proteasome inhibition, should be further characterized, as they could be of relevance in the ischemia preconditioning and the reperfusion injury

  8. Similar to spironolactone, oxymatrine is protective in aldosterone-induced cardiomyocyte injury via inhibition of calpain and apoptosis-inducing factor signaling.

    Directory of Open Access Journals (Sweden)

    Ting-Ting Xiao

    Full Text Available Accumulating evidence indicates that oxymatrine (OMT possesses variously pharmacological properties, especially on the cardiovascular system. We previously demonstrated that activated calpain/apoptosis-inducing factor (AIF-mediated pathway was the key molecular mechanism in aldosterone (ALD induces cardiomyocytes apoptosis. In the present study, we extended the experimentation by investigating the effect of OMT on cardiomyocytes exposed to ALD, as compared to spironolactone (Spiro, a classical ALD receptor antagonist. Cardiomyocytes were pre-incubated with OMT, Spiro or vehicle for 1 h, and then, cardiomyocytes were exposed to ALD 24 h. The cell injury was evaluated by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assay and lactate dehydrogenase (LDH leakage ratio. Apoptosis was determined by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL assay, annexin V/PI staining, and relative caspase-3 activity assay. Furthermore, expression of pro-apoptotic proteins including truncated Bid (tBid, calpain and AIF were evaluated by western blot analysis. ALD stimulation increased cardiomyocytes apoptosis, caspase-3 activity and protein expression of calpain, tBid and AIF in the cytosol (p<0.05. Pre-incubated with cardiomyocytes injury and increased caspase-3 activity were significantly attenuated (p<0.05. Furthermore, OMT suppressed ALD-induced high expression of calpain and AIF. And these effects of OMT could be comparable to Spiro. These findings indicated that OMT might be a potential cardioprotective-agent against excessive ALD-induced cardiotoxicity, at least in part, mediated through inhibition of calpain/AIF signaling.

  9. Mitochondria Play a Central Role in Nonischemic Cardiomyocyte Necrosis: Common to Acute and Chronic Stressor States

    Science.gov (United States)

    Khan, M. Usman; Cheema, Yaser; Shahbaz, Atta U.; Ahokas, Robert A.; Sun, Yao; Gerling, Ivan C.; Bhattacharya, Syamal K.; Weber, Karl T.

    2012-01-01

    The survival of cardiomyocytes must be ensured as the myocardium adjusts to a myriad of competing physiologic and pathophysiologic demands. A significant loss of these contractile cells, together with their replacement by stiff fibrillar collagen in the form of fibrous tissue accounts for a transition from a usually efficient muscular pump into one that is failing. Cellular and subcellular mechanisms involved in the pathogenic origins of cardiomyocyte cell death have long been of interest. This includes programmed molecular pathways to either necrosis or apoptosis which are initiated from ischemic or nonischemic origins. Herein we focus on the central role played by a mitochondriocentric signal-transducer-effector pathway to nonischemic cardiomyocyte necrosis which is common to acute and chronic stressor states. We begin by building upon the hypothesis advanced by Albrecht Fleckenstein and coworkers some 40 years ago based on the importance of calcitropic hormone- mediated intracellular Ca2+ overloading which predominantly involves subsarcolemmal mitochondria and is the signal to pathway activation. Other pathway components, which came to be recognized in subsequent years, include the induction of oxidative stress and opening of the mitochondrial inner membrane permeability transition pore. The ensuing loss of cardiomyocytes and consequent replacement fibrosis, or scarring, represents a disease of adaptation and a classic example of when homeostasis begets dyshomeostasis. PMID:22328074

  10. Synthesis and application of labelled growth regulators

    International Nuclear Information System (INIS)

    Shyutte, G.R.

    1982-01-01

    For the investigation of the metabolism both of phytoeffectors like herbicides and plant growth regulators such compounds are needed in radioactive labelled form. The synthesis of radioactive labelled fluorodifen, nitrofen, ethephon, diphenylic acetic acid, 2,4-dichlorophenoxyisobutyric acid, abscisic acid, hydroxybenzoic acids and different conjugates are described. Some examples of these compounds metabolism in plants are discussed [ru

  11. Nitroxide radicals formed in situ as polymer chain growth regulators

    International Nuclear Information System (INIS)

    Kolyakina, Elena V; Grishin, Dmitry F

    2009-01-01

    Published data on controlled synthesis of macromolecules using nitroxide radicals, formed in situ during polymerization, as polymer chain growth regulators are systematized and generalized. The attention is focused on the mechanism of polymer chain growth control during reversibly inhibited radical homopolymerization and the effect of structure of precursors and regulating additives on the polymerization kinetics of monomers of different nature and the molecular-mass characteristics of the polymers thus formed. The key methods for generation of nitroxide radicals directly during polymerization are considered. The prospects for development and practical use of these approaches for the synthesis of new polymeric materials are evaluated.

  12. Growth regulating properties of isoprene and isoprenoid-based essential oils.

    Science.gov (United States)

    Jones, Andrew Maxwell P; Shukla, Mukund R; Sherif, Sherif M; Brown, Paula B; Saxena, Praveen K

    2016-01-01

    Essential oils have growth regulating properties comparable to the well-documented methyl jasmonate and may be involved in localized and/or airborne plant communication. Aromatic plants employ large amounts of resources to produce essential oils. Some essential oils are known to contain compounds with plant growth regulating activities. However, the potential capacity of essential oils as airborne molecules able to modulate plant growth/development has remained uninvestigated. Here, we demonstrate that essential oils from eight taxonomically diverse plants applied in their airborne state inhibited auxin-induced elongation of Pisum sativum hypocotyls and Avena sativa coleoptiles. This response was also observed using five monoterpenes commonly found in essential oils as well as isoprene, the basic building block of terpenes. Upon transfer to ambient conditions, A. sativa coleoptiles resumed elongation, demonstrating an antagonistic relationship rather than toxicity. Inclusion of essential oils, monoterpenes, or isoprene into the headspace of culture vessels induced abnormal cellular growth along hypocotyls of Arabidopsis thaliana. These responses were also elicited by methyl jasmonate (MeJA); however, where methyl jasmonate inhibited root growth essential oils did not. Gene expression studies in A. thaliana also demonstrated differences between the MeJA and isoprenoid responses. This series of experiments clearly demonstrate that essential oils and their isoprenoid components interact with endogenous plant growth regulators when applied directly or as volatile components in the headspace. The similarities between isoprenoid and MeJA responses suggest that they may act in plant defence signalling. While further studies are needed to determine the ecological and evolutionary significance, the results of this study and the specialized anatomy associated with aromatic plants suggest that essential oils may act as airborne signalling molecules.

  13. Cathepsin B is involved in the heat shock induced cardiomyocytes apoptosis as well as the anti-apoptosis effect of HSP-70.

    Science.gov (United States)

    Hsu, Shu-Fen; Hsu, Chuan-Chih; Cheng, Bor-Chih; Lin, Cheng-Hsien

    2014-11-01

    Cathepsin B is one of the major lysosomal cysteine proteases that plays an important role in apoptosis. Herein, we investigated whether Cathepsin B is involved in cardiomyocyte apoptosis caused by hyperthermic injury (HI) and heat shock protein (HSP)-70 protects these cells from HI-induced apoptosis mediated by Cathepsin. HI was produced in H9C2 cells by putting them in a circulating 43 °C water bath for 120 min, whereas preinduction of HSP-70 was produced in H9C2 cells by mild heat preconditioning (or putting them in 42 °C water bath for 30 min) 8 h before the start of HI. It was found that HI caused both cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. E-64-c, in addition to reducing Cathepsin B activity, significantly attenuated HI-induced cardiomyocyte apoptosis (evidenced by increased apoptotic cell numbers, increased tuncated Bid (t-Bid), increased cytochrome C, increased caspase-9/-3, and decreased Bcl-2/Bax) in H9C2 cells. In addition, preinduction of HSP-70 by mild heat preconditioning or inhibition of HSP-70 by Tripolide significantly attenuated or exacerbated respectively both the cardiomyocyte apoptosis and increased Cathepsin B activity in H9C2 cells. Furthermore, the beneficial effects of pre-induction of HSP-70 by mild heat production in reducing both cardiomyocyte apoptosis and increased Cathepsin B activity caused by HI can be significantly reduced by Triptolide preconditioning. These results indicate that Cathepsin B is involved in HI-induced cardiomyocyte apoptosis in H9C2 cells and HSP-70 protects these cells from HI-induced cardiomyocyte apoptosis through Cathepsin B pathways.

  14. The role of growth regulators, embryo age and genotypes on ...

    African Journals Online (AJOL)

    Administrator

    2011-06-06

    Jun 6, 2011 ... 0.1 mg/l kinetin, MS + 0.1 mg/l IAA and MS + 0.1 mg/l kinetin + 0.1 mg/l IAA were used as growth regulators. ... factor for a high success in zygotic embryo culture is the ... regulators components have proved to influence the.

  15. Attenuation of ischemia-reperfusion-induced alterations in intracellular Ca2+ in cardiomyocytes from hearts treated with N-acetylcysteine and N-mercaptopropionylglycine.

    Science.gov (United States)

    Saini-Chohan, Harjot K; Dhalla, Naranjan S

    2009-12-01

    This study was undertaken to test whether Ca(2+)-handling abnormalities in cardiomyocytes after ischemia-reperfusion (I/R) are prevented by antioxidants such as N-acetyl L-cysteine (NAC), which is known to reduce oxidative stress by increasing the glutathione redox status, and N-(2-mercaptopropionyl)-glycine (MPG), which scavenges both peroxynitrite and hydroxyl radicals. For this purpose, isolated rat hearts were subjected to 30 min of global ischemia followed by 30 min of reperfusion, and cardiomyocytes were prepared to monitor changes in the intracellular concentration of free Ca(2+) ([Ca(2+)](i)). Marked depression in the left ventricular developed pressure and elevation in the left ventricular end-diastolic pressure in I/R hearts were attenuated by treatment with NAC or MPG. Cardiomyocytes obtained from I/R hearts showed an increase in the basal level of [Ca(2+)](i) as well as augmentation of the low Na(+)-induced increase in [Ca(2+)](i), with no change in the KCl-induced increase in [Ca(2+)](i). These I/R-induced alterations in Ca(2+) handling by cardiomyocytes were attenuated by treatment of hearts with NAC or MPG. Furthermore, reduction in the isoproterenol-, ATP-, ouabain-, and caffeine-induced increases in [Ca(2+)](i) in cardiomyocytes from I/R hearts were limited by treatment with NAC or MPG. The increases in the basal [Ca(2+)](i), unlike the KCl-induced increase in [Ca(2+)](i), were fully or partially prevented by both NAC and MPG upon exposing cardiomyocytes to hypoxia-reoxygenation, H(2)O(2), or a mixture of xanthine and xanthine oxidase. These results suggest that improvement in cardiac function of I/R hearts treated with NAC or MPG was associated with attenuation of changes in Ca(2+) handling by cardiomyocytes, and the results support the view that oxidative stress due to oxyradical generation and peroxynitrite formation plays an important role in the development of intracellular Ca(2+) overload in cardiomyocytes as a consequence of I/R injury.

  16. Generation of electrophysiologically functional cardiomyocytes from mouse induced pluripotent stem cells

    Directory of Open Access Journals (Sweden)

    Hongran Wang

    2016-03-01

    Full Text Available Induced pluripotent stem (iPS cells can efficiently differentiate into the three germ layers similar to those formed by differentiated embryonic stem (ES cells. This provides a new source of cells in which to establish preclinical allogeneic transplantation models. Our iPS cells were generated from mouse embryonic fibroblasts (MEFs transfected with the Yamanaka factors, the four transcription factors (Oct4, Sox2, Klf4 and c-Myc, without antibiotic selection or MEF feeders. After the formation of embryoid bodies (EBs, iPS cells spontaneously differentiated into Flk1-positive cardiac progenitors and cardiomyocytes expressing cardiac-specific markers such as alpha sarcomeric actinin (α-actinin, cardiac alpha myosin heavy chain (α-MHC, cardiac troponin T (cTnT, and connexin 43 (CX43, as well as cardiac transcription factors Nk2 homebox 5 (Nkx2.5 and gata binding protein 4 (gata4. The electrophysiological activity of iPS cell-derived cardiomyocytes (iPS-CMs was detected in beating cell clusters with optical mapping and RH237 a voltage-sensitive dye, and in single contracting cells with patch-clamp technology. Incompletely differentiated iPS cells formed teratomas when transplanted into a severe combined immunodeficiency (SCID mouse model of myocardial infarction. Our results show that somatic cells can be reprogrammed into pluripotent stem cells, which in turn spontaneously differentiate into electrophysiologically functional mature cardiomyocytes expressing cardiac-specific makers, and that these cells can potentially be used to repair myocardial infarction (MI in the future.

  17. Independent regulation of skeletal growth by Ihh and IGF signaling.

    Science.gov (United States)

    Long, Fanxin; Joeng, Kyu-Sang; Xuan, Shouhong; Efstratiadis, Argiris; McMahon, Andrew P

    2006-10-01

    The insulin-like growth factors (IGFs) play a major role in regulating the systemic growth of mammals. However, it is unclear to what extent their systemic and/or local functions act in concert with other local growth factors controlling the sizes of individual organs. We have specifically addressed whether growth control of the skeleton by IGFs interacts genetically with that by Indian hedgehog (Ihh), a locally produced growth signal for the endochondral skeleton. Here, we report that disruption of both IGF and Ihh signaling resulted in additive reduction in the size of the embryonic skeleton. Thus, IGF and Ihh signaling appear to control the growth of the skeleton in parallel pathways.

  18. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  19. A non-destructive culturing and cell sorting method for cardiomyocytes and neurons using a double alginate layer.

    Directory of Open Access Journals (Sweden)

    Hideyuki Terazono

    Full Text Available A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture.

  20. A Non-Destructive Culturing and Cell Sorting Method for Cardiomyocytes and Neurons Using a Double Alginate Layer

    Science.gov (United States)

    Terazono, Hideyuki; Kim, Hyonchol; Hayashi, Masahito; Hattori, Akihiro; Nomura, Fumimasa; Kaneko, Tomoyuki; Yasuda, Kenji

    2012-01-01

    A non-destructive method of collecting cultured cells after identifying their in situ functional characteristics is proposed. In this method, cells are cultivated on an alginate layer in a culture dish and released by spot application of a calcium chelate buffer that locally melts the alginate layer and enables the collection of cultured cells at the single-cell level. Primary hippocampal neurons, beating human embryonic stem (hES) cell-derived cardiomyocytes, and beating hES cell-derived cardiomyocyte clusters cultivated on an alginate layer were successfully released and collected with a micropipette. The collected cells were recultured while maintaining their physiological function, including beating, and elongated neurites. These results suggest that the proposed method may eventually facilitate the transplantation of ES- or iPS-derived cardiomyocytes and neurons differentiated in culture. PMID:22870332

  1. Regulation of dendrite growth and maintenance by exocytosis

    Science.gov (United States)

    Peng, Yun; Lee, Jiae; Rowland, Kimberly; Wen, Yuhui; Hua, Hope; Carlson, Nicole; Lavania, Shweta; Parrish, Jay Z.; Kim, Michael D.

    2015-01-01

    ABSTRACT Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop–exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments. PMID:26483382

  2. In vitro transdifferentiation of umbilical cord stem cells into cardiac myocytes: Role of growth factors

    Directory of Open Access Journals (Sweden)

    Rasha A.M. Khattab

    2013-04-01

    Full Text Available Recently, stem cell based cell therapy has become a realistic option to replace damaged cardiomyocytes. Most studies on stem cell transplantation therapy have focused on the use of undifferentiated stem cells. There is a strong possibility that some cardiogenic differentiation of the stem cell in vitro prior to transplantation would result in higher engraftment efficiency, as well as enhanced myocardial regeneration and recovery of heart function. In this study we aimed to define the conditions for ex-vivo differentiation of cord blood stem cells to cardiomyocytes and endothelial cells. These conditions include the combination of vascular endothelial growth factor (VEGF; basic fibroblast growth factor (FGF-2 and platelet derived growth factor AB (PDGF-AB. Forty cord blood samples were included in this work. In this work, the percentage of CD34+ cells, CD31+ cells and CD34/31+ cells in mononuclear cells (MNC suspension was counted prior to culture (day zero, and day 10 in the different growth factor cocktails used as well as the control tube, from which the fold increase of CD34+ cells, CD31+ cells and CD34/31+ cells was calculated. Detection of cardiac troponin I in the cultured cells to confirm cardiac differentiation was done at day 10 using Mouse anti-troponin I monoclonal antibody. From the present study, it was concluded that the growth factor cocktail in protocol 2 (FGF2+VEGF+PDGF-AB gives better in vitro trans-differentiation of stem/progenitor cells in umbilical cord blood into cardiomyocytes and endothelial cells than the cytokines cocktail in protocol 1 (FGF2+VEGF alone.

  3. Alamandine acts via MrgD to induce AMPK/NO activation against Ang II hypertrophy in cardiomyocytes.

    Science.gov (United States)

    de Jesus, Itamar Couto Guedes; Scalzo, Sergio; Alves, Fabiana; Marques, Kariny; Rocha-Resende, Cibele; Bader, Michael; Santos, Robson A Souza; Guatimosim, Silvia

    2018-02-14

    The renin-angiotensin system (RAS) plays a pivotal role in the pathogenesis of cardiovascular diseases. New members of this system have been characterized and shown to have biologically relevant actions. Alamandine and its receptor MrgD are recently identified components of RAS. In the cardiovascular system alamandine actions included vasodilation, antihypertensive and anti-fibrosis effects. Currently, the actions of alamandine on cardiomyocytes are unknown. Here our goal was twofold: (1) to unravel the signaling molecules activated by the alamandine/MrgD axis in cardiomyocytes; (2) to evaluate the ability of this axis to prevent against Angiotensin II (Ang II)-induced hypertrophy. In cardiomyocytes from C57BL/6 mice, alamandine treatment induced an increase in nitric oxide (NO) production, which was blocked by D-Pro 7 -Ang-(1-7), a MrgD antagonist. This NO rise correlated with increased phosphorylation of AMPK. Alamandine induced NO production was preserved in Mas -/- myocytes, and lost in MrgD -/- cells. Binding of fluorescent-labeled alamandine was observed in wild-type cells, but it was dramatically reduced in MrgD -/- myocytes. We also assessed the consequences of prolonged alamandine exposure to cultured neonatal rat cardiomyocytes (NRCMs) treated with Ang II. Treatment of NRCMs with alamandine prevented Ang II-induced hypertrophy. Moreover, antihypertrophic actions of alamandine were mediated via MrgD and NO, since they could be prevented by D-Pro 7 -Ang-(1-7) or inhibitors of NO synthase or AMPK. β-alanine, a MrgD agonist, recapitulated alamandine's cardioprotective effects in cardiomyocytes. Our data show that alamandine via MrgD induces AMPK/NO signaling to counterregulate Ang II induced hypertrophy. These findings highlight the therapeutic potential of the alamandine/MrgD axis in the heart.

  4. Lycopene Protects against Hypoxia/Reoxygenation Injury by Alleviating ER Stress Induced Apoptosis in Neonatal Mouse Cardiomyocytes

    Science.gov (United States)

    Xu, Jiqian; Hu, Houxiang; Chen, Bin; Yue, Rongchuan; Zhou, Zhou; Liu, Yin; Zhang, Shuang; Xu, Lei; Wang, Huan; Yu, Zhengping

    2015-01-01

    Endoplasmic reticulum (ER) stress induced apoptosis plays a pivotal role in myocardial ischemia/reperfusion (I/R)-injury. Inhibiting ER stress is a major therapeutic target/strategy in treating cardiovascular diseases. Our previous studies revealed that lycopene exhibits great pharmacological potential in protecting against the I/R-injury in vitro and vivo, but whether attenuation of ER stress (and) or ER stress-induced apoptosis contributes to the effects remains unclear. In the present study, using neonatal mouse cardiomyocytes to establish an in vitro model of hypoxia/reoxygenation (H/R) to mimic myocardium I/R in vivo, we aimed to explore the hypothesis that lycopene could alleviate the ER stress and ER stress-induced apoptosis in H/R-injury. We observed that lycopene alleviated the H/R injury as revealed by improving cell viability and reducing apoptosis, suppressed reactive oxygen species (ROS) generation and improved the phosphorylated AMPK expression, attenuated ER stress as evidenced by decreasing the expression of GRP78, ATF6 mRNA, sXbp-1 mRNA, eIF2α mRNA and eIF2α phosphorylation, alleviated ER stress-induced apoptosis as manifested by reducing CHOP/GADD153 expression, the ratio of Bax/Bcl-2, caspase-12 and caspase-3 activity in H/R-treated cardiomyocytes. Thapsigargin (TG) is a potent ER stress inducer and used to elicit ER stress of cardiomyocytes. Our results showed that lycopene was able to prevent TG-induced ER stress as reflected by attenuating the protein expression of GRP78 and CHOP/GADD153 compared to TG group, significantly improve TG-caused a loss of cell viability and decrease apoptosis in TG-treated cardiomyocytes. These results suggest that the protective effects of lycopene on H/R-injury are, at least in part, through alleviating ER stress and ER stress-induced apoptosis in neonatal mouse cardiomyocytes. PMID:26291709

  5. Inhibition of MMP-2 Expression with siRNA Increases Baseline Cardiomyocyte Contractility and Protects against Simulated Ischemic Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Han-Bin Lin

    2014-01-01

    Full Text Available Matrix metalloproteinases (MMPs significantly contribute to ischemia reperfusion (I/R injury, namely, by the degradation of contractile proteins. However, due to the experimental models adopted and lack of isoform specificity of MMP inhibitors, the cellular source and identity of the MMP(s involved in I/R injury remain to be elucidated. Using isolated adult rat cardiomyocytes, subjected to chemically induced I/R-like injury, we show that specific inhibition of MMP-2 expression and activity using MMP-2 siRNA significantly protected cardiomyocyte contractility from I/R-like injury. This was also associated with increased expression of myosin light chains 1 and 2 (MLC1/2 in comparison to scramble siRNA transfection. Moreover, the positive effect of MMP-2 siRNA transfection on cardiomyocyte contractility and MLC1/2 expression levels was also observed under control conditions, suggesting an important additional role for MMP-2 in physiological sarcomeric protein turnover. This study clearly demonstrates that intracellular expression of MMP-2 plays a significant role in sarcomeric protein turnover, such as MLC1 and MLC2, under aerobic (physiological conditions. In addition, this study identifies intracellular/autocrine, cardiomyocyte-produced MMP-2, rather than paracrine/extracellular, as responsible for the degradation of MLC1/2 and consequent contractile dysfunction in cardiomyocytes subjected to I/R injury.

  6. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes.

    Science.gov (United States)

    Li, Jinqing; Ichikawa, Tomonaga; Jin, Yu; Hofseth, Lorne J; Nagarkatti, Prakash; Nagarkatti, Mitzi; Windust, Anthony; Cui, Taixing

    2010-07-20

    Ginseng has been used as a folk medicine for thousands of years in Asia, and has become a popular herbal medicine world-wide. Recent studies have revealed that ginseng, including American ginseng, exerts antioxidant effects in the cardiovascular system; however, the underlying mechanisms are not fully understood. Thus, we investigated role of Nrf2, a master transcription factor of endogenous anti-oxidative defense systems, in the regulation of American ginseng-mediated anti-oxidative actions in cardiomyocytes. A standardized crude extract of American ginseng was supplied by the National Research Council of Canada, Institute for National Measurement Standards. H9C2 cells, a rat cardiomyocyte cell line, were exposed to angiotensin II (Ang II) or tumor necrosis factor alpha (TNFalpha) to induce oxidative stress that was examined by measuring formation of reactive oxygen and nitrogen species. Oxidative stress-induced cell death was induced by exogenous addition of hydrogen peroxide (H(2)O(2)). Proteins were measured by Western blot and mRNA expression was determined by quantitative real time PCR. Nrf2-driven transcriptional activity was assessed by antioxidant response element (ARE)-luciferase reporter assay. Direct Nrf2 binding to its target gene promoters was determined by chromatin immunoprecipitation assay. Adenoviral over-expression of Nrf2 shRNA was utilized to knock down Nrf2 in H9C2 cells. Immunochemical staining was applied for Nrf2 expression in the heart. American ginseng induced dramatic increases in Nrf2 protein expression, Nrf2 nuclear translocation, Nrf2 transcriptional activity, direct Nrf2 binding to its target gene promoters, and expression of a group of anti-oxidative genes driven by Nrf2 in H9C2 cells. In addition, American ginseng inhibited Ang II- or TNFalpha-induced free radical formation and H(2)O(2)-induced cell death in H9C2 cells over-expressed with control shRNA but not in the cells over-expressed with Nrf2 shRNA. Finally, oral

  7. Callus induction via different growth regulators from cotyledon ...

    African Journals Online (AJOL)

    Cicer arietinum L.) cultivars KK-1 and Hassan-2K on MS and B5 media containing different combinations and concentrations of growth regulators. Different MS and B5 callusing media containing varying level of 2, 4-D (2 and 4 mg/l), NAA (0.50 ...

  8. Auxin-BR Interaction Regulates Plant Growth and Development

    Science.gov (United States)

    Tian, Huiyu; Lv, Bingsheng; Ding, Tingting; Bai, Mingyi; Ding, Zhaojun

    2018-01-01

    Plants develop a high flexibility to alter growth, development, and metabolism to adapt to the ever-changing environments. Multiple signaling pathways are involved in these processes and the molecular pathways to transduce various developmental signals are not linear but are interconnected by a complex network and even feedback mutually to achieve the final outcome. This review will focus on two important plant hormones, auxin and brassinosteroid (BR), based on the most recent progresses about these two hormone regulated plant growth and development in Arabidopsis, and highlight the cross-talks between these two phytohormones. PMID:29403511

  9. Particulate matter exposure exacerbates high glucose-induced cardiomyocyte dysfunction through ROS generation.

    Directory of Open Access Journals (Sweden)

    Li Zuo

    Full Text Available Diabetes mellitus and fine particulate matter from diesel exhaust (DEP are both important contributors to the development of cardiovascular disease (CVD. Diabetes mellitus is a progressive disease with a high mortality rate in patients suffering from CVD, resulting in diabetic cardiomyopathy. Elevated DEP levels in the air are attributed to the development of various CVDs, presumably since fine DEP (<2.5 µm in diameter can be inhaled and gain access to the circulatory system. However, mechanisms defining how DEP affects diabetic or control cardiomyocyte function remain poorly understood. The purpose of the present study was to evaluate cardiomyocyte function and reactive oxygen species (ROS generation in isolated rat ventricular myocytes exposed overnight to fine DEP (0.1 µg/ml, and/or high glucose (HG, 25.5 mM. Our hypothesis was that DEP exposure exacerbates contractile dysfunction via ROS generation in cardiomyocytes exposed to HG. Ventricular myocytes were isolated from male adult Sprague-Dawley rats cultured overnight and sarcomeric contractile properties were evaluated, including: peak shortening normalized to baseline (PS, time-to-90% shortening (TPS(90, time-to-90% relengthening (TR(90 and maximal velocities of shortening/relengthening (±dL/dt, using an IonOptix field-stimulator system. ROS generation was determined using hydroethidine/ethidium confocal microscopy. We found that DEP exposure significantly increased TR(90, decreased PS and ±dL/dt, and enhanced intracellular ROS generation in myocytes exposed to HG. Further studies indicated that co-culture with antioxidants (0.25 mM Tiron and 0.5 mM N-Acetyl-L-cysteine completely restored contractile function in DEP, HG and HG+DEP-treated myocytes. ROS generation was blocked in HG-treated cells with mitochondrial inhibition, while ROS generation was blocked in DEP-treated cells with NADPH oxidase inhibition. Our results suggest that DEP exacerbates myocardial dysfunction in isolated

  10. Exogenous application of plant growth regulators increased the total ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-02

    Nov 2, 2009 ... the exogenous application of flavonoids reports plant growth regulation ... method used for extraction and quantification of endogenous gibberellins was ... 365 nm) while separation was done on a C18 reverse-phase HPLC.

  11. Analysis of mitochondrial 3D-deformation in cardiomyocytes during active contraction reveals passive structural anisotropy of orthogonal short axes.

    Directory of Open Access Journals (Sweden)

    Yael Yaniv

    Full Text Available The cardiomyocyte cytoskeleton, composed of rigid and elastic elements, maintains the isolated cell in an elongated cylindrical shape with an elliptical cross-section, even during contraction-relaxation cycles. Cardiomyocyte mitochondria are micron-sized, fluid-filled passive spheres distributed throughout the cell in a crystal-like lattice, arranged in pairs sandwiched between the sarcomere contractile machinery, both longitudinally and radially. Their shape represents the extant 3-dimensional (3D force-balance. We developed a novel method to examine mitochondrial 3D-deformation in response to contraction and relaxation to understand how dynamic forces are balanced inside cardiomyocytes. The variation in transmitted light intensity induced by the periodic lattice of myofilaments alternating with mitochondrial rows can be analyzed by Fourier transformation along a given cardiomyocyte axis to measure mitochondrial deformation along that axis. This technique enables precise detection of changes in dimension of ∼1% in ∼1 µm (long-axis structures with 8 ms time-resolution. During active contraction (1 Hz stimulation, mitochondria deform along the length- and width-axes of the cell with similar deformation kinetics in both sarcomere and mitochondrial structures. However, significant deformation anisotropy (without hysteresis was observed between the orthogonal short-axes (i.e., width and depth of mitochondria during electrical stimulation. The same degree of deformation anisotropy was also found between the myocyte orthogonal short-axes during electrical stimulation. Therefore, the deformation of the mitochondria reflects the overall deformation of the cell, and the apparent stiffness and stress/strain characteristics of the cytoskeleton differ appreciably between the two cardiomyocyte orthogonal short-axes. This method may be applied to obtaining a better understanding of the dynamic force-balance inside cardiomyocytes and of changes in the

  12. Regulation of Hepatic Stellate Cells and Fibrogenesis by Fibroblast Growth Factors

    Directory of Open Access Journals (Sweden)

    Justin D. Schumacher

    2016-01-01

    Full Text Available Fibroblast growth factors (FGFs are a family of growth factors critically involved in developmental, physiological, and pathological processes, including embryogenesis, angiogenesis, wound healing, and endocrine functions. In the liver, several FGFs are produced basally by hepatocytes and hepatic stellate cells (HSCs. Upon insult to the liver, expression of FGFs in HSCs is greatly upregulated, stimulating hepatocyte regeneration and growth. Various FGF isoforms have also been shown to directly induce HSC proliferation and activation thereby enabling autocrine and paracrine regulation of HSC function. Regulation of HSCs by the endocrine FGFs, namely, FGF15/19 and FGF21, has also recently been identified. With the ability to modulate HSC proliferation and transdifferentiation, targeting FGF signaling pathways constitutes a promising new therapeutic strategy to treat hepatic fibrosis.

  13. Effects of Plant Growth Regulators and Photoperiod on In

    African Journals Online (AJOL)

    Shahin

    using the combination of two plant growth regulators and same photoperiod. Key words: Tissue culture, ... they can be stored and transplanted directly into the field without an acclimatization ..... SAS user's guide. cary, NC: Statistical Analysis ...

  14. The Role of Reactive Oxygen Species in β-Adrenergic Signaling in Cardiomyocytes from Mice with the Metabolic Syndrome.

    Directory of Open Access Journals (Sweden)

    Monica Llano-Diez

    Full Text Available The metabolic syndrome is associated with prolonged stress and hyperactivity of the sympathetic nervous system and afflicted subjects are prone to develop cardiovascular disease. Under normal conditions, the cardiomyocyte response to acute β-adrenergic stimulation partly depends on increased production of reactive oxygen species (ROS. Here we investigated the interplay between beta-adrenergic signaling, ROS and cardiac contractility using freshly isolated cardiomyocytes and whole hearts from two mouse models with the metabolic syndrome (high-fat diet and ob/ob mice. We hypothesized that cardiomyocytes of mice with the metabolic syndrome would experience excessive ROS levels that trigger cellular dysfunctions. Fluorescent dyes and confocal microscopy were used to assess mitochondrial ROS production, cellular Ca2+ handling and contractile function in freshly isolated adult cardiomyocytes. Immunofluorescence, western blot and enzyme assay were used to study protein biochemistry. Unexpectedly, our results point towards decreased cardiac ROS signaling in a stable, chronic phase of the metabolic syndrome because: β-adrenergic-induced increases in the amplitude of intracellular Ca2+ signals were insensitive to antioxidant treatment; mitochondrial ROS production showed decreased basal rate and smaller response to β-adrenergic stimulation. Moreover, control hearts and hearts with the metabolic syndrome showed similar basal levels of ROS-mediated protein modification, but only control hearts showed increases after β-adrenergic stimulation. In conclusion, in contrast to the situation in control hearts, the cardiomyocyte response to acute β-adrenergic stimulation does not involve increased mitochondrial ROS production in a stable, chronic phase of the metabolic syndrome. This can be seen as a beneficial adaptation to prevent excessive ROS levels.

  15. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Haffar, T. [Université de Montreal (Canada); Montreal Heart Institute (Canada); Bérubé-Simard, F. [Montreal Heart Institute (Canada); Bousette, N., E-mail: nicolas.bousette@umontreal.ca [Université de Montreal (Canada); Montreal Heart Institute (Canada)

    2015-12-04

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring {sup 14}C–CO{sub 2} production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO

  16. Impaired fatty acid oxidation as a cause for lipotoxicity in cardiomyocytes

    International Nuclear Information System (INIS)

    Haffar, T.; Bérubé-Simard, F.; Bousette, N.

    2015-01-01

    A major cause for diabetic cardiomyopathy is excess lipid accumulation. To elucidate mechanisms of lipotoxicity mediated diabetic heart disease we need to further our understanding of how lipid metabolism is altered in the diabetic heart. Here we investigated the role of lipid clearance by oxidation as a regulator of lipid-mediated toxicity (lipotoxicity). We evaluated the effect of pre-treating rat neonatal cardiomyocytes (NCMs) with either oleate (mono-unsaturated fatty acid) or palmitate (saturated fatty acid) on fatty acid oxidation (FAO) by measuring "1"4C–CO_2 production. We evaluated carnitine palmitoyltransferase (Cpt1b) expression by western blotting and mitochondrial membrane potential by quantitative and qualitative fluorescence analyses using the JC-1 dye. We inhibited the Cpt1b pharmacologically using etomoxir and genetically by knocking down its expression using LentiVector mediated transduction of siRNAs targeting the Cpt1b gene. We found that palmitate had a slower clearance rate from NCMs than oleate, and this was associated with a significant decrease in FAO. This impairment in FAO was not the result of either loss of Cpt1b protein or mitochondrial integrity. Enhancing FAO with either oleate or carnitine was associated with a significant attenuation of palmitate mediated lipotoxicity. In contrast impairing FAO in oleate treated NCMs caused lipotoxicity. Here we demonstrate that a major difference between non-toxic unsaturated fatty acids and toxic saturated fatty acids is there ability to stimulate or inhibit fatty acid oxidation, respectively. This has important implications for diabetic cardiomyopathy since diabetic hearts consistently exhibit elevated lipid accumulation. - Highlights: • Palmitate had a slower clearance rate from NCMs than oleate. • Palmitate caused a significant decrease in fatty acid oxidation in cardiomyocytes. • Impaired FAO was not due to loss of Cpt1b protein or mitochondrial integrity. • Enhancing FAO attenuated

  17. Growth regulators, DNA content and anatomy in vitro -cultivated ...

    African Journals Online (AJOL)

    Growth regulators, DNA content and anatomy in vitro -cultivated Curcuma longa ... Shoots were inoculated in MS culture medium with the addition of 30 g/L of sucrose ... flow cytometry, utilizing two reference standards, green pea, and tomato.

  18. Human heart disease : lessons from human pluripotent stem cell-derived cardiomyocytes

    NARCIS (Netherlands)

    Giacomelli, E.; Mummery, C.L.; Bellin, M.

    2017-01-01

    Technical advances in generating and phenotyping cardiomyocytes from human pluripotent stem cells (hPSC-CMs) are now driving their wider acceptance as in vitro models to understand human heart disease and discover therapeutic targets that may lead to new compounds for clinical use. Current

  19. Interleukin 1 is an autocrine regulator of human endothelial cell growth

    International Nuclear Information System (INIS)

    Cozzolino, F.; Torcia, M.; Aldinucci, D.; Ziche, M.; Bani, D.; Almerigogna, F.; Stern, D.M.

    1990-01-01

    Proliferation of endothelial cells is regulated through the autocrine production of growth factors and the expression of cognate surface receptors. In this study, the authors demonstrate that interleukin 1 (IL-1) is an inhibitor of endothelial growth in vitro and in vivo. IL-1 arrested growing, cultured endothelial cells in G 1 phase; inhibition of proliferation was dose dependent and occurred in parallel with occupancy of endothelial surface IL-1 receptors. In an angiogenesis model, IL-1 could inhibit fibroblast growth factor-induced vessel formation. The autocrine nature of the IL-1 effect on endothelial proliferation was demonstrated by the observation that occupancy of cell-surface receptors by endogenous IL-1 depressed cell growth. The potential significance of this finding was emphasized by the detection of IL-1 in the native endothelium of human umbilical veins. A mechanism by which IL-1 may exert its inhibitory effect on endothelial cell growth was suggested by studies showing that IL-1 decreased the expression of high-affinity fibroblast growth factor binding sites on endothelium. These results point to a potentially important role of IL-1 in regulating blood vessel growth the suggest that autocrine production of inhibitory factors may be a mechanism controlling proliferation of normal cells

  20. Expression of the central growth regulator BIG BROTHER is regulated by multiple cis-elements

    Directory of Open Access Journals (Sweden)

    Breuninger Holger

    2012-03-01

    Full Text Available Abstract Background Much of the organismal variation we observe in nature is due to differences in organ size. The observation that even closely related species can show large, stably inherited differences in organ size indicates a strong genetic component to the control of organ size. Despite recent progress in identifying factors controlling organ growth in plants, our overall understanding of this process remains limited, partly because the individual factors have not yet been connected into larger regulatory pathways or networks. To begin addressing this aim, we have studied the upstream regulation of expression of BIG BROTHER (BB, a central growth-control gene in Arabidopsis thaliana that prevents overgrowth of organs. Final organ size and BB expression levels are tightly correlated, implying the need for precise control of its expression. BB expression mirrors proliferative activity, yet the gene functions to limit proliferation, suggesting that it acts in an incoherent feedforward loop downstream of growth activators to prevent over-proliferation. Results To investigate the upstream regulation of BB we combined a promoter deletion analysis with a phylogenetic footprinting approach. We were able to narrow down important, highly conserved, cis-regulatory elements within the BB promoter. Promoter sequences of other Brassicaceae species were able to partially complement the A. thaliana bb-1 mutant, suggesting that at least within the Brassicaceae family the regulatory pathways are conserved. Conclusions This work underlines the complexity involved in precise quantitative control of gene expression and lays the foundation for identifying important upstream regulators that determine BB expression levels and thus final organ size.

  1. The effect of cutting origin and organic plant growth regulator on the growth of Daun Ungu (Graptophyllum pictum) through stem cutting method

    Science.gov (United States)

    Pratama, S. P.; Yunus, A.; Purwanto, E.; Widyastuti, Y.

    2018-03-01

    Graptophyllum pictum is one of medical plants which has important chemical content to treat diseases. Leaf, bark and flower can be used to facilitate menstruation, treat hemorrhoid, constipation, ulcers, ulcers, swelling, and earache. G. pictum is difficult to propagated by seedling due to the long duration of seed formation, thusvegetative propagation is done by stem cutting. The aims of this study are to obtain optimum combination of cutting origin and organic plant growth regulator in various consentration for the growth of Daun Ungu through stem cutting method. This research was conducted at Research center for Medicinal Plant and Traditional DrugTanjungsari, Tegal Gede, Karanganyar in June to August 2016. Origin of cuttings and organic plant growth regulator were used as treatments factor. A completely randomized design (RAL) is used and data were analyzed by F test (ANOVA) with a confidence level of 95%. Any significant differences among treatment followed with Duncan test at a = 5%. The research indicates that longest root was resulted from the treatment of 0,5 ml/l of organic plant growth regulator. The treatment of 1 ml/l is able to increase the fresh and dry weight of root, treatment of 1,5 ml/l of organic plant growth regulator was able to increase the percentage of growing shoots. Treatment of base part as origin of cuttings increases the length, fresh weight and and dry weight of shoot, increase the number of leaves. Interaction treatment between 1 ml/l consentration of organic plant growth regulator and central part origin of cuttings is capable of increasing the leaf area, whereas treatment without organic plant growth regulator and base part as planting material affects the smallest leaf area.

  2. Transcriptome analysis reveals the regulation of brassinosteroids on petal growth in Gerbera hybrida

    Directory of Open Access Journals (Sweden)

    Gan Huang

    2017-05-01

    Full Text Available Gerbera hybrida is a cut-flower crop of global importance, and an understanding of the mechanisms underlying petal development is vital for the continued commercial development of this plant species. Brassinosteroids (BRs, a class of phytohormones, are known to play a major role in cell expansion, but their effect on petal growth in G. hybrida is largely unexplored. In this study, we found that the brassinolide (BL, the most active BR, promotes petal growth by lengthening cells in the middle and basal regions of petals, and that this effect on petal growth was greater than that of gibberellin (GA. The RNA-seq (high-throughput cDNA sequencing technique was employed to investigate the regulatory mechanisms by which BRs control petal growth. A global transcriptome analysis of the response to BRs in petals was conducted and target genes regulated by BR were identified. These differentially expressed genes (DEGs include various transcription factors (TFs that were activated during the early stage (0.5 h of BL treatment, as well as cell wall proteins whose expression was regulated at a late stage (10 h. BR-responsive DEGs are involved in multiple plant hormone signal pathways, hormone biosynthesis and biotic and abiotic stress responses, showing that the regulation of petal growth by BRs is a complex network of processes. Thus, our study provides new insights at the transcriptional level into the molecular mechanisms of BR regulation of petal growth in G. hybrida.

  3. Light Chain Amyloid Fibrils Cause Metabolic Dysfunction in Human Cardiomyocytes.

    Directory of Open Access Journals (Sweden)

    Helen P McWilliams-Koeppen

    Full Text Available Light chain (AL amyloidosis is the most common form of systemic amyloid disease, and cardiomyopathy is a dire consequence, resulting in an extremely poor prognosis. AL is characterized by the production of monoclonal free light chains that deposit as amyloid fibrils principally in the heart, liver, and kidneys causing organ dysfunction. We have studied the effects of amyloid fibrils, produced from recombinant λ6 light chain variable domains, on metabolic activity of human cardiomyocytes. The data indicate that fibrils at 0.1 μM, but not monomer, significantly decrease the enzymatic activity of cellular NAD(PH-dependent oxidoreductase, without causing significant cell death. The presence of amyloid fibrils did not affect ATP levels; however, oxygen consumption was increased and reactive oxygen species were detected. Confocal fluorescence microscopy showed that fibrils bound to and remained at the cell surface with little fibril internalization. These data indicate that AL amyloid fibrils severely impair cardiomyocyte metabolism in a dose dependent manner. These data suggest that effective therapeutic intervention for these patients should include methods for removing potentially toxic amyloid fibrils.

  4. Stiff mutant genes of Phycomyces target turgor pressure and wall mechanical properties to regulate elongation growth rate

    Directory of Open Access Journals (Sweden)

    Joseph K. E. Ortega

    2012-05-01

    Full Text Available Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses and differential elongation growth rate (tropic responses. Stiff mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least four genes; madD, madE, madF and madG. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the growth zone. Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type. A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (- and C216 geo- (-. Experimental results demonstrate that turgor pressure is larger but irreversible deformation rates of the wall within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to wild type. These findings explain the diminished tropic responses of the stiff mutant sporangiophores and suggest that the defective genes affect the amount of wall-building material delivered to the inner

  5. Effects of PPARs agonists on cardiac metabolism in littermate and cardiomyocyte-specific PPAR-γ-knockout (CM-PGKO mice.

    Directory of Open Access Journals (Sweden)

    Michelangela Barbieri

    Full Text Available Understanding the molecular regulatory mechanisms controlling for myocardial lipid metabolism is of critical importance for the development of new therapeutic strategies for heart diseases. The role of PPARγ and thiazolidinediones in regulation of myocardial lipid metabolism is controversial. The aim of our study was to assess the role of PPARγ on myocardial lipid metabolism and function and differentiate local/from systemic actions of PPARs agonists using cardiomyocyte-specific PPARγ -knockout (CM-PGKO mice. To this aim, the effect of PPARγ, PPARγ/PPARα and PPARα agonists on cardiac function, intra-myocyte lipid accumulation and myocardial expression profile of genes and proteins, affecting lipid oxidation, uptake, synthesis, and storage (CD36, CPT1MIIA, AOX, FAS, SREBP1-c and ADPR was evaluated in cardiomyocyte-specific PPARγ-knockout (CM-PGKO and littermate control mice undergoing standard and high fat diet (HFD. At baseline, protein levels and mRNA expression of genes involved in lipid uptake, oxidation, synthesis, and accumulation of CM-PGKO mice were not significantly different from those of their littermate controls. At baseline, no difference in myocardial lipid content was found between CM-PGKO and littermate controls. In standard condition, pioglitazone and rosiglitazone do not affect myocardial metabolism while, fenofibrate treatment significantly increased CD36 and CPT1MIIA gene expression. In both CM-PGKO and control mice submitted to HFD, six weeks of treatment with rosiglitazone, fenofibrate and pioglitazone lowered myocardial lipid accumulation shifting myocardial substrate utilization towards greater contribution of glucose. In conclusion, at baseline, PPARγ does not play a crucial role in regulating cardiac metabolism in mice, probably due to its low myocardial expression. PPARs agonists, indirectly protect myocardium from lipotoxic damage likely reducing fatty acids delivery to the heart through the actions on adipose

  6. Propofol attenuates H2O2-induced oxidative stress and apoptosis via the mitochondria- and ER-medicated pathways in neonatal rat cardiomyocytes.

    Science.gov (United States)

    Liu, Xue-Ru; Cao, Lu; Li, Tao; Chen, Lin-Lin; Yu, Yi-Yan; Huang, Wen-Jun; Liu, Li; Tan, Xiao-Qiu

    2017-05-01

    Previous studies have shown that propofol, an intravenous anesthetic commonly used in clinical practice, protects the myocardium from injury. Mitochondria- and endoplasmic reticulum (ER)-mediated oxidative stress and apoptosis are two important signaling pathways involved in myocardial injury and protection. The present study aimed to test the hypothesis that propofol could exert a cardio-protective effect via the above two pathways. Cultured neonatal rat cardiomyocytes were treated with culture medium (control group), H 2 O 2 at 500 μM (H 2 O 2 group), propofol at 50 μM (propofol group), and H 2 O 2 plus propofol (H 2 O 2  + propofol group), respectively. The oxidative stress, mitochondrial membrane potential (ΔΨm) and apoptosis of the cardiomyocytes were evaluated by a series of assays including ELISA, flow cytometry, immunofluorescence microscopy and Western blotting. Propofol significantly suppressed the H 2 O 2 -induced elevations in the activities of caspases 3, 8, 9 and 12, the ratio of Bax/Bcl-2, and cell apoptosis. Propofol also inhibited the H 2 O 2 -induced reactive oxygen species (ROS) generation, lactic dehydrogenase (LDH) release and mitochondrial transmembrane potential (ΔΨm) depolarization, and restored the H 2 O 2 -induced reductions of glutathione (GSH) and superoxide dismutase (SOD). In addition, propofol decreased the expressions of glucose-regulated protein 78 kDa (Grp78) and inositol-requiring enzyme 1α (IRE1α), two important signaling molecules in the ER-mediated apoptosis pathway. Propofol protects cardiomyocytes from H 2 O 2 -induced injury by inhibiting the mitochondria- and ER-mediated apoptosis signaling pathways.

  7. Using natural and synthetic growth regulators of plants in industrial mycology and malting

    Directory of Open Access Journals (Sweden)

    O. V. Kuznetcova

    2010-07-01

    Full Text Available Data on the expansion of the use the plants growth regulators in different areas are presented. The positive impact of the growth stimulators on the development of the Pleurotus ostreatus mycelium’s on agar nutrient media during surface cultivation is shown. The results for growth regulators stimulating effect on the fungus biosynthetic activity in submerged cultures are obtained. The possibility of using fumar and heteroauxin for malting is considered. The decline of malting time and increase of amylolytic activity of the malt are recorded.

  8. The effect of some growth regulators on enzyme systems in irradiated barley grain using disinfestation doses

    International Nuclear Information System (INIS)

    Bachman, S.

    1973-01-01

    Disinfestation doses of 20 to 100 krad may cause changes in the biological systems of barley grain and, therefore, may influence undesirably the technological quality of malted grain. The effect of some growth regulators on irradiated grain has been investigated. The experiments have been carried out on brewery barley var. Visa Breuns. Following growth-regulators were used: gibberellic acid (Polish preparation ''Gibrescol''), kinetin (6-furfurylo-aminopurin), CCC (2-chloroethyl trimethyl ammonium chloride), and betaine hydrochloride. By treating the irradiated barley with solutions of growth regulators it was possible to diminish the loss of enzyme activity. A ''regenerating'' effect of growth substances, mainly gibberellic acid and betain hydrochloride in 10 -4 M solutions, was observed. Amylolytic activity decreased immediately after irradiation but in samples treated with growth regulators it was higher than in those without regulators. The results may have a practical importance since gibberellic acid has just been introduced into the brewery industry. (F.J.)

  9. Productivity growth and price regulation of Slovenian water distribution utilities

    Directory of Open Access Journals (Sweden)

    Jelena Zorić

    2010-06-01

    Full Text Available This paper aims to analyse the price regulation method and performance of thewater industry in Slovenia. A stochastic cost frontier model is employed to estimate and decompose the total factor productivity (TFP growth of water distribution utilities in the 1997-2003 period. The main goal is to find out whether the lack of proper incentives to improve performance has resulted in the low TFP growth of Slovenian water distribution utilities. The evidence suggests that cost inefficiencies are present in water utilities, which indicates considerable cost saving potential in the analysed industry. Technical change is found to have positively affected the TFP growth over time, while cost inefficiency levels remained essentially unchanged. Overall, the average annual TFP growth in the analysed period is estimated to be only slightly above zero, which is a relatively poor result. This can largely be contributed to the present institutional and regulatory setting that does not stimulate utilities to improve productivity. Therefore, the introduction of an independent regulatory agency and an incentive-based price regulation scheme should be seriously considered in order to enhance the performance of Slovenian water distribution utilities.

  10. Both cardiomyocyte and endothelial cell Nox4 mediate protection against hemodynamic overload-induced remodelling.

    Science.gov (United States)

    Zhang, Min; Mongue-Din, Heloise; Martin, Daniel; Catibog, Norman; Smyrnias, Ioannis; Zhang, Xiaohong; Yu, Bin; Wang, Minshu; Brandes, Ralf P; Schröder, Katrin; Shah, Ajay M

    2018-03-01

    NADPH oxidase-4 (Nox4) is an important reactive oxygen species (ROS) source that is upregulated in the haemodynamically overloaded heart. Our previous studies using global Nox4 knockout (Nox4KO) mice demonstrated a protective role of Nox4 during chronic abdominal aortic banding, involving a paracrine enhancement of myocardial capillary density. However, other authors who studied cardiac-specific Nox4KO mice reported detrimental effects of Nox4 in response to transverse aortic constriction (TAC). It has been speculated that these divergent results are due to cell-specific actions of Nox4 (i.e. cardiomyocyte Nox4 detrimental but endothelial Nox4 beneficial) and/or differences in the model of pressure overload (i.e. abdominal banding vs. TAC). This study aimed to (i) investigate whether the effects of Nox4 on pressure overload-induced cardiac remodelling vary according to the pressure overload model and (ii) compare the roles of cardiomyocyte vs. endothelial cell Nox4. Global Nox4KO mice subjected to TAC developed worse cardiac remodelling and contractile dysfunction than wild-type littermates, consistent with our previous results with abdominal aortic banding. Next, we generated inducible cardiomyocyte-specific Nox4 KO mice (Cardio-Nox4KO) and endothelial-specific Nox4 KO mice (Endo-Nox4KO) and studied their responses to pressure overload. Both Cardio-Nox4KO and Endo-Nox4KO developed worse pressure overload-induced cardiac remodelling and dysfunction than wild-type littermates, associated with significant decrease in protein levels of HIF1α and VEGF and impairment of myocardial capillarization. Cardiomyocyte as well as endothelial cell Nox4 contributes to protection against chronic hemodynamic overload-induced cardiac remodelling, at least in part through common effects on myocardial capillary density. © The Author 2017 Published by Oxford University Press on behalf of the European Society of Cardiology.

  11. Regulation of Long Bone Growth in Vertebrates; It Is Time to Catch Up.

    Science.gov (United States)

    Roselló-Díez, Alberto; Joyner, Alexandra L

    2015-12-01

    The regulation of organ size is essential to human health and has fascinated biologists for centuries. Key to the growth process is the ability of most organs to integrate organ-extrinsic cues (eg, nutritional status, inflammatory processes) with organ-intrinsic information (eg, genetic programs, local signals) into a growth response that adapts to changing environmental conditions and ensures that the size of an organ is coordinated with the rest of the body. Paired organs such as the vertebrate limbs and the long bones within them are excellent models for studying this type of regulation because it is possible to manipulate one member of the pair and leave the other as an internal control. During development, growth plates at the end of each long bone produce a transient cartilage model that is progressively replaced by bone. Here, we review how proliferation and differentiation of cells within each growth plate are tightly controlled mainly by growth plate-intrinsic mechanisms that are additionally modulated by extrinsic signals. We also discuss the involvement of several signaling hubs in the integration and modulation of growth-related signals and how they could confer remarkable plasticity to the growth plate. Indeed, long bones have a significant ability for "catch-up growth" to attain normal size after a transient growth delay. We propose that the characterization of catch-up growth, in light of recent advances in physiology and cell biology, will provide long sought clues into the molecular mechanisms that underlie organ growth regulation. Importantly, catch-up growth early in life is commonly associated with metabolic disorders in adulthood, and this association is not completely understood. Further elucidation of the molecules and cellular interactions that influence organ size coordination should allow development of novel therapies for human growth disorders that are noninvasive and have minimal side effects.

  12. Spatial Regulation of Root Growth: Placing the Plant TOR Pathway in a Developmental Perspective

    Science.gov (United States)

    Barrada, Adam; Montané, Marie-Hélène; Robaglia, Christophe; Menand, Benoît

    2015-01-01

    Plant cells contain specialized structures, such as a cell wall and a large vacuole, which play a major role in cell growth. Roots follow an organized pattern of development, making them the organs of choice for studying the spatio-temporal regulation of cell proliferation and growth in plants. During root growth, cells originate from the initials surrounding the quiescent center, proliferate in the division zone of the meristem, and then increase in length in the elongation zone, reaching their final size and differentiation stage in the mature zone. Phytohormones, especially auxins and cytokinins, control the dynamic balance between cell division and differentiation and therefore organ size. Plant growth is also regulated by metabolites and nutrients, such as the sugars produced by photosynthesis or nitrate assimilated from the soil. Recent literature has shown that the conserved eukaryotic TOR (target of rapamycin) kinase pathway plays an important role in orchestrating plant growth. We will summarize how the regulation of cell proliferation and cell expansion by phytohormones are at the heart of root growth and then discuss recent data indicating that the TOR pathway integrates hormonal and nutritive signals to orchestrate root growth. PMID:26295391

  13. Role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes via TLR4/ROS/NF-κB pathway.

    Science.gov (United States)

    Yu, Jiangkun; Lu, Yanyu; Li, Yapeng; Xiao, Lili; Xing, Yu; Li, Yanshen; Wu, Leiming

    2015-09-01

    S100A1 plays a crucial role in hypoxia-induced inflammatory response in cardiomyocytes. However, the role of S100A1 in hypoxia-induced inflammatory response in cardiomyocytes is still unknown. enzyme-linked immunosorbent assay (ELISA) was performed for the determination of inflammatory cytokines. Immunocytochemistry and immunofluorescence, Western blot analysis and Real-time polymerase chain reaction (RT-PCR) were conducted to assess protein or mRNA expressions. Fluorogenic probe dihydroethidium (DHE) was used to evaluate the generation of reactive oxygen species (ROS) while Hoechst 33342 staining for apoptosis. Small interfering RNA (siRNA) for S100A1 was used to evaluate the role of S100A1. The levels of ROS and inflammatory cytokine including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6 and IL-8 in H9c2 cells were increased remarkably by hypoxia. However, IL-37 protein or mRNA levels were decreased significantly. Both Toll-like receptor 4 (TLR4) inhibitor Ethyl (6R)-6-[N-(2-Chloro-4fluorophenyl)sulfamoyl]cyclohex-1-ene-1-carboxylate (TAK-242) treatment or siRNA S100A1 downregulated TLR4 expression and inflammatory cytokine level and mRNA in H9c2 cells, as well as weakening ROS and phospho-p65 Nuclear factor (NF)-κB levels. Further, S100A1 treatment significantly reduced TNF-α protein or mRNA level whereas enhanced IL-37 protein or mRNA level, and could attenuate ROS and phospho-p65 NF-κB levels. Our results demonstrate that S100A1 can regulate the inflammatory response and oxidative stress in H9C2 cells via TLR4/ROS/NF-κB pathway. These findings provide an interesting strategy for protecting cardiomyocytes from hypoxia-induced inflammatory response. © 2015 Royal Pharmaceutical Society.

  14. Diclofenac induces proteasome and mitochondrial dysfunction in murine cardiomyocytes and hearts.

    Science.gov (United States)

    Ghosh, Rajeshwary; Goswami, Sumanta K; Feitoza, Luis Felipe B B; Hammock, Bruce; Gomes, Aldrin V

    2016-11-15

    One of the most common nonsteroidal anti-inflammatory drugs (NSAIDs) used worldwide, diclofenac (DIC), has been linked to increased risk of cardiovascular disease (CVD). The molecular mechanism(s) by which DIC causes CVD is unknown. Proteasome activities were studied in hearts, livers, and kidneys from male Swiss Webster mice treated with either 100mg/kg DIC for 18h (acute treatment) or 10mg/kg DIC for 28days (chronic treatment). Cultured H9c2 cells and neonatal cardiomyocytes were also treated with different concentrations of DIC and proteasome function, cell death and ROS generation studied. Isolated mouse heart mitochondria were utilized to determine the effect of DIC on various electron transport chain complex activities. DIC significantly inhibited the chymotrypsin-like proteasome activity in rat cardiac H9c2 cells, murine neonatal cardiomyocytes, and mouse hearts, but did not affect proteasome subunit expression levels. Proteasome activity was also affected in liver and kidney tissues from DIC treated animals. The levels of polyubiquitinated proteins increased in hearts from DIC treated mice. Importantly, the levels of oxidized proteins increased while the β5i immunoproteasome activity decreased in hearts from DIC treated mice. DIC increased ROS production and cell death in H9c2 cells and neonatal cardiomyocytes while the cardioprotective NSAID, aspirin, had no effect on ROS levels or cell viability. DIC inhibited mitochondrial Complex III, a major source of ROS, and impaired mitochondrial membrane potential suggesting that mitochondria are the major sites of ROS generation. These results suggest that DIC induces cardiotoxicity by a ROS dependent mechanism involving mitochondrial and proteasome dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Experimental research on recombinant human endostatin-induced cardiomyocyte apoptosis in rats

    Directory of Open Access Journals (Sweden)

    Jing QIN

    2014-03-01

    Full Text Available Objective To explore the recombinant human endostatin (rh-ES-induced cardiotoxicity in rats and its mechanism. Methods Twenty four female Wistar rats were randomly divided into four groups (6 each. Rats in low, moderate and high dose group received rh-ES with a dosage of 3, 6 and 12mg/(kg·d, respectively, by intraperitoneal injection, and rats in control group received the same amount of normal saline alone. Half of rats in each group were sacrificed by spinal dislocation after 4 weeks and 8 weeks of the treatment. Pathomorphologic and ultrastructural changes in rat's myocardial tissue were evaluated by light microscopy and transmission electron microscopy. Cardiomyocyte apoptosis was detected with TdT-mediated dUTP nick end labeling (TUNEL assay. Microvessel density (MVD in myocardial tissue was measured by immunohistochemically marking endothelial cell with CD34. Results No pathomorphologic and ultrastrucural changes were found under light microscope and transmission electron microscope in the low dose and moderate dose groups, but cardiomyocyte damage were found in the high dose group. TUNEL assay revealed more apoptotic cells in high and moderate (only 8 weeks dose groups than in control group (P=0.033, P=0.000, and the apoptosis index was highest in the high dose group at 8 weeks. In addition, compared with the control group, MVD significantly increased in high dose groups at 4 weeks and 8 weeks (P<0.05. Conclusions rh-ES induces the cardiotoxicity in rats, and cardiomyocyte apoptosis is involved in the pathological course of cardiac toxicity. DOI: 10.11855/j.issn.0577-7402.2014.01.02

  16. Apelin and APJ orchestrate complex tissue-specific control of cardiomyocyte hypertrophy and contractility in the hypertrophy-heart failure transition.

    Science.gov (United States)

    Parikh, Victoria Nicole; Liu, Jing; Shang, Ching; Woods, Christopher; Chang, Alex Chia Yu; Zhao, Mingming; Charo, David N; Grunwald, Zachary; Huang, Yong; Seo, Kinya; Tsao, Philip S; Bernstein, Daniel; Ruiz-Lozano, Pilar; Quertermous, Thomas; Ashley, Euan A

    2018-05-18

    The G protein coupled receptor APJ is a promising therapeutic target for heart failure. Constitutive deletion of APJ in the mouse is protective against the hypertrophy-heart failure transition via elimination of ligand-independent, β-arrestin dependent stretch transduction. However, the cellular origin of this stretch transduction and the details of its interaction with apelin signaling remain unknown. We generated mice with conditional elimination of APJ in the endothelium (APJ endo-/- ) and myocardium (APJ myo-/- ). No baseline difference was observed in LV function in APJ endo-/- , APJ myo-/- or controls (APJ endo+/+ , APJ myo+/+ ). After exposure to transaortic constriction (TAC), APJ endo-/- animals developed left ventricular failure while APJ myo-/- were protected. At the cellular level, carbon fiber stretch of freshly isolated single cardiomyocytes demonstrated decreased contractile response to stretch in APJ -/- cardiomyocytes compared to APJ +/+ cardiomyocytes. Calcium transient did not change with stretch in either APJ -/- or APJ +/+ cardiomyocytes. Application of apelin to APJ +/+ cardiomyocytes resulted in decreased calcium transient. Further, hearts of mice treated with apelin exhibited decreased phosphorylation at Troponin I (cTnI) N-terminal residues (Ser 22,23), consistent with increased calcium sensitivity. These data establish that APJ stretch transduction is mediated specifically by myocardial APJ, that APJ is necessary for stretch-induced increases in contractility, and that apelin opposes APJ's stretch-mediated hypertrophy signaling by lowering calcium transient while maintaining contractility through myofilament calcium sensitization. These findings underscore apelin's unique potential as a therapeutic agent that can simultaneously support cardiac function and protect against the hypertrophy-heart failure transition.

  17. N-n-butyl haloperidol iodide protects cardiomyocytes against hypoxia/reoxygenation injury by inhibiting autophagy.

    Science.gov (United States)

    Wang, Bin; Zhong, Shuping; Zheng, Fuchun; Zhang, Yanmei; Gao, Fenfei; Chen, Yicun; Lu, Binger; Xu, Han; Shi, Ganggang

    2015-09-22

    N-n-butyl haloperidol iodide (F2), a novel compound derived from haloperidol, protects against the damaging effects of ischemia/reperfusion (I/R) injury in vitro and in vivo. In this study, we hypothesized the myocardial protection of F2 on cardiomyocyte hypoxia/reoxygenation (H/R) injury is mediated by inhibiting autophagy in H9c2 cells. The degree of autophagy by treatment with F2 exposed to H/R in H9c2 cell was characterized by monodansylcadaverine, transmission electron microscopy, and expression of autophagy marker protein LC3. Our results indicated that treatment with F2 inhibited autophagy in H9c2 cells exposed to H/R. 3-methyladenine, an inhibitor of autophagy, suppressed H/R-induced autophagy, and decreased apoptosis, whereas rapamycin, a classical autophagy sensitizer, increased autophagy and apoptosis. Mechanistically, macrophage migration inhibitory factor (MIF) was inhibited by F2 treatment after H/R. Accordingly, small interfering RNA (siRNA)-mediated MIF knockdown decreased H/R-induced autophagy. In summary, F2 protects cardiomyocytes during H/R injury through suppressing autophagy activation. Our results provide a new mechanistic insight into a functional role of F2 against H/R-induced cardiomyocyte injury and death.

  18. Adult Murine Skeletal Muscle Contains Cells That Can Differentiate into Beating Cardiomyocytes In Vitro

    Directory of Open Access Journals (Sweden)

    Winitsky Steve O

    2005-01-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  19. Adult murine skeletal muscle contains cells that can differentiate into beating cardiomyocytes in vitro.

    Directory of Open Access Journals (Sweden)

    Steve O Winitsky

    2005-04-01

    Full Text Available It has long been held as scientific fact that soon after birth, cardiomyocytes cease dividing, thus explaining the limited restoration of cardiac function after a heart attack. Recent demonstrations of cardiac myocyte differentiation observed in vitro or after in vivo transplantation of adult stem cells from blood, fat, skeletal muscle, or heart have challenged this view. Analysis of these studies has been complicated by the large disparity in the magnitude of effects seen by different groups and obscured by the recently appreciated process of in vivo stem-cell fusion. We now show a novel population of nonsatellite cells in adult murine skeletal muscle that progress under standard primary cell-culture conditions to autonomously beating cardiomyocytes. Their differentiation into beating cardiomyocytes is characterized here by video microscopy, confocal-detected calcium transients, electron microscopy, immunofluorescent cardiac-specific markers, and single-cell patch recordings of cardiac action potentials. Within 2 d after tail-vein injection of these marked cells into a mouse model of acute infarction, the marked cells are visible in the heart. By 6 d they begin to differentiate without fusing to recipient cardiac cells. Three months later, the tagged cells are visible as striated heart muscle restricted to the region of the cardiac infarct.

  20. Growth-Rate Dependent Regulation of tRNA Level and Charging in Bacillus licheniformis.

    Science.gov (United States)

    Ferro, Iolanda; Liebeton, Klaus; Ignatova, Zoya

    2017-10-13

    Cellular growth crucially depends on protein synthesis and the abundance of translational components. Among them, aminoacyl-tRNAs play a central role in biosynthesis and shape the kinetics of mRNA translation, thus influencing protein production. Here, we used microarray-based approaches to determine the charging levels and tRNA abundance of Bacillus licheniformis. We observed an interesting cross-talk among tRNA expression, charging pattern, and growth rate. For a large subset of tRNAs, we found a co-regulated and augmented expression at high growth rate. Their tRNA aminoacylation level is kept relatively constant through riboswitch-regulated expression of the cognate aminoacyl-tRNA-synthetase (AARS). We show that AARSs with putative riboswitch-controlled expression are those charging tRNAs with amino acids which disfavor cell growth when individually added to the nutrient medium. Our results suggest that the riboswitch-regulated AARS expression in B. licheniformis is a powerful mechanism not only to maintain a constant ratio of aminoacyl-tRNA independent of the growth rate but concomitantly to control the intracellular level of free amino acids. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Integrated Analysis of Contractile Kinetics, Force Generation, and Electrical Activity in Single Human Stem Cell-Derived Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Jan David Kijlstra

    2015-12-01

    Full Text Available The quantitative analysis of cardiomyocyte function is essential for stem cell-based approaches for the in vitro study of human cardiac physiology and pathophysiology. We present a method to comprehensively assess the function of single human pluripotent stem cell-derived cardiomyocyte (hPSC-CMs through simultaneous quantitative analysis of contraction kinetics, force generation, and electrical activity. We demonstrate that statistical analysis of movies of contracting hPSC-CMs can be used to quantify changes in cellular morphology over time and compute contractile kinetics. Using a biomechanical model that incorporates substrate stiffness, we calculate cardiomyocyte force generation at single-cell resolution and validate this approach with conventional traction force microscopy. The addition of fluorescent calcium indicators or membrane potential dyes allows the simultaneous analysis of contractility and calcium handling or action potential morphology. Accordingly, our approach has the potential for broad application in the study of cardiac disease, drug discovery, and cardiotoxicity screening.

  2. delta-EF1 is a negative regulator of Ihh in the developing growth plate.

    Science.gov (United States)

    Bellon, Ellen; Luyten, Frank P; Tylzanowski, Przemko

    2009-11-30

    Indian hedgehog (Ihh) regulates proliferation and differentiation of chondrocytes in the growth plate. Although the biology of Ihh is currently well documented, its transcriptional regulation is poorly understood. delta-EF1 is a two-handed zinc finger/homeodomain transcriptional repressor. Targeted inactivation of mouse delta-EF1 leads to skeletal abnormalities including disorganized growth plates, shortening of long bones, and joint fusions, which are reminiscent of defects associated with deregulation of Ihh signaling. Here, we show that the absence of delta-EF1 results in delayed hypertrophic differentiation of chondrocytes and increased cell proliferation in the growth plate. Further, we demonstrate that delta-EF1 binds to the putative regulatory elements in intron 1 of Ihh in vitro and in vivo, resulting in down-regulation of Ihh expression. Finally, we show that delta-EF1 haploinsufficiency leads to a postnatal increase in trabecular bone mass associated with enhanced Ihh expression. In summary, we have identified delta-EF1 as an in vivo negative regulator of Ihh expression in the growth plate.

  3. Response of pine hypocotyl sections to growth regulators and related substances

    Directory of Open Access Journals (Sweden)

    J. Zakrzewski

    2015-01-01

    Full Text Available Growth response of Pinus silvestris hypocotyl sections to some synthetic growth regulators and related substances was studied. Elongation of hypocotyl sections was stimulated by naphtaleneacetic acid, indole-3-acetic acid, in-dole-3-propionic acid, indole-3-butyric acid, 2,4-dichlorophenoxyacetic acid, indoleaoetic amide, indoleacetic nitrile and coumarin. Indole-3-acetic acid and naphtaleneacetic acid extended period of growth up to 16 and 24 hours, respectively. Growth was inhibited by kinetin, trans-cinnamic acid and 2,3,5-tri-iodobenzoic acid. No effect of gibberellic acid, tryptophan and biotin was observed.

  4. Insulin growth factors regulate the mitotic cycle in cultured rat sympathetic neuroblasts

    International Nuclear Information System (INIS)

    DiCicco-Bloom, E.; Black, I.B.

    1988-01-01

    While neuronal mitosis is uniquely restricted to early development, the underlying regulation remains to be defined. The authors have now developed a dissociated, embryonic sympathetic neuron culture system that uses fully defined medium in which cells enter the mitotic cycle. The cultured cells expressed two neuronal traits, tyrosine hydroxylase and the neuron-specific 160-kDa neurofilament subunit protein, but were devoid of glial fibrillary acidic protein, a marker for non-myelin-forming Schwann cells in ganglia. Approximately one-third of the tyrosine hydroxylase-positive cells synthesized DNA in culture, specifically incorporating [ 3 H]thymidine into their nuclei. They used this system to define factors regulating the mitotic cycle in sympathetic neuroblasts. Members of the insulin family of growth factors, including insulin and insulin-like growth factors I and II, regulated DNA synthesis in the presumptive neuroblasts. Insulin more than doubled the proportion of tyrosine hydroxylase-positive cells entering the mitotic cycle, as indicated by autoradiography of [ 3 H]thymidine incorporation into nuclei. Scintillation spectrometry was an even more sensitive index of DNA synthesis. In contrast, the trophic protein nerve growth factor exhibited no mitogenic effect, suggesting that the mitogenic action of insulin growth factors is highly specific. The observations are discussed in the context of the detection of insulin growth factors and receptors in the developing brain

  5. Effect of plant growth regulators, explants type and efficient plantlet ...

    African Journals Online (AJOL)

    use

    2011-12-05

    Dec 5, 2011 ... Plant Pathology, Tissue Culture and Biotechnology Laboratory, Department of Botany,. University of ... variability in response to growth regulators. In vitro rooting ..... an adult tree Wrightia tomentosa through enhanced axillary.

  6. Generation of Cardiomyocytes from Pluripotent Stem Cells.

    Science.gov (United States)

    Nakahama, Hiroko; Di Pasquale, Elisa

    2016-01-01

    The advent of pluripotent stem cells (PSCs) enabled a multitude of studies for modeling the development of diseases and testing pharmaceutical therapeutic potential in vitro. These PSCs have been differentiated to multiple cell types to demonstrate its pluripotent potential, including cardiomyocytes (CMs). However, the efficiency and efficacy of differentiation vary greatly between different cell lines and methods. Here, we describe two different methods for acquiring CMs from human pluripotent lines. One method involves the generation of embryoid bodies, which emulates the natural developmental process, while the other method chemically activates the canonical Wnt signaling pathway to induce a monolayer of cardiac differentiation.

  7. Transcriptomics-based identification of developmental toxicants through their interference with cardiomyocyte differentiation of embryonic stem cells

    International Nuclear Information System (INIS)

    Dartel, Dorien A.M. van; Pennings, Jeroen L.A.; Schooten, Frederik J. van; Piersma, Aldert H.

    2010-01-01

    The embryonic stem cell test (EST) predicts developmental toxicity based on the inhibition of cardiomyocyte differentiation of embryonic stem cells (ESC). The subjective endpoint, the long culture duration together with the undefined applicability domain and related predictivity need further improvement to facilitate implementation of the EST into regulatory strategies. These aspects may be improved by studying gene expression changes in the ESC differentiation cultures and their modulation by compound exposure using transcriptomics. Here, we tested the developmental toxicants monobutyl phthalate and 6-aminonicotinamide. ESC were allowed to differentiated, and cardiomyocyte differentiation was assessed after 10 days of culture. RNA of solvent controls was collected after 0, 24, 48, 72 and 96 h of exposure, and RNA of developmental-toxicant-exposed cultures was collected after 24 and 96 h. Samples were hybridized to DNA microarrays, and 1355 genes were found differentially expressed among the unexposed experimental groups. These regulated genes were involved in differentiation-related processes, and Principal Component Analysis (PCA) based on these genes showed that the unexposed experimental groups appeared in chronological order in the PCA, which can therefore be regarded as a continuous representation of the differentiation track. The developmental-toxicant-exposed cultures appeared to deviate significantly from this differentiation track, which confirms the compound-modulating effects on the differentiation process. The incorporation of transcriptomics in the EST is expected to provide a more informative and improved endpoint in the EST as compared with morphology, allowing early detection of differentiation modulation. Furthermore, this approach may improve the definition of the applicability domain and predictivity of the EST.

  8. Effects of plant growth regulators in heliconia ‘Red Opal’

    Directory of Open Access Journals (Sweden)

    Ana Cecilia Ribeiro de Castro

    2016-12-01

    Full Text Available The objective of this study was to evaluate growth regulators with purpose of reducing the size of heliconia ‘Red Opal’ potted plants. The experiment was carried out in randomized block design with five treatments (trinexapac-ethyl and paclobutrazol at rates of 37.5 and 75.0 mg of active ingredient per pot and control without growth regulator and five replicates. The treatments were applied 40 days after planting the rhizomes in pots filled with soil. Thirty and 150 days after the growth regulator application, plant height, number of leaves and shoots, petioles length and leaf area were evaluated. One year after planting the rhizomes in pots the number of inflorescence and leaves (leaves, sheathing leaf bases and inflorescences and rhizomes (rhizomes and roots dry mass were determined. Trinexapac-ethyl had no differences compared to the control in any of the variables evaluated. Paclobutrazol proved effective in reducing plant height, leaf area and petiole length and increase in number of leaves and shoots but the effect was temporary. Also, it did not affect the inflorescences production and leaves and rhizomes dry mass. Paclobutrazol is efficient to promote height reduction and to increase the number of shoots in heliconia ‘Red Opal’ potted plants without affect the inflorescence formation but its effects is temporary.

  9. Changes in the action potential and transient outward potassium current in cardiomyocytes during acute cardiac rejection in rats.

    Science.gov (United States)

    Luo, Wenqi; Jia, Yixin; Zheng, Shuai; Li, Yan; Han, Jie; Meng, Xu

    2017-01-01

    Acute cardiac rejection contributes to the changes in the electrophysiological properties of grafted hearts. However, the electrophysiological changes of cardiomyocytes during acute cardiac rejection are still unknown. An understanding of the electrophysiological mechanisms of cardiomyocytes could improve the diagnosis and treatment of acute cardiac rejection. So it is important to characterize the changes in the action potential ( AP ) and the transient outward potassium current ( I to ) in cardiomyocytes during acute cardiac rejection. Heterotopic heart transplantation was performed in allogeneic [Brown Norway (BN)-to-Lewis] and isogeneic (BN-to-BN) rats. Twenty models were established in each group. Ten recipients were sacrificed at the 2nd day and the other ten recipients were sacrificed at the 4 th day after the operation in each group. Histopathological examinations of the grafted hearts were performed in half of the recipients in each group randomly. The other half of the grafted hearts were excised rapidly and enzymatically dissociated to obtain single cardiomyocytes. The AP and I to current were recorded using the whole cell patch-clamp technique. Forty grafted hearts were successfully harvested and used in experiments. Histologic examination showed mild rejection at the 2 nd day and moderate rejection at the 4 th day in the allogeneic group after cardiac transplantation, while no evidence of histologic lesions of rejection were observed in the isogeneic group. Compared with the isogeneic group, the action potential duration ( APD ) of cardiomyocytes in the allogeneic group was significantly prolonged ( APD 90 was 49.28±5.621 mV in the isogeneic group and 88.08±6.445 mV in the allogeneic group at the 2 nd day, P=0.0016; APD 90 was 59.34±5.183 mV in the isogeneic group and 104.0±9.523 mV in the allogeneic group at the 4 th day, P=0.0064). The current density of I to was significantly decreased at the 4 th day after cardiac transplantation. The APD of

  10. Toxicity of the insect growth regulator lufenuron on the ...

    African Journals Online (AJOL)

    Metarhizium anisopliae has been considered a promising alternative with low environmental impacts for the biological control of a variety of insect-pests. Another alternative is the use of biological pesticides such as insect growth regulators, including lufenuron. An assessment of the potential impact of fungicides on M.

  11. Native and reconstituted HDL activate Stat3 in ventricular cardiomyocytes via ERK1/2: role of sphingosine-1-phosphate.

    Science.gov (United States)

    Frias, Miguel A; James, Richard W; Gerber-Wicht, Christine; Lang, Ursula

    2009-05-01

    High-density lipoprotein (HDL) has been reported to have cardioprotective properties independent from its cholesterol transport activity. The influence of native HDL and reconstituted HDL (rHDL) on Stat3, the transcription factor playing an important role in myocardium adaptation to stress, was analysed in neonatal rat ventricular cardiomyocytes. We have investigated modulating the composition of rHDL as a means of expanding its function and potential cardioprotective effects. Stat3 phosphorylation and activation were determined by western blotting and electrophoretic mobility shift assay (EMSA). In ventricular cardiomyocytes, HDL and the HDL constituent sphingosine-1-phosphate (S1P) induce a concentration- and time-dependent increase in Stat3 activation. They also enhance extracellular signal-regulated kinases (ERK1/2) and p38 mitogen-activated protein kinase (MAPK) phosphorylation. U0126, a specific inhibitor of MEK1/2, the upstream activator of ERK1/2, abolishes HDL- and S1P-induced Stat3 activation, whereas the p38 MAPK blocker SB203580 has no significant effect. Inhibition of the tyrosine kinase family Src (Src) caused a significant reduction of Stat3 activation, whereas inhibition of phosphatidylinositol 3-kinase (PI3K) had no effect. S1P and rHDL containing S1P have a similar strong stimulatory action on Stat3, ERK1/2, and p38 MAPK comparable to native HDL. S1P-free rHDL has a much weaker effect. Experiments with agonists and antagonists of the S1P receptor subtypes indicate that HDL and S1P activate Stat3 mainly through the S1P2 receptor. In ventricular cardiomyocytes, addition of S1P to rHDL enhances its therapeutic potential by improving its capacity to activate Stat3. Activation of Stat3 occurs mainly via the S1P constituent and the lipid receptor S1P2 requiring stimulation of ERK1/2 and Src but not p38 MAPK or PI3K. The study underlines the therapeutic potential of tailoring rHDL to confront particular clinical situations.

  12. Methods for growth regulation of greenhouse produced ornamental pot- and bedding plants – a current review

    Directory of Open Access Journals (Sweden)

    Bergstrand Karl-Johan I.

    2017-06-01

    Full Text Available Chemical plant growth regulators (PGRs are used in the production of ornamental potted and bedding plants. Growth control is needed for maximizing production per unit area, reducing transportation costs and to obtain a desired visual quality. However, the use of PGRs is associated with toxicity risks to humans and the environment. In many countries the availability of PGRs is restricted as few substances are registered for use. A number of alternative methods have been suggested. The methods include genetic methods (breeding and crop cultivation practices such as fertigation, temperature and light management. A lot of research into “alternative” growth regulation was performed during the 1980-1990s, revealing several possible ways of using different climatic factors to optimize plant growth with respect to plant height. In recent years, the interest in climatic growth regulation has been resurrected, not least due to the coming phase-out of the plant growth regulator chlormequat chloride (CCC. Today, authorities in many countries are aiming towards reducing the use of agrochemicals. At the same time, there is a strong demand from consumers for products produced without chemicals. This article provides a broad overview of available methods for non-chemical growth control. It is concluded that a combination of plant breeding and management of temperature, fertigation and light management has the potential of replacing chemical growth regulators in the commercial production of ornamental pot- and bedding plants.

  13. Metabolic regulation of mycobacterial growth and antibiotic sensitivity.

    Directory of Open Access Journals (Sweden)

    Seung-Hun Baek

    2011-05-01

    Full Text Available Treatment of chronic bacterial infections, such as tuberculosis (TB, requires a remarkably long course of therapy, despite the availability of drugs that are rapidly bacteriocidal in vitro. This observation has long been attributed to the presence of bacterial populations in the host that are "drug-tolerant" because of their slow replication and low rate of metabolism. However, both the physiologic state of these hypothetical drug-tolerant populations and the bacterial pathways that regulate growth and metabolism in vivo remain obscure. Here we demonstrate that diverse growth-limiting stresses trigger a common signal transduction pathway in Mycobacterium tuberculosis that leads to the induction of triglyceride synthesis. This pathway plays a causal role in reducing growth and antibiotic efficacy by redirecting cellular carbon fluxes away from the tricarboxylic acid cycle. Mutants in which this metabolic switch is disrupted are unable to arrest their growth in response to stress and remain sensitive to antibiotics during infection. Thus, this regulatory pathway contributes to antibiotic tolerance in vivo, and its modulation may represent a novel strategy for accelerating TB treatment.

  14. Functional cardiotoxicity assessment of cosmetic compounds using human-induced pluripotent stem cell-derived cardiomyocytes.

    Science.gov (United States)

    Chaudhari, Umesh; Nemade, Harshal; Sureshkumar, Poornima; Vinken, Mathieu; Ates, Gamze; Rogiers, Vera; Hescheler, Jürgen; Hengstler, Jan Georg; Sachinidis, Agapios

    2018-01-01

    There is a large demand of a human relevant in vitro test system suitable for assessing the cardiotoxic potential of cosmetic ingredients and other chemicals. Using human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs), we have already established an in vitro cardiotoxicity assay and identified genomic biomarkers of anthracycline-induced cardiotoxicity in our previous work. Here, five cosmetic ingredients were studied by the new hiPSC-CMs test; kojic acid (KJA), triclosan (TS), triclocarban (TCC), 2,7-naphthalenediol (NPT), and basic red 51 (BR51) based on cytotoxicity as well as ATP assays, beating rate, and genomic biomarkers to determine the lowest observed effect concentration (LOEC) and no observed effect concentration (NOEC). The LOEC for beating rate were 400, 10, 3, >400, and 3 µM for KJA, TS, TCC, NPT, and BR51, respectively. The corresponding concentrations for cytotoxicity or ATP depletion were similar, with the exception of TS and TCC, where the cardiomyocyte-beating assay showed positive results at non-cytotoxic concentrations. Functional analysis also showed that the individual compounds caused different effects on hiPSC-CMs. While exposure to KJA, TS, TCC, and BR51 induced significant arrhythmic beating, NPT slightly decreased cell viability, but did not influence beating. Gene expression studies showed that TS and NPT caused down-regulation of cytoskeletal and cardiac ion homeostasis genes. Moreover, TS and NPT deregulated genomic biomarkers known to be affected also by anthracyclines. The present study demonstrates that hiPSC-CMs can be used to determine LOECs and NOECs in vitro, which can be compared to human blood concentrations to determine margins of exposure. Our in vitro assay, which so far has been tested with several anthracyclines and cosmetics, still requires validation by larger numbers of positive and negative controls, before it can be recommended for routine analysis.

  15. Growth Hormone Receptor Signaling Pathways and its Negative Regulation by SOCS2

    DEFF Research Database (Denmark)

    Fernández Pérez, Leandro; Flores-Morales, Amilcar; Guerra, Borja

    2016-01-01

    Growth hormone (GH) is a critical regulator of linear body growth during childhood but continues to have important metabolic actions throughout life. The GH receptor (GHR) is ubiquitously expressed, and deficiency of GHR signaling causes a dramatic impact on normal physiology during somatic devel...

  16. Generation of Cardiomyocytes in Pipe-Based Microbioreactor Under Segmented Flow

    Directory of Open Access Journals (Sweden)

    Dimitry Spitkovsky

    2016-05-01

    Full Text Available Background/Aims: Embryonic stem (ES cells have got a broad range differentiation potential. The differentiation is initiated via aggregation of non-differentiated ES cells into embryoid body (EB capable of multi-lineage development. However experimental variables present in standard differentiation techniques lead to high EB heterogeneity, affecting development into the cells of desired lineage, and do not support the process automatization and scalability. Methods: Here we present a novel pipe based microbioreactor (PBM setup based on segmented flow, designed for spatial maintenance of temperature, nutrition supply, gas supply and sterility. Results: We verified PBM feasibility for continuous process generating cardiac cells starting from single ES cell suspension followed by EB formation for up to 10 days. The ES cells used in the study were genetically modified for cardiac-specific EGFP expression allowing optical monitoring of cardiomyocytes while EBs remained within PBM for up to 10 days. Efficiency of cardiac cells formation within PBM was similar compared to a standard hanging drop based protocol. Conclusion: Our findings ensure further development of microfluidic bioreactor technology to enable robust cardiomyocytes production for needs of drug screening, tissue engineering and other applications.

  17. Distinct phases of cardiomyocyte differentiation regulate growth of the zebrafish heart.

    NARCIS (Netherlands)

    de Pater, E.M.; Clijsters, L.; Marques, S.R.; Lin, Y.F.; Garavito-Aguilar, Z.V.; Yelon, D.; Bakkers, J.

    2009-01-01

    Amongst animal species, there is enormous variation in the size and complexity of the heart, ranging from the simple one-chambered heart of Ciona intestinalis to the complex four-chambered heart of lunged animals. To address possible mechanisms for the evolutionary adaptation of heart size, we

  18. Intermittent Hypoxia Inhibits Na+-H+ Exchange-Mediated Acid Extrusion Via Intracellular Na+ Accumulation in Cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Huai-Ren Chang

    2018-04-01

    Full Text Available Background/Aims: Intermittent hypoxia (IH has been shown to exert preconditioning-like cardioprotective effects. It also has been reported that IH preserves intracellular pH (pHi during ischemia and protects cardiomyocytes against ischemic reperfusion injury. However, the exact mechanism is still unclear. Methods: In this study, we used proton indicator BCECF-AM to analyze the rate of pHi recovery from acidosis in the IH model of rat neonatal cardiomyocytes. Neonatal cardiomyocytes were first treated with repetitive hypoxia-normoxia cycles for 1-4 days. Cells were then acid loaded with NH4Cl, and the rate of pHi recovery from acidosis was measured. Results: We found that the pHi recovery rate from acidosis was much slower in the IH group than in the room air (RA group. When we treated cardiomyocytes with Na+-H+ exchange (NHE inhibitors (Amiloride and HOE642 or Na+-free Tyrode solution during the recovery, there was no difference between RA and IH groups. We also found intracellular Na+ concentration ([Na+]i significantly increased after IH exposure for 4 days. However, the phenomenon could be abolished by pretreatment with ROS inhibitors (SOD and phenanathroline, intracellular calcium chelator or Na+-Ca2+ exchange (NCX inhibitor. Furthermore, the pHi recovery rate from acidosis became faster in the IH group than in the RA group when inhibition of NCX activity. Conclusions: These results suggest that IH would induce the elevation of ROS production. ROS then activates Ca2+-efflux mode of NCX and results in intracellular Na+ accumulation. The rise of [Na+]i further inhibits the activity of NHE-mediated acid extrusion and retards the rate of pHi recovery from acidosis during IH.

  19. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Zhong Xin [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Sun, Cong Cong [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Zheng, Jia Yong [Wenzhou People' s Hospital, Wenzhou, Zhejiang (China); Zhou, Xuan [Ningbo First Hospital, Ningbo, Zhejiang (China); Cong, Wei Tao [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Li, Xiao Kun, E-mail: proflxk@163.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China); Jin, Li Tai, E-mail: jin_litai@126.com [School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang (China)

    2017-06-15

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  20. Hedgehog signaling contributes to basic fibroblast growth factor-regulated fibroblast migration

    International Nuclear Information System (INIS)

    Zhu, Zhong Xin; Sun, Cong Cong; Ting Zhu, Yu; Wang, Ying; Wang, Tao; Chi, Li Sha; Cai, Wan Hui; Zheng, Jia Yong; Zhou, Xuan; Cong, Wei Tao; Li, Xiao Kun; Jin, Li Tai

    2017-01-01

    Fibroblast migration is a central process in skin wound healing, which requires the coordination of several types of growth factors. bFGF, a well-known fibroblast growth factor (FGF), is able to accelerate fibroblast migration; however, the underlying mechanism of bFGF regulation fibroblast migration remains unclear. Through the RNA-seq analysis, we had identified that the hedgehog (Hh) canonical pathway genes including Smoothened (Smo) and Gli1, were regulated by bFGF. Further analysis revealed that activation of the Hh pathway via up-regulation of Smo promoted fibroblast migration, invasion, and skin wound healing, but which significantly reduced by GANT61, a selective antagonist of Gli1/Gli2. Western blot analyses and siRNA transfection assays demonstrated that Smo acted upstream of phosphoinositide 3-kinase (PI3K)-c-Jun N-terminal kinase (JNK)-β-catenin to promote cell migration. Moreover, RNA-seq and qRT-PCR analyses revealed that Hh pathway genes including Smo and Gli1 were under control of β-catenin, suggesting that β-catenin turn feedback activates Hh signaling. Taken together, our analyses identified a new bFGF-regulating mechanism by which Hh signaling regulates human fibroblast migration, and the data presented here opens a new avenue for the wound healing therapy. - Highlights: • bFGF regulates Hedgehog (Hh) signaling in fibroblasts. • The Smo and Gli two master regulators of Hh signaling positively regulate fibroblast migration. • Smo facilitates β-catenin nuclear translocation via activation PI3K/JNK/GSK3β. • β-catenin positively regulates fibroblast cell migration and the expression of Hh signaling genes including Smo and Gli.

  1. Apoptosis of rats’ cardiomyocytes after chronic energy drinks consumption

    Directory of Open Access Journals (Sweden)

    Slawinski Miroslaw Aleksander

    2018-03-01

    Full Text Available Energy drinks (ED are beverages containing caffeine, taurine, vitamins, herbal extracts, and sugar or sweeteners. They are marketed as capable of improving stamina, athletic performance and concentration, moreover, as serving as a source of energy. Still, there are very few papers describing the impact of ED on cell biology – including cell apoptosis within tissues. Therefore, in our study, we assessed the symptoms of rat cardiomyocytes apoptosis after 8 weeks consumption of ED.

  2. Effect of plant growth regulators on in vitro germination of coffee ...

    African Journals Online (AJOL)

    ajl yemi

    2011-12-19

    Dec 19, 2011 ... Germination times of zygotic embryos cultured in MS medium had a mean of 5.1 days, ... growth regulators used, gibberellic acid at 0.1 mg l-1 proved to be the most efficient in .... process, and the biological role of regulators was invest- ... thiamine, 25 mg l-1 cysteine, and 3% sucrose for MS; and 100 mg l-1.

  3. Single-Cell Functional Analysis of Stem-Cell Derived Cardiomyocytes on Micropatterned Flexible Substrates

    NARCIS (Netherlands)

    Kijlstra, Jan David; Hu, Dongjian; van der Meer, Peter; Domian, Ibrahim J

    2017-01-01

    Human pluripotent stem-cell derived cardiomyocytes (hPSC-CMs) hold great promise for applications in human disease modeling, drug discovery, cardiotoxicity screening, and, ultimately, regenerative medicine. The ability to study multiple parameters of hPSC-CM function, such as contractile and

  4. Growth in Adolescent Self-Regulation and Impact on Sexual Risk-Taking: A Curve-of-Factors Analysis.

    Science.gov (United States)

    Crandall, AliceAnn; Magnusson, Brianna M; Novilla, M Lelinneth B

    2018-04-01

    Adolescent self-regulation is increasingly seen as an important predictor of sexual risk-taking behaviors, but little is understood about how changes in self-regulation affect later sexual risk-taking. Family financial stress may affect the development of self-regulation and later engagement in sexual risk-taking. We examined whether family financial stress influences self-regulation in early adolescence (age 13) and growth in self-regulation throughout adolescence (from age 13-17 years). We then assessed the effects of family financial stress, baseline self-regulation, and the development of self-regulation on adolescent sexual risk-taking behaviors at age 18 years. Using a curve-of-factors model, we examined these relationships in a 6-year longitudinal study of 470 adolescents (52% female) and their parents from a large northwestern city in the United States. Results indicated that family financial stress was negatively associated with baseline self-regulation but not with growth in self-regulation throughout adolescence. Both baseline self-regulation and growth in self-regulation were predictive of decreased likelihood of engaging in sexual risk-taking. Family financial stress was not predictive of later sexual risk-taking. Intervening to support the development of self-regulation in adolescence may be especially protective against later sexual risk-taking.

  5. Gene transfer of heterologous G protein-coupled receptors to cardiomyocytes: differential effects on contractility.

    Science.gov (United States)

    Laugwitz, K L; Weig, H J; Moretti, A; Hoffmann, E; Ueblacker, P; Pragst, I; Rosport, K; Schömig, A; Ungerer, M

    2001-04-13

    In heart failure, reduced cardiac contractility is accompanied by blunted cAMP responses to beta-adrenergic stimulation. Parathyroid hormone (PTH)-related peptide and arginine vasopressin are released from the myocardium in response to increased wall stress but do not stimulate contractility or adenylyl cyclase at physiological concentrations. To bypass the defective beta-adrenergic signaling cascade, recombinant P1 PTH/PTH-related peptide receptors (rPTH1-Rs) and V(2) vasopressin receptors (rV(2)-Rs), which are normally not expressed in the myocardium and which are both strongly coupled to adenylyl cyclase, and recombinant beta(2)-adrenergic receptors (rbeta(2)-ARs) were overexpressed in cardiomyocytes by viral gene transfer. The capacity of endogenous hormones to increase contractility via the heterologous, recombinant receptors was compared. Whereas V(2)-Rs are uniquely coupled to Gs, PTH1-Rs and beta(2)-ARs are also coupled to other G proteins. Gene transfer of rPTH1-Rs or rbeta(2)-ARs to adult cardiomyocytes resulted in maximally increased basal contractility, which could not be further stimulated by adding receptor agonists. Agonists at rPTH1-Rs induced increased cAMP formation and phospholipase C activity. In contrast, healthy or failing rV(2)-R-expressing cardiomyocytes showed unaltered basal contractility. Their contractility and cAMP formation increased only at agonist exposure, which did not activate phospholipase C. In summary, we found that gene transfer of PTH1-Rs to cardiomyocytes results in constitutive activity of the transgene, as does that of beta(2)-ARS: In the absence of receptor agonists, rPTH1-Rs and rbeta(2)-ARs increase basal contractility, coupling to 2 G proteins simultaneously. In contrast, rV(2)-Rs are uniquely coupled to Gs and are not constitutively active, retaining their property to be activated exclusively on agonist stimulation. Therefore, gene transfer of V(2)-Rs might be more suited to test the effects of c

  6. Self-regulating and diameter-selective growth of GaN nanowires

    International Nuclear Information System (INIS)

    Kuo, C-K; Hsu, C-W; Wu, C-T; Lan, Z-H; Mou, C-Y; Chen, C-C; Yang, Y-J; Chen, L-C; Chen, K-H

    2006-01-01

    We report diameter-selective growth of GaN nanowires (NWs) by using mono-dispersed Au nanoparticles (NPs) on a ligand-modified Si substrate. The thiol-terminal silane was found to be effective in producing well-dispersed Au NPs in low density on Si substrates so that the agglomeration of Au NPs during growth could be avoided. The resultant GaN NWs exhibited a narrow diameter distribution and their mean diameter was always larger than, while keeping a deterministic relation with, the size of the Au NPs from which they were grown. A self-regulating steady growth model is proposed to account for the size-control process

  7. Protective effect of pomegranate seed oil against H2O2 -induced oxidative stress in cardiomyocytes

    Directory of Open Access Journals (Sweden)

    Mehdi Bihamta

    2017-01-01

    Full Text Available Objective: It has been well documented that oxidative stress is involved in the pathogenesis of cardiac diseases. Previous studies have shown that pomegranate seed oil (PSO has antioxidant properties. This study was designed to investigate probable protective effects of PSO against hydrogen peroxide (H2O2-induced damage in H9c2 cardiomyocytes.Materials and Methods: The cells were pretreated 24 hr with PSO 1 hr before exposure to 200 µM H2O2. Cell viability was evaluated using 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyl tetrazolium (MTT assay. The level of reactive oxygen species (ROS and lipid peroxidation were measured by fluorimetric methods.Results: H2O2 significantly decreased cell viability which was accompanied by an increase in ROS production and lipid peroxidation and a decline in superoxide dismutase activity. Pretreatment with PSO increased viability of cardiomyocytes and decrease the elevated ROS production and lipid peroxidation. Also, PSO was able to restore superoxide dismutase activity.Conclusion: PSO has protective effect against oxidative stress-induced damage in cardiomyocytes and can be considered as a natural cardioprotective agent to prevent cardiovascular diseases.

  8. Establishment and optimization of NMR-based cell metabonomics study protocols for neonatal Sprague-Dawley rat cardiomyocytes.

    Science.gov (United States)

    Zhang, Ming; Sun, Bo; Zhang, Qi; Gao, Rong; Liu, Qiao; Dong, Fangting; Fang, Haiqin; Peng, Shuangqing; Li, Famei; Yan, Xianzhong

    2017-01-15

    A quenching, harvesting, and extraction protocol was optimized for cardiomyocytes NMR metabonomics analysis in this study. Trypsin treatment and direct scraping cells in acetonitrile were compared for sample harvesting. The results showed trypsin treatment cause normalized concentration increasing of phosphocholine and metabolites leakage, since the trypsin-induced membrane broken and long term harvesting procedures. Then the intracellular metabolite extraction efficiency of methanol and acetonitrile were compared. As a result, washing twice with phosphate buffer, direct scraping cells and extracting with acetonitrile were chosen to prepare cardiomyocytes extracts samples for metabonomics studies. This optimized protocol is rapid, effective, and exhibits greater metabolite retention. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. BMP signaling regulates satellite cell-dependent postnatal muscle growth.

    Science.gov (United States)

    Stantzou, Amalia; Schirwis, Elija; Swist, Sandra; Alonso-Martin, Sonia; Polydorou, Ioanna; Zarrouki, Faouzi; Mouisel, Etienne; Beley, Cyriaque; Julien, Anaïs; Le Grand, Fabien; Garcia, Luis; Colnot, Céline; Birchmeier, Carmen; Braun, Thomas; Schuelke, Markus; Relaix, Frédéric; Amthor, Helge

    2017-08-01

    Postnatal growth of skeletal muscle largely depends on the expansion and differentiation of resident stem cells, the so-called satellite cells. Here, we demonstrate that postnatal satellite cells express components of the bone morphogenetic protein (BMP) signaling machinery. Overexpression of noggin in postnatal mice (to antagonize BMP ligands), satellite cell-specific knockout of Alk3 (the gene encoding the BMP transmembrane receptor) or overexpression of inhibitory SMAD6 decreased satellite cell proliferation and accretion during myofiber growth, and ultimately retarded muscle growth. Moreover, reduced BMP signaling diminished the adult satellite cell pool. Abrogation of BMP signaling in satellite cell-derived primary myoblasts strongly diminished cell proliferation and upregulated the expression of cell cycle inhibitors p21 and p57 In conclusion, these results show that BMP signaling defines postnatal muscle development by regulating satellite cell-dependent myofiber growth and the generation of the adult muscle stem cell pool. © 2017. Published by The Company of Biologists Ltd.

  10. Adrenergic regulation of conduction velocity in cultures of immature cardiomyocytes

    NARCIS (Netherlands)

    de Boer, T. P.; van Rijen, H. V. M.; van der Heyden, M. A. G.; de Bakker, J. M. T.; van Veen, T. A. B.

    2008-01-01

    During cardiac maturation, increased exposure of the heart to circulating catecholamines correlates with increased conduction velocity and growth of the heart. We used an in vitro approach to study the underlying mechanisms of adrenergic stimulation induced changes in conduction velocity. By

  11. In vitro production of growth regulators and phosphatase activity by ...

    African Journals Online (AJOL)

    The result showed that the population levels of phosphobacteria were higher in the rhizosphere soil of groundnut plant. Further, all the strains of phosphobacteria were able to produce phytohormones and phosphatase enzyme under in vitro conditions. Keywords: In vitro, phosphobacteria, growth regulators ...

  12. Effects of photoperiod, plant growth regulators and culture media on in vitro growth of seedlings of Cyrtochilum loxense (Lindl. Kraenzl. an endemic and endangered orchid from Ecuador

    Directory of Open Access Journals (Sweden)

    Yadira González

    2014-10-01

    Full Text Available Cyrtochilum loxense (Lindl. Kraenzl. is an endemic and seriously endangered orchid species endemic in the Loja Province (Southern Ecuador. The main goals of this research were to analyze how culture media, plant growth regulators and photoperiod affect the growth of C. loxense. Eight month old plants (approximate 1 – 1.5 cm in height obtained by in vitro germination, were cultivated on MS media or Knudson C; MS with three levels of naphthalene acetic acid (NAA and 6-benzylaminopurine (BAP (2/0.5; 1/0.5 y 0.5/ 0.5 mg-1L; and three photoperiodic regimes (24/0, 16/8, 8/16 h on MS with and without plant growth regulators. No significant differences of shoot induction were observed on media with or without plant growth regulators, and all tested photoperiods. The highest growth (1.2 cm was observed in plantlets cultivated on growth regulator-free media with a 16/8 photoperiod. Also the shoot and root formation was better in this species in absence of plant growth regulators. Probably this response is due to the endogenous hormone levels in the tissues or due to the kind and concentrations of PGRs used were too low to induce positive morphogenetic responses.

  13. Regulation of insulin-like growth factor I receptors on vascular smooth muscle cells by growth factors and phorbol esters.

    Science.gov (United States)

    Ververis, J J; Ku, L; Delafontaine, P

    1993-06-01

    Insulin-like growth factor I (IGF I) is an important mitogen for vascular smooth muscle cells. To characterize regulation of vascular IGF I receptors, we performed radioligand displacement experiments using rat aortic smooth muscle cells (RASMs). Serum deprivation for 48 hours caused a 40% decrease in IGF I receptor number. Exposure of quiescent RASMs to platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), or angiotensin II (Ang II) caused a 1.5-2.0-fold increase in IGF I receptors per cell. After FGF exposure, there was a marked increase in the mitogenic response to IGF I. IGF I downregulated its receptors in the presence of platelet-poor plasma. Stimulation of protein kinase C (PKC) by exposure of quiescent RASMs to phorbol 12-myristate 13-acetate caused a biphasic response in IGF I binding; there was a 42% decrease in receptor number at 45 minutes and a 238% increase at 24 hours. To determine the role of PKC in growth factor-induced regulation of IGF I receptors, we downregulated PKC by exposing RASMs to phorbol 12,13-dibutyrate (PDBu) for 48 hours. PDGF- and FGF- but not Ang II-mediated upregulation of IGF I receptors was completely inhibited in PDBu-treated cells. Thus, acute PKC activation by phorbol esters inhibits IGF I binding, whereas chronic PKC activation increases IGF I binding. PDGF and FGF but not Ang II regulate vascular IGF I receptors through a PKC-dependent pathway. These data provide new insights into the regulation of vascular smooth muscle cell IGF I receptors in vitro and are of potential importance in characterizing vascular proliferative responses in vivo.

  14. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up‐regulation contribute to the onset of diabetic cardiomyopathy

    Science.gov (United States)

    Ma, Heng; Li, Shi‐Yan; Xu, Peisheng; Babcock, Sara A.; Dolence, E. Kurt; Brownlee, Michael; Li, Ji

    2008-01-01

    Abstract Diabetic cardiomyopathy is manifested by compromised systolic and diastolic function. This study was designed to examine the role of advanced glycation endproduct (AGE) and AGE receptor (RAGE) in diabetic cardiomyopathy. Heart function was assessed in isolated control and streptozotocin‐induced diabetic hearts following in vivo RAGE gene knockdown using RNA interference. Cardiomyocyte mechanical properties were evaluated including peak shortening (PS), time‐to‐PS (TPS) and time‐to‐90% relengthening (TR90). RAGE was assayed by RT‐PCR and immunoblot. Diabetes significantly enhanced cardiac MG, AGE and RAGE levels accompanied with colocalization of AGE and RAGE in cardiomyocytes. Diabetes‐elicited increase in RAGE was inhibited by in vivo siRNA interference. The AGE formation inhibitor benfotiamine significantly attenuated diabetes‐induced elevation in MG, AGE, RAGE and collagen cross‐linking without affecting hypertriglyceridaemia and hypercholesterolaemia in diabetes. Diabetes markedly decreased LV contractility, as evidenced by reduced ±dP/dt and LV developed pressure (LVDP), which were protected by RAGE gene knockdown. In addition, MG‐derived AGE (MG‐AGE) up‐regulated cardiac RAGE mRNA and triggered cardiomyocyte contractile dysfunction reminiscent of diabetic cardiomyopathy. The MG‐AGE‐elicited prolongation of TPS and TR90 was ablated by an anti‐RAGE antibody in cardiomyocytes. Interestingly, MG‐AGE‐induced cardiomyocyte dysfunction was associated with mitochondrial membrane potential (MMP) depolarization and reduced GSK‐3β inactivation in control cardiomyocytes, similar to those from in vivo diabetes. Treatment with siRNA‐RAGE ablated diabetes‐induced MMP depolarization and GSK‐3β inactivation. Collectively, our result implicated a role of AGE‐RAGE in the pathogenesis of diabetic cardiomyopathy. PMID:19602045

  15. KCNQ channels are involved in the regulatory volume decrease response in primary neonatal rat cardiomyocytes

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Nielsen, Morten Schak; Grunnet, Morten

    2007-01-01

    of neonatal rat cardiomyocytes was studied in intact single cells attached to coverslips, i.e. with an intact cytoskeleton. The potential contribution of KCNQ (Kv7) channels to the RVD response and the possible involvement of the F-actin cytoskeleton were investigated. The rate of RVD was significantly...... changes the structure of the F-actin cytoskeleton, leading to a more rounded cell shape, less pronounced F-actin stress fibers and patches of actin. In the presence of cytochalasin D (1 microM), a potent inhibitor of actin polymerization, the RVD response was strongly reduced, confirming a possible role...... for an intact F-actin cytoskeleton in linking cell swelling to activation of ion transport in neonatal rat cardiomyocytes. Udgivelsesdato: 2007-Jun...

  16. Prioritizing plant defence over growth through WRKY regulation facilitates infestation by non-target herbivores

    Science.gov (United States)

    Li, Ran; Zhang, Jin; Li, Jiancai; Zhou, Guoxin; Wang, Qi; Bian, Wenbo; Erb, Matthias; Lou, Yonggen

    2015-01-01

    Plants generally respond to herbivore attack by increasing resistance and decreasing growth. This prioritization is achieved through the regulation of phytohormonal signaling networks. However, it remains unknown how this prioritization affects resistance against non-target herbivores. In this study, we identify WRKY70 as a specific herbivore-induced, mitogen-activated protein kinase-regulated rice transcription factor that physically interacts with W-box motifs and prioritizes defence over growth by positively regulating jasmonic acid (JA) and negatively regulating gibberellin (GA) biosynthesis upon attack by the chewing herbivore Chilo suppressalis. WRKY70-dependent JA biosynthesis is required for proteinase inhibitor activation and resistance against C. suppressalis. In contrast, WRKY70 induction increases plant susceptibility against the rice brown planthopper Nilaparvata lugens. Experiments with GA-deficient rice lines identify WRKY70-dependent GA signaling as the causal factor in N. lugens susceptibility. Our study shows that prioritizing defence over growth leads to a significant resistance trade-off with important implications for the evolution and agricultural exploitation of plant immunity. DOI: http://dx.doi.org/10.7554/eLife.04805.001 PMID:26083713

  17. Dissociation between cardiomyocyte function and remodeling with beta-adrenergic receptor blockade in isolated canine mitral regurgitation.

    Science.gov (United States)

    Pat, Betty; Killingsworth, Cheryl; Denney, Thomas; Zheng, Junying; Powell, Pamela; Tillson, Michael; Dillon, A Ray; Dell'Italia, Louis J

    2008-12-01

    The low-pressure volume overload of isolated mitral regurgitation (MR) is associated with increased adrenergic drive, left ventricular (LV) dilatation, and loss of interstitial collagen. We tested the hypothesis that beta1-adrenergic receptor blockade (beta1-RB) would attenuate LV remodeling after 4 mo of MR in the dog. beta1-RB did not attenuate collagen loss or the increase in LV mass in MR dogs. Using MRI and three-dimensional (3-D) analysis, there was a 70% increase in the LV end-diastolic (LVED) volume-to-LV mass ratio, a 23% decrease in LVED midwall circumferential curvature, and a >50% increase in LVED 3-D radius/wall thickness in MR dogs that was not attenuated by beta1-RB. However, beta1-RB caused a significant increase in LVED length from the base to apex compared with untreated MR dogs. This was associated with an increase in isolated cardiomyocyte length (171+/-5 microm, P<0.05) compared with normal (156+/-3 microm) and MR (165+/-4 microm) dogs. Isolated cardiomyocyte fractional shortening was significantly depressed in MR dogs compared with normal dogs (3.73+/-0.31 vs. 5.02+/-0.26%, P<0.05) and normalized with beta1-RB (4.73+/-0.48%). In addition, stimulation with the beta-adrenergic receptor agonist isoproterenol (25 nM) increased cardiomyocyte fractional shortening by 215% (P<0.05) in beta1-RB dogs compared with normal (56%) and MR (50%) dogs. In summary, beta1-RB improved LV cardiomyocyte function and beta-adrenergic receptor responsiveness despite further cell elongation. The failure to attenuate LV remodeling associated with MR could be due to a failure to improve ultrastructural changes in extracellular matrix organization.

  18. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  19. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    International Nuclear Information System (INIS)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien; Passier, Robert; Tertoolen, Leon G.J.; Mummery, Christine L.; Casini, Simona

    2015-01-01

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca"2"+ transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I_C_a_,_L and action potential characteristics in hESC-CMs.

  20. Mast cell stabilization decreases cardiomyocyte and LV function in dogs with isolated mitral regurgitation.

    Science.gov (United States)

    Pat, Betty; Killingsworth, Cheryl; Chen, Yuanwen; Gladden, James D; Walcott, Greg; Powell, Pamela C; Denney, Thomas; Gupta, Himanshu; Desai, Ravi; Tillson, Michael; Dillon, A Ray; Dell'italia, Louis J

    2010-09-01

    Mast cells are increased in isolated mitral regurgitation (MR) in the dog and may mediate extracellular matrix loss and left ventricular (LV) dilatation. We tested the hypothesis that mast cell stabilization would attenuate LV remodeling and improve function in the MR dog. MR was induced in adult dogs randomized to no treatment (MR, n = 5) or to the mast cell stabilizer, ketotifen (MR + MCS, n = 4) for 4 months. LV hemodynamics were obtained at baseline and after 4 months of MR and magnetic resonance imaging (MRI) was performed at sacrifice. MRI-derived, serial, short-axis LV end-diastolic (ED) and end-systolic (ES) volumes, LVED volume/mass ratio, and LV 3-dimensional radius/wall thickness were increased in MR and MR + MCS dogs compared with normal dogs (n = 6) (P < .05). Interstitial collagen was decreased by 30% in both MR and MR + MCS versus normal dogs (P < .05). LV contractility by LV maximum time-varying elastance was significantly depressed in MR and MR + MCS dogs. Furthermore, cardiomyocyte fractional shortening was decreased in MR versus normal dogs and further depressed in MR + MCS dogs (P < .05). In vitro administration of ketotifen to normal cardiomyocytes also significantly decreased fractional shortening and calcium transients. Chronic mast cell stabilization did not attenuate eccentric LV remodeling or collagen loss in MR. However, MCS therapy had a detrimental effect on LV function because of a direct negative inotropic effect on cardiomyocyte function. Published by Elsevier Inc.

  1. Role of plasma membrane-associated AKAPs for the regulation of cardiac IK1 current by protein kinase A.

    Science.gov (United States)

    Seyler, Claudia; Scherer, Daniel; Köpple, Christoph; Kulzer, Martin; Korkmaz, Sevil; Xynogalos, Panagiotis; Thomas, Dierk; Kaya, Ziya; Scholz, Eberhard; Backs, Johannes; Karle, Christoph; Katus, Hugo A; Zitron, Edgar

    2017-05-01

    The cardiac I K1 current stabilizes the resting membrane potential of cardiomyocytes. Protein kinase A (PKA) induces an inhibition of I K1 current which strongly promotes focal arrhythmogenesis. The molecular mechanisms underlying this regulation have only partially been elucidated yet. Furthermore, the role of A-kinase anchoring proteins (AKAPs) in this regulation has not been examined to date. The objective of this project was to elucidate the molecular mechanisms underlying the inhibition of I K1 by PKA and to identify novel molecular targets for antiarrhythmic therapy downstream β-adrenoreceptors. Patch clamp and voltage clamp experiments were used to record currents and co-immunoprecipitation, and co-localization experiments were performed to show spatial and functional coupling. Activation of PKA inhibited I K1 current in rat cardiomyocytes. This regulation was markedly attenuated by disrupting PKA-binding to AKAPs with the peptide inhibitor AKAP-IS. We observed functional and spatial coupling of the plasma membrane-associated AKAP15 and AKAP79 to Kir2.1 and Kir2.2 channel subunits, but not to Kir2.3 channels. In contrast, AKAPyotiao had no functional effect on the PKA regulation of Kir channels. AKAP15 and AKAP79 co-immunoprecipitated with and co-localized to Kir2.1 and Kir2.2 channel subunits in ventricular cardiomyocytes. In this study, we provide evidence for coupling of cardiac Kir2.1 and Kir2.2 subunits with the plasma membrane-bound AKAPs 15 and 79. Cardiac membrane-associated AKAPs are a functionally essential part of the regulatory cascade determining I K1 current function and may be novel molecular targets for antiarrhythmic therapy downstream from β-adrenoreceptors.

  2. EFFECTS OF SOME PLANT GROWTH REGULATORS ON JASMONIC ACID INDUCED INHIBITION OF SEED GERMINATION AND SEEDLING GROWTH OF BARLEY

    Directory of Open Access Journals (Sweden)

    Kürşat ÇAVUŞOĞLU

    2009-02-01

    Full Text Available Abstract: The effects of gibberellic acid, kinetin, benzyladenine, ethylene, 24-epibrassinolide and polyamines (spermine, spermidine, putrescine, cadaverine on jasmonic acid inhibition of seed germination and seedling growth of barley were studied. All of the plant growth regulators studied were determined to have a succesful performance in reversing of the inhibitory effects of jasmonic acid on the seed germination and seedling growth. Moreover, the above mentioned growth regulators overcame the inhibitory effect of JA on the percentages of germination and coleoptile emergence in the same ratio, while GA3 was the most successful hormone on the fresh weight and radicle and coleoptile elongation in comparison with the other growth regulators. Key words: Barley, jasmonic acid, plant growth regulator, seed germination, seedling growth ARPANIN TOHUM ÇİMLENMESİ VE FİDE BÜYÜMESİNİN JASMONİK ASİT TEŞVİKLİ İNHİBİSYONU ÜZERİNE BAZI BİTKİ BÜYÜME DÜZENLEYİCİLERİNİN ETKİLERİ Özet: Arpanın tohum çimlenmesi ve fide büyümesinin jasmonik asit inhibisyonu üzerine gibberellik asit, kinetin, benziladenin, etilen, 24-epibrassinolit ve poliaminlerin (spermin, spermidin, putressin, kadaverin etkileri araştırılmıştır. Çalışılan bitki büyüme düzenleyicilerinin tümünün tohum çimlenmesi ve fide büyümesi üzerinde jasmonik asitin engelleyici etkisini tersine çevirmede başarılı bir performansa sahip oldukları belirlenmiştir. Dahası, yukarıda sözü edilen büyüme düzenleyicileri çimlenme ve koleoptil çıkış yüzdeleri üzerinde aynı oranda etkili olurken, taze ağırlık ve radikula ve koleoptil uzaması üzerinde diğer büyüme düzenleyicileri ile karşılaştırıldığında en başarılı hormon GA3 olmuştur. Anahtar kelimeler: Arpa, jasmonik asit, bitki büyüme düzenleyicisi, tohum çimlenmesi, fide büyümesi

  3. Effects of Mechanical Coupling Between Cardiomyocytes and Cardiac Fibroblasts on Myocardium

    Science.gov (United States)

    Zorlutuna, Pinar; Nguyen, Trung Dung; Nagarajan, Neerajha

    Cardiomyocytes show excitatory responses to stimulation solely by mechanical forces through their stretch-activated ion channels, and can fire action potentials upon mechanical stimulation through a pathway known as mechano-electric feedback. Furthermore, cardiomyocyte (CM) - cardiac fibroblasts (CF) can couple mechanically through cell-cell junctions. Here we investigated the effects of CM and CF mechanical coupling on myocardial physiology and pathology using a bio-nanoindentered coupled with fast calcium imaging and microelectrode arrays. In order to study mechanical signal transmission, we measured the contractile forces generated by CMs, as well as by CFs that were coupled to the CMs. We observed that CFs were beating with the same frequency but at smaller magnitude compared to CMs, and their contractility was dependent on the substrate stiffness. Our results showed that beating CMs actively stretched neighbouring CFs through the deformation of the substrate the cells were seeded on, which promoted the myocardial contractility through mechanical coupling. The results also revealed that CM contractility was propagated greater on soft substrates than stiff ones. Results of this study could help identify the role of the infarcted tissue stiffness and size on heart failure. This study is supported by NSF Grant No: 1530884.

  4. Propofol ameliorates doxorubicin-induced oxidative stress and cellular apoptosis in rat cardiomyocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lai, H.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Yeh, Y.C. [Graduate Institute of Natural Healing Sciences, Nanhua University, Chiayi, Taiwan (China); Wang, L.C. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Ting, C.T.; Lee, W.L. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Lee, H.W. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Wang, K.Y. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine, Chung-Shan Medical University, Taichung, Taiwan (China); Wu, A. [College of Biological Science, University of California, Davis (United States); Su, C.S. [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China); Liu, T.J., E-mail: trliu@vghtc.gov.tw [Cardiovascular Center and Department of Anesthesiology, Taichung Veterans General Hospital, Taichung, Taiwan (China); Department of Medicine and Cardiovascular Research Center, National Yang-Ming University School of Medicine, Taipei, Taiwan (China)

    2011-12-15

    Background: Propofol is an anesthetic with pluripotent cytoprotective properties against various extrinsic insults. This study was designed to examine whether this agent could also ameliorate the infamous toxicity of doxorubicin, a widely-used chemotherapeutic agent against a variety of cancer diseases, on myocardial cells. Methods: Cultured neonatal rat cardiomyocytes were administrated with vehicle, doxorubicin (1 {mu}M), propofol (1 {mu}M), or propofol plus doxorubicin (given 1 h post propofol). After 24 h, cells were harvested and specific analyses regarding oxidative/nitrative stress and cellular apoptosis were conducted. Results: Trypan blue exclusion and MTT assays disclosed that viability of cardiomyocytes was significantly reduced by doxorubicin. Contents of reactive oxygen and nitrogen species were increased and antioxidant enzymes SOD1, SOD2, and GPx were decreased in these doxorubicin-treated cells. Mitochondrial dehydrogenase activity and membrane potential were also depressed, along with activation of key effectors downstream of mitochondrion-dependent apoptotic signaling. Besides, abundance of p53 was elevated and cleavage of PKC-{delta} was induced in these myocardial cells. In contrast, all of the above oxidative, nitrative and pro-apoptotic events could be suppressed by propofol pretreatment. Conclusions: Propofol could extensively counteract oxidative/nitrative and multiple apoptotic effects of doxorubicin in the heart; hence, this anesthetic may serve as an adjuvant agent to assuage the untoward cardiac effects of doxorubicin in clinical application. -- Highlights: Black-Right-Pointing-Pointer We evaluate how propofol prevents doxorubicin-induced toxicity in cardiomyocytes. Black-Right-Pointing-Pointer Propofol reduces doxorubicin-imposed nitrative and oxidative stress. Black-Right-Pointing-Pointer Propofol suppresses mitochondrion-, p53- and PKC-related apoptotic signaling. Black-Right-Pointing-Pointer Propofol ameliorates apoptosis and

  5. Effect of plant growth regulators on callus induction and plant ...

    African Journals Online (AJOL)

    The present study was conducted to investigate the effects of different concentrations and combinations of growth regulators on callus induction and plant regeneration of potato (Solanum tuberosum L.) cultivar Diamant. The tuber segments were used as explants and cultured on Murashige and Skoog (MS) medium ...

  6. Mapping of redox state of mitochondrial cytochromes in live cardiomyocytes using Raman microspectroscopy

    DEFF Research Database (Denmark)

    Brazhe, Nadezda A; Treiman, Marek; Brazhe, Alexey R

    2012-01-01

    This paper presents a nonivasive approach to study redox state of reduced cytochromes [Formula: see text], [Formula: see text] and [Formula: see text] of complexes II and III in mitochondria of live cardiomyocytes by means of Raman microspectroscopy. For the first time with the proposed approach ...

  7. Identification of genomic biomarkers for anthracycline-induced cardiotoxicity in human iPSC-derived cardiomyocytes: an in vitro repeated exposure toxicity approach for safety assessment.

    Science.gov (United States)

    Chaudhari, Umesh; Nemade, Harshal; Wagh, Vilas; Gaspar, John Antonydas; Ellis, James K; Srinivasan, Sureshkumar Perumal; Spitkovski, Dimitry; Nguemo, Filomain; Louisse, Jochem; Bremer, Susanne; Hescheler, Jürgen; Keun, Hector C; Hengstler, Jan G; Sachinidis, Agapios

    2016-11-01

    The currently available techniques for the safety evaluation of candidate drugs are usually cost-intensive and time-consuming and are often insufficient to predict human relevant cardiotoxicity. The purpose of this study was to develop an in vitro repeated exposure toxicity methodology allowing the identification of predictive genomics biomarkers of functional relevance for drug-induced cardiotoxicity in human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The hiPSC-CMs were incubated with 156 nM doxorubicin, which is a well-characterized cardiotoxicant, for 2 or 6 days followed by washout of the test compound and further incubation in compound-free culture medium until day 14 after the onset of exposure. An xCELLigence Real-Time Cell Analyser was used to monitor doxorubicin-induced cytotoxicity while also monitoring functional alterations of cardiomyocytes by counting of the beating frequency of cardiomyocytes. Unlike single exposure, repeated doxorubicin exposure resulted in long-term arrhythmic beating in hiPSC-CMs accompanied by significant cytotoxicity. Global gene expression changes were studied using microarrays and bioinformatics tools. Analysis of the transcriptomic data revealed early expression signatures of genes involved in formation of sarcomeric structures, regulation of ion homeostasis and induction of apoptosis. Eighty-four significantly deregulated genes related to cardiac functions, stress and apoptosis were validated using real-time PCR. The expression of the 84 genes was further studied by real-time PCR in hiPSC-CMs incubated with daunorubicin and mitoxantrone, further anthracycline family members that are also known to induce cardiotoxicity. A panel of 35 genes was deregulated by all three anthracycline family members and can therefore be expected to predict the cardiotoxicity of compounds acting by similar mechanisms as doxorubicin, daunorubicin or mitoxantrone. The identified gene panel can be applied in the safety

  8. Overview of OVATE FAMILY PROTEINS, a novel class of plant-specific growth regulators

    Directory of Open Access Journals (Sweden)

    Shucai eWang

    2016-03-01

    Full Text Available OVATE FAMILY PROTEINS (OFPs are a class of proteins with a conserved OVATE domain. OVATE protein was first identified in tomato as a key regulator of fruit shape. OFPs are plant-specific proteins that are widely distributed in the plant kingdom including mosses and lycophytes. Transcriptional activity analysis of Arabidopsis OFPs (AtOFPs in protoplasts suggests that they act as transcription repressors. Functional characterization of OFPs from different plant species including Arabidopsis, rice, tomato, pepper and banana suggests that OFPs regulate multiple aspects of plant growth and development, which is likely achieved by interacting with different types of transcription factors including the KNOX and BELL classes, and/or directly regulating the expression of target genes such as Gibberellin 20 oxidase (GA20ox. Here, we examine how OVATE was originally identified, summarize recent progress in elucidation of the roles of OFPs in regulating plant growth and development, and describe possible mechanisms underpinning this regulation. Finally, we review potential new research directions that could shed additional light on the functional biology of OFPs in plants.

  9. Drosophila Big bang regulates the apical cytocortex and wing growth through junctional tension.

    Science.gov (United States)

    Tsoumpekos, Giorgos; Nemetschke, Linda; Knust, Elisabeth

    2018-03-05

    Growth of epithelial tissues is regulated by a plethora of components, including signaling and scaffolding proteins, but also by junctional tension, mediated by the actomyosin cytoskeleton. However, how these players are spatially organized and functionally coordinated is not well understood. Here, we identify the Drosophila melanogaster scaffolding protein Big bang as a novel regulator of growth in epithelial cells of the wing disc by ensuring proper junctional tension. Loss of big bang results in the reduction of the regulatory light chain of nonmuscle myosin, Spaghetti squash. This is associated with an increased apical cell surface, decreased junctional tension, and smaller wings. Strikingly, these phenotypic traits of big bang mutant discs can be rescued by expressing constitutively active Spaghetti squash. Big bang colocalizes with Spaghetti squash in the apical cytocortex and is found in the same protein complex. These results suggest that in epithelial cells of developing wings, the scaffolding protein Big bang controls apical cytocortex organization, which is important for regulating cell shape and tissue growth. © 2018 Tsoumpekos et al.

  10. Effectiveness of growth regulators, based on the heterylcarbon acid, on forcing of Tulips (Tulips HD

    Directory of Open Access Journals (Sweden)

    Derevianko Natalia

    2016-03-01

    Full Text Available The main factor in growing flowers for forcing is their rate of growth, on account of the fact that in short period of time it is necessary to grow quickly a large number of flowers and to cut them simultaneously. The influence of growth regulators (GR based on heterylcarbon acid on the forcing of tulips in greenhouse conditions (winter period was studied. It was determined that the application of GR1 of the basic within tulip’s forcing period reduces in average to 5 days (from all period of forcing. In case of application GR2 the tulip’s forcing period also reduces to 3 days (from all period of forcing compared with a control group of tulips. The ability of the plant growth regulators under research to accelerate growing properties of flowers is associated with the presence of heterylcarbon acid and potassium ions in their structure of substances. These growth regulators relate to non-toxic compounds and possess antioxidant properties.

  11. GABA signalling modulates plant growth by directly regulating the activity of plant-specific anion transporters.

    Science.gov (United States)

    Ramesh, Sunita A; Tyerman, Stephen D; Xu, Bo; Bose, Jayakumar; Kaur, Satwinder; Conn, Vanessa; Domingos, Patricia; Ullah, Sana; Wege, Stefanie; Shabala, Sergey; Feijó, José A; Ryan, Peter R; Gilliham, Matthew; Gillham, Matthew

    2015-07-29

    The non-protein amino acid, gamma-aminobutyric acid (GABA) rapidly accumulates in plant tissues in response to biotic and abiotic stress, and regulates plant growth. Until now it was not known whether GABA exerts its effects in plants through the regulation of carbon metabolism or via an unidentified signalling pathway. Here, we demonstrate that anion flux through plant aluminium-activated malate transporter (ALMT) proteins is activated by anions and negatively regulated by GABA. Site-directed mutagenesis of selected amino acids within ALMT proteins abolishes GABA efficacy but does not alter other transport properties. GABA modulation of ALMT activity results in altered root growth and altered root tolerance to alkaline pH, acid pH and aluminium ions. We propose that GABA exerts its multiple physiological effects in plants via ALMT, including the regulation of pollen tube and root growth, and that GABA can finally be considered a legitimate signalling molecule in both the plant and animal kingdoms.

  12. Fluoxetine regulates cell growth inhibition of interferon-α.

    Science.gov (United States)

    Lin, Yu-Min; Yu, Bu-Chin; Chiu, Wen-Tai; Sun, Hung-Yu; Chien, Yu-Chieh; Su, Hui-Chen; Yen, Shu-Yang; Lai, Hsin-Wen; Bai, Chyi-Huey; Young, Kung-Chia; Tsao, Chiung-Wen

    2016-10-01

    Fluoxetine, a well-known anti-depression agent, may act as a chemosensitizer to assist and promote cancer therapy. However, how fluoxetine regulates cellular signaling to enhance cellular responses against tumor cell growth remains unclear. In the present study, addition of fluoxetine promoted growth inhibition of interferon-alpha (IFN-α) in human bladder carcinoma cells but not in normal uroepithelial cells through lessening the IFN-α-induced apoptosis but switching to cause G1 arrest, and maintaining the IFN-α-mediated reduction in G2/M phase. Activations and signal transducer and transactivator (STAT)-1 and peroxisome proliferator-activated receptor alpha (PPAR-α) were involved in this process. Chemical inhibitions of STAT-1 or PPAR-α partially rescued bladder carcinoma cells from IFN-α-mediated growth inhibition via blockades of G1 arrest, cyclin D1 reduction, p53 downregulation and p27 upregulation in the presence of fluoxetine. However, the functions of both proteins were not involved in the control of fluoxetine over apoptosis and maintained the declined G2/M phase of IFN-α. These results indicated that activation of PPAR-α and STAT-1 participated, at least in part, in growth inhibition of IFN-α in the presence of fluoxetine.

  13. Bidirectional remodeling of β1-integrin adhesions during chemotropic regulation of nerve growth

    Directory of Open Access Journals (Sweden)

    Carlstrom Lucas P

    2011-11-01

    Full Text Available Abstract Background Chemotropic factors in the extracellular microenvironment guide nerve growth by acting on the growth cone located at the tip of extending axons. Growth cone extension requires the coordination of cytoskeleton-dependent membrane protrusion and dynamic adhesion to the extracellular matrix, yet how chemotropic factors regulate these events remains an outstanding question. We demonstrated previously that the inhibitory factor myelin-associated glycoprotein (MAG triggers endocytic removal of the adhesion receptor β1-integrin from the growth cone surface membrane to negatively remodel substrate adhesions during chemorepulsion. Here, we tested how a neurotrophin might affect integrin adhesions. Results We report that brain-derived neurotropic factor (BDNF positively regulates the formation of substrate adhesions in axonal growth cones during stimulated outgrowth and prevents removal of β1-integrin adhesions by MAG. Treatment of Xenopus spinal neurons with BDNF rapidly triggered β1-integrin clustering and induced the dynamic formation of nascent vinculin-containing adhesion complexes in the growth cone periphery. Both the formation of nascent β1-integrin adhesions and the stimulation of axon extension by BDNF required cytoplasmic calcium ion signaling and integrin activation at the cell surface. Exposure to MAG decreased the number of β1-integrin adhesions in the growth cone during inhibition of axon extension. In contrast, the BDNF-induced adhesions were resistant to negative remodeling by MAG, correlating with the ability of BDNF pretreatment to counteract MAG-inhibition of axon extension. Pre-exposure to MAG prevented the BDNF-induced formation of β1-integrin adhesions and blocked the stimulation of axon extension by BDNF. Conclusions Altogether, these findings demonstrate the neurotrophin-dependent formation of integrin-based adhesions in the growth cone and reveal how a positive regulator of substrate adhesions can block

  14. Effects of Growth Hormone on Cardiac Remodeling During Resistance Training in Rats

    Energy Technology Data Exchange (ETDEWEB)

    Junqueira, Adriana, E-mail: francispacagnelli@unoeste.br [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Cicogna, Antônio Carlos [Universidade Estadual Paulista (UNESP), Campus Botucatu, SP (Brazil); Engel, Letícia Estevam; Aldá, Maiara Almeida [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Tomasi, Loreta Casquel de [Universidade Estadual Paulista (UNESP), Campus Botucatu, SP (Brazil); Giuffrida, Rogério; Giometti, Inês Cristina [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Freire, Ana Paula Coelho Figueira [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil); Universidade Estadual Paulista (UNESP), Campus Presidente Prudente, SP (Brazil); Aguiar, Andreo Fernando [Universidade do Norte do Paraná, UNOPAR, Londrina, PR (Brazil); Pacagnelli, Francis Lopes [Universidade do Oeste Paulista (UNOESTE), Presidente Prudente, SP (Brazil)

    2016-01-15

    Although the beneficial effects of resistance training (RT) on the cardiovascular system are well established, few studies have investigated the effects of the chronic growth hormone (GH) administration on cardiac remodeling during an RT program. To evaluate the effects of GH on the morphological features of cardiac remodeling and Ca2+ transport gene expression in rats submitted to RT. Male Wistar rats were divided into 4 groups (n = 7 per group): control (CT), GH, RT and RT with GH (RTGH). The dose of GH was 0.2 IU/kg every other day for 30 days. The RT model used was the vertical jump in water (4 sets of 10 jumps, 3 bouts/wk) for 30 consecutive days. After the experimental period, the following variables were analyzed: final body weight (FBW), left ventricular weight (LVW), LVW/FBW ratio, cardiomyocyte cross-sectional area (CSA), collagen fraction, creatine kinase muscle-brain fraction (CK-MB) and gene expressions of SERCA2a, phospholamban (PLB) and ryanodine (RyR). There was no significant (p > 0.05) difference among groups for FBW, LVW, LVW/FBW ratio, cardiomyocyte CSA, and SERCA2a, PLB and RyR gene expressions. The RT group showed a significant (p < 0.05) increase in collagen fraction compared to the other groups. Additionally, the trained groups (RT and RTGH) had greater CK-MB levels compared to the untrained groups (CT and GH). GH may attenuate the negative effects of RT on cardiac remodeling by counteracting the increased collagen synthesis, without affecting the gene expression that regulates cardiac Ca{sup 2+} transport.

  15. Identification and functionality of proteomes secreted by rat cardiac stem cells and neonatal cardiomyocytes

    Czech Academy of Sciences Publication Activity Database

    Šťastná, Miroslava; Chimenti, I.; Marban, E.; Van Eyk, J.E.

    2010-01-01

    Roč. 10, č. 2 (2010), s. 245-253 ISSN 1615-9853 Institutional research plan: CEZ:AV0Z40310501 Keywords : animal proteomics * cardiac stem cells * neonatal cardiomyocytes Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 4.815, year: 2010

  16. MUSCLEMOTION: A Versatile Open Software Tool to Quantify Cardiomyocyte and Cardiac Muscle Contraction In Vitro and In Vivo.

    Science.gov (United States)

    Sala, Luca; van Meer, Berend J; Tertoolen, Leon G J; Bakkers, Jeroen; Bellin, Milena; Davis, Richard P; Denning, Chris; Dieben, Michel A E; Eschenhagen, Thomas; Giacomelli, Elisa; Grandela, Catarina; Hansen, Arne; Holman, Eduard R; Jongbloed, Monique R M; Kamel, Sarah M; Koopman, Charlotte D; Lachaud, Quentin; Mannhardt, Ingra; Mol, Mervyn P H; Mosqueira, Diogo; Orlova, Valeria V; Passier, Robert; Ribeiro, Marcelo C; Saleem, Umber; Smith, Godfrey L; Burton, Francis L; Mummery, Christine L

    2018-02-02

    There are several methods to measure cardiomyocyte and muscle contraction, but these require customized hardware, expensive apparatus, and advanced informatics or can only be used in single experimental models. Consequently, data and techniques have been difficult to reproduce across models and laboratories, analysis is time consuming, and only specialist researchers can quantify data. Here, we describe and validate an automated, open-source software tool (MUSCLEMOTION) adaptable for use with standard laboratory and clinical imaging equipment that enables quantitative analysis of normal cardiac contraction, disease phenotypes, and pharmacological responses. MUSCLEMOTION allowed rapid and easy measurement of movement from high-speed movies in (1) 1-dimensional in vitro models, such as isolated adult and human pluripotent stem cell-derived cardiomyocytes; (2) 2-dimensional in vitro models, such as beating cardiomyocyte monolayers or small clusters of human pluripotent stem cell-derived cardiomyocytes; (3) 3-dimensional multicellular in vitro or in vivo contractile tissues, such as cardiac "organoids," engineered heart tissues, and zebrafish and human hearts. MUSCLEMOTION was effective under different recording conditions (bright-field microscopy with simultaneous patch-clamp recording, phase contrast microscopy, and traction force microscopy). Outcomes were virtually identical to the current gold standards for contraction measurement, such as optical flow, post deflection, edge-detection systems, or manual analyses. Finally, we used the algorithm to quantify contraction in in vitro and in vivo arrhythmia models and to measure pharmacological responses. Using a single open-source method for processing video recordings, we obtained reliable pharmacological data and measures of cardiac disease phenotype in experimental cell, animal, and human models. © 2017 The Authors.

  17. Linking gene regulation to cell behaviors in the posterior growth zone of sequentially segmenting arthropods.

    Science.gov (United States)

    Williams, Terri A; Nagy, Lisa M

    2017-05-01

    Virtually all arthropods all arthropods add their body segments sequentially, one by one in an anterior to posterior progression. That process requires not only segment specification but typically growth and elongation. Here we review the functions of some of the key genes that regulate segmentation: Wnt, caudal, Notch pathway, and pair-rule genes, and discuss what can be inferred about their evolution. We focus on how these regulatory factors are integrated with growth and elongation and discuss the importance and challenges of baseline measures of growth and elongation. We emphasize a perspective that integrates the genetic regulation of segment patterning with the cellular mechanisms of growth and elongation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Effect of plant growth regulators on regeneration of the endangered ...

    African Journals Online (AJOL)

    Development of an efficient in vitro regeneration protocol of Calligonum comosum is important and that has achieved to protect the endangered multipurpose medicinally important desert plant in the Kingdom of Bahrain. Nodal segments were used as explants source and the effect of various plant growth regulators (PGRs) ...

  19. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer A Talarico

    Full Text Available β-adrenergic receptor (βAR-mediated transactivation of epidermal growth factor receptor (EGFR has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib, including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.

  20. Efficient generation of transgene- and feeder-free induced pluripotent stem cells from human dental mesenchymal stem cells and their chemically defined differentiation into cardiomyocytes.

    Science.gov (United States)

    Tan, Xiaobing; Dai, Qingli; Guo, Tao; Xu, Jingshu; Dai, Qingyuan

    2018-01-22

    Advance in stem cell research resulted in several processes to generate induced pluripotent stem cells (iPSCs) from adult somatic cells. In our previous study, the reprogramming of iPSCs from human dental mesenchymal stem cells (MSCs) including SCAP and DPSCs, has been reported. Herein, safe iPSCs were reprogrammed from SCAP and DPSCs using non-integrating RNA virus vector, which is an RNA virus carrying no risk of altering host genome. DPSCs- and SCAP-derived iPSCs exhibited the characteristics of the classical morphology with human embryonic stem cells (hESCs) without integration of foreign genes, indicating the potential of their clinical application. Moreover, induced PSCs showed the capacity of self-renewal and differentiation into cardiac myocytes. We have achieved the differentiation of hiPSCs to cardiomyocytes lineage under serum and feeder-free conditions, using a chemically defined medium CDM3. In CDM3, hiPSCs differentiation is highly generating cardiomyocytes. The results showed this protocol produced contractile sheets of up to 97.2% TNNT2 cardiomyocytes after purification. Furthermore, derived hiPSCs differentiated to mature cells of the three embryonic germ layers in vivo and in vitro of beating cardiomyocytes. The above whole protocol enables the generation of large scale of highly pure cardiomyocytes as needed for cellular therapy. Copyright © 2017. Published by Elsevier Inc.

  1. Emergence of robust growth laws from optimal regulation of ribosome synthesis.

    Science.gov (United States)

    Scott, Matthew; Klumpp, Stefan; Mateescu, Eduard M; Hwa, Terence

    2014-08-22

    Bacteria must constantly adapt their growth to changes in nutrient availability; yet despite large-scale changes in protein expression associated with sensing, adaptation, and processing different environmental nutrients, simple growth laws connect the ribosome abundance and the growth rate. Here, we investigate the origin of these growth laws by analyzing the features of ribosomal regulation that coordinate proteome-wide expression changes with cell growth in a variety of nutrient conditions in the model organism Escherichia coli. We identify supply-driven feedforward activation of ribosomal protein synthesis as the key regulatory motif maximizing amino acid flux, and autonomously guiding a cell to achieve optimal growth in different environments. The growth laws emerge naturally from the robust regulatory strategy underlying growth rate control, irrespective of the details of the molecular implementation. The study highlights the interplay between phenomenological modeling and molecular mechanisms in uncovering fundamental operating constraints, with implications for endogenous and synthetic design of microorganisms. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  2. Cardiomyocytes from late embryos and neonates do optimal work and striate best on substrates with tissue-level elasticity: metrics and mathematics.

    Science.gov (United States)

    Majkut, Stephanie F; Discher, Dennis E

    2012-11-01

    In this review, we discuss recent studies on the mechanosensitive morphology and function of cardiomyocytes derived from embryos and neonates. For early cardiomyocytes cultured on substrates of various stiffnesses, contractile function as measured by force production, work output and calcium handling is optimized when the culture substrate stiffness mimics that of the tissue from which the cells were obtained. This optimal contractile function corresponds to changes in sarcomeric protein conformation and organization that promote contractile ability. In light of current models for myofibillogenesis, a recent mathematical model of striation and alignment on elastic substrates helps to illuminate how substrate stiffness modulates early myofibril formation and organization. During embryonic heart formation and maturation, cardiac tissue mechanics change dynamically. Experiments and models highlighted here have important implications for understanding cardiomyocyte differentiation and function in development and perhaps in regeneration processes.

  3. Institutions and Regulation for Economic Growth ? : public interests versus public incentives

    NARCIS (Netherlands)

    Wubben, E.F.M.

    2011-01-01

    Realizing institutions and regulations that foster economic growth is an essential asset for contemporary economies. This book investigates practices and options for steering individual and firm behaviour that prevents unacceptable externalities and boosts public interests. These multi-dimensional

  4. Foliar fertilizations with boron and growth regulators on lettuce (Lactuca sativa L.) cv floresta culture

    International Nuclear Information System (INIS)

    Masunaga, S.I.; Chueire, F.B.; Teixeira, N.T.

    1989-01-01

    The experiment was realized to verify the possibility of applying Boron as foliar fertilization with growth regulators: indol acetic acid, giberellic acid, ethephon and cycocel. The other objective was to compare the foliar and soil fertilization, with Boron, on the lettuce culture. The results showed that there wasn't difference of production between the treatments. Meanwhile the application of growth regulator modified the Boron grade in the leaves. (author) [pt

  5. The effect of plant growth regulators, explants and cultivars on ...

    African Journals Online (AJOL)

    ONOS

    2010-07-05

    Jul 5, 2010 ... The effect of plant growth regulators, explants and cultivars on spinach (Spinacia oleracea L.) tissue culture. Taha Roodbar Shojaei1*, Vahid Salari2, Darioush Ramazan3, Mahdi Ehyaei1, Javad. Gharechahi4 and Roya Motallebi Chaleshtori5. 1Department of Agronomy and Plant Breeding, College of ...

  6. The Fat-Dachsous signaling pathway regulates growth of horns in Trypoxylus dichotomus, but does not affect horn allometry.

    Science.gov (United States)

    Hust, James; Lavine, Mark D; Worthington, Amy M; Zinna, Robert; Gotoh, Hiroki; Niimi, T; Lavine, Laura

    Males of the Asian rhinoceros beetle, Trypoxylus dichotomus, possess exaggerated head and thoracic horns that scale dramatically out of proportion to body size. While studies of insulin signaling suggest that this pathway regulates nutrition-dependent growth including exaggerated horns, what regulates disproportionate growth has yet to be identified. The Fat signaling pathway is a potential candidate for regulating disproportionate growth of sexually-selected traits, a hypothesis we advanced in a previous paper (Gotoh et al., 2015). To investigate the role of Fat signaling in the growth and scaling of the sexually dimorphic, condition-dependent traits of the in the Asian rhinoceros beetle T. dichotomus, we used RNA interference to knock down expression of fat and its co-receptor dachsous. Knockdown of fat, and to a lesser degree dachsous, caused shortening and widening of appendages, including the head and thoracic horns. However, scaling of horns to body size was not affected. Our results show that Fat signaling regulates horn growth in T. dichotomus as it does in appendage growth in other insects. However, we provide evidence that Fat signaling does not mediate the disproportionate, positive allometric growth of horns in T. dichotomus. Copyright © 2018 Elsevier Ltd. All rights reserved.

  7. Screening of cardiomyocyte fluorescence during cell contraction by multi-dimensional TCSPC

    Science.gov (United States)

    Chorvat, D., Jr.; Abdulla, S.; Elzwiei, F.; Mateasik, A.; Chorvatova, A.

    2008-02-01

    Autofluorescence is one of the most versatile non-invasive tools for mapping the metabolic state of living tissues, such as the heart. We present a new approach to the investigation of changes in endogenous fluorescence during cardiomyocyte contraction - by spectrally-resolved, time correlated, single photon counting (TCSPC). Cell contraction is stimulated by external platinum electrodes, incorporated in a home-made bath and triggered by a pulse generator at a frequency of 0.5 Hz (to stabilize sarcoplasmic reticulum loading), or 5 Hz (the rat heart rate). Cell illumination by the laser is synchronized with cell contraction, using TTL logic pulses operated by a stimulator and delayed to study mitochondrial metabolism at maximum contraction (10-110 ms) and/or at steady state (1000-1100 ms at 0.5 Hz). To test the setup, we recorded calcium transients in cells loaded with the Fluo-3 fluorescent probe (excited by 475 nm pulsed picosecond diode laser). We then evaluated recordings of flavin AF (excited by 438 nm pulsed laser) at room and physiological temperatures. Application of the presented approach will shed new insight into metabolic changes in living, contracting myocytes and, therefore, regulation of excitation-contraction coupling and/or ionic homeostasis and, thus, heart excitability.

  8. Fibroblast growth factor regulates insulin-like growth factor-binding protein production by vascular smooth muscle cells.

    Science.gov (United States)

    Ververis, J; Ku, L; Delafontaine, P

    1994-02-01

    Insulin-like growth factor I is an important mitogen for vascular smooth muscle cells, and its effects are regulated by several binding proteins. Western ligand blotting of conditioned medium from rat aortic smooth muscle cells detected a 24 kDa binding protein and a 28 kDa glycosylated variant of this protein, consistent with insulin-like growth factor binding protein-4 by size. Low amounts of a glycosylated 38 to 42 kDa doublet (consistent with binding protein-3) and a 31 kDa non-glycosylated protein also were present. Basic fibroblast growth factor markedly increased secretion of the 24 kDa binding protein and its 28 kDa glycosylated variant. This effect was dose- and time-dependent and was inhibited by co-incubation with cycloheximide. Crosslinking of [125I]-insulin-like growth factor I to cell monolayers revealed no surface-associated binding proteins, either basally or after agonist treatment. Induction of binding protein production by fibroblast growth factor at sites of vascular injury may be important in vascular proliferative responses in vivo.

  9. The apical scaffold big bang binds to spectrins and regulates the growth of Drosophila melanogaster wing discs.

    Science.gov (United States)

    Forest, Elodie; Logeay, Rémi; Géminard, Charles; Kantar, Diala; Frayssinoux, Florence; Heron-Milhavet, Lisa; Djiane, Alexandre

    2018-03-05

    During development, cell numbers are tightly regulated, ensuring that tissues and organs reach their correct size and shape. Recent evidence has highlighted the intricate connections between the cytoskeleton and the regulation of the key growth control Hippo pathway. Looking for apical scaffolds regulating tissue growth, we describe that Drosophila melanogaster big bang (Bbg), a poorly characterized multi-PDZ scaffold, controls epithelial tissue growth without affecting epithelial polarity and architecture. bbg -mutant tissues are smaller, with fewer cells that are less apically constricted than normal. We show that Bbg binds to and colocalizes tightly with the β-heavy-Spectrin/Kst subunit at the apical cortex and promotes Yki activity, F-actin enrichment, and the phosphorylation of the myosin II regulatory light chain Spaghetti squash. We propose a model in which the spectrin cytoskeleton recruits Bbg to the cortex, where Bbg promotes actomyosin contractility to regulate epithelial tissue growth. © 2018 Forest et al.

  10. Cardioprotective Effects of Quercetin in Cardiomyocyte under Ischemia/Reperfusion Injury

    Directory of Open Access Journals (Sweden)

    Yi-Wen Chen

    2013-01-01

    Full Text Available Quercetin, a polyphenolic compound existing in many vegetables, fruits, has antiinflammatory, antiproliferation, and antioxidant effect on mammalian cells. Quercetin was evaluated for protecting cardiomyocytes from ischemia/reperfusion injury, but its protective mechanism remains unclear in the current study. The cardioprotective effects of quercetin are achieved by reducing the activity of Src kinase, signal transducer and activator of transcription 3 (STAT3, caspase 9, Bax, intracellular reactive oxygen species production, and inflammatory factor and inducible MnSOD expression. Fluorescence two-dimensional differential gel electrophoresis (2D-DIGE and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS can reveal the differentially expressed proteins of H9C2 cells treated with H2O2 or quercetin. Although 17 identified proteins were altered in H2O2-induced cells, these proteins such as alpha-soluble NSF attachment protein (α-SNAP, Ena/VASP-like protein (Evl, and isopentenyl-diphosphate delta-isomerase 1 (Idi-1 were reverted by pretreatment with quercetin, which correlates with kinase activation, DNA repair, lipid, and protein metabolism. Quercetin dephosphorylates Src kinase in H2O2-induced H9C2 cells and likely blocks the H2O2-induced inflammatory response through STAT3 kinase modulation. This probably contributes to prevent ischemia/reperfusion injury in cardiomyocytes.

  11. Cardiomyocyte-specific deletion of the G protein-coupled estrogen receptor (GPER) leads to left ventricular dysfunction and adverse remodeling: A sex-specific gene profiling analysis.

    Science.gov (United States)

    Wang, Hao; Sun, Xuming; Chou, Jeff; Lin, Marina; Ferrario, Carlos M; Zapata-Sudo, Gisele; Groban, Leanne

    2017-08-01

    Activation of G protein-coupled estrogen receptor (GPER) by its agonist, G1, protects the heart from stressors such as pressure-overload, ischemia, a high-salt diet, estrogen loss, and aging, in various male and female animal models. Due to nonspecific effects of G1, the exact functions of cardiac GPER cannot be concluded from studies using systemic G1 administration. Moreover, global knockdown of GPER affects glucose homeostasis, blood pressure, and many other cardiovascular-related systems, thereby confounding interpretation of its direct cardiac actions. We generated a cardiomyocyte-specific GPER knockout (KO) mouse model to specifically investigate the functions of GPER in cardiomyocytes. Compared to wild type mice, cardiomyocyte-specific GPER KO mice exhibited adverse alterations in cardiac structure and impaired systolic and diastolic function, as measured by echocardiography. Gene deletion effects on left ventricular dimensions were more profound in male KO mice compared to female KO mice. Analysis of DNA microarray data from isolated cardiomyocytes of wild type and KO mice revealed sex-based differences in gene expression profiles affecting multiple transcriptional networks. Gene Set Enrichment Analysis (GSEA) revealed that mitochondrial genes are enriched in GPER KO females, whereas inflammatory response genes are enriched in GPER KO males, compared to their wild type counterparts of the same sex. The cardiomyocyte-specific GPER KO mouse model provides us with a powerful tool to study the functions of GPER in cardiomyocytes. The gene expression profiles of the GPER KO mice provide foundational information for further study of the mechanisms underlying sex-specific cardioprotection by GPER. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. The role of growth regulators, embryo age and genotypes on ...

    African Journals Online (AJOL)

    One of the most important problem of tomato breeders is lengthy seed to seed cycle in a breeding program. In vitro techiques provide a lot of advantages for breeders. The objective of this work was to determine the effect of growth regulators and immature embryo age on embryo germination and rapid generation ...

  13. Delayed Cardiomyocyte Response to Total Body Particle Radiation Exposure - Identification of Regulatory Gene Network [proton

    Data.gov (United States)

    National Aeronautics and Space Administration — We examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy 1 GeV proton (1H) and 15 cGy 1 GeV/nucleon...

  14. Delayed Cardiomyocyte Response to Total Body Particle Radiation Exposure - Identification of Regulatory Gene Network [iron

    Data.gov (United States)

    National Aeronautics and Space Administration — We examined molecular responses using transcriptome profiling in isolated left ventricular murine cardiomyocytes to 90 cGy 1 GeV proton (1H) and 15 cGy 1 GeV/nucleon...

  15. Analysis of the Yeast Kinome Reveals a Network of Regulated Protein Localization during Filamentous Growth

    OpenAIRE

    Bharucha, Nikë; Ma, Jun; Dobry, Craig J.; Lawson, Sarah K.; Yang, Zhifen; Kumar, Anuj

    2008-01-01

    The subcellular distribution of kinases and other signaling proteins is regulated in response to cellular cues; however, the extent of this regulation has not been investigated for any gene set in any organism. Here, we present a systematic analysis of protein kinases in the budding yeast, screening for differential localization during filamentous growth. Filamentous growth is an important stress response involving mitogen-activated protein kinase and cAMP-dependent protein kinase signaling m...

  16. Let-7b regulates the expression of the growth hormone receptor gene in deletion-type dwarf chickens.

    Science.gov (United States)

    Lin, Shumao; Li, Hongmei; Mu, Heping; Luo, Wen; Li, Ying; Jia, Xinzheng; Wang, Sibing; Jia, Xiaolu; Nie, Qinghua; Li, Yugu; Zhang, Xiquan

    2012-07-10

    A deletion mutation in the growth hormone receptor (GHR) gene results in the inhibition of skeletal muscle growth and fat deposition in dwarf chickens. We used microarray techniques to determine microRNA (miRNA) and mRNA expression profiles of GHR in the skeletal muscles of 14-day-old embryos as well as 7-week-old deletion-type dwarf and normal-type chickens. Our aim was to elucidate the miRNA regulation of GHR expression with respect to growth inhibition and fat deposition. At the same developmental stages, different expression profiles in skeletal muscles of dwarf and normal chickens occurred for four miRNAs (miR-1623, miR-181b, let-7b, and miR-128). At different developmental stages, there was a significant difference in the expression profiles of a greater number of miRNAs. Eleven miRNAs were up-regulated and 18 down-regulated in the 7-week-old dwarf chickens when compared with profiles in 14-day-old embryos. In 7-week-old normal chickens, seven miRNAs were up-regulated and nine down-regulated compared with those in 14-day-old embryos. In skeletal muscles, 22 genes were up-regulated and 33 down-regulated in 14-day-old embryos compared with 7-week-old dwarf chickens. Sixty-five mRNAs were up-regulated and 108 down-regulated in 14-day-old embryos as compared with 7-week-old normal chickens. Thirty-four differentially expressed miRNAs were grouped into 18 categories based on overlapping seed and target sequences. Only let-7b was found to be complementary to its target in the 3' untranslated region of GHR, and was able to inhibit its expression. Kyoto Encyclopedia of Genes and Genomes pathway analysis and quantitative polymerase chain reactions indicated there were three main signaling pathways regulating skeletal muscle growth and fat deposition of chickens. These were influenced by let-7b-regulated GHR. Suppression of the cytokine signaling 3 (SOCS3) gene was found to be involved in the signaling pathway of adipocytokines. There is a critical miRNA, let-7b

  17. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings

    International Nuclear Information System (INIS)

    Uranga, Carla C.; Beld, Joris; Mrse, Anthony; Córdova-Guerrero, Iván; Burkart, Michael D.; Hernández-Martínez, Rufina

    2016-01-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.

  18. Fatty acid esters produced by Lasiodiplodia theobromae function as growth regulators in tobacco seedlings

    Energy Technology Data Exchange (ETDEWEB)

    Uranga, Carla C., E-mail: curanga@cicese.edu.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C. (Mexico); Beld, Joris, E-mail: joris.beld@drexelmed.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Mrse, Anthony, E-mail: amrse@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Córdova-Guerrero, Iván, E-mail: icordova@uabc.edu.mx [Universidad Autónoma de Baja California (UABC), Calzada Universidad 14418 Parque Industrial Internacional Tijuana, Tijuana, B.C. 22390 (Mexico); Burkart, Michael D., E-mail: mburkart@ucsd.edu [University of California, San Diego, Department of Chemistry and Biochemistry, 9500 Gilman Dr., La Jolla, CA 92093-0358 (United States); Hernández-Martínez, Rufina, E-mail: ruhernan@cicese.mx [Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana 3918, Zona Playitas, 22860 Ensenada, B.C. (Mexico)

    2016-04-01

    The Botryosphaeriaceae are a family of trunk disease fungi that cause dieback and death of various plant hosts. This work sought to characterize fatty acid derivatives in a highly virulent member of this family, Lasiodiplodia theobromae. Nuclear magnetic resonance and gas chromatography-mass spectrometry of an isolated compound revealed (Z, Z)-9,12-ethyl octadecadienoate, (trivial name ethyl linoleate), as one of the most abundant fatty acid esters produced by L. theobromae. A variety of naturally produced esters of fatty acids were identified in Botryosphaeriaceae. In comparison, the production of fatty acid esters in the soil-borne tomato pathogen Fusarium oxysporum, and the non-phytopathogenic fungus Trichoderma asperellum was found to be limited. Ethyl linoleate, ethyl hexadecanoate (trivial name ethyl palmitate), and ethyl octadecanoate, (trivial name ethyl stearate), significantly inhibited tobacco seed germination and altered seedling leaf growth patterns and morphology at the highest concentration (0.2 mg/mL) tested, while ethyl linoleate and ethyl stearate significantly enhanced growth at low concentrations, with both still inducing growth at 98 ng/mL. This work provides new insights into the role of naturally esterified fatty acids from L. theobromae as plant growth regulators with similar activity to the well-known plant growth regulator gibberellic acid. - Highlights: • Lasiodiplodia theobromae produces a wide variety of fatty acid esters in natural substrates. • Ethyl stearate and ethyl linoleate inhibit tobacco germination at 0.2 mg/mL. • Ethyl stearate and ethyl linoleate induce tobacco germination at 98 ng/mL. • Tobacco growth increase in ethyl stearate and ethyl linoleate parallels gibberellic acid. • A role as plant growth regulators is proposed for fatty acid esters.

  19. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth.

    Science.gov (United States)

    Zhang, Xiaoqian; Li, Kecheng; Xing, Ronge; Liu, Song; Chen, Xiaolin; Yang, Haoyue; Li, Pengcheng

    2018-04-18

    Chitosan has been numerously studied as a plant growth regulator and stress tolerance inducer. To investigate the roles of chitosan as bioregulator on plant and unravel its possible metabolic responses mechanisms, we simultaneously investigated mRNAs and microRNAs (miRNAs) expression profiles of wheat seedlings in response to chitosan heptamer. We found 400 chitosan-responsive differentially expressed genes, including 268 up-regulated and 132 down-regulated mRNAs, many of which were related to photosynthesis, primary carbon and nitrogen metabolism, defense responses, and transcription factors. Moreover, miRNAs also participate in chitosan-mediated regulation on plant growth. We identified 87 known and 21 novel miRNAs, among which 56 miRNAs were induced or repressed by chitosan heptamer, such as miRNA156, miRNA159a, miRNA164, miRNA171a, miRNA319, and miRNA1127. The integrative analysis of miRNA and mRNA expression profiles in this case provides fundamental information for further investigation of regulation mechanisms of chitosan on plant growth and will facilitate its application in agriculture.

  20. A progesterone-brown fat axis is involved in regulating fetal growth.

    NARCIS (Netherlands)

    McIlvride, Saraid; Mushtaq, Aleena; Papacleovoulou, Georgia; Hurling, Chloe; Steel, Jennifer; Jansen, Eugène; Abu-Hayyeh, Shadi; Williamson, Catherine

    2017-01-01

    Pregnancy is associated with profound maternal metabolic changes, necessary for the growth and development of the fetus, mediated by reproductive signals acting on metabolic organs. However, the role of brown adipose tissue (BAT) in regulating gestational metabolism is unknown. We show that BAT

  1. Can the growth factors PTHrP, Ihh and VEGF, together regulate the development of a long bone?

    Science.gov (United States)

    Brouwers, J E M; van Donkelaar, C C; Sengers, B G; Huiskes, R

    2006-01-01

    Endochondral ossification is the process of differentiation of cartilaginous into osseous tissue. Parathyroid hormone related protein (PTHrP), Indian hedgehog (Ihh) and vascular endothelial growth factor (VEGF), which are synthesized in different zones of the growth plate, were found to have crucial roles in regulating endochondral ossification. The aim of this study was to evaluate whether the three growth factors PTHrP, Ihh and VEGF, together, could regulate longitudinal growth in a normal human, fetal femur. For this purpose, a one-dimensional finite element (FE) model, incorporating growth factor signaling, was developed of the human, distal, femoral growth plate. It included growth factor synthesis in the relevant zones, their transport and degradation and their effects. Simulations ran from initial hypertrophy in the center of the bone until secondary ossification starts at approximately 3.5 months postnatal. For clarity, we emphasize that no mechanical stresses were considered. The FE model showed a stable growth plate in which the bone growth rate was constant and the number of cells per zone oscillated around an equilibrium. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates resulted, respectively, in more and less cells per zone and in increased and decreased bone growth rates. The FE model correctly reflected the development of a growth plate and the rate of bone growth in the femur. Simulations incorporating increased and decreased PTHrP and Ihh synthesis rates reflected growth plate pathologies and growth plates in PTHrP-/- and Ihh-/- mice. The three growth factors, PTHrP, Ihh and VEGF, could potentially together regulate tissue differentiation.

  2. LIGHT REGULATION OF GROWTH AND MELANIN FORMATION IN Inonotus оbliquus (Pers. Pilat

    Directory of Open Access Journals (Sweden)

    N. L. Poyedinok

    2013-04-01

    Full Text Available The study aims to investigate possibilities of using different sources of low-intensity light for the regulation of mycelium growth and melanin synthesis by medicinal mushroom Inonotus obliquus (Pers. Pilat. Studies of the light’s influence on the linear growth, biomass accumulation and melanin synthesis I. obliquus were performed using experimental installations that provide both lasing (coherent light with specified parameters, as well as sources of incoherent light. It has been demonstrated that the greatest stimulating effect took place during the irradiation of mycelium with blue light. It has been found that further realization of photobiological effect is largely dependent on the method of cultivation. Irradiation with laser light within all studied wavelength ranges was more conducive to growth, biomass and melanin accumulation in the mushroom mycelium than incoherent light irradiation within the same wavelength range. Light treatment made it possible to significantly reduce the duration of fermentation. The results of studies allow considering lowintensity light in the visible part of the spectrum as a perspective growth and biosynthetic activity regulator of I. obliquus in the biotechnology of its cultivation.

  3. A Novel Atypical PKC-Iota Inhibitor, Echinochrome A, Enhances Cardiomyocyte Differentiation from Mouse Embryonic Stem Cells.

    Science.gov (United States)

    Kim, Hyoung Kyu; Cho, Sung Woo; Heo, Hye Jin; Jeong, Seung Hun; Kim, Min; Ko, Kyung Soo; Rhee, Byoung Doo; Mishchenko, Natalia P; Vasileva, Elena A; Fedoreyev, Sergey A; Stonik, Valentin A; Han, Jin

    2018-06-02

    Echinochrome A (EchA) is a marine bioproduct extracted from sea urchins having antioxidant, antimicrobial, anti-inflammatory, and chelating effects, and is the active component of the clinical drug histochrome. We investigated the potential use of Ech A for inducing cardiomyocyte differentiation from mouse embryonic stem cells (mESCs). We also assessed the effects of Ech A on mitochondrial mass, inner membrane potential (Δψm), reactive oxygen species generation, and levels of Ca 2+ . To identify the direct target of Ech A, we performed in vitro kinase activity and surface plasmon resonance binding assays. Ech A dose-dependently enhanced cardiomyocyte differentiation with higher beating rates. Ech A (50 μM) increased the mitochondrial mass and membrane potential but did not alter the mitochondrial superoxide and Ca 2+ levels. The in vitro kinase activity of the atypical protein kinase C-iota (PKCι) was significantly decreased by 50 μM of Ech A with an IC 50 for PKCι activity of 107 μM. Computational protein-ligand docking simulation results suggested the direct binding of Ech A to PKCι, and surface plasmon resonance confirmed the direct binding with a low K D of 6.3 nM. Therefore, Ech A is a potential drug for enhancing cardiomyocyte differentiation from mESCs through direct binding to PKCι and inhibition of its activity.

  4. Cholesterol and phytosterols differentially regulate the expression of caveolin 1 and a downstream prostate cell growth-suppressor gene

    Science.gov (United States)

    Ifere, Godwin O.; Equan, Anita; Gordon, Kereen; Nagappan, Peri; Igietseme, Joseph U.; Ananaba, Godwin A.

    2010-01-01

    Background The purpose of our study was to show the distinction between the apoptotic and anti-proliferative signaling of phytosterols and cholesterol enrichment in prostate cancer cell lines, mediated by the differential transcription of caveolin-1, and N-myc downstream regulated gene1 (NDRG1), a pro-apoptotic androgen-regulated tumor suppressor. Methods PC-3 and DU145 cells were treated with sterols (cholesterol and phytosterols) for 72 h, followed by trypan blue dye exclusion measurement of necrosis and cell growth measured with a Coulter counter. Sterol induction of cell growth-suppressor gene expression was evaluated by mRNA transcription using RT-PCR, while cell cycle analysis was performed by FACS analysis. Altered expression of Ndrg1 protein was confirmed by Western blot analysis. Apoptosis was evaluated by real time RT-PCR amplification of P53, Bcl-2 gene and its related pro- and anti-apoptotic family members. Results Physiological doses (16 µM) of cholesterol and phytosterols were not cytotoxic in these cells. Cholesterol enrichment promoted cell growth (Pphytosterols significantly induced growth-suppression (Pphytosterols decreased mitotic subpopulations. We demonstrated for the first time that cholesterols concertedly attenuated the expression of caveolin-1(cav-1) and NDRG1 genes in both prostate cancer cell lines. Phytosterols had the opposite effect by inducing overexpression of cav-1, a known mediator of androgen-dependent signals that presumably control cell growth or apoptosis. Conclusions Cholesterol and phytosterol treatment differentially regulated the growth of prostate cancer cells and the expression of p53 and cav-1, a gene that regulates androgen-regulated signals. These sterols also differentially regulated cell cycle arrest, downstream pro-apoptotic androgen-regulated tumor-suppressor, NDRG1 suggesting that cav-1 may mediate pro-apoptotic NDRG1 signals. Elucidation of the mechanism for sterol modulation of growth and apoptosis signaling

  5. Estrogens regulate the hepatic effects of growth hormone, a hormonal interplay with multiple fates

    DEFF Research Database (Denmark)

    Fernández-Pérez, Leandro; Guerra, Borja; Díaz-Chico, Juan C

    2013-01-01

    The liver responds to estrogens and growth hormone (GH) which are critical regulators of body growth, gender-related hepatic functions, and intermediate metabolism. The effects of estrogens on liver can be direct, through the direct actions of hepatic ER, or indirect, which include the crosstalk...

  6. Somatostatin is required for masculinization of growth hormone–regulated hepatic gene expression but not of somatic growth

    Science.gov (United States)

    Low, Malcolm J.; Otero-Corchon, Veronica; Parlow, Albert F.; Ramirez, Jose L.; Kumar, Ujendra; Patel, Yogesh C.; Rubinstein, Marcelo

    2001-01-01

    Pulsatile growth hormone (GH) secretion differs between males and females and regulates the sex-specific expression of cytochrome P450s in liver. Sex steroids influence the secretory dynamics of GH, but the neuroendocrine mechanisms have not been conclusively established. Because periventricular hypothalamic somatostatin (SST) expression is greater in males than in females, we generated knockout (Smst–/–) mice to investigate whether SST peptides are necessary for sexually differentiated GH secretion and action. Despite marked increases in nadir and median plasma GH levels in both sexes of Smst–/– compared with Smst+/+ mice, the mutant mice had growth curves identical to their sibling controls and retained a normal sexual dimorphism in weight and length. In contrast, the liver of male Smst–/– mice was feminized, resulting in an identical profile of GH-regulated hepatic mRNAs between male and female mutants. Male Smst-/- mice show higher expression of two SST receptors in the hypothalamus and pituitary than do females. These data indicate that SST is required to masculinize the ultradian GH rhythm by suppressing interpulse GH levels. In the absence of SST, male and female mice exhibit similarly altered plasma GH profiles that eliminate sexually dimorphic liver function but do not affect dimorphic growth. PMID:11413165

  7. Focal adhesion kinase regulates neuronal growth, synaptic plasticity and hippocampus-dependent spatial learning and memory.

    Science.gov (United States)

    Monje, Francisco J; Kim, Eun-Jung; Pollak, Daniela D; Cabatic, Maureen; Li, Lin; Baston, Arthur; Lubec, Gert

    2012-01-01

    The focal adhesion kinase (FAK) is a non-receptor tyrosine kinase abundantly expressed in the mammalian brain and highly enriched in neuronal growth cones. Inhibitory and facilitatory activities of FAK on neuronal growth have been reported and its role in neuritic outgrowth remains controversial. Unlike other tyrosine kinases, such as the neurotrophin receptors regulating neuronal growth and plasticity, the relevance of FAK for learning and memory in vivo has not been clearly defined yet. A comprehensive study aimed at determining the role of FAK in neuronal growth, neurotransmitter release and synaptic plasticity in hippocampal neurons and in hippocampus-dependent learning and memory was therefore undertaken using the mouse model. Gain- and loss-of-function experiments indicated that FAK is a critical regulator of hippocampal cell morphology. FAK mediated neurotrophin-induced neuritic outgrowth and FAK inhibition affected both miniature excitatory postsynaptic potentials and activity-dependent hippocampal long-term potentiation prompting us to explore the possible role of FAK in spatial learning and memory in vivo. Our data indicate that FAK has a growth-promoting effect, is importantly involved in the regulation of the synaptic function and mediates in vivo hippocampus-dependent spatial learning and memory. Copyright © 2011 S. Karger AG, Basel.

  8. High-speed digital imaging of cytosolic Ca2+ and contraction in single cardiomyocytes.

    Science.gov (United States)

    O'Rourke, B; Reibel, D K; Thomas, A P

    1990-07-01

    A charge-coupled device (CCD) camera, with the capacity for simultaneous spatially resolved photon counting and rapid frame transfer, was utilized for high-speed digital image collection from an inverted epifluorescence microscope. The unique properties of the CCD detector were applied to an analysis of cell shortening and the Ca2+ transient from fluorescence images of fura-2-loaded [corrected] cardiomyocytes. On electrical stimulation of the cell, a series of sequential subimages was collected and used to create images of Ca2+ within the cell during contraction. The high photosensitivity of the camera, combined with a detector-based frame storage technique, permitted collection of fluorescence images 10 ms apart. This rate of image collection was sufficient to resolve the rapid events of contraction, e.g., the upstroke of the Ca2+ transient (less than 40 ms) and the time to peak shortening (less than 80 ms). The technique was used to examine the effects of beta-adrenoceptor activation, fura-2 load, and stimulus frequency on cytosolic Ca2+ transients and contractions of single cardiomyocytes. beta-Adrenoceptor stimulation resulted in pronounced increases in peak Ca2+, maximal rates of rise and decay of Ca2+, extent of shortening, and maximal velocities of shortening and relaxation. Raising the intracellular load of fura-2 had little effect on the rising phase of Ca2+ or the extent of shortening but extended the duration of the Ca2+ transient and contraction. In related experiments utilizing differential-interference contrast microscopy, the same technique was applied to visualize sarcomere dynamics in contracting cells. This newly developed technique is a versatile tool for analyzing the Ca2+ transient and mechanical events in studies of excitation-contraction coupling in cardiomyocytes.

  9. The effect of plant growth regulators on optimization of tissue culture ...

    African Journals Online (AJOL)

    Mature seeds of four upland rice cultivars namely Kusan, Lamsan, Selasi and Siam were assessed for callus induction and plant regeneration on different concentrations and combinations of plant growth regulators, incorporated into MS (Murashige and Skoog) basal medium. Callus induction frequency was significantly ...

  10. Embryonic template-based generation and purification of pluripotent stem cell-derived cardiomyocytes for heart repair

    NARCIS (Netherlands)

    Dierickx, P.; Doevendans, P.A.; Geijsen, N.; van Laake, L.W.

    2012-01-01

    Cardiovascular disease remains a leading cause of death in Western countries. Many types of cardiovascular diseases are due to a loss of functional cardiomyocytes, which can result in irreversible cardiac failure. Since the adult human heart has limited regenerative potential, cardiac

  11. A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel

    Directory of Open Access Journals (Sweden)

    Andrew P. Wojtovich

    2013-03-01

    Full Text Available Opening of BK-type Ca2+ activated K+ channels protects the heart against ischemia-reperfusion (IR injury. However, the location of BK channels responsible for cardioprotection is debated. Herein we confirmed that openers of the SLO1 BK channel, NS1619 and NS11021, were protective in a mouse perfused heart model of IR injury. As anticipated, deletion of the Slo1 gene blocked this protection. However, in an isolated cardiomyocyte model of IR injury, protection by NS1619 and NS11021 was insensitive to Slo1 deletion. These data suggest that protection in intact hearts occurs by a non-cardiomyocyte autonomous, SLO1-dependent, mechanism. In this regard, an in-situ assay of intrinsic cardiac neuronal function (tachycardic response to nicotine revealed that NS1619 preserved cardiac neurons following IR injury. Furthermore, blockade of synaptic transmission by hexamethonium suppressed cardioprotection by NS1619 in intact hearts. These results suggest that opening SLO1 protects the heart during IR injury, via a mechanism that involves intrinsic cardiac neurons. Cardiac neuronal ion channels may be useful therapeutic targets for eliciting cardioprotection.

  12. Genome-Nuclear Lamina Interactions Regulate Cardiac Stem Cell Lineage Restriction.

    Science.gov (United States)

    Poleshko, Andrey; Shah, Parisha P; Gupta, Mudit; Babu, Apoorva; Morley, Michael P; Manderfield, Lauren J; Ifkovits, Jamie L; Calderon, Damelys; Aghajanian, Haig; Sierra-Pagán, Javier E; Sun, Zheng; Wang, Qiaohong; Li, Li; Dubois, Nicole C; Morrisey, Edward E; Lazar, Mitchell A; Smith, Cheryl L; Epstein, Jonathan A; Jain, Rajan

    2017-10-19

    Progenitor cells differentiate into specialized cell types through coordinated expression of lineage-specific genes and modification of complex chromatin configurations. We demonstrate that a histone deacetylase (Hdac3) organizes heterochromatin at the nuclear lamina during cardiac progenitor lineage restriction. Specification of cardiomyocytes is associated with reorganization of peripheral heterochromatin, and independent of deacetylase activity, Hdac3 tethers peripheral heterochromatin containing lineage-relevant genes to the nuclear lamina. Deletion of Hdac3 in cardiac progenitor cells releases genomic regions from the nuclear periphery, leading to precocious cardiac gene expression and differentiation into cardiomyocytes; in contrast, restricting Hdac3 to the nuclear periphery rescues myogenesis in progenitors otherwise lacking Hdac3. Our results suggest that availability of genomic regions for activation by lineage-specific factors is regulated in part through dynamic chromatin-nuclear lamina interactions and that competence of a progenitor cell to respond to differentiation signals may depend upon coordinated movement of responding gene loci away from the nuclear periphery. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. LY294002 inhibits glucocorticoid-induced COX-2 gene expression in cardiomyocytes through a phosphatidylinositol 3 kinase-independent mechanism

    International Nuclear Information System (INIS)

    Sun Haipeng; Xu Beibei; Sheveleva, Elena; Chen, Qin M.

    2008-01-01

    Glucocorticoids induce COX-2 expression in rat cardiomyocytes. While investigating whether phosphatidylinositol 3 kinase (PI3K) plays a role in corticosterone (CT)-induced COX-2, we found that LY294002 (LY29) but not wortmannin (WM) attenuates CT from inducing COX-2 gene expression. Expression of a dominant-negative mutant of p85 subunit of PI3K failed to inhibit CT from inducing COX-2 expression. CT did not activate PI3K/AKT signaling pathway whereas LY29 and WM decreased the activity of PI3K. LY303511 (LY30), a structural analogue and a negative control for PI3K inhibitory activity of LY29, also suppressed COX-2 induction. These data suggest PI3K-independent mechanisms in regulating CT-induced COX-2 expression. LY29 and LY30 do not inhibit glucocorticoid receptor transactivity. Both compounds have been reported to inhibit Casein Kinase 2 activity and modulate potassium and calcium levels independent of PI3K, while LY29 has been reported to inhibit mammalian Target of Rapamycin (mTOR), and DNA-dependent Protein Kinase (DNA-PK). Inhibitor of Casein Kinase 2 (CK2), mTOR or DNA-PK failed to prevent CT from inducing COX-2 expression. Tetraethylammonium (TEA), a potassium channel blocker, and nimodipine, a calcium channel blocker, both attenuated CT from inducing COX-2 gene expression. CT was found to increase intracellular Ca 2+ concentration, which can be inhibited by LY29, TEA or nimodipine. These data suggest a possible role of calcium instead of PI3K in CT-induced COX-2 expression in cardiomyocytes

  14. The protective effect of lycopene on hypoxia/reoxygenation-induced endoplasmic reticulum stress in H9C2 cardiomyocytes.

    Science.gov (United States)

    Gao, Yang; Jia, Pengyu; Shu, WenQi; Jia, Dalin

    2016-03-05

    Nowadays, drugs protecting ischemia/reperfusion (I/R) myocardium become more suitable for clinic. It has been confirmed lycopene has various protections, but lacking the observation of its effect on endoplasmic reticulum stress (ERS)-mediated apoptosis caused by hypoxia/reoxygenation (H/R). This study aims to clarify the protective effect of lycopene on ERS induced by H/R in H9C2 cardiomyocytes. Detect the survival rate, lactic dehydrogenase (LDH) activity, apoptosis ratio, glucose-regulated proteins 78 (GRP78), C/EBP homologous protein (CHOP), c-Jun-N-terminal protein Kinase (JNK) and Caspase-12 mRNA and protein expression and phosphorylation of JNK (p-JNK) protein expression. LDH activity, apoptosis ratio and GRP78 protein expression increase in the H/R group, reduced by lycopene. The survival rate reduces in the H/R and thapsigargin (TG) groups; lycopene and 4-phenyl butyric acid (4-PBA) can improve it caused by H/R, lycopene also can improve it caused by TG. The apoptosis ratio, the expression of GRP78, CHOP and Caspase-12 mRNA and protein and p-JNK protein increase in the H/R and TG groups, weaken in the lycopene+H/R, 4-PBA+H/R and lycopene+TG groups. There is no obvious change in the expression of JNK mRNA or protein. Hence, our results provide the evidence that 10 μM lycopene plays an obviously protective effect on H/R H9C2 cardiomyocytes, realized through reducing ERS and apoptosis. The possible mechanism may be related to CHOP, p-JNK and Caspase-12 pathways. Copyright © 2016. Published by Elsevier B.V.

  15. Cyclin G Functions as a Positive Regulator of Growth and Metabolism in Drosophila.

    Directory of Open Access Journals (Sweden)

    Patrick Fischer

    2015-08-01

    Full Text Available In multicellular organisms, growth and proliferation is adjusted to nutritional conditions by a complex signaling network. The Insulin receptor/target of rapamycin (InR/TOR signaling cascade plays a pivotal role in nutrient dependent growth regulation in Drosophila and mammals alike. Here we identify Cyclin G (CycG as a regulator of growth and metabolism in Drosophila. CycG mutants have a reduced body size and weight and show signs of starvation accompanied by a disturbed fat metabolism. InR/TOR signaling activity is impaired in cycG mutants, combined with a reduced phosphorylation status of the kinase Akt1 and the downstream factors S6-kinase and eukaryotic translation initiation factor 4E binding protein (4E-BP. Moreover, the expression and accumulation of Drosophila insulin like peptides (dILPs is disturbed in cycG mutant brains. Using a reporter assay, we show that the activity of one of the first effectors of InR signaling, Phosphoinositide 3-kinase (PI3K92E, is unaffected in cycG mutants. However, the metabolic defects and weight loss in cycG mutants were rescued by overexpression of Akt1 specifically in the fat body and by mutants in widerborst (wdb, the B'-subunit of the phosphatase PP2A, known to downregulate Akt1 by dephosphorylation. Together, our data suggest that CycG acts at the level of Akt1 to regulate growth and metabolism via PP2A in Drosophila.

  16. A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.

    Directory of Open Access Journals (Sweden)

    Shigeki Kobayashi

    Full Text Available OBJECTIVES: The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism. BACKGROUND: The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca(2+ handling in heart failure remains unclear. METHODS: We investigated the effect of milrinone plus landiolol on intracellular Ca(2+ transient (CaT, cell shortening (CS, the frequency of diastolic Ca(2+ sparks (CaSF, and sarcoplasmic reticulum Ca(2+ concentration ({Ca(2+}SR in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2 and phospholamban (PLB. RESULTS: In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca(2+}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca(2+}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808 in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17. Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz in failing cardiomyocytes. CONCLUSION: A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca(2+ leak.

  17. A low-dose β1-blocker in combination with milrinone improves intracellular Ca2+ handling in failing cardiomyocytes by inhibition of milrinone-induced diastolic Ca2+ leakage from the sarcoplasmic reticulum.

    Science.gov (United States)

    Kobayashi, Shigeki; Susa, Takehisa; Ishiguchi, Hironori; Myoren, Takeki; Murakami, Wakako; Kato, Takayoshi; Fukuda, Masakazu; Hino, Akihiro; Suetomi, Takeshi; Ono, Makoto; Uchinoumi, Hitoshi; Tateishi, Hiroki; Mochizuki, Mamoru; Oda, Tetsuro; Okuda, Shinichi; Doi, Masahiro; Yamamoto, Takeshi; Yano, Masafumi

    2015-01-01

    The purpose of this study was to investigate whether adding a low-dose β1-blocker to milrinone improves cardiac function in failing cardiomyocytes and the underlying cardioprotective mechanism. The molecular mechanism underlying how the combination of low-dose β1-blocker and milrinone affects intracellular Ca(2+) handling in heart failure remains unclear. We investigated the effect of milrinone plus landiolol on intracellular Ca(2+) transient (CaT), cell shortening (CS), the frequency of diastolic Ca(2+) sparks (CaSF), and sarcoplasmic reticulum Ca(2+) concentration ({Ca(2+)}SR) in normal and failing canine cardiomyocytes and used immunoblotting to determine the phosphorylation level of ryanodine receptor (RyR2) and phospholamban (PLB). In failing cardiomyocytes, CaSF significantly increased, and peak CaT and CS markedly decreased compared with normal myocytes. Administration of milrinone alone slightly increased peak CaT and CS, while CaSF greatly increased with a slight increase in {Ca(2+)}SR. Co-administration of β1-blocker landiolol to failing cardiomyocytes at a dose that does not inhibit cardiomyocyte function significantly decreased CaSF with a further increase in {Ca(2+)}SR, and peak CaT and CS improved compared with milrinone alone. Landiolol suppressed the hyperphosphorylation of RyR2 (Ser2808) in failing cardiomyocytes but had no effect on levels of phosphorylated PLB (Ser16 and Thr17). Low-dose landiolol significantly inhibited the alternans of CaT and CS under a fixed pacing rate (0.5 Hz) in failing cardiomyocytes. A low-dose β1-blocker in combination with milrinone improved cardiac function in failing cardiomyocytes, apparently by inhibiting the phosphorylation of RyR2, not PLB, and subsequent diastolic Ca(2+) leak.

  18. Insulin-like growth factor (IGF)-like peptide and 20-hydroxyecdysone regulate the growth and development of the male genital disk through different mechanisms in the silkmoth, Bombyx mori.

    Science.gov (United States)

    Fujinaga, Daiki; Kohmura, Yusuke; Okamoto, Naoki; Kataoka, Hiroshi; Mizoguchi, Akira

    2017-08-01

    It is well established that ecdysteroids play pivotal roles in the regulation of insect molting and metamorphosis. However, the mechanisms by which ecdysteroids regulate the growth and development of adult organs after pupation are poorly understood. Recently, we have identified insulin-like growth factor (IGF)-like peptides (IGFLPs), which are secreted after pupation under the control of 20-hydroxyecdysone (20E). In the silkmoth, Bombyx mori, massive amounts of Bombyx-IGFLP (BIGFLP) are present in the hemolymph during pupal-adult development, suggesting its importance in the regulation of adult tissue growth. Thus, we hypothesized that the growth and development of adult tissues including imaginal disks are regulated by the combined effects of BIGFLP and 20E. In this study, we investigated the growth-promoting effects of BIGFLP and 20E using the male genital disks of B. mori cultured ex vivo, and further analyzed the cell signaling pathways mediating hormone actions. We demonstrate that 20E induces the elongation of genital disks, that both hormones stimulate protein synthesis in an additive manner, and that BIGFLP and 20E exert their effects through the insulin/IGF signaling pathway and mitogen-activated protein kinase pathway, respectively. These results show that the growth and development of the genital disk are coordinately regulated by both BIGFLP and 20E. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-01-01

    LaVO 3 thin films were grown on SrTiO 3 (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO 3 films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application

  20. Plant growth regulators ameliorate or exacerbate abiotic and biotic stress effects on Zea mays kernel weight in a genotype-specific manner

    OpenAIRE

    Wang, Yishi; Stutts, Lauren; Stapleton, Ann

    2016-01-01

    Plant growth regulators have documented roles in plant responses to single stresses. In combined-stress environments, plants display novel genetic architecture for growth traits and the response to growth regulators is unclear. We investigated the role of plant growth regulators in combined-stress responses in Zea mays. Twelve maize inbreds were exposed to all combinations of the following stressors: drought, nitrogen, and density stress. Chemical treatments were utilized to alter balances of...

  1. NanoSIMS Analysis of Intravascular Lipolysis and Lipid Movement across Capillaries and into Cardiomyocytes

    DEFF Research Database (Denmark)

    He, Cuiwen; Weston, Thomas A; Jung, Rachel S

    2018-01-01

    , mice were given an injection of [2H]triglyceride-enriched TRLs, and the movement of 2H-labeled lipids across capillaries and into cardiomyocytes was examined by NanoSIMS. TRL processing and lipid movement in tissues were extremely rapid. Within 30 s, TRL-derived lipids appeared in the subendothelial...

  2. Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction

    Science.gov (United States)

    Davis, Michael E.; Hsieh, Patrick C. H.; Takahashi, Tomosaburo; Song, Qing; Zhang, Shuguang; Kamm, Roger D.; Grodzinsky, Alan J.; Anversa, Piero; Lee, Richard T.

    2006-05-01

    Strategies for cardiac repair include injection of cells, but these approaches have been hampered by poor cell engraftment, survival, and differentiation. To address these shortcomings for the purpose of improving cardiac function after injury, we designed self-assembling peptide nanofibers for prolonged delivery of insulin-like growth factor 1 (IGF-1), a cardiomyocyte growth and differentiation factor, to the myocardium, using a "biotin sandwich" approach. Biotinylated IGF-1 was complexed with tetravalent streptavidin and then bound to biotinylated self-assembling peptides. This biotin sandwich strategy allowed binding of IGF-1 but did not prevent self-assembly of the peptides into nanofibers within the myocardium. IGF-1 that was bound to peptide nanofibers activated Akt, decreased activation of caspase-3, and increased expression of cardiac troponin I in cardiomyocytes. After injection into rat myocardium, biotinylated nanofibers provided sustained IGF-1 delivery for 28 days, and targeted delivery of IGF-1 in vivo increased activation of Akt in the myocardium. When combined with transplanted cardiomyocytes, IGF-1 delivery by biotinylated nanofibers decreased caspase-3 cleavage by 28% and increased the myocyte cross-sectional area by 25% compared with cells embedded within nanofibers alone or with untethered IGF-1. Finally, cell therapy with IGF-1 delivery by biotinylated nanofibers improved systolic function after experimental myocardial infarction, demonstrating how engineering the local cellular microenvironment can improve cell therapy. engineering | maturation | scaffold

  3. Hormonal regulation of the growth of leaves and inflorescence stalk in Muscari armeniacum Leichtl.

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2016-04-01

    Full Text Available It is known that chilling of Muscari bulbs is necessary for the growth of the inflorescence stalk and flowering, but not for the growth of leaves. Gibberellic acid (GA accelerated stem growth and flowering in chilled Muscari bulbs. In the present experiment it was shown that in unchilled derooted Muscari bulbs the growth of leaves, but not the growth of the inflorescence stalk, was observed when bulbs were stored in water, GA at a concentration of 50 and 100 mg/L, benzyladenine (BA at a concentration of 25 and 50 mg/L, or a mixture of GA+BA (50+25 mg/L, but abscisic acid (ABA at a concentration of 10 mg/L greatly inhibited the growth of leaves. In chilled derooted Muscari bulbs the growth of leaves and inflorescence stalk was observed when bulbs were stored in water or GA, but BA and GA+BA treatments totally inhibited the growth of the inflorescence stalk without an effect on the growth of leaves. These results clearly showed that the growth of leaves and inflorescence stalk in Muscari bulbs are controlled by plant growth regulators in different ways. ABA totally inhibited the growth of leaves and inflorescence stalk in chilled derooted Muscari bulbs. It was shown that after the excision of the inflorescence bud in cultivated chilled Muscari bulbs, the inflorescence stalk died, but application of indole-3-acetic acid (IAA 0.5% in the place of the removed inflorescence bud induced the growth of the inflorescence stalk. IAA applied under the inflorescence bud inhibited the development of flowers (flower-bud blasting and induced the growth of the inflorescence stalk below the treatment site. These results are discussed with reference to hormonal regulation of stem (stalk growth in tulip, narcissus, hyacinth, and Hippeastrum.

  4. Alterations in cardiomyocyte function after pulmonary treatment with stainless steel welding fume in rats.

    Science.gov (United States)

    Popstojanov, Risto; Antonini, James M; Salmen, Rebecca; Ye, Morgan; Zheng, Wen; Castranova, Vincent; Fekedulegn, Desta B; Kan, Hong

    2014-01-01

    Welding fume is composed of a complex of different metal particulates. Pulmonary exposure to different welding fumes may exert a negative impact on cardiac function, although the underlying mechanisms remain unclear. To explore the effect of welding fumes on cardiac function, Sprague-Dawley rats were exposed by intratracheal instillation to 2 mg/rat of manual metal arc hard surfacing welding fume (MMA-HS) once per week for 7 wk. Control rats received saline. Cardiomyocytes were isolated enzymatically at d 1 and 7 postexposure. Intracellular calcium ([Ca(2+)]i) transients (fluorescence ratio) were measured on the stage of an inverted phase-contrast microscope using a myocyte calcium imaging/cell length system. Phosphorylation levels of cardiac troponin I (cTnI) were determined by Western blot. The levels of nonspecific inflammatory marker C-reactive protein (CRP) and proinflammatory cytokine interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA). Contraction of isolated cardiomyocytes was significantly reduced at d 1 and d 7 postexposure. Intracellular calcium levels were decreased in response to extracellular calcium stimulation at d 7 postexposure. Changes of intracellular calcium levels after isoprenaline hydrochloride (ISO) stimulation were not markedly different between groups at either time point. Phosphorylation levels of cTnI in the left ventricle were significantly lower at d 1 postexposure. The serum levels of CRP were not markedly different between groups at either time point. Serum levels of IL-6 were not detectable in both groups. Cardiomyocyte alterations observed after welding fume treatment were mainly due to alterations in intracellular calcium handling and phosphorylation levels of cTnI.

  5. E2F1 regulates cellular growth by mTORC1 signaling.

    Directory of Open Access Journals (Sweden)

    Sebastian Real

    2011-01-01

    Full Text Available During cell proliferation, growth must occur to maintain homeostatic cell size. Here we show that E2F1 is capable of inducing growth by regulating mTORC1 activity. The activation of cell growth and mTORC1 by E2F1 is dependent on both E2F1's ability to bind DNA and to regulate gene transcription, demonstrating that a gene induction expression program is required in this process. Unlike E2F1, E2F3 is unable to activate mTORC1, suggesting that growth activity could be restricted to individual E2F members. The effect of E2F1 on the activation of mTORC1 does not depend on Akt. Furthermore, over-expression of TSC2 does not interfere with the effect of E2F1, indicating that the E2F1-induced signal pathway can compensate for the inhibitory effect of TSC2 on Rheb. Immunolocalization studies demonstrate that E2F1 induces the translocation of mTORC1 to the late endosome vesicles, in a mechanism dependent of leucine. E2F1 and leucine, or insulin, together affect the activation of S6K stronger than alone suggesting that they are complementary in activating the signal pathway. From these studies, E2F1 emerges as a key protein that integrates cell division and growth, both of which are essential for cell proliferation.

  6. Exercise Physiology of Zebrafish: Swimming Effects on Skeletal and Cardiac Muscle Growth, on the Immune Systeme, and the Involvement of the Stress Axis

    NARCIS (Netherlands)

    Palstra, A.P.; Schaaf, M.; Planas, J.V.

    2013-01-01

    Recently, we have established zebrafish as a novel exercise model and demonstrated the stimulation of growth by exercise. Exercise may also induce cardiac hypertrophy and cardiomyocyte proliferation in zebrafish making it an important model to study vertebrate heart regeneration and improved

  7. Differentiation and characterization of rhesus monkey atrial and ventricular cardiomyocytes from induced pluripotent stem cells.

    Science.gov (United States)

    Zhang, Xiaoqian; Cao, Henghua; Bai, Shuyun; Huo, Weibang; Ma, Yue

    2017-04-01

    The combination of non-human primate animals and their induced pluripotent stem cell derived cardiomyocytes (iPSC-CMs) provides not only transplantation models for cell-based therapy of heart diseases, but also opportunities for heart-related drug research on both cellular and animal levels. However, the subtypes and electrophysiology properties of non-human primate iPSC-CMs hadn't been detailed characterized. In this study, we generated rhesus monkey induced pluripotent stem cells (riPSCs), and efficiently differentiated them into ventricular or atrial cardiomyocytes by modulating retinoic acid (RA) pathways. Our results revealed that the electrophysiological characteristics and response to canonical drugs of riPSC-CMs were similar with those of human pluripotent stem cell derived CMs. Therefore, rhesus monkeys and their iPSC-CMs provide a powerful and practicable system for heart related biomedical research. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  8. Anti-apoptosis effect of polysaccharide isolated from the seeds of Cuscuta chinensis Lam on cardiomyocytes in aging rats.

    Science.gov (United States)

    Sun, Shou-Li; Guo, Li; Ren, Ya-Chao; Wang, Bing; Li, Rong-Hui; Qi, Yu-Shan; Yu, Hui; Chang, Nai-Dan; Li, Ming-Hui; Peng, Hai-Sheng

    2014-09-01

    To investigate the mechanism of apoptosis in myocardial cells of aging rats induced by D-galactose and to study the effect of the Polysaccharide isolated from the seeds of Cuscuta chinensis Lam (PCCL) on apoptosis of cardiomyocytes and its corresponding machinasim in aging rat model. Fifty male SD rats were randomly divided into 5 groups. Normal control group (NC). D-galactose (100 mg · kg(-1)d(-1) for 56 day) indued aging group (MC), D-galactose plus 100 mg kg(-1) d(-1) PCCL group (ML), D-galactose plus 200 mg kg(-1) d(-1) PCCL group (MM), and D-galactose plus 400 mg kg(-1) d(-1) PCCL group (MH). Same volume of solution (water, or PCCL aqueous solution) was given by gavage for 56 days. Then the hearts were collected and apoptosis parameters were evaluated. Caspase-3 and Cyt c were determined by fluorescence spectrometer, the apoptosis rate was assessed by AnnexinV-FITC method by Flow-Cytometry, [Ca(2+)]i and [Ca(2+)]i overloaded by KCL were observed by laser scanning confocal microscopy (LSCM); Bcl-2 and Bax were examined by immunohistochemistry. The content of Cyt C, [Ca(2+)]i of cardiomyocytes, the activity of Caspase-3, Bax expression level in D-galactose induced aging group were higher than NC (p < 0.05). The ratio of Bcl-2/Bax was decreased in D-galactose induced aging group compared to NC. On the other hand, the content of Cyt C, [Ca(2+)]i of cardiomyocytes, the activity of Caspase-3 and apoptosis rate, as well as Bax expression level in all three PCCL groups were decreased compared to galactose induced group (p < 0.05). Bcl-2/Bax ratio was increased in all PCCL groups compared to galactose induced aging group. PCCL could decrease the apoptosis of cardiomyocytes by the mitochondria apoptosis pathway.

  9. Ultrastructure and regulation of lateralized connexin43 in the failing heart.

    Science.gov (United States)

    Hesketh, Geoffrey G; Shah, Manish H; Halperin, Victoria L; Cooke, Carol A; Akar, Fadi G; Yen, Timothy E; Kass, David A; Machamer, Carolyn E; Van Eyk, Jennifer E; Tomaselli, Gordon F

    2010-04-02

    Gap junctions mediate cell-to-cell electric coupling of cardiomyocytes. The primary gap junction protein in the working myocardium, connexin43 (Cx43), exhibits increased localization at the lateral membranes of cardiomyocytes in a variety of heart diseases, although the precise location and function of this population is unknown. To define the subcellular location of lateralized gap junctions at the light and electron microscopic level, and further characterize the biochemical regulation of gap junction turnover. By electron microscopy, we characterized gap junctions formed between cardiomyocyte lateral membranes in failing canine ventricular myocardium. These gap junctions were varied in structure and appeared to be extensively internalizing. Internalized gap junctions were incorporated into multilamellar membrane structures, with features characteristic of autophagosomes. Intracellular Cx43 extensively colocalized with the autophagosome marker GFP-LC3 when both proteins were exogenously expressed in HeLa cells, and endogenous Cx43 colocalized with GFP-LC3 in neonatal rat ventricular myocytes. Furthermore, a distinct phosphorylated form of Cx43, as well as the autophagosome-targeted form of LC3 (microtubule-associated protein light chain 3) targeted to lipid rafts in cardiac tissue, and both were increased in heart failure. Our data demonstrate a previously unrecognized pathway of gap junction internalization and degradation in the heart and identify a cellular pathway with potential therapeutic implications.

  10. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    Directory of Open Access Journals (Sweden)

    Dominick A Matos

    Full Text Available Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  11. Diet-Induced Growth Is Regulated via Acquired Leptin Resistance and Engages a Pomc-Somatostatin-Growth Hormone Circuit

    Directory of Open Access Journals (Sweden)

    Heiko Löhr

    2018-05-01

    Full Text Available Summary: Anorexigenic pro-opiomelanocortin (Pomc/alpha-melanocyte stimulating hormone (αMSH neurons of the hypothalamic melanocortin system function as key regulators of energy homeostasis, also controlling somatic growth across different species. However, the mechanisms of melanocortin-dependent growth control still remain ill-defined. Here, we reveal a thus-far-unrecognized structural and functional connection between Pomc neurons and the somatotropic hypothalamo-pituitary axis. Excessive feeding of larval zebrafish causes leptin resistance and reduced levels of the hypothalamic satiety mediator pomca. In turn, this leads to reduced activation of hypophysiotropic somatostatin (Sst-neurons that express the melanocortin receptor Mc4r, elevated growth hormone (GH expression in the pituitary, and enhanced somatic growth. Mc4r expression and αMSH responsiveness are conserved in Sst-expressing hypothalamic neurons of mice. Thus, acquired leptin resistance and attenuation of pomca transcription in response to excessive caloric intake may represent an ancient mechanism to promote somatic growth when food resources are plentiful. : The melanocortin system controls energy homeostasis and somatic growth, but the underlying mechanisms are elusive. Löhr et al. identify a functional neural circuit in which Pomc neurons stimulate hypothalamic somatostatin neurons, thereby inhibiting hypophyseal growth hormone production. Excessive feeding and acquired leptin resistance attenuate this pathway, allowing faster somatic growth when food resources are rich. Keywords: Pomc neuron, somatostatin neuron, somatic growth, growth hormone, melanocortin system, high-fat diet, obesity, leptin resistance, zebrafish, mouse

  12. Use of human stem cell derived cardiomyocytes to examine sunitinib mediated cardiotoxicity and electrophysiological alterations

    International Nuclear Information System (INIS)

    Cohen, J.D.; Babiarz, J.E.; Abrams, R.M.; Guo, L.; Kameoka, S.; Chiao, E.; Taunton, J.; Kolaja, K.L.

    2011-01-01

    Sunitinib, an oral tyrosine kinase inhibitor approved to treat advanced renal cell carcinoma and gastrointestinal stroma tumor, is associated with clinical cardiac toxicity. Although the precise mechanism of sunitinib cardiotoxicity is not known, both the key metabolic energy regulator, AMP-activated protein kinase (AMPK), and ribosomal S 6 kinase (RSK) have been hypothesized as causative, albeit based on rodent models. To study the mechanism of sunitinib-mediated cardiotoxicity in a human model, induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) having electrophysiological and contractile properties of native cardiac tissue were investigated. Sunitinib was cardiotoxic in a dose-dependent manner with an IC 50 in the low micromolar range, observed by a loss of cellular ATP, an increase in oxidized glutathione, and induction of apoptosis in iPSC-CMs. Pretreatment of iPSC-CMs with AMPK activators AICAR or metformin, increased the phosphorylation of pAMPK-T172 and pACC-S79, but only marginally attenuated sunitinib mediated cell death. Furthermore, additional inhibitors of AMPK were not directly cytotoxic to iPSC-CMs up to 250 μM concentrations. Inhibition of RSK with a highly specific, irreversible, small molecule inhibitor (RSK-FMK-MEA) did not induce cytotoxicity in iPSC-CMs below 250 μM. Extensive electrophysiological analysis of sunitinib and RSK-FMK-MEA mediated conduction effects were performed. Taken together, these findings suggest that inhibition of AMPK and RSK are not a major component of sunitinib-induced cardiotoxicity. Although the exact mechanism of cardiotoxicity of sunitinib is not known, it is likely due to inhibition of multiple kinases simultaneously. These data highlight the utility of human iPSC-CMs in investigating the potential molecular mechanisms underlying drug-induced cardiotoxicity. -- Highlights: ► Cytoxic effect of sunitinib on human stem cell derived cardiomyocytes ► Sunitinib causes ATP depletion, LDH release, GSH

  13. DFsn collaborates with Highwire to down-regulate the Wallenda/DLK kinase and restrain synaptic terminal growth

    Directory of Open Access Journals (Sweden)

    DiAntonio Aaron

    2007-08-01

    Full Text Available Abstract Background The growth of new synapses shapes the initial formation and subsequent rearrangement of neural circuitry. Genetic studies have demonstrated that the ubiquitin ligase Highwire restrains synaptic terminal growth by down-regulating the MAP kinase kinase kinase Wallenda/dual leucine zipper kinase (DLK. To investigate the mechanism of Highwire action, we have identified DFsn as a binding partner of Highwire and characterized the roles of DFsn in synapse development, synaptic transmission, and the regulation of Wallenda/DLK kinase abundance. Results We identified DFsn as an F-box protein that binds to the RING-domain ubiquitin ligase Highwire and that can localize to the Drosophila neuromuscular junction. Loss-of-function mutants for DFsn have a phenotype that is very similar to highwire mutants – there is a dramatic overgrowth of synaptic termini, with a large increase in the number of synaptic boutons and branches. In addition, synaptic transmission is impaired in DFsn mutants. Genetic interactions between DFsn and highwire mutants indicate that DFsn and Highwire collaborate to restrain synaptic terminal growth. Finally, DFsn regulates the levels of the Wallenda/DLK kinase, and wallenda is necessary for DFsn-dependent synaptic terminal overgrowth. Conclusion The F-box protein DFsn binds the ubiquitin ligase Highwire and is required to down-regulate the levels of the Wallenda/DLK kinase and restrain synaptic terminal growth. We propose that DFsn and Highwire participate in an evolutionarily conserved ubiquitin ligase complex whose substrates regulate the structure and function of synapses.

  14. Loss of mitochondrial exo/endonuclease EXOG affects mitochondrial respiration and induces ROS mediated cardiomyocyte hypertrophy

    NARCIS (Netherlands)

    Tigchelaar, Wardit; Yu, Hongjuan; De Jong, Anne Margreet; van Gilst, Wiek H; van der Harst, Pim; Westenbrink, B Daan; de Boer, Rudolf A; Sillje, Herman H W

    2015-01-01

    Recently, a genetic variant in the mitochondrial exo/endo nuclease EXOG, which has been implicated in mitochondrial DNA repair, was associated with cardiac function. The function of EXOG in cardiomyocytes is still elusive. Here we investigated the role of EXOG in mitochondrial function and

  15. Silymarin Component 2,3-dehydrosilybin Attenuates Cardiomyocyte Damage Following Hypoxia/Reoxygenation by Limiting Oxidative Stress

    Czech Academy of Sciences Publication Activity Database

    Gabrielová, E.; Křen, Vladimír; Jabůrek, Martin; Modriansky, M.

    2015-01-01

    Roč. 64, č. 1 (2015), s. 79-91 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/11/0662 Institutional support: RVO:61388971 ; RVO:67985823 Keywords : Silymarin * Dehydrosilybin * Neonatal rat cardiomyocytes Subject RIV: ED - Physiology Impact factor: 1.643, year: 2015

  16. miR-31a-5p promotes postnatal cardiomyocyte proliferation by targeting RhoBTB1

    NARCIS (Netherlands)

    Xiao, Junjie; Liu, Hui; Cretoiu, Dragos; Toader, Daniela Oana; Suciu, Nicolae; Shi, Jing; Shen, Shutong; Bei, Yihua; Sluijter, Joost Pg; Das, Saumya; Kong, Xiangqing; Li, Xinli

    2017-01-01

    A limited number of microRNAs (miRNAs, miRs) have been reported to control postnatal cardiomyocyte proliferation, but their strong regulatory effects suggest a possible therapeutic approach to stimulate regenerative capacity in the diseased myocardium. This study aimed to investigate the miRNAs

  17. Unkempt is negatively regulated by mTOR and uncouples neuronal differentiation from growth control.

    Directory of Open Access Journals (Sweden)

    Amélie Avet-Rochex

    2014-09-01

    Full Text Available Neuronal differentiation is exquisitely controlled both spatially and temporally during nervous system development. Defects in the spatiotemporal control of neurogenesis cause incorrect formation of neural networks and lead to neurological disorders such as epilepsy and autism. The mTOR kinase integrates signals from mitogens, nutrients and energy levels to regulate growth, autophagy and metabolism. We previously identified the insulin receptor (InR/mTOR pathway as a critical regulator of the timing of neuronal differentiation in the Drosophila melanogaster eye. Subsequently, this pathway has been shown to play a conserved role in regulating neurogenesis in vertebrates. However, the factors that mediate the neurogenic role of this pathway are completely unknown. To identify downstream effectors of the InR/mTOR pathway we screened transcriptional targets of mTOR for neuronal differentiation phenotypes in photoreceptor neurons. We identified the conserved gene unkempt (unk, which encodes a zinc finger/RING domain containing protein, as a negative regulator of the timing of photoreceptor differentiation. Loss of unk phenocopies InR/mTOR pathway activation and unk acts downstream of this pathway to regulate neurogenesis. In contrast to InR/mTOR signalling, unk does not regulate growth. unk therefore uncouples the role of the InR/mTOR pathway in neurogenesis from its role in growth control. We also identified the gene headcase (hdc as a second downstream regulator of the InR/mTOR pathway controlling the timing of neurogenesis. Unk forms a complex with Hdc, and Hdc expression is regulated by unk and InR/mTOR signalling. Co-overexpression of unk and hdc completely suppresses the precocious neuronal differentiation phenotype caused by loss of Tsc1. Thus, Unk and Hdc are the first neurogenic components of the InR/mTOR pathway to be identified. Finally, we show that Unkempt-like is expressed in the developing mouse retina and in neural stem

  18. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    Energy Technology Data Exchange (ETDEWEB)

    Kay, Steve A. [Scripps Research Inst., La Jolla, CA (United States); Hazen, Samuel [Scripps Research Inst., San Diego, CA (United States); Mullet, John [Texas A & M Univ., College Station, TX (United States)

    2017-11-22

    Critical to the development of renewable energy sources from biofuels is the improvement of biomass from energy feedstocks, such as sorghum and maize. The specific goals of this project include 1) characterize the growth and gene expression patterns under diurnal and circadian conditions, 2) select transcription factors associated with growth and build a cis-regulatory network in yeast, and 3) perturb these transcription factors in planta using transgenic Brachypodium and sorghum, and characterize the phenotypic outcomes as they relate to biomass accumulation. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield.

  19. Effects of different plant growth regulators on blueberry fruit quality

    Science.gov (United States)

    Zhang, X. C.; Zhu, Y. Q.; Wang, Y. N.; Luo, C.; Wang, X.

    2017-08-01

    In order to understand the effects of different plant growth regulators (PGRs) on blueberry fruit growth, various concentrations of Abscisic acid (ABA), Methyl jasmonate (MJ), Brassinolide (BR), Melatonin (MT) were sprayed on blueberry cv. ‘Brigita’ fruits. The results showed that all the PGRs put into effect on improving the quality of blueberry fruit. Comparing with the control plants no PGR spraying,300 mg/L of MT treatment promoted effectively accumulation of the soluble sugar. ABA 20mg/L treatment in-creased effectively accumulation of anthocyanin, and significantly decreased titratable acid content. The treatment of MJ 10mg/L improved significantly the soluble solid content. The effect of the four PGRs treatments on appearance did not show obvious difference.

  20. Growth regulators and substrates for Oncidium baueri Lindl. micropropagation

    Directory of Open Access Journals (Sweden)

    Daniele Brandstetter Rodrigues

    2016-10-01

    Full Text Available An adequate concentration of growth regulators as well as the replacement of agar by an alternative medium may be promising from practical and financial points of view to produce orchid plants by micropropagation. The objective of this work was to evaluate different concentrations of growth regulator and alternative substrates for agar replacement in culture medium for in vitro multiplication and rooting of Oncidium baueri. In the explant multiplication phase, two experimental factors were evaluated- various concentrations of 6-benzylaminopurine (BAP (0.0, 1.0, 2.0, and 3.0 mg L-1 and substrates (agar, vermiculite, and coconut fiber added to MS medium. In the rooting phase, different concentrations of indole butyric acid (IBA (0.0, 0.5, 1.0, and 1.5 mg L-1 were added to culture medium containing the same substrate. Six months after the experiments were initiated, the survival percentage, number of leaves, shoots, and roots and length of the aerial part and the major root were evaluated. The results suggested that addition of 1.0 mg L-1 BAP is necessary for the O. baueri in vitro multiplication phase, but IBA is not necessary in the rooting phase. For the substrate, vermiculite is not indicated as an agar replacement. In contrast, coconut fiber can be used in both multiplication and rooting phases of Oncidium baueri in vitro culture.