WorldWideScience

Sample records for regulates cancer cell

  1. Triiodothyronine regulates cell growth and survival in renal cell cancer.

    Science.gov (United States)

    Czarnecka, Anna M; Matak, Damian; Szymanski, Lukasz; Czarnecka, Karolina H; Lewicki, Slawomir; Zdanowski, Robert; Brzezianska-Lasota, Ewa; Szczylik, Cezary

    2016-10-01

    Triiodothyronine plays an important role in the regulation of kidney cell growth, differentiation and metabolism. Patients with renal cell cancer who develop hypothyreosis during tyrosine kinase inhibitor (TKI) treatment have statistically longer survival. In this study, we developed cell based model of triiodothyronine (T3) analysis in RCC and we show the different effects of T3 on renal cell cancer (RCC) cell growth response and expression of the thyroid hormone receptor in human renal cell cancer cell lines from primary and metastatic tumors along with human kidney cancer stem cells. Wild-type thyroid hormone receptor is ubiquitously expressed in human renal cancer cell lines, but normalized against healthy renal proximal tube cell expression its level is upregulated in Caki-2, RCC6, SKRC-42, SKRC-45 cell lines. On the contrary the mRNA level in the 769-P, ACHN, HKCSC, and HEK293 cells is significantly decreased. The TRβ protein was abundant in the cytoplasm of the 786-O, Caki-2, RCC6, and SKRC-45 cells and in the nucleus of SKRC-42, ACHN, 769-P and cancer stem cells. T3 has promoting effect on the cell proliferation of HKCSC, Caki-2, ASE, ACHN, SK-RC-42, SMKT-R2, Caki-1, 786-0, and SK-RC-45 cells. Tyrosine kinase inhibitor, sunitinib, directly inhibits proliferation of RCC cells, while thyroid hormone receptor antagonist 1-850 (CAS 251310‑57-3) has less significant inhibitory impact. T3 stimulation does not abrogate inhibitory effect of sunitinib. Renal cancer tumor cells hypostimulated with T3 may be more responsive to tyrosine kinase inhibition. Moreover, some tumors may be considered as T3-independent and present aggressive phenotype with thyroid hormone receptor activated independently from the ligand. On the contrary proliferation induced by deregulated VHL and or c-Met pathways may transgress normal T3 mediated regulation of the cell cycle.

  2. Exercise regulates breast cancer cell viability

    DEFF Research Database (Denmark)

    Dethlefsen, Christine; Lillelund, Christian; Midtgaard, Julie

    2016-01-01

    .003) and cytokines. Yet, these systemic adaptations had no effect on breast cancer cell viability in vitro. During 2 h of acute exercise, increases in serum lactate (6-fold, p ... no impact. Our data question the prevailing dogma that training-dependent baseline reductions in risk factors mediate the protective effect of exercise on breast cancer. Instead, we propose that the cancer protection is driven by accumulative effects of repeated acute exercise responses.......Purpose: Exercise decreases breast cancer risk and disease recurrence, but the underlying mechanisms are unknown. Training adaptations in systemic factors have been suggested as mediating causes. We aimed to examine if systemic adaptations to training over time, or acute exercise responses...

  3. EMMPRIN regulates cytoskeleton reorganization and cell adhesion in prostate cancer.

    Science.gov (United States)

    Zhu, Haining; Zhao, Jun; Zhu, Beibei; Collazo, Joanne; Gal, Jozsef; Shi, Ping; Liu, Li; Ström, Anna-Lena; Lu, Xiaoning; McCann, Richard O; Toborek, Michal; Kyprianou, Natasha

    2012-01-01

    Proteins on cell surface play important roles during cancer progression and metastasis via their ability to mediate cell-to-cell interactions and navigate the communication between cells and the microenvironment. In this study a targeted proteomic analysis was conducted to identify the differential expression of cell surface proteins in human benign (BPH-1) versus malignant (LNCaP and PC-3) prostate epithelial cells. We identified EMMPRIN (extracellular matrix metalloproteinase inducer) as a key candidate and shRNA functional approaches were subsequently applied to determine the role of EMMPRIN in prostate cancer cell adhesion, migration, invasion as well as cytoskeleton organization. EMMPRIN was found to be highly expressed on the surface of prostate cancer cells compared to BPH-1 cells, consistent with a correlation between elevated EMMPRIN and metastasis found in other tumors. No significant changes in cell proliferation, cell cycle progression, or apoptosis were detected in EMMPRIN knockdown cells compared to the scramble controls. Furthermore, EMMPRIN silencing markedly decreased the ability of PC-3 cells to form filopodia, a critical feature of invasive behavior, while it increased expression of cell-cell adhesion and gap junction proteins. Our results suggest that EMMPRIN regulates cell adhesion, invasion, and cytoskeleton reorganization in prostate cancer cells. This study identifies a new function for EMMPRIN as a contributor to prostate cancer cell-cell communication and cytoskeleton changes towards metastatic spread, and suggests its potential value as a marker of prostate cancer progression to metastasis. Copyright © 2011 Wiley Periodicals, Inc.

  4. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  5. Cell volume regulation in epithelial physiology and cancer

    DEFF Research Database (Denmark)

    Pedersen, Stine Helene Falsig; Hoffmann, Else Kay; Novak, Ivana

    2013-01-01

    expression of ion transporters and channels is now recognized as one of the hallmarks of cancer, it is timely to consider this especially for epithelia. Epithelial cells are highly proliferative and epithelial cancers, carcinomas, account for about 90% of all cancers. In this review we will focus on ion...... such as cancer, transepithelial and cell volume regulatory ion transport are dys-regulated. Furthermore, epithelial architecture and coordinated ion transport function are lost, cell survival/death balance is altered, and new interactions with the stroma arise, all contributing to drug resistance. Since altered...... transporters and channels with key physiological functions in epithelia and known roles in the development of cancer in these tissues. Their roles in cell survival, cell cycle progression, and development of drug resistance in epithelial cancers will be discussed....

  6. Hypoxic stellate cells of pancreatic cancer stroma regulate extracellular matrix fiber organization and cancer cell motility.

    Science.gov (United States)

    Sada, Masafumi; Ohuchida, Kenoki; Horioka, Kohei; Okumura, Takashi; Moriyama, Taiki; Miyasaka, Yoshihiro; Ohtsuka, Takao; Mizumoto, Kazuhiro; Oda, Yoshinao; Nakamura, Masafumi

    2016-03-28

    Desmoplasia and hypoxia in pancreatic cancer mutually affect each other and create a tumor-supportive microenvironment. Here, we show that microenvironment remodeling by hypoxic pancreatic stellate cells (PSCs) promotes cancer cell motility through alteration of extracellular matrix (ECM) fiber architecture. Three-dimensional (3-D) matrices derived from PSCs under hypoxia exhibited highly organized parallel-patterned matrix fibers compared with 3-D matrices derived from PSCs under normoxia, and promoted cancer cell motility by inducing directional migration of cancer cells due to the parallel fiber architecture. Microarray analysis revealed that procollagen-lysine, 2-oxoglutarate 5-dioxygenase 2 (PLOD2) in PSCs was the gene that potentially regulates ECM fiber architecture under hypoxia. Stromal PLOD2 expression in surgical specimens of pancreatic cancer was confirmed by immunohistochemistry. RNA interference-mediated knockdown of PLOD2 in PSCs blocked parallel fiber architecture of 3-D matrices, leading to decreased directional migration of cancer cells within the matrices. In conclusion, these findings indicate that hypoxia-induced PLOD2 expression in PSCs creates a permissive microenvironment for migration of cancer cells through architectural regulation of stromal ECM in pancreatic cancer. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells

    International Nuclear Information System (INIS)

    Teng, Ying; Wang, Xiuwen; Wang, Yawei; Ma, Daoxin

    2010-01-01

    Wnt/β-catenin signaling plays an important role not only in cancer, but also in cancer stem cells. In this study, we found that β-catenin and OCT-4 was highly expressed in cisplatin (DDP) selected A549 cells. Stimulating A549 cells with lithium chloride (LiCl) resulted in accumulation of β-catenin and up-regulation of a typical Wnt target gene cyclin D1. This stimulation also significantly enhanced proliferation, clone formation, migration and drug resistance abilities in A549 cells. Moreover, the up-regulation of OCT-4, a stem cell marker, was observed through real-time PCR and Western blotting. In a reverse approach, we inhibited Wnt signaling by knocking down the expression of β-catenin using RNA interference technology. This inhibition resulted in down-regulation of the Wnt target gene cyclin D1 as well as the proliferation, clone formation, migration and drug resistance abilities. Meanwhile, the expression of OCT-4 was reduced after the inhibition of Wnt/β-catenin signaling. Taken together, our study provides strong evidence that canonical Wnt signaling plays an important role in lung cancer stem cell properties, and it also regulates OCT-4, a lung cancer stem cell marker.

  8. Hedgehog Signaling Regulates the Survival of Gastric Cancer Cells by Regulating the Expression of Bcl-2

    Science.gov (United States)

    Han, Myoung-Eun; Lee, Young-Suk; Baek, Sun-Yong; Kim, Bong-Seon; Kim, Jae-Bong; Oh, Sae-Ock

    2009-01-01

    Gastric cancer is the second most common cause of cancer deaths worldwide. The underlying molecular mechanisms of its carcinogenesis are relatively poorly characterized. Hedgehog (Hh) signaling, which is critical for development of various organs including the gastrointestinal tract, has been associated with gastric cancer. The present study was undertaken to reveal the underlying mechanism by which Hh signaling controls gastric cancer cell proliferation. Treatment of gastric cancer cells with cyclopamine, a specific inhibitor of Hh signaling pathway, reduced proliferation and induced apoptosis of gastric cancer cells. Cyclopamine treatment induced cytochrome c release from mitochondria and cleavage of caspase 9. Moreover, Bcl-2 expression was significantly reduced by cyclopamine treatment. These results suggest that Hh signaling regulates the survival of gastric cancer cells by regulating the expression of Bcl-2. PMID:19742123

  9. Autophagy regulates the stemness of cervical cancer stem cells

    Directory of Open Access Journals (Sweden)

    Yang Y

    2017-06-01

    Full Text Available Yi Yang,1,2 Li Yu,1 Jin Li,1 Ya Hong Yuan,1 Xiao Li Wang,1 Shi Rong Yan,1 Dong Sheng Li,1 Yan Ding1 1Hubei Key Laboratory of Embryonic Stem Cell Research, 2Reproductive Center, Taihe Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China Abstract: Cancer stem cells (CSCs are a rare population of multipotent cells with the capacity to self-renew. It has been reported that there are CSCs in cervical cancer cells. Pluripotency-associated (PA transcription factors such as Oct4, Sox2, Nanog and CD44 have been used to isolate CSCs subpopulations. In this study, we showed that autophagy plays an important role in the biological behavior of cervical cancer cells. The expression of the autophagy protein Beclin 1 and LC3B was higher in tumorspheres established from human cervical cancers cell lines (and CaSki than in the parental adherent cells. It was also observed that the basal and starvation-induced autophagy flux was higher in tumorspheres than in the bulk population. Autophagy could regulate the expression level of PA proteins in cervical CSCs. In addition, CRISPR/Cas 9-mediated Beclin 1 knockout enhanced the malignancy of HeLa cells, leading to accumulation of PA proteins and promoted tumorsphere formation. Our findings suggest that autophagy modulates homeostasis of PA proteins, and Beclin 1 is critical for CSC maintenance and tumor development in nude mice. This demonstrates that a prosurvival autophagic pathway is critical for CSC maintenance. Keywords: cervical cancer, autophagy, cancer stem cell, LC3, Oct4

  10. SOX15 regulates proliferation and migration of endometrial cancer cells.

    Science.gov (United States)

    Rui, Xiaohui; Xu, Yun; Jiang, Xiping; Guo, Caixia; Jiang, Jingting

    2017-10-31

    The study aimed to investigate the effects of Sry-like high mobility group box 15 ( SOX15 ) on proliferation and migration of endometrial cancer (EC) cells. Immunohistochemistry (IHC) was applied to determine the expression of SOX15 in EC tissues and adjacent tissues. We used cell transfection method to construct the HEC-1-A and Ishikawa cell lines with stable overexpression and low expression SOX15 Reverse-transcription quantitative real-time PCR (RT-qPCR) and Western blot were performed to examine expression of SOX15 mRNA and SOX15 protein, respectively. By conducting a series of cell proliferation assay and migration assay, we analyzed the influence of SOX15 overexpression or low expression on EC cell proliferation and migration. The expression of SOX15 mRNA and protein in EC tissues was significantly lower than that in adjacent tissues. After lentivirus-transfecting SOX15 , the expression level of SOX15 mRNA and protein was significantly increased in cells of SOX15 group, and decreased in sh- SOX15 group. Overexpression of SOX15 could suppress cell proliferation, while down-regulation of SOX15 increased cell proliferation. Flow cytometry results indicated that overexpression of SOX15 induced the ratio of cell-cycle arrest in G 1 stage. In addition, Transwell migration assay results showed that SOX15 overexpression significantly inhibited cell migration, and also down-regulation of SOX15 promoted the migration. As a whole, SOX15 could regulate the proliferation and migration of EC cells and up- regulation of SOX15 could be valuable for EC treatment. © 2017 The Author(s).

  11. Estrogen regulation of TRPM8 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Chodon, Dechen; Guilbert, Arnaud; Dhennin-Duthille, Isabelle; Gautier, Mathieu; Telliez, Marie-Sophie; Sevestre, Henri; Ouadid-Ahidouch, Halima

    2010-01-01

    The calcium-permeable cation channel TRPM8 (melastatin-related transient receptor potential member 8) is over-expressed in several cancers. The present study aimed at investigating the expression, function and potential regulation of TRPM8 channels by ER alpha (estrogen receptor alpha) in breast cancer. RT-PCR, Western blot, immuno-histochemical, and siRNA techniques were used to investigate TRPM8 expression, its regulation by estrogen receptors, and its expression in breast tissue. To investigate the channel activity in MCF-7 cells, we used the whole cell patch clamp and the calcium imaging techniques. TRPM8 channels are expressed at both mRNA and protein levels in the breast cancer cell line MCF-7. Bath application of the potent TRPM8 agonist Icilin (20 μM) induced a strong outwardly rectifying current at depolarizing potentials, which is associated with an elevation of cytosolic calcium concentration, consistent with established TRPM8 channel properties. RT-PCR experiments revealed a decrease in TRPM8 mRNA expression following steroid deprivation for 48 and 72 hours. In steroid deprived medium, addition of 17-beta-estradiol (E 2 , 10 nM) increased both TRPM8 mRNA expression and the number of cells which respond to Icilin, but failed to affect the Ca 2+ entry amplitude. Moreover, silencing ERα mRNA expression with small interfering RNA reduced the expression of TRPM8. Immuno-histochemical examination of the expression of TRPM8 channels in human breast tissues revealed an over-expression of TRPM8 in breast adenocarcinomas, which is correlated with estrogen receptor positive (ER + ) status of the tumours. Taken together, these results show that TRPM8 channels are expressed and functional in breast cancer and that their expression is regulated by ER alpha

  12. Matrix rigidity regulates cancer cell growth and cellular phenotype.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    2010-09-01

    Full Text Available The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness of the microenvironment and how this response varies among cancer cell lines.In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: "rigidity dependent" (those which show an increase in cell growth as extracellular rigidity is increased, and "rigidity independent" (those which grow equally on both soft and stiff substrates. Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug.These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models.

  13. Matrix Rigidity Regulates Cancer Cell Growth and Cellular Phenotype

    Science.gov (United States)

    Tilghman, Robert W.; Cowan, Catharine R.; Mih, Justin D.; Koryakina, Yulia; Gioeli, Daniel; Slack-Davis, Jill K.; Blackman, Brett R.; Tschumperlin, Daniel J.; Parsons, J. Thomas

    2010-01-01

    Background The mechanical properties of the extracellular matrix have an important role in cell growth and differentiation. However, it is unclear as to what extent cancer cells respond to changes in the mechanical properties (rigidity/stiffness) of the microenvironment and how this response varies among cancer cell lines. Methodology/Principal Findings In this study we used a recently developed 96-well plate system that arrays extracellular matrix-conjugated polyacrylamide gels that increase in stiffness by at least 50-fold across the plate. This plate was used to determine how changes in the rigidity of the extracellular matrix modulate the biological properties of tumor cells. The cell lines tested fall into one of two categories based on their proliferation on substrates of differing stiffness: “rigidity dependent” (those which show an increase in cell growth as extracellular rigidity is increased), and “rigidity independent” (those which grow equally on both soft and stiff substrates). Cells which grew poorly on soft gels also showed decreased spreading and migration under these conditions. More importantly, seeding the cell lines into the lungs of nude mice revealed that the ability of cells to grow on soft gels in vitro correlated with their ability to grow in a soft tissue environment in vivo. The lung carcinoma line A549 responded to culture on soft gels by expressing the differentiated epithelial marker E-cadherin and decreasing the expression of the mesenchymal transcription factor Slug. Conclusions/Significance These observations suggest that the mechanical properties of the matrix environment play a significant role in regulating the proliferation and the morphological properties of cancer cells. Further, the multiwell format of the soft-plate assay is a useful and effective adjunct to established 3-dimensional cell culture models. PMID:20886123

  14. Prediction of epigenetically regulated genes in breast cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Loss, Leandro A; Sadanandam, Anguraj; Durinck, Steffen; Nautiyal, Shivani; Flaucher, Diane; Carlton, Victoria EH; Moorhead, Martin; Lu, Yontao; Gray, Joe W; Faham, Malek; Spellman, Paul; Parvin, Bahram

    2010-05-04

    Methylation of CpG islands within the DNA promoter regions is one mechanism that leads to aberrant gene expression in cancer. In particular, the abnormal methylation of CpG islands may silence associated genes. Therefore, using high-throughput microarrays to measure CpG island methylation will lead to better understanding of tumor pathobiology and progression, while revealing potentially new biomarkers. We have examined a recently developed high-throughput technology for measuring genome-wide methylation patterns called mTACL. Here, we propose a computational pipeline for integrating gene expression and CpG island methylation profles to identify epigenetically regulated genes for a panel of 45 breast cancer cell lines, which is widely used in the Integrative Cancer Biology Program (ICBP). The pipeline (i) reduces the dimensionality of the methylation data, (ii) associates the reduced methylation data with gene expression data, and (iii) ranks methylation-expression associations according to their epigenetic regulation. Dimensionality reduction is performed in two steps: (i) methylation sites are grouped across the genome to identify regions of interest, and (ii) methylation profles are clustered within each region. Associations between the clustered methylation and the gene expression data sets generate candidate matches within a fxed neighborhood around each gene. Finally, the methylation-expression associations are ranked through a logistic regression, and their significance is quantified through permutation analysis. Our two-step dimensionality reduction compressed 90% of the original data, reducing 137,688 methylation sites to 14,505 clusters. Methylation-expression associations produced 18,312 correspondences, which were used to further analyze epigenetic regulation. Logistic regression was used to identify 58 genes from these correspondences that showed a statistically signifcant negative correlation between methylation profles and gene expression in the

  15. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Science.gov (United States)

    Kagawa, Yoshinori; Matsumoto, Shinji; Kamioka, Yuji; Mimori, Koshi; Naito, Yoko; Ishii, Taeko; Okuzaki, Daisuke; Nishida, Naohiro; Maeda, Sakae; Naito, Atsushi; Kikuta, Junichi; Nishikawa, Keizo; Nishimura, Junichi; Haraguchi, Naotsugu; Takemasa, Ichiro; Mizushima, Tsunekazu; Ikeda, Masataka; Yamamoto, Hirofumi; Sekimoto, Mitsugu; Ishii, Hideshi; Doki, Yuichiro; Matsuda, Michiyuki; Kikuchi, Akira; Mori, Masaki; Ishii, Masaru

    2013-01-01

    The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci) demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP), was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  16. Cell cycle-dependent Rho GTPase activity dynamically regulates cancer cell motility and invasion in vivo.

    Directory of Open Access Journals (Sweden)

    Yoshinori Kagawa

    Full Text Available The mechanism behind the spatiotemporal control of cancer cell dynamics and its possible association with cell proliferation has not been well established. By exploiting the intravital imaging technique, we found that cancer cell motility and invasive properties were closely associated with the cell cycle. In vivo inoculation of human colon cancer cells bearing fluorescence ubiquitination-based cell cycle indicator (Fucci demonstrated an unexpected phenomenon: S/G2/M cells were more motile and invasive than G1 cells. Microarray analyses showed that Arhgap11a, an uncharacterized Rho GTPase-activating protein (RhoGAP, was expressed in a cell-cycle-dependent fashion. Expression of ARHGAP11A in cancer cells suppressed RhoA-dependent mechanisms, such as stress fiber formation and focal adhesion, which made the cells more prone to migrate. We also demonstrated that RhoA suppression by ARHGAP11A induced augmentation of relative Rac1 activity, leading to an increase in the invasive properties. RNAi-based inhibition of Arhgap11a reduced the invasion and in vivo expansion of cancers. Additionally, analysis of human specimens showed the significant up-regulation of Arhgap11a in colon cancers, which was correlated with clinical invasion status. The present study suggests that ARHGAP11A, a cell cycle-dependent RhoGAP, is a critical regulator of cancer cell mobility and is thus a promising therapeutic target in invasive cancers.

  17. Ursodeoxycholic acid inhibits the proliferation of colon cancer cells by regulating oxidative stress and cancer stem-like cell growth

    Science.gov (United States)

    Kim, EuiJoo

    2017-01-01

    Introduction The regulation of reactive oxygen species (ROS) exists as a therapeutic target for cancer treatments. Previous studies have shown that ursodeoxycholic acid (UDCA) suppresses the proliferation of colon cancer cells. The aim of this study was to evaluate the effect of UDCA upon the proliferation of colon cancer cells as a direct result of the regulation of ROS. Method Colon cancer cell lines (HT29 and HCT116) were treated with UDCA. The total number of cells and the number of dead cells were determined using cell counters. A fluorescein isothiocyanate-bromodeoxyuridine flow kit was used to analyze cell cycle variations. Upon exposure to UDCA, the protein levels of p27, p21, CDK2, CDK4 and CDK6 were determined using western blotting, and qRT-PCR was used to determine levels of mRNA. We preformed dichlorofluorescindiacetate (DCF-DA) staining to detect alteration of intracellular ROS using fluorescence activated cell sorting (FACS). Colon cancer stem-like cell lines were generated by tumorsphere culture and treated with UDCA for seven days. The total number of tumorspheres was determined using microscopy. Results We found that UDCA reduced the total number of colon cancer cells, but did not increase the number of dead cells. UDCA inhibited the G1/S and G2/M transition phases in colon cancer cells. UDCA induced expression of cell cycle inhibitors such as p27 and p21. However, it was determined that UDCA suppressed levels of CDK2, CDK4, and CDK6. UDCA regulated intracellular ROS generation in colon cancer cells, and induced activation of Erk1/2. Finally, UDCA inhibited formation of colon cancer stem-like cells. Conclusion Our results indicate that UDCA suppresses proliferation through regulation of oxidative stress in colon cancer cells, as well as colon cancer stem-like cells. PMID:28708871

  18. VMP1 related autophagy and apoptosis in colorectal cancer cells: VMP1 regulates cell death

    Energy Technology Data Exchange (ETDEWEB)

    Qian, Qinyi [Department of Ultrasonograph, Changshu No. 2 People’s Hospital, Changshu (China); Zhou, Hao; Chen, Yan [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Shen, Chenglong [Department of General Surgery, Changshu No. 2 People’s Hospital, Changshu (China); He, Songbing; Zhao, Hua; Wang, Liang [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China); Wan, Daiwei, E-mail: 372710369@qq.com [Department of Hepatobiliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou (China); Gu, Wen, E-mail: 505339704@qq.com [Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou (China)

    2014-01-17

    Highlights: •This research confirmed VMP1 as a regulator of autophagy in colorectal cancer cell lines. •We proved the pro-survival role of VMP1-mediated autophagy in colorectal cancer cell lines. •We found the interaction between VMP1 and BECLIN1 also existing in colorectal cancer cell lines. -- Abstract: Vacuole membrane protein 1 (VMP1) is an autophagy-related protein and identified as a key regulator of autophagy in recent years. In pancreatic cell lines, VMP1-dependent autophagy has been linked to positive regulation of apoptosis. However, there are no published reports on the role of VMP1 in autophagy and apoptosis in colorectal cancers. Therefore, to address this gap of knowledge, we decided to interrogate regulation of autophagy and apoptosis by VMP1. We have studied the induction of autophagy by starvation and rapamycin treatment in colorectal cell lines using electron microscopy, immunofluorescence, and immunoblotting. We found that starvation-induced autophagy correlated with an increase in VMP1 expression, that VMP1 interacted with BECLIN1, and that siRNA mediated down-regulation of VMP1-reduced autophagy. Next, we examined the relationship between VMP1-dependent autophagy and apoptosis and found that VMP1 down-regulation sensitizes cells to apoptosis and that agents that induce apoptosis down-regulate VMP1. In conclusion, similar to its reported role in other cell types, VMP1 is an important regulator of autophagy in colorectal cell lines. However, in contrast to its role in pancreatic cell lines, in colorectal cancer cells, VMP1-dependent autophagy appears to be pro-survival rather than pro-cell death.

  19. Nanomaterials for regulating cancer and stem cell fate

    Science.gov (United States)

    Shah, Birju P.

    The realm of nanomedicine has grown exponentially over the past few decades. However, there are several obstacles that need to be overcome, prior to the wide-spread clinical applications of these nanoparticles, such as (i) developing well-defined nanoparticles of varying size, morphology and composition to enable various clinical applications; (ii) overcome various physiological barriers encountered in order to deliver the therapeutics to the target location; and (iii) real-time monitoring of the nano-therapeutics within the human body for tracking their uptake, localization and effect. Hence, this dissertation focuses on developing multimodal nanotechnology-based approaches to overcome the above-mentioned challenges and thus enable regulation of cancer and stem cell fate. The initial part of this dissertation describes the development of multimodal magnetic core-shell nanoparticles (MCNPs), comprised of a highly magnetic core surrounded by a thin gold shell, thus combining magnetic and plasmonic properties. These nanoparticles were utilized for mainly two applications: (i) Magnetically-facilitated delivery of siRNA and plasmid DNA for effective stem cell differentiation and imaging and (ii) Combined hyperthermia and targeted delivery of a mitochondria-targeting peptide for enhancing apoptosis in cancer cells. The following part of this dissertation presents the generation of a multi-functional cyclodextrin-conjugated polymeric delivery platform (known as DexAMs), for co-delivery of anticancer drugs and siRNAs in a target-specific manner to brain tumor cells. This combined delivery of chemotherapeutics and siRNA resulted in a synergistic effect on the apoptosis of brain tumor cells, as compared to the individual treatments. The final part of this thesis presents development of stimuli-responsive uorescence resonance energy transfer (FRET)-based mesoporous silica nanoparticles for real-time monitoring of drug release in cells. The stimuli-responsive behavior of

  20. Regulation of Breast Cancer Stem Cell by Tissue Rigidity

    Science.gov (United States)

    2014-06-01

    metastasis. Cancer Cell 20: 576– 590 . Ledford H. 2011. Cancer theory faces doubts. Nature 472: 273. Lee KE, Bar-Sagi D. 2010. Oncogenic KRas suppresses...blocks the cell cycle and confers resistance to cell death. Genes Dev 18: 1131–1143. Vesuna F, Lisok A, Kimble B, Raman V. 2009. Twist modulates

  1. URG11 Regulates Prostate Cancer Cell Proliferation, Migration, and Invasion

    Directory of Open Access Journals (Sweden)

    Bin Pan

    2018-01-01

    Full Text Available Upregulated gene 11 (URG11, a new gene upregulated by hepatitis B virus X protein, is involved in the development and progression of several tumors, including liver, stomach, lung, and colon cancers. However, the role of URG11 in prostate cancer remains yet to be elucidated. By determined expression in human prostate cancer tissues, URG11 was found significantly upregulated and positively correlated with the severity of prostate cancer, compared with that in benign prostatic hyperplasia tissues. Further, the mRNA and protein levels of URG11 were significantly upregulated in human prostate cancer cell lines (DU145, PC3, and LNCaP, compared with human prostate epithelial cell line (RWPE-1. Moreover, by the application of siRNA against URG11, the proliferation, migration, and invasion of prostate cancer cells were markedly inhibited. Genetic knockdown of URG11 also induced cell cycle arrest at G1/S phase, induced apoptosis, and decreased the expression level of β-catenin in prostate cancer cells. Overexpression of URG11 promoted the expression of β-catenin, the growth, the migration, and invasion ability of prostate cancer cells. Taken together, this study reveals that URG11 is critical for the proliferation, migration, and invasion in prostate cancer cells, providing the evidence of URG11 to be a novel potential therapeutic target of prostate cancer.

  2. Regulation of nonsmall-cell lung cancer stem cell like cells by neurotransmitters and opioid peptides.

    Science.gov (United States)

    Banerjee, Jheelam; Papu John, Arokya M S; Schuller, Hildegard M

    2015-12-15

    Nonsmall-cell lung cancer (NSCLC) is the leading type of lung cancer and has a poor prognosis. We have shown that chronic stress promoted NSCLC xenografts in mice via stress neurotransmitter-activated cAMP signaling downstream of beta-adrenergic receptors and incidental beta-blocker therapy was reported to improve clinical outcomes in NSCLC patients. These findings suggest that psychological stress promotes NSCLC whereas pharmacologically or psychologically induced decreases in cAMP may inhibit NSCLC. Cancer stem cells are thought to drive the development, progression and resistance to therapy of NSCLC. However, their potential regulation by stress neurotransmitters has not been investigated. In the current study, epinephrine increased the number of cancer stem cell like cells (CSCs) from three NSCLC cell lines in spheroid formation assays while enhancing intracellular cAMP and the stem cell markers sonic hedgehog (SHH), aldehyde dehydrogenase-1 (ALDH-1) and Gli1, effects reversed by GABA or dynorphin B via Gαi -mediated inhibition of cAMP formation. The growth of NSCLC xenografts in a mouse model of stress reduction was significantly reduced as compared with mice maintained under standard conditions. Stress reduction reduced serum levels of corticosterone, norepinephrine and epinephrine while the inhibitory neurotransmitter γ-aminobutyric acid (GABA) and opioid peptides increased. Stress reduction significantly reduced cAMP, VEGF, p-ERK, p-AKT, p-CREB, p-SRc, SHH, ALDH-1 and Gli1 in xenograft tissues whereas cleaved caspase-3 and p53 were induced. We conclude that stress neurotransmitters activate CSCs in NSCLC via multiple cAMP-mediated pathways and that pharmacologically or psychologically induced decreases in cAMP signaling may improve clinical outcomes in NSCLC patients. © 2015 UICC.

  3. ATM regulation of IL-8 links oxidative stress to cancer cell migration and invasion.

    Science.gov (United States)

    Chen, Wei-Ta; Ebelt, Nancy D; Stracker, Travis H; Xhemalce, Blerta; Van Den Berg, Carla L; Miller, Kyle M

    2015-06-01

    Ataxia-telangiectasia mutated (ATM) protein kinase regulates the DNA damage response (DDR) and is associated with cancer suppression. Here we report a cancer-promoting role for ATM. ATM depletion in metastatic cancer cells reduced cell migration and invasion. Transcription analyses identified a gene network, including the chemokine IL-8, regulated by ATM. IL-8 expression required ATM and was regulated by oxidative stress. IL-8 was validated as an ATM target by its ability to rescue cell migration and invasion defects in ATM-depleted cells. Finally, ATM-depletion in human breast cancer cells reduced lung tumors in a mouse xenograft model and clinical data validated IL-8 in lung metastasis. These findings provide insights into how ATM activation by oxidative stress regulates IL-8 to sustain cell migration and invasion in cancer cells to promote metastatic potential. Thus, in addition to well-established roles in tumor suppression, these findings identify a role for ATM in tumor progression.

  4. Exercise-Dependent Regulation of NK Cells in Cancer Protection

    DEFF Research Database (Denmark)

    Idorn, Manja; Hojman, Pernille

    2016-01-01

    Natural killer (NK) cells are the most responsive immune cells to exercise, displaying an acute mobilization to the circulation during physical exertion. Recently, exercise-dependent mobilization of NK cells was found to play a central role in exercise-mediated protection against cancer. Here, we...... a mechanistic explanation for the protective effect of exercise on cancer, and we propose that exercise represents a potential strategy as adjuvant therapy in cancer, by improving NK cell recruitment and infiltration in solid tumors....... review the link between exercise and NK cell function, focusing on circulating exercise factors and additional effects, including vascularization, hypoxia, and body temperature in mediating the effects on NK cell functionality. Exercise-dependent mobilization and activation of NK cells provides...

  5. Microenvironmental regulation of stem cells in intestinal homeostasis and cancer

    NARCIS (Netherlands)

    Medema, Jan Paul; Vermeulen, Louis

    2011-01-01

    The identification of intestinal stem cells as well as their malignant counterparts, colon cancer stem cells, has undergone rapid development in recent years. Under physiological conditions, intestinal homeostasis is a carefully balanced and efficient interplay between stem cells, their progeny and

  6. Snail regulates cell survival and inhibits cellular senescence in human metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra Soheila; Schmitz, Ingo; Sameie, Shahram; Schulz, Wolfgang A

    2010-12-01

    The epithelial-mesenchymal transition (EMT) is regarded as an important step in cancer metastasis. Snail, a master regulator of EMT, has been recently proposed to act additionally as a cell survival factor and inducer of motility. We have investigated the function of Snail (SNAI1) in prostate cancer cells by downregulating its expression via short (21-mer) interfering RNA (siRNA) and measuring the consequences on EMT markers, cell viability, death, cell cycle, senescence, attachment, and invasivity. Of eight carcinoma cell lines, the prostate carcinoma cell lines LNCaP and PC-3 showed the highest and moderate expression of SNAI1 mRNA, respectively, as measured by quantitative RT-PCR. Long-term knockdown of Snail induced a severe decline in cell numbers in LNCaP and PC-3 and caspase activity was accordingly enhanced in both cell lines. In addition, suppression of Snail expression induced senescence in LNCaP cells. SNAI1-siRNA-treated cells did not tolerate detachment from the extracellular matrix, probably due to downregulation of integrin α6. Expression of E-cadherin, vimentin, and fibronectin was also affected. Invasiveness of PC-3 cells was not significantly diminished by Snail knockdown. Our data suggest that Snail acts primarily as a survival factor and inhibitor of cellular senescence in prostate cancer cell lines. We therefore propose that Snail can act as early driver of prostate cancer progression.

  7. DNMT1 Regulates Epithelial-Mesenchymal Transition and Cancer Stem Cells, Which Promotes Prostate Cancer Metastasis

    Directory of Open Access Journals (Sweden)

    Eunsohl Lee

    2016-09-01

    Full Text Available Cancer metastasis is a multistep process associated with the induction of an epithelial-mesenchymal transition (EMT and cancer stem cells (CSCs. Although significant progress has been made in understanding the molecular mechanisms regulating EMT and the CSC phenotype, little is known of how these processes are regulated by epigenetics. Here we demonstrate that reduced expression of DNA methyltransferase 1 (DNMT1 plays an important role in the induction of EMT and the CSC phenotype by prostate cancer (PCa cells, with enhanced tumorigenesis and metastasis. First, we observed that reduction of DNMT1 by 5-azacitidine (5-Aza promotes EMT induction as well as CSCs and sphere formation in vitro. Reduced expression of DNMT1 significantly increased PCa migratory potential. We showed that the increase of EMT and CSC activities by reduction of DNMT1 is associated with the increase of protein kinase C. Furthermore, we confirmed that silencing DNMT1 is correlated with enhancement of the induction of EMT and the CSC phenotype in PCa cells. Additionally, chromatin immunoprecipitation assay reveals that reduction of DNMT1 promotes the suppression of H3K9me3 and H3K27me3 on the Zeb2 and KLF4 promoter region in PCa cells. Critically, we found in an animal model that significant tumor growth and more disseminated tumor cells in most osseous tissues were observed following injection of 5-Aza pretreated–PCa cells compared with vehicle-pretreated PCa cells. Our results suggest that epigenetic alteration of histone demethylation regulated by reduction of DNMT1 may control induction of EMT and the CSC phenotype, which facilitates tumorigenesis in PCa cells and has important therapeutic implications in targeting epigenetic regulation.

  8. Emerging Evidence for MicroRNAs as Regulators of Cancer Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    Sethi, Aisha [Department of Pathology, Henry Ford Hospital, Detroit, MI 48202 (United States); Sholl, Lynette M., E-mail: lmsholl@partners.org [Department of Pathology, Brigham and Women' s Hospital and Harvard Medical School, Boston, MA 02115 (United States)

    2011-10-24

    Cancer stem cells are defined as a subpopulation of cells within a tumor that are capable of self-renewal and differentiation into the heterogeneous cell lineages that comprise the tumor. Many studies indicate that cancer stem cells may be responsible for treatment failure and relapse in cancer patients. The factors that regulate cancer stem cells are not well defined. MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression and transcript degradation. miRNAs play a critical role in embryonic and inducible pluripotent stem cell regulation and emerging evidence supports their role in cancer stem cell evolution. To date, miRNAs have been shown to act either as tumor suppressor genes or oncogenes in driving critical gene expression pathways in cancer stem cells in a wide range of human malignancies, including hematopoietic and epithelial tumors and sarcomas. miRNAs involved in cancer stem cell regulation provide attractive, novel therapeutic targets for cancer treatment. This review attempts to summarize progress to date in defining the role of miRNAs in cancer stem cells.

  9. Emerging Evidence for MicroRNAs as Regulators of Cancer Stem Cells

    International Nuclear Information System (INIS)

    Sethi, Aisha; Sholl, Lynette M.

    2011-01-01

    Cancer stem cells are defined as a subpopulation of cells within a tumor that are capable of self-renewal and differentiation into the heterogeneous cell lineages that comprise the tumor. Many studies indicate that cancer stem cells may be responsible for treatment failure and relapse in cancer patients. The factors that regulate cancer stem cells are not well defined. MicroRNAs (miRNAs) are small non-coding RNAs that regulate translational repression and transcript degradation. miRNAs play a critical role in embryonic and inducible pluripotent stem cell regulation and emerging evidence supports their role in cancer stem cell evolution. To date, miRNAs have been shown to act either as tumor suppressor genes or oncogenes in driving critical gene expression pathways in cancer stem cells in a wide range of human malignancies, including hematopoietic and epithelial tumors and sarcomas. miRNAs involved in cancer stem cell regulation provide attractive, novel therapeutic targets for cancer treatment. This review attempts to summarize progress to date in defining the role of miRNAs in cancer stem cells

  10. Slug/SNAI2 regulates cell proliferation and invasiveness of metastatic prostate cancer cell lines.

    Science.gov (United States)

    Emadi Baygi, Modjtaba; Soheili, Zahra-Soheila; Essmann, Frank; Deezagi, Abdolkhaleg; Engers, Rainer; Goering, Wolfgang; Schulz, Wolfgang A

    2010-08-01

    Many metastatic cancers recapitulate the epithelial-to-mesenchymal transition (EMT) resulting in enhanced cell motility and invasiveness. The EMT is regulated by several transcription factors, including the zinc finger protein SNAI2, also named Slug, which appears to exert additional functions during development and cancer progression. We have studied the function of SNAI2 in prostate cancer cells. Quantitative RT-PCR analysis showed strong SNAI2 expression particularly in the PC-3 and PC3-16 prostate carcinoma cell lines. Knockdown of SNAI2 by specific siRNA induced changes in EMT markers and inhibited invasion of both cell lines into a matrigel matrix. SNAI2 siRNA-treated cells did not tolerate detachment from the culture plates, likely at least in part due to downregulation of integrin alpha6beta4. SNAI2 knockdown disturbed the microtubular and actin cytoskeletons, especially severely in PC-3 cells, resulting in grossly enlarged, flattened, and sometimes multinuclear cells. Knockdown also decreased cell proliferation, with a prominent G0/G1 arrest in PC3-16. Together, our data imply that SNAI2 exerts strong effects on the cytoskeleton and adhesion of those prostate cancer cells that express it and is necessary for their proliferation and invasiveness.

  11. CD44 regulates cell migration in human colon cancer cells via Lyn kinase and AKT phosphorylation.

    Science.gov (United States)

    Subramaniam, Venkateswaran; Vincent, Isabella R; Gardner, Helena; Chan, Emily; Dhamko, Helena; Jothy, Serge

    2007-10-01

    Colon cancer is among the leading causes of cancer death in North America. CD44, an adhesion and antiapoptotic molecule is overexpressed in colon cancer. Cofilin is involved in the directional motility of cells. In the present study, we looked at how CD44 might modulate cell migration in human colon cancer via cofilin. We used a human colon cancer cell line, HT29, which expresses CD44, HT29 where CD44 expression was knocked down by siRNA, SW620, a human colon cancer cell line which does not express CD44, stably transfected exons of CD44 in SW620 cells and the colon from CD44 knockout and wild-type mouse. Western blot analysis of siRNA CD44 lysates showed increased level of AKT phosphorylation and decreased level of cofilin expression. Similar results were also observed with SW620 cells and CD44 knockout mouse colon lysates. Experiments using the AKT phosphorylation inhibitor LY294002 indicate that AKT phosphorylation downregulates cofilin. Immunoprecipitation studies showed CD44 complex formation with Lyn, providing an essential link between CD44 and AKT phosphorylation. LY294002 also stabilized Lyn from phosphorylated AKT, suggesting an interaction between Lyn and AKT phosphorylation. Immunocytochemistry showed that cofilin and Lyn expression were downregulated in siRNA CD44 cells and CD44 knockout mouse colon. siRNA CD44 cells had significantly less migration compared to HT29 vector. Given the well-defined roles of CD44, phosphorylated AKT in apoptosis and cancer, these results indicate that CD44-induced cell migration is dependent on its complex formation with Lyn and its consequent regulation of AKT phosphorylation and cofilin expression.

  12. The role of the tissue microenvironment in the regulation of cancer cell motility and invasion

    Directory of Open Access Journals (Sweden)

    Brábek Jan

    2010-09-01

    Full Text Available Abstract During malignant neoplastic progression the cells undergo genetic and epigenetic cancer-specific alterations that finally lead to a loss of tissue homeostasis and restructuring of the microenvironment. The invasion of cancer cells through connective tissue is a crucial prerequisite for metastasis formation. Although cell invasion is foremost a mechanical process, cancer research has focused largely on gene regulation and signaling that underlie uncontrolled cell growth. More recently, the genes and signals involved in the invasion and transendothelial migration of cancer cells, such as the role of adhesion molecules and matrix degrading enzymes, have become the focus of research. In this review we discuss how the structural and biomechanical properties of extracellular matrix and surrounding cells such as endothelial cells influence cancer cell motility and invasion. We conclude that the microenvironment is a critical determinant of the migration strategy and the efficiency of cancer cell invasion.

  13. Regulation of semaphorin 4D expression and cell proliferation of ovarian cancer by ERalpha and ERbeta

    Directory of Open Access Journals (Sweden)

    Y. Liu

    Full Text Available Ovarian cancer is one of the most common malignancies in women. Semaphorin 4D (sema 4D is involved in the progress of multiple cancers. In the presence of estrogen-like ligands, estrogen receptors (ERα and ERβ participate in the progress of breast and ovarian cancers by transcriptional regulation. The aim of the study was to investigate the role of sema 4D and elucidate the regulatory pattern of ERα and ERβ on sema 4D expression in ovarian cancers. Sema 4D levels were up-regulated in ovarian cancer SKOV-3 cells. Patients with malignant ovarian cancers had significantly higher sema 4D levels than controls, suggesting an oncogene role of sema 4D in ovarian cancer. ERα expressions were up-regulated in SKOV-3 cells compared with normal ovarian IOSE80 epithelial cells. Conversely, down-regulation of ERβ was observed in SKOV-3 cells. Forced over-expression of ERα and ERβ in SKOV-3 cells was manipulated to establish ERα+ and ERβ+ SKOV-3 cell lines. Incubation of ERα+ SKOV-3 cells with ERs agonist 17β-estradiol (E2 significantly enhanced sema 4D expression and rate of cell proliferation. Incubated with E2, ERβ+ SKOV-3 cells showed lower sema 4D expression and cell proliferation. Blocking ERα and ERβ activities with ICI182-780 inhibitor, sema 4D expressions and cell proliferation of ERα+ and ERβ+ SKOV-3 cells were recovered to control levels. Taken together, the data showed that sema 4D expression was positively correlated with the progress of ovarian cancer. ERα positively regulated sema 4D expression and accelerated cell proliferation. ERβ negatively regulated sema 4D expression and inhibited cell multiplication.

  14. Natural Compounds as Regulators of the Cancer Cell Metabolism

    Directory of Open Access Journals (Sweden)

    Claudia Cerella

    2013-01-01

    Full Text Available Even though altered metabolism is an “old” physiological mechanism, only recently its targeting became a therapeutically interesting strategy and by now it is considered an emerging hallmark of cancer. Nevertheless, a very poor number of compounds are under investigation as potential modulators of cell metabolism. Candidate agents should display selectivity of action towards cancer cells without side effects. This ideal favorable profile would perfectly overlap the requisites of new anticancer therapies and chemopreventive strategies as well. Nature represents a still largely unexplored source of bioactive molecules with a therapeutic potential. Many of these compounds have already been characterized for their multiple anticancer activities. Many of them are absorbed with the diet and therefore possess a known profile in terms of tolerability and bioavailability compared to newly synthetized chemical compounds. The discovery of important cross-talks between mediators of the most therapeutically targeted aberrancies in cancer (i.e., cell proliferation, survival, and migration and the metabolic machinery allows to predict the possibility that many anticancer activities ascribed to a number of natural compounds may be due, in part, to their ability of modulating metabolic pathways. In this review, we attempt an overview of what is currently known about the potential of natural compounds as modulators of cancer cell metabolism.

  15. Amplified in Breast Cancer Regulates Transcription and Translation in Breast Cancer Cells.

    Science.gov (United States)

    Ochnik, Aleksandra M; Peterson, Mark S; Avdulov, Svetlana V; Oh, Annabell S; Bitterman, Peter B; Yee, Douglas

    2016-02-01

    Control of mRNA translation is fundamentally altered in cancer. Insulin-like growth factor-I (IGF-I) signaling regulates key translation mediators to modulate protein synthesis (e.g. eIF4E, 4E-BP1, mTOR, and S6K1). Importantly the Amplified in Breast Cancer (AIB1) oncogene regulates transcription and is also a downstream mediator of IGF-I signaling. To determine if AIB1 also affects mRNA translation, we conducted gain and loss of AIB1 function experiments in estrogen receptor alpha (ERα)(+) (MCF-7L) and ERα(-) (MDA-MB-231, MDA-MB-435 and LCC6) breast cancer cells. AIB1 positively regulated IGF-I-induced mRNA translation in both ERα(+) and ERα(-) cells. Formation of the eIF4E-4E-BP1 translational complex was altered in the AIB1 ERα(+) and ERα(-) knockdown cells, leading to a reduction in the eIF4E/4E-BP1 and eIF4G/4E-BP1 ratios. In basal and IGF-I stimulated MCF-7 and LCC6 cells, knockdown of AIB1 decreased the integrity of the cap-binding complex, reduced global IGF-I stimulated polyribosomal mRNA recruitment with a concomitant decrease in ten of the thirteen genes tested in polysome-bound mRNAs mapping to proliferation, cell cycle, survival, transcription, translation and ribosome biogenesis ontologies. Specifically, knockdown of AIB1 decreased ribosome-bound mRNA and steady-state protein levels of the transcription factors ERα and E2F1 in addition to reduced ribosome-bound mRNA of the ribosome biogenesis factor BYSL in a cell-line specific manner to regulate mRNA translation. The oncogenic transcription factor AIB1 has a novel role in the regulation of polyribosome recruitment and formation of the translational complex. Combinatorial therapies targeting IGF signaling and mRNA translation in AIB1 expressing breast cancers may have clinical benefit and warrants further investigation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Regulation of catalase expression in healthy and cancerous cells.

    Science.gov (United States)

    Glorieux, Christophe; Zamocky, Marcel; Sandoval, Juan Marcelo; Verrax, Julien; Calderon, Pedro Buc

    2015-10-01

    Catalase is an important antioxidant enzyme that dismutates hydrogen peroxide into water and molecular oxygen. The catalase gene has all the characteristics of a housekeeping gene (no TATA box, no initiator element sequence, high GC content in promoter) and a core promoter that is highly conserved among species. We demonstrate in this review that within this core promoter, the presence of DNA binding sites for transcription factors, such as NF-Y and Sp1, plays an essential role in the positive regulation of catalase expression. Additional transcription factors, such as FoxO3a, are also involved in this regulatory process. There is strong evidence that the protein Akt/PKB in the PI3K signaling pathway plays a major role in the expression of catalase by modulating the activity of FoxO3a. Over the past decade, other transcription factors (PPARγ, Oct-1, etc.), as well as genetic, epigenetic, and posttranscriptional processes, have emerged as crucial contributors to the regulation of catalase expression. Altered expression levels of catalase have been reported in cancer tissues compared to their normal counterparts. Deciphering the molecular mechanisms that regulate catalase expression could, therefore, be of crucial importance for the future development of pro-oxidant cancer chemotherapy. Copyright © 2015. Published by Elsevier Inc.

  17. Mitochondria-Associated Membranes As Networking Platforms and Regulators of Cancer Cell Fate

    Directory of Open Access Journals (Sweden)

    Maria Livia Sassano

    2017-08-01

    Full Text Available The tight cross talk between two essential organelles of the cell, the endoplasmic reticulum (ER and mitochondria, is spatially and functionally regulated by specific microdomains known as the mitochondria-associated membranes (MAMs. MAMs are hot spots of Ca2+ transfer between the ER and mitochondria, and emerging data indicate their vital role in the regulation of fundamental physiological processes, chief among them mitochondria bioenergetics, proteostasis, cell death, and autophagy. Moreover, and perhaps not surprisingly, it has become clear that signaling events regulated at the ER–mitochondria intersection regulate key processes in oncogenesis and in the response of cancer cells to therapeutics. ER–mitochondria appositions have been shown to dynamically recruit oncogenes and tumor suppressors, modulating their activity and protein complex formation, adapt the bioenergetic demand of cancer cells and to regulate cell death pathways and redox signaling in cancer cells. In this review, we discuss some emerging players of the ER–mitochondria contact sites in mammalian cells, the key processes they regulate and recent evidence highlighting the role of MAMs in shaping cell-autonomous and non-autonomous signals that regulate cancer growth.

  18. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    International Nuclear Information System (INIS)

    Zhang, Yu; Cheng, Jung-Chien; Huang, He-Feng; Leung, Peter C.K.

    2013-01-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells

  19. Homeobox A7 stimulates breast cancer cell proliferation by up-regulating estrogen receptor-alpha

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yu [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Cheng, Jung-Chien [Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada); Huang, He-Feng, E-mail: huanghefg@hotmail.com [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Leung, Peter C.K., E-mail: peter.leung@ubc.ca [Department of Reproductive Endocrinology, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou 310006 (China); Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia V5Z 4H4 (Canada)

    2013-11-01

    Highlights: •HOXA7 regulates MCF7 cell proliferation. •HOXA7 up-regulates ERα expression. •HOXA7 mediates estrogen-induced MCF7 cell proliferation. -- Abstract: Breast cancer is the most common hormone-dependent malignancy in women. Homeobox (HOX) transcription factors regulate many cellular functions, including cell migration, proliferation and differentiation. The aberrant expression of HOX genes has been reported to be associated with human reproductive cancers. Estradiol (E2) and its nuclear receptors, estrogen receptor (ER)-alpha and ER-beta, are known to play critical roles in the regulation of breast cancer cell growth. However, an understanding of the potential relationship between HOXA7 and ER in breast cancer cells is limited. In this study, our results demonstrate that knockdown of HOXA7 in MCF7 cells significantly decreased cell proliferation and ERα expression. In addition, HOXA7 knockdown attenuated E2-induced cell proliferation as well as progesterone receptor (PR) expression. The stimulatory effects of E2 on cell proliferation and PR expression were abolished by co-treatment with ICI 182780, a selective ERα antagonist. In contrast, overexpression of HOXA7 significantly stimulated cell proliferation and ERα expression. Moreover, E2-induced cell proliferation, as well as PR expression, was enhanced by the overexpression of HOXA7. Neither knockdown nor overexpression of HOXA7 affected the ER-beta levels. Our results demonstrate a novel mechanistic role for HOXA7 in modulating breast cancer cell proliferation via regulation of ERα expression. This finding contributes to our understanding of the role HOXA7 plays in regulating the proliferation of ER-positive cancer cells.

  20. SAMHD1 is down regulated in lung cancer by methylation and inhibits tumor cell proliferation

    International Nuclear Information System (INIS)

    Wang, Jia-lei; Lu, Fan-zhen; Shen, Xiao-Yong; Wu, Yun; Zhao, Li-ting

    2014-01-01

    Highlights: • SAMHD1 expression level is down regulated in lung adenocarcinoma. • The promoter of SAMHD1 is methylated in lung adenocarcinoma. • Over expression of SAMHD1 inhibits the proliferation of lung cancer cells. - Abstract: The function of dNTP hydrolase SAMHD1 as a viral restriction factor to inhibit the replication of several viruses in human immune cells was well established. However, its regulation and function in lung cancer have been elusive. Here, we report that SAMHD1 is down regulated both on protein and mRNA levels in lung adenocarcinoma compared to adjacent normal tissue. We also found that SAMHD1 promoter is highly methylated in lung adenocarcinoma, which may inhibit its gene expression. Furthermore, over expression of the SAMHD1 reduces dNTP level and inhibits the proliferation of lung tumor cells. These results reveal the regulation and function of SAMHD1 in lung cancer, which is important for the proliferation of lung tumor cells

  1. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    Energy Technology Data Exchange (ETDEWEB)

    Samarzija, Ivana [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland); Beard, Peter, E-mail: peter.beard@epfl.ch [Ecole Polytechnique Federale Lausanne (EPFL), Department of Life Sciences, Swiss Institute for Experimental Cancer Research (ISREC), 1015 Lausanne (Switzerland)

    2012-08-17

    Highlights: Black-Right-Pointing-Pointer Unknown cellular mutations complement papillomavirus-induced carcinogenesis. Black-Right-Pointing-Pointer Hedgehog pathway components are expressed by cervical cancer cells. Black-Right-Pointing-Pointer Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. Black-Right-Pointing-Pointer Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  2. Hedgehog pathway regulators influence cervical cancer cell proliferation, survival and migration

    International Nuclear Information System (INIS)

    Samarzija, Ivana; Beard, Peter

    2012-01-01

    Highlights: ► Unknown cellular mutations complement papillomavirus-induced carcinogenesis. ► Hedgehog pathway components are expressed by cervical cancer cells. ► Hedgehog pathway activators and inhibitors regulate cervical cancer cell biology. ► Cell immortalization by papillomavirus and activation of Hedgehog are independent. -- Abstract: Human papillomavirus (HPV) infection is considered to be a primary hit that causes cervical cancer. However, infection with this agent, although needed, is not sufficient for a cancer to develop. Additional cellular changes are required to complement the action of HPV, but the precise nature of these changes is not clear. Here, we studied the function of the Hedgehog (Hh) signaling pathway in cervical cancer. The Hh pathway can have a role in a number of cancers, including those of liver, lung and digestive tract. We found that components of the Hh pathway are expressed in several cervical cancer cell lines, indicating that there could exists an autocrine Hh signaling loop in these cells. Inhibition of Hh signaling reduces proliferation and survival of the cervical cancer cells and induces their apoptosis as seen by the up-regulation of the pro-apoptotic protein cleaved caspase 3. Our results indicate that Hh signaling is not induced directly by HPV-encoded proteins but rather that Hh-activating mutations are selected in cells initially immortalized by HPV. Sonic Hedgehog (Shh) ligand induces proliferation and promotes migration of the cervical cancer cells studied. Together, these results indicate pro-survival and protective roles of an activated Hh signaling pathway in cervical cancer-derived cells, and suggest that inhibition of this pathway may be a therapeutic option in fighting cervical cancer.

  3. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yuefeng [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhu, Xiaolan; Xu, Wenlin [The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Wang, Dongqing [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Yan, Jinchuan, E-mail: jiangdalyf2009@126.com [The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China)

    2013-02-15

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression.

  4. miR-330 regulates the proliferation of colorectal cancer cells by targeting Cdc42

    International Nuclear Information System (INIS)

    Li, Yuefeng; Zhu, Xiaolan; Xu, Wenlin; Wang, Dongqing; Yan, Jinchuan

    2013-01-01

    Highlights: ► miR-330 was inversely correlated with Cdc42 in colorectal cancer cells. ► Elevated miR-330 suppressed cell proliferation in vivo and in vitro. ► Elevated miR-330 mimicked the effect of Cdc42 knockdown. ► Restoration of Cdc42 could partially attenuate the effects of miR-330. -- Abstract: MicroRNAs are small non-coding RNA molecules that play important roles in the multistep process of colorectal carcinoma (CRC) development. However, the miRNA–mRNA regulatory network is far from being fully understood. The objective of this study was to investigate the expression and the biological roles of miR-330 in colorectal cancer cells. Cdc42, one of the best characterized members of the Rho GTPase family, was found to be up-regulated in several types of human tumors including CRC and has been implicated in cancer initiation and progression. In the present study, we identified miR-330, as a potential regulator of Cdc42, was found to be inversely correlated with Cdc42 expression in colorectal cancer cell lines. Ectopic expression of miR-330 down-regulated Cdc42 expression at both protein and mRNA level, mimicked the effect of Cdc42 knockdown in inhibiting proliferation, inducing G1 cell cycle arrest and apoptosis of the colorectal cancer cells, whereas restoration of Cdc42 could partially attenuate the effects of miR-330. In addition, elevated expression of miR-330 could suppress the immediate downstream effectors of Cdc42 and inhibit the growth of colorectal cancer cells in vivo. To sum up, our results establish a role of miR-330 in negatively regulating Cdc42 expression and colorectal cancer cell proliferation. They suggest that manipulating the expression level of Cdc42 by miR-330 has the potential to influence colorectal cancer progression

  5. Long non-coding RNA ANRIL is up-regulated in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic pathway

    International Nuclear Information System (INIS)

    Zhu, Hongxue; Li, Xuechao; Song, Yarong; Zhang, Peng; Xiao, Yajun; Xing, Yifei

    2015-01-01

    Antisense non-coding RNA in the INK4 locus (ANRIL) is a member of long non-coding RNAs and has been reported to be dysregulated in several human cancers. However, the role of ANRIL in bladder cancer remains unclear. This present study aimed to investigate whether and how ANRIL involved in bladder cancer. Our results showed up-regulation of ANRIL in bladder cancer tissues versus the corresponding adjacent non-tumor tissues. To explore the specific mechanisms, ANRIL was silenced by small interfering RNA or short hairpin RNA transfection in human bladder cancer T24 and EJ cells. Knockdown of ANRIL repressed cell proliferation and increased cell apoptosis, along with decreased expression of Bcl-2 and increased expressions of Bax, cytoplasmic cytochrome c and Smac and cleaved caspase-9, caspase-3 and PARP. However, no change of cleaved caspase-8 level was observed. Furthermore, in vivo experiment confirmed that knockdown of ANRIL inhibited tumorigenic ability of EJ cells in nude mice. Meanwhile, in accordance with in vitro study, knockdown of ANRIL inhibited expression of Bcl-2 and up-regulated expressions of Bax and cleaved caspase-9, but did not affect cleaved caspase-8 level. In conclusion, we first report that ANRIL possibly serves as an oncogene in bladder cancer and regulates bladder cancer cell proliferation and apoptosis through the intrinsic apoptosis pathway. - Highlights: • We first report the role of ANRIL in bladder cancer. • ANRIL is obviously up-regulated in bladder cancer tissues. • ANRIL regulates bladder cancer cell proliferation and cell apoptosis through the intrinsic pathway.

  6. Fibrocytes: A Novel Stromal Cells to Regulate Resistance to Anti-Angiogenic Therapy and Cancer Progression.

    Science.gov (United States)

    Goto, Hisatsugu; Nishioka, Yasuhiko

    2017-12-29

    An adequate blood supply is essential for cancer cells to survive and grow; thus, the concept of inhibiting tumor angiogenesis has been applied to cancer therapy, and several drugs are already in clinical use. It has been shown that treatment with those anti-angiogenic drugs improved the response rate and prolonged the survival of patients with various types of cancer; however, it is also true that the effect was mostly limited. Currently, the disappointing clinical results are explained by the existence of intrinsic or acquired resistance to the therapy mediated by both tumor cells and stromal cells. This article reviews the mechanisms of resistance mediated by stromal cells such as endothelial cells, pericytes, fibroblasts and myeloid cells, with an emphasis on fibrocytes, which were recently identified as the cell type responsible for regulating acquired resistance to anti-angiogenic therapy. In addition, the other emerging role of fibrocytes as mediator-producing cells in tumor progression is discussed.

  7. Down-regulating overexpressed human Lon in cervical cancer suppresses cell proliferation and bioenergetics.

    Directory of Open Access Journals (Sweden)

    Xiaobo Nie

    Full Text Available The human mitochondrial ATP-dependent Lon protease functions in regulating the metabolism and quality control of proteins and mitochondrial DNA (mtDNA. However, the role of Lon in cancer is not well understood. Therefore, this study was undertaken to investigate the importance of Lon in cervical cancer cells from patients and in established cell lines. Microarray analysis from 30 cancer and 10 normal cervical tissues were analyzed by immunohistochemistry for Lon protein levels. The expression of Lon was also examined by immunoblotting 16 fresh cervical cancer tissues and their respective non-tumor cervical tissues. In all cases, Lon expression was significantly elevated in cervical carcinomas as compared to normal tissues. Augmented Lon expression in tissue microarrays did not vary between age, tumor-node-metastasis grades, or lymph node metastasis. Knocking down Lon in HeLa cervical cancer cells by lentivrial transduction resulted in a substantial decrease in both mRNA and protein levels. Such down-regulation of Lon expression significantly blocked HeLa cell proliferation. In addition, knocking down Lon resulted in decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using the Seahorse XF24 extracellular flux analyzer. Together, these data demonstrate that Lon plays a potential role in the oncogenesis of cervical cancer, and may be a useful biomarker and target in the treatment of cervical cancer. Lon; immunohistochemistry; cervical cancer; cell proliferation; cellular bioenergetics.

  8. Axl receptor tyrosine kinase is up-regulated in metformin resistant prostate cancer cells

    Science.gov (United States)

    Bansal, Nitu; Mishra, Prasun J.; Stein, Mark; DiPaola, Robert S.; Bertino, Joseph R.

    2015-01-01

    Recent epidemiological studies showed that metformin, a widely used anti-diabetic drug might prevent certain cancers. Metformin also has an anti-proliferative effect in preclinical studies of both hematologic malignancies as well as solid cancers and clinical studies testing metformin as an anti-cancer drug are in progress. However, all cancer types do not respond to metformin with the same effectiveness or acquire resistance. To understand the mechanism of acquired resistance and possibly its mechanism of action as an anti-proliferative agent, we developed metformin resistant LNCaP prostate cancer cells. Metformin resistant LNCaP cells had an increased proliferation rate, increased migration and invasion ability as compared to the parental cells, and expressed markers of epithelial-mesenchymal transition (EMT). A detailed gene expression microarray comparing the resistant cells to the wild type cells revealed that Edil2, Ereg, Axl, Anax2, CD44 and Anax3 were the top up-regulated genes and calbindin 2 and TPTE (transmembrane phosphatase with tensin homology) and IGF1R were down regulated. We focused on Axl, a receptor tyrosine kinase that has been shown to be up regulated in several drug resistance cancers. Here, we show that the metformin resistant cell line as well as castrate resistant cell lines that over express Axl were more resistant to metformin, as well as to taxotere compared to androgen sensitive LNCaP and CWR22 cells that do not overexpress Axl. Forced overexpression of Axl in LNCaP cells decreased metformin and taxotere sensitivity and knockdown of Axl in resistant cells increased sensitivity to these drugs. Inhibition of Axl activity by R428, a small molecule Axl kinase inhibitor, sensitized metformin resistant cells that overexpressed Axl to metformin. Inhibitors of Axl may enhance tumor responses to metformin and other chemotherapy in cancers that over express Axl. PMID:26036314

  9. Chromatin remodeling regulates catalase expression during cancer cells adaptation to chronic oxidative stress.

    Science.gov (United States)

    Glorieux, Christophe; Sandoval, Juan Marcelo; Fattaccioli, Antoine; Dejeans, Nicolas; Garbe, James C; Dieu, Marc; Verrax, Julien; Renard, Patricia; Huang, Peng; Calderon, Pedro Buc

    2016-10-01

    Regulation of ROS metabolism plays a major role in cellular adaptation to oxidative stress in cancer cells, but the molecular mechanism that regulates catalase, a key antioxidant enzyme responsible for conversion of hydrogen peroxide to water and oxygen, remains to be elucidated. Therefore, we investigated the transcriptional regulatory mechanism controlling catalase expression in three human mammary cell lines: the normal mammary epithelial 250MK primary cells, the breast adenocarcinoma MCF-7 cells and an experimental model of MCF-7 cells resistant against oxidative stress resulting from chronic exposure to H 2 O 2 (Resox), in which catalase was overexpressed. Here we identify a novel promoter region responsible for the regulation of catalase expression at -1518/-1226 locus and the key molecules that interact with this promoter and affect catalase transcription. We show that the AP-1 family member JunB and retinoic acid receptor alpha (RARα) mediate catalase transcriptional activation and repression, respectively, by controlling chromatin remodeling through a histone deacetylases-dependent mechanism. This regulatory mechanism plays an important role in redox adaptation to chronic exposure to H 2 O 2 in breast cancer cells. Our study suggests that cancer adaptation to oxidative stress may be regulated by transcriptional factors through chromatin remodeling, and reveals a potential new mechanism to target cancer cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Cancers take their Toll--the function and regulation of Toll-like receptors in cancer cells

    DEFF Research Database (Denmark)

    Chen, R; Alvero, A B; Silasi, D-A

    2008-01-01

    proliferation, would also be key factors in regulating and enhancing cancer progression. The TLR pathways, which play a critical role in tissue repair, are also key regulators in cancer progression as well as chemoresistance. TLRs serve as cell surface sensors that can initiate pathways leading to proliferation......Cancer could be deemed as an abnormal and uncontrolled tissue repair process. Therefore, it would not be surprising that factors that function in the tissue repair process, such as cytokines, chemokines, growth factors and Toll-like receptor (TLR) ligands, as well as growth signals for compensatory...... and chemoresistance; as well as mediators that are able to regulate the infiltrating immune cells to provide further support for cancer progression....

  11. Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer

    Directory of Open Access Journals (Sweden)

    Justine H. Dewald

    2016-11-01

    Full Text Available Glycosylation is one of the most important modifications of proteins and lipids, and cell surface glycoconjugates are thought to play important roles in a variety of biological functions including cell-cell and cell-substrate interactions, bacterial adhesion, cell immunogenicity and cell signaling. Alterations of glycosylation are observed in number of diseases such as cancer and chronic inflammation. In that context, pro-inflammatory cytokines have been shown to modulate cell surface glycosylation by regulating the expression of glycosyltransferases involved in the biosynthesis of carbohydrate chains. These changes in cell surface glycosylation are also known to regulate cell signaling and could contribute to disease pathogenesis. This review summarizes our current knowledge of the glycosylation changes induced by pro-inflammatory cytokines, with a particular focus on cancer and cystic fibrosis, and their consequences on cell interactions and signaling.

  12. Analysis of HP1α regulation in human breast cancer cells

    DEFF Research Database (Denmark)

    Thomsen, Rune; Christensen, Dennis B; Rosborg, Sanne

    2011-01-01

    The three mammalian HP1 proteins, HP1α/CBX5, HP1β/CBX1, and HPγ/CBX3, are involved in chromatin packing and gene regulation. The HP1α protein is down-regulated in invasive compared to non-invasive breast cancer cells and HP1α is a suppressor of cell migration and invasion. In this report, we...... examined the background for HP1α protein down-regulation in invasive breast cancer cells. We identified a strict correlation between HP1α down-regulation at the protein level and the mRNA level. The HP1α mRNA down-regulation in invasive cancer cells was not caused by mRNA destabilization. Chromatin...... immunoprecipitation analysis of the HP1α gene showed a decrease in the histone mark for transcriptional activity H3-K36 tri-methylation and RNA polymerase II in invasive breast cancer cells which correlated with a decreased abundance of basal transcription factors at the HP1α promoter. E2F transcription factors...

  13. Down-regulation of LRP1B in colon cancer promoted the growth and migration of cancer cells.

    Science.gov (United States)

    Wang, Zhiqiang; Sun, Peng; Gao, Chun; Chen, Ji; Li, Jun; Chen, Zhonghao; Xu, Ming; Shao, Jun; Zhang, Yunpeng; Xie, Jiang

    2017-08-01

    Aberrant activation of beta-catenin/TCF signaling is one of the hallmarks of colon cancer. It is of great interest to study the mechanism for the regulation of beta-catenin/TCF signaling. In this study, it was found that LRP1B was down-regulated in colon cancer tissues and inhibited the growth, migration and metastasis of colon cancer cells. The molecular mechanism study revealed that LRP1B interacted with DVL2, inhibited the interaction between DVL2 and Axin, and negatively regulated beta-catenin/TCF signaling. Taken together, our study demonstrated the suppressive roles of LRP1B in the progression of colon cancer, implicating that restoring the function of LRP1B would be a promising strategy for the treatment of colon cancer. Copyright © 2017. Published by Elsevier Inc.

  14. Sortilin regulates progranulin action in castration-resistant prostate cancer cells.

    Science.gov (United States)

    Tanimoto, Ryuta; Morcavallo, Alaide; Terracciano, Mario; Xu, Shi-Qiong; Stefanello, Manuela; Buraschi, Simone; Lu, Kuojung G; Bagley, Demetrius H; Gomella, Leonard G; Scotlandi, Katia; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-01-01

    The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.

  15. Protein Kinase D Enzymes as Regulators of EMT and Cancer Cell Invasion

    Directory of Open Access Journals (Sweden)

    Nisha Durand

    2016-02-01

    Full Text Available The Protein Kinase D (PKD isoforms PKD1, PKD2, and PKD3 are effectors of the novel Protein Kinase Cs (nPKCs and diacylglycerol (DAG. PKDs impact diverse biological processes like protein transport, cell migration, proliferation, epithelial to mesenchymal transition (EMT and apoptosis. PKDs however, have distinct effects on these functions. While PKD1 blocks EMT and cell migration, PKD2 and PKD3 tend to drive both processes. Given the importance of EMT and cell migration to the initiation and progression of various malignancies, abnormal expression of PKDs has been reported in multiple types of cancers, including breast, pancreatic and prostate cancer. In this review, we discuss how EMT and cell migration are regulated by PKD isoforms and the significance of this regulation in the context of cancer development.

  16. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth

    OpenAIRE

    Haricharan, Svasti; Brown, Powel

    2015-01-01

    This study fundamentally alters our understanding of how TLR4 drives breast cancer. Although TLR4 was previously considered a tumor promoter, we demonstrate a complex, TP53-dependent role for TLR4 in regulating tumor growth. TP53 is a tumor suppressor commonly inactivated across cancer types. In TP53 wild-type cancer cells, TLR4 activation causes secretion of IFN-γ into the microenvironment, resulting in induction of p21 and inhibition of cell growth. Conversely, TLR4 activation in TP53 mutan...

  17. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.

    Science.gov (United States)

    Liu, Yung-Chiang; Lee, I-Chi; Chen, Pin-Yuan

    2018-05-01

    Glioblastoma (GBM) is the most malignant primary brain tumor and contains tumorigenic cancer stem cells (CSCs), which support the progression of tumor growth. The selection of CSCs and facilitation of the brain tumor niches may assist the development of novel therapeutics for GBM. Herein, hydrogel materials composed of agarose and hydroxypropyl methyl cellulose (HMC) in different concentrations were established and compared to emulate brain tumor niches and CSC microenvironments within a label-free system. Human GBM cell line, U-87 MG, was cultured on a series of HMC-agarose based culture system. Cell aggregation and spheroids formation were investigated after 4 days of culture, and 2.5% HMC-agarose based culture system demonstrated the largest spheroids number and size. Moreover, CD133 marker expression of GBM cells after 6 days of culture in 2.5% HMC-agarose based culture system was 60%, relatively higher than the control group at only 15%. Additionally, cells on 2.5% HMC-agarose based culture system show the highest chemoresistance, even at the high dose of 500 µM temozolomide for 72 h, the live cell ratio was still > 80%. Furthermore, the results also indicate that the expression of ABCG2 gene was up-regulated after culture in 2.5% HMC-agarose based culture system. Therefore, our results demonstrated that biomimetic brain tumor microenvironment may regulate GBM cells towards the CSC phenotype and expression of CSC characteristics. The microenvironment selection and spheroids formation in HMC-agarose based culture system may provide a label-free CSC selection strategy and drug testing model for future biomedical applications.

  18. Withaferin A and sulforaphane regulate breast cancer cell cycle progression through epigenetic mechanisms.

    Science.gov (United States)

    Royston, Kendra J; Paul, Bidisha; Nozell, Susan; Rajbhandari, Rajani; Tollefsbol, Trygve O

    2018-07-01

    Little is known about the effects of combinatorial dietary compounds on the regulation of epigenetic mechanisms involved in breast cancer prevention. The human diet consists of a multitude of components, and there is a need to elucidate how certain compounds interact in collaboration. Withaferin A (WA), found in the Indian winter cherry and documented as a DNA methyltransferase (DNMT) inhibitor, and sulforaphane (SFN), a well-known histone deacetylase (HDAC) inhibitor found in cruciferous vegetables, are two epigenetic modifying compounds that have only recently been studied in conjunction. The use of DNMT and HDAC inhibitors to reverse the malignant expression of certain genes in breast cancer has shown considerable promise. Previously, we found that SFN + WA synergistically promote breast cancer cell death. Herein, we determined that these compounds inhibit cell cycle progression from S to G2 phase in MDA-MB-231 and MCF-7 breast cancer. Furthermore, we demonstrate that this unique combination of epigenetic modifying compounds down-regulates the levels of Cyclin D1 and CDK4, and pRB; conversely, the levels of E2F mRNA and tumor suppressor p21 are increased independently of p53. We find these events coincide with an increase in unrestricted histone methylation. We propose SFN + WA-induced breast cancer cell death is attributed, in part, to epigenetic modifications that result in the modulated expression of key genes responsible for the regulation of cancer cell senescence. Copyright © 2018 Elsevier Inc. All rights reserved.

  19. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul [College of Medicine, Seoul National Univ., Seoul (Korea, Republic of)

    2002-04-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ({sup 18}F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes.

  20. Decreased glucose uptake by hyperglycemia is regulated by different mechanisms in human cancer cells and monocytes

    International Nuclear Information System (INIS)

    Kim, Chae Kyun; Chung, June Key; Lee, Yong Jin; Hong, Mee Kyoung; Jeong, Jae Min; Lee, Dong Soo; Lee, Myung Chul

    2002-01-01

    To clarify the difference in glucose uptake between human cancer cells and monocytes, we studied ( 18 F) fluorodeoxyglucose (FDG) uptake in three human colon cancer cell lines (SNU-C2A, SNU-C4, SNU-C5), one human lung cancer cell line (NCI-H522), and human peripheral blood monocytes. The FDG uptake of both cancer cells and monocytes was increased in glucose-free medium, but decreased in the medium containing 16.7 mM glucose (hyperglycemic). The level of Glut1 mRNA decreased in human colon cancer cells and NCI-H522 under hyperglycemic condition. Glut1 protein expression was also decreased in the four human cancer cell lines under hyperglycemic condition, whereas it was consistently undetectable in monocytes. SNU-C2A, SNU-C4 and NCI-H522 showed a similar level of hexokinase activity (7.5-10.8 mU/mg), while SNU-C5 and moncytes showed lower range of hexokinase activity (4.3-6.5 mU/mg). These data suggest that glucose uptake is regulated by different mechanisms in human cancer cells and monocytes

  1. Matrix rigidity regulates cancer cell growth by modulating cellular metabolism and protein synthesis.

    Directory of Open Access Journals (Sweden)

    Robert W Tilghman

    Full Text Available Tumor cells in vivo encounter diverse types of microenvironments both at the site of the primary tumor and at sites of distant metastases. Understanding how the various mechanical properties of these microenvironments affect the biology of tumor cells during disease progression is critical in identifying molecular targets for cancer therapy.This study uses flexible polyacrylamide gels as substrates for cell growth in conjunction with a novel proteomic approach to identify the properties of rigidity-dependent cancer cell lines that contribute to their differential growth on soft and rigid substrates. Compared to cells growing on more rigid/stiff substrates (>10,000 Pa, cells on soft substrates (150-300 Pa exhibited a longer cell cycle, due predominantly to an extension of the G1 phase of the cell cycle, and were metabolically less active, showing decreased levels of intracellular ATP and a marked reduction in protein synthesis. Using stable isotope labeling of amino acids in culture (SILAC and mass spectrometry, we measured the rates of protein synthesis of over 1200 cellular proteins under growth conditions on soft and rigid/stiff substrates. We identified cellular proteins whose syntheses were either preferentially inhibited or preserved on soft matrices. The former category included proteins that regulate cytoskeletal structures (e.g., tubulins and glycolysis (e.g., phosphofructokinase-1, whereas the latter category included proteins that regulate key metabolic pathways required for survival, e.g., nicotinamide phosphoribosyltransferase, a regulator of the NAD salvage pathway.The cellular properties of rigidity-dependent cancer cells growing on soft matrices are reminiscent of the properties of dormant cancer cells, e.g., slow growth rate and reduced metabolism. We suggest that the use of relatively soft gels as cell culture substrates would allow molecular pathways to be studied under conditions that reflect the different mechanical

  2. SFMBT2 (Scm-like with four mbt domains 2) negatively regulates cell migration and invasion in prostate cancer cells.

    Science.gov (United States)

    Gwak, Jungsug; Shin, Jee Yoon; Lee, Kwanghyun; Hong, Soon Ki; Oh, Sangtaek; Goh, Sung-Ho; Kim, Won Sun; Ju, Bong Gun

    2016-07-26

    Metastatic prostate cancer is the leading cause of morbidity and mortality in men. In this study, we found that expression level of SFMBT2 is altered during prostate cancer progression and has been associated with the migration and invasion of prostate cancer cells. The expression level of SFMBT2 is high in poorly metastatic prostate cancer cells compared to highly metastatic prostate cancer cells. We also found that SFMBT2 knockdown elevates MMP-2, MMP-3, MMP-9, and MMP-26 expression, leading to increased cell migration and invasion in LNCaP and VCaP cells. SFMBT2 interacts with YY1, RNF2, N-CoR and HDAC1/3, as well as repressive histone marks such as H3K9me2, H4K20me2, and H2AK119Ub which are associated with transcriptional repression. In addition, SFMBT2 knockdown decreased KAI1 gene expression through up-regulation of N-CoR gene expression. Expression of SFMBT2 in prostate cancer was strongly associated with clinicopathological features. Patients having higher Gleason score (≥ 8) had substantially lower SFMBT2 expression than patients with lower Gleason score. Moreover, tail vein or intraprostatic injection of SFMBT2 knockdown LNCaP cells induced metastasis. Taken together, our findings suggest that regulation of SFMBT2 may provide a new therapeutic strategy to control prostate cancer metastasis as well as being a potential biomarker of metastatic prostate cancer.

  3. MicroRNA-451 sensitizes lung cancer cells to cisplatin through regulation of Mcl-1.

    Science.gov (United States)

    Cheng, Dezhi; Xu, Yi; Sun, Changzheng; He, Zhifeng

    2016-12-01

    As one of the most widely used chemotherapy drugs for lung cancer, chemoresistance of cisplatin (DPP) is one of the major hindrances in treatment of this malignancy. The microRNAs (miRNAs) have been identified to mediate chemotherapy drug resistance. MiR-451 as a tumor suppressor has been evaluated its potential effect on the sensitivity of cancer cells to DDP. However, the role of miR-451 in regulatory mechanism of chemosensitivity in lung cancer cells is still largely unknown. In this study, we first constructed a cisplatin-resistant A549 cell line (A549/DPP) accompanied with a decreased expression of miR-451 and an increased expression of Mcl-1in the drug resistant cells compared with the parental cells. Exogenous expression of miR-451 level in A549/DPP was found to sensitize their reaction to the treatment of cisplatin, which coincides with reduced expression of Mcl-1. Interestingly, Mcl-1 knockdown in A549/DPP cells increased the chemosensitivity to DPP, suggesting the dependence of Mcl-1 regulation in miR-451 activity. Moreover, miR-451 can restore cisplatin treatment response in cisplatin-resistant xenografts in vivo, while Mcl-1 protein levels were decreased. Thus, these findings provided that in lung cancer cells, tumor suppressor miR-451 enhanced DPP sensitivity via regulation of Mcl-1 expression, which could be served as a novel therapeutic target for the treatment of chemotherapy resistant in lung cancer.

  4. Fluvastatin mediated breast cancer cell death: a proteomic approach to identify differentially regulated proteins in MDA-MB-231 cells.

    Directory of Open Access Journals (Sweden)

    Anantha Koteswararao Kanugula

    Full Text Available Statins are increasingly being recognized as anti-cancer agents against various cancers including breast cancer. To understand the molecular pathways targeted by fluvastatin and its differential sensitivity against metastatic breast cancer cells, we analyzed protein alterations in MDA-MB-231 cells treated with fluvastatin using 2-DE in combination with LC-MS/MS. Results revealed dys-regulation of 39 protein spots corresponding to 35 different proteins. To determine the relevance of altered protein profiles with breast cancer cell death, we mapped these proteins to major pathways involved in the regulation of cell-to-cell signaling and interaction, cell cycle, Rho GDI and proteasomal pathways using IPA analysis. Highly interconnected sub networks showed that vimentin and ERK1/2 proteins play a central role in controlling the expression of altered proteins. Fluvastatin treatment caused proteolysis of vimentin, a marker of epithelial to mesenchymal transition. This effect of fluvastatin was reversed in the presence of mevalonate, a downstream product of HMG-CoA and caspase-3 inhibitor. Interestingly, fluvastatin neither caused an appreciable cell death nor did modulate vimentin expression in normal mammary epithelial cells. In conclusion, fluvastatin alters levels of cytoskeletal proteins, primarily targeting vimentin through increased caspase-3- mediated proteolysis, thereby suggesting a role for vimentin in statin-induced breast cancer cell death.

  5. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    International Nuclear Information System (INIS)

    Hwang, Melissa; Peddibhotla, Sirisha; McHenry, Peter; Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy

    2012-01-01

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis

  6. P190B RhoGAP Regulates Chromosome Segregation in Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Melissa [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States); Peddibhotla, Sirisha [Department of Molecular and Human Genetics, Baylor College of Medicine, John P. McGovern Campus, NABS-0250, Houston, TX 77030 (United States); McHenry, Peter [Department of Biology, Southwestern Adventist University, 100 W. Hillcrest, Keene, TX 76059 (United States); Chang, Peggy; Yochum, Zachary; Park, Ko Un; Sears, James Cooper; Vargo-Gogola, Tracy, E-mail: vargo-gogola.1@nd.edu [Department of Biochemistry and Molecular Biology and the Indiana University Simon Cancer Center, Indiana University School of Medicine, 1234 Notre Dame Avenue, South Bend, IN 46617 (United States)

    2012-04-25

    Rho GTPases are overexpressed and hyperactivated in many cancers, including breast cancer. Rho proteins, as well as their regulators and effectors, have been implicated in mitosis, and their altered expression promotes mitotic defects and aneuploidy. Previously, we demonstrated that p190B Rho GTPase activating protein (RhoGAP) deficiency inhibits ErbB2-induced mammary tumor formation in mice. Here we describe a novel role for p190B as a regulator of mitosis. We found that p190B localized to centrosomes during interphase and mitosis, and that it is differentially phosphorylated during mitosis. Knockdown of p190B expression in MCF-7 and Hela cells increased the incidence of aberrant microtubule-kinetochore attachments at metaphase, lagging chromosomes at anaphase, and micronucleation, all of which are indicative of aneuploidy. Cell cycle analysis of p190B deficient MCF-7 cells revealed a significant increase in apoptotic cells with a concomitant decrease in cells in G1 and S phase, suggesting that p190B deficient cells die at the G1 to S transition. Chemical inhibition of the Rac GTPase during mitosis reduced the incidence of lagging chromosomes in p190B knockdown cells to levels detected in control cells, suggesting that aberrant Rac activity in the absence of p190B promotes chromosome segregation defects. Taken together, these data suggest that p190B regulates chromosome segregation and apoptosis in cancer cells. We propose that disruption of mitosis may be one mechanism by which p190B deficiency inhibits tumorigenesis.

  7. Identification of NDRG1-regulated genes associated with invasive potential in cervical and ovarian cancer cells

    International Nuclear Information System (INIS)

    Zhao, Gang; Chen, Jiawei; Deng, Yanqiu; Gao, Feng; Zhu, Jiwei; Feng, Zhenzhong; Lv, Xiuhong; Zhao, Zheng

    2011-01-01

    Highlights: → NDRG1 was knockdown in cervical and ovarian cancer cell lines by shRNA technology. → NDRG1 knockdown resulted in increased cell invasion activities. → Ninety-six common deregulated genes in both cell lines were identified by cDNA microarray. → Eleven common NDRG1-regulated genes might enhance cell invasive activity. → Regulation of invasion by NDRG1 is an indirect and complicated process. -- Abstract: N-myc downstream regulated gene 1 (NDRG1) is an important gene regulating tumor invasion. In this study, shRNA technology was used to suppress NDRG1 expression in CaSki (a cervical cancer cell line) and HO-8910PM (an ovarian cancer cell line). In vitro assays showed that NDRG1 knockdown enhanced tumor cell adhesion, migration and invasion activities without affecting cell proliferation. cDNA microarray analysis revealed 96 deregulated genes with more than 2-fold changes in both cell lines after NDRG1 knockdown. Ten common upregulated genes (LPXN, DDR2, COL6A1, IL6, IL8, FYN, PTP4A3, PAPPA, ETV5 and CYGB) and one common downregulated gene (CLCA2) were considered to enhance tumor cell invasive activity. BisoGenet network analysis indicated that NDRG1 regulated these invasion effector genes/proteins in an indirect manner. Moreover, NDRG1 knockdown also reduced pro-invasion genes expression such as MMP7, TMPRSS4 and CTSK. These results suggest that regulation of invasion and metastasis by NDRG1 is a highly complicated process.

  8. TLR4 has a TP53-dependent dual role in regulating breast cancer cell growth.

    Science.gov (United States)

    Haricharan, Svasti; Brown, Powel

    2015-06-23

    Breast cancer is a leading cause of cancer-related death, and it is important to understand pathways that drive the disease to devise effective therapeutic strategies. Our results show that Toll-like receptor 4 (TLR4) drives breast cancer cell growth differentially based on the presence of TP53, a tumor suppressor. TP53 is mutationally inactivated in most types of cancer and is mutated in 30-50% of diagnosed breast tumors. We demonstrate that TLR4 activation inhibits growth of TP53 wild-type cells, but promotes growth of TP53 mutant breast cancer cells by regulating proliferation. This differential effect is mediated by changes in tumor cell cytokine secretion. Whereas TLR4 activation in TP53 mutant breast cancer cells increases secretion of progrowth cytokines, TLR4 activation in TP53 wild-type breast cancer cells increases type I IFN (IFN-γ) secretion, which is both necessary and sufficient for mediating TLR4-induced growth inhibition. This study identifies a novel dichotomous role for TLR4 as a growth regulator and a modulator of tumor microenvironment in breast tumors. These results have translational relevance, demonstrating that TP53 mutant breast tumor growth can be suppressed by pharmacologic TLR4 inhibition, whereas TLR4 inhibitors may in fact promote growth of TP53 wild-type tumors. Furthermore, using data generated by The Cancer Genome Atlas consortium, we demonstrate that the effect of TP53 mutational status on TLR4 activity may extend to ovarian, colon, and lung cancers, among others, suggesting that the viability of TLR4 as a therapeutic target depends on TP53 status in many different tumor types.

  9. YAP1 regulates prostate cancer stem cell-like characteristics to promote castration resistant growth

    DEFF Research Database (Denmark)

    Jiang, Ning; Ke, Binghu; Hjort-Jensen, Kim

    2017-01-01

    Castration resistant prostate cancer (CRPC) is a stage of relapse that arises after various forms of androgen ablation therapy (ADT) and causes significant morbidity and mortality. However, the mechanism underlying progression to CRPC remains poorly understood. Here, we report that YAP1, which...... is negatively regulated by AR, influences prostate cancer (PCa) cell self-renewal and CRPC development. Specifically, we found that AR directly regulates the methylation of YAP1 gene promoter via the formation of a complex with Polycomb group protein EZH2 and DNMT3a. In normal conditions, AR recruits EZH2......-differentiation of PCa cells to stem/progenitor-like cells (PCSC), which potentially contribute to disease recurrence. Finally, the knock down of YAP1 expression or the inhibition of YAP1 function by Verteporfin in TRAMP prostate cancer mice significantly suppresses tumor recurrence following castration. In conclusion...

  10. Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer.

    Science.gov (United States)

    Wang, Xiao-Feng; Zhang, Xiao-Wei; Hua, Rui-Xi; Du, Yi-Qun; Huang, Ming-Zhu; Liu, Yong; Cheng, Yu Fang; Guo, Wei-Jian

    2016-09-27

    Mel-18, a polycomb group protein, has been reported to act as a tumor suppressor and be down-regulated in several human cancers including gastric cancer. It was also found that Mel-18 negatively regulates self-renewal of hematopoietic stem cells and breast cancer stem cells (CSCs). This study aimed to clarify its role in gastric CSCs and explore the mechanisms. We found that low-expression of Mel-18 was correlated with poor prognosis and negatively correlated with overexpression of stem cell markers Oct4, Sox2, and Gli1 in 101 gastric cancer tissues. Mel-18 was down-regulated in cultured spheroid cells, which possess CSCs, and overexpression of Mel-18 inhibits cells sphere-forming ability and tumor growth in vivo. Besides, Mel-18 was lower-expressed in ovary metastatic lesions compared with that in primary lesions of gastric cancer, and Mel-18 overexpression inhibited the migration ability of gastric cancer cells. Interestingly, overexpression of Mel-18 resulted in down-regulation of miR-21 in gastric cancer cells and the expression of Mel-18 was negatively correlated with the expression of miR-21 in gastric cancer tissues. Furthermore, miR-21 overexpression partially restored sphere-forming ability, migration potential and chemo-resistance in Mel-18 overexpressing gastric cancer cells. These results suggests Mel-18 negatively regulates stem cell-like properties through downregulation of miR-21 in gastric cancer cells.

  11. Reciprocal positive regulation between TRPV6 and NUMB in PTEN-deficient prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sung-Young; Hong, Chansik; Wie, Jinhong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Kim, Euiyong [Department of Physiology, College of Medicine, Inje University, Busan 614-735 (Korea, Republic of); Kim, Byung Joo [Division of Longevity and Biofunctional Medicine, Pusan National University School of Korean Medicine, Yangsan 626-870 (Korea, Republic of); Ha, Kotdaji [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Cho, Nam-Hyuk; Kim, In-Gyu [Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Jeon, Ju-Hong [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); So, Insuk, E-mail: insuk@snu.ac.kr [Department of Physiology, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of)

    2014-04-25

    Highlights: • TRPV6 interacts with tumor suppressor proteins. • Numb has a selective effect on TRPV6, depending on the prostate cancer cell line. • PTEN is a novel regulator of TRPV6–Numb complex. - Abstract: Calcium acts as a second messenger and plays a crucial role in signaling pathways involved in cell proliferation. Recently, calcium channels related to calcium influx into the cytosol of epithelial cells have attracted attention as a cancer therapy target. Of these calcium channels, TRPV6 is overexpressed in prostate cancer and is considered an important molecule in the process of metastasis. However, its exact role and mechanism is unclear. NUMB, well-known tumor suppressor gene, is a novel interacting partner of TRPV6. We show that NUMB and TRPV6 have a reciprocal positive regulatory relationship in PC-3 cells. We repeated this experiment in two other prostate cancer cell lines, DU145 and LNCaP. Interestingly, there were no significant changes in TRPV6 expression following NUMB knockdown in DU145. We revealed that the presence or absence of PTEN was the cause of NUMB–TRPV6 function. Loss of PTEN caused a positive correlation of TRPV6–NUMB expression. Collectively, we determined that PTEN is a novel interacting partner of TRPV6 and NUMB. These results demonstrated a novel relationship of NUMB–TRPV6 in prostate cancer cells, and show that PTEN is a novel regulator of this complex.

  12. PCTAIRE1 phosphorylates p27 and regulates mitosis in cancer cells.

    Science.gov (United States)

    Yanagi, Teruki; Krajewska, Maryla; Matsuzawa, Shu-ichi; Reed, John C

    2014-10-15

    PCTAIRE1 is distant relative of the cyclin-dependent kinase family that has been implicated in spermatogenesis and neuronal development, but it has not been studied in cancer. Here, we report that PCTAIRE1 is expressed in prostate, breast, and cervical cancer cells, where its RNAi-mediated silencing causes growth inhibition with aberrant mitosis due to defects in centrosome dynamics. PCTAIRE1 was not similarly involved in proliferation of nontransformed cells, including diploid human IMR-90 fibroblasts. Through yeast two-hybrid screening, we identified tumor suppressor p27 as a PCTAIRE1 interactor. In vitro kinase assays showed PCTAIRE1 phosphorylates p27 at Ser10. PCTAIRE1 silencing modulated Ser10 phosphorylation on p27 and led to its accumulation in cancer cells but not in nontransformed cells. In a mouse xenograft model of PPC1 prostate cancer, conditional silencing of PCTAIRE1 restored p27 protein expression and suppressed tumor growth. Mechanistic studies in HeLa cells showed that PCTAIRE1 phosphorylates p27 during the S and M phases of the cell cycle. Notably, p27 silencing was sufficient to rescue cells from mitotic arrest caused by PCTAIRE1 silencing. Clinically, PCTAIRE1 was highly expressed in primary breast and prostate tumors compared with adjacent normal epithelial tissues. Together our findings reveal an unexpected role for PCTAIRE1 in regulating p27 stability, mitosis, and tumor growth, suggesting PCTAIRE1 as a candidate cancer therapeutic target. ©2014 American Association for Cancer Research.

  13. Matrix metalloproteinases in stem cell regulation and cancer

    OpenAIRE

    Kessenbrock, K; Wang, CY; Wang, CY; Werb, Z

    2014-01-01

    © 2015. Since Gross and Lapiere firstly discovered matrix metalloproteinases (MMPs) as important collagenolytic enzymes during amphibian tadpole morphogenesis in 1962, this intriguing family of extracellular proteinases has been implicated in various processes of developmental biology. However, the pathogenic roles of MMPs in human diseases such as cancer have also garnered widespread attention. The most straightforward explanation for their role in cancer is that MMPs, through extracellular ...

  14. CENPI is overexpressed in colorectal cancer and regulates cell migration and invasion.

    Science.gov (United States)

    Ding, Na; Li, Rongxin; Shi, Wenhao; He, Cui

    2018-06-21

    Centromere protein I (CENPI),an important member of centromere protein family, has been suggest to serve as a oncogene in breast cancer, but the clinical significance and biological function of CENPI in colorectal cancer (CRC) is still unclear. In our results, we found CENPI was overexpressed in CRC tissues and cells, and associated with clinical stage, tumor depth, lymph node metastasis, distant metastasis and differentiation in CRC patients. However, there was no significant association between CENPI protein expression and overall survival time in colon cancer patients and rectal cancer patients through analyzing TCGA survival data. Moreover, CENPI mRNA and protein were increased in metastatic lymph nodes compared with primary CRC tissues. Down-regulation of CENPI expression suppresses CRC cell migration, invasion and epithelial mesenchymal transition process. In conclusion, CENPI is overexpressed in CRC and functions as oncogene in modulating CRC cell migration, invasion and EMT process. Copyright © 2018. Published by Elsevier B.V.

  15. Csk Homologous Kinase, a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2010-08-31

    SH2 ) and SH3 domains and lacks the consensus tyrosine phosphorylation and myristylation sites found in Src family kinases . CHK has been shown to...0350 TITLE: Csk Homologous Kinase , a Potential Regulator of CXCR4-mediated Breast Cancer Cell Metastasis PRINCIPAL INVESTIGATOR: Byeong-Chel...1 AUG 2009 - 31 JUL 2010 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-09-1-0350 Csk Homologous Kinase , a Potential Regulator

  16. Role of ion channels in regulating Ca²⁺ homeostasis during the interplay between immune and cancer cells.

    Science.gov (United States)

    Bose, T; Cieślar-Pobuda, A; Wiechec, E

    2015-02-19

    Ion channels are abundantly expressed in both excitable and non-excitable cells, thereby regulating the Ca(2+) influx and downstream signaling pathways of physiological processes. The immune system is specialized in the process of cancer cell recognition and elimination, and is regulated by different ion channels. In comparison with the immune cells, ion channels behave differently in cancer cells by making the tumor cells more hyperpolarized and influence cancer cell proliferation and metastasis. Therefore, ion channels comprise an important therapeutic target in anti-cancer treatment. In this review, we discuss the implication of ion channels in regulation of Ca(2+) homeostasis during the crosstalk between immune and cancer cell as well as their role in cancer progression.

  17. Fatty acid synthase regulates the chemosensitivity of breast cancer cells to cisplatin-induced apoptosis.

    Science.gov (United States)

    Al-Bahlani, Shadia; Al-Lawati, Hanaa; Al-Adawi, Moza; Al-Abri, Nadia; Al-Dhahli, Buthaina; Al-Adawi, Kawther

    2017-06-01

    Fatty acid synthase (FASN) is a key enzyme in fat biosynthesis that is over-expressed in advanced breast cancer stages. Cisplatin (CDDP) is a platinum-based drug used in the treatment of certain types of this disease. Although it was shown that FASN inhibition induced apoptosis by enhancing the cytotoxicity of certain drugs in breast cancer, its role in regulating the chemosensitivity of different types of breast cancer cells to CDDP-induced apoptosis is not established yet. Therefore, two different breast cancer cell lines; triple negative breast cancer (TNBC; MDA-MB-231) and triple positive breast cancer (TPBC; BT-474) cells were used to examine such role. We show that TNBC cells had naturally less fat content than TPBC cells. Subsequently, the fat content increased in both cells when treated with Palmitate rather than Oleate, whereas both fatty acids produced apoptotic ultra-structural effects and attenuated FASN expression. However, Oleate increased FASN expression in TPBC cells. CDDP decreased FASN expression and increased apoptosis in TNBC cells. These effects were further enhanced by combining CDDP with fatty acids. We also illustrate that the inhibition of FASN by either siRNA or exogenous inhibitor decreased CDDP-induced apoptosis in TPBC cells suggesting its role as an apoptotic factor, while an opposite finding was observed in TNBC cells when siRNA and fatty acids were used, suggesting its role as a survival factor. To our knowledge, we are the first to demonstrate a dual role of FASN in CDDP-induced apoptosis in breast cancer cells and how it can modulate their chemosensitivity.

  18. Altered CXCR3 isoform expression regulates prostate cancer cell migration and invasion

    Directory of Open Access Journals (Sweden)

    Wu Qian

    2012-01-01

    Full Text Available Abstract Background Carcinoma cells must circumvent the normally suppressive signals to disseminate. While often considered 'stop' signals for adherent cells, CXCR3-binding chemokines have recently been correlated positively with cancer progression though the molecular basis remains unclear. Results Here, we examined the expression and function of two CXCR3 variants in human prostate cancer biopsies and cell lines. Globally, both CXCR3 mRNA and protein were elevated in localized and metastatic human cancer biopsies compared to normal. Additionally, CXCR3A mRNA level was upregulated while CXCR3B mRNA was downregulated in these prostate cancer specimens. In contrast to normal prostate epithelial cells (RWPE-1, CXCR3A was up to half the receptor in the invasive and metastatic DU-145 and PC-3 prostate cancer cells, but not in the localized LNCaP cells. Instead of inhibiting cell migration as in RWPE-1 cells, the CXCR3 ligands CXCL4/PF4 and CXCL10/IP10 promoted cell motility and invasiveness in both DU-145 and PC-3 cells via PLCβ3 and μ-calpain activation. CXCR3-mediated diminution of cell motility in RWPE-1 cells is likely a result of cAMP upregulation and m-calpain inhibition via CXCR3B signal transduction. Interestingly, overexpression of CXCR3B in DU-145 cells decreased cell movement and invasion. Conclusion These data suggest that the aberrant expression of CXCR3A and down-regulation of CXCR3B may switch a progression "stop" to a "go" signal to promote prostate tumor metastasis via stimulating cell migration and invasion.

  19. Up-regulated microRNA-143 in cancer stem cells differentiation promotes prostate cancer cells metastasis by modulating FNDC3B expression

    International Nuclear Information System (INIS)

    Fan, Xinlan; Chen, Xu; Deng, Weixi; Zhong, Guangzheng; Cai, Qingqing; Lin, Tianxin

    2013-01-01

    Metastatic prostate cancer is a leading cause of cancer-related death in men. Cancer stem cells (CSCs) are involved in tumor progression and metastasis, including in prostate cancer. There is an obvious and urgent need for effective cancer stem cells specific therapies in metastatic prostate cancer. MicroRNAs (miRNAs) are an important class of pervasive genes that are involved in a variety of biological functions, especially in cancer. The goal of this study was to identify miRNAs involved in prostate cancer metastasis and cancer stem cells. A microarray and qRT-PCR were performed to investigate the miRNA expression profiles in PC-3 sphere cells and adherent cells. A transwell assay was used to evaluate the migration of PC-3 sphere cells and adherent cells. MiR-143 was silenced with antisense oligonucleotides in PC-3, PC-3-M and LNCaP cells. The role of miR-143 in prostate cancer metastasis was measured by wound-healing and transwell assays in vitro and bioluminescence imaging in vivo. Bioinformatics and luciferase report assays were used to identify the target of miR-143. The expression of miR-143 and the migration capability were reduced in PC-3 sphere cells and progressively increased during sphere re-adherent culture. Moreover, the down-regulation of miR-143 suppressed prostate cancer cells migration and invasion in vitro and systemically inhibited metastasis in vivo. Fibronectin type III domain containing 3B (FNDC3B), which regulates cell motility, was identified as a target of miR-143. The inhibition of miR-143 increased the expression of FNDC3B protein but not FNDC3B mRNA in vitro and vivo. These data demonstrate for the first time that miR-143 was up-regulated during the differentiation of prostate cancer stem cells and promoted prostate cancer metastasis by repressing FNDC3B expression. This sheds a new insight into the post-transcriptional regulation of cancer stem cells differentiation by miRNAs, a potential approach for the treatment of prostate cancer

  20. Resveratrol Regulates Colorectal Cancer Cell Invasion by Modulation of Focal Adhesion Molecules.

    Science.gov (United States)

    Buhrmann, Constanze; Shayan, Parviz; Goel, Ajay; Shakibaei, Mehdi

    2017-09-27

    Resveratrol, a safe and multi-targeted agent, has been associated with suppression of survival, proliferation and metastasis of cancer, however, the underlying mechanisms for its anti-cancer activity, particularly on cellular signaling during cancer cell migration still remain poorly understood. We investigated the invasion response of two human colorectal cancer (CRC) cells (HCT116 and SW480) to resveratrol and studied the effect of specific pharmacological inhibitors, cytochalasin D (CytD) and focal adhesion kinase-inhibitor (FAK-I) on FAK, cell viability and migration in CRC. We found that resveratrol altered cell phenotype of both CRC cells, reduced cell viability and the results were comparable to FAK-I and CytD. These effects of resveratrol were associated with marked Sirt1 up-regulation, FAK down-regulation, inhibition of focal adhesion and potentiation of effects by combinatorial treatment of resveratrol and inhibitors. Interestingly, inhibition of FAK with FAK-I or treatment with CytD suppressed resveratrol-induced Sirt1 up-regulation and markedly down-regulated FAK expression. Resveratrol or combination treatment with inhibitors significantly activated caspase-3 and potentiated apoptosis. Moreover, resveratrol suppressed invasion and colony forming capacity, cell proliferation, β1-Integrin expression and activation of FAK of cells in alginate tumor microenvironment, similar to FAK-I or CytD. Finally, we demonstrated that resveratrol, FAK-I or CytD inhibited activation of NF-κB, suppressed NF-κB-dependent gene end-products involved in invasion, metastasis, and apoptosis; and these effects of resveratrol were potentiated by combination treatment with FAK-I or CytD. Our data illustrated that the anti-invasion effect of resveratrol by inhibition of FAK activity has a potential beneficial role in disease prevention and therapeutic management of CRC.

  1. PTP1B promotes aggressiveness of breast cancer cells by regulating PTEN but not EMT.

    Science.gov (United States)

    Liu, Xue; Chen, Qian; Hu, Xu-Gang; Zhang, Xian-Chao; Fu, Ti-Wei; Liu, Qing; Liang, Yan; Zhao, Xi-Long; Zhang, Xia; Ping, Yi-Fang; Bian, Xiu-Wu

    2016-10-01

    Metastasis is a complicated, multistep process and remains the major cause of cancer-related mortality. Exploring the molecular mechanisms underlying tumor metastasis is crucial for development of new strategies for cancer prevention and treatment. In this study, we found that protein tyrosine phosphatase 1B (PTP1B) promoted breast cancer metastasis by regulating phosphatase and tensin homolog (PTEN) but not epithelial-mesenchymal transition (EMT). By detecting PTP1B expression of the specimens from 128 breast cancer cases, we found that the level of PTP1B was higher in breast cancer tissues than the corresponding adjacent normal tissues. Notably, PTP1B was positively associated with lymph node metastasis (LNM) and estrogen receptor (ER) status. In vitro, disturbing PTP1B expression obviously attenuated cell migration and invasion. On the contrary, PTP1B overexpression significantly increased migration and invasion of breast cancer cells. Mechanistically, PTP1B knockdown upregulated PTEN, accompanied with an abatement of AKT phosphorylation and the expression of matrix metalloproteinase 2 (MMP2) and MMP7. Conversely, forced expression of PTP1B reduced PTEN and increased AKT phosphorylation as well as the expression of MMP2 and MMP7. Notably, neither EMT nor stemness of breast cancer cells was regulated by PTP1B. We also found that PTP1B acted as an independent prognostic factor and predicted poor prognosis in ER-positive breast cancer patients. Taken together, our findings provide advantageous evidence for the development of PTP1B as a potential therapeutic target for breast cancer, especially for ER-positive breast cancer patients.

  2. Calcium regulates cell death in cancer: Roles of the mitochondria and mitochondria-associated membranes (MAMs).

    Science.gov (United States)

    Danese, Alberto; Patergnani, Simone; Bonora, Massimo; Wieckowski, Mariusz R; Previati, Maurizio; Giorgi, Carlotta; Pinton, Paolo

    2017-08-01

    Until 1972, the term 'apoptosis' was used to differentiate the programmed cell death that naturally occurs in organismal development from the acute tissue death referred to as necrosis. Many studies on cell death and programmed cell death have been published and most are, at least to some degree, related to cancer. Some key proteins and molecular pathways implicated in cell death have been analyzed, whereas others are still being actively researched; therefore, an increasing number of cellular compartments and organelles are being implicated in cell death and cancer. Here, we discuss the mitochondria and subdomains of the endoplasmic reticulum (ER) that interact with mitochondria, the mitochondria-associated membranes (MAMs), which have been identified as critical hubs in the regulation of cell death and tumor growth. MAMs-dependent calcium (Ca 2+ ) release from the ER allows selective Ca 2+ uptake by the mitochondria. The perturbation of Ca 2+ homeostasis in cancer cells is correlated with sustained cell proliferation and the inhibition of cell death through the modulation of Ca 2+ signaling. This article is part of a Special Issue entitled Mitochondria in Cancer, edited by Giuseppe Gasparre, Rodrigue Rossignol and Pierre Sonveaux. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Regulation of Breast Cancer Stem Cells by Tissue Rigidity

    Science.gov (United States)

    2015-06-01

    of acini having no1mal aspect ratios. as determined in panel (C). ***P<O.OOl. mamma1y acinar structme desensitize mammaty epithelial cells to...mechanics. Nat Commun. 2012;3:792. 4. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci. 2006;63(19...predicted as a potential phosphorylation site. This provided a very attractive potential mechanism by which increased matrix stiffness activates

  4. Regulation of Breast Cancer Stem Cell by Tissue Rigidity

    Science.gov (United States)

    2015-06-01

    desensitize mammary epithelial cells to changes in matrix stiffness?” As described in the 2014 progress report, to accomplish this, we substituted a...to dynamic mechanics. Nat Commun. 2012;3:792. 4. Lucero HA, Kagan HM. Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life...of human TWIST1, is predicted as a potential phosphorylation site. This provided a very attractive potential mechanism by which increased matrix

  5. [Astragalus polysaccharide may increase sensitivity of cervical cancer HeLa cells to cisplatin by regulating cell autophagy].

    Science.gov (United States)

    Zhai, Qiu-Li; Hu, Xiang-Dan; Xiao, Jing; Yu, Dong-Qing

    2018-02-01

    This study aimed to investigate the possible sensitivity of Astragalus polysaccharides, in order to improve the chemosensitivity of cervical cancer HeLa cells to cisplatin by regulating the cell autophagy, and explore its possible mechanism. In this study, HeLa cells were divided into control group, cisplatin group, Astragalus polysaccharide group, and Astragalus polysaccharide combined with cisplatin group. MTT assay was used to detect the proliferation of cervical cancer HeLa cells. Flow cytometry was used to detect the apoptosis and cycle of HeLa cells in each experimental group. RT-PCR was used to detect the mRNA expression of autophagy-related proteins beclin1, LC3Ⅱ and p62. The expression levels of autophagy-related proteins beclin1, LC3Ⅱ, LC3Ⅰ and p62 were detected by WB method. MTT results showed that compared with the control group, the proliferation of HeLa cells was significantly inhibited in each administration group( P HeLa cells was significantly increased( P HeLa cells to cisplatin by regulating the cell autophagy. Its possible mechanism of action is correlated with the up-regulation of autophagy-related proteins beclin1, the promote the conversion from LC3Ⅰ to LC3Ⅱ, the down-regulation of labeled protein p62, and the enhancement of HeLa cell autophagic activity, thereby increasing the sensitivity of HeLa cells to cisplatin chemotherapy. Copyright© by the Chinese Pharmaceutical Association.

  6. BRAF activated non-coding RNA (BANCR) promoting gastric cancer cells proliferation via regulation of NF-κB1

    International Nuclear Information System (INIS)

    Zhang, Zhi-Xin; Liu, Zhi-Qiang; Jiang, Biao; Lu, Xin-Yang; Ning, Xiao-Fei; Yuan, Chuan-Tao; Wang, Ai-Liang

    2015-01-01

    Background and objective: Long non-coding RNA, BANCR, has been demonstrated to contribute to the proliferation and migration of tumors. However, its molecular mechanism underlying gastric cancer is still unknown. In present study, we investigated whether BANCR was involved in the development of gastric cancer cells via regulation of NF-κB1. Methods: Human gastric cancer tissues were isolated as well as human gastric cell lines MGC803 and BGC823 were cultured to investigate the role of BANCR in gastric cancer. Results: BANCR expression was significantly up-regulated in gastric tumor tissues and gastric cell lines. Down-regulation of BANCR inhibited gastric cancer cell growth and promoted cell apoptosis, and it also contributed to a significant decrease of NF-κB1 (P50/105) expression and 3′UTR of NF-κB1 activity. Overexpression of NF-κB1 reversed the effect of BANCR on cancer cell growth and apoptosis. MiroRNA-9 (miR-9) targeted NF-κB1, and miR-9 inhibitor also reversed the effects of BANCR on gastric cancer cell growth and apoptosis. Conclusion: BANCR was highly expressed both in gastric tumor tissues and in cancer cells. NF-κB1 and miR-9 were involved in the role of BANCR in gastric cancer cell growth and apoptosis. - Highlights: • BANCR up-regulated in gastric cancer (GC) tissues and cell lines MGC803 and BGC823. • Down-regulation of BANCR inhibited GC cell growth and promoted cell apoptosis. • Down-regulation of BANCR contributed to decreased 3′UTR of NF-κB1 and its expression. • Overexpressed NF-κB1 reversed the effect of BANCR on GC cell growth. • miR-9 inhibitor reversed the effect of BANCR on cancer GC cell growth

  7. HIF-2α dictates the susceptibility of pancreatic cancer cells to TRAIL by regulating survivin expression

    Science.gov (United States)

    Harashima, Nanae; Takenaga, Keizo; Akimoto, Miho; Harada, Mamoru

    2017-01-01

    Cancer cells develop resistance to therapy by adapting to hypoxic microenvironments, and hypoxia-inducible factors (HIFs) play crucial roles in this process. We investigated the roles of HIF-1α and HIF-2α in cancer cell death induced by tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) using human pancreatic cancer cell lines. siRNA-mediated knockdown of HIF-2α, but not HIF-1α, increased susceptibility of two pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL in vitro under normoxic and hypoxic conditions. The enhanced sensitivity to TRAIL was also observed in vivo. This in vitro increased TRAIL sensitivity was observed in other three pancreatic cancer cell lines. An array assay of apoptosis-related proteins showed that knockdown of HIF-2α decreased survivin expression. Additionally, survivin promoter activity was decreased in HIF-2α knockdown Panc-1 cells and HIF-2α bound to the hypoxia-responsive element in the survivin promoter region. Conversely, forced expression of the survivin gene in HIF-2α shRNA-expressing Panc-1 cells increased resistance to TRAIL. In a xenograft mouse model, the survivin suppressant YM155 sensitized Panc-1 cells to TRAIL. Collectively, our results indicate that HIF-2α dictates the susceptibility of human pancreatic cancer cell lines, Panc-1 and AsPC-1, to TRAIL by regulating survivin expression transcriptionally, and that survivin could be a promising target to augment the therapeutic efficacy of death receptor-targeting anti-cancer therapy. PMID:28476028

  8. Curcumin and emodin down-regulate TGF-β signaling pathway in human cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Pooja Chandrakant Thacker

    Full Text Available Cervical cancer is the major cause of cancer related deaths in women, especially in developing countries and Human Papilloma Virus infection in conjunction with multiple deregulated signaling pathways leads to cervical carcinogenesis. TGF-β signaling in later stages of cancer is known to induce epithelial to mesenchymal transition promoting tumor growth. Phytochemicals, curcumin and emodin, are effective as chemopreventive and chemotherapeutic compounds against several cancers including cervical cancer. The main objective of this work was to study the effect of curcumin and emodin on TGF-β signaling pathway and its functional relevance to growth, migration and invasion in two cervical cancer cell lines, SiHa and HeLa. Since TGF-β and Wnt/β-catenin signaling pathways are known to cross talk having common downstream targets, we analyzed the effect of TGF-β on β-catenin (an important player in Wnt/β-catenin signaling and also studied whether curcumin and emodin modulate them. We observed that curcumin and emodin effectively down regulate TGF-β signaling pathway by decreasing the expression of TGF-β Receptor II, P-Smad3 and Smad4, and also counterbalance the tumorigenic effects of TGF-β by inhibiting the TGF-β-induced migration and invasion. Expression of downstream effectors of TGF-β signaling pathway, cyclinD1, p21 and Pin1, was inhibited along with the down regulation of key mesenchymal markers (Snail and Slug upon curcumin and emodin treatment. Curcumin and emodin were also found to synergistically inhibit cell population and migration in SiHa and HeLa cells. Moreover, we found that TGF-β activates Wnt/β-catenin signaling pathway in HeLa cells, and curcumin and emodin down regulate the pathway by inhibiting β-catenin. Taken together our data provide a mechanistic basis for the use of curcumin and emodin in the treatment of cervical cancer.

  9. Phosphoproteomic Analysis Identifies Signaling Pathways Regulated by Curcumin in Human Colon Cancer Cells.

    Science.gov (United States)

    Sato, Tatsuhiro; Higuchi, Yutaka; Shibagaki, Yoshio; Hattori, Seisuke

    2017-09-01

    Curcumin, a major polyphenol of the spice turmeric, acts as a potent chemopreventive and chemotherapeutic agent in several cancer types, including colon cancer. Although various proteins have been shown to be affected by curcumin, how curcumin exerts its anticancer activity is not fully understood. Phosphoproteomic analyses were performed using SW480 and SW620 human colon cancer cells to identify curcumin-affected signaling pathways. Curcumin inhibited the growth of the two cell lines in a dose-dependent manner. Thirty-nine curcumin-regulated phosphoproteins were identified, five of which are involved in cancer signaling pathways. Detailed analyses revealed that the mTORC1 and p53 signaling pathways are main targets of curcumin. Our results provide insight into the molecular mechanisms of the anticancer activities of curcumin and future molecular targets for its clinical application. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  10. Up-regulation of HOXB cluster genes are epigenetically regulated in tamoxifen-resistant MCF7 breast cancer cells.

    Science.gov (United States)

    Yang, Seoyeon; Lee, Ji-Yeon; Hur, Ho; Oh, Ji Hoon; Kim, Myoung Hee

    2018-05-28

    Tamoxifen (TAM) is commonly used to treat estrogen receptor (ER)-positive breast cancer. Despite the remarkable benefits, resistance to TAM presents a serious therapeutic challenge. Since several HOX transcription factors have been proposed as strong candidates in the development of resistance to TAM therapy in breast cancer, we generated an in vitro model of acquired TAM resistance using ER-positive MCF7 breast cancer cells (MCF7-TAMR), and analyzed the expression pattern and epigenetic states of HOX genes. HOXB cluster genes were uniquely up-regulated in MCF7-TAMR cells. Survival analysis of in slico data showed the correlation of high expression of HOXB genes with poor response to TAM in ER-positive breast cancer patients treated with TAM. Gain- and loss-of-function experiments showed that the overexpression of multi HOXB genes in MCF7 renders cancer cells more resistant to TAM, whereas the knockdown restores TAM sensitivity. Furthermore, activation of HOXB genes in MCF7-TAMR was associated with histone modifications, particularly the gain of H3K9ac. These findings imply that the activation of HOXB genes mediate the development of TAM resistance, and represent a target for development of new strategies to prevent or reverse TAM resistance.

  11. microRNA-143 down-regulates Hexokinase 2 in colon cancer cells

    DEFF Research Database (Denmark)

    Gregersen, Lea Haarup; Jacobsen, Anders; Frankel, Lisa

    2012-01-01

    a significant enrichment of miR-143 seed sites in their 3' UTRs. Here we report the identification of Hexokinase 2 (HK2) as a direct target of miR-143. We show that re-introduction of miR-143 in the colon cancer cell line DLD-1 results in a decreased lactate secretion. CONCLUSION: We have identified...... and validated HK2 as a miR-143 target. Furthermore, our results indicate that miR-143 mediated down-regulation of HK2 affects glucose metabolism in colon cancer cells. We hypothesize that loss of miR-143-mediated repression of HK2 can promote glucose metabolism in cancer cells, contributing to the shift towards......ABSTRACT: BACKGROUND: MicroRNAs (miRNAs) are well recognized as gene regulators and have been implicated in the regulation of development as well as human diseases. miR-143 is located at a fragile site on chromosome 5 frequently deleted in cancer, and has been reported to be down...

  12. The human CTC1/STN1/TEN1 complex regulates telomere maintenance in ALT cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chenhui; Jia, Pingping; Chastain, Megan; Shiva, Olga; Chai, Weihang, E-mail: wchai@wsu.edu

    2017-06-15

    Maintaining functional telomeres is important for long-term proliferation of cells. About 15% of cancer cells are telomerase-negative and activate the alternative-lengthening of telomeres (ALT) pathway to maintain their telomeres. Recent studies have shown that the human CTC1/STN1/TEN1 complex (CST) plays a multi-faceted role in telomere maintenance in telomerase-expressing cancer cells. However, the role of CST in telomere maintenance in ALT cells is unclear. Here, we report that human CST forms a functional complex localizing in the ALT-associated PML bodies (APBs) in ALT cells throughout the cell cycle. Suppression of CST induces telomere instabilities including telomere fragility and elevates telomeric DNA recombination, leading to telomere dysfunction. In addition, CST deficiency significantly diminishes the abundance of extrachromosomal circular telomere DNA known as C-circles and t-circles. Suppression of CST also results in multinucleation in ALT cells and impairs cell proliferation. Our findings imply that the CST complex plays an important role in regulating telomere maintenance in ALT cells. - Highlights: • CST localizes at telomeres and ALT-associated PML bodies in ALT cells throughout the cell cycle. • CST is important for promoting telomeric DNA replication in ALT cells. • CST deficiency decreases ECTR formation and increases T-SCE. • CST deficiency impairs ALT cell proliferation and results in multinucleation.

  13. FOXO3-mediated up-regulation of Bim contributes to rhein-induced cancer cell apoptosis.

    Science.gov (United States)

    Wang, Jiao; Liu, Shu; Yin, Yancun; Li, Mingjin; Wang, Bo; Yang, Li; Jiang, Yangfu

    2015-03-01

    The anthraquinone compound rhein is a natural agent in the traditional Chinese medicine rhubarb. Preclinical studies demonstrate that rhein has anticancer activity. Treatment of a variety of cancer cells with rhein may induce apoptosis. Here, we report that rhein induces atypical unfolded protein response in breast cancer MCF-7 cells and hepatoma HepG2 cells. Rhein induces CHOP expression, eIF2α phosphorylation and caspase cleavage, while it does not induce glucose-regulated protein 78 (GRP78) expression in both MCF-7 and HepG2 cells. Meanwhile, rhein inhibits thapsigargin-induced GRP78 expression and X box-binding protein 1 splicing. In addition, rhein inhibits Akt phosphorylation and stimulates FOXO transactivation activity. Rhein induces Bim expression in MCF-7 and HepG2 cells, which can be abrogated by FOXO3a knockdown. Knockdown of FOXO3a or Bim abrogates rhein-induced caspase cleavage and apoptosis. The chemical chaperone 4-phenylbutyrate acid antagonizes the induction of FOXO activation, Bim expression and caspase cleavage by rhein, indicating that protein misfolding may be involved in triggering these deleterious effects. We conclude that FOXO3a-mediated up-regulation of Bim is a key mechanism underlying rhein-induced cancer cells apoptosis.

  14. Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells

    Science.gov (United States)

    Iessi, Elisabetta; Zischler, Luciana; Etringer, Aurélie; Bergeret, Marion; Morlé, Aymeric; Jacquemin, Guillaume; Morizot, Alexandre; Shirley, Sarah; Lalaoui, Najoua; Elifio-Esposito, Selene L.; Fais, Stefano; Garrido, Carmen; Solary, Eric; Micheau, Olivier

    2015-01-01

    Ezrin belongs to the ERM (ezrin-radixin-moesin) protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells. PMID:26010871

  15. Death Receptor-Induced Apoptosis Signalling Regulation by Ezrin Is Cell Type Dependent and Occurs in a DISC-Independent Manner in Colon Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Elisabetta Iessi

    Full Text Available Ezrin belongs to the ERM (ezrin-radixin-moesin protein family and has been demonstrated to regulate early steps of Fas receptor signalling in lymphoid cells, but its contribution to TRAIL-induced cell death regulation in adherent cancer cells remains unknown. In this study we report that regulation of FasL and TRAIL-induced cell death by ezrin is cell type dependant. Ezrin is a positive regulator of apoptosis in T-lymphoma cell line Jurkat, but a negative regulator in colon cancer cells. Using ezrin phosphorylation or actin-binding mutants, we provide evidence that negative regulation of death receptor-induced apoptosis by ezrin occurs in a cytoskeleton- and DISC-independent manner, in colon cancer cells. Remarkably, inhibition of apoptosis induced by these ligands was found to be tightly associated with regulation of ezrin phosphorylation on serine 66, the tumor suppressor gene WWOX and activation of PKA. Deficiency in WWOX expression in the liver cancer SK-HEP1 or the pancreatic Mia PaCa-2 cell lines as well as WWOX silencing or modulation of PKA activation by pharmacological regulators, in the colon cancer cell line SW480, abrogated regulation of TRAIL signalling by ezrin. Altogether our results show that death receptor pro-apoptotic signalling regulation by ezrin can occur downstream of the DISC in colon cancer cells.

  16. PES1 regulates sensitivity of colorectal cancer cells to anticancer drugs

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Wei [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Qu, Like, E-mail: qulike@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Meng, Lin; Liu, Caiyun; Wu, Jian [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China); Shou, Chengchao, E-mail: scc@bjcancer.org [Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, Peking University Cancer Hospital and Institute, Beijing 100142 (China)

    2013-02-15

    Highlights: ► PES1 was overexpressed in diverse cancer cell lines. ► PES1-ablation enhances DNA damage response by decreasing DNA repair. ► PES1-ablation increases the sensitivity of HCT116 cells to chemotherapeutic agents. ► PES1-ablation is associated with diminished nuclear entry of RAD51. -- Abstract: PES1 (also known as Pescadillo), a nucleolar protein, was involved in biogenesis of ribosomal RNA. Up-regulation of PES1 has been documented in some human cancers, indicating that PES1 may play some crucial roles in tumorigenesis. In our previous study, it was found that silencing of PES1 resulted in decreased proliferation of colorectal cancer cells. We also noticed that depletion of PES1 altered expression profiles of diverse genes. In the present study, we validated the expression changes of a subset of genotoxic stress-related genes in PES1-silenced HCT116 cells by quantitative RT-PCR. The steady and etoposide-induced phosphorylated H2AX (γ-H2AX) were higher in PES1-silenced cells than in control cells. Besides, etoposide-induced γ-H2AX persisted longer in PES1-silenced cells after removing the etoposide. Next, results of comet assay revealed decreased DNA repair after PES1-ablation. PES1-ablated cells were more sensitive to chemotherapeutic agents, which could be reversed by reconstitution with exogenous PES1. Furthermore, deletion of PES1 diminished steady and DNA damage-induced levels of nuclear RAD51. Our results uncover a potential role of PES1 in chemoresistance by regulating DNA damage response in colorectal cancer cells.

  17. Macrophage phenotypic subtypes diametrically regulate epithelial-mesenchymal plasticity in breast cancer cells

    International Nuclear Information System (INIS)

    Yang, Min; Ma, Bo; Shao, Hanshuang; Clark, Amanda M.; Wells, Alan

    2016-01-01

    Metastatic progression of breast cancer involves phenotypic plasticity of the carcinoma cells moving between epithelial and mesenchymal behaviors. During metastatic seeding and dormancy, even highly aggressive carcinoma cells take on an E-cadherin-positive epithelial phenotype that is absent from the emergent, lethal metastatic outgrowths. These phenotypes are linked to the metastatic microenvironment, though the specific cells and induction signals are still to be deciphered. Recent evidence suggests that macrophages impact tumor progression, and may alter the balance between cancer cell EMT and MErT in the metastatic microenvironment. Here we explore the role of M1/M2 macrophages in epithelial-mesenchymal plasticity of breast cancer cells by coculturing epithelial and mesenchymal cells lines with macrophages. We found that after polarizing the THP-1 human monocyte cell line, the M1 and M2-types were stable and maintained when co-cultured with breast cancer cells. Surprisingly, M2 macrophages may conferred a growth advantage to the epithelial MCF-7 cells, with these cells being driven to a partial mesenchymal phenotypic as indicated by spindle morphology. Notably, E-cadherin protein expression is significantly decreased in MCF-7 cells co-cultured with M2 macrophages. M0 and M1 macrophages had no effect on the MCF-7 epithelial phenotype. However, the M1 macrophages impacted the highly aggressive mesenchymal-like MDA-MB-231 breast cancer cells to take on a quiescent, epithelial phenotype with re-expression of E-cadherin. The M2 macrophages if anything exacerbated the mesenchymal phenotype of the MDA-MB-231 cells. Our findings demonstrate M2 macrophages might impart outgrowth and M1 macrophages may contribute to dormancy behaviors in metastatic breast cancer cells. Thus EMT and MErT are regulated by selected macrophage phenotype in the liver metastatic microenvironment. These results indicate macrophage could be a potential therapeutic target for limiting death due

  18. Epigenetic regulation of CpG promoter methylation in invasive prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Farrar William L

    2010-10-01

    Full Text Available Abstract Background Recently, much attention has been focused on gaining a better understanding of the different populations of cells within a tumor and their contribution to cancer progression. One of the most commonly used methods to isolate a more aggressive sub-population of cells utilizes cell sorting based on expression of certain cell adhesion molecules. A recently established method we developed is to isolate these more aggressive cells based on their properties of increased invasive ability. These more invasive cells have been previously characterized as tumor initiating cells (TICs that have a stem-like genomic signature and express a number of stem cell genes including Oct3/4 and Nanog and are more tumorigenic compared to their 'non-invasive' counterpart. They also have a profile reminiscent of cells undergoing a classic pattern of epithelial to mesenchymal transition or EMT. Using this model of invasion, we sought to investigate which genes are under epigenetic control in this rare population of cells. Epigenetic modifications, specifically DNA methylation, are key events regulating the process of normal human development. To determine the specific methylation pattern in these invasive prostate cells, and if any developmental genes were being differentially regulated, we analyzed differences in global CpG promoter methylation. Results Differentially methylated genes were determined and select genes were chosen for additional analyses. The non-receptor tyrosine kinase BMX and transcription factor SOX1 were found to play a significant role in invasion. Ingenuity pathway analysis revealed the methylated gene list frequently displayed genes from the IL-6/STAT3 pathway. Cells which have decreased levels of the targets BMX and SOX1 also display loss of STAT3 activity. Finally, using Oncomine, it was determined that more aggressive metastatic prostate cancers in humans also have higher levels of both Stat3 and Sox1. Conclusions Using this

  19. MicroRNA-218 inhibits cell invasion and migration of pancreatic cancer via regulating ROBO1.

    Science.gov (United States)

    He, Hang; Hao, Si-Jie; Yao, Lie; Yang, Feng; Di, Yang; Li, Ji; Jiang, Yong-Jian; Jin, Chen; Fu, De-Liang

    2014-10-01

    miRNA-218 is a highlighted tumor suppressor and its underlying role in tumor progression is still unknown. Here, we restored the expression of miRNA-218 in pancreatic cancer to clarify the function and potent downstream pathway of miRNA-218. The expressions of both miRNA-218 and its potent target gene ROBO1 were revealed by RT-PCR and western blotting analysis. Transfection of miRNA-218 precursor mimics and luciferase assay were performed to elucidate the regulation mechanism between miRNA-218 and ROBO1. Cells, stably expressing miRNA-218 followed by forced expression of mutant ROBO1, were established through co-transfections of both lentivirus vector and plasmid vector. The cell migration and invasion abilities were evaluated by migration assay and invasion assay respectively. An increased expression of ROBO1 was revealed in cell BxPC-3-LN compared with cell BxPC-3. Elevated expression of miRNA-218 would suppress the expression of ROBO1 via complementary binding to a specific region within 3'UTR of ROBO1 mRNA (sites 971-978) in pancreatic cancer cells. Stably restoring the expression of miRNA-218 in pancreatic cancer significantly downregulated the expression of ROBO1 and effectively inhibited cell migration and invasion. Forced expression of mutant ROBO1 could reverse the repression effects of miRNA-218 on cell migration and invasion. Consequently, miRNA-218 acted as a tumor suppressor in pancreatic cancer by inhibiting cell invasion and migration. ROBO1 was a functional target of miRNA-218's downstream pathway involving in cell invasion and migration of pancreatic cancer.

  20. Epigenetic regulation of miRNA-cancer stem cells nexus by nutraceuticals.

    Science.gov (United States)

    Ahmad, Aamir; Li, Yiwei; Bao, Bin; Kong, Dejuan; Sarkar, Fazlul H

    2014-01-01

    Nutraceuticals, the bioactive food components represented by many naturally occurring dietary compounds, have been investigated for a few decades for their numerous beneficial effects, including their anticancer properties. The initial interest in the cancer-preventing/therapeutic ability of these agents was based on their ability to affect multiple signaling pathways that are deregulated in cancer cells. With a shift in the focus of cancer research to the emerging areas such as epigenetic regulation, microRNAs (miRNAs) and the cancer stem cells (CSCs), nutraceuticals initially appeared out of place. However, research investigations over the last several years have slowly but firmly presented evidence that supports a relevance of these agents in modern day research. While nutraceuticals are increasingly being realized to alter miRNA/CSCs expression and function, the molecular mechanism(s) are not very clearly understood. Epigenetic regulation is one mechanism by which these agents exert their anticancer effects. In this focused mini review, we summarize our current understanding of epigenetic regulation of miRNAs and CSCs by nutraceuticals. We discuss both direct and indirect evidences that support such an activity of these compounds. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. AIB1 regulates the ovarian cancer cell cycle through TUG1.

    Science.gov (United States)

    Li, L; Gan, Z-H; Qin, L; Jiao, S-H; Shi, Y

    2017-12-01

    To explore the mechanism of amplified in breast cancer 1 (AIB1) to promote ovarian cancer progress. Cor correlation analysis was performed to obtain the top 100 lncRNAs that were positively correlated with AIB1. The relationship of taurine upregulated gene 1 (TUG1) and clinicopathological characteristics. Moreover, Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) were performed to predict the biological process where TUG1 may be involved in. At last, Cell Counting Kit-8 (CCK-8), colon formation and flow cytometry were conducted to explore the biological process that TUG1 may influence. Meanwhile, Western blot was performed to explore the mechanism of TUG1. In this study, it was found that P73 antisense RNA 1T (TP73-AS1), LINC00654 and TUG1 had the tumor-promoting effect in the top 100 lncRNAs that were positively correlated with AIB1. The expression level of TUG1 was significantly decreased after intervention of AIB1. Then, the clinical data were analyzed and the results showed that TUG1 was related to the tumor residue, tumor staging, tumor grade and lymph node metastasis. Moreover, the bioinformatics analysis revealed that TUG1 was mainly involved in the regulation of cell cycle. After intervention in TUG1, it was found that the cell proliferation capacity was significantly decreased, and the cell cycle was arrested in G1 phase. Finally, Western blot revealed that the expressions of G1 phase-related proteins were significantly changed. This study indicated that AIB1 regulates the cycle of ovarian cancer cells through TUG1. This study proved that AIB1 can regulate the cell cycle through regulating TUG1.

  2. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K., E-mail: mishima-k@dent.showa-u.ac.jp

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  3. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    International Nuclear Information System (INIS)

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K.

    2013-01-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities

  4. Protein Phosphatase 2A in the Regulation of Wnt Signaling, Stem Cells, and Cancer.

    Science.gov (United States)

    Thompson, Joshua J; Williams, Christopher S

    2018-02-26

    Protein phosphorylation is a ubiquitous cellular process that allows for the nuanced and reversible regulation of protein activity. Protein phosphatase 2A (PP2A) is a heterotrimeric serine-threonine phosphatase-composed of a structural, regulatory, and catalytic subunit-that controls a variety of cellular events via protein dephosphorylation. While much is known about PP2A and its basic biochemistry, the diversity of its components-especially the multitude of regulatory subunits-has impeded the determination of PP2A function. As a consequence of this complexity, PP2A has been shown to both positively and negatively regulate signaling networks such as the Wnt pathway. Wnt signaling modulates major developmental processes, and is a dominant mediator of stem cell self-renewal, cell fate, and cancer stem cells. Because PP2A affects Wnt signaling both positively and negatively and at multiple levels, further understanding of this complex dynamic may ultimately provide insight into stem cell biology and how to better treat cancers that result from alterations in Wnt signaling. This review will summarize literature that implicates PP2A as a tumor suppressor, explore PP2A mutations identified in human malignancy, and focus on PP2A in the regulation of Wnt signaling and stem cells so as to better understand how aberrancy in this pathway can contribute to tumorigenesis.

  5. Regulation of matriptase and HAI-1 system, a novel therapeutic target in human endometrial cancer cells.

    Science.gov (United States)

    Sun, Pengming; Xue, Lifang; Song, Yiyi; Mao, Xiaodan; Chen, Lili; Dong, Binhua; Braicu, Elena Loana; Sehouli, Jalid

    2018-02-27

    The effects of specific and non-specific regulation of matriptase on endometrial cancer cells in vitro were investigated. Messenger ribonucleic acid (mRNA) and protein expression of matriptase and hepatocyte growth factor activator inhibitor-1 (HAI-1) in RL-952, HEC-1A, and HEC-1B endometrial cancer cells were detected by real-time quantitative PCR (RT-qPCR) and western blot. The cells were infected with lentivirus-mediated small-interfering RNA (siRNA) targeted on matriptase (MA-siRNA) or treated with different cisplatin (DDP) concentrations. After treatment, invasion, migration, and cellular apoptosis were analyzed. Matriptase mRNA and protein expression significantly decreased to 80% after infection with MA-siRNA ( P scratch and trans-well chamber assays showed significant inhibition of invasiveness and metastasis. Upon incubation with cisplatin at concentrations higher than the therapeutic dose for 24 h, the expressions of matriptase and HAI-1 significantly decreased ( P endometrial cancer cells were significantly decreased ( P endometrial cancer cells showed promising therapeutic features.

  6. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells

    Directory of Open Access Journals (Sweden)

    Michela Lupia

    2018-04-01

    Full Text Available Summary: Cancer-initiating cells (CICs have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC, CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5′-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. : Cavallaro et al. characterized the transcriptome of OCIC-enriched primary cultures and found CD73 as an upregulated gene. CD73 was then shown to regulate the expression of stemness and EMT-associated genes. The expression and function of CD73 in OCICs is required for tumor initiation, and CD73-targeted drugs decrease the rate of tumor take and inhibit cancer growth. Keywords: CD73, ovarian cancer, cancer-initiating cells, cancer stem cells, EMT, adenosine

  7. Mechanisms of transcriptional regulation and prognostic significance of activated leukocyte cell adhesion molecule in cancer

    Directory of Open Access Journals (Sweden)

    Chen Hairu

    2010-10-01

    Full Text Available Abstract Background Activated leukocyte cell adhesion molecule (ALCAM is implicated in the prognosis of multiple cancers with low level expression associated with metastasis and early death in breast cancer. Despite this significance, mechanisms that regulate ALCAM gene expression and ALCAM's role in adhesion of pre-metastatic circulating tumor cells have not been defined. We studied ALCAM expression in 20 tumor cell lines by real-time PCR, western blot and immunochemistry. Epigenetic alterations of the ALCAM promoter were assessed using methylation-specific PCR and bisulfite sequencing. ALCAM's role in adhesion of tumor cells to the vascular wall was studied in isolated perfused lungs. Results A common site for transcription initiation of the ALCAM gene was identified and the ALCAM promoter sequenced. The promoter contains multiple cis-active elements including a functional p65 NF-κB motif, and it harbors an extensive array of CpG residues highly methylated exclusively in ALCAM-negative tumor cells. These CpG residues were modestly demethylated after 5-aza-2-deoxycytidine treatment. Restoration of high-level ALCAM expression using an ALCAM cDNA increased clustering of MDA-MB-435 tumor cells perfused through the pulmonary vasculature of ventilated rat lungs. Anti-ALCAM antibodies reduced the number of intravascular tumor cell clusters. Conclusion Our data suggests that loss of ALCAM expression, due in part to DNA methylation of extensive segments of the promoter, significantly impairs the ability of circulating tumor cells to adhere to each other, and may therefore promote metastasis. These findings offer insight into the mechanisms for down-regulation of ALCAM gene expression in tumor cells, and for the positive prognostic value of high-level ALCAM in breast cancer.

  8. Rictor and integrin-linked kinase interact and regulate Akt phosphorylation and cancer cell survival.

    Science.gov (United States)

    McDonald, Paul C; Oloumi, Arusha; Mills, Julia; Dobreva, Iveta; Maidan, Mykola; Gray, Virginia; Wederell, Elizabeth D; Bally, Marcel B; Foster, Leonard J; Dedhar, Shoukat

    2008-03-15

    An unbiased proteomic screen to identify integrin-linked kinase (ILK) interactors revealed rictor as an ILK-binding protein. This finding was interesting because rictor, originally identified as a regulator of cytoskeletal dynamics, is also a component of mammalian target of rapamycin complex 2 (mTORC2), a complex implicated in Akt phosphorylation. These functions overlap with known ILK functions. Coimmunoprecipitation analyses confirmed this interaction, and ILK and rictor colocalized in membrane ruffles and leading edges of cancer cells. Yeast two-hybrid assays showed a direct interaction between the NH(2)- and COOH-terminal domains of rictor and the ILK kinase domain. Depletion of ILK and rictor in breast and prostate cancer cell lines resulted in inhibition of Akt Ser(473) phosphorylation and induction of apoptosis, whereas, in several cell lines, depletion of mTOR increased Akt phosphorylation. Akt and Ser(473)P-Akt were detected in ILK immunoprecipitates and small interfering RNA-mediated depletion of rictor, but not mTOR, inhibited the amount of Ser(473)P-Akt in the ILK complex. Expression of the NH(2)-terminal (1-398 amino acids) rictor domain also resulted in the inhibition of ILK-associated Akt Ser(473) phosphorylation. These data show that rictor regulates the ability of ILK to promote Akt phosphorylation and cancer cell survival.

  9. USP1 regulates AKT phosphorylation by modulating the stability of PHLPP1 in lung cancer cells.

    Science.gov (United States)

    Zhiqiang, Zhang; Qinghui, Yang; Yongqiang, Zhang; Jian, Zhang; Xin, Zhao; Haiying, Ma; Yuepeng, Guo

    2012-07-01

    Hyperactivation of phosphatidylinositol 3-kinase/Akt signaling is commonly associated with human tumors including lung cancers. PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1), which terminates Akt signaling by directly dephosphorylating and inactivating Akt, has been identified as a tumor suppressor. The protein level of PHLPP1 is regulated by E3 ligase beta-TRCP, however, the deubiquitinase for PHLPP1 is still not known. The mRNA levels of USP1 and PHLPP1 in lung cancer cells and tissues were determined by real-time PCR. The half-life of PHLPP1 was detected by CHX assay. The interaction between USP1 and PHLPP1 was examined by immunoprecipitation and GST pull-down assay. Both USP1 and PHLPP1 are low expressed in lung cancer cells and tissues and silencing of USP1 by RNA interference significantly decreased the half-life of PHLPP1, which in turn amplified Akt1 phosphorylation. Our data identified a novel USP1-PHLPP1-Akt signaling axis, and decreased USP1 level in lung cancer cells may play an important role in lung cancer progress.

  10. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Zheng [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao Bei, Guangzhou 510515 (China); Zhou, Yuning [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Evers, B. Mark [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Wang, Qingding, E-mail: qingding.wang@uky.edu [Markey Cancer Center, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States); Department of Surgery, The University of Kentucky, 800 Rose Street, Lexington, KY 40536 (United States)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer Rictor associates with FBXW7 to form an E3 complex. Black-Right-Pointing-Pointer Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. Black-Right-Pointing-Pointer Knockdown of rictor increases protein levels of c-Myc and cylin E. Black-Right-Pointing-Pointer Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Black-Right-Pointing-Pointer Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor-FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  11. Rictor regulates FBXW7-dependent c-Myc and cyclin E degradation in colorectal cancer cells

    International Nuclear Information System (INIS)

    Guo, Zheng; Zhou, Yuning; Evers, B. Mark; Wang, Qingding

    2012-01-01

    Highlights: ► Rictor associates with FBXW7 to form an E3 complex. ► Knockdown of rictor decreases ubiquitination of c-Myc and cylin E. ► Knockdown of rictor increases protein levels of c-Myc and cylin E. ► Overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. ► Rictor regulation of c-Myc and cyclin E requires FBXW7. -- Abstract: Rictor (Rapamycin-insensitive companion of mTOR) forms a complex with mTOR and phosphorylates and activates Akt. Activation of Akt induces expression of c-Myc and cyclin E, which are overexpressed in colorectal cancer and play an important role in colorectal cancer cell proliferation. Here, we show that rictor associates with FBXW7 to form an E3 complex participating in the regulation of c-Myc and cyclin E degradation. The Rictor–FBXW7 complex is biochemically distinct from the previously reported mTORC2 and can be immunoprecipitated independently of mTORC2. Moreover, knocking down of rictor in serum-deprived colorectal cancer cells results in the decreased ubiquitination and increased protein levels of c-Myc and cyclin E while overexpression of rictor induces the degradation of c-Myc and cyclin E proteins. Genetic knockout of FBXW7 blunts the effects of rictor, suggesting that rictor regulation of c-Myc and cyclin E requires FBXW7. Our findings identify rictor as an important component of FBXW7 E3 ligase complex participating in the regulation of c-Myc and cyclin E protein ubiquitination and degradation. Importantly, our results suggest that elevated growth factor signaling may contribute to decrease rictor/FBXW7-mediated ubiquitination of c-Myc and cyclin E, thus leading to accumulation of cyclin E and c-Myc in colorectal cancer cells.

  12. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    Energy Technology Data Exchange (ETDEWEB)

    Cekanova, Maria, E-mail: mcekanov@utk.edu [Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Fernando, Romaine I. [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Siriwardhana, Nalin [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Sukhthankar, Mugdha [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Parra, Columba de la [Department of Biochemistry, School of Medicine, University of Puerto Rico, Medical Sciences Campus, San Juan, PR (United States); Woraratphoka, Jirayus [Department of Obstetrics and Gynecology, Graduate School of Medicine, Medical Center, The University of Tennessee, Knoxville, TN (United States); Malone, Christine [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Ström, Anders [Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX (United States); Baek, Seung J. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Wade, Paul A. [Laboratory of Molecular Carcinogenesis, National Institute of Environmental Health Sciences, Research Triangle Park, NC (United States); Saxton, Arnold M. [Department of Animal Science, The University of Tennessee, Knoxville, TN (United States); Donnell, Robert M. [Department of Biomedical and Diagnostics Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, TN (United States); Pestell, Richard G. [Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA (United States); and others

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis.

  13. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion

    International Nuclear Information System (INIS)

    Cekanova, Maria; Fernando, Romaine I.; Siriwardhana, Nalin; Sukhthankar, Mugdha; Parra, Columba de la; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J.; Wade, Paul A.; Saxton, Arnold M.; Donnell, Robert M.; Pestell, Richard G.

    2015-01-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. - Highlights: • BAD and p-BAD expressions are decreased in breast cancer compared with normal breast tissue. • BAD impedes breast cancer invasion and migration. • BAD inhibits the EMT and transcription factors that promote cancer cell migration. • Invasion and migration functions of BAD are distinct from the BAD's role in apoptosis

  14. Selenium-regulated hierarchy of human selenoproteome in cancerous and immortalized cells lines.

    Science.gov (United States)

    Touat-Hamici, Zahia; Bulteau, Anne-Laure; Bianga, Juliusz; Jean-Jacques, Hélène; Szpunar, Joanna; Lobinski, Ryszard; Chavatte, Laurent

    2018-04-13

    Selenoproteins (25 genes in human) co-translationally incorporate selenocysteine using a UGA codon, normally used as a stop signal. The human selenoproteome is primarily regulated by selenium bioavailability with a tissue-specific hierarchy. We investigated the hierarchy of selenoprotein expression in response to selenium concentration variation in four cell lines originating from kidney (HEK293, immortalized), prostate (LNCaP, cancer), skin (HaCaT, immortalized) and liver (HepG2, cancer), using complementary analytical methods. We performed (i) enzymatic activity, (ii) RT-qPCR, (iii) immuno-detection, (iv) selenium-specific mass spectrometric detection after non-radioactive 76 Se labeling of selenoproteins, and (v) luciferase-based reporter constructs in various cell extracts. We characterized cell-line specific alterations of the selenoproteome in response to selenium variation that, in most of the cases, resulted from a translational control of gene expression. We established that UGA-selenocysteine recoding efficiency, which depends on the nature of the SECIS element, dictates the response to selenium variation. We characterized that selenoprotein hierarchy is cell-line specific with conserved features. This analysis should be done prior to any experiments in a novel cell line. We reported a strategy based on complementary methods to evaluate selenoproteome regulation in human cells in culture. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. TMEPAI regulates EMT in lung cancer cells by modulating the ROS and IRS-1 signaling pathways.

    Science.gov (United States)

    Hu, Ying; He, Kai; Wang, Dongmei; Yuan, Xinwang; Liu, Yi; Ji, Hongbin; Song, Jianguo

    2013-08-01

    The epithelial-mesenchymal transition (EMT) has been implicated in various pathophysiological processes, including cancer cell migration and distal metastasis. Reactive oxygen species (ROS) and insulin receptor substrate-1 (IRS-1) are important in cancer progression and regulation of EMT. To explore the biological significance and regulatory mechanism of EMT, we determined the expression, the biological function and the signaling pathway of prostate transmembrane protein, androgen induced-1 (TMEPAI), during the induction of EMT and cell migration. Transforming growth factor (TGF)-β1 significantly upregulated the expression of TMEPAI during EMT in human lung adenocarcinoma. Depletion of TMEPAI abolished TGF-β1-induced downregulation of ferritin heavy chain and the subsequent generation of ROS, thus suppressing TGF-β1-induced EMT and cell migration. In addition, increased ROS production and overexpression of TMEPAI downregulated the level of IRS-1. Both the addition of H2O2 and IRS-1 small interfering RNA rescued the ability of TGF-β1 to induce EMT in TMEPAI-depleted cells. Remarkably, the levels of TMEPAI in lung tumor tissues are very high, whereas its expression in normal lung epithelium is very low. Moreover, TMEPAI expression was positively correlated with the cell mesenchymal phenotype and migration potential. Our work reveals that TMEPAI contributes to TGF-β1-induced EMT through ROS production and IRS-1 downregulation in lung cancer cells.

  16. Combination effect of epigenetic regulation and ionizing radiation in colorectal cancer cells.

    Directory of Open Access Journals (Sweden)

    Joong-Gook Kim

    Full Text Available Exposure of cells to ionizing radiation (IR induces, not only, activation of multiple signaling pathways that play critical roles in cell fate determination, but also alteration of molecular pathways involved in cell death or survival. Recently, DNA methylation has been established as a critical epigenetic process involved in the regulation of gene expression in cancer cells, suggesting that DNA methylation inhibition may be an effective cancer treatment strategy. Because alterations of gene expression by DNA methylation have been considered to influence radioresponsiveness, we investigated the effect of a DNA methyltransferase inhibitor, 5-aza-2'-deoxycytidine (5-aza-dC, on radiosensitivity. In addition, we investigated the underlying cellular mechanisms of combination treatments of ionizing irradiation (IR and 5-aza-dC in human colon cancer cells. Colon cancer cell lines were initially tested for radiation sensitivity by IR in vitro and were treated with two different doses of 5-aza-dC. Survival of these cell lines was measured using MTT (3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and clonogenic assays. The effects of 5-aza-dC along with irradiation on cell growth, cell cycle distribution, apoptosis, and apoptosis-related gene expression were examined. Combination irradiation treatment with 5-aza-dC significantly decreased growth activity compared with irradiation treatment alone or with 5-aza-dC treatment alone. The percentage of HCT116 cells in the sub-G1 phase and their apoptotic rate was increased when cells were treated with irradiation in combination with 5-aza-dC compared with either treatment alone. These observations were strongly supported by increased caspase activity, increased comet tails using comet assays, and increased protein levels of apoptosis-associated molecules (caspase 3/9, cleaved PARP. Our data demonstrated that 5-aza-dC enhanced radiosensitivity in colon cancer cells, and the combination effects of 5

  17. Tryptophan derivatives regulate the transcription of Oct4 in stem-like cancer cells.

    Science.gov (United States)

    Cheng, Jie; Li, Wenxin; Kang, Bo; Zhou, Yanwen; Song, Jiasheng; Dan, Songsong; Yang, Ying; Zhang, Xiaoqian; Li, Jingchao; Yin, Shengyong; Cao, Hongcui; Yao, Hangping; Zhu, Chenggang; Yi, Wen; Zhao, Qingwei; Xu, Xiaowei; Zheng, Min; Zheng, Shusen; Li, Lanjuan; Shen, Binghui; Wang, Ying-Jie

    2015-06-10

    The aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor that responds to environmental toxicants, is increasingly recognized as a key player in embryogenesis and tumorigenesis. Here we show that a variety of tryptophan derivatives that act as endogenous AhR ligands can affect the transcription level of the master pluripotency factor Oct4. Among them, ITE enhances the binding of the AhR to the promoter of Oct4 and suppresses its transcription. Reduction of endogenous ITE levels in cancer cells by tryptophan deprivation or hypoxia leads to Oct4 elevation, which can be reverted by administration with synthetic ITE. Consequently, synthetic ITE induces the differentiation of stem-like cancer cells and reduces their tumorigenic potential in both subcutaneous and orthotopic xenograft tumour models. Thus, our results reveal a role of tryptophan derivatives and the AhR signalling pathway in regulating cancer cell stemness and open a new therapeutic avenue to target stem-like cancer cells.

  18. Molecular regulation of dendritic cell development and function in homeostasis, inflammation, and cancer.

    Science.gov (United States)

    Chrisikos, Taylor T; Zhou, Yifan; Slone, Natalie; Babcock, Rachel; Watowich, Stephanie S; Li, Haiyan S

    2018-03-14

    Dendritic cells (DCs) are the principal antigen-presenting cells of the immune system and play key roles in controlling immune tolerance and activation. As such, DCs are chief mediators of tumor immunity. DCs can regulate tolerogenic immune responses that facilitate unchecked tumor growth. Importantly, however, DCs also mediate immune-stimulatory activity that restrains tumor progression. For instance, emerging evidence indicates the cDC1 subset has important functions in delivering tumor antigens to lymph nodes and inducing antigen-specific lymphocyte responses to tumors. Moreover, DCs control specific therapeutic responses in cancer including those resulting from immune checkpoint blockade. DC generation and function is influenced profoundly by cytokines, as well as their intracellular signaling proteins including STAT transcription factors. Regardless, our understanding of DC regulation in the cytokine-rich tumor microenvironment is still developing and must be better defined to advance cancer treatment. Here, we review literature focused on the molecular control of DCs, with a particular emphasis on cytokine- and STAT-mediated DC regulation. In addition, we highlight recent studies that delineate the importance of DCs in anti-tumor immunity and immune therapy, with the overall goal of improving knowledge of tumor-associated factors and intrinsic DC signaling cascades that influence DC function in cancer. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Demethoxycurcumin inhibited human epithelia ovarian cancer cells' growth via up-regulating miR-551a.

    Science.gov (United States)

    Du, Zhenhua; Sha, Xianqun

    2017-03-01

    Curcumin is a natural agent that has ability to dampen tumor cells' growth. However, the natural form of curcumin is prone to degrade and unstable in vitro. Here, we demonstrated that demethoxycurcumin (a curcumin-related demethoxy compound) could inhibit cell proliferation and induce apoptosis of ovarian cancer cells. Moreover, IRS2/PI3K/Akt axis was inactivated in cells treated with demethoxycurcumin. Quantitative real-time reverse transcription polymerase chain reaction demonstrated that miR-551a was down-regulated in ovarian cancer tissues and ovarian cancer cell lines. Over-expression of miR-551a inhibited cell proliferation and induced apoptosis of ovarian cancer cells, whereas down-regulation of miR-551a exerted the opposite function. Luciferase assays confirmed that there was a binding site of miR-551a in IRS2, and we found that miR-551a exerted tumor-suppressive function by targeting IRS2 in ovarian cancer cells. Remarkably, miR-551a was up-regulated in the cells treated with demethoxycurcumin, and demethoxycurcumin suppressed IRS2 by restoration of miR-551a. In conclusion, demethoxycurcumin hindered ovarian cancer cells' malignant progress via up-regulating miR-551a.

  20. EGF signalling pathway regulates colon cancer stem cell proliferation and apoptosis.

    Science.gov (United States)

    Feng, Y; Dai, X; Li, X; Wang, H; Liu, J; Zhang, J; Du, Y; Xia, L

    2012-10-01

    Cancer stem cells (CSCs) compose a subpopulation of cells within a tumour that can self-renew and proliferate. Growth factors such as epidermal growth factor (EGF) and basic fibroblast growth factor (b-FGF) promote cancer stem cell proliferation in many solid tumours. This study assesses whether EGF, bFGF and IGF signalling pathways are essential for colon CSC proliferation and self-renewal. Colon CSCs were cultured in serum-free medium (SFM) with one of the following growth factors: EGF, bFGF or IGF. Characteristics of CSC gene expression were evaluated by real time PCR. Tumourigenicity of CSCs was determined using a xenograft model in vivo. Effects of EGF receptor inhibitors, Gefitinib and PD153035, on CSC proliferation, apoptosis and signalling were evaluated using fluorescence-activated cell sorting and western blotting. Colon cancer cell HCT116 transformed to CSCs in SFM. Compared to other growth factors, EGF was essential to support proliferation of CSCs that expressed higher levels of progenitor genes (Musashi-1, LGR5) and lower levels of differential genes (CK20). CSCs promoted more rapid tumour growth than regular cancer cells in xenografts. EGFR inhibitors suppressed proliferation and induced apoptosis of CSCs by inhibiting autophosphorylation of EGFR and downstream signalling proteins, such as Akt kinase, extracellular signal-regulated kinase 1/2 (ERK 1/2). This study indicates that EGF signalling was essential for formation and maintenance of colon CSCs. Inhibition of the EGF signalling pathway may provide a useful strategy for treatment of colon cancer. © 2012 Blackwell Publishing Ltd.

  1. Regulation of cancer stem cell properties by CD9 in human B-acute lymphoblastic leukemia

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hiroto [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Wilson Xu, C. [Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States); Naito, Motohiko [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Nishida, Hiroko [Division of Hematology, Department of Internal Medicine, Keio University School of Medicine, Tokyo (Japan); Okamoto, Toshihiro; Ghani, Farhana Ishrat; Iwata, Satoshi [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Inukai, Takeshi; Sugita, Kanji [Department of Pediatrics, School of Medicine, University of Yamanashi, Yamanashi (Japan); Morimoto, Chikao, E-mail: morimoto@ims.u-tokyo.ac.jp [Division of Clinical Immunology, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639 (Japan); Drug Development Program, Nevada Cancer Institute, Las Vegas, NV (United States)

    2011-05-27

    Highlights: {yields} We performed more detailed analysis of CD9 function for CSC properties in B-ALL. {yields} Leukemogenic fusion/Src family proteins were markedly regulated in the CD9{sup +} cells. {yields} Proliferation of B-ALL cells was inhibited by anti-CD9 monoclonal antibody. {yields} Knockdown of CD9 by RNAi remarkably reduced the leukemogenic potential. {yields} CD9-knockdown affected the expression and phosphorylation of Src family and USP22. -- Abstract: Although the prognosis of acute lymphoblastic leukemia (ALL) has improved considerably in recent years, some of the cases still exhibit therapy-resistant. We have previously reported that CD9 was expressed heterogeneously in B-ALL cell lines and CD9{sup +} cells exhibited an asymmetric cell division with greater tumorigenic potential than CD9{sup -} cells. CD9{sup +} cells were also serially transplantable in immunodeficient mice, indicating that CD9{sup +} cell possess self-renewal capacity. In the current study, we performed more detailed analysis of CD9 function for the cancer stem cell (CSC) properties. In patient sample, CD9 was expressed in the most cases of B-ALL cells with significant correlation of CD34-expression. Gene expression analysis revealed that leukemogenic fusion proteins and Src family proteins were significantly regulated in the CD9{sup +} population. Moreover, CD9{sup +} cells exhibited drug-resistance, but proliferation of bulk cells was inhibited by anti-CD9 monoclonal antibody. Knockdown of CD9 remarkably reduced the leukemogenic potential. Furthermore, gene ablation of CD9 affected the expression and tyrosine-phosphorylation of Src family proteins and reduced the expression of histone-deubiquitinase USP22. Taken together, our results suggest that CD9 links to several signaling pathways and epigenetic modification for regulating the CSC properties of B-ALL.

  2. Alkali-treated titanium selectively regulating biological behaviors of bacteria, cancer cells and mesenchymal stem cells.

    Science.gov (United States)

    Li, Jinhua; Wang, Guifang; Wang, Donghui; Wu, Qianju; Jiang, Xinquan; Liu, Xuanyong

    2014-12-15

    Many attentions have been paid to the beneficial effect of alkali-treated titanium to bioactivity and osteogenic activity, but few to the other biological effect. In this work, hierarchical micro/nanopore films were prepared on titanium surface by acid etching and alkali treatment and their biological effects on bacteria, cancer cells and mesenchymal stem cells were investigated. Gram-positive Staphylococcus aureus, Gram-negative Escherichia coli, and human cholangiocarcinoma cell line RBE were used to investigate whether alkali-treated titanium can influence behaviors of bacteria and cancer cells. Responses of bone marrow mesenchymal stem cells (BMMSCs) to alkali-treated titanium were also subsequently investigated. The alkali-treated titanium can potently reduce bacterial adhesion, inhibit RBE and BMMSCs proliferation, while can better promote BMMSCs osteogenesis and angiogenesis than acid-etched titanium. The bacteriostatic ability of the alkali-treated titanium is proposed to result from the joint effect of micro/nanotopography and local pH increase at bacterium/material interface due to the hydrolysis of alkali (earth) metal titanate salts. The inhibitory action of cell proliferation is thought to be the effect of local pH increase at cell/material interface which causes the alkalosis of cells. This alkalosis model reported in this work will help to understand the biologic behaviors of various cells on alkali-treated titanium surface and design the intended biomedical applications. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Suspension state increases reattachment of breast cancer cells by up-regulating lamin A/C.

    Science.gov (United States)

    Zhang, Xiaomei; Lv, Yonggang

    2017-12-01

    Extravasation is a rate-limiting step of tumor metastasis, for which adhesion to endothelium of circulating tumor cells (CTCs) is the prerequisite. The suspension state of CTCs undergoing detachment from primary tumor is a persistent biomechanical cue, which potentially regulates the biophysical characteristics and cellular behaviors of tumor cells. In this study, breast tumor cells MDA-MB-231 in suspension culture condition were used to investigate the effect of suspension state on reattachment of CTCs. Our study demonstrated that suspension state significantly increased the adhesion ability of breast tumor cells. In addition, suspension state markedly promoted the formation of stress fibers and focal adhesions and reduced the motility in reattached breast cancer cells. Moreover, lamin A/C was reversibly accumulated at posttranscriptional level under suspension state, improving the cell stiffness of reattached breast cancer cells. Disruption of actin cytoskeleton by cytochalasin D caused lamin A/C accumulation. Conversely, decreasing actomyosin contraction by ROCK inhibitor Y27632 reduced lamin A/C level. Knocking down lamin A/C weakened the suspension-induced increase of adhesion, and also abolished the suspension-induced decrease of motility and increase of stress fibers and focal adhesion in reattaching tumor cells, suggesting a crucial role of lamin A/C. In conclusion, it was demonstrated that suspension state promoted the reattachment of breast tumor cells by up-regulating lamin A/C via cytoskeleton disruption. These findings highlight the important role of suspension state for tumor cells in tumor metastasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. BCL-2 family protein, BAD is down-regulated in breast cancer and inhibits cell invasion.

    Science.gov (United States)

    Cekanova, Maria; Fernando, Romaine I; Siriwardhana, Nalin; Sukhthankar, Mugdha; De la Parra, Columba; Woraratphoka, Jirayus; Malone, Christine; Ström, Anders; Baek, Seung J; Wade, Paul A; Saxton, Arnold M; Donnell, Robert M; Pestell, Richard G; Dharmawardhane, Suranganie; Wimalasena, Jay

    2015-02-01

    We have previously demonstrated that the anti-apoptotic protein BAD is expressed in normal human breast tissue and shown that BAD inhibits expression of cyclin D1 to delay cell-cycle progression in breast cancer cells. Herein, expression of proteins in breast tissues was studied by immunohistochemistry and results were analyzed statistically to obtain semi-quantitative data. Biochemical and functional changes in BAD-overexpressing MCF7 breast cancer cells were evaluated using PCR, reporter assays, western blotting, ELISA and extracellular matrix invasion assays. Compared to normal tissues, Grade II breast cancers expressed low total/phosphorylated forms of BAD in both cytoplasmic and nuclear compartments. BAD overexpression decreased the expression of β-catenin, Sp1, and phosphorylation of STATs. BAD inhibited Ras/MEK/ERK and JNK signaling pathways, without affecting the p38 signaling pathway. Expression of the metastasis-related proteins, MMP10, VEGF, SNAIL, CXCR4, E-cadherin and TlMP2 was regulated by BAD with concomitant inhibition of extracellular matrix invasion. Inhibition of BAD by siRNA increased invasion and Akt/p-Akt levels. Clinical data and the results herein suggest that in addition to the effect on apoptosis, BAD conveys anti-metastatic effects and is a valuable prognostic marker in breast cancer. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Endogenous GAS6 and Mer receptor signaling regulate prostate cancer stem cells in bone marrow.

    Science.gov (United States)

    Jung, Younghun; Decker, Ann M; Wang, Jingcheng; Lee, Eunsohl; Kana, Lulia A; Yumoto, Kenji; Cackowski, Frank C; Rhee, James; Carmeliet, Peter; Buttitta, Laura; Morgan, Todd M; Taichman, Russell S

    2016-05-03

    GAS6 and its receptors (Tryo 3, Axl, Mer or "TAM") are known to play a role in regulating tumor progression in a number of settings. Previously we have demonstrated that GAS6 signaling regulates invasion, proliferation, chemotherapy-induced apoptosis of prostate cancer (PCa) cells. We have also demonstrated that GAS6 secreted from osteoblasts in the bone marrow environment plays a critical role in establishing prostate tumor cell dormancy. Here we investigated the role that endogenous GAS6 and Mer receptor signaling plays in establishing prostate cancer stem cells in the bone marrow microenvironment.We first observed that high levels of endogenous GAS6 are expressed by disseminated tumor cells (DTCs) in the bone marrow, whereas relatively low levels of endogenous GAS6 are expressed in PCa tumors grown in a s.c. Interestingly, elevated levels of endogenous GAS6 were identified in putative cancer stem cells (CSCs, CD133+/CD44+) compared to non-CSCs (CD133-/CD44-) isolated from PCa/osteoblast cocultures in vitro and in DTCs isolated from the bone marrow 24 hours after intracardiac injection. Moreover, we found that endogenous GAS6 expression is associated with Mer receptor expression in growth arrested (G1) PCa cells, which correlates with the increase of the CSC populations. Importantly, we found that overexpression of GAS6 activates phosphorylation of Mer receptor signaling and subsequent induction of the CSC phenotype in vitro and in vivo.Together these data suggest that endogenous GAS6 and Mer receptor signaling contribute to the establishment of PCa CSCs in the bone marrow microenvironment, which may have important implications for targeting metastatic disease.

  6. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Putnik, Milica, E-mail: milica.putnik@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Zhao, Chunyan, E-mail: chunyan.zhao@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Gustafsson, Jan-Ake, E-mail: jan-ake.gustafsson@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden); Department of Biology and Biochemistry, Science and Engineering Research Center Bldg, University of Houston, Houston, TX 77204-5056 (United States); Dahlman-Wright, Karin, E-mail: karin.dahlman-wright@ki.se [Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Huddinge S-14183 (Sweden)

    2012-09-14

    Highlights: Black-Right-Pointing-Pointer Estrogen signaling and demethylation can both control gene expression in breast cancers. Black-Right-Pointing-Pointer Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. Black-Right-Pointing-Pointer 137 genes are influenced by both 17{beta}-estradiol and demethylating agent 5-aza-2 Prime -deoxycytidine. Black-Right-Pointing-Pointer A set of genes is identified as targets of both estrogen signaling and demethylation. Black-Right-Pointing-Pointer There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17{beta}-estradiol (E2) and a demethylating agent 5-aza-2 Prime -deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of

  7. Global identification of genes regulated by estrogen signaling and demethylation in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Putnik, Milica; Zhao, Chunyan; Gustafsson, Jan-Åke; Dahlman-Wright, Karin

    2012-01-01

    Highlights: ► Estrogen signaling and demethylation can both control gene expression in breast cancers. ► Cross-talk between these mechanisms is investigated in human MCF-7 breast cancer cells. ► 137 genes are influenced by both 17β-estradiol and demethylating agent 5-aza-2′-deoxycytidine. ► A set of genes is identified as targets of both estrogen signaling and demethylation. ► There is no direct molecular interplay of mediators of estrogen and epigenetic signaling. -- Abstract: Estrogen signaling and epigenetic modifications, in particular DNA methylation, are involved in regulation of gene expression in breast cancers. Here we investigated a potential regulatory cross-talk between these two pathways by identifying their common target genes and exploring underlying molecular mechanisms in human MCF-7 breast cancer cells. Gene expression profiling revealed that the expression of approximately 140 genes was influenced by both 17β-estradiol (E2) and a demethylating agent 5-aza-2′-deoxycytidine (DAC). Gene ontology (GO) analysis suggests that these genes are involved in intracellular signaling cascades, regulation of cell proliferation and apoptosis. Based on previously reported association with breast cancer, estrogen signaling and/or DNA methylation, CpG island prediction and GO analysis, we selected six genes (BTG3, FHL2, PMAIP1, BTG2, CDKN1A and TGFB2) for further analysis. Tamoxifen reverses the effect of E2 on the expression of all selected genes, suggesting that they are direct targets of estrogen receptor. Furthermore, DAC treatment reactivates the expression of all selected genes in a dose-dependent manner. Promoter CpG island methylation status analysis revealed that only the promoters of BTG3 and FHL2 genes are methylated, with DAC inducing demethylation, suggesting DNA methylation directs repression of these genes in MCF-7 cells. In a further analysis of the potential interplay between estrogen signaling and DNA methylation, E2 treatment

  8. Protein arginine methyltransferase 5 regulates multiple signaling pathways to promote lung cancer cell proliferation

    International Nuclear Information System (INIS)

    Sheng, Xiumei; Wang, Zhengxin

    2016-01-01

    Protein arginine methyltransferase 5 (PRMT5) catalyzes the formation of symmetrical dimethylation of arginine residues in proteins. WD repeat domain 77 (WDR77), also known as p44, MEP50, or WD45, forms a stoichiometric complex with PRMT5. The PRMT5/p44 complex is required for cellular proliferation of lung and prostate epithelial cells during earlier stages of development and is re-activated during prostate and lung tumorigenesis. The molecular mechanisms by which PRMT5 and p44 promote cellular proliferation are unknown. Expression of PRMT5 and p44 in lung and prostate cancer cells was silenced and their target genes were identified. The regulation of target genes was validated in various cancer cells during lung development and tumorigenesis. Altered expression of target genes was achieved by ectopic cDNA expression and shRNA-mediated silencing. PRMT5 and p44 regulate expression of a specific set of genes encoding growth and anti-growth factors, including receptor tyrosine kinases and antiproliferative proteins. Genes whose expression was suppressed by PRMT5 and p44 encoded anti-growth factors and inhibited cell growth when ectopically expressed. In contrast, genes whose expression was enhanced by PRMT5 and p44 encoded growth factors and increased cell growth when expressed. Altered expression of target genes is associated with re-activation of PRMT5 and p44 during lung tumorigenesis. Our data provide the molecular basis by which PRMT5 and p44 regulate cell growth and lay a foundation for further investigation of their role in lung tumor initiation. The online version of this article (doi:10.1186/s12885-016-2632-3) contains supplementary material, which is available to authorized users

  9. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Davis Rodney

    2006-07-01

    Full Text Available Abstract Background Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF, was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. Methods We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. Results We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM or nucleolin (on the cell surfaces eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of

  10. Met-Independent Hepatocyte Growth Factor-mediated regulation of cell adhesion in human prostate cancer cells

    International Nuclear Information System (INIS)

    Tate, Amanda; Isotani, Shuji; Bradley, Michael J; Sikes, Robert A; Davis, Rodney; Chung, Leland WK; Edlund, Magnus

    2006-01-01

    Prostate cancer cells communicate reciprocally with the stromal cells surrounding them, inside the prostate, and after metastasis, within the bone. Each tissue secretes factors for interpretation by the other. One stromally-derived factor, Hepatocyte Growth Factor (HGF), was found twenty years ago to regulate invasion and growth of carcinoma cells. Working with the LNCaP prostate cancer progression model, we found that these cells could respond to HGF stimulation, even in the absence of Met, the only known HGF receptor. The new HGF binding partner we find on the cell surface may help to clarify conflicts in the past literature about Met expression and HGF response in cancer cells. We searched for Met or any HGF binding partner on the cells of the PC3 and LNCaP prostate cancer cell models, using HGF immobilized on agarose beads. By using mass spectrometry analyses and sequencing we have identified nucleolin protein as a novel HGF binding partner. Antibodies against nucleolin (or HGF) were able to ameliorate the stimulatory effects of HGF on met-negative prostate cancer cells. Western blots, RT-PCR, and immunohistochemistry were used to assess nucleolin levels during prostate cancer progression in both LNCaP and PC3 models. We have identified HGF as a major signaling component of prostate stromal-conditioned media (SCM) and have implicated the protein nucleolin in HGF signal reception by the LNCaP model prostate cancer cells. Antibodies that silence either HGF (in SCM) or nucleolin (on the cell surfaces) eliminate the adhesion-stimulatory effects of the SCM. Likewise, addition of purified HGF to control media mimics the action of SCM. C4-2, an LNCaP lineage-derived, androgen-independent human prostate cancer cell line, responds to HGF in a concentration-dependent manner by increasing its adhesion and reducing its migration on laminin substratum. These HGF effects are not due to shifts in the expression levels of laminin-binding integrins, nor can they be linked to

  11. CRF2 signaling is a novel regulator of cellular adhesion and migration in colorectal cancer cells.

    Science.gov (United States)

    Ducarouge, Benjamin; Pelissier-Rota, Marjolaine; Lainé, Michèle; Cristina, Nadine; Vachez, Yvan; Scoazec, Jean-Yves; Bonaz, Bruno; Jacquier-Sarlin, Muriel

    2013-01-01

    Stress has been proposed to be a tumor promoting factor through the secretion of specific neuromediators, such as Urocortin2 and 3 (Ucn2/3), however its role in colorectal cancer (CRC) remains elusive. We observed that Ucn2/3 and their receptor the Corticotropin Releasing Factor receptor 2 (CRF2) were up-regulated in high grade and poorly differentiated CRC. This suggests a role for CRF2 in the loss of cellular organization and tumor progression. Using HT-29 and SW620 cells, two CRC cell lines differing in their abilities to perform cell-cell contacts, we found that CRF2 signals through Src/ERK pathway to induce the alteration of cell-cell junctions and the shuttle of p120ctn and Kaiso in the nucleus. In HT-29 cells, this signaling pathway also leads to the remodeling of cell adhesion by i) the phosphorylation of Focal Adhesion Kinase and ii) a modification of actin cytoskeleton and focal adhesion complexes. These events stimulate cell migration and invasion. In conclusion, our findings indicate that CRF2 signaling controls cellular organization and may promote metastatic potential of human CRC cells through an epithelial-mesenchymal transition like process. This contributes to the comprehension of the tumor-promoting effects of stress molecules and designates Ucn2/3-CRF2 tandem as a target to prevent CRC progression and aggressiveness.

  12. Regulator of G-protein signaling 5 (RGS5) inhibits cell proliferation and enhances radiosensitivity of human lung cancer cells

    International Nuclear Information System (INIS)

    Xu Zumin; Wang Jin; Zuo Yufang; Yu Zhonghua; Peng Fang; Hu Xiao; Zhou Qichao; Ma Honglian; Bao Yong; Chen Ming

    2014-01-01

    Objective: To investigate the effects of regulator and the underlying molecular mechanisms of G-protein signaling 5 (RGS5) on radiation response in human lung cancer cells. Methods: The effects of RGS5 on viability were determined by MTT assay, and apoptosis rate was detected by flow cytometry, in human lung cancer cells. The combined effect of ionizing radiation and RGS5 on tumor cells was detected by colony formation assay. The protein expression was detected by Western blot. Results: RGS5 overexpression remarkably inhibited the survival of human lung cancer cells, and the growth inhibition rate of RGS5 overexpression on A549 and Calu-3 cells were 44.4% (F = 29.18, P < 0.05) and 39.27% (F = 23.04, P < 0.05) at 48 h, and 54.3%(F = 103.45, P < 0.05), 44.7%(F = 108.02, P < 0.05) at 72 h post-irradiation, respectively. RGS5 might exert its inhibitory effects on human lung cancer cells by inducing tumor cell apoptosis, while the apoptotic cells rate in A549 and Calu-3 cells in control group, pTRiEX group and pTRiEX-RGS5 group were (1.3±0.2)%, (3.4±0.6)%, (19.6±2.3)% (F = 86.62, P < 0.05), and (3.2±0.8)%, (3.0±0.9)%, (12.8±1.8)% (F = 28.80, P < 0.05) at 36 h post-irradiation, respectively. Furthermore, RGS5 could sensitize the lung cancer cells to radiation. Conclusions: RGS5 might play an inhibitory role in human lung cancer cell proliferation, which may explain the pathoclinical observation thet high expression of RGSS is a favorable prognostic factor in NSCLC patients. In addition, RGS5 also enhance the anti-tumor effects of radiation in human lung cancer cells. (authors)

  13. BAG3 regulates cell proliferation, migration, and invasion in human colorectal cancer.

    Science.gov (United States)

    Shi, Huiyong; Xu, Haidong; Li, Zengjun; Zhen, Yanan; Wang, Bin; Huo, Shoujun; Xiao, Ruixue; Xu, Zhongfa

    2016-04-01

    Bcl2-associated athanogene 3 (BAG3) has been reported to be elevated in various tumors. However, it is unclear whether BAG3 has a functional role in the initiation and progression of colorectal cancer (CRC). Here, we collected CRC samples and cell lines to validate the pathway by using gene and protein assays. RT-PCR showed that the expression of BAG3 mRNA in CRC tissues was obviously higher than that in non-tumor tissues (p BAG3 was found in most CRC tissues and strongly correlated with TNM stage (p = 0.001), differentiation (p = 0.003), and metastasis (p = 0.010). Low expression of BAG3 in HCT-8 significantly reduced cellular proliferation, migration, and invasion. The analysis of in vitro cell showed that HCT-8 cells were exposed to si-BAG3, and its growth was inhibited depending on modulation of cell cycle G1/S checkpoints and cell cycle regulators, involving cyclin D1, cyclin A2, and cyclin B1. Furthermore, suppression of the epithelial-mesenchymal transition (EMT) by si-BAG3 is linked to the decreased expression of E-cadherin and the increased expression of N-cadherin, vimentin, and MMP9. In conclusion, in the present study, we demonstrated that BAG3 overexpression plays a critical role in cell proliferation, migration, and invasion of colorectal cancer. Our data suggests targeted inhibition of BAG3 may be useful for patients with CRC.

  14. MicroRNA-dependent regulation of transcription in non-small cell lung cancer.

    Directory of Open Access Journals (Sweden)

    Sonia Molina-Pinelo

    Full Text Available Squamous cell lung cancer (SCC and adenocarcinoma are the most common histological subtypes of non-small cell lung cancer (NSCLC, and have been traditionally managed in the clinic as a single entity. Increasing evidence, however, illustrates the biological diversity of these two histological subgroups of lung cancer, and supports the need to improve our understanding of the molecular basis beyond the different phenotypes if we aim to develop more specific and individualized targeted therapy. The purpose of this study was to identify microRNA (miRNA-dependent transcriptional regulation differences between SCC and adenocarcinoma histological lung cancer subtypes. In this work, paired miRNA (667 miRNAs by TaqMan Low Density Arrays (TLDA and mRNA profiling (Whole Genome 44 K array G112A, Agilent was performed in tumor samples of 44 NSCLC patients. Nine miRNAs and 56 mRNAs were found to be differentially expressed in SCC versus adenocarcinoma samples. Eleven of these 56 mRNA were predicted as targets of the miRNAs identified to be differently expressed in these two histological conditions. Of them, 6 miRNAs (miR-149, miR-205, miR-375, miR-378, miR-422a and miR-708 and 9 target genes (CEACAM6, CGN, CLDN3, ABCC3, MLPH, ACSL5, TMEM45B, MUC1 were validated by quantitative PCR in an independent cohort of 41 lung cancer patients. Furthermore, the inverse correlation between mRNAs and microRNAs expression was also validated. These results suggest miRNA-dependent transcriptional regulation differences play an important role in determining key hallmarks of NSCLC, and may provide new biomarkers for personalized treatment strategies.

  15. Sirtuin-1 regulates acinar-to-ductal metaplasia and supports cancer cell viability in pancreatic cancer.

    Science.gov (United States)

    Wauters, Elke; Sanchez-Arévalo Lobo, Victor J; Pinho, Andreia V; Mawson, Amanda; Herranz, Daniel; Wu, Jianmin; Cowley, Mark J; Colvin, Emily K; Njicop, Erna Ngwayi; Sutherland, Rob L; Liu, Tao; Serrano, Manuel; Bouwens, Luc; Real, Francisco X; Biankin, Andrew V; Rooman, Ilse

    2013-04-01

    The exocrine pancreas can undergo acinar-to-ductal metaplasia (ADM), as in the case of pancreatitis where precursor lesions of pancreatic ductal adenocarcinoma (PDAC) can arise. The NAD(+)-dependent protein deacetylase Sirtuin-1 (Sirt1) has been implicated in carcinogenesis with dual roles depending on its subcellular localization. In this study, we examined the expression and the role of Sirt1 in different stages of pancreatic carcinogenesis, i.e. ADM models and established PDAC. In addition, we analyzed the expression of KIAA1967, a key mediator of Sirt1 function, along with potential Sirt1 downstream targets. Sirt1 was co-expressed with KIAA1967 in the nuclei of normal pancreatic acinar cells. In ADM, Sirt1 underwent a transient nuclear-to-cytoplasmic shuttling. Experiments where during ADM, we enforced repression of Sirt1 shuttling, inhibition of Sirt1 activity or modulation of its expression, all underscore that the temporary decrease of nuclear and increase of cytoplasmic Sirt1 stimulate ADM. Our results further underscore that important transcriptional regulators of acinar differentiation, that is, Pancreatic transcription factor-1a and β-catenin can be deacetylated by Sirt1. Inhibition of Sirt1 is effective in suppression of ADM and in reducing cell viability in established PDAC tumors. KIAA1967 expression is differentially downregulated in PDAC and impacts on the sensitivity of PDAC cells to the Sirt1/2 inhibitor Tenovin-6. In PDAC, acetylation of β-catenin is not affected, unlike p53, a well-characterized Sirt1-regulated protein in tumor cells. Our results reveal that Sirt1 is an important regulator and potential therapeutic target in pancreatic carcinogenesis. ©2012 AACR.

  16. Suberoylanilide hydroxamic acid increases anti-cancer effect of tumor necrosis factor-α through up-regulation of TNF receptor 1 in lung cancer cells.

    Science.gov (United States)

    You, Bo Ra; Han, Bo Ram; Park, Woo Hyun

    2017-03-14

    Suberoylanilide hydroxamic acid (SAHA) as a histone deacetylase (HDAC) inhibitor has anti-cancer effect. Here, we evaluated the effect of SAHA on HDAC activity and cell growth in many normal lung and cancer cells. We observed that the HDAC activities of lung cancer cells were higher than that of normal lung cells. SAHA inhibited the growth of lung cancer cells regardless of the inhibitory effect on HDAC. This agent induced a G2/M phase arrest and apoptosis, which was accompanied by mitochondrial membrane potential (MMP: ΔΨm) loss in lung cancer cells. However, SAHA did not induce cell death in normal lung cells. All tested caspase inhibitors prevented apoptotic cell death in SAHA-treated A549 and Calu-6 lung cancer cells. Treatment with tumor necrosis factor-alpha (TNF-α) enhanced apoptosis in SAHA-treated lung cancer cells through caspase-8 and caspase-9 activations. Especially, SAHA increased the expression level of TNF-α receptor 1 (TNFR1), especially acetylation of the region of TNFR1 promoter -223/-29 in lung cancer cells. The down-regulation of TNFR1 suppressed apoptosis in TNF-α and SAHA-treated lung cancer cells. In conclusion, SAHA inhibited the growth of lung cancer cells via a G2/M phase arrest and caspase-dependent apoptosis. SAHA also enhanced apoptotic effect of TNF-α in human lung cancer cells through up-regulation of TNFR1. TNF-α may be a key to improve anti-cancer effect of HDAC inhibitors.

  17. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    International Nuclear Information System (INIS)

    Tomblin, Justin K.; Salisbury, Travis B.

    2014-01-01

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR

  18. Insulin like growth factor 2 regulation of aryl hydrocarbon receptor in MCF-7 breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Tomblin, Justin K.; Salisbury, Travis B., E-mail: salisburyt@marshall.edu

    2014-01-17

    Highlights: •IGF-2 stimulates concurrent increases in AHR and CCND1 expression. •IGF-2 promotes the binding of AHR to the endogenous cyclin D1 promoter. •AHR knockdown inhibits IGF-2 stimulated increases in CCND1 mRNA and protein. •AHR knockdown inhibits IGF-2 stimulated increases in MCF-7 proliferation. -- Abstract: Insulin like growth factor (IGF)-1 and IGF-2 stimulate normal growth, development and breast cancer cell proliferation. Cyclin D1 (CCND1) promotes cell cycle by inhibiting retinoblastoma protein (RB1). The aryl hydrocarbon receptor (AHR) is a major xenobiotic receptor that also regulates cell cycle. The purpose of this study was to investigate whether IGF-2 promotes MCF-7 breast cancer proliferation by inducing AHR. Western blot and quantitative real time PCR (Q-PCR) analysis revealed that IGF-2 induced an approximately 2-fold increase (P < .001) in the expression of AHR and CCND1. Chromatin immunoprecipitation (ChIP), followed by Q-PCR indicated that IGF-2 promoted (P < .001) a 7-fold increase in AHR binding on the CCND1 promoter. AHR knockdown significantly (P < .001) inhibited IGF-2 stimulated increases in CCND1 mRNA and protein. AHR knockdown cells were less (P < .001) responsive to the proliferative effects of IGF-2 than control cells. Collectively, our findings have revealed a new regulatory mechanism by which IGF-2 induction of AHR promotes the expression of CCND1 and the proliferation of MCF-7 cells. This previously uncharacterized pathway could be important for the proliferation of IGF responsive cancer cells that also express AHR.

  19. Csk Homologous Kinase, a Potential Regulator of CXCR4-Medicated Breast Cancer Cell Metastasis

    Science.gov (United States)

    2011-08-01

    is a non-receptor tyrosine kinase and a second member of the Csk family. Like Csk, CHK has Src homology 2 ( SH2 ) and SH3 domains and lacks the...MSCV-retroviral vectors encoding either wild-type CHK or kinase -dead CHK or wild type SH2 domain or SH2 -R147A or SH2 -G129A. All these constructs were... Kinase , a Potential Regulator of CXCR4-Medicated Breast Cancer Cell Metastasis Byeong-Chel Lee The University of Pittsburgh Pittsburgh, PA 15213

  20. Hedgehog Signaling Regulates Epithelial-Mesenchymal Transition in Pancreatic Cancer Stem-Like Cells

    Science.gov (United States)

    Wang, Feng; Ma, Ling; Zhang, Zhengkui; Liu, Xiaoran; Gao, Hongqiao; Zhuang, Yan; Yang, Pei; Kornmann, Marko; Tian, Xiaodong; Yang, Yinmo

    2016-01-01

    Hedgehog (Hh) signaling is crucially involved in tumorigenesis. This study aimed to assess the role of Hh signaling in the regulation of epithelial-mesenchymal transition (EMT), stemness properties and chemoresistance of human pancreatic Panc-1 cancer stem cells (CSCs). Panc-1 cells were transfected with recombinant lentiviral vectors to silence SMO and serum-free floating-culture system was used to isolate Panc-1 tumorspheres. The expression of CSC and EMT markers was detected by flow cytometry, real-time RT-PCR and Western blot analysis. Malignant behaviors of Panc-1 CSC were evaluated by tumorigenicity assays and nude mouse lung metastasis model. We found that tumorspheres derived from pancreatic cancer cell line Panc-1 possessed self-renewal, differentiation and stemness properties. Hh pathway and EMT were active in Panc-1 tumorspheres. Inhibition of Hh signaling by SMO knockdown inhibited self-renewal, EMT, invasion, chemoresistance, pulmonary metastasis, tumorigenesis of pancreatic CSCs. In conclusion, Hh signaling contributes to the maintenance of stem-like properties and chemoresistance of pancreatic CSC and promotes the tumorigenesis and metastasis of pancreatic cancer. Hh pathway is a potential molecular target for the development of therapeutic strategies for pancreatic CSCs. PMID:26918054

  1. The regulation of adiponectin receptors in human prostate cancer cell lines

    International Nuclear Information System (INIS)

    Mistry, T.; Digby, J.E.; Chen, J.; Desai, K.M.; Randeva, H.S.

    2006-01-01

    Obesity is a risk factor for prostate cancer, and plasma levels of the adipokine, adiponectin, are low in the former but high in the latter. Adiponectin has been shown to modulate cell proliferation and apoptosis, suggesting that adiponectin and its receptors (Adipo-R1, Adipo-R2) may provide a molecular association between obesity and prostate carcinogenesis. We show for First time, the protein distribution of Adipo-R1 and Adipo-R2 in LNCaP and PC3 cells, and in human prostate tissue. Using real-time RT-PCR we provide novel data demonstrating the differential regulation of Adipo-R1 and Adipo-R2 mRNA expression by testosterone, 5-α dihydrotestosterone, β-estradiol, tumour necrosis factor-α, leptin, and adiponectin in LNCaP and PC3 cells. Our findings suggest that adiponectin and its receptors may contribute to the molecular association between obesity and prostate cancer through a complex interaction with other hormones and cytokines that also play important roles in the pathophysiology of obesity and prostate cancer

  2. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia, E-mail: lixiaqi_dph@sina.com

    2016-01-22

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  3. Epigenetic down-regulated DDX10 promotes cell proliferation through Akt/NF-κB pathway in ovarian cancer

    International Nuclear Information System (INIS)

    Gai, Muhuizi; Bo, Qifang; Qi, Lixia

    2016-01-01

    Ovarian cancer contributes to the majority of ovarian cancer, while the molecular mechanisms remain elusive. Recently, some DEAD box protein 1 has been reported play a tumor suppressor role in ovarian cancer progression. However, the functions of DEAD box protein (DDX) members in ovarian cancer development remain largely unknown. In current study, we retrieved GEO databases and surprisingly found that DDX10 is significantly down-regulated in ovarian cancer tissues compared with normal ovary. These findings suggest that DDX10 might also play a suppressive role in ovarian cancer. We then validated the down-regulated expression pattern of DDX10 in fresh ovarian cancer tissues. Furthermore, both loss- and gain-functions assays reveal that the down-regulated DDX10 could promote ovarian cancer proliferation in vitro and the xenograft subcutaneous tumor formation assays confirmed these findings in vivo. In addition, we found that DDX10 is epigenetic silenced by miR-155-5p in ovarian cancer. Moreover, we further preliminary illustrated that down-regulated DDX10 promotes ovarian cancer cell proliferation through Akt/NF-κB pathway. Taken together, in current study, we found a novel tumor suppressor, DDX10, is epigenetic silenced by miR-155-5p in ovarian cancer, and the down-regulated expression pattern of DDX10 promotes ovarian cancer proliferation through Akt/NF-κB pathway. Our findings shed the light that DDX families might be a novel for ovarian cancer treatment. - Highlights: • A novel DEAD box protein, DDX10 is significantly down-regulated in ovarian cancer tissues. • Down-regulated DDX10 promotes ovarian cancer cell proliferation and growth both in vitro and in vivo. • miR-155-5p is highly expressed in ovarian cancer tissues and epigenetically targets DDX10. • DDX10 and miR-155-5p regulates Akt/p65 axis in ovarian cancer cells.

  4. Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells.

    Science.gov (United States)

    Chen, Jiang; Ding, Jie; Wang, Ziwei; Zhu, Jian; Wang, Xuejian; Du, Jiyi

    2017-03-21

    This study aims to identify downstream target genes regulated by lysine-specific demethylase 1 (LSD1) in colon cancer cells and investigate the molecular mechanisms of LSD1 influencing invasion and metastasis of colon cancer. We obtained the expression changes of downstream target genes regulated by small-interfering RNA-LSD1 and LSD1-overexpression via gene expression profiling in two human colon cancer cell lines. An Affymetrix Human Transcriptome Array 2.0 was used to identify differentially expressed genes (DEGs). We screened out LSD1-target gene associated with proliferation, metastasis, and invasion from DEGs via Gene Ontology and Pathway Studio. Subsequently, four key genes (CABYR, FOXF2, TLE4, and CDH1) were computationally predicted as metastasis-related LSD1-target genes. ChIp-PCR was applied after RT-PCR and Western blot validations to detect the occupancy of LSD1-target gene promoter-bound LSD1. A total of 3633 DEGs were significantly upregulated, and 4642 DEGs were downregulated in LSD1-silenced SW620 cells. A total of 4047 DEGs and 4240 DEGs were upregulated and downregulated in LSD1-overexpressed HT-29 cells, respectively. RT-PCR and Western blot validated the microarray analysis results. ChIP assay results demonstrated that LSD1 might be negative regulators for target genes CABYR and CDH1. The expression level of LSD1 is negatively correlated with mono- and dimethylation of histone H3 lysine4(H3K4) at LSD1- target gene promoter region. No significant mono-methylation and dimethylation of H3 lysine9 methylation was detected at the promoter region of CABYR and CDH1. LSD1- depletion contributed to the upregulation of CABYR and CDH1 through enhancing the dimethylation of H3K4 at the LSD1-target genes promoter. LSD1- overexpression mediated the downregulation of CABYR and CDH1expression through decreasing the mono- and dimethylation of H3K4 at LSD1-target gene promoter in colon cancer cells. CABYR and CDH1 might be potential LSD1-target genes in colon

  5. The retinoblastoma protein regulates hypoxia-inducible genetic programs, tumor cell invasiveness and neuroendocrine differentiation in prostate cancer cells

    Science.gov (United States)

    Labrecque, Mark P.; Takhar, Mandeep K.; Nason, Rebecca; Santacruz, Stephanie; Tam, Kevin J.; Massah, Shabnam; Haegert, Anne; Bell, Robert H.; Altamirano-Dimas, Manuel; Collins, Colin C.; Lee, Frank J.S.; Prefontaine, Gratien G.; Cox, Michael E.; Beischlag, Timothy V.

    2016-01-01

    Loss of tumor suppressor proteins, such as the retinoblastoma protein (Rb), results in tumor progression and metastasis. Metastasis is facilitated by low oxygen availability within the tumor that is detected by hypoxia inducible factors (HIFs). The HIF1 complex, HIF1α and dimerization partner the aryl hydrocarbon receptor nuclear translocator (ARNT), is the master regulator of the hypoxic response. Previously, we demonstrated that Rb represses the transcriptional response to hypoxia by virtue of its association with HIF1. In this report, we further characterized the role Rb plays in mediating hypoxia-regulated genetic programs by stably ablating Rb expression with retrovirally-introduced short hairpin RNA in LNCaP and 22Rv1 human prostate cancer cells. DNA microarray analysis revealed that loss of Rb in conjunction with hypoxia leads to aberrant expression of hypoxia-regulated genetic programs that increase cell invasion and promote neuroendocrine differentiation. For the first time, we have established a direct link between hypoxic tumor environments, Rb inactivation and progression to late stage metastatic neuroendocrine prostate cancer. Understanding the molecular pathways responsible for progression of benign prostate tumors to metastasized and lethal forms will aid in the development of more effective prostate cancer therapies. PMID:27015368

  6. BRCA1-IRIS regulates cyclin D1 expression in breast cancer cells

    International Nuclear Information System (INIS)

    Nakuci, Enkeleda; Mahner, Sven; DiRenzo, James; ElShamy, Wael M.

    2006-01-01

    The regulator of cell cycle progression, cyclin D1, is up-regulated in breast cancer cells; its expression is, in part, dependent on ERα signaling. However, many ERα-negative tumors and tumor cell lines (e.g., SKBR3) also show over-expression of cyclin D1. This suggests that, in addition to ERα signaling, cyclin D1 expression is under the control of other signaling pathways; these pathways may even be over-expressed in the ERα-negative cells. We previously noticed that both ERα-positive and -negative cell lines over-express BRCA1-IRIS mRNA and protein. Furthermore, the level of over-expression of BRCA1-IRIS in ERα-negative cell lines even exceeded its over-expression level in ERα-positive cell lines. In this study, we show that: (1) BRCA1-IRIS forms complex with two of the nuclear receptor co-activators, namely, SRC1 and SRC3 (AIB1) in an ERα-independent manner. (2) BRCA1-IRIS alone, or in connection with co-activators, is recruited to the cyclin D1 promoter through its binding to c-Jun/AP1 complex; this binding activates the cyclin D1 expression. (3) Over-expression of BRCA1-IRIS in breast cells over-activates JNK/c-Jun; this leads to the induction of cyclin D1 expression and cellular proliferation. (4) BRCA1-IRIS activation of JNK/c-Jun/AP1 appears to account for this, because in cells that were depleted from BRCA1-IRIS, JNK remained inactive. However, depletion of SRC1 or SRC3 instead reduced c-Jun expression. Our data suggest that this novel signaling pathway links BRCA1-IRIS to cellular proliferation through c-Jun/AP1 nuclear pathway; finally, this culminates in the increased expression of the cyclin D1 gene

  7. Epigenetic silencing of MicroRNA-503 regulates FANCA expression in non-small cell lung cancer cell.

    Science.gov (United States)

    Li, Ning; Zhang, Fangfang; Li, Suyun; Zhou, Suzhen

    2014-02-21

    It is reported that MicroRNA-503 (miR-503) regulates cell apoptosis, and thus modulates the resistance of non-small cell lung cancer cells (NSCLC) to cisplatin. However, the exact role of miR-503 in NSCLC remains unknown. In the present study, the level of miR-503 expression in NSCLC was evaluated using realtime PCR, and the DNA methylation status within miR-503 promoter was analyzed by Combined Bisulfite Restriction Analysis (COBRA) or bisulfite-treated DNA sequencing assays (BSP). We found that the expression of miR-503 was significantly decreased in NSCLC tissues compared to normal tissues. A statistically significant inverse association was found between miR-503 methylation status and expression of the miR-503 in tumor tissues (PFANCA) gene and represses its expression at the transcriptional level. Taken together, our results suggest that miR-503 regulates the resistance of non-small cell lung cancer cells to cisplatin at least in part by targeting FANCA. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    International Nuclear Information System (INIS)

    Guo, Hongsheng; Wu, Fenping; Wang, Yan; Yan, Chong; Su, Wenmei

    2014-01-01

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management

  9. Overexpressed ubiquitin ligase Cullin7 in breast cancer promotes cell proliferation and invasion via down-regulating p53

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hongsheng [Department of Histology and Embryology, Guangdong Medical College, Dongguan 523808, Guangdong (China); Wu, Fenping [The 7th People’s Hospital of Chengdu, Chengdu 610041, Sichuan (China); Wang, Yan [The Second School of Clinical Medicine, Guangdong Medical College, Dongguan 523808, Guangdong (China); Yan, Chong [School of Pharmacy, Guangdong Medical College, Dongguan 523808, Guangdong (China); Su, Wenmei, E-mail: wenmeisutg@126.com [Oncology of Affiliated Hospital Guangdong Medical College, Zhanjiang 524000, Guangdong (China)

    2014-08-08

    Highlights: • Cullin7 is overexpressed in human breast cancer samples. • Cullin7 stimulated proliferation and invasion of breast cancer cells. • Inhibition of p53 contributes to Cullin7-induced proliferation and invasion. - Abstract: Ubiquitin ligase Cullin7 has been identified as an oncogene in some malignant diseases such as choriocarcinoma and neuroblastoma. However, the role of Cullin7 in breast cancer carcinogenesis remains unclear. In this study, we compared Cullin7 protein levels in breast cancer tissues with normal breast tissues and identified significantly higher expression of Cullin7 protein in breast cancer specimens. By overexpressing Cullin7 in breast cancer cells HCC1937, we found that Cullin7 could promote cell growth and invasion in vitro. In contrast, the cell growth and invasion was inhibited by silencing Cullin7 in breast cancer cell BT474. Moreover, we demonstrated that Cullin7 promoted breast cancer cell proliferation and invasion via down-regulating p53 expression. Thus, our study provided evidence that Cullin7 functions as a novel oncogene in breast cancer and may be a potential therapeutic target for breast cancer management.

  10. Molecular conservation of estrogen-response associated with cell cycle regulation, hormonal carcinogenesis and cancer in zebrafish and human cancer cell lines

    Directory of Open Access Journals (Sweden)

    Govindarajan Kunde R

    2011-05-01

    Full Text Available Abstract Background The zebrafish is recognized as a versatile cancer and drug screening model. However, it is not known whether the estrogen-responsive genes and signaling pathways that are involved in estrogen-dependent carcinogenesis and human cancer are operating in zebrafish. In order to determine the potential of zebrafish model for estrogen-related cancer research, we investigated the molecular conservation of estrogen responses operating in both zebrafish and human cancer cell lines. Methods Microarray experiment was performed on zebrafish exposed to estrogen (17β-estradiol; a classified carcinogen and an anti-estrogen (ICI 182,780. Zebrafish estrogen-responsive genes sensitive to both estrogen and anti-estrogen were identified and validated using real-time PCR. Human homolog mapping and knowledge-based data mining were performed on zebrafish estrogen responsive genes followed by estrogen receptor binding site analysis and comparative transcriptome analysis with estrogen-responsive human cancer cell lines (MCF7, T47D and Ishikawa. Results Our transcriptome analysis captured multiple estrogen-responsive genes and signaling pathways that increased cell proliferation, promoted DNA damage and genome instability, and decreased tumor suppressing effects, suggesting a common mechanism for estrogen-induced carcinogenesis. Comparative analysis revealed a core set of conserved estrogen-responsive genes that demonstrate enrichment of estrogen receptor binding sites and cell cycle signaling pathways. Knowledge-based and network analysis led us to propose that the mechanism involving estrogen-activated estrogen receptor mediated down-regulation of human homolog HES1 followed by up-regulation cell cycle-related genes (human homologs E2F4, CDK2, CCNA, CCNB, CCNE, is highly conserved, and this mechanism may involve novel crosstalk with basal AHR. We also identified mitotic roles of polo-like kinase as a conserved signaling pathway with multiple entry

  11. Antitumor effects of a sirtuin inhibitor, tenovin-6, against gastric cancer cells via death receptor 5 up-regulation.

    Directory of Open Access Journals (Sweden)

    Sachiko Hirai

    Full Text Available Up-regulated sirtuin 1 (SIRT1, an NAD+-dependent class III histone deacetylase, deacetylates p53 and inhibits its transcriptional activity, leading to cell survival. SIRT1 overexpression has been reported to predict poor survival in some malignancies, including gastric cancer. However, the antitumor effect of SIRT1 inhibition remains elusive in gastric cancer. Here, we investigated the antitumor mechanisms of a sirtuin inhibitor, tenovin-6, in seven human gastric cancer cell lines (four cell lines with wild-type TP53, two with mutant-type TP53, and one with null TP53. Interestingly, tenovin-6 induced apoptosis in all cell lines, not only those with wild-type TP53, but also mutant-type and null versions, accompanied by up-regulation of death receptor 5 (DR5. In the KatoIII cell line (TP53-null, DR5 silencing markedly attenuated tenovin-6-induced apoptosis, suggesting that the pivotal mechanism behind its antitumor effects is based on activation of the death receptor signal pathway. Although endoplasmic reticulum stress caused by sirtuin inhibitors was reported to induce DR5 up-regulation in other cancer cell lines, we could not find marked activation of its related molecules, such as ATF6, PERK, and CHOP, in gastric cancer cells treated with tenovin-6. Tenovin-6 in combination with docetaxel or SN-38 exerted a slight to moderate synergistic cytotoxicity against gastric cancer cells. In conclusion, tenovin-6 has potent antitumor activity against human gastric cancer cells via DR5 up-regulation. Our results should be helpful for the future clinical development of sirtuin inhibitors.

  12. GSE1 negative regulation by miR-489-5p promotes breast cancer cell proliferation and invasion

    International Nuclear Information System (INIS)

    Chai, Peng; Tian, Jingzhong; Zhao, Deyin; Zhang, Hongyan; Cui, Jian; Ding, Keshuo; Liu, Bin

    2016-01-01

    Gse1 coiled-coil protein (GSE1), also known as KIAA0182, is a proline rich protein. However, the function of GSE1 is largely unknown. In this study, we reported that GSE1 is overexpression in breast cancer and silencing of GSE1 significantly suppressed breast cancer cells proliferation, migration and invasion. Furthermore, GSE1 was identified as a direct target of miR-489-5p, which is significantly reduced in breast cancer tissues. In addition, forced expression of miR-489-5p suppressed breast cancer cells proliferation, migration and invasion. Moreover, depletion of GSE1 by siRNAs significantly abrogated the enhanced proliferation, migration and invasion of breast cancer cells consequent to miR-489-5p depletion. Taken together, these findings suggest that GSE1 may function as a novel oncogene in breast cancer and it can be regulated by miR-489-5p. - Highlights: • GSE1 is overexpressed in breast cancer and increased GSE1 expression predicts poor prognosis in breast cancer patients. • Knockdown of GSE1 inhibits breast cancer cell proliferation, migration and invasion. • GSE1 is a direct target of miR-489-5p. • Forced expression of miR-489-5p inhibits breast cancer cell proliferation, migration and invasion.

  13. Regulation of DNA synthesis and the cell cycle in human prostate cancer cells and lymphocytes by ovine uterine serpin

    Directory of Open Access Journals (Sweden)

    Hansen Peter J

    2008-01-01

    Full Text Available Abstract Background Uterine serpins are members of the serine proteinase inhibitor superfamily. Like some other serpins, these proteins do not appear to be functional proteinase inhibitors. The most studied member of the group, ovine uterine serpin (OvUS, inhibits proliferation of several cell types including activated lymphocytes, bovine preimplantation embryos, and cell lines for lymphoma, canine primary osteosarcoma and human prostate cancer (PC-3 cells. The goal for the present study was to evaluate the mechanism by which OvUS inhibits cell proliferation. In particular, it was tested whether inhibition of DNA synthesis in PC-3 cells involves cytotoxic actions of OvUS or the induction of apoptosis. The effect of OvUS in the production of the autocrine and angiogenic cytokine interleukin (IL-8 by PC-3 cells was also determined. Finally, it was tested whether OvUS blocks specific steps in the cell cycle using both PC-3 cells and lymphocytes. Results Recombinant OvUS blocked proliferation of PC-3 cells at concentrations as low as 8 μg/ml as determined by measurements of [3H]thymidine incorporation or ATP content per well. Treatment of PC-3 cells with OvUS did not cause cytotoxicity or apoptosis or alter interleukin-8 secretion into medium. Results from flow cytometry experiments showed that OvUS blocked the entry of PC-3 cells into S phase and the exit from G2/M phase. In addition, OvUS blocked entry of lymphocytes into S phase following activation of proliferation with phytohemagglutinin. Conclusion Results indicate that OvUS acts to block cell proliferation through disruption of the cell cycle dynamics rather than induction of cytotoxicity or apoptosis. The finding that OvUS can regulate cell proliferation makes this one of only a few serpins that function to inhibit cell growth.

  14. Prostacyclin synthase expression and epigenetic regulation in nonsmall cell lung cancer.

    LENUS (Irish Health Repository)

    Cathcart, Mary-Clare

    2012-02-01

    BACKGROUND: Prostacyclin synthase (PGIS) metabolizes prostaglandin H(2), into prostacyclin. This study aimed to determine the expression profile of PGIS in nonsmall cell lung cancer (NSCLC) and examine potential mechanisms involved in PGIS regulation. METHODS: PGIS expression was examined in human NSCLC and matched controls by reverse transcriptase polymerase chain reaction (RT-PCR), Western analysis, and immunohistochemistry. A 204-patient NSCLC tissue microarray was stained for PGIS and cyclooxygenase 2 (COX2) expression. Staining intensity was correlated with clinical parameters. Epigenetic mechanisms underpinning PGIS promoter expression were examined using RT-PCR, methylation-specific PCR, and chromatin immunoprecipitation analysis. RESULTS: PGIS expression was reduced\\/absent in human NSCLC protein samples (P < .0001), but not mRNA relative to matched controls. PGIS tissue expression was higher in squamous cell carcinoma (P = .004) and in male patients (P < .05). No significant correlation of PGIS or COX2 expression with overall patient survival was observed, although COX2 was prognostic for short-term (2-year) survival (P < .001). PGIS mRNA expression was regulated by DNA CpG methylation and histone acetylation in NSCLC cell lines, with chromatin remodeling taking place directly at the PGIS gene. PGIS mRNA expression was increased by both demethylation agents and histone deacetylase inhibitors. Protein levels were unaffected by demethylation agents, whereas PGIS protein stability was negatively affected by histone deacetylase inhibitors. CONCLUSIONS: PGIS protein expression is reduced in NSCLC, and does not correlate with overall patient survival. PGIS expression is regulated through epigenetic mechanisms. Differences in expression patterns between mRNA and protein levels suggest that PGIS expression and protein stability are regulated post-translationally. PGIS protein stability may have an important therapeutic role in NSCLC.

  15. Liposomal curcumin alters chemosensitivity of breast cancer cells to Adriamycin via regulating microRNA expression.

    Science.gov (United States)

    Zhou, Siying; Li, Jian; Xu, Hanzi; Zhang, Sijie; Chen, Xiu; Chen, Wei; Yang, Sujin; Zhong, Shanliang; Zhao, Jianhua; Tang, Jinhai

    2017-07-30

    Emerging evidence suggests that curcumin can overcome drug resistance to classical chemotherapies, but poor bioavailability and low absorption have limited its clinical use and the mechanisms remain unclear. Also, Adriamycin (Adr) is one of the most active cytotoxic agents in breast cancer; however, the high resistant rate of Adr leads to a poor prognosis. We utilized encapsulation in liposomes as a strategy to improve the bioavailability of curcumin and demonstrated that liposomal curcumin altered chemosensitivity of Adr-resistant MCF-7 human breast cancer (MCF-7/Adr) by MTT assay. The miRNA and mRNA expression profiles of MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr cells were analyzed by microarray and further confirmed by real-time PCR. We focused on differentially expressed miR-29b-1-5p to explore the involvement of miR-29b-1-5p in the resistance of Adr. Candidate genes of dysregulated miRNAs were identified by prediction algorithms based on gene expression profiles. Networks of KEGG pathways were organized by the selected dysregulated miRNAs. Moreover, protein-protein interaction (PPI) was utilized to map protein interaction networks of curcumin regulated proteins. We first demonstrated liposomal curcumin could rescue part of Adriamycin resistance in breast cancer and further identified 67 differentially expressed microRNAs among MCF-7/S, MCF-7/Adr and curcumin-treated MCF-7/Adr. The results showed that lower expressed miR-29b-1-5p decreased the IC50 of MCF-7/Adr cells and higher expressed miR-29b-1-5p, weaken the effects of liposomal curcumin to Adr-resistance. Besides, we found that 20 target genes (mRNAs) of each dysregulated miRNA were not only predicted by prediction algorithms, but also differentially expressed in the microarray. The results showed that MAPK, mTOR, PI3K-Akt, AMPK, TNF, Ras signaling pathways and several target genes such as PPARG, RRM2, SRSF1and EPAS1, may associate with drug resistance of breast cancer cells to Adr. We determined

  16. miR-214 down-regulates ARL2 and suppresses growth and invasion of cervical cancer cells

    International Nuclear Information System (INIS)

    Peng, Ruiqing; Men, Jianlong; Ma, Rui; Wang, Qian; Wang, Yang; Sun, Ying; Ren, Jing

    2017-01-01

    Increasing evidence has shown that miRNAs are implicated in carcinogenesis and can function as oncogenes or tumor suppressor genes in human cancers. In this study, we confirmed that miR-214 is frequently down-regulated in cervical cancer compared with normal cervical tissues. Ectopic expression of miR-214 suppressed proliferation, migration and invasion of HeLa and C33A cervical cancer cells. Bioinformatics analysis revealed that ADP ribosylation factor like 2 (ARL2) was a potential target of miR-214 and was remarkably up-regulated in cervical cancer. Knockdown of ARL2 markedly inhibited cervical cancer cell proliferation, migration and invasion, similarly to over-expression of miR-214, indicating that ARL2 may function as an oncogene in cervical cancer. In conclusion, our study revealed that miR-214 acts as a tumor suppressor via inhibiting proliferation, migration and invasion of cervical cancer cells through targeting ARL2, and that both miR-214 and ARL2 may serve as prognostic or therapeutic targets for cervical cancer. - Highlights: • miR-214 targets ARL2. • ARL2 maybe an oncogene in cervical cancer. • ARL2 rescues miR-214.

  17. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    International Nuclear Information System (INIS)

    Maneckjee, R.; Minna, J.D.

    1990-01-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for μ, δ, and κ opioid agonists and for nicotine and α-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas μ, δ, and κ opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides (β-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer

  18. Opioid and nicotine receptors affect growth regulation of human lung cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Maneckjee, R.; Minna, J.D. (National Cancer Institute-Navy Medical Oncology Branch, Bethesda, MD (USA) Uniformed Services Univ. of the Health Sciences, Bethesda, MD (USA))

    1990-05-01

    Using specific radioactively-labeled ligands, the authors find that lung cancer cell lines of diverse histologic types express multiple, high-affinity membrane receptors for {mu}, {delta}, and {kappa} opioid agonists and for nicotine and {alpha}-bungarotoxin. These receptors are biologically active because cAMP levels decreased in lung cancer cells after opioid and nicotine application. Nicotine at concentrations found in the blood of smokers had no effect on in vitro lung cancer cell growth, whereas {mu}, {delta}, and {kappa} opioid agonists at low concentrations inhibited lung cancer growth in vitro. They also found that lung cancer cells expressed various combinations of immunoreactive opioid peptides ({beta}-endorphin, enkephalin, or dynorphin), suggesting the participation of opioids in a negative autocrine loop or tumor-suppressing system. Due to the almost universal exposure of patients with lung cancer to nicotine, they tested whether nicotine affected the response of lung cancer cell growth to opioids and found that nicotine at concentrations of 100-200 nM partially or totally reversed opioid-induced growth inhibition in 9/14 lung cancer cell lines. These in vitro results for lung cancer cells suggest that opioids could function as part of a tumor suppressor system and that nicotine can function to circumvent this system in the pathogenesis of lung cancer.

  19. HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via geranylgeranylation and RhoA activation

    International Nuclear Information System (INIS)

    Al-Haidari, Amr A.; Syk, Ingvar; Thorlacius, Henrik

    2014-01-01

    Highlights: • Simvastatin blocked CCL17-induced and CCR4-dependent RhoA activation in HT29 cells. • CCL17/CCR4-mediated migration of colon cancer cells was antagonised by simvastatin. • Cell migration recovered by adding Mevalonate and geranylgeranyl pyrophosphate. • Targeting HMG-CoA reductase might be useful to inhibit colon cancer metastasis. - Abstract: Background: Simvastatin is widely used to lower cholesterol levels in patients with cardiovascular diseases, although accumulating evidence suggests that statins, such as simvastatin, also exert numerous anti-tumoral effects. Aim: The aim of this study was to examine the effect of simvastatin on colon cancer cell migration. Methods: Migration assays were performed to evaluate CCL17-induced colon cancer cell (HT-29) chemotaxis. In vitro tumor growth and apoptosis were assessed using a proliferation assay and annexin V assay, respectively. Active RhoA protein levels in CCL17-stimulated colon cancer cells were quantified using a G-LISA assay. Results: We found that simvastatin dose-dependently decreased CCL17-induced colon cancer cell migration. Simvastatin had no effect on colon cancer cell proliferation or apoptosis. Inhibition of beta chemokine receptor 4, CCR4, reduced CCL17-evoked activation of RhoA in colon cancer cells. Moreover, administration of mevalonate reversed the inhibitory effect of simvastatin on CCL17-induced colon cancer cell migration. Interestingly, co-incubation with geranylgeranyl pyrophosphate (GGPP) antagonized the inhibitory impact of simvastatin on colon cancer cell migration triggered by CCL17. Moreover, we observed that simvastatin decreased CCL17-induced activation of RhoA in colon cancer cells. Administration of mevalonate and GGPP reversed the inhibitory effect of simvastatin on CCL17-provoked RhoA activation in colon cancer cells. Conclusions: Taken together, our findings show for the first time that HMG-CoA reductase regulates CCL17-induced colon cancer cell migration via

  20. Expression of E-selectin ligands on circulating tumor cells: cross-regulation with cancer stem cell regulatory pathways?

    International Nuclear Information System (INIS)

    Burdick, Monica M.; Henson, Karissa A.; Delgadillo, Luis F.; Choi, Young Eun; Goetz, Douglas J.; Tees, David F. J.; Benencia, Fabian

    2012-01-01

    Although significant progress has been made in the fight against cancer, successful treatment strategies have yet to be developed to combat those tumors that have metastasized to distant organs. Poor characterization of the molecular mechanisms of cancer spread is a major impediment to designing predictive diagnostics and effective clinical interventions against late stage disease. In hematogenous metastasis, it is widely suspected that circulating tumor cells (CTCs) express specific adhesion molecules that actively initiate contact with the vascular endothelium lining the vessel walls of the target organ. This “tethering” is mediated by ligands expressed by CTCs that bind to E-selectin expressed by endothelial cells. However, it is currently unknown whether expression of functional E-selectin ligands on CTCs is related to cancer stem cell regulatory or maintenance pathways, particularly epithelial-to-mesenchymal transition and the reverse, mesenchymal-to-epithelial transition. In this hypothesis and theory article, we explore the potential roles of these mechanisms on the dynamic regulation of selectin ligands mediating CTC trafficking during metastasis.

  1. MiR-422a targets MAPKK6 and regulates cell growth and apoptosis in colorectal cancer cells.

    Science.gov (United States)

    Li, Peng; Li, Qingmin; Zhang, Yanqiang; Sun, Shaojun; Liu, Shuntao; Lu, Zhaoxi

    2018-03-19

    The important role of miR-422a in tumor has been reported in several studies. Recent research discovered that the expression of miR-422a was significantly decreased in colorectal cancer tissues, providing miR-422a as a tumor suppressor in CRC. However, the concrete mechanism of miR-422a regulating CRC cell is still unclear. In this study, we demonstrated that miR-422a could inhibit CRC cell growth and promote cell apoptosis via in vitro analyses. Moreover, computational methods were adopted to identify the targets of miR-422a. We found MAPKK6 was the direct target of miR-422a. Consequently, we further elucidated that miR-422a inhibited CRC cell growth and induced cell apoptosis by inhibiting p38/MAPK pathway. Besides that, we established the tumor xenograft model using nude mice and the inhibitory effects on tumor volumes and weights by miR-422a mimic transfection were also detected. Taken together, these findings demonstrated miR-422a exerted anti-cancer activities on CRC, which could be potentially used for CRC prognosis prediction and treatment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Berberine diminishes side population and down-regulates stem cell-associated genes in the pancreatic cancer cell lines PANC-1 and MIA PaCa-2.

    Science.gov (United States)

    Park, S H; Sung, J H; Chung, N

    2014-09-01

    Cancer stem cells play an important role in metastasis and the relapse of drug resistant cancers. Side-population (SP) cells are capable of effluxing Hoechst 33342 dye and are referred to as cancer stem cells. We investigated the effect of berberine on pancreatic cancer stem cells of PANC-1 and MIA PaCa-2. For both cell lines, the proportions of SP cells in the presence of berberine were investigated and compared to the proportions in the presence of gemcitabine, a standard pancreatic anti-cancer drug. The proportions of SP cells in the PANC-1 and MIA PaCa-2 cell lines were about 9 and PANC-1 decreased to 5.7 ± 2.0 and 6.8 ± 0.8%, respectively, which compares to the control proportion of (9.7 ± 1.7). After berberine and gemcitabine treatment of PANC-1, of the four stem cell-associated genes (SOX2, POU5F1, NANOG, and NOTCH1), all but NOTCH1 were down-regulated. Unfortunately, the effect of berberine and gemcitabine treatments on MIA PaCa-2 SP cells could not be clearly observed because SP cells represented only a very small proportion of MIA PaCa-2 cells. However, SOX2, POU5F1, and NANOG genes were shown to be effectively down-regulated in the MIA PaCa-2 cell line as a whole. Taken together, these results indicate that berberine is as effective at targeting pancreatic cancer cell lines as gemcitabine. Therefore, we believe that POU5F1, SOX2, and NANOG can serve as potential markers, and berberine may be an effective anti-cancer agent when targeting human pancreatic cancer cells and/or their cancer stem cells.

  3. The miR-383-LDHA axis regulates cell proliferation, invasion and glycolysis in hepatocellular cancer

    Directory of Open Access Journals (Sweden)

    Zhixiong Fang

    2017-02-01

    Full Text Available Objective(s: To explore the correlation between expression patterns and functions of miR-383 and LDHA in hepatocellular cancer (HCC. Materials and Methods: We detected the expression of miR-383 and LDHA in 30 HCC tissues and their matched adjacent normal tissues using qRT-PCR. Then we performed MTT assay, foci formation assay, transwell migration assay, glucose uptake assay and lactate production assay to explore the function of miR-383 in cell proliferation, invasion and glycolysis in HCC cell lines. Luciferase reporter assay was used to explore whether LDHA was a target gene of miR-383. Western blot and qRT-PCR were used to further confirm LDHA was targeted by miR-383. Then the above functional experiments were repeated to see whether the function of LDHA could be inhibited by miR-383. Results: The results of qRT-PCR showed that miR-383 was down-regulated in HCC tissues compared with their matched adjacent normal tissues. Functional experiments showed that overexpression of miR-383 significantly suppressed cell proliferation, invasion and glycolysis. Luciferase reporter assay showed LDHA was a target gene of miR-383 and expression of LDHA was inversely correlated with that of miR-383 in HCC. Besides, increased cell proliferation, invasion and glycolysis triggered by LDHA could be inhibited by overexpression of miR-383 in HCC cell lines. Conclusion: Our study proved that miR-383 is down-regulated in HCC and acts as a tumor suppressor through targeting LDHA. Targeting the miR-383-LDHA axis might be a promising strategy in HCC treatment.

  4. Steroid receptor coactivator-3 regulates glucose metabolism in bladder cancer cells through coactivation of hypoxia inducible factor 1α.

    Science.gov (United States)

    Zhao, Wei; Chang, Cunjie; Cui, Yangyan; Zhao, Xiaozhi; Yang, Jun; Shen, Lan; Zhou, Ji; Hou, Zhibo; Zhang, Zhen; Ye, Changxiao; Hasenmayer, Donald; Perkins, Robert; Huang, Xiaojing; Yao, Xin; Yu, Like; Huang, Ruimin; Zhang, Dianzheng; Guo, Hongqian; Yan, Jun

    2014-04-18

    Cancer cell proliferation is a metabolically demanding process, requiring high glycolysis, which is known as "Warburg effect," to support anabolic growth. Steroid receptor coactivator-3 (SRC-3), a steroid receptor coactivator, is overexpressed and/or amplified in multiple cancer types, including non-steroid targeted cancers, such as urinary bladder cancer (UBC). However, whether SRC-3 regulates the metabolic reprogramming for cancer cell growth is unknown. Here, we reported that overexpression of SRC-3 accelerated UBC cell growth, accompanied by the increased expression of genes involved in glycolysis. Knockdown of SRC-3 reduced the UBC cell glycolytic rate under hypoxia, decreased tumor growth in nude mice, with reduction of proliferating cell nuclear antigen and lactate dehydrogenase expression levels. We further revealed that SRC-3 could interact with hypoxia inducible factor 1α (HIF1α), which is a key transcription factor required for glycolysis, and coactivate its transcriptional activity. SRC-3 was recruited to the promoters of HIF1α-target genes, such as glut1 and pgk1. The positive correlation of expression levels between SRC-3 and Glut1 proteins was demonstrated in human UBC patient samples. Inhibition of glycolysis through targeting HK2 or LDHA decelerated SRC-3 overexpression-induced cell growth. In summary, overexpression of SRC-3 promoted glycolysis in bladder cancer cells through HIF1α to facilitate tumorigenesis, which may be an intriguing drug target for bladder cancer therapy.

  5. Isoreserpine promotes {beta}-catenin degradation via Siah-1 up-regulation in HCT116 colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Gwak, Jungsug; Song, Taeyun [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Song, Jie-Young; Yun, Yeon-Sook [Laboratory of Radiation Cancer Science, Korea Institute of Radiological and Medical Sciences, Seoul 139-706 (Korea, Republic of); Choi, Il-Whan [Department of Microbiology, Center for Viral Disease Research, Inje University College of Medicine, Busan 614-735 (Korea, Republic of); Jeong, Yongsu [Department of Genetic Engineering, and Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Shin, Jae-Gook [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of); Department of Clinical Pharmacology, Inje University Busan Paik Hospital, Busan 614-735 (Korea, Republic of); Oh, Sangtaek, E-mail: ohsa@inje.ac.kr [PharmacoGenomics Research Center, Inje University, Busan 614-735 (Korea, Republic of)

    2009-09-25

    Aberrant accumulation of intracellular {beta}-catenin in intestinal epithelial cells is a frequent early event during the development of colon cancer. To identify small molecules that decrease the level of intracellular {beta}-catenin, we performed cell-based chemical screening using genetically engineered HEK293 reporter cells to detect compounds that inhibit TOPFlash reporter activity, which was stimulated by Wnt3a-conditioned medium. We found that isoreserpine promoted the degradation of intracellular {beta}-catenin by up-regulation of Siah-1 in HEK293 and HCT116 colon cancer cells. Moreover, isoreserpine repressed the expression of {beta}-catenin/T-cell factor (TCF)-dependent genes, such as cyclin D1 and c-myc, resulting in the suppression of HCT116 cell proliferation. Our findings suggest that isoreserpine can potentially be used as a chemotherapeutic agent against colon cancer.

  6. Function and regulation of LAG3 on CD4+CD25- T cells in non-small cell lung cancer.

    Science.gov (United States)

    Ma, Qin-Yun; Huang, Da-Yu; Zhang, Hui-Jun; Wang, Shaohua; Chen, Xiao-Feng

    2017-11-15

    LAG3 is a surface molecule found on a subset of immune cells. The precise function of LAG3 appears to be context-dependent. In this study, we investigated the effect of LAG3 on CD4 + CD25 - T cells from non-small cell lung cancer (NSCLC) patients. We found that in the peripheral blood mononuclear cells of NSCLC patients, LAG3 was significantly increased in CD4 + T cells directly ex vivo and primarily in the CD4 + CD25 - fraction, which was regulated by prolonged TCR stimulation and the presence of IL-27. TCR stimulation also increased CD25 expression, but not Foxp3 expression, in LAG3-expressing CD4 + CD25 - cells Compared to LAG3-nonexpressing CD4 + CD25 - cells, LAG3-expressing CD4 + CD25 - cells presented significantly higher levels of PD1 and TIM3, two inhibitory receptors best described in exhausted CD8 + T effector cells. LAG3-expressing CD4 + CD25 - cells also presented impaired proliferation compared with LAG3-nonexpressing CD4 + CD25 - cells but could be partially rescued by inhibiting both PD1 and TIM3. Interestingly, CD8 + T cells co-incubated with LAG3-expressing CD4 + CD25 - cells at equal cell numbers demonstrated significantly lower proliferation than CD8 + T cells incubated alone. Co-culture with CD8 + T cell and LAG3-expressing CD4 + CD25 - T cell also upregulated soluble IL-10 level in the supernatant, of which the concentration was positively correlated with the number of LAG3-expressing CD4 + CD25 - T cells. In addition, we found that LAG3-expressing CD4 + CD25 - T cells infiltrated the resected tumors and were present at higher frequencies of in metastases than in primary tumors. Taken together, these data suggest that LAG3-expressing CD4 + CD25 - T cells represent another regulatory immune cell type with potential to interfere with anti-tumor immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Vitamin D3 regulates cell viability in gastric cancer and cholangiocarcinoma

    OpenAIRE

    Baek, Sungmin; Lee, Young-Suk; Shim, Hye-Eun; Yoon, Sik; Baek, Sun-Yong; Kim, Bong-Seon; Oh, Sae-Ock

    2011-01-01

    A low serum level of vitamin D has been associated with an increased incidence of gastrointestinal tract cancers. However, the effects of vitamin D3 have not been investigated in gastric cancer and cholangiocarcinoma. In the present study, we found that vitamin D3 treatment significantly suppressed the viability of gastric cancer and cholangiocarcinoma cells. Moreover, vitamin D3 had a synergistic effect with other anti-cancer drugs, such as paclitaxel, adriamycin, and vinblastine, for suppre...

  8. Dual regulation of P-glycoprotein expression by Trichostatin A in cancer cell lines

    Directory of Open Access Journals (Sweden)

    Balaguer Trinidad

    2012-07-01

    Full Text Available Abstract Background It has been reported that the histone deacetylase inhibitor (iHDAc trichostatin A (TSA induces an increase in MDR1 gene transcription (ABCB1. This result would compromise the use of iHDACs in combination with other cytotoxic agents that are substrates of P-glycoprotein (Pgp. It has also been reported the use of alternative promoters by the ABCB1 gene and the existence of a translational control of Pgp protein. Finally, the ABCB1 gene is located in a genetic locus with the nested gene RUNDC3B in the complementary DNA strand, raising the possibility that RUNDC3B expression could interfere with ABCB1 alternative promoter regulation. Methods A combination of RT-PCR, real time RT-PCR, Western blot and drug accumulation assays by flow cytometry has been used in this study. Results The iHDACs-induced increase in MDR1 mRNA levels is not followed by a subsequent increase in Pgp protein levels or activity in several pancreatic and colon carcinoma cell lines, suggesting a translational control of Pgp in these cell lines. In addition, the MDR1 mRNA produced in these cell lines is shorter in its 5′ end that the Pgp mRNA produced in cell lines expressing Pgp protein. The different size of the Pgp mRNA is due to the use of alternative promoters. We also demonstrate that these promoters are differentially regulated by TSA. The translational blockade of Pgp mRNA in the pancreatic carcinoma cell lines could be related to alterations in the 5′ end of the MDR1 mRNA in the Pgp protein expressing cell lines. In addition, we demonstrate that the ABCB1 nested gene RUNDC3B expression although upregulated by TSA is independent of the ABCB1 alternative promoter used. Conclusions The results show that the increase in MDR1 mRNA expression after iHDACs treatment is clinically irrelevant since this mRNA does not render an active Pgp protein, at least in colon and pancreatic cancer cell lines. Furthermore, we demonstrate that TSA in fact, regulates

  9. DHA-Mediated Regulation of Lung Cancer Cell Migration Is Not Directly Associated with Gelsolin or Vimentin Expression

    Science.gov (United States)

    Ali, Mehboob; Heyob, Kathryn; Rogers, Lynette K.

    2016-01-01

    AIMS Deaths associated with cancer metastasis have steadily increased making the need for newer, anti-metastatic therapeutics imparative. Gelsolin and vimentin, actin binding proteins expressed in metastatic tumors, participate in actin remodelling and regulate cell migration. Docosahexaenoic acid (DHA) limits cancer cell proliferation and adhesion but the mechanisms involved in reducing metastatic phenotypes are unknown. We aimed to investigate the effects of DHA on gelsolin and vimentin expression, and ultimately cell migration and proliferation, in this context. MAIN METHODS Non-invasive lung epithelial cells (MLE12) and invasive lung cancer cells (A549) were treated with DHA (30 μmol/ml) or/and 8 bromo-cyclic adenosine monophosphate (8 Br-cAMP) (300 μmol/ml) for 6 or 24 h either before (pre-treatment) or after (post-treatment) plating in transwells. Migration was assessed by the number of cells that progressed through the transwell. Gelsolin and vimentin expression were measured by western blot and confocal microscopy in cells, and by immunohistochemistry in human lung cancer biospy samples. KEY FINDINGS A significant decrease in cell migration was detected for A549 cells treated with DHA verses control but this same decrease was not seen in MLE12 cells. DHA and 8 Br-cAMP altered gelsolin and vimentin expression but no clear pattern of change was observed. Immunoflorescence staining indicated slightly higher vimentin expression in human lung tissue that was malignant compared to control. SIGNIFICANCE Collectively, our data indicate that DHA inhibits cancer cell migration and further suggests that vimentin and gelsolin may play secondary roles in cancer cell migration and proliferation, but are not the primary regulators. PMID:27157519

  10. Transcriptional regulation of miR-146b by C/EBPβ LAP2 in esophageal cancer cells

    International Nuclear Information System (INIS)

    Li, Junxia; Shan, Fabo; Xiong, Gang; Wang, Ju-Ming; Wang, Wen-Lin; Xu, Xueqing; Bai, Yun

    2014-01-01

    Highlights: • MiR-146b promotes esophageal cancer cell proliferation. • MiR-146b inhibits esophageal cancer cell apoptosis. • C/EBPβ directly binds to miR-146b promoter conserved region. • MiR-146b is up-regulated by C/EBPβ LAP2 transcriptional activation. - Abstract: Recent clinical study indicated that up-regulation of miR-146b was associated with poor overall survival of patients in esophageal squamous cell carcinoma. However, the underlying mechanism of miR-146b dysregulation remains to be explored. Here we report that miR-146b promotes cell proliferation and inhibits cell apoptosis in esophageal cancer cell lines. Mechanismly, two C/EBPβ binding motifs are located in the miR-146b promoter conserved region. Among the three isoforms of C/EBPβ, C/EBPβ LAP2 positively regulated miR-146b expression and increases miR-146b levels in a dose-dependent manner through transcription activation of miR-146b gene. Together, these results suggest a miR-146b regulatory mechanism involving C/EBPβ, which may contribute to the up-regulation of miR-146b in esophageal squamous cell carcinoma

  11. CBX7 regulates stem cell-like properties of gastric cancer cells via p16 and AKT-NF-κB-miR-21 pathways.

    Science.gov (United States)

    Ni, Su-Jie; Zhao, Li-Qin; Wang, Xiao-Feng; Wu, Zhen-Hua; Hua, Rui-Xi; Wan, Chun-Hua; Zhang, Jie-Yun; Zhang, Xiao-Wei; Huang, Ming-Zhu; Gan, Lu; Sun, Hua-Lin; Dimri, Goberdhan P; Guo, Wei-Jian

    2018-02-08

    Chromobox protein homolog 7 (CBX7), a member of the polycomb group (PcG) family of proteins, is involved in the regulation of cell proliferation and cancer progression. PcG family members, such as BMI, Mel-18, and EZH2, are integral constituents of the polycomb repressive complexes (PRCs) and have been known to regulate cancer stem cell (CSC) phenotype. However, the role of other PRCs' constituents such as CBX7 in the regulation of CSC phenotype remains largely elusive. This study was to investigate the role of CBX7 in regulating stem cell-like properties of gastric cancer and the underlying mechanisms. Firstly, the role of CBX7 in regulating stem cell-like properties of gastric cancer was investigated using sphere formation, Western blot, and xenograft tumor assays. Next, RNA interference and ectopic CBX7 expression were employed to determine the impact of CBX7 on the expression of CSC marker proteins and CSC characteristics. The expression of CBX7, its downstream targets, and stem cell markers were analyzed in gastric stem cell spheres, common cancer cells, and gastric cancer tissues. Finally, the pathways by which CBX7 regulates stem cell-like properties of gastric cancer were explored. We found that CBX7, a constituent of the polycomb repressive complex 1 (PRC1), plays an important role in maintaining stem cell-like characteristics of gastric cancer cells via the activation of AKT pathway and the downregulation of p16. Spearman rank correlation analysis showed positive correlations among the expression of CBX7 and phospho-AKT (pAKT), stem cell markers OCT-4, and CD133 in gastric cancer tissues. In addition, CBX7 was found to upregulate microRNA-21 (miR-21) via the activation of AKT-NF-κB pathway, and miR-21 contributes to CBX7-mediated CSC characteristics. CBX7 positively regulates stem cell-like characteristics of gastric cancer cells by inhibiting p16 and activating AKT-NF-κB-miR-21 pathway.

  12. MicroRNA-125a-5p regulates cancer cell proliferation and migration through NAIF1 in prostate carcinoma.

    Science.gov (United States)

    Fu, Yi; Cao, Fuhua

    2015-01-01

    We investigated the functional roles of microRNA-125a-5p in regulating human prostate carcinoma. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was conducted to evaluate the gene expression levels of miR-125a-5p in eight prostate cancer cell lines and nine biopsy specimens from patients with prostate cancer. miR-125a-5p was genetically knocked down in prostate cancer cell lines, DU145 and VCaP cells by lentiviral transduction. The effects of miR-125a-5p downregulation on prostate cancer cell proliferation and migration were evaluated by MTT assay and transwell assay, respectively. Direct regulation of miR-125a-5p on its downstream targets, NAIF1, and apoptotic gene caspase-3 were evaluated through dual-luciferase reporter assay, qRT-PCR, and Western blot, respectively. NAIF1 was then ectopically overexpressed in DU145 and VCaP cells to modulate prostate cancer cell proliferation and migration. Finally, the effects of miR-125a-5p downregulation or NAIF1 overexpression on the growth of in vivo prostate cancer xenograft were evaluated. miR-125a-5p was upregulated in prostate cancer cell lines and human prostate carcinomas. Lentivirus induced miR-125a-5p downregulation in DU145 and VCaP cells inhibited prostate cancer cell proliferation or migration. NAIF1 was the direct target of miR-125a-5p, as both gene and protein expression levels of NAIF1, as well as caspase-3 were upregulated by miR-125a-5p. Forced overexpression of NAIF1 had similar antitumor effects as miR-125a-5p downregulation on prostate cancer cell proliferation and migration. In vivo prostate xenograft assay confirmed the tumor-suppressive effect of miR-125a-5p downregulation or NAIF1 overexpression. miR-125a-5p regulates prostate cancer cell proliferation and migration through NAIF1.

  13. CD73 Regulates Stemness and Epithelial-Mesenchymal Transition in Ovarian Cancer-Initiating Cells.

    Science.gov (United States)

    Lupia, Michela; Angiolini, Francesca; Bertalot, Giovanni; Freddi, Stefano; Sachsenmeier, Kris F; Chisci, Elisa; Kutryb-Zajac, Barbara; Confalonieri, Stefano; Smolenski, Ryszard T; Giovannoni, Roberto; Colombo, Nicoletta; Bianchi, Fabrizio; Cavallaro, Ugo

    2018-04-10

    Cancer-initiating cells (CICs) have been implicated in tumor development and aggressiveness. In ovarian carcinoma (OC), CICs drive tumor formation, dissemination, and recurrence, as well as drug resistance, thus accounting for the high death-to-incidence ratio of this neoplasm. However, the molecular mechanisms that underlie such a pathogenic role of ovarian CICs (OCICs) remain elusive. Here, we have capitalized on primary cells either from OC or from its tissues of origin to obtain the transcriptomic profile associated with OCICs. Among the genes differentially expressed in OCICs, we focused on CD73, which encodes the membrane-associated 5'-ectonucleotidase. The genetic inactivation of CD73 in OC cells revealed that this molecule is causally involved in sphere formation and tumor initiation, thus emerging as a driver of OCIC function. Furthermore, functional inhibition of CD73 via either a chemical compound or a neutralizing antibody reduced sphere formation and tumorigenesis, highlighting the druggability of CD73 in the context of OCIC-directed therapies. The biological function of CD73 in OCICs required its enzymatic activity and involved adenosine signaling. Mechanistically, CD73 promotes the expression of stemness and epithelial-mesenchymal transition-associated genes, implying a regulation of OCIC function at the transcriptional level. CD73, therefore, is involved in OCIC biology and may represent a therapeutic target for innovative treatments aimed at OC eradication. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid, inhibits pancreatic cancer cell proliferation via down-regulating AKT activation

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Guoli; Yao, Guangmin; Zhan, Guanqun; Hu, Yufeng [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Yue, Ming [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Cheng, Ling; Liu, Yaping; Ye, Qi [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Qing, Guoliang [Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei (China); Zhang, Yonghui, E-mail: zhangyh@mails.tjmu.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China); Liu, Hudan, E-mail: hudanliu@hust.edu.cn [Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation, School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei PR China (China)

    2014-11-01

    We previously reported the isolation of a novel Amaryllidaceae alkaloid, N-methylhemeanthidine chloride (NMHC), from Zephyranthes candida, which exhibits potent cytotoxicity in a spectrum of tumor cells. However, the mechanism of action remains unclear. Using multiple cell lines derived from human pancreatic cancer, one of the most mortal and refractory human malignancies, we further studied the NMHC-mediated cytotoxicity and found that it induced drastic cytotoxicity in pancreatic cancer cells whereas an insignificant effect on a noncancerous cell line. The NMHC-mediated growth inhibition was more severe than the first-line chemotherapeutic agent gemcitabine, leading to cell cycle arrest, apoptotic death and decreased glycolysis. NMHC exerted its function through down-regulating AKT activation, and the ectopic expression of activated AKT rescued the growth inhibition. Consistently, NMHC injections in a pancreatic cancer xenograft model manifested the anti-tumor effect in vivo. Engrafted tumor cells underwent AKT attenuation and apoptotic death upon treatments. As such, we here demonstrate the AKT inhibition may be one of the mechanisms by which NMHC decreases tumor cell survival rate in vitro and in vivo. Our data thereby suggest that NMHC holds great promise as a potent chemotherapeutic agent against pancreatic cancer and sheds new light on obtaining such agents from natural products toward therapeutic purposes. - Highlights: • N-methylhemeanthidine chloride (NMHC) is a novel Amaryllidaceae alkaloid. • NMHC exhibits potent anti-neoplastic activity. • NMHC leads to cell cycle arrest, apoptotic death and decreased metabolism. • NMHC down-regulates the AKT signaling pathway.

  15. Synergistic combination of gemcitabine and dietary molecule induces apoptosis in pancreatic cancer cells and down regulates PKM2 expression.

    Directory of Open Access Journals (Sweden)

    Archana Pandita

    Full Text Available Gemcitabine, an effective agent in treatment of cancer of pancreas, has undergone failures in many instances after multiple cycles of therapy due to emergence of drug resistance. Combination of dietary compounds with clinically validated drugs has emerged as an effective therapeutic approach to treat pancreatic tumors, refractory to gemcitabine therapy. In order to optimize a possible synergistic combination of Gemcitabine (GCB with dietary molecules, Betuilnic acid (BA and Thymoquinone (TQ, stand-alone IC50 dose of GCB, BA and TQ was calculated for pancreatic cancer cell lines. Fixed IC50 dose ratio of the dietary molecules in combination with reduced IC50 dose of GCB was tested on GCB resistant PANC-1 and sensitive MIA PaCa-2 cells for synergism, additive response and antagonism, using calcusyn. Combination index (CI revealed that pre-treatment of BA and TQ along with GCB synergistically inhibited the cancer cell proliferation in in-vitro experiments. Pyruvate kinase (PK M2 isoform, a promising target involved in cancer cell metabolism, showed down-regulation in presence of TQ or BA in combination with GCB. GCB with BA acted preferentially on tumor mitochondria and triggered mitochondrial permeability transition. Pre-exposure of the cell lines, MIA PaCa-2 and PANC-1, to TQ in combination with GCB induced apoptosis. Thus, the effectiveness of BA or TQ in combination with GCB to inhibit cell proliferation, induce apoptosis and down-regulate the expression of PKM2, reflects promise in pancreatic cancer treatment.

  16. Involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells.

    Science.gov (United States)

    Takahashi, Kaede; Fukushima, Kaori; Onishi, Yuka; Minami, Kanako; Otagaki, Shiho; Ishimoto, Kaichi; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2018-08-01

    Free fatty acid receptor 1 (FFA1) and FFA4 mediate a variety of biological responses through binding of medium- and long-chain free fatty acids. The aim of this study was to investigate an involvement of FFA1 and FFA4 in the regulation of cellular functions during tumor progression in colon cancer cells. The long-term fluorouracil (5-FU) and cisplatin (CDDP) treated cells were generated from DLD1 cells (DLD-5FU and DLD-CDDP cells, respectively). FFAR1 expressions were lower in DLD-5FU and DLD-CDDP cells than in DLD1 cells. In contrast, DLD-5FU and DLD-CDDP cells showed the high FFAR4 expressions, compared with DLD1 cells. The cell motile activities of DLD-5FU and DLD-CDDP cells were reduced by GW9508 which is an agonist of FFA1 and FFA4. Moreover, GW1100, an antagonist of FFA1, inhibited the cell motile activities of DLD-5FU and DLD-CDDP cells. To evaluate whether FFA1 and FFA4 regulate the enhancement of cell motility, invasion and colony formation, highly migratory (hmDLD1) cells were established from DLD1 cells. FFAR1 expression was significantly higher in hmDLD1 cells than in DLD1 cells, but no change of FFAR4 expression was observed. The elevated cell motile and invasive activities and colony formation of hmDLD1 cells were suppressed by FFA1 inhibition. These results suggest that FFA1 and FFA4 are involved in the regulation of cellular functions during tumor progression in colon cancer DLD1 cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Expression of DIAPH1 is up-regulated in colorectal cancer and its down-regulation strongly reduces the metastatic capacity of colon carcinoma cells.

    Science.gov (United States)

    Lin, Yuan-Na; Izbicki, Jakob R; König, Alexandra; Habermann, Jens K; Blechner, Christine; Lange, Tobias; Schumacher, Udo; Windhorst, Sabine

    2014-04-01

    In most cases, metastatic colorectal cancer is not curable, thus new approaches are necessary to identify novel targets for colorectal cancer therapy. Actin-binding-proteins (ABPs) directly regulate motility of metastasising tumor cells, and for cortactin an association with colon cancer metastasis has been already shown. However, as its depletion only incompletely inhibits metastasis, additional, more suitable cellular targets have to be identified. Here we analyzed expression of the ABPs, DIAPH1, VASP, N-WASP, and fascin in comparison with cortactin and found that, besides cortactin, DIAPH1 was expressed with the highest frequency (63%) in colorectal cancer. As well as cortactin, DIAPH1 was not detectable in normal colon tissue and expression of both proteins was positively correlated with metastasis of colorectal cancer. To analyse the mechanistic role of DIAPH1 for metastasis of colon carcinoma cells in comparison with cortactin, expression of the proteins was stably down-regulated in the human colon carcinoma cell lines HT-29, HROC-24 and HCT-116. Analysis of metastasis of colon carcinoma cells in SCID mice revealed that depletion of DIAPH1 reduced metastasis 60-fold and depletion of cortactin 16-fold as compared with control cells. Most likely the stronger effect of DIAPH1 depletion on colon cancer metastasis is due to the fact that in vitro knock down of DIAPH1 impaired all steps of metastasis; adhesion, invasion and migration while down-regulation of cortactin only reduced adhesion and invasion. This very strong reducing effect of DIAPH1 depletion on colon carcinoma cell metastasis makes the protein a promising therapeutic target for individualized colorectal cancer therapy. © 2013 UICC.

  18. The E3 ligase UBR5 regulates gastric cancer cell growth by destabilizing the tumor suppressor GKN1

    International Nuclear Information System (INIS)

    Yang, Min; Jiang, Nan; Cao, Qi-wei; Ma, Mao-qiang; Sun, Qing

    2016-01-01

    Gastric cancer is the most common digestive malignant tumor worldwide and the underlying mechanisms are not fully understood. The E3 ligase UBR5 (also known as EDD1) is essentially involved in diverse types of cancer. Here we aimed to study the functions of UBR5 in human gastric cancer. We first analyzed the mRNA and protein levels of UBR5 in human gastric cancer tissues and the results showed that UBR5 was markedly increased in gastric cancer tissues compared with normal gastric mucosa or matched non-cancer gastric tissues. The relationship between UBR5 and survival of gastric cancer patients was analyzed and we found that high UBR5 expression was associated with poor overall and disease-free survival. We further tried to investigate the effects of UBR5 on gastric cancer cell growth in vitro and in vivo. Therefore, we knocked down UBR5 with lentivirus-mediated shRNA and found that UBR5 knockdown repressed in vitro proliferation and colony formation of gastric cancer cells AGS, MG803 and MNK1. In vivo xenograft experiment also demonstrated that UBR5 knockdown inhibited AGS growth. Finally, we explored the mechanism by which UBR5 contributed to the growth of gastric cancer cells. We found that UBR5 bound the tumor suppressor gastrokine 1 (GKN1) and increased its ubiquitination to reduce the protein stability of GKN1. GKN1 knockdown with lentivirus-mediated shRNA increased the in vitro colony formation and in vivo growth of AGS cells, and UBR5 knockdown was unable to affect the colony formation and in vivo growth of AGS cells when GKN1 was knocked down, indicating that GKN1 contributed to the effects of UBR5 in human gastric cancer cells. Taken together, UBR5 plays an essential role in gastric cancer and may be a potential diagnosis and treatment target for gastric cancer. - Highlights: • UBR5 expression is up-regulated in human gastric cancer. • UBR5 overexpression predicts poor survival. • UBR5 regulates gastric cancer growth in vitro and in vivo.

  19. Cisplatin and ultra-violet-C synergistically down-regulate receptor tyrosine kinases in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Kawaguchi Junji

    2012-07-01

    Full Text Available Abstract Background Platinum-containing anti-cancer drugs such as cisplatin are widely used for patients with various types of cancers, however, resistance to cisplatin is observed in some cases. Whereas we have recently reported that high dose UV-C (200 J/m² induces colorectal cancer cell proliferation by desensitization of EGFR, which leads oncogenic signaling in these cells, in this study we investigated the combination effect of low dose cisplatin (10 μM and low dose UV-C (10 J/m² on cell growth and apoptosis in several human colorectal cancer cells, SW480, DLD-1, HT29 and HCT116. Results The combination inhibited cell cycle and colony formation, while either cisplatin or UV-C alone had little effect. The combination also induced apoptosis in these cells. In addition, the combination caused the downregulation of EGFR and HER2. Moreover, UV-C alone caused the transient internalization of the EGFR, but with time EGFR recycled back to the cell surface, while cisplatin did not affect its localization. Surprisingly, the combination caused persistent internalization of the EGFR, which results in the lasting downregulation of the EGFR. Conclusions The combination of low dose cisplatin and low dose UV-C synergistically exerted anti-cancer effect by down-regulating RTK, such as EGFR and HER2. These findings may provide a novel strategy for the treatment of patients with colorectal cancer.

  20. Methyl jasmonate abolishes the migration, invasion and angiogenesis of gastric cancer cells through down-regulation of matrix metalloproteinase 14

    International Nuclear Information System (INIS)

    Zheng, Liduan; Li, Dan; Xiang, Xuan; Tong, Ling; Qi, Meng; Pu, Jiarui; Huang, Kai; Tong, Qiangsong

    2013-01-01

    Recent evidence indicates that methyl jasmonate (MJ), a plant stress hormone, exhibits anti-cancer activity on human cancer cells. The aim of this study is to determine whether sub-cytotoxic MJ can abolish the migration, invasion and angiogenesis gastric cancer cells. Human gastric cancer cell lines SGC-7901 and MKN-45 were treated with diverse concentrations of MJ. Cell viability, proliferation, migration, invasion and angiogenesis capabilities of cancer cells were measured by MTT colorimetry, EdU incorporation, scratch assay, matrigel invasion assay, and tube formation assay. Gene expression was detected by western blot and real-time quantitative RT-PCR. Binding of transcription factor on gene promoter was detected by chromatin immunoprecipitation. Sub-cytotoxic (0.05 to 0.2 mM) MJ attenuated the migration, invasion and angiogenesis, but not the cell viability or proliferation, of gastric cancer cells in a time- and dose-dependent manner, with down-regulation of matrix metalloproteinase 14 (MMP-14) and its downstream gene vascular endothelial growth factor. Restoration of MMP-14 expression rescued the SGC-7901 and MKN-45 cells from sub-cytotoxic MJ-inhibited migration, invasion and angiogenesis. In addition, sub-cytotoxic MJ decreased the specificity protein 1 (Sp1) expression and binding on MMP-14 promoter, while restoration of Sp1 expression rescued the cancer cells from sub-cytotoxic MJ-mediated defects in MMP-14 expression, migration, invasion and angiogenesis. Sub-cytotoxic MJ attenuates the MMP-14 expression via decreasing the Sp1 expression and binding on MMP-14 promoter, thus inhibiting the migration, invasion and angiogenesis of gastric cancer cells

  1. Up-regulation of microRNA-1290 impairs cytokinesis and affects the reprogramming of colon cancer cells.

    Science.gov (United States)

    Wu, Jia; Ji, Xiaowei; Zhu, Linlin; Jiang, Qiaoli; Wen, Zhenzhen; Xu, Song; Shao, Wei; Cai, Jianting; Du, Qin; Zhu, Yongliang; Mao, Jianshan

    2013-02-28

    Abnormal cytokinesis increases the possibility of nuclear fusion in tumor cells. However, the role of microRNAs (miRNAs) in abnormal cytokinesis is unclear. Here, we found that miR-1290 was significantly up-regulated in clinical colon cancer tissues. Up-regulation of miR-1290 postponed cytokinesis and led to the formation of multinucleated cells. KIF13B was a target of miR-1290 that was involved in aberrant cytokinesis. Furthermore, enforced expression of miR-1290 activated the Wnt pathway and increased the reprogramming-related transcript factors c-Myc and Nanog. Our results suggest that up-regulation of miR-1290 in colon cancer cells impaired cytokinesis and affected reprogramming. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Dying to Be Noticed: Epigenetic Regulation of Immunogenic Cell Death for Cancer Immunotherapy

    Directory of Open Access Journals (Sweden)

    Brianne Cruickshank

    2018-04-01

    Full Text Available Immunogenic cell death (ICD activates both innate and adaptive arms of the immune system during apoptotic cancer cell death. With respect to cancer immunotherapy, the process of ICD elicits enhanced adjuvanticity and antigenicity from dying cancer cells and consequently, promotes the development of clinically desired antitumor immunity. Cancer ICD requires the presentation of various “hallmarks” of immunomodulation, which include the cell-surface translocation of calreticulin, production of type I interferons, and release of high-mobility group box-1 and ATP, which through their compatible actions induce an immune response against cancer cells. Interestingly, recent reports investigating the use of epigenetic modifying drugs as anticancer therapeutics have identified several connections to ICD hallmarks. Epigenetic modifiers have a direct effect on cell viability and appear to fundamentally change the immunogenic properties of cancer cells, by actively subverting tumor microenvironment-associated immunoevasion and aiding in the development of an antitumor immune response. In this review, we critically discuss the current evidence that identifies direct links between epigenetic modifications and ICD hallmarks, and put forward an otherwise poorly understood role for epigenetic drugs as ICD inducers. We further discuss potential therapeutic innovations that aim to induce ICD during epigenetic drug therapy, generating highly efficacious cancer immunotherapies.

  3. Amyloid precursor protein regulates migration and metalloproteinase gene expression in prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Miyazaki, Toshiaki; Ikeda, Kazuhiro; Horie-Inoue, Kuniko [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Inoue, Satoshi, E-mail: INOUE-GER@h.u-tokyo.ac.jp [Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Saitama 350-1241 (Japan); Department of Geriatric Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan); Department of Anti-Aging Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655 (Japan)

    2014-09-26

    Highlights: • APP knockdown reduced proliferation and migration of prostate cancer cells. • APP knockdown reduced expression of metalloproteinase and EMT-related genes. • APP overexpression promoted LNCaP cell migration. • APP overexpression increased expression of metalloproteinase and EMT-related genes. - Abstract: Amyloid precursor protein (APP) is a type I transmembrane protein, and one of its processed forms, β-amyloid, is considered to play a central role in the development of Alzheimer’s disease. We previously showed that APP is a primary androgen-responsive gene in prostate cancer and that its increased expression is correlated with poor prognosis for patients with prostate cancer. APP has also been implicated in several human malignancies. Nevertheless, the mechanism underlying the pro-proliferative effects of APP on cancers is still not well-understood. In the present study, we explored a pathophysiological role for APP in prostate cancer cells using siRNA targeting APP (siAPP). The proliferation and migration of LNCaP and DU145 prostate cancer cells were significantly suppressed by siAPP. Differentially expressed genes in siAPP-treated cells compared to control siRNA-treated cells were identified by microarray analysis. Notably, several metalloproteinase genes, such as ADAM10 and ADAM17, and epithelial–mesenchymal transition (EMT)-related genes, such as VIM, and SNAI2, were downregulated in siAPP-treated cells as compared to control cells. The expression of these genes was upregulated in LNCaP cells stably expressing APP when compared with control cells. APP-overexpressing LNCaP cells exhibited enhanced migration in comparison to control cells. These results suggest that APP may contribute to the proliferation and migration of prostate cancer cells by modulating the expression of metalloproteinase and EMT-related genes.

  4. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    Abstract Introduction The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. Methods MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. Results JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF-6

  5. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2011-03-23

    ABSTRACT: INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and β1-integrin, we examined activation of the β1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and β1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the β1-integrin substrate fibronectin. This was accompanied by reduced protein expression of β1-integrin and its binding partners αV- and α5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and β1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between JAM-A, AF

  6. Breast cancer cell migration is regulated through junctional adhesion molecule-A-mediated activation of Rap1 GTPase.

    LENUS (Irish Health Repository)

    McSherry, Elaine A

    2012-02-01

    INTRODUCTION: The adhesion protein junctional adhesion molecule-A (JAM-A) regulates epithelial cell morphology and migration, and its over-expression has recently been linked with increased risk of metastasis in breast cancer patients. As cell migration is an early requirement for tumor metastasis, we sought to identify the JAM-A signalling events regulating migration in breast cancer cells. METHODS: MCF7 breast cancer cells (which express high endogenous levels of JAM-A) and primary cultures from breast cancer patients were used for this study. JAM-A was knocked down in MCF7 cells using siRNA to determine the consequences for cell adhesion, cell migration and the protein expression of various integrin subunits. As we had previously demonstrated a link between the expression of JAM-A and beta1-integrin, we examined activation of the beta1-integrin regulator Rap1 GTPase in response to JAM-A knockdown or functional antagonism. To test whether JAM-A, Rap1 and beta1-integrin lie in a linear pathway, we tested functional inhibitors of all three proteins separately or together in migration assays. Finally we performed immunoprecipitations in MCF7 cells and primary breast cells to determine the binding partners connecting JAM-A to Rap1 activation. RESULTS: JAM-A knockdown in MCF7 breast cancer cells reduced adhesion to, and migration through, the beta1-integrin substrate fibronectin. This was accompanied by reduced protein expression of beta1-integrin and its binding partners alphaV- and alpha5-integrin. Rap1 activity was reduced in response to JAM-A knockdown or inhibition, and pharmacological inhibition of Rap1 reduced MCF7 cell migration. No additive anti-migratory effect was observed in response to simultaneous inhibition of JAM-A, Rap1 and beta1-integrin, suggesting that they lie in a linear migratory pathway. Finally, in an attempt to elucidate the binding partners putatively linking JAM-A to Rap1 activation, we have demonstrated the formation of a complex between

  7. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Lu, Su [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Tang, Huamei, E-mail: tanghuamei@gmail.com [Department of Pathology, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China); Peng, Zhihai, E-mail: zhihai.peng@hotmail.com [Department of General Surgery, Shanghai Jiaotong University Affiliated First People’s Hospital, 85 Wujin Road, Shanghai 200080 (China)

    2014-06-27

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation.

  8. Up-regulation of CHAF1A, a poor prognostic factor, facilitates cell proliferation of colon cancer

    International Nuclear Information System (INIS)

    Wu, Zehua; Cui, Feifei; Yu, Fudong; Peng, Xiao; Jiang, Tao; Chen, Dawei; Lu, Su; Tang, Huamei; Peng, Zhihai

    2014-01-01

    Highlights: • We identified that CHAF1A was up-regulated in colon tumor mucosa in TMA. • The expression pattern of CHAF1A was validated with qPCR and western-blot. • CHAF1A overexpression is an independent indicator for poor colon cancer survival. • CHAF1A facilitates cell proliferation of colon cancer both in vitro and in vivo. - Abstract: Deregulation of chromatin assembly factor 1, p150 subunit A (CHAF1A) has recently been reported to be involved in the development of some cancer types. In this study, we identified that the frequency of positive CHAF1A staining in primary tumor mucosa (45.8%, 93 of 203 samples) was significantly elevated compared to that in paired normal mucosa (18.7%, 38 of 203 samples). The increased expression was strongly associated with cancer stage, tumor invasion, and histological grade. The five-year survival rate of patients with CHAF1A-positive tumors was remarkably lower than that of patients with CHAF1A-negative tumors. Colon cancer cells with CHAF1A knockdown exhibited decreased cell growth index, reduction in colony formation ability, elevated cell apoptosis rate as well as impaired colon tumorigenicity in nude mice. Hence, CHAF1A upregulation functions as a poor prognostic indicator of colon cancer, potentially contributing to its progression by mediating cancer cell proliferation

  9. [Effect of down-regulation of HE4 gene expression on biologic behavior of ovarian cancer cells].

    Science.gov (United States)

    Zhou, Lei; Xiao, Ran; Chen, Ying; Zhang, Jing; Lu, Ren-quan; Guo, Lin

    2013-10-01

    To investigate the effects of HE4 gene knockdown on the proliferation, adhesion and invasion of the ovarian cancer cells SKOV3. The knockdown of HE4 gene was performed by RNAi technology. The recombinant plasmids (pSUPER-HE4 shDNAs) were constructed and transfected into human ovarian cancer cells SKOV3. HE4 expression was then identified by real-time PCR and Western blot analysis. The invasion and adhesion ability of transduced cells were determined. In addition, cell proliferation and growth were analyzed by colonies formation assay. Knockdown of HE4 was achieved, and further confirmed by real-time PCR and Western blot. The proliferation of HE4-down-regulated cells was not affected, but the invasion ability of the transfected cells was reduced (P cells.

  10. Sensitization of multidrug-resistant human cancer cells to Hsp90 inhibitors by down-regulation of SIRT1

    Science.gov (United States)

    Kim, Hak-Bong; Lee, Su-Hoon; Um, Jee-Hyun; Oh, Won Keun; Kim, Dong-Wan; Kang, Chi-Dug; Kim, Sun-Hee

    2015-01-01

    The effectiveness of Hsp90 inhibitors as anticancer agents was limited in multidrug-resistant (MDR) human cancer cells due to induction of heat shock proteins (Hsps) such as Hsp70/Hsp27 and P-glycoprotein (P-gp)-mediated efflux. In the present study, we showed that resistance to Hsp90 inhibitors of MDR human cancer cells could be overcome with SIRT1 inhibition. SIRT1 knock-down or SIRT1 inhibitors (amurensin G and EX527) effectively suppressed the resistance to Hsp90 inhibitors (17-AAG and AUY922) in several MDR variants of human lymphoblastic leukemia and human breast cancer cell lines. SIRT1 inhibition down-regulated the expression of heat shock factor 1 (HSF1) and subsequently Hsps and facilitated Hsp90 multichaperone complex disruption via hyperacetylation of Hsp90/Hsp70. These findings were followed by acceleration of ubiquitin ligase CHIP-mediated mutant p53 (mut p53) degradation and subsequent down-regulation of P-gp in 17-AAG-treated MDR cancer cells expressing P-gp and mut p53 after inhibition of SIRT1. Therefore, combined treatment with Hsp90 inhibitor and SIRT1 inhibitor could be a more effective therapeutic approach for Hsp90 inhibitor-resistant MDR cells via down-regulation of HSF1/Hsps, mut p53 and P-gp. PMID:26416354

  11. Positive regulation of prostate cancer cell growth by lipid droplet forming and processing enzymes DGAT1 and ABHD5.

    Science.gov (United States)

    Mitra, Ranjana; Le, Thuc T; Gorjala, Priyatham; Goodman, Oscar B

    2017-09-06

    Neoplastic cells proliferate rapidly and obtain requisite building blocks by reprogramming metabolic pathways that favor growth. Previously, we observed that prostate cancer cells uptake and store lipids in the form of lipid droplets, providing building blocks for membrane synthesis, to facilitate proliferation and growth. Mechanisms of lipid uptake, lipid droplet dynamics and their contribution to cancer growth have yet to be defined. This work is focused on elucidating the prostate cancer-specific modifications in lipid storage pathways so that these modified gene products can be identified and therapeutically targeted. To identify genes that promote lipid droplet formation and storage, the expression profiles of candidate genes were assessed and compared between peripheral blood mononuclear cells and prostate cancer cells. Subsequently, differentially expressed genes were inhibited and growth assays performed to elucidate their role in the growth of the cancer cells. Cell cycle, apoptosis and autophagy assays were performed to ascertain the mechanism of growth inhibition. Our results indicate that DGAT1, ABHD5, ACAT1 and ATGL are overexpressed in prostate cancer cells compared to PBMCs and of these overexpressed genes, DGAT1 and ABHD5 aid in the growth of the prostate cancer cells. Blocking the expression of both DGAT1 and ABHD5 results in inhibition of growth, cell cycle block and cell death. DGAT1 siRNA treatment inhibits lipid droplet formation and leads to autophagy where as ABHD5 siRNA treatment promotes accumulation of lipid droplets and leads to apoptosis. Both the siRNA treatments reduce AMPK phosphorylation, a key regulator of lipid metabolism. While DGAT1 siRNA reduces phosphorylation of ACC, the rate limiting enzyme in de novo fat synthesis and triggers phosphorylation of raptor and ULK-1 inducing autophagy and cell death, ABHD5 siRNA decreases P70S6 phosphorylation, leading to PARP cleavage, apoptosis and cell death. Interestingly, DGAT-1 is involved

  12. SCFβ-TRCP targets MTSS1 for ubiquitination-mediated destruction to regulate cancer cell proliferation and migration

    Science.gov (United States)

    Tron, Adriana E.; Wang, Zhiwei; Sun, Liankun; Inuzuka, Hiroyuki; Wei, Wenyi

    2013-01-01

    Metastasis suppressor 1 (MTSS1) is an important tumor suppressor protein, and loss of MTSS1 expression has been observed in several types of human cancers. Importantly, decreased MTSS1 expression is associated with more aggressive forms of breast and prostate cancers, and with poor survival rate. Currently, it remains unclear how MTSS1 is regulated in cancer cells, and whether reduced MTSS1 expression contributes to elevated cancer cell proliferation and migration. Here we report that the SCFβ-TRCP regulates MTSS1 protein stability by targeting it for ubiquitination and subsequent destruction via the 26S proteasome. Notably, depletion of either Cullin 1 or β-TRCP1 led to increased levels of MTSS1. We further demonstrated a crucial role for Ser322 in the DSGXXS degron of MTSS1 in governing SCFβ-TRCP-mediated MTSS1 degradation. Mechanistically, we defined that Casein Kinase Iδ (CKIδ) phosphorylates Ser322 to trigger MTSS1's interaction with β-TRCP for subsequent ubiquitination and degradation. Importantly, introducing wild-type MTSS1 or a non-degradable MTSS1 (S322A) into breast or prostate cancer cells with low MTSS1 expression significantly inhibited cellular proliferation and migration. Moreover, S322A-MTSS1 exhibited stronger effects in inhibiting cell proliferation and migration when compared to ectopic expression of wild-type MTSS1. Therefore, our study provides a novel molecular mechanism for the negative regulation of MTSS1 by β-TRCP in cancer cells. It further suggests that preventing MTSS1 degradation could be a possible novel strategy for clinical treatment of more aggressive breast and prostate cancers. PMID:24318128

  13. Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells

    Science.gov (United States)

    Mimeault, Murielle; Batra, Surinder K

    2013-01-01

    Accumulating lines of experimental evidence have revealed that hypoxia-inducible factors, HIF-1α and HIF-2α, are key regulators of the adaptation of cancer- and metastasis-initiating cells and their differentiated progenies to oxygen and nutrient deprivation during cancer progression under normoxic and hypoxic conditions. Particularly, the sustained stimulation of epidermal growth factor receptor (EGFR), insulin-like growth factor-1 receptor (IGF-1R), stem cell factor (SCF) receptor KIT, transforming growth factor-β receptors (TGF-βRs) and Notch and their downstream signalling elements such as phosphatidylinositol 3′-kinase (PI3K)/Akt/molecular target of rapamycin (mTOR) may lead to an enhanced activity of HIFs. Moreover, the up-regulation of HIFs in cancer cells may also occur in the hypoxic intratumoral regions formed within primary and secondary neoplasms as well as in leukaemic cells and metastatic prostate and breast cancer cells homing in the hypoxic endosteal niche of bone marrow. The activated HIFs may induce the expression of numerous gene products such as induced pluripotency-associated transcription factors (Oct-3/4, Nanog and Sox-2), glycolysis- and epithelial-mesenchymal transition (EMT) programme-associated molecules, including CXC chemokine receptor 4 (CXCR4), snail and twist, microRNAs and angiogenic factors such as vascular endothelial growth factor (VEGF). These gene products in turn can play critical roles for high self-renewal ability, survival, altered energy metabolism, invasion and metastases of cancer cells, angiogenic switch and treatment resistance. Consequently, the targeting of HIF signalling network and altered metabolic pathways represents new promising strategies to eradicate the total mass of cancer cells and improve the efficacy of current therapies against aggressive and metastatic cancers and prevent disease relapse. PMID:23301832

  14. Regulation of DU145 prostate cancer cell growth by Scm-like with four mbt domains 2.

    Science.gov (United States)

    Lee, Kwanghyun; Na, Wonho; Maeng, Je-Heon; Wu, Hongjin; Ju, Bong-Gun

    2013-03-01

    Mammalian SFMBTs have been considered to be polycomb group repressors. However, molecular mechanisms underlying mammalian SFMBTs-mediated gene regulation and their biological function have not been characterized. In the present study, we identified YY1 and methylated histones as interacting proteins of human SFMBT2. We also found that human SFMBT2 binds preferentially to methylated histone H3 and H4 that are associated with transcriptional repression. Using DU145 prostate cancer cells as a model, we showed that SFMBT2 has a transcriptional repression activity on HOXB13 gene expression. In addition, occupancy of SFMBT2 coincided with enrichment of diand tri-methylated H3K9 and H4K20 as well as tri-methylated H3K27 at the HOXB13 gene promoter. When SFMBT2 was depleted by siRNA in DU145 prostate cancer cells, significant up-regulation of HOXB13 gene expression and decreased cell growth were observed. Collectively, our findings indicate that human SFMBT2 may regulate cell growth via epigenetic regulation of HOXB13 gene expression in DU145 prostate cancer cells.

  15. Poncirin Induces Apoptosis in AGS Human Gastric Cancer Cells through Extrinsic Apoptotic Pathway by up-Regulation of Fas Ligand.

    Science.gov (United States)

    Saralamma, Venu Venkatarame Gowda; Nagappan, Arulkumar; Hong, Gyeong Eun; Lee, Ho Jeong; Yumnam, Silvia; Raha, Suchismita; Heo, Jeong Doo; Lee, Sang Joon; Lee, Won Sup; Kim, Eun Hee; Kim, Gon Sup

    2015-09-18

    Poncirin, a natural bitter flavanone glycoside abundantly present in many species of citrus fruits, has various biological benefits such as anti-oxidant, anti-microbial, anti-inflammatory and anti-cancer activities. The anti-cancer mechanism of Poncirin remains elusive to date. In this study, we investigated the anti-cancer effects of Poncirin in AGS human gastric cancer cells (gastric adenocarcinoma). The results revealed that Poncirin could inhibit the proliferation of AGS cells in a dose-dependent manner. It was observed Poncirin induced accumulation of sub-G1 DNA content, apoptotic cell population, apoptotic bodies, chromatin condensation, and DNA fragmentation in a dose-dependent manner in AGS cells. The expression of Fas Ligand (FasL) protein was up-regulated dose dependently in Poncirin-treated AGS cells Moreover, Poncirin in AGS cells induced activation of Caspase-8 and -3, and subsequent cleavage of poly(ADP-ribose) polymerase (PARP). Inhibitor studies' results confirm that the induction of caspase-dependent apoptotic cell death in Poncirin-treated AGS cells was led by the Fas death receptor. Interestingly, Poncirin did not show any effect on mitochondrial membrane potential (ΔΨm), pro-apoptotic proteins (Bax and Bak) and anti-apoptotic protein (Bcl-xL) in AGS-treated cells followed by no activation in the mitochondrial apoptotic protein caspase-9. This result suggests that the mitochondrial-mediated pathway is not involved in Poncirin-induced cell death in gastric cancer. These findings suggest that Poncirin has a potential anti-cancer effect via extrinsic pathway-mediated apoptosis, possibly making it a strong therapeutic agent for human gastric cancer.

  16. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiang-Yuan; Wang, Zhen [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Bei [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Zhang, Ying-Jian, E-mail: yjzhang111@aliyun.com [Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Li, Ying-Yi, E-mail: liyingyi@fudan.edu.cn [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China)

    2016-04-22

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  17. Pim-3 contributes to radioresistance through regulation of the cell cycle and DNA damage repair in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Chen, Xiang-Yuan; Wang, Zhen; Li, Bei; Zhang, Ying-Jian; Li, Ying-Yi

    2016-01-01

    Resistance of cancer cells to chemoradiotherapy is a major clinical problem in pancreatic cancer treatment. Therefore, understanding the molecular basis of cellular resistance and identifying novel targets are essential for improving treatment efficacy for pancreatic cancer patients. Previous studies have demonstrated a significant role for Pim-3 in pancreatic cancer survival against gemcitabine-induced genotoxic stress. Here, we observed that radiation treatment enhanced Pim-3 expression in human pancreatic cancer cells in vitro. Stable overexpression of Pim-3 in pancreatic cancer cells significantly protected cells against radiation treatment by attenuating G2/M phase cell cycle arrest and DNA damage response. Silencing of Pim-3 expression significantly elevated the phosphorylation of histone variant H2AX, a marker of DNA double strand breaks, and decreased the activation of ataxia-telangiectasia-mutated (ATM) kinase, along with its downstream targets, eventually enhancing the radiosensitivity of human pancreatic cancer cells in vitro and in vivo. Hence, we demonstrated a novel function for Pim-3 in human pancreatic cancer cell survival against radiation. Targeting Pim-3 may be a promising way to improve treatment efficacy in combination with radiotherapy in human pancreatic cancer. - Highlights: • This is first study to demonstrate that Pim-3 is endogenously induced by ionizing radiation in pancreatic cancer cells, and Pim-3 overexpression enhanced radioresistance of pancreatic cancer cells both in vitro and in vivo. • This is first study to provide evidence that radioresistance induced by Pim-3 is mainly attributed to Pim-3 induces activation of ATM, which subsequently activates checkpoint 1, leading to amplification of DNA repair through cell cycle arrest and DNA repair pathways. • This is first study to indicate that targeting Pim-3 may be a promising strategy to provide better treatment efficacy in combination with radiotherapy in human pancreatic

  18. Renal Cell Regulation and Cancer: Tumor Suppressor Networks and the Primary Cilium

    NARCIS (Netherlands)

    Klasson, TD

    2017-01-01

    Cancer affects a large number of people the world over. Cancer is a class of extremely complex diseases that arise from malfunctions in otherwise vital cellular processes, especially those that govern aspects of cellular functions like proliferation, apoptosis or the cell cycle. These processes are

  19. Constitutively active ErbB2 regulates cisplatin-induced cell death in breast cancer cells via pro- and antiapoptotic mechanisms

    DEFF Research Database (Denmark)

    Sigurðsson, Haraldur H; Olesen, Christina Wilkens; Dybboe, Rie

    2015-01-01

    cancer cell death, and determine how NHE1 regulates this process. Cisplatin treatment elicited apoptosis, ATM phosphorylation, upregulation of p53, Noxa (PMAIP1), and PUMA (BBC3), and cleavage of caspase-9, -7, fodrin, and PARP-1 in MCF-7 cells. Inducible ΔNErbB2 expression strongly reduced cisplatin...

  20. Rational Design of Regulators of Programmed Cell Death in Human Breast Cancer

    National Research Council Canada - National Science Library

    Cowburn, David

    2000-01-01

    The purpose of this research is to develop a better understanding of the intricate pathways of cell death and their contributions to breast cancers, with the goal of designing potential therapeutic...

  1. The Xenopus oocyte: a model for studying the metabolic regulation of cancer cell death.

    Science.gov (United States)

    Nutt, Leta K

    2012-06-01

    Abnormal metabolism and the evasion of apoptosis are both considered hallmarks of cancer. A remarkable biochemical model system, the Xenopus laevis oocyte, exhibits altered metabolism coupled to its apoptotic machinery in a similar fashion to cancer cells. This review considers the theory that these two hallmarks of cancer are coupled in tumor cells and provides strong proof that the Xenopus laevis oocyte system is an appropriate model in which to dissect the biochemical events underlying the connection between the two hallmarks. By further elucidating the mechanisms through which metabolism suppresses apoptotic machinery, we may gain a better understanding about how normal cells transform into cancer cells. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. SGT1 regulates Akt signaling by promoting beta-TrCP-dependent PHLPP1 degradation in gastric cancer cells.

    Science.gov (United States)

    Gao, Ganglong; Kun, Tao; Sheng, Youhua; Qian, Min; Kong, Fanzhi; Liu, Xiaoguang; Yu, Zhenfeng; Zhang, Haiqin; Zhang, Qiang; Gu, Jianping; Zhang, Xueli

    2013-04-01

    SGT1 (suppressor of G2 allele of Skp1) plays a role in various cellular processes including kinetochore assembly and protein ubiquitination by interacting with Skp1, a component of SCF E3 ligase complex. However, the function of SGT1 in cancer is largely unknown. Here, we showed that SGT1 was over-expressed in gastric cancer tissues and silencing of SGT1 by siRNAs significantly inhibited the growth and colony formation of gastric cancer cells. We further showed that SGT1 could regulate Akt signaling pathway by modulating Akt ser473 phosphorylation status. Moreover, we found that SGT1 was able to regulate the stability of PHLPP1, which is the direct phosphatase for Akt ser473 phosphorylation. Immunoprecipitation assay revealed that SGT1 could enhance the binding between PHLPP1 and beta-TrCP which has been documented to be able to target PHLPP1 for destruction. Decreased PHLPP1 in SGT1 over-expressed gastric cancer cells failed to dephosphorylate Akt and resulted in increased Akt ser473 phosphorylation and amplified downstream Akt signaling. Thus, our data revealed a previously uncovered role of SGT1 in gastric cancer development, and suggested that SGT1 could be a promising anti-cancer target to against gastric cancer.

  3. Estrogen and Resveratrol Regulate Rac and Cdc42 Signaling to the Actin Cytoskeleton of Metastatic Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Nicolas G. Azios

    2007-02-01

    Full Text Available Estrogen and structurally related molecules play critical roles in breast cancer. We reported that resveratrol (50 µM, an estrogen-like phytosterol from grapes, acts in an antiestrogenic manner in breast cancer cells to reduce cell migration and to induce a global and sustained extension of actin structures called filopodia. Herein, we report that resveratrol-induced filopodia formation is time-dependent and concentration-dependent. In contrast to resveratrol at 50 µM, resveratrol at 5 µM acts in a manner similar to estrogen by increasing lamellipodia, as well as cell migration and invasion. Because Rho GTPases regulate the extension of actin structures, we investigated a role for Rac and Cdc42 in estrogen and resveratrol signaling. Our results demonstrate that 50 µM resveratrol decreases Rac and Cdc42 activity, whereas estrogen and 5 µM resveratrol increase Rac activity in breast cancer cells. MDA-MB-231 cells expressing dominant-negative Cdc42 or dominantnegative Rac retain filopodia response to 50 µM resveratrol. Lamellipodia response to 5 µM resveratrol, estrogen, or epidermal growth factor is inhibited in cells expressing dominant-negative Rac, indicating that Rac regulates estrogen and resveratrol (5 µM signaling to the actin cytoskeleton. These results indicate that signaling to the actin cytoskeleton by low and high concentrations of resveratrol may be differentially regulated by Rac and Cdc42.

  4. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy.

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O

    2014-09-26

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3'-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  5. Down-regulation of the Antisense Mitochondrial Non-coding RNAs (ncRNAs) Is a Unique Vulnerability of Cancer Cells and a Potential Target for Cancer Therapy*

    Science.gov (United States)

    Vidaurre, Soledad; Fitzpatrick, Christopher; Burzio, Verónica A.; Briones, Macarena; Villota, Claudio; Villegas, Jaime; Echenique, Javiera; Oliveira-Cruz, Luciana; Araya, Mariela; Borgna, Vincenzo; Socías, Teresa; Lopez, Constanza; Avila, Rodolfo; Burzio, Luis O.

    2014-01-01

    Hallmarks of cancer are fundamental principles involved in cancer progression. We propose an additional generalized hallmark of malignant transformation corresponding to the differential expression of a family of mitochondrial ncRNAs (ncmtRNAs) that comprises sense and antisense members, all of which contain stem-loop structures. Normal proliferating cells express sense (SncmtRNA) and antisense (ASncmtRNA) transcripts. In contrast, the ASncmtRNAs are down-regulated in tumor cells regardless of tissue of origin. Here we show that knockdown of the low copy number of the ASncmtRNAs in several tumor cell lines induces cell death by apoptosis without affecting the viability of normal cells. In addition, knockdown of ASncmtRNAs potentiates apoptotic cell death by inhibiting survivin expression, a member of the inhibitor of apoptosis (IAP) family. Down-regulation of survivin is at the translational level and is probably mediated by microRNAs generated by dicing of the double-stranded stem of the ASncmtRNAs, as suggested by evidence presented here, in which the ASncmtRNAs are bound to Dicer and knockdown of the ASncmtRNAs reduces reporter luciferase activity in a vector carrying the 3′-UTR of survivin mRNA. Taken together, down-regulation of the ASncmtRNAs constitutes a vulnerability or Achilles' heel of cancer cells, suggesting that the ASncmtRNAs are promising targets for cancer therapy. PMID:25100722

  6. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling.

    Science.gov (United States)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling.

    Directory of Open Access Journals (Sweden)

    Erhong Meng

    Full Text Available OBJECTIVE: Aldehyde dehydrogenase (ALDH expressing cells have been characterized as possessing stem cell-like properties. We evaluated ALDH+ ovarian cancer stem cell-like properties and their role in platinum resistance. METHODS: Isogenic ovarian cancer cell lines for platinum sensitivity (A2780 and platinum resistant (A2780/CP70 as well as ascites from ovarian cancer patients were analyzed for ALDH+ by flow cytometry to determine its association to platinum resistance, recurrence and survival. A stable shRNA knockdown model for ALDH1A1 was utilized to determine its effect on cancer stem cell-like properties, cell cycle checkpoints, and DNA repair mediators. RESULTS: ALDH status directly correlated to platinum resistance in primary ovarian cancer samples obtained from ascites. Patients with ALDHHIGH displayed significantly lower progression free survival than the patients with ALDHLOW cells (9 vs. 3 months, respectively p<0.01. ALDH1A1-knockdown significantly attenuated clonogenic potential, PARP-1 protein levels, and reversed inherent platinum resistance. ALDH1A1-knockdown resulted in dramatic decrease of KLF4 and p21 protein levels thereby leading to S and G2 phase accumulation of cells. Increases in S and G2 cells demonstrated increased expression of replication stress associated Fanconi Anemia DNA repair proteins (FANCD2, FANCJ and replication checkpoint (pS317 Chk1 were affected. ALDH1A1-knockdown induced DNA damage, evidenced by robust induction of γ-H2AX and BAX mediated apoptosis, with significant increases in BRCA1 expression, suggesting ALDH1A1-dependent regulation of cell cycle checkpoints and DNA repair networks in ovarian cancer stem-like cells. CONCLUSION: This data suggests that ovarian cancer cells expressing ALDH1A1 may maintain platinum resistance by altered regulation of cell cycle checkpoint and DNA repair network signaling.

  8. Arf6 regulates EGF-induced internalization of E-cadherin in breast cancer cells.

    Science.gov (United States)

    Xu, Rui; Zhang, Yujie; Gu, Luo; Zheng, Jianchao; Cui, Jie; Dong, Jing; Du, Jun

    2015-01-01

    E-cadherin internalization facilitates dissolution of adherens junctions and promotes tumor cell epithelial-mesenchymal transition (EMT) and migration. Our previous results have shown that Arf6 exerts pro-migratory action in breast cancer cells after EGF stimulation. Despite the fact that EGF signaling stimulates EMT of breast cancer cells, the effect of Arf6 on internalization of E-cadherin of breast cancer cells under EGF treatment remains to be determined. Here, we showed that EGF dose-dependently stimulated E-cadherin internalization by MCF-7 cells with the maximal effect at 50 ng/ml. Meanwhile, EGF treatment markedly increased Arf6 activation. Arf6 was involved in complexes of E-cadherin, and more E-cadherin was pulled down with Arf6 when the activity of the latter was increased. Immunoblotting and immunofluorescence assays showed that transfection breast cancer cells with Arf6-T27N or Arf6 siRNA suppressed EGF-induced E-cadherin internalization. Taken together, our study demonstrated that Arf6 activation plays a potential role in EGF-induced E-cadherin internalization, providing new mechanism underlying the effect of Arf6 on promoting breast cancer cell metastasis.

  9. The antidiabetic drug ciglitazone induces high grade bladder cancer cells apoptosis through the up-regulation of TRAIL.

    Directory of Open Access Journals (Sweden)

    Marie-Laure Plissonnier

    Full Text Available Ciglitazone belongs to the thiazolidinediones class of antidiabetic drug family and is a high-affinity ligand for the Peroxisome Proliferator-Activated Receptor γ (PPARγ. Apart from its antidiabetic activity, this molecule shows antineoplastic effectiveness in numerous cancer cell lines.Using RT4 (derived from a well differentiated grade I papillary tumor and T24 (derived from an undifferentiated grade III carcinoma bladder cancer cells, we investigated the potential of ciglitazone to induce apoptotic cell death and characterized the molecular mechanisms involved. In RT4 cells, the drug induced G2/M cell cycle arrest characterized by an overexpression of p53, p21(waf1/CIP1 and p27(Kip1 in concomitance with a decrease of cyclin B1. On the contrary, in T24 cells, it triggered apoptosis via extrinsic and intrinsic pathways. Cell cycle arrest and induction of apoptosis occurred at high concentrations through PPARγ activation-independent pathways. We show that in vivo treatment of nude mice by ciglitazone inhibits high grade bladder cancer xenograft development. We identified a novel mechanism by which ciglitazone kills cancer cells. Ciglitazone up-regulated soluble and membrane-bound TRAIL and let TRAIL-resistant T24 cells to respond to TRAIL through caspase activation, death receptor signalling pathway and Bid cleavage. We provided evidence that TRAIL-induced apoptosis is partially driven by ciglitazone-mediated down-regulation of c-FLIP and survivin protein levels through a proteasome-dependent degradation mechanism.Therefore, ciglitazone could be clinically relevant as chemopreventive or therapeutic agent for the treatment of TRAIL-refractory high grade urothelial cancers.

  10. Calycosin Inhibits the Migration and Invasion of Human Breast Cancer Cells by Down-Regulation of Foxp3 Expression

    Directory of Open Access Journals (Sweden)

    Shuangxi Li

    2017-12-01

    Full Text Available Background/Aims: Calycosin, a phytoestrogenic compound, has recently emerged as a promising antitumor drug. It has been shown that calycosin suppresses growth and induces apoptosis of breast cancer cells. However, the effect of calycosin on migration and invasion of breast cancer cells and the underlying molecular mechanisms have not been elucidated. Methods: Human breast cancer cells MCF-7 and T47D were treated with, or without, different doses (0, 6.25, 12.5, 25, 50, 100 or 150 μM of calycosin, and the viability of different groups was determined by MTT assay. Next, the inhibitory effect of higher doses (50, 100 or 150 μM of calycosin on migration and invasion of the two cell lines was determined by wound healing and transwell assay. The relative expression levels of forkhead box P3 (Foxp3, vascular endothelial growth factor (VEGF and matrix metalloproteinase-9 (MMP-9 in MCF-7 and T47D cells were determined by quantitative RT-PCR and Western blot. Results: Treatment with lower doses (6.25 or 12.5 μM promoted proliferation of breast cancer cells, but with higher doses significantly reduced the viability of MCF-7 and T47D cells. Furthermore, higher doses of calycosin were found to inhibit migration and invasion of the two cell lines in a dose-dependent manner. Additionally, treatment with a higher dose of calycosin significantly reduced the expression levels of Foxp3, followed by down-regulation of VEGF and MMP-9 in both MCF-7 and T47D breast cancer cells. Conclusion: Treatment with a higher dose of calycosin tends to reduce migration and invasion capacity of human breast cancer cells, by targeting Foxp3-mediated VEGF and MMP-9 expression.

  11. ADAM12 in human liver cancers: TGF-beta-regulated expression in stellate cells is associated with matrix remodeling

    DEFF Research Database (Denmark)

    Le Pabic, Hélène; Bonnier, Dominique; Wewer, Ulla M

    2003-01-01

    "A disintegrin and metalloproteinases" (ADAMs) form a family of cell-surface glycoproteins with potential protease and cell-adhesion activities. We have investigated ADAM expression in human liver cancers and their regulation by several cytokines involved in liver injury. Using degenerative RT...... carcinomas (up to 3- and 6-fold, respectively) and liver metastases from colonic carcinomas (up to 40- and 60-fold, respectively). The up-regulation of both ADAM9 and ADAM12 was correlated with an increase in matrix metalloproteinase 2 expression and activity. In conclusion, in liver cancers ADAM9 and ADAM12......-PCR, cDNA encoding sequences for ADAM9 and ADAM12 were identified in human activated hepatic stellate cells (HSCs). Northern blot analyses showed that HSCs, but not hepatocytes, expressed transcripts for ADAM9 messenger RNA (mRNA) and both the long and short forms of ADAM12. This expression...

  12. Mel-18 negatively regulates INK4a/ARF-independent cell cycle progression via Akt inactivation in breast cancer.

    Science.gov (United States)

    Lee, Jeong-Yeon; Jang, Ki-Seok; Shin, Dong-Hui; Oh, Mi-Yun; Kim, Hyun-Jun; Kim, Yongseok; Kong, Gu

    2008-06-01

    Mel-18, a polycomb group (PcG) protein, has been suggested as a tumor suppressor in human breast cancer. Previously, we reported that Mel-18 has antiproliferative activity in breast cancer cells. However, its functional mechanism has not been fully elucidated. Here, we investigated the role of Mel-18 in human breast cancer. We saw an inverse correlation between Mel-18 and phospho-Akt, which were expressed at low and high levels, respectively, in primary breast tumor tissues from 40 breast cancer patients. The effect of Mel-18 on cell growth was examined in two breast cancer cell lines, SK-BR-3 and T-47D, which express relatively low and high levels of endogenous Mel-18, respectively. On Mel-18 overexpression in SK-BR-3 cells, cell growth was attenuated and G(1) arrest was observed. Likewise, suppression of Mel-18 by antisense expression in T-47D cells led to enhanced cell growth and accelerated G(1)-S phase transition. In these cells, cyclin-dependent kinase (Cdk)-4 and Cdk2 activities were affected by Mel-18, which were mediated by changes in cyclin D1 expression and p27(Kip1) phosphorylation at Thr(157), but not by INK4a/ARF genes. The changes were both dependent on the phosphatidylinositol 3-kinase/Akt signaling pathway. Akt phosphorylation at Ser(473) was reduced by Mel-18 overexpression in SK-BR-3 cells and enhanced by Mel-18 suppression in T-47D cells. Akt-mediated cytoplasmic localization of p27(Kip1) was inhibited by Mel-18 in SK-BR-3 cells. Moreover, Mel-18 overexpression showed reduced glycogen synthase kinase-3beta phosphorylation, beta-catenin nuclear localization, T-cell factor/lymphoid enhancer factor promoter activity, and cyclin D1 mRNA level. Taken together, we established a linear relationship between Mel-18-->Akt-->G(1) phase regulators.

  13. Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer

    Science.gov (United States)

    2017-10-01

    AWARD NUMBER: W81XWH-15-1-0512 TITLE: Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer PRINCIPAL INVESTIGATOR: Andrew...SUBTITLE 5a. CONTRACT NUMBER Regulating Cancer-Associated Fibroblast Biology in Prostate Cancer 5b. GRANT NUMBER W81XWH-15-1-0512 5c. PROGRAM...blocked by the addition of Pim inhibitors. These results suggest that the Pim protein kinase can regulate stromal cell biology to modulate epithelial

  14. Skip Regulates TGF-β1-Induced Extracellular Matrix Degrading Proteases Expression in Human PC-3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Victor Villar

    2013-01-01

    Full Text Available Purpose. To determine whether Ski-interacting protein (SKIP regulates TGF-β1-stimulated expression of urokinase-type plasminogen activator (uPA, matrix metalloproteinase-9 (MMP-9, and uPA Inhibitor (PAI-1 in the androgen-independent human prostate cancer cell model. Materials and Methods. PC-3 prostate cancer cell line was used. The role of SKIP was evaluated using synthetic small interference RNA (siRNA compounds. The expression of uPA, MMP-9, and PAI-1 was evaluated by zymography assays, RT-PCR, and promoter transactivation analysis. Results. In PC-3 cells TGF-β1 treatment stimulated uPA, PAI-1, and MMP-9 expressions. The knockdown of SKIP in PC-3 cells enhanced the basal level of uPA, and TGF-β1 treatment inhibited uPA production. Both PAI-1 and MMP-9 production levels were increased in response to TGF-β1. The ectopic expression of SKIP inhibited both TGF-β1-induced uPA and MMP-9 promoter transactivation, while PAI-1 promoter response to the factor was unaffected. Conclusions. SKIP regulates the expression of uPA, PAI-1, and MMP-9 stimulated by TGF-β1 in PC-3 cells. Thus, SKIP is implicated in the regulation of extracellular matrix degradation and can therefore be suggested as a novel therapeutic target in prostate cancer treatment.

  15. Epigenetic repression of regulator of G-protein signaling 2 promotes androgen-independent prostate cancer cell growth.

    Science.gov (United States)

    Wolff, Dennis W; Xie, Yan; Deng, Caishu; Gatalica, Zoran; Yang, Mingjie; Wang, Bo; Wang, Jincheng; Lin, Ming-Fong; Abel, Peter W; Tu, Yaping

    2012-04-01

    G-protein-coupled receptor (GPCR)-stimulated androgen-independent activation of androgen receptor (AR) contributes to acquisition of a hormone-refractory phenotype by prostate cancer. We previously reported that regulator of G-protein signaling (RGS) 2, an inhibitor of GPCRs, inhibits androgen-independent AR activation (Cao et al., Oncogene 2006;25:3719-34). Here, we show reduced RGS2 protein expression in human prostate cancer specimens compared to adjacent normal or hyperplastic tissue. Methylation-specific PCR analysis and bisulfite sequencing indicated that methylation of the CpG island in the RGS2 gene promoter correlated with RGS2 downregulation in prostate cancer. In vitro methylation of this promoter suppressed reporter gene expression in transient transfection studies, whereas reversal of this promoter methylation with 5-aza-2'-deoxycytidine (5-Aza-dC) induced RGS2 reexpression in androgen-independent prostate cancer cells and inhibited their growth under androgen-deficient conditions. Interestingly, the inhibitory effect of 5-Aza-dC was significantly reduced by an RGS2-targeted short hairpin RNA, indicating that reexpressed RGS2 contributed to this growth inhibition. Restoration of RGS2 levels by ectopic expression in androgen-independent prostate cancer cells suppressed growth of xenografts in castrated mice. Thus, RGS2 promoter hypermethylation represses its expression and unmasks a latent pathway for AR transactivation in prostate cancer cells. Targeting this reversible process may provide a new strategy for suppressing prostate cancer progression by reestablishing its androgen sensitivity. Copyright © 2011 UICC.

  16. Up-regulation of mitochondrial antioxidation signals in ovarian cancer cells with aggressive biologic behavior.

    Science.gov (United States)

    Wang, Yue; Dong, Li; Cui, Heng; Shen, Dan-hua; Wang, Ying; Chang, Xiao-hong; Fu, Tian-yun; Ye, Xue; Yao, Yuan-yang

    2011-05-01

    Recently, a high frequency of mutations in mitochondrial DNA (mtDNA) has been detected in ovarian cancer. To explore the alterations of proteins in mitochondria in ovarian cancer, a pair of human ovarian carcinoma cell lines (SKOV3/SKOV3.ip1) with different metastatic potentials was examined. Cancer cells SKOV3.ip1 were derived from the ascitic tumor cells of nude mice bearing a tumor of ovarian cancer cells SKOV3. SKOV3.ip1 exhibited a higher degree of migration potential than its paired cell line SKOV3. The proteins in the mitochondria of these two cells were isolated and separated by 2-D gel electrophoresis. The differently expressed proteins were extracted and identified using matrix assisted laser desorption ionisation/time-of-flight/time-of-flight (MALDI-TOF/TOF), and finally a selected protein candidate was further investigated by immunohistochemistry (IHC) method in nude mice bearing tumor tissues of these two cells. A total of 35 spots with different expressions were identified between the two cells using 2D-polyacrylamide gel electrophoresis (PAGE) approach. Among them, 17 spots were detected only in either SKOV3 or SKOV3.ip1 cells. Eighteen spots expressed different levels, with as much as a three-fold difference between the two cells. Twenty spots were analyzed using MALDI-TOF/TOF, and 11 of them were identified successfully; four were known to be located in mitochondria, including superoxide dismutase 2 (SOD2), fumarate hydratase (FH), mitochondrial ribosomal protein L38 (MRPL38), and mRNA turnover 4 homolog (MRTO4). An increased staining of SOD2 was observed in SKOV3.ip1 over that of SKOV3 in IHC analysis. Our results indicate that the enhanced antioxidation and metabolic potentials of ovarian cancer cells might contribute to their aggressive and metastatic behaviors. The underlying mechanism warrants further study.

  17. 1α,25(OH)2D3 differentially regulates miRNA expression in human bladder cancer cells.

    Science.gov (United States)

    Ma, Yingyu; Hu, Qiang; Luo, Wei; Pratt, Rachel N; Glenn, Sean T; Liu, Song; Trump, Donald L; Johnson, Candace S

    2015-04-01

    Bladder cancer is the fourth most commonly diagnosed cancer in men and eighth leading cause of cancer-related death in the US. Epidemiological and experimental studies strongly suggest a role for 1α,25(OH)2D3 in cancer prevention and treatment. The antitumor activities of 1α,25(OH)2D3 are mediated by the induction of cell cycle arrest, apoptosis, differentiation and the inhibition of angiogenesis and metastasis. miRNAs play important regulatory roles in cancer development and progression. However, the role of 1α,25(OH)2D3 in the regulation of miRNA expression and the potential impact in bladder cancer has not been investigated. Therefore, we studied 1α,25(OH)2D3-regulated miRNA expression profiles in human bladder cancer cell line 253J and the highly tumorigenic and metastatic derivative line 253J-BV by miRNA qPCR panels. 253J and 253J-BV cells express endogenous vitamin D receptor (VDR), which can be further induced by 1α,25(OH)2D3. VDR target gene 24-hydroxylase was induced by 1α,25(OH)2D3 in both cell lines, indicating functional 1α,25(OH)2D3 signaling. The miRNA qPCR panel assay results showed that 253J and 253J-BV cells have distinct miRNA expression profiles. Further, 1α,25(OH)2D3 differentially regulated miRNA expression profiles in 253J and 253J-BV cells in a dynamic manner. Pathway analysis of the miRNA target genes revealed distinct patterns of contribution to the molecular functions and biological processes in the two cell lines. In conclusion, 1α,25(OH)2D3 differentially regulates the expression of miRNAs, which may contribute to distinct biological functions, in human bladder 253J and 253J-BV cells. This article is part of a Special Issue entitled '17th Vitamin D Workshop'. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Pterostilbene Inhibits the Growth of Human Esophageal Cancer Cells by Regulating Endoplasmic Reticulum Stress

    Directory of Open Access Journals (Sweden)

    Yingtong Feng

    2016-03-01

    Full Text Available Background/Aims: Pterostilbene (PTE, a natural dimethylated resveratrol analog from blueberries, is known to have diverse pharmacological activities, including anticancer properties. In this study, we investigated the anticancer activity of PTE against human esophageal cancer cells both in vitro and in vivo and explored the role of endoplasmic reticulum (ER stress (ERS signaling in this process. Methods: Cell viability, the apoptotic index, Caspase 3 activity, adhesion, migration, reactive oxygen species (ROS levels, and glutathione (GSH levels were detected to explore the effect of PTE on human EC109 esophageal cancer cells. Furthermore, siRNA transfection and a chemical inhibitor were employed to confirm the role of ERS. Results: PTE treatment dose- and time-dependently decreased the viability of human esophageal cancer EC109 cells. PTE also decreased tumor cell adhesion, migration and intracellular GSH levels while increasing the apoptotic index, Caspase 3 activity and ROS levels, which suggest the strong anticancer activity of PTE. Furthermore, PTE treatment increased the expression of ERS-related molecules (GRP78, ATF6, p-PERK, p-eIF2α and CHOP, upregulated the pro-apoptosis-related protein PUMA and downregulated the anti-apoptosis-related protein Bcl-2 while promoting the translocation of cytochrome c from mitochondria to cytosol and the activation of Caspase 9 and Caspase 12. The downregulation of ERS signaling by CHOP siRNA desensitized esophageal cancer cells to PTE treatment, whereas upregulation of ERS signaling by thapsigargin (THA had the opposite effect. N-Acetylcysteine (NAC, a ROS scavenger, also desensitized esophageal cancer cells to PTE treatment. Conclusions: Overall, the results indicate that PTE is a potent anti-cancer pharmaceutical against human esophageal cancer, and the possible mechanism involves the activation of ERS signaling pathways.

  19. BAG3 promotes proliferation of ovarian cancer cells via post-transcriptional regulation of Skp2 expression.

    Science.gov (United States)

    Yan, Jing; Liu, Chuan; Jiang, Jing-Yi; Liu, Hans; Li, Chao; Li, Xin-Yu; Yuan, Ye; Zong, Zhi-Hong; Wang, Hua-Qin

    2017-10-01

    Bcl-2 associated athanogene 3 (BAG3) contains a modular structure, through which BAG3 interacts with a wide range of proteins, thereby affording its capacity to regulate multifaceted biological processes. BAG3 is often highly expressed and functions as a pro-survival factor in many cancers. However, the oncogenic potential of BAG3 remains not fully understood. The cell cycle regulator, S-phase kinase associated protein 2 (Skp2) is increased in various cancers and plays an important role in tumorigenesis. The current study demonstrated that BAG3 promoted proliferation of ovarian cancer cells via upregulation of Skp2. BAG3 stabilized Skp2 mRNA via its 3'-untranslated region (UTR). The current study demonstrated that BAG3 interacted with Skp2 mRNA. In addition, miR-21-5p suppressed Skp2 expression, which was compromised by forced BAG3 expression. These results indicated that at least some oncogenic functions of BAG3 were mediated through posttranscriptional regulation of Skp2 via antagonizing suppressive action of miR-21-5p in ovarian cancer cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Ke; Gu, Xiuhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Yang, Ping; Li, Minhui [School of Basic Medical Sciences, Chengdu Medical College, Chengdu (China); Yang, Yuhan; Wang, Yuanyuan [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Peng, Quekun, E-mail: pengquekun@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China); Zhu, Li, E-mail: 1968403299@qq.com [Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital, Chengdu Medical College, Chengdu (China); Zhang, Kun, E-mail: zhangkunyyo@163.com [School of Biomedical Sciences, Chengdu Medical College, Chengdu (China)

    2016-09-10

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  1. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling

    International Nuclear Information System (INIS)

    Luo, Ke; Gu, Xiuhui; Liu, Jing; Zeng, Guodan; Peng, Liaotian; Huang, Houyi; Jiang, Mengju; Yang, Ping; Li, Minhui; Yang, Yuhan; Wang, Yuanyuan; Peng, Quekun; Zhu, Li; Zhang, Kun

    2016-01-01

    Cisplatin (CDDP) is currently recommended as the front-line chemotherapeutic agent for lung cancer. However, the resistance to cisplatin is widespread in patients with advanced lung cancer, and the molecular mechanism of such resistance remains incompletely understood. Disheveled (DVL), a key mediator of Wnt/β-catenin, has been linked to cancer progression, while the role of DVL in cancer drug resistance is not clear. Here, we found that DVL2 was over-expressed in cisplatin-resistant human lung cancer cells A549/CDDP compared to the parental A549 cells. Inhibition of DVL2 by its inhibitor (3289-8625) or shDVL2 resensitized A549/CDDP cells to cisplatin. In addition, over-expression of DVL2 in A549 cells increased the protein levels of BCRP, MRP4, and Survivin, which are known to be associated with chemoresistance, while inhibition of DVL2 in A549/CDDP cells decreased these protein levels, and reduced the accumulation and nuclear translocation of β-catenin. In addition, shβ-catenin abolished the DVL2-induced the expression of BCRP, MRP4, and Survivin. Furthermore, our data showed that GSK3β/β-catenin signals were aberrantly activated by DVL2, and inactivation of GSK3β reversed the shDVL2-induced down-regulation of β-catenin. Taken together, these results suggested that inhibition of DVL2 can sensitize cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling and inhibiting BCRP, MRP4, and Survivin expression. It promises a new strategy to chemosensitize cisplatin-induced cytotoxicity in lung cancer. - Highlights: • Inhibition of DVL2 chemosensitizes resistant lung cancer to cisplatin. • DVL2 positively regulated the expression of BCRP, MRP4 and Survivin. • β-catenin mediated the DVL2-induced expression. • DVL2 increased the accumulation and nuclear translocation of β-catenin. • DVL2 up-regulated β-catenin via inhibiting GSK3β.

  2. Suicide Gene-Engineered Stromal Cells Reveal a Dynamic Regulation of Cancer Metastasis

    Science.gov (United States)

    Shen, Keyue; Luk, Samantha; Elman, Jessica; Murray, Ryan; Mukundan, Shilpaa; Parekkadan, Biju

    2016-02-01

    Cancer-associated fibroblasts (CAFs) are a major cancer-promoting component in the tumor microenvironment (TME). The dynamic role of human CAFs in cancer progression has been ill-defined because human CAFs lack a unique marker needed for a cell-specific, promoter-driven knockout model. Here, we developed an engineered human CAF cell line with an inducible suicide gene to enable selective in vivo elimination of human CAFs at different stages of xenograft tumor development, effectively circumventing the challenge of targeting a cell-specific marker. Suicide-engineered CAFs were highly sensitive to apoptosis induction in vitro and in vivo by the addition of a simple small molecule inducer. Selection of timepoints for targeted CAF apoptosis in vivo during the progression of a human breast cancer xenograft model was guided by a bi-phasic host cytokine response that peaked at early timepoints after tumor implantation. Remarkably, we observed that the selective apoptosis of CAFs at these early timepoints did not affect primary tumor growth, but instead increased the presence of tumor-associated macrophages and the metastatic spread of breast cancer cells to the lung and bone. The study revealed a dynamic relationship between CAFs and cancer metastasis that has counter-intuitive ramifications for CAF-targeted therapy.

  3. Nucleoporin 62 and Ca(2+)/calmodulin dependent kinase kinase 2 regulate androgen receptor activity in castrate resistant prostate cancer cells.

    Science.gov (United States)

    Karacosta, Loukia G; Kuroski, Laura A; Hofmann, Wilma A; Azabdaftari, Gissou; Mastri, Michalis; Gocher, Angela M; Dai, Shuhang; Hoste, Allen J; Edelman, Arthur M

    2016-02-15

    Re-activation of the transcriptional activity of the androgen receptor (AR) is an important factor mediating progression from androgen-responsive to castrate-resistant prostate cancer (CRPC). However, the mechanisms regulating AR activity in CRPC remain incompletely understood. Ca(2+) /calmodulin-dependent kinase kinase (CaMKK) 2 was previously shown to regulate AR activity in androgen-responsive prostate cancer cells. Our objective was to further explore the basis of this regulation in CRPC cells. The abundance of CaMKK2 in nuclear fractions of androgen-responsive prostate cancer and CRPC, cells were determined by subcellular fractionation and Western blotting. CaMKK2 association with nuclear pore complexes (NPCs) and nucleoporins (Nups) including Nup62, were imaged by structured illumination and super-resolution fluorescence microscopy and co-immunoprecipitation, respectively. The abundance and subcellular localization of CaMKK2 and Nup62 in human clinical specimens of prostate cancer was visualized by immunohistochemistry. The role of Nups in the growth and viability of CRPC cells was assessed by RNA interference and cell counting. The involvement of CaMKK2 and Nup62 in regulating AR transcriptional activity was addressed by RNA interference, chromatin immunoprecipitation, androgen response element reporter assay, and Western blotting. CaMKK2 was expressed at higher levels in the nuclear fraction of CPRC C4-2 cells, than in that of androgen-responsive LNCaP cells. In C4-2 cells, CaMKK2 associated with NPCs of the nuclear envelope and physically interacted with Nup62. CaMKK2 and Nup62 demonstrated pronounced, and similar increases in both expression and perinuclear/nuclear localization in human clinical specimens of advanced prostate cancer relative to normal prostate. Knockdown of Nup62, but not of Nups, 98 or 88, reduced growth and viability of C4-2 cells. Knockdown of Nup62 produced a greater reduction of the growth and viability of C4-2 cells than of non

  4. PKC signaling is involved in the regulation of progranulin (acrogranin/PC-cell-derived growth factor/granulin-epithelin precursor) protein expression in human ovarian cancer cell lines.

    Science.gov (United States)

    Diaz-Cueto, Laura; Arechavaleta-Velasco, Fabian; Diaz-Arizaga, Adriana; Dominguez-Lopez, Pablo; Robles-Flores, Martha

    2012-07-01

    Overexpression of progranulin (also named acrogranin, PC-cell-derived growth factor, or granulin-epithelin precursor) is associated with ovarian cancer, specifically with cell proliferation, malignancy, chemoresistance, and shortened overall survival. The objective of the current study is to identify the signaling pathways involved in the regulation of progranulin expression in ovarian cancer cell lines. We studied the relation of protein kinase C (PKC), phosphatidylinositol 3-kinase, protein kinase A, P38, extracellular signal-regulated kinase, and Akt pathways on the modulation of progranulin expression levels in NIH-OVCAR-3 and SK-OV-3 ovarian cancer cell lines. The different pathways were examined using pharmacological inhibitors (calphostin C, LY294002, H89, SB203580, PD98059, and Akt Inhibitor), and mRNA and protein progranulin expression were analyzed by reverse transcriptase polymerase chain reaction and Western blot techniques, respectively. Inhibition of PKC signal transduction pathway by calphostin C decreased in a dose-dependent manner protein but not mRNA levels of progranulin in both ovarian cancer cell lines. LY294002 but not wortmannin, which are phosphatidylinositol 3-kinase inhibitors, also diminished the expression of progranulin in both cell lines. In addition, LY294002 treatment produced a significant reduction in cell viability. Inhibition of protein kinase A, P38, extracellular signal-regulated kinase, and Akt did not affect progranulin protein expression. These results suggest that the PKC signaling is involved in the regulation of progranulin protein expression in 2 different ovarian cancer cell lines. Inhibiting these intracellular signal transduction pathways may provide a future therapeutic target for hindering the cellular proliferation and invasion in ovarian cancer produced by progranulin.

  5. Involvement of miR-30c in resistance to doxorubicin by regulating YWHAZ in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Shen, H. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Cao, Y. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Li, H. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Qin, R. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Chen, Q. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Long, L. [Department of Oncology, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Zhu, X.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xie, C.J. [Department of Central Laboratory, The First Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China); Xu, W.L. [Department of Central Laboratory, The Fourth Affiliated People’s Hospital, Jiangsu University, Zhenjiang, Jiangsu (China)

    2014-01-10

    MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression implicated in cancer, which play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. The aim of this study was to investigate whether miR-30c mediated the resistance of breast cancer cells to the chemotherapeutic agent doxorubicin (ADR) by targeting tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ). miR-30c was downregulated in the doxorubicin-resistant human breast cancer cell lines MCF-7/ADR and MDA-MB-231/ADR compared with their parental MCF-7 and MDA-MB-231 cell lines, respectively. Furthermore, we observed that transfection of an miR-30c mimic significantly suppressed the ability of MCF-7/ADR to resist doxorubicin. Moreover, the anti-apoptotic gene YWHAZ was confirmed as a target of miR-30c by luciferase reporter assay, and further studies indicated that the mechanism for miR-30c on the sensitivity of breast cancer cells involved YWHAZ and its downstream p38 mitogen-activated protein kinase (p38MAPK) pathway. Together, our findings provided evidence that miR-30c was one of the important miRNAs in doxorubicin resistance by regulating YWHAZ in the breast cancer cell line MCF-7/ADR.

  6. Involvement of CUL4A in Regulation of Multidrug Resistance to P-gp Substrate Drugs in Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Yunshan Wang

    2013-12-01

    Full Text Available CUL4A encodes a core component of a cullin-based E3 ubiquitin ligase complex that regulates many critical processes such as cell cycle progression, DNA replication, DNA repair and chromatin remodeling by targeting a variety of proteins for ubiquitination and degradation. In the research described in this report we aimed to clarify whether CUL4A participates in multiple drug resistance (MDR in breast cancer cells. We first transfected vectors carrying CUL4A and specific shCUL4A into breast cancer cells and corresponding Adr cells respectively. Using reverse transcription polymerase chain reactions and western blots, we found that overexpression of CUL4A in MCF7 and MDA-MB-468 cells up-regulated MDR1/P-gp expression on both the transcription and protein levels, which conferred multidrug resistance to P-gp substrate drugs, as determined by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide (MTT assays. On the other hand, silencing CUL4A in MCF7/Adr and MDA-MB-468/Adr cells led to the opposite effect. Moreover, ERK1/2 in CUL4A-overexpressing cells was highly activated and after treatment with PD98059, an ERK1/2-specific inhibitor, CUL4A-induced expression of MDR1/P-gp was decreased significantly. Lastly, immunohistochemistry in breast cancer tissues showed that P-gp expression had a positive correlation with the expression of CUL4A and ERK1/2. Thus, these results implied that CUL4A and ERK1/2 participated in multi-drug resistance in breast cancer through regulation of MDR1/P-gp expression.

  7. Expression of cell cycle regulating factor mRNA in small cell lung cancer xenografts

    DEFF Research Database (Denmark)

    Krarup, M; Poulsen, H S; Spang-Thomsen, M

    1998-01-01

    and CDK6 when in vitro and in vivo data were compared. Two of the cell lines that express the retinoblastoma (Rb) protein had no sign of a deregulated Rb pathway but further studies at the protein level are necessary to demonstrate whether these two cell lines should have a normal Rb pathway or whether...

  8. The orphan nuclear receptor NR4A1 (Nur77) regulates oxidative and endoplasmic reticulum stress in pancreatic cancer cells.

    Science.gov (United States)

    Lee, Syng-Ook; Jin, Un-Ho; Kang, Jeong Han; Kim, Sang Bae; Guthrie, Aaron S; Sreevalsan, Sandeep; Lee, Ju-Seog; Safe, Stephen

    2014-04-01

    NR4A1 (Nur77, TR3) is an orphan nuclear receptor that is overexpressed in pancreatic cancer and exhibits pro-oncogenic activity. RNA interference of NR4A1 expression in Panc-1 cells induced apoptosis and subsequent proteomic analysis revealed the induction of several markers of endoplasmic reticulum stress, including glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein-homologous protein (CHOP), and activating transcription factor-4 (ATF-4). Treatment of pancreatic cancer cells with the NR4A1 antagonist 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) gave similar results. Moreover, both NR4A1 knockdown and DIM-C-pPhOH induced reactive oxygen species (ROS), and induction of ROS and endoplasmic reticulum stress by these agents was attenuated after cotreatment with antioxidants. Manipulation of NR4A1 expression coupled with gene expression profiling identified a number of ROS metabolism transcripts regulated by NR4A1. Knockdown of one of these transcripts, thioredoxin domain containing 5 (TXNDC5), recapitulated the elevated ROS and endoplasmic reticulum stress; thus, demonstrating that NR4A1 regulates levels of endoplasmic reticulum stress and ROS in pancreatic cancer cells to facilitate cell proliferation and survival. Finally, inactivation of NR4A1 by knockdown or DIM-C-pPhOH decreased TXNDC5, resulting in activation of the ROS/endoplasmic reticulum stress and proapoptotic pathways. The NR4A1 receptor is pro-oncogenic, regulates the ROS/endoplasmic reticulum stress pathways, and inactivation of the receptor represents a novel pathway for inducing cell death in pancreatic cancer. Mol Cancer Res; 12(4); 527-38. ©2014 AACR.

  9. Splicing Factor Prp8 Interacts With NES(AR) and Regulates Androgen Receptor in Prostate Cancer Cells.

    Science.gov (United States)

    Wang, Dan; Nguyen, Minh M; Masoodi, Khalid Z; Singh, Prabhpreet; Jing, Yifeng; O'Malley, Katherine; Dar, Javid A; Dhir, Rajiv; Wang, Zhou

    2015-12-01

    Androgen receptor (AR) plays a pivotal role in the development of primary as well as advanced castration-resistant prostate cancer. Previous work in our lab identified a novel nuclear export signal (NES) (NES(AR)) in AR ligand-binding domain essential for AR nucleocytoplasmic trafficking. By characterizing the localization of green fluorescence protein (GFP)-tagged NES(AR), we designed and executed a yeast mutagenesis screen and isolated 7 yeast mutants that failed to display the NES(AR) export function. One of those mutants was identified as the splicing factor pre-mRNA processing factor 8 (Prp8). We further showed that Prp8 could regulate NES(AR) function using short hairpin RNA knockdown of Prp8 coupled with a rapamycin export assay in mammalian cells and knockdown of Prp8 could induce nuclear accumulation of GFP-tagged AR in PC3 cells. Prp8 expression was decreased in castration-resistant LuCaP35 xenograft tumors as compared with androgen-sensitive xenografts. Laser capture microdissection and quantitative PCR showed Prp8 mRNA levels were decreased in human prostate cancer specimens with high Gleason scores. In prostate cancer cells, coimmunoprecipitation and deletion mutagenesis revealed a physical interaction between Prp8 and AR mainly mediated by NES(AR). Luciferase assay with prostate specific antigen promoter-driven reporter demonstrated that Prp8 regulated AR transcription activity in prostate cancer cells. Interestingly, Prp8 knockdown also increased polyubiquitination of endogenous AR. This may be 1 possible mechanism by which it modulates AR activity. These results show that Prp8 is a novel AR cofactor that interacts with NES(AR) and regulates AR function in prostate cancer cells.

  10. Cadmium promotes the proliferation of triple-negative breast cancer cells through EGFR-mediated cell cycle regulation

    International Nuclear Information System (INIS)

    Wei, Zhengxi; Song, Xiulong; Shaikh, Zahir A.

    2015-01-01

    Cadmium (Cd) is a carcinogenic metal which is implicated in breast cancer by epidemiological studies. It is reported to promote breast cancer cell growth in vitro through membrane receptors. The study described here examined Cd-mediated growth of non-metastatic human breast cancer derived cells that lack receptors for estrogen, progesterone, and HER2. Treatment of triple-negative HCC 1937 cells with 0.1–0.5 μM Cd increased cell growth by activation of AKT and ERK. Accelerated cell cycle progression was achieved by increasing the levels of cyclins A, B, and E, as well as those of CDKs 1 and 2. Although triple negative cells lack estrogen receptor, they express high levels of EGFR. Therefore, further studies on HCC 1937 and another triple-negative cell line, HCC 38, were conducted using specific siRNA and an inhibitor of EGFR to determine whether EGFR was responsible for mediating the effect of Cd. The results revealed that in both cell types EGFR was not only activated upon Cd treatment, but was also essential for the downstream activation of AKT and ERK. Based on these observations, it is concluded that, in breast cancer cells lacking estrogen receptor, sub-micromolar concentration of Cd can promote cell proliferation. Furthermore, that EGFR plays a critical role in this process. - Highlights: • Sub-micromolar concentrations of Cd promote cell growth in breast cancer cells that lack ER, PR, and HER2. • The increase in cell number is not due to reduction in apoptosis. • Growth promotion involves AKT and ERK signaling and downstream stimulation of cell cycle progression. • Initiation of cell growth by Cd occurs at the cell membrane and requires the activation of EGFR.

  11. Chemoresistance in prostate cancer cells is regulated by miRNAs and Hedgehog pathway.

    Directory of Open Access Journals (Sweden)

    Saurabh Singh

    Full Text Available Many prostate cancers relapse due to the generation of chemoresistance rendering first-line treatment drugs like paclitaxel (PTX ineffective. The present study aims to determine the role of miRNAs and Hedgehog (Hh pathway in chemoresistant prostate cancer and to evaluate the combination therapy using Hh inhibitor cyclopamine (CYA. Studies were conducted on PTX resistant DU145-TXR and PC3-TXR cell lines and clinical prostate tissues. Drug sensitivity and apoptosis assays showed significantly improved cytotoxicity with combination of PTX and CYA. To distinguish the presence of cancer stem cell like side populations (SP, Hoechst 33342 flow cytometry method was used. PTX resistant DU145 and PC3 cells, as well as human prostate cancer tissue possess a distinct SP fraction. Nearly 75% of the SP cells are in the G0/G1 phase compared to 62% for non-SP cells and have higher expression of stem cell markers as well. SP cell fraction was increased following PTX monotherapy and treatment with CYA or CYA plus PTX effectively reduced their numbers suggesting the effectiveness of combination therapy. SP fraction cells were allowed to differentiate and reanalyzed by Hoechst staining and gene expression analysis. Post differentiation, SP cells constitute 15.8% of total viable cells which decreases to 0.6% on treatment with CYA. The expression levels of P-gp efflux protein were also significantly decreased on treatment with PTX and CYA combination. MicroRNA profiling of DU145-TXR and PC3-TXR cells and prostate cancer tissue from the patients showed decreased expression of tumor suppressor miRNAs such as miR34a and miR200c. Treatment with PTX and CYA combination restored the expression of miR200c and 34a, confirming their role in modulating chemoresistance. We have shown that supplementing mitotic stabilizer drugs such as PTX with Hh-inhibitor CYA can reverse PTX chemoresistance and eliminate SP fraction in androgen independent, metastatic prostate cancer cell

  12. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  13. BTG2 Is Down-Regulated and Inhibits Cancer Stem Cell-Like Features of Side Population Cells in Hepatocellular Carcinoma.

    Science.gov (United States)

    Huang, Chen-Song; Zhai, Jing-Ming; Zhu, Xiao-Xu; Cai, Jian-Peng; Chen, Wei; Li, Jian-Hui; Yin, Xiao-Yu

    2017-12-01

    Our previous study found that B cell translocation gene 2 (BTG2) was hyper-methylated and down-regulated in side population (SP) cells of hepatocellular carcinoma (HCC) cell line. However, its clinical significances and biological impacts on HCC SP cells remained unclear. To investigate the prognostic value of BTG2 gene in HCC and its influences on cancer stem cells (CSCs)-like traits of HCC cell line SP cells. BTG2 expression in human HCC and adjacent non-cancerous tissues was detected by immunohistochemical staining and quantitative real-time PCR, and also obtained from GEO and TCGA data. Its prognostic values were assessed. Its biological influences on HCC cell line SP cells were evaluated using cell viability, cell cycle, plate clone-forming assay, and chemoresistance in vitro and tumorigenicity in vivo. BTG2 expression was significantly suppressed in human HCC compared to adjacent non-cancerous tissues. BTG2 expression was correlated with TNM stage, tumor size and vascular invasion. Lower expression of BTG2 was associated with poorer overall survival and disease-free survival. In vitro, overexpression of BTG2 substantially suppressed cell proliferation and accumulation of HCC cell line SP cells in G0/G1 phase. Colony formation ability was markedly suppressed by BTG2 overexpression. Moreover, sensitivity of HCC cell line SP cells to 5-fluorouracil was substantially increased by overexpression of BTG2. Furthermore, tumorigenicity of HCC cell line SP cells transfected with BTG2 plasmids was significantly reduced in vivo. BTG2 gene could regulate the CSC-like traits of HCC cell line SP cells, and it represented as a molecular prognostic marker for HCC.

  14. Aging up-regulates ARA55 in stromal cells, inducing androgen-mediated prostate cancer cell proliferation and migration.

    Science.gov (United States)

    Zou, Qingsong; Cui, Di; Liang, Shengjie; Xia, Shujie; Jing, Yifeng; Han, Bangmin

    2016-06-01

    Stromal cells in the peripheral zone (PZ) of the prostate from older males (PZ-old) could significantly promote Prostate cancer (PCa) growth compared with stromal cells from young males (PZ-young). But the mechanism is still unknown. In the co-culture system with PZ-old cells, Pc3/Du145 cells showed advanced proliferation and migration after Dihydrotestosterone (DHT) incubation, but DHT didn't show the similar effect in PZ-young co-culture system. Also, higher androgen/AR signal pathway activity and AR-related cytokines secretion (FGF-2, KGF, IGF-1) were found in PZ-old cells. As AR exprssison was equivalent in PZ-old and PZ-young cells, we focused on Androgen receptor associated protein-55(ARA55), a stromal-specific androgen receptor (AR) coactivator. ARA55 expression was higher in PZ-old cells compared with PZ-young cells in vitro. After knocking down ARA55 expression in PZ-old cells, the PCa growth- promoting effect from the PZ-old cells was diminished, which may be explained by the decreased the progressive cytokines secretion (FGF-2, KGF, IGF-1) from PZ-old stromal cells. In vivo, the consistent results were also found: PZ-old cells promoted prostate cancer cells growth, but this effect receded when knocking down ARA55 expression in PZ-old cells. From our study, we found PZ stromal cells presented age-related effects in proliferation and migration of prostate cancer cells in the androgen/AR dependent manner. As aging increased, more ARA55 were expressed in PZ stromal cells, leading to more sensitive androgen/androgen receptor (AR) signal pathway, then constituting a more feasible environment to cancer cells.

  15. The regulation of steroid receptors by epigallocatechin-3-gallate in breast cancer cells

    Directory of Open Access Journals (Sweden)

    Hallman K

    2017-05-01

    Full Text Available Kelly Hallman,* Katie Aleck,* Meghan Quigley, Brigitte Dwyer, Victoria Lloyd, Monica Szmyd, Sumi Dinda Biomedical Diagnostic and Therapeutic Sciences, School of Health Sciences, Center for Biomedical Research, Oakland University, Rochester, MI, USA *These authors contributed equally to this work Abstract: It has been reported that phytoestrogen epigallocatechin gallate (EGCG suppresses cancer cell proliferation and may have antitumor properties. In this study, we analyzed the effects of EGCG on estrogen receptor α (ERα and progesterone receptor in hormone-dependent T-47D breast cancer cells. Western blot analysis revealed EGCG induced a concentration-dependent decrease in ERα protein levels, with a 56% reduction occurring with 60 µM EGCG when compared to controls. Downregulation of ERα protein levels was observed after 24-hour co-treatment of T-47D cells with 60 µM EGCG and 10 nM 17β-estradiol (E2. The proliferative effect of E2 on cell viability was reversed when treated in combination with EGCG. In contrast, the combination of EGCG with the pure ER antagonist, ICI 182, 780, showed no further reduction in cell number as only 5% of the cells were viable after 6 days of treatment. These studies may provide further understanding of the interactions among flavonoids and steroid receptors in breast cancer cells. Keywords: phytoestrogen, ER, PR, T-47D, antiestrogens

  16. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells12

    Science.gov (United States)

    Wittig-Blaich, Stephanie M; Kacprzyk, Lukasz A; Eismann, Thorsten; Bewerunge-Hudler, Melanie; Kruse, Petra; Winkler, Eva; Strauss, Wolfgang S L; Hibst, Raimund; Steiner, Rudolf; Schrader, Mark; Mertens, Daniel; Sültmann, Holger; Wittig, Rainer

    2011-01-01

    The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox)-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases. PMID:21750652

  17. Matrix-Dependent Regulation of AKT in Hepsin-Overexpressing PC3 Prostate Cancer Cells

    Directory of Open Access Journals (Sweden)

    Stephanie M Wittig-Blaich

    2011-07-01

    Full Text Available The serine-protease hepsin is one of the most prominently overexpressed genes in human prostate carcinoma. Forced expression of the enzyme in mice prostates is associated with matrix degradation, invasive growth, and prostate cancer progression. Conversely, hepsin overexpression in metastatic prostate cancer cell lines was reported to induce cell cycle arrest and reduction of invasive growth in vitro. We used a system for doxycycline (dox-inducible target gene expression in metastasis-derived PC3 cells to analyze the effects of hepsin in a quantitative manner. Loss of viability and adhesion correlated with hepsin expression levels during anchorage-dependent but not anchorage-independent growth. Full expression of hepsin led to cell death and detachment and was specifically associated with reduced phosphorylation of AKT at Ser473, which was restored by growth on matrix derived from RWPE1 normal prostatic epithelial cells. In the chorioallantoic membrane xenograft model, hepsin overexpression in PC3 cells reduced the viability of tumors but did not suppress invasive growth. The data presented here provide evidence that elevated levels of hepsin interfere with cell adhesion and viability in the background of prostate cancer as well as other tissue types, the details of which depend on the microenvironment provided. Our findings suggest that overexpression of the enzyme in prostate carcinogenesis must be spatially and temporally restricted for the efficient development of tumors and metastases.

  18. Prostaglandin receptor EP3 regulates cell proliferation and migration with impact on survival of endometrial cancer patients.

    Science.gov (United States)

    Zhu, Junyan; Trillsch, Fabian; Mayr, Doris; Kuhn, Christina; Rahmeh, Martina; Hofmann, Simone; Vogel, Marianne; Mahner, Sven; Jeschke, Udo; von Schönfeldt, Viktoria

    2018-01-02

    Prostaglandin E2 (PGE2) receptor 3 (EP3) regulates tumor cell proliferation, migration, and invasion in numerous cancers. The role of EP3 as a prognostic biomarker in endometrial cancer remains unclear. The primary aim of this study was to analyze the prognostic significance of EP3 expression in endometrial cancer. We analyzed the EP3 expression of 140 endometrial carcinoma patients by immunohistochemistry. RL95-2 endometrial cancer cell line was chosen from four endometrial cancer cell lines (RL95-2, Ishikawa, HEC-1-A, and HEC-1-B) according to EP3 expression level. Treated with PGE2 and EP3 antagonist, RL95-2 cells were investigated by MTT, BrdU, and wound healing assay for functional assessment of EP3. EP3 staining differed significantly according to WHO tumor grading in both whole cohort (p = 0.01) and the subgroup of endometrioid carcinoma (p = 0.01). Patients with high EP3 expression in their respective tumors had impaired progression-free survival as well as overall survival in both cohorts above. EP3 expression in the overall cohort was identified as an independent prognostic marker for progression-free survival (HR 1.014, 95%CI 1.003-1.024, p = 0.01) when adjusted for age, stage, grading, and recurrence. Treatment with EP3 antagonists induced upregulation of estrogen receptor β and decreased activity of Ras and led to attenuated proliferation and migration of RL95-2 cells. EP3 seems to play a crucial role in endometrial cancer progression. In the context of limited systemic treatment options for endometrial cancer, this explorative analysis identifies EP3 as a potential target for diagnostic workup and therapy.

  19. Vascular endothelial growth factor C promotes cervical cancer cell invasiveness via regulation of microRNA-326/cortactin expression.

    Science.gov (United States)

    Cheng, Yang; Jiang, Shuyi; Yuan, Jin; Liu, Junxiu; Simoncini, Tommaso

    2018-04-16

    Vascular endothelial growth factor C (VEGF-C) accelerates cervical cancer metastasis, while the detailed mechanism remains largely unknown. Recent evidence indicates that microRNA play a crucial role in controlling cancer cell invasiveness. In the present study, we investigated the role of miR-326 in VEGF-C-induced cervical cancer cell invasion. VEGF-C expression was higher and miR-326 was much lower in primary cervical cancer specimens than that in non-cancerous specimens, and a negative correlation between VEGF-C and miR-326 was found. On cervical carcinoma cell line SiHa cells, treatment with VEGF-C downregulated miR-326 level and increased cortactin protein expression. Transfection with miR-326 mimic reversed cortactin expression induced by VEGF-C, suggesting that VEGF-C increased cortactin via downregulation of miR-326. VEGF-C activated c-Src and c-Src inhibitor PP2 abolished VEGF-C effect on miR-326 and cortactin expression, implying that VEGF-C regulated miR-326/cortactin via c-Src signaling. VEGF-C promoted SiHa cell invasion index, which was largely inhibited by transfection with miR-326 antagonist or by siRNA against cortactin. In conclusion, our findings implied that VEGF-C reduced miR-326 expression and increased cortactin expression through c-Src signaling, leading to enhanced cervical cancer invasiveness. This may shed light on potential therapeutic strategies for cervical cancer therapy.

  20. Cancer: brain-regulated biphasic stress response induces cell growth or cell death to adapt to psychological stressors.

    Science.gov (United States)

    Thomas, Charles; Bhatia, Shruti

    2014-01-01

    According to Indian Vedic philosophy, a human being contains 3 major bodies: (1) the matter body--brain, organs, and senses; (2) the mental body--mind, individual consciousness, intellect, and ego; and (3) the soul or causal body--universal consciousness. The third, which is located in the heart according to all spiritual traditions and recent scientific literature, can be seen as the information body that contains all memories. The mental body, which can interface with the matter and information bodies, can be seen as a field of immaterial energy that can carry, regulate, and strengthen all information (eg, thoughts or emotions) both positively and negatively. This body of information may store ancestral and/or autobiographical memories: unconscious memories from inner traumas--inner information (Ii) or samskaras in Vedic philosophy--and conscious memories from outer traumas--outer information (Io). These conscious and unconscious memories can be seen as potential psychological stressors. Resonance between Ii and Io may induce active conflicts if resistance occurs in the mental body; this conflict may cause specific metabolic activity in the brain and a stress response in the physical body, which permits adjustment to psychological stressors. The brainregulated stress response may be biphasic: cell death or growth induced by adrenergic molecular pathways during the conflict's unresolved phase and reversion to cell growth or death induced by cholinergic molecular pathways during the conflict's resolved phase. Case studies and data mining from PubMed suggest that this concept complies with the principles of holistic medicine and the scientific literature supporting its benefits. We suggest that the evolution of cancer can be seen as a biphasic stress response regulated by the brain to adapt to psychological stressors, which produce imbalance among the physical, mental, and information bodies.

  1. Profile of MMP and TIMP Expression in Human Pancreatic Stellate Cells: Regulation by IL-1α and TGFβ and Implications for Migration of Pancreatic Cancer Cells

    Directory of Open Access Journals (Sweden)

    Vegard Tjomsland

    2016-07-01

    Full Text Available Pancreatic ductal adenocarcinoma is characterized by a prominent fibroinflammatory stroma with both tumor-promoting and tumor-suppressive functions. The pancreatic stellate cell (PSC is the major cellular stromal component and the main producer of extracellular matrix proteins, including collagens, which are degraded by metalloproteinases (MMPs. PSCs interact with cancer cells through various factors, including transforming growth factor (TGFβ and interleukin (IL-1α. The role of TGFβ in the dual nature of tumor stroma, i.e., protumorigenic or tumor suppressive, is not clear. We aimed to investigate the roles of TGFβ and IL-1α in the regulation of MMP profiles in PSCs and the subsequent effects on cancer cell migration. Human PSCs isolated from surgically resected specimens were cultured in the presence of pancreatic cancer cell lines, as well as IL-1α or TGFβ. MMP production and activities in PSCs were quantified by gene array transcripts, mRNA measurements, fluorescence resonance energy transfer–based activity assay, and zymography. PSC-conditioned media and pancreatic cancer cells were included in a collagen matrix cell migration model. We found that production of IL-1α by pancreatic cancer cells induced alterations in MMP and tissue inhibitors of matrix metalloproteinase (TIMP profiles and activities in PSCs, upregulated expression and activation of MMP1 and MMP3, and enhanced migration of pancreatic cancer cells in the collagen matrix model. TGFβ counteracted the effects of IL-1α on PSCs, reestablished PSC MMP and TIMP profiles and activities, and inhibited migration of cancer cells. This suggests that tumor TGFβ has a role as a suppressor of stromal promotion of tumor progression through alterations in PSC MMP profiles with subsequent inhibition of pancreatic cancer cell migration.

  2. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes.

    Science.gov (United States)

    Han, Yo-Han; Kee, Ji-Ye; Kim, Dae-Seung; Mun, Jeong-Geon; Jeong, Mi-Young; Park, Sang-Hyun; Choi, Byung-Min; Park, Sung-Joo; Kim, Hyun-Jung; Um, Jae-Young; Hong, Seung-Heon

    2016-08-27

    Arctigenin (ARC) has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC). In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT) through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2) and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  3. Arctigenin Inhibits Lung Metastasis of Colorectal Cancer by Regulating Cell Viability and Metastatic Phenotypes

    Directory of Open Access Journals (Sweden)

    Yo-Han Han

    2016-08-01

    Full Text Available Arctigenin (ARC has been shown to have an anti-cancer effect in various cell types and tissues. However, there have been no studies concerning metastatic colorectal cancer (CRC. In this study, we investigated the anti-metastatic properties of ARC on colorectal metastasis and present a potential candidate drug. ARC induced cell cycle arrest and apoptosis in CT26 cells through the intrinsic apoptotic pathway via MAPKs signaling. In several metastatic phenotypes, ARC controlled epithelial-mesenchymal transition (EMT through increasing the expression of epithelial marker E-cadherin and decreasing the expressions of mesenchymal markers; N-cadherin, vimentin, β-catenin, and Snail. Moreover, ARC inhibited migration and invasion through reducing of matrix metalloproteinase-2 (MMP-2 and MMP-9 expressions. In an experimental metastasis model, ARC significantly inhibited lung metastasis of CT26 cells. Taken together, our study demonstrates the inhibitory effects of ARC on colorectal metastasis.

  4. Molecular regulation of MICA expression after HDAC inhibitor treatment of cancer cells

    DEFF Research Database (Denmark)

    Jensen, Helle

    and NKG2D-ligands are upregulated on the surface of abnormal cells. We have previously shown that cancer cells can be stimulated to express the NKG2D-ligands MICA/B after exposure to HDAC-inhibitors (HDAC-i), an occurrence that is not observed in healthy cells. Here we characterize the molecular signal...... pathways that lead to MICA expression after HDAC-inhibitor treatment of cancer cells. Chelating Calcium with Bapta-AM or EGTA potently inhibited HDAC-inhibitor and CMV mediated MICA/B expression. It was further observed that ER Calcium stores were depleted after HDAC-inhibitor treatment. NF-kB activity can...

  5. Regulation of matrix stiffness on the epithelial-mesenchymal transition of breast cancer cells under hypoxia environment

    Science.gov (United States)

    Lv, Yonggang; Chen, Can; Zhao, Boyuan; Zhang, Xiaomei

    2017-06-01

    Substrate stiffness and hypoxia are associated with tumor development and progression, respectively. However, the synergy of them on the biological behavior of human breast cancer cell is still largely unknown. This study explored how substrate stiffness regulates the cell phenotype, viability, and epithelial-mesenchymal transition (EMT) of human breast cancer cells MCF-7 under hypoxia (1% O2). TRITC-phalloidin staining showed that MCF-7 cells transformed from round to irregular polygon with stiffness increase either in normoxia or hypoxia. While being accompanied with the upward tendency from a 0.5- to a 20-kPa substrate, the percentage of cell apoptosis was significantly higher in hypoxia than that in normoxia, especially on the 20-kPa substrate. Additionally, it was hypoxia, but not normoxia, that promoted the EMT of MCF-7 by upregulating hypoxia-inducible factor-1α (HIF-1α), vimentin, Snail 1, and matrix metalloproteinase 2 (MMP 2) and 9 (MMP 9), and downregulating E-cadherin simultaneously regardless of the change of substrate stiffness. In summary, this study discovered that hypoxia and stiffer substrate (20 kPa) could synergistically induce phenotype change, apoptosis, and EMT of MCF-7 cells. Results of this study have an important significance on further exploring the synergistic effect of stiffness and hypoxia on the EMT of breast cancer cells and its molecular mechanism.

  6. Regulation of UGT1A1 and HNF1 transcription factor gene expression by DNA methylation in colon cancer cells

    Directory of Open Access Journals (Sweden)

    Harvey Mario

    2010-01-01

    Full Text Available Abstract Background UDP-glucuronosyltransferase 1A1 (UGT1A1 is a pivotal enzyme involved in metabolism of SN-38, the active metabolite of irinotecan commonly used to treat metastatic colorectal cancer. We previously demonstrated aberrant methylation of specific CpG dinucleotides in UGT1A1-negative cells, and revealed that methylation state of the UGT1A1 5'-flanking sequence is negatively correlated with gene transcription. Interestingly, one of these CpG dinucleotides (CpG -4 is found close to a HNF1 response element (HRE, known to be involved in activation of UGT1A1 gene expression, and within an upstream stimulating factor (USF binding site. Results Gel retardation assays revealed that methylation of CpG-4 directly affect the interaction of USF1/2 with its cognate sequence without altering the binding for HNF1-alpha. Luciferase assays sustained a role for USF1/2 and HNF1-alpha in UGT1A1 regulation in colon cancer cells. Based on the differential expression profiles of HNF1A gene in colon cell lines, we also assessed whether methylation affects its expression. In agreement with the presence of CpG islands in the HNF1A promoter, treatments of UGT1A1-negative HCT116 colon cancer cells with a DNA methyltransferase inhibitor restore HNF1A gene expression, as observed for UGT1A1. Conclusions This study reveals that basal UGT1A1 expression in colon cells is positively regulated by HNF1-alpha and USF, and negatively regulated by DNA methylation. Besides, DNA methylation of HNF1A could also play an important role in regulating additional cellular drug metabolism and transporter pathways. This process may contribute to determine local inactivation of drugs such as the anticancer agent SN-38 by glucuronidation and define tumoral response.

  7. ADAMTS9 is Silenced by Epigenetic Disruption in Colorectal Cancer and Inhibits Cell Growth and Metastasis by Regulating Akt/p53 Signaling

    Directory of Open Access Journals (Sweden)

    Ling Chen

    2017-11-01

    Full Text Available Background/Aims: ADAMTS (disintegrin-like and metalloproteinase with thrombospondin motifs proteins are extracellular zinc metalloproteinases that play an important role in extracellular matrix assembly and degradation, connective tissue structuring, angiogenesis, and cell migration. Multiple studies suggest that ADAMTS proteins (e.g. ADAMTS9 can act as tumor suppressors. In gastric, esophageal, and nasopharyngeal carcinomas ADAMTS9 is frequently down-regulated by promoter methylation. Whether ADAMTS9 can function as a tumor suppressor gene (TSG in colorectal cancer is still unclear. Methods: We performed immunohistochemistry, RT-PCR, and qRT-PCR, to examine the expression of ADAMTS9 in colorectal cancer cell lines and primary colorectal cancer tissues. Methylation-specific PCR was also carried out to investigate the promoter methylation status of ADAMTS9. We also explored the functions of ADAMTS9 in colorectal cancer cell lines through in vitro experiments. Results: ADAMTS9 expression was down-requlated or silenced in 83.3% (5/6 of colorectal cancer cell lines, and frequently repressed in 65.6% (21/32 of colorectal cancer tissues. Down-regulation of ADAMTS9 was partially due to promoter methylation. Exogenous expression of ADAMTS9 in colorectal cancer cell lines inhibited cell proliferation and migration through the regulation of cell cycle and apoptosis. In addition, ADAMTS9 prevented the activation of Akt, and its downstream targets in colorectal cancer cell lines. Conclusion: Our findings suggest ADAMTS9 is a TSG in colorectal cancer.

  8. miR-196a targets netrin 4 and regulates cell proliferation and migration of cervical cancer cells

    International Nuclear Information System (INIS)

    Zhang, Jie; Zheng, Fangxia; Yu, Gang; Yin, Yanhua; Lu, Qingyang

    2013-01-01

    Highlights: •miR-196a was overexpressed in cervical cancer tissue compared to normal tissue. •miR-196a expression elevated proliferation and migration of cervical cancer cells. •miR-196a inhibited NTN4 expression by binding 3′-UTR region of NTN4 mRNA. •NTN4 inversely correlated with miR-196a expression in cervical tissue and cell line. •NTN4 expression was low in cervical cancer tissue compared to normal tissue. -- Abstract: Recent research has uncovered tumor-suppressive and oncogenic potential of miR-196a in various tumors. However, the expression and mechanism of its function in cervical cancer remains unclear. In this study, we assess relative expression of miR-196a in cervical premalignant lesions, cervical cancer tissues, and four cancer cell lines using quantitative real-time PCR. CaSki and HeLa cells were treated with miR-196a inhibitors, mimics, or pCDNA/miR-196a to investigate the role of miR-196a in cancer cell proliferation and migration. We demonstrated that miR-196a was overexpressed in cervical intraepithelial neoplasia 2–3 and cervical cancer tissue. Moreover, its expression contributes to the proliferation and migration of cervical cancer cells, whereas inhibiting its expression led to a reduction in proliferation and migration. Five candidate targets of miR-196a chosen by computational prediction and Cervical Cancer Gene Database search were measured for their mRNA in both miR-196a-overexpressing and -depleted cancer cells. Only netrin 4 (NTN4) expression displayed an inverse association with miR-196a. Fluorescent reporter assays revealed that miR-196a inhibited NTN4 expression by targeting one binding site in the 3′-untranslated region (3′-UTR) of NTN4 mRNA. Furthermore, qPCR and Western blot assays verified NTN4 expression was downregulated in cervical cancer tissues compared to normal controls, and in vivo mRNA level of NTN4 inversely correlated with miR-196a expression. In summary, our findings provide new insights about the

  9. β-Catenin Is a Positive Regulator of Estrogen Receptor-α Function in Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Nibedita; Schmitt, Fee; Grebhardt, Sina; Mayer, Doris, E-mail: d.mayer@dkfz.de [Hormones and Signal Transduction Group, German Cancer Research Center (DKFZ), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 581, 69120 Heidelberg (Germany)

    2011-07-22

    Estrogen receptor-alpha (ERα) is a key factor in the development of breast cancer in humans. The expression and activity of ERα is regulated by a multitude of intracellular and extracellular signals. Here we show a cross-talk between β-catenin and ERα in human breast cancer cells. Knockdown of β-catenin by RNAi resulted in significant reduction of ERα mRNA and/or protein levels in MCF-7, T-47D, and BT-474 breast cancer cells and in significant reduction of estradiol-induced expression of the ERα target genes pS2 and GREB1. In addition β-catenin silencing resulted in significant decrease of growth of MCF-7 cells both in the absence and presence of estradiol. β-catenin and ERα could not be co-immunoprecipitated by ERα antibodies from lysates of E2-treated or untreated cells suggesting lack of direct physical interaction. It is concluded that β-catenin is a positive regulator of ERα mRNA and protein expression.

  10. Identification of colonic fibroblast secretomes reveals secretory factors regulating colon cancer cell proliferation.

    Science.gov (United States)

    Chen, Sun-Xia; Xu, Xiao-En; Wang, Xiao-Qing; Cui, Shu-Jian; Xu, Lei-Lei; Jiang, Ying-Hua; Zhang, Yang; Yan, Hai-Bo; Zhang, Qian; Qiao, Jie; Yang, Peng-Yuan; Liu, Feng

    2014-10-14

    Stromal microenvironment influences tumor cell proliferation and migration. Fibroblasts represent the most abundant stromal constituents. Here, we established two pairs of normal fibroblast (NF) and cancer-associated fibroblast (CAF) cultures from colorectal adenocarcinoma tissues and the normal counterparts. The NFs and CAFs were stained positive for typical fibroblast markers and inhibited colon cancer (CC) cell proliferation in in vitro cocultures and in xenograft mouse models. The fibroblast conditioned media were analyzed using LC-MS and 227 proteins were identified at a false discovery rate of 1.3%, including 131 putative secretory and 20 plasma membrane proteins. These proteins were enriched for functional categories of extracellular matrix, adhesion, cell motion, inflammatory response, redox homeostasis and peptidase inhibitor. Secreted protein acidic and rich in cysteine, transgelin, follistatin-related protein 1 (FSTL1) and decorin was abundant in the fibroblast secretome as confirmed by Western blot. Silencing of FSTL1 and transgelin in colonic fibroblast cell line CCD-18Co induced an accelerated proliferation of CC cells in cocultures. Exogenous FSTL1 attenuates CC cell proliferation in a negative fashion. FSTL1 was upregulated in CC patient plasma and cancerous tissues but had no implication in prognosis. Our results provided novel insights into the molecular signatures and modulatory role of CC associated fibroblasts. In this study, a label-free LC-MS was performed to analyze the secretomes of two paired primary fibroblasts, which were isolated from fresh surgical specimen of colorectal adenocarcinoma and adjacent normal colonic tissues and exhibited negative modulatory activity for colon cancer cell growth in in vitro cocultures and in vivo xenograph mouse models. Follistatin-related protein 1 was further revealed to be one of the stroma-derived factors of potential suppression role for colon cancer cell proliferation. Our results provide novel

  11. P-Glycoprotein/MDR1 regulates pokemon gene transcription through p53 expression in human breast cancer cells.

    Science.gov (United States)

    He, Shengnan; Liu, Feng; Xie, Zhenhua; Zu, Xuyu; Xu, Wei; Jiang, Yuyang

    2010-08-27

    P-glycoprotein (Pgp), encoded by the multidrug resistance 1 (MDR1) gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  12. P-Glycoprotein/MDR1 Regulates Pokemon Gene Transcription Through p53 Expression in Human Breast Cancer Cells

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2010-08-01

    Full Text Available P-glycoprotein (Pgp, encoded by the multidrug resistance 1 (MDR1 gene, is an efflux transporter and plays an important role in pharmacokinetics. In this study, we demonstrated that the pokemon promoter activity, the pokemon mRNA and protein expression can be significantly inhibited by Pgp. Chromatin immunoprecipitation assay showed that Pgp can bind the pokemon prompter to repress pokemon transcription activity. Furthermore, Pgp regulated pokemon transcription activity through expression of p53 as seen by use of p53 siRNA transfected MCF-7 cells or p53 mutated MDA-MB-231 cells. Moreover, p53 was detected to bind with Pgp in vivo using immunoprecipitation assay. Taken together, we conclude that Pgp can regulate the expression of pokemon through the presence of p53, suggesting that Pgp is a potent regulator and may offer an effective novel target for cancer therapy.

  13. iASPP is over-expressed in human non-small cell lung cancer and regulates the proliferation of lung cancer cells through a p53 associated pathway

    International Nuclear Information System (INIS)

    Chen, Jinfeng; Xie, Fei; Zhang, Lijian; Jiang, Wen G

    2010-01-01

    iASPP is a key inhibitor of tumour suppressor p53 and is found to be up-regulated in certain malignant conditions. The present study investigated the expression of iASPP in clinical lung cancer, a leading cancer type in the world, and the biological impact of this molecule on lung cancer cells. iASPP protein levels in lung cancer tissues were evaluated using an immunohistochemical method. In vitro, iASPP gene expression was suppressed with a lentvirus-mediated shRNA method and the biological impact after knocking down iASSP on lung cancer cell lines was investigated in connection with the p53 expression status. We showed here that the expression of iASPP was significantly higher in lung cancer tissues compared with the adjacent normal tissues. iASPP shRNA treatment resulted in a down-regulation of iASPP in lung cancer cells. There was a subsequent reduction of cell proliferation of the two lung tumour cell lines A459 and 95D both of which had wild-type p53 expression. In contrast, reduction of iASPP in H1229 cells, a cell with little p53 expression, had no impact on its growth rate. iASPP regulates the proliferation and motility of lung cancer cells. This effect is intimately associated with the p53 pathway. Together with the pattern of the over-expression in clinical lung cancers, it is concluded that iASPP plays an pivotal role in the progression of lung cancer and is a potential target for lung cancer therapy

  14. Expression of inwardly rectifying potassium channels (GIRKs) and beta-adrenergic regulation of breast cancer cell lines

    International Nuclear Information System (INIS)

    Plummer, Howard K III; Yu, Qiang; Cakir, Yavuz; Schuller, Hildegard M

    2004-01-01

    Previous research has indicated that at various organ sites there is a subset of adenocarcinomas that is regulated by beta-adrenergic and arachidonic acid-mediated signal transduction pathways. We wished to determine if this regulation exists in breast adenocarcinomas. Expression of mRNA that encodes a G-protein coupled inwardly rectifying potassium channel (GIRK1) has been shown in tissue samples from approximately 40% of primary human breast cancers. Previously, GIRK channels have been associated with beta-adrenergic signaling. Breast cancer cell lines were screened for GIRK channels by RT-PCR. Cell cultures of breast cancer cells were treated with beta-adrenergic agonists and antagonists, and changes in gene expression were determined by both relative competitive and real time PCR. Potassium flux was determined by flow cytometry and cell signaling was determined by western blotting. Breast cancer cell lines MCF-7, MDA-MB-361 MDA-MB 453, and ZR-75-1 expressed mRNA for the GIRK1 channel, while MDA-MB-468 and MDA-MB-435S did not. GIRK4 was expressed in all six breast cancer cell lines, and GIRK2 was expressed in all but ZR-75-1 and MDA-MB-435. Exposure of MDA-MB-453 cells for 6 days to the beta-blocker propranolol (1 μM) increased the GIRK1 mRNA levels and decreased beta 2 -adrenergic mRNA levels, while treatment for 30 minutes daily for 7 days had no effect. Exposure to a beta-adrenergic agonist and antagonist for 24 hours had no effect on gene expression. The beta adrenergic agonist, formoterol hemifumarate, led to increases in K + flux into MDA-MB-453 cells, and this increase was inhibited by the GIRK channel inhibitor clozapine. The tobacco carcinogen 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), a high affinity agonist for beta-adrenergic receptors stimulated activation of Erk 1/2 in MDA-MB-453 cells. Our data suggests β-adrenergic receptors and GIRK channels may play a role in breast cancer

  15. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability...... largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...

  16. Long non-coding RNA Loc554202 regulates proliferation and migration in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yongguo, E-mail: 1138303166@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Lu, Jianwei, E-mail: jianwei2010077@163.com [Cancer Hospital of Jiangsu Province, Nanjing, Jiangsu (China); Zhou, Jing, E-mail: 2310848@163.com [Department of Oncology, Taizhou People’ Hospital, Taizhou, Jiangsu (China); Tan, Xueming, E-mail: 843039795@qq.com [Department of Gastroenterology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); He, Ye, E-mail: 2825636@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Ding, Jie, E-mail: 9111165@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Tian, Yun, E-mail: 1815857@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wang, Li, E-mail: 2376737@qq.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China); Wang, Keming, E-mail: wkmys@sohu.com [Department of Oncology, Second Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu (China)

    2014-04-04

    Highlights: • First, we have shown that upregulated of the Loc554202 in breast cancer tissues. • Second, we demonstrated the function of Loc554202 in breast cancer cell. • Finally, we demonstrated that LOC554202 knockdown could inhibit tumor growth in vivo. - Abstract: Data derived from massive cloning and traditional sequencing methods have revealed that long non-coding RNAs (lncRNA) play important roles in the development and progression of cancer. Although many studies suggest that the lncRNAs have different cellular functions, many of them are not yet to be identified and characterized for the mechanism of their functions. To address this question, we assay the expression level of lncRNAs–Loc554202 in breast cancer tissues and find that Loc554202 is significantly increased compared with normal control, and associated with advanced pathologic stage and tumor size. Moreover, knockdown of Loc554202 decreased breast cancer cell proliferation, induced apoptosis and inhibits migration/invasion in vitro and impeded tumorigenesis in vivo. These data suggest an important role of Loc554202 in breast tumorigenesis.

  17. Regulation of the angiopoietin-2 gene by hCG in ovarian cancer cell line OVCAR-3.

    Science.gov (United States)

    Pietrowski, D; Wiehle, P; Sator, M; Just, A; Keck, C

    2010-05-01

    Angiogenesis is a crucial step in growing tissues including many tumors. It is regulated by pro- and antiangiogenic factors including the family of angiopoietins and their corresponding receptors. In previous work we have shown that in human ovarian cells the expression of angiopoietin 2 (ANG2) is regulated by human chorionic gonadotropin (hCG). To better understand the mechanisms of hCG-dependent regulation of the ANG2-gene we have now investigated upstream regulatory active elements of the ANG2-promoter in the ovarian carcinoma cell line OVCAR-3. We cloned several ANG2-promoter-fragments of different lengths into a luciferase reporter-gene-vector and analyzed the corresponding ANG2 expression before and after hCG stimulation. We identified regions of the ANG2-promoter between 1 048 bp and 613 bp upstream of the transcriptional start site where hCG-dependent pathways promote a significant downregulation of gene expression. By sequence analysis of this area we found several potential binding sites for transcription factors that are involved in regulation of ANG2-expression, vascular development and ovarian function. These encompass the forkhead family transcription factors FOXC2 and FOXO1 as well as the CCAAT/enhancer binding protein family (C/EBP). In conclusion, we have demonstrated that the regulation of ANG2-expression in ovarian cancer cells is hCG-dependent and we suggest that forkhead transcription factor and C/EBP-dependent pathways are involved in the regulation of ANG2-expression in ovarian cancer cells. Georg Thieme Verlag KG Stuttgart-New York.

  18. MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4

    International Nuclear Information System (INIS)

    Wei, Xueju; Wang, Weibin; Wang, Lanlan; Zhang, Yuanyuan; Zhang, Xian; Chen, Mingtai; Wang, Fang; Yu, Jia; Ma, Yanni; Sun, Guotao

    2016-01-01

    Pancreatic cancer patients are often resistant to chemotherapy treatment, which results in poor prognosis. The objective of this study was to delineate the mechanism by which miR-21 induces drug resistance to 5-fluorouracil (5-FU) in human pancreatic cancer cells (PATU8988 and PANC-1). We report that PATU8988 cells resistant to 5-FU express high levels of miR-21 in comparison to sensitive primary PATU8988 cells. Suppression of miR-21 expression in 5-Fu-resistant PATU8988 cells can alleviate its 5-FU resistance. Meanwhile, lentiviral vector-mediated overexpression of miR-21 not only conferred resistance to 5-FU but also promoted proliferation, migration, and invasion of PATU8988 and PANC-1 cells. The proresistance effects of miR-21 were attributed to the attenuated expression of tumor suppressor genes, including PTEN and PDCD4. Overexpression of PTEN and PDCD4 antagonized miR-21-induced resistance to 5-FU and migration activity. Our work demonstrates that miR-21 can confer drug resistance to 5-FU in pancreatic cancer cells by regulating the expression of tumor suppressor genes, as the target genes of miR-21, PTEN and PDCD4 can rescue 5-FU sensitivity and the phenotypic characteristics disrupted by miR-21

  19. A negative regulation loop of long noncoding RNA HOTAIR and p53 in non-small-cell lung cancer

    Directory of Open Access Journals (Sweden)

    Zhai N

    2016-09-01

    Full Text Available Nailiang Zhai,1 Yongfu Xia,1 Rui Yin,2 Jinping Liu,3 Fuquan Gao1 1Department of Respiratory Medicine, Affiliated Hospital of Binzhou Medical University, 2Department of Respiratory Medicine, People’s Hospital of Binzhou City, 3Department of Pharmacology, Binzhou Medical University, Binzhou, Shandong, People’s Republic of China Abstract: Non-small-cell lung cancer (NSCLC is one of the leading causes of cancer-related death worldwide, and the 5-year survival rate is still low despite advances in diagnosis and therapeutics. A long noncoding RNA (lncRNA HOX antisense intergenic RNA (HOTAIR has been revealed to play important roles in NSCLC carcinogenesis but the detailed mechanisms are still unclear. In the current study, we aimed to investigate the regulation between the lncRNA HOTAIR and p53 in the NSCLC patient samples and cell lines. Our results showed that HOTAIR expression was significantly higher in the cancer tissues than that in the adjacent normal tissue, and was negatively correlated with p53 functionality rather than expression. When p53 was overexpressed in A549 cells, the lncRNA HOTAIR expression was downregulated, and the cell proliferation rate and cell invasion capacity decreased as a consequence. We identified two binding sites of p53 on the promoter region of HOTAIR, where the p53 protein would bind to and suppress the HOTAIR mRNA transcription. Inversely, overexpression of lncRNA HOTAIR inhibited the expression of p53 in A549 cells. Mechanistic studies revealed that HOTAIR modified the promoter of p53 and enhanced histone H3 lysine 27 trimethylation (H3K27me3. These studies identified a specific negative regulation loop of lncRNA HOTAIR and p53 in NSCLC cells, which revealed a new understanding of tumorigenesis in p53 dysfunction NSCLC cells. Keywords: NSCLC, LncRNA HOTAIR, p53, negative loop

  20. Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer.

    LENUS (Irish Health Repository)

    Gulmann, Christian

    2009-08-01

    Mitogen-activated protein kinases (MAPK) are considered to play significant roles in colonic carcinogenesis and kinase inhibitor therapy has been proposed as a potential tool in the treatment of this disease. Reverse-phase microarray assays using phospho-specific antibodies can directly measure levels of phosphorylated protein isoforms. In the current study, samples from 35 cases of untreated colorectal cancer colectomies were laser capture-microdissected to isolate epithelium and stroma from cancer as well as normal (i.e. uninvolved) mucosa. Lysates generated from these four tissue types were spotted onto reverse-phase protein microarrays and probed with a panel of antibodies to ERK, p-ERK, p38, p-p38, p-JNK, MEK and p-MEK. Whereas total protein levels were unchanged, or slightly elevated (p38, p = 0.0025) in cancers, activated isoforms, including p-ERK, p-p38 and p-JNK, were decreased two- to four-fold in cancers compared with uninvolved mucosa (p < 0.0023 in all cases except for p-JNK in epithelium, where decrement was non-significant). This was backed up by western blotting. Dukes\\' stage B and C cancers displayed lower p-ERK and p-p38 expression than Dukes\\' stage A cancers, although this was not statistically significant. It is concluded that MAPK activity may be down-regulated in colorectal cancer and that further exploration of inhibitory therapy in this system should be carefully evaluated if this finding is confirmed in larger series.

  1. Protein tyrosine phosphatase µ (PTP µ or PTPRM, a negative regulator of proliferation and invasion of breast cancer cells, is associated with disease prognosis.

    Directory of Open Access Journals (Sweden)

    Ping-Hui Sun

    Full Text Available BACKGROUND: PTPRM has been shown to exhibit homophilic binding and confer cell-cell adhesion in cells including epithelial and cancer cells. The present study investigated the expression of PTPRM in breast cancer and the biological impact of PTPRM on breast cancer cells. DESIGN: Expression of PTPRM protein and gene transcript was examined in a cohort of breast cancer patients. Knockdown of PTPRM in breast cancer cells was performed using a specific anti-PTPRM transgene. The impact of PTPRM knockdown on breast cancer was evaluated using in vitro cell models. RESULTS: A significant decrease of PTPRM transcripts was seen in poorly differentiated and moderately differentiated tumours compared with well differentiated tumours. Patients with lower expression of PTPRM had shorter survival compared with those which had a higher level of PTPRM expression. Knockdown of PTPRM increased proliferation, adhesion, invasion and migration of breast cancer cells. Furthermore, knockdown of PTPRM in MDA-MB-231 cells resulted in increased cell migration and invasion via regulation of the tyrosine phosphorylation of ERK and JNK. CONCLUSIONS: Decreased expression of PTPRM in breast cancer is correlated with poor prognosis and inversely correlated with disease free survival. PTPRM coordinated cell migration and invasion through the regulation of tyrosine phosphorylation of ERK and JNK.

  2. Cancer Stem Cells in Pancreatic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J., E-mail: christiane.bruns@med.uni-muenchen.de [Department of Surgery, Ludwig Maximilian University of Munich, Klinikum Grosshadern, Marchioninistr. 15, D-81377, Munich (Germany)

    2010-08-19

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  3. Cancer Stem Cells in Pancreatic Cancer

    Science.gov (United States)

    Bao, Qi; Zhao, Yue; Renner, Andrea; Niess, Hanno; Seeliger, Hendrik; Jauch, Karl-Walter; Bruns, Christiane J.

    2010-01-01

    Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs). Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer. PMID:24281178

  4. Cancer Stem Cells in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Karl-Walter Jauch

    2010-08-01

    Full Text Available Pancreatic cancer is an aggressive malignant solid tumor well-known by early metastasis, local invasion, resistance to standard chemo- and radiotherapy and poor prognosis. Increasing evidence indicates that pancreatic cancer is initiated and propagated by cancer stem cells (CSCs. Here we review the current research results regarding CSCs in pancreatic cancer and discuss the different markers identifying pancreatic CSCs. This review will focus on metastasis, microRNA regulation and anti-CSC therapy in pancreatic cancer.

  5. Cell adhesion and EGFR activation regulate EphA2 expression in cancer

    DEFF Research Database (Denmark)

    Larsen, Alice Bjerregaard; Stockhausen, Marie-Thérése; Poulsen, Hans Skovgaard

    2010-01-01

    largely unknown. Here we show that the expression of EphA2 in in vitro cultured cells, is restricted to cells growing adherently and that adhesion-induced EphA2 expression is dependent upon activation of the epidermal growth factor receptor (EGFR), mitogen activated protein kinase kinase (MEK) and Src...... family kinases (SRC). Moreover, the results show that adhesion-induced EGFR activation and EphA2 expression is affected by interactions with extracellular matrix (ECM) proteins working as integrin ligands. Stimulation with the EphA2 ligand, ephrinA1 inhibited ERK phosphorylation and cancer cell viability....... These effects were however abolished by activation of the EGF-receptor ligand system favoring Ras/MAPK signaling and cell proliferation. Based on our results, we propose a regulatory mechanism where cell adhesion induces EGFR kinase activation and EphA2 expression; and where the effect of ephrinA1 mediated...

  6. Up-regulation of miR-146a contributes to the inhibition of invasion of pancreatic cancer cells

    Science.gov (United States)

    Li, Yiwei; VandenBoom, Timothy G.; Wang, Zhiwei; Kong, Dejuan; Ali, Shadan; Philip, Philip A.; Sarkar, Fazlul H.

    2009-01-01

    Pancreatic cancer (PC) is an aggressive malignancy with high mortality and is believed to be in part due to its highly invasive and metastatic behavior, which is associated with over-expression of EGFR and activation of NF-κB. Emerging evidence also suggest critical roles of microRNAs (miRNAs) in the regulation of various pathobiological processes including metastasis in PC and in other human malignancies. In the present study, we found lower expression of miR-146a in PC cells compared to normal human pancreatic duct epithelial (HPDE) cells. Interestingly, re-expression of miR-146a inhibited the invasive capacity of Colo357 and Panc-1 PC cells with concomitant down-regulation of EGFR and IRAK-1. Mechanistic studies including miR-146a re-expression, anti-miR-146 transfection, and EGFR knock-down experiment showed that there was a crosstalk between EGFR, MTA-2, IRAK-1, IκBα and NF-κB. Most importantly, we found that the treatment of PC cells with “natural agents” [3,3′-diinodolylmethane (DIM) or isoflavone] led to an increase in the expression of miR-146a and consequently down-regulated the expression of EGFR, MTA-2, IRAK-1 and NF-κB, resulting in the inhibition of invasion of Colo357 and Panc-1 cells. These results provide experimental evidence in support of the role of DIM and isoflavone as potential non-toxic agents as regulators of miRNA, which could be useful for the inhibition of cancer cell invasion and metastasis, and further suggesting that these agents could be important for designing novel targeted strategy for the treatment of PC. PMID:25242818

  7. Sonic hedgehog signaling inhibition provides opportunities for targeted therapy by sulforaphane in regulating pancreatic cancer stem cell self-renewal.

    Directory of Open Access Journals (Sweden)

    Mariana Rodova

    Full Text Available Dysregulation of the sonic hedgehog (Shh signaling pathway has been associated with cancer stem cells (CSC and implicated in the initiation of pancreatic cancer. Pancreatic CSCs are rare tumor cells characterized by their ability to self-renew, and are responsible for tumor recurrence accompanied by resistance to current therapies. The lethality of these incurable, aggressive and invasive pancreatic tumors remains a daunting clinical challenge. Thus, the objective of this study was to investigate the role of Shh pathway in pancreatic cancer and to examine the molecular mechanisms by which sulforaphane (SFN, an active compound in cruciferous vegetables, inhibits self-renewal capacity of human pancreatic CSCs. Interestingly, we demonstrate here that Shh pathway is highly activated in pancreatic CSCs and plays important role in maintaining stemness by regulating the expression of stemness genes. Given the requirement for Hedgehog in pancreatic cancer, we investigated whether hedgehog blockade by SFN could target the stem cell population in pancreatic cancer. In an in vitro model, human pancreatic CSCs derived spheres were significantly inhibited on treatment with SFN, suggesting the clonogenic depletion of the CSCs. Interestingly, SFN inhibited the components of Shh pathway and Gli transcriptional activity. Interference of Shh-Gli signaling significantly blocked SFN-induced inhibitory effects demonstrating the requirement of an active pathway for the growth of pancreatic CSCs. SFN also inhibited downstream targets of Gli transcription by suppressing the expression of pluripotency maintaining factors (Nanog and Oct-4 as well as PDGFRα and Cyclin D1. Furthermore, SFN induced apoptosis by inhibition of BCL-2 and activation of caspases. Our data reveal the essential role of Shh-Gli signaling in controlling the characteristics of pancreatic CSCs. We propose that pancreatic cancer preventative effects of SFN may result from inhibition of the Shh pathway

  8. Sulforaphane modulates telomerase activity via epigenetic regulation in prostate cancer cell lines.

    Science.gov (United States)

    Abbas, Ata; Hall, J Adam; Patterson, William L; Ho, Emily; Hsu, Anna; Al-Mulla, Fahd; Georgel, Philippe T

    2016-02-01

    Epidemiologic studies have revealed that diets rich in sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables, are associated with a marked decrease in prostate cancer incidence. The chemo-preventive role of SFN is associated with its histone de-acetylase inhibitor activity. However, the effect of SFN on chromatin composition and dynamic folding, especially in relation to HDAC inhibitor activity, remains poorly understood. In this study, we found that SFN can inhibit the expression and activity of human telomerase reverse transcriptase (hTERT), the catalytic subunit of telomerase, in 2 prostate cancer cell lines. This decrease in gene expression is correlated with SFN-induced changes in chromatin structure and composition. The SFN-mediated changes in levels of histone post-translational modifications, more specifically acetylation of histone H3 lysine 18 and di-methylation of histone H3 lysine 4, 2 modifications linked with high risk of prostate cancer recurrence, were associated with regulatory elements within the hTERT promoter region. Chromatin condensation may also play a role in SFN-mediated hTERT repression, since expression and recruitment of MeCP2, a known chromatin compactor, were altered in SFN treated prostate cancer cells. Chromatin immuno-precipitation (ChIP) of MeCP2 showed enrichment over regions of the hTERT promoter with increased nucleosome density. These combined results strongly support a role for SFN in the mediation of epigenetic events leading to the repression of hTERT in prostate cancer cells. This ability of SFN to modify chromatin composition and structure associated with target gene expression provides a new model by which dietary phytochemicals may exert their chemoprevention activity.

  9. Lysophosphatidic acid signaling via LPA_1 and LPA_3 regulates cellular functions during tumor progression in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Fukushima, Kaori; Takahashi, Kaede; Yamasaki, Eri; Onishi, Yuka; Fukushima, Nobuyuki; Honoki, Kanya; Tsujiuchi, Toshifumi

    2017-01-01

    Lysophosphatidic acid (LPA) signaling via G protein-coupled LPA receptors exhibits a variety of biological effects, such as cell proliferation, motility and differentiation. The aim of this study was to evaluate the roles of LPA_1 and LPA_3 in cellular functions during tumor progression in pancreatic cancer cells. LPA_1 and LPA_3 knockdown cells were generated from PANC-1 cells. The cell motile and invasive activities of PANC-1 cells were inhibited by LPA_1 and LPA_3 knockdown. In gelatin zymography, LPA_1 and LPA_3 knockdown cells indicated the low activation of matrix metalloproteinase-2 (MMP-2) in the presence of LPA. Next, to assess whether LPA_1 and LPA_3 regulate cellular functions induced by anticancer drug, PANC-1 cells were treated with cisplatin (CDDP) for approximately 6 months. The cell motile and invasive activities of long-term CDDP treated cells were markedly higher than those of PANC-1 cells, correlating with the expression levels of LPAR1 and LPAR3 genes. In soft agar assay, the long-term CDDP treated cells formed markedly large sized colonies. In addition, the cell motile and invasive activities enhanced by CDDP were significantly suppressed by LPA_1 and LPA_3 knockdown as well as colony formation. These results suggest that LPA signaling via LPA_1 and LPA_3 play an important role in the regulation of cellular functions during tumor progression in PANC-1 cells. - Highlights: • The cell motile and invasive activities of PANC-1 cells were stimulated by LPA_1 and LPA_3. • LPA_1 and LPA_3 enhanced MMP-2 activation in PANC-1 cells. • The expressions of LPAR1 and LPAR3 genes were elevated in PANC-1 cells treated with cisplatin. • The cell motile and invasive activities of PANC-1 cells treated with cisplatin were suppressed by LPA_1 and LPA_3 knockdown. • LPA_1 and LPA_3 are involved in the regulation of cellular functions during tumor progression in PANC-1 cells.

  10. CD133+ cells contribute to radioresistance via altered regulation of DNA repair genes in human lung cancer cells

    International Nuclear Information System (INIS)

    Desai, Amar; Webb, Bryan; Gerson, Stanton L.

    2014-01-01

    Background: Radioresistance in human tumors has been linked in part to a subset of cells termed cancer stem cells (CSCs). The prominin 1 (CD133) cell surface protein is proposed to be a marker enriching for CSCs. We explore the importance of DNA repair in contributing to radioresistance in CD133+ lung cancer cells. Materials and methods: A549 and H1299 lung cancer cell lines were used. Sorted CD133+ cells were exposed to either single 4 Gy or 8 Gy doses and clonogenic survival measured. ϒ-H2AX immunofluorescence and quantitative real time PCR was performed on sorted CD133+ cells both in the absence of IR and after two single 4 Gy doses. Lentiviral shRNA was used to silence repair genes. Results: A549 but not H1299 cells expand their CD133+ population after single 4 Gy exposure, and isolated A549 CD133+ cells demonstrate IR resistance. This resistance corresponded with enhanced repair of DNA double strand breaks (DSBs) and upregulated expression of DSB repair genes in A549 cells. Prior IR exposure of two single 4 Gy doses resulted in acquired DNA repair upregulation and improved repair proficiency in both A549 and H1299. Finally Exo1 and Rad51 silencing in A549 cells abrogated the CD133+ IR expansion phenotype and induced IR sensitivity in sorted CD133+ cells. Conclusions: CD133 identifies a population of cells within specific tumor types containing altered expression of DNA repair genes that are inducible upon exposure to chemotherapy. This altered gene expression contributes to enhanced DSB resolution and the radioresistance phenotype of these cells. We also identify DNA repair genes which may serve as promising therapeutic targets to confer radiosensitivity to CSCs

  11. Regulation of DU145 prostate cancer cell growth by Scm-like with ...

    Indian Academy of Sciences (India)

    2012-12-08

    Dec 8, 2012 ... PhoRC components, transcriptional repressor Pleiohomeotic ... protein EZH2 is highly overexpressed in prostate carcinoma ... 2004) or its interaction with the cell cycle regulators such ... specificity of each antiserum, Western blot analysis was ..... residue of histones that play an important role in the main-.

  12. MAML1 regulates cell viability via the NF-κB pathway in cervical cancer cell lines

    International Nuclear Information System (INIS)

    Kuncharin, Yanin; Sangphech, Naunpun; Kueanjinda, Patipark; Bhattarakosol, Parvapan; Palaga, Tanapat

    2011-01-01

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and β-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-κB pathway was investigated, CaSki cells overexpressing DN

  13. Transcriptional up-regulation of restin by all-trans retinoic acid through STAT1 in cancer cell differentiation process

    International Nuclear Information System (INIS)

    Fu Haiyan; Yang Guodong; Lu Fan; Wang Ruihua; Yao Libo; Lu Zifan

    2006-01-01

    RESTIN, a member of the melanoma-associated antigen superfamily, is a nuclear protein induced by atRA (all-trans retinoic acid) in HL60 cells. HeLa cells stably transfected with restin results in G1 cell cycle arrest. How this gene is regulated by atRA in the cell differentiation process is still unclear. In this study, we observed that up-regulation of restin was present during the atRA-induced HL60 cell differentiation process, suggesting the functional relevance between RESTIN and atRA-induced cellular effects. In order to further define the transcriptional regulation of restin by atRA, we analyzed the promoter region of restin. About 2.1 kb 5' flanking sequence of this gene was cloned into vector pGL3 and its core promoter region was identified through systemic deletions. Interestingly, restin promoter containing several potential consensus-binding sites of STAT-1α was activated by atRA in ER + MCF-7 cells but not in ER - MDA-MB-231 cells, over-expression of STAT-1α in latter rescued the activation effect of restin promoter in response to atRA and IFNγ. Our evidence supported that STAT-1α plays an important role in the atRA-induced transcriptional up-regulation of restin, which was associated with the atRA-induced HL60 cell differentiation and potentially mediated the downstream effects of atRA signal pathway via STAT-1α in some cancer cells

  14. Regulation of APC and AXIN2 expression by intestinal tumor suppressor CDX2 in colon cancer cells

    DEFF Research Database (Denmark)

    Olsen, Anders Krüger; Coskun, Mehmet; Bzorek, Michael

    2013-01-01

    was associated with endogenous downregulation of APC and AXIN2 expression in Caco-2 cells but did not affect GSK3β expression. Furthermore, elevated levels of nuclear β-catenin and reduced levels of cytoplasmic APC were correlated to a low CDX2 expression in migrating colon cancer cells in vivo. These results......Wnt signaling is often constitutively active in colorectal cancer cells. The expression of the intestinal specific transcription factor CDX2 is found to be transiently decreased in invasive cells at the tumor/stroma interface. A recent ChIP-Seq study has indicated that several Wnt signaling......-related genes are regulated by CDX2. The aim was to investigate the role of decreased CDX2 level on the expression of APC, AXIN2 and GSK3β in migrating colon cancer cells at the invasive front. CDX2-bound promoter and enhancer regions from APC, AXIN2 and GSK3β were analyzed for gene regulatory activity...

  15. Oxidative phosphorylation-dependent regulation of cancer cell apoptosis in response to anticancer agents.

    Science.gov (United States)

    Yadav, N; Kumar, S; Marlowe, T; Chaudhary, A K; Kumar, R; Wang, J; O'Malley, J; Boland, P M; Jayanthi, S; Kumar, T K S; Yadava, N; Chandra, D

    2015-11-05

    Cancer cells tend to develop resistance to various types of anticancer agents, whether they adopt similar or distinct mechanisms to evade cell death in response to a broad spectrum of cancer therapeutics is not fully defined. Current study concludes that DNA-damaging agents (etoposide and doxorubicin), ER stressor (thapsigargin), and histone deacetylase inhibitor (apicidin) target oxidative phosphorylation (OXPHOS) for apoptosis induction, whereas other anticancer agents including staurosporine, taxol, and sorafenib induce apoptosis in an OXPHOS-independent manner. DNA-damaging agents promoted mitochondrial biogenesis accompanied by increased accumulation of cellular and mitochondrial ROS, mitochondrial protein-folding machinery, and mitochondrial unfolded protein response. Induction of mitochondrial biogenesis occurred in a caspase activation-independent mechanism but was reduced by autophagy inhibition and p53-deficiency. Abrogation of complex-I blocked DNA-damage-induced caspase activation and apoptosis, whereas inhibition of complex-II or a combined deficiency of OXPHOS complexes I, III, IV, and V due to impaired mitochondrial protein synthesis did not modulate caspase activity. Mechanistic analysis revealed that inhibition of caspase activation in response to anticancer agents associates with decreased release of mitochondrial cytochrome c in complex-I-deficient cells compared with wild type (WT) cells. Gross OXPHOS deficiencies promoted increased release of apoptosis-inducing factor from mitochondria compared with WT or complex-I-deficient cells, suggesting that cells harboring defective OXPHOS trigger caspase-dependent as well as caspase-independent apoptosis in response to anticancer agents. Interestingly, DNA-damaging agent doxorubicin showed strong binding to mitochondria, which was disrupted by complex-I-deficiency but not by complex-II-deficiency. Thapsigargin-induced caspase activation was reduced upon abrogation of complex-I or gross OXPHOS deficiency

  16. Elimination of head and neck cancer initiating cells through targeting glucose regulated protein78 signaling

    Directory of Open Access Journals (Sweden)

    Huang Chih-Yang

    2010-10-01

    Full Text Available Abstract Background Head and neck squamous cell carcinoma (HNSCC is a highly lethal cancer that contains cellular and functional heterogeneity. Previously, we enriched a subpopulation of highly tumorigenic head and neck cancer initiating cells (HN-CICs from HNSCC. However, the molecular mechanisms by which to govern the characteristics of HN-CICs remain unclear. GRP78, a stress-inducible endoplasmic reticulum chaperone, has been reported to play a crucial role in the maintenance of embryonic stem cells, but the role of GRP78 in CICs has not been elucidated. Results Initially, we recognized GRP78 as a putative candidate on mediating the stemness and tumorigenic properties of HN-CICs by differential systemic analyses. Subsequently, cells with GRP78 anchored at the plasma membrane (memGRP78+ exerted cancer stemness properties of self-renewal, differentiation and radioresistance. Of note, xenotransplantation assay indicated merely 100 memGRP78+ HNSCCs resulted in tumor growth. Moreover, knockdown of GRP78 significantly reduced the self-renewal ability, side population cells and expression of stemness genes, but inversely promoted cell differentiation and apoptosis in HN-CICs. Targeting GRP78 also lessened tumorigenicity of HN-CICs both in vitro and in vivo. Clinically, co-expression of GRP78 and Nanog predicted the worse survival prognosis of HNSCC patients by immunohistochemical analyses. Finally, depletion of GRP78 in HN-CICs induced the expression of Bax, Caspase 3, and PTEN. Conclusions In summary, memGRP78 should be a novel surface marker for isolation of HN-CICs, and targeting GRP78 signaling might be a potential therapeutic strategy for HNSCC through eliminating HN-CICs.

  17. BAG3 promotes tumour cell proliferation by regulating EGFR signal transduction pathways in triple negative breast cancer.

    Science.gov (United States)

    Shields, Sarah; Conroy, Emer; O'Grady, Tony; McGoldrick, Alo; Connor, Kate; Ward, Mark P; Useckaite, Zivile; Dempsey, Eugene; Reilly, Rebecca; Fan, Yue; Chubb, Anthony; Matallanas, David Gomez; Kay, Elaine W; O'Connor, Darran; McCann, Amanda; Gallagher, William M; Coppinger, Judith A

    2018-03-20

    Triple-negative breast cancer (TNBC), is a heterogeneous disease characterised by absence of expression of the estrogen receptor (ER), progesterone receptor (PR) and lack of amplification of human epidermal growth factor receptor 2 (HER2). TNBC patients can exhibit poor prognosis and high recurrence stages despite early response to chemotherapy treatment. In this study, we identified a pro-survival signalling protein BCL2- associated athanogene 3 (BAG3) to be highly expressed in a subset of TNBC cell lines and tumour tissues. High mRNA expression of BAG3 in TNBC patient cohorts significantly associated with a lower recurrence free survival. The epidermal growth factor receptor (EGFR) is amplified in TNBC and EGFR signalling dynamics impinge on cancer cell survival and disease recurrence. We found a correlation between BAG3 and EGFR expression in TNBC cell lines and determined that BAG3 can regulate tumour cell proliferation, migration and invasion in EGFR expressing TNBC cells lines. We identified an interaction between BAG3 and components of the EGFR signalling networks using mass spectrometry. Furthermore, BAG3 contributed to regulation of proliferation in TNBC cell lines by reducing the activation of components of the PI3K/AKT and FAK/Src signalling subnetworks. Finally, we found that combined targeting of BAG3 and EGFR was more effective than inhibition of EGFR with Cetuximab alone in TNBC cell lines. This study demonstrates a role for BAG3 in regulation of distinct EGFR modules and highlights the potential of BAG3 as a therapeutic target in TNBC.

  18. Comprehensive analysis of miRNAs expression profiles revealed potential key miRNA/mRNAs regulating colorectal cancer stem cell self-renewal.

    Science.gov (United States)

    Xu, Peng; Wang, Junhua; Sun, Bo; Xiao, Zhongdang

    2018-05-20

    Self-renewal is essential for the malignant biological behaviors of colorectal cancer stem cells. While the self-renewal molecular mechanisms of colorectal cancer stem cells are not yet fully understood. Recently, miRNAs are reported to be relevant to the self-renewal ability of cancer stem cells. In this study, we first isolated colorectal cancer stem cell from colorectal cancer cell line HCT-116 by 1% low serum culture. Then we conducted a comprehensive analysis based on the miRNAs profiles data of both colorectal cancer stem cells and normal cultured colorectal cancer cells. Pathway analysis revealed multiple pathways including Jak-STAT, TGF-beta, PI3K-Akt and MAPK signaling pathway that are correlated to colorectal cancer. Further, we constructed a miRNA-mRNA network, based on which, several miRNA/mRNA pairs were ranked according to their impact index to the self-renewal of colorectal cancer stem cells. Further biological experiment showed that up-regulation of miR-92a-3p led to cell cycle arrest and reduced colony formation. This work provides clues to find the new potential biomarkers for colorectal cancer stem cell diagnosis and select effective miRNAs for targeted therapy. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. MicroRNA-205 suppresses the oral carcinoma oncogenic activity via down-regulation of Axin-2 in KB human oral cancer cell.

    Science.gov (United States)

    Kim, Jae-Sung; Park, Sun-Young; Lee, Seul Ah; Park, Min-Gyeong; Yu, Sun-Kyoung; Lee, Myoung-Hwa; Park, Mi-Ra; Kim, Su-Gwan; Oh, Ji-Su; Lee, Sook-Young; Kim, Chun Sung; Kim, Heung-Joong; Chun, Hong Sung; Kim, Jin-Soo; Moon, Sung-Min; Kim, Do Kyung

    2014-02-01

    MicroRNA (miRNA) is a small noncoding RNA molecule, 19-25 nucleotides in length, which regulates several pathways including cell development, cell proliferation, carcinogenesis, apoptosis, etc. In this study, the over-expression of microRNA-205 (miR-205) increased the number of apoptotic cells by at least 4 times compared to the control. In addition, over-expressed miRNA in KB oral cancer cells triggered apoptosis via the caspase cascade, including the cleavage of caspase-9, caspase-7, caspase-3, and PARP. Flow cytometry showed that apoptotic cell death was increased significantly by 35.33% in KB oral cancer cells with over-expressed miR-205 compared to the control. The microarray data showed that axis inhibitor protein 2 (Axin2) was down-regulated in KB oral cancer cells transfected with miR-205. In addition, Axin2 was down-regulated by approximately 50% by over-expressed miR-205 at both the mRNA and protein levels. Interestingly, Axin2 was up-regulated in KB oral cancer compared to human normal oral keratinocytes. Furthermore, the cell cytotoxicity and apoptotic population of KB oral cancer cells were increased significantly after Axin2 siRNA transfection. These results suggest that Axin2 is might be as potential oncogene in KB oral cancer cells. The luciferase assay showed that over-expressed miR-205 in KB oral cancer cells suppressed AXIN2 expression through an interaction with its own binding site at AXIN2 3'UTR (64-92). These results suggest that miR-205 is a novel anti-oncogenic miRNA in KB oral cancer cells, and may have potential applications in oral cancer therapy.

  20. Differential Regulation of cGMP Signaling in Human Melanoma Cells at Altered Gravity: Simulated Microgravity Down-Regulates Cancer-Related Gene Expression and Motility

    Science.gov (United States)

    Ivanova, Krassimira; Eiermann, Peter; Tsiockas, Wasiliki; Hemmersbach, Ruth; Gerzer, Rupert

    2018-03-01

    Altered gravity is known to affect cellular function by changes in gene expression and cellular signaling. The intracellular signaling molecule cyclic guanosine-3',5'-monophosphate (cGMP), a product of guanylyl cyclases (GC), e.g., the nitric oxide (NO)-sensitive soluble GC (sGC) or natriuretic peptide-activated GC (GC-A/GC-B), is involved in melanocyte response to environmental stress. NO-sGC-cGMP signaling is operational in human melanocytes and non-metastatic melanoma cells, whereas up-regulated expression of GC-A/GC-B and inducible NO synthase (iNOS) are found in metastatic melanoma cells, the deadliest skin cancer. Here, we investigated the effects of altered gravity on the mRNA expression of NOS isoforms, sGC, GC-A/GC-B and multidrug resistance-associated proteins 4/5 (MRP4/MRP5) as selective cGMP exporters in human melanoma cells with different metastatic potential and pigmentation. A specific centrifuge (DLR, Cologne Germany) was used to generate hypergravity (5 g for 24 h) and a fast-rotating 2-D clinostat (60 rpm) to simulate microgravity values ≤ 0.012 g for 24 h. The results demonstrate that hypergravity up-regulates the endothelial NOS-sGC-MRP4/MRP5 pathway in non-metastatic melanoma cells, but down-regulates it in simulated microgravity when compared to 1 g. Additionally, the suppression of sGC expression and activity has been suggested to correlate inversely to tumor aggressiveness. Finally, hypergravity is ineffective in highly metastatic melanoma cells, whereas simulated microgravity down-regulates predominantly the expression of the cancer-related genes iNOS and GC-A/GC-B (shown additionally on protein levels) as well as motility in comparison to 1 g. The results suggest that future studies in real microgravity can benefit from considering GC-cGMP signaling as possible factor for melanocyte transformation.

  1. Multinuclear giant cell formation is enhanced by down-regulation of Wnt signaling in gastric cancer cell line, AGS

    International Nuclear Information System (INIS)

    Kim, Shi-Mun; Kim, Rockki; Ryu, Jae-Hyun; Jho, Eek-Hoon; Song, Ki-Joon; Jang, Shyh-Ing; Kee, Sun-Ho

    2005-01-01

    AGS cells, which were derived from malignant gastric adenocarcinoma tissue, lack E-cadherin-mediated cell adhesion but have a high level of nuclear β-catenin, which suggests altered Wnt signal. In addition, approximately 5% of AGS cells form multinuclear giant cells in the routine culture conditions, while taxol treatment causes most AGS cells to become giant cells. The observation of reduced nuclear β-catenin levels in giant cells induced by taxol treatment prompted us to investigate the relationship between Wnt signaling and giant cell formation. After overnight serum starvation, the shape of AGS cells became flattened, and this morphological change was accompanied by decrease in Myc expression and an increase in the giant cell population. Lithium chloride treatment, which inhibits GSK3β activity, reversed these serum starvation effects, which suggests an inverse relationship between Wnt signaling and giant cell formation. Furthermore, the down-regulation of Wnt signaling caused by the over-expression of ICAT, E-cadherin, and Axin enhanced giant cell formation. Therefore, down-regulation of Wnt signaling may be related to giant cell formation, which is considered to be a survival mechanism against induced cell death

  2. Onco-miR-24 regulates cell growth and apoptosis by targeting BCL2L11 in gastric cancer

    Directory of Open Access Journals (Sweden)

    Haiyang Zhang

    2016-01-01

    Full Text Available ABSTRACT Gastric cancer is one of the most common malignancies worldwide; however, the molecular mechanism in tumorigenesis still needs exploration. BCL2L11 belongs to the BCL-2 family, and acts as a central regulator of the intrinsic apoptotic cascade and mediates cell apoptosis. Although miRNAs have been reported to be involved in each stage of cancer development, the role of miR-24 in GC has not been reported yet. In the present study, miR-24 was found to be up-regulated while the expression of BCL2L11 was inhibited in tumor tissues of GC. Studies from both in vitro and in vivo shown that miR-24 regulates BCL2L11 expression by directly binding with 3′UTR of mRNA, thus promoting cell growth, migration while inhibiting cell apoptosis. Therefore, miR-24 is a novel onco-miRNA that can be potential drug targets for future clinical use.

  3. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  4. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; von der Maase, Hans; Sørensen, Flemming Brandt

    2002-01-01

    PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors.METHODS: The tissue material consisted of bladder tumors from three groups of patients......; group 1, 23 patients with recurrent stage Ta (non-invasive) tumors; group 2, 22 patients presenting at their first admission with T2-4 (muscle invasive) tumors; group 3, 24 patients who experienced disease progression from Ta or T1 (invasive in connective tissue) to a higher stage...

  5. Pentoxifylline regulates the cellular adhesion and its allied receptors to extracellular matrix components in breast cancer cells.

    Science.gov (United States)

    Goel, Peeyush N; Gude, Rajiv P

    2014-02-01

    Pentoxifylline (PTX) is a methylxanthine derivative that improves blood flow by decreasing its viscosity. Being an inhibitor of platelet aggregation, it can thus reduce the adhesiveness of cancer cells prolonging their circulation time. This delay in forming secondary tumours makes them more prone to immunological surveillance. Recently, we have evaluated its anti-metastatic efficacy against breast cancer, using MDA-MB-231 model system. In view of this, we had ascertained the effect of PTX on adhesion of MDA-MB-231 cells to extracellular matrix components (ECM) and its allied receptors such as the integrins. PTX affected adhesion of breast cancer cells to matrigel, collagen type IV, fibronectin and laminin in a dose dependent manner. Further, PTX showed a differential effect on integrin expression profile. The experimental metastasis model using NOD-SCID mice showed lesser tumour island formation when treated with PTX compared to the control. These findings further substantiate the anti-adhesive potential of PTX in breast cancer and warrant further insights into the functional regulation. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  6. Maternal Embryonic Leucine Zipper Kinase (MELK: A Novel Regulator in Cell Cycle Control, Embryonic Development, and Cancer

    Directory of Open Access Journals (Sweden)

    Pengfei Jiang

    2013-10-01

    Full Text Available Maternal embryonic leucine zipper kinase (MELK functions as a modulator of intracellular signaling and affects various cellular and biological processes, including cell cycle, cell proliferation, apoptosis, spliceosome assembly, gene expression, embryonic development, hematopoiesis, and oncogenesis. In these cellular processes, MELK functions by binding to numerous proteins. In general, the effects of multiple protein interactions with MELK are oncogenic in nature, and the overexpression of MELK in kinds of cancer provides some evidence that it may be involved in tumorigenic process. In this review, our current knowledge of MELK function and recent discoveries in MELK signaling pathway were discussed. The regulation of MELK in cancers and its potential as a therapeutic target were also described.

  7. Iodine-131 treatment of thyroid cancer cells leads to suppression of cell proliferation followed by induction of cell apoptosis and cell cycle arrest by regulation of B-cell translocation gene 2-mediated JNK/NF-κB pathways

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, L.M.; Pang, A.X., E-mail: zhaoliming515@126.com [Department of Nuclear Medicine, Linyi People' s Hospital, Linyi (China); Department of Urology, Linyi People' s Hospital, Linyi (China)

    2017-10-01

    Iodine-131 ({sup 131}I) is widely used for the treatment of thyroid-related diseases. This study aimed to investigate the expression of p53 and BTG2 genes following {sup 131}I therapy in thyroid cancer cell line SW579 and the possible underlying mechanism. SW579 human thyroid squamous carcinoma cells were cultured and treated with {sup 131}I. They were then assessed for {sup 131}I uptake, cell viability, apoptosis, cell cycle arrest, p53 expression, and BTG2 gene expression. SW579 cells were transfected with BTG2 siRNA, p53 siRNA and siNC and were then examined for the same aforementioned parameters. When treated with a JNK inhibitor of SP600125 and {sup 131}I or with a NF-kB inhibitor of BMS-345541 and {sup 131}I, non-transfected SW579 cells were assessed in JNK/NFkB pathways. It was observed that {sup 131}I significantly inhibited cell proliferation, promoted cell apoptosis and cell cycle arrest. Both BTG2 and p53 expression were enhanced in a dose-dependent manner. An increase in cell viability by up-regulation in Bcl2 gene, a decrease in apoptosis by enhanced CDK2 gene expression and a decrease in cell cycle arrest at G{sub 0}/G{sub 1} phase were also observed in SW579 cell lines transfected with silenced BTG2 gene. When treated with SP600125 and {sup 131}I, the non transfected SW579 cell lines significantly inhibited JNK pathway, NF-kB pathway and the expression of BTG2. However, when treated with BMS-345541 and {sup 131}I, only the NF-kB pathway was suppressed. {sup 131}I suppressed cell proliferation, induced cell apoptosis, and promoted cell cycle arrest of thyroid cancer cells by up-regulating B-cell translocation gene 2-mediated activation of JNK/NF--κB pathways. (author)

  8. Search for KPNA7 cargo proteins in human cells reveals MVP and ZNF414 as novel regulators of cancer cell growth.

    Science.gov (United States)

    Vuorinen, Elisa M; Rajala, Nina K; Rauhala, Hanna E; Nurminen, Anssi T; Hytönen, Vesa P; Kallioniemi, Anne

    2017-01-01

    Karyopherin alpha 7 (KPNA7) belongs to a family of nuclear import proteins that recognize and bind nuclear localization signals (NLSs) in proteins to be transported to the nucleus. Previously we found that KPNA7 is overexpressed in a subset of pancreatic cancer cell lines and acts as a critical regulator of growth in these cells. This characteristic of KPNA7 is likely to be mediated by its cargo proteins that are still mainly unknown. Here, we used protein affinity chromatography in Hs700T and MIA PaCa-2 pancreatic cancer cell lines and identified 377 putative KPNA7 cargo proteins, most of which were known or predicted to localize to the nucleus. The interaction was confirmed for two of the candidates, MVP and ZNF414, using co-immunoprecipitation, and their transport to the nucleus was hindered by siRNA based KPNA7 silencing. Most importantly, silencing of MVP and ZNF414 resulted in marked reduction in Hs700T cell growth. In conclusion, these data uncover two previously unknown human KPNA7 cargo proteins with distinct roles as novel regulators of pancreatic cancer cell growth, thus deepening our understanding on the contribution of nuclear transport in cancer pathogenesis. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. The Nrf1 and Nrf2 Balance in Oxidative Stress Regulation and Androgen Signaling in Prostate Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Michelle A. [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Abdel-Mageed, Asim B. [Department of Urology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States); Mondal, Debasis, E-mail: dmondal@tulane.edu [Department of Pharmacology, Tulane University Medical Center, 1430 Tulane Avenue, New Orleans, LA 70112 (United States)

    2010-06-21

    Reactive oxygen species (ROS) signaling has recently sparked a surge of interest as being the molecular underpinning for cancer cell survival, but the precise mechanisms involved have not been completely elucidated. This review covers the possible roles of two ROS-induced transcription factors, Nrf1 and Nrf2, and the antioxidant proteins peroxiredoxin-1 (Prx-1) and Thioredoxin-1 (Txn-1) in modulating AR expression and signaling in aggressive prostate cancer (PCa) cells. In androgen independent (AI) C4-2B cells, in comparison to the parental androgen dependent (AD) LNCaP cells, we present evidence of high Nrf1 and Prx-1 expression and low Nrf2 expression in these aggressive PCa cells. Furthermore, in DHT treated C4-2B cells, increased expression of the p65 (active) isoform of Nrf1 correlated with enhanced AR transactivation. Our findings implicate a crucial balance of Nrf1 and Nrf2 signaling in regulating AR activity in AI-PCa cells. Here we will discuss how understanding the mechanisms by which oxidative stress may affect AR signaling may aid in developing novel therapies for AI-PCa.

  10. Long non-coding RNA TUG1 is involved in cell growth and chemoresistance of small cell lung cancer by regulating LIMK2b via EZH2.

    Science.gov (United States)

    Niu, Yuchun; Ma, Feng; Huang, Weimei; Fang, Shun; Li, Man; Wei, Ting; Guo, Linlang

    2017-01-09

    Taurine upregulated gene1 (TUG1) as a 7.1-kb lncRNA, has been shown to play an oncogenic role in various cancers. However, the biological functions of lncRNA TUG1 in small cell lung cancer (SCLC) remain unknown. The aim of this study is to explore the roles of TUG1 in cell growth and chemoresistance of SCLC and its possible molecular mechanism. The expression of TUG1 in thirty-three cases of SCLC tissues and SCLC cell line were examined by quantitative RT-PCR (qRT-PCR). The functional roles of TUG1 in SCLC were demonstrated by CCK8 assay, colony formation assay, wound healing assay and transwell assay, flow cytometry analysis and in vivo study through siRNA or shRNA mediated knockdown. Western blot assays were used to evaluate gene and protein expression in cell lines. Chromatin immunoprecipitation (ChIP) and RNA binding protein immunoprecipitation (RIP) were performed to confirm the molecular mechanism of TUG1 involved in cell growth and chemoresistance of small cell lung cancer. We found that TUG1 was overexpressed in SCLC tissues, and its expression was correlated with the clinical stage and the shorter survival time of SCLC patients. Moreover, downregulation of TUG1 expression could impair cell proliferation and increased cell sensitivity to anticancer drugs both in vitro and in vivo. We also discovered that TUG1 knockdown significantly promoted cell apoptosis and cell cycle arrest, and inhibited cell migration and invasion in vitro . We further demonstrated that TUG1 can regulate the expression of LIMK2b (a splice variant of LIM-kinase 2) via binding with enhancer of zeste homolog 2 (EZH2), and then promoted cell growth and chemoresistance of SCLC. Together, these results suggested that TUG1 mediates cell growth and chemoresistance of SCLC by regulating LIMK2b via EZH2.

  11. Gastrin regulates ABCG2 to promote the migration, invasion and side populations in pancreatic cancer cells via activation of NF-κB signaling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Juan; Xin, Beibei; Wang, Hui; He, Xiaodan [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China); Wei, Wei; Zhang, Ti [Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Tianjin 300060 (China); Shen, Xiaohong, E-mail: zebal2014@163.com [School of Medicine, Nankai University, 94 Weijin Road, Tianjin 300071 (China)

    2016-08-01

    Gastrin is absent in most normal adult pancreatic tissues but is highly expressed in pancreatic cancer tissues. Although Gastrin expression was reported to be associated with tumor proliferation in human pancreatic cancer, studies on the relationship between Gastrin and tumor metastasis in pancreatic cancer are rare. In this study, we performed an analysis to determine the effects of Gastrin on modulating the side populations, cell proportion and tumor cell metastatic potential and invasion activity and explored its mechanisms in pancreatic cancer. We indicated that Gastrin and ABCG2 were widely expressed in pancreatic cancer cell lines and overexpressed in cancer tissues. Gastrin induced ABCG2 expression, and this effect was mediated by NF-κB activation. Gastrin regulated the SP proportion of BxPC-3 cells via modulating ABCG2 expression. Through the regulation of the functions of NF-κB/ABCG2, Gastrin functionally promoted the migration and invasion in pancreatic cancer cell. The present study indicated that Gastrin induced ABCG2 expression by activating NF-κB and thereby modulated the SP proportion, tumor cell metastatic potential and invasion activity in pancreatic cancer. Gastrin could serve as an effective therapeutic target for the metastasis of pancreatic cancer. - Highlights: • Gastrin induces ABCG2 expression mediated by NF-κB activation. • Gastrin regulates NF-κB's function that binds to the ABCG2 promoter in BxPC-3 cells. • Gastrin promotes the SP proportion in BxPC-3 cells by modulating ABCG2 expression via activation of NF-κB molecule. • Gastrin induces an increase in migration and invasion potential in pancreatic cancer cell by regulating NF-κB/ABCG2 signaling.

  12. Role of IGF-1/IGF-1R in regulation of invasion in DU145 prostate cancer cells

    Directory of Open Access Journals (Sweden)

    Setya Hemani

    2008-07-01

    Full Text Available Abstract Background Prostate cancer progression to androgen independence is the primary cause of mortality by this tumor type. The IGF-1/IGF-1R axis is well known to contribute to prostate cancer initiation, but its contribution to invasiveness and the downstream signalling mechanisms that are involved are unclear at present. Results We examined the invasive response of androgen independent DU145 prostate carcinoma cells to IGF-1 stimulation using Matrigel assays. We then examined the signaling mechanisms and protease activities that are associated with this response. IGF-1 significantly increased the invasive capacity of DU145 cells in vitro, and this increase was inhibited by blocking IGF-1R. We further demonstrated that specific inhibitors of the MAPK and PI3-K pathways decrease IGF-1-mediated invasion. To determine potential molecular mechanisms for this change in invasive capacity, we examined changes in expression and activity of matrix metalloproteinases. We observed that IGF-1 increases the enzymatic activity of MMP-2 and MMP-9 in DU145 cells. These changes in activity are due to differences in expression in the case of MMP-9 but not in the case of MMP-2. This observation is corroborated by the fact that correlated changes of expression in a regulator of MMP-2, TIMP-2, were also seen. Conclusion This work identifies a specific effect of IGF-1 on the invasive capacity of DU145 prostate cancer cells, and furthermore delineates mechanisms that contribute to this effect.

  13. Epigenetic Regulation in Prostate Cancer Progression.

    Science.gov (United States)

    Ruggero, Katia; Farran-Matas, Sonia; Martinez-Tebar, Adrian; Aytes, Alvaro

    2018-01-01

    An important number of newly identified molecular alterations in prostate cancer affect gene encoding master regulators of chromatin biology epigenetic regulation. This review will provide an updated view of the key epigenetic mechanisms underlying prostate cancer progression, therapy resistance, and potential actionable mechanisms and biomarkers. Key players in chromatin biology and epigenetic master regulators has been recently described to be crucially altered in metastatic CRPC and tumors that progress to AR independency. As such, epigenetic dysregulation represents a driving mechanism in the reprograming of prostate cancer cells as they lose AR-imposed identity. Chromatin integrity and accessibility for transcriptional regulation are key features altered in cancer progression, and particularly relevant in nuclear hormone receptor-driven tumors like prostate cancer. Understanding how chromatin remodeling dictates prostate development and how its deregulation contributes to prostate cancer onset and progression may improve risk stratification and treatment selection for prostate cancer patients.

  14. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Youyi [Department of Oncology, Xiangya Hospital Central South University (China); Duan, Huaxin [Department of Oncology, Hunan Provincial People' s Hospital (China); The First Affiliated Hospital of Hunan Normal University (China); Duan, Chaojun [Cental Lab of Xiangya Hospital Central South University (China); Zhou, Rongrong; He, Yuxiang; Tu, Qingsong [Department of Oncology, Xiangya Hospital Central South University (China); Shen, Liangfang, E-mail: 3153559525@qq.com [Department of Oncology, Xiangya Hospital Central South University (China)

    2016-01-15

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  15. Down-regulation of TCF21 by hypermethylation induces cell proliferation, migration and invasion in colorectal cancer

    International Nuclear Information System (INIS)

    Dai, Youyi; Duan, Huaxin; Duan, Chaojun; Zhou, Rongrong; He, Yuxiang; Tu, Qingsong; Shen, Liangfang

    2016-01-01

    Epigenetic alteration induced loss function of the transcription factor 21 (TCF21) has been associated with different types of human cancers. However, the epigenetic regulation and molecular functions of TCF21 in colorectal cancer (CRC) remain unknown. In this study, TCF21 expression levels and methylation status of its promoter region in CRC cell lines (n = 5) and CRC tissues (n = 151) as well as normal colorectal mucosa (n = 30) were assessed by RTq-PCR and methylation analysis (methylation specific PCR, MSP and bisulfite sequencing PCR, BSP), respectively. The cellular functions of TCF21 on CRC cell proliferation, apoptosis, invasion and migration were investigated in vitro. Our data revealed that TCF21 was frequently silenced by promoter hypermethylation in both tested CRC cell lines and primary CRC, and correlation analysis between methylation status and clinicopathologic parameters found that TCF21 methylation was significantly correlated with lymph node invasion (P = 0.013), while no significant correlation was found in other parameters. In addition, demethylation treatment resulted in re-expression of TCF21 in CRC cell lines, and cellular function experiments revealed that restoration of TCF21 inhibited CRC cell proliferation, promoted apoptosis and suppressed cell invasion and migration, suggesting that TCF21 may function as a tumor suppressor gene, which is downregulated through promoter hypermethylation in CRC development. - Highlights: • TCF21 was frequently silenced by promoter DNA methylation in CRC cells. • TCF21 was frequently methylated in primary CRC and significantly correlated with metastasis. • Restoration of TCF21 promotes cell apoptosis of CRC cells. • Restoration of TCF21 inhibits cell invasion and migration of CRC cells.

  16. Pathways Regulating Spheroid Formation of Human Follicular Thyroid Cancer Cells under Simulated Microgravity Conditions: A Genetic Approach

    Directory of Open Access Journals (Sweden)

    Stefan Riwaldt

    2016-04-01

    Full Text Available Microgravity induces three-dimensional (3D growth in numerous cell types. Despite substantial efforts to clarify the underlying mechanisms for spheroid formation, the precise molecular pathways are still not known. The principal aim of this paper is to compare static 1g-control cells with spheroid forming (MCS and spheroid non-forming (AD thyroid cancer cells cultured in the same flask under simulated microgravity conditions. We investigated the morphology and gene expression patterns in human follicular thyroid cancer cells (UCLA RO82-W-1 cell line after a 24 h-exposure on the Random Positioning Machine (RPM and focused on 3D growth signaling processes. After 24 h, spheroid formation was observed in RPM-cultures together with alterations in the F-actin cytoskeleton. qPCR indicated more changes in gene expression in MCS than in AD cells. Of the 24 genes analyzed VEGFA, VEGFD, MSN, and MMP3 were upregulated in MCS compared to 1g-controls, whereas ACTB, ACTA2, KRT8, TUBB, EZR, RDX, PRKCA, CAV1, MMP9, PAI1, CTGF, MCP1 were downregulated. A pathway analysis revealed that the upregulated genes code for proteins, which promote 3D growth (angiogenesis and prevent excessive accumulation of extracellular proteins, while genes coding for structural proteins are downregulated. Pathways regulating the strength/rigidity of cytoskeletal proteins, the amount of extracellular proteins, and 3D growth may be involved in MCS formation.

  17. Lung cancer - small cell

    Science.gov (United States)

    Cancer - lung - small cell; Small cell lung cancer; SCLC ... About 15% of all lung cancer cases are SCLC. Small cell lung cancer is slightly more common in men than women. Almost all cases of SCLC are ...

  18. Downregulation of SPINK13 Promotes Metastasis by Regulating uPA in Ovarian Cancer Cells

    Directory of Open Access Journals (Sweden)

    Shengyun Cai

    2018-02-01

    Full Text Available Background/Aims: Ovarian cancer (OC is the fifth leading cause of cancer-related death in women, and it is difficult to diagnose at an early stage. The purpose of this study was to explore the prognostic biological markers of OC. Methods: Univariate Cox regression analysis was used to identify genes related to OC prognosis from the Cancer Genome Atlas(TCGA database. Immunohistochemistry was used to analyse the level of SPINK13 in OC and normal tissues. Cell proliferation, apoptosis and invasion were performed using MTT assay, flow cytometric analysis and Transwell assay, respectively. Results: We identified the Kazal-type serine protease inhibitor-13 (SPINK13 gene related to OC prognosis from the Cancer Genome Atlas (TCGA database by univariate Cox regression analysis. Overexpression of SPINK13 was associated with higher overall survival rate in OC patients. Immunohistochemistry showed that the level of SPINK13 protein was significantly lower in OC tissues than in normal tissues (P < 0.05.In vitro experiments showed that the overexpression of SPINK13 inhibited cellular proliferation and promoted apoptosis. Moreover, SPINK13 inhibited cell migration and epithelial to mesenchymal transition (EMT. SPINK13 was found to inhibit the expression of urokinase-type plasminogen activator (uPA, while recombinant uPA protein could reverse the inhibitory effect of SPINK13 on OC metastasis. Conclusion: These results indicate that SPINK13 functions as a tumour suppressor. The role of SPINK13 in cellular proliferation, apoptosis and migration is uPA dependent, and SPINK13 may be used as a potential biomarker for diagnosis and targeted therapy in OC.

  19. Resveratrol attenuates bone cancer pain through regulating the expression levels of ASIC3 and activating cell autophagy.

    Science.gov (United States)

    Zhu, Haili; Ding, Jieqiong; Wu, Ji; Liu, Tingting; Liang, Jing; Tang, Qiong; Jiao, Ming

    2017-11-01

    Bone cancer pain (BCP) is one of the most common pains in patients with malignant cancers. The mechanism underlying BCP is largely unknown. Our previous studies and the increasing evidence both have shown that acid-sensing ion channels 3 (ASIC3) is an important protein in the pathological pain state in some pain models. We hypothesized that the expression change of ASIC3 might be one of the factors related to BCP. In this study, we established the BCP model through intrathecally injecting rat mammary gland carcinoma cells (MRMT-1) into the left tibia of Sprague-Dawley female rats, and found that the BCP rats showed bone destruction, increased mechanical pain sensitivities and up-regulated ASIC3 protein expression levels in L4-L6 dorsal root ganglion. Then, resveratrol, which was intraperitoneally injected into the BCP rats on post-operative Day 21, dose-dependently increased the paw withdrawal threshold of BCP rats, reversed the pain behavior, and had an antinociceptive effect on BCP rats. In ASIC3-transfected SH-SY5Y cells, the ASIC3 protein expression levels were regulated by resveratrol in a dose- and time-dependent manner. Meanwhile, resveratrol also had an antinociceptive effect in ASIC3-mediated pain rat model. Furthermore, resveratrol also enhanced the phosphorylation of AMPK, SIRT1, and LC3-II levels in ASIC3-transfected SH-SY5Y cells, indicating that resveratrol could activate the AMPK-SIRT1-autophagy signal pathway in ASIC3-transfected SH-SY5Y cells. In BCP rats, SIRT1 and LC3-II were also down-regulated. These findings provide new evidence for the use of resveratrol as a therapeutic treatment during BCP states. © The Author 2017. Published by Oxford University Press on behalf of the Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Characterization of the effects of cyclooxygenase-2 inhibition in the regulation of apoptosis in human small and non-small cell lung cancer cell lines.

    LENUS (Irish Health Repository)

    Alam, Mahmood

    2012-02-03

    BACKGROUND: Cyclooxygenase-2 enzyme (COX-2) is overexpressed in human non-small cell lung cancer (NSCLC) but is not expressed in small cell lung cancer. Selective COX-2 inhibitors have been shown to induce apoptosis in NSCLC cells, an effect which is associated with the regulation of intracellular MAP kinase (MAPK) signal pathways. Our aims were to characterize the effects of COX-2 inhibition by rofecoxib on apoptosis in human NSCLC and small cell lung cancer cell lines. METHODS: The human NSCLC cell line NCI-H2126 and small cell lung cancer cell line DMS-79 were used. Constitutive COX-2 protein levels were first determined by Western blot test. Levels of apoptosis were evaluated by using propidium iodide staining on FACScan analysis after incubation of NCI-H2126 and DMS-79 with p38 MAPK inhibitor SB202190 (25 ?microM), NF-kappaB inhibitor SN50 (75 microg\\/mL), and rofecoxib at 100 and 250 microM. All statistical analysis was performed by analysis of variance. RESULTS: Western blot test confirmed the presence of COX-2 enzyme in NCI-H2126 and absence in DMS-79. Interestingly, rofecoxib treatment demonstrated a dose-dependent increase in apoptosis in both cell lines. Given this finding, the effect of rofecoxib on NF-kappaB and p38 MAPK pathways was also examined. Apoptosis in both cell lines was unaltered by SN50, either alone or in combination with rofecoxib. A similar phenomenon was observed in NCI-H2126 cells treated with SB202190, either alone or in combination with rofecoxib. In contrast, p38 MAPK inhibition greatly upregulated DMS-79 apoptosis in a manner that was unaltered by the addition of rofecoxib. CONCLUSIONS: Rofecoxib led to a dose-dependent increase in apoptosis in both tumor cell lines. This effect occurred independently of COX-2, NF-kappaB, and p38 MAPK pathways in DMS-79 cells. As such, rofecoxib must act on alternative pathways to regulate apoptosis in human small cell lung cancer cells.

  1. Upregulated STAT3 and RhoA signaling in colorectal cancer (CRC) regulate the invasion and migration of CRC cells.

    Science.gov (United States)

    Zhang, G-Y; Yang, W-H; Chen, Z

    2016-05-01

    We aimed to reveal the expression and activation of signal transducers and activators of transcription 3 (STAT3) and RhoA/Rho-associated coiled-coil forming kinase 1 (ROCK1) signaling in CRC tissues, and to investigate the regulatory role of STAT3 and RhoA signaling in the invasion and migration of colorectal cancer cells. We examined the expression of STAT3, RhoA and ROCK1 in CRC tissues with real-time PCR and Western blotting methods. And then we examined the interaction between STAT3 and RhoA/ROCK1 signaling in CRC HT-29 cells with gain-of-function and loss-of-function strategies. In addition, we determined the regulation by STAT3 and RhoA/ROCK1 on the invasion and migration of CRC HT-29 cells. Our study demonstrated a significant upregulation of RhoA and ROCK1 expression and STAT3-Y705 phosphorylation in 32 CRC specimens, compared to the 17 normal CRC tissues. Further study demonstrated there was a coordination between STAT3 and RhoA/Rock signaling in the HT-29 cells. Moreover, STAT3 knockdown or RhoA knockdown significantly repressed the migration and invasion in HT-29 cells and vice versa. STAT3 and RhoA signaling regulate the invasion and migration of CRC cells, implying the orchestrated and oncogenic roles of STAT3 and RhoA/ROCK1 signaling in CRC.

  2. Cancer-associated fibroblasts regulate keratinocyte cell-cell adhesion via TGF-β-dependent pathways in genotype-specific oral cancer.

    Science.gov (United States)

    Cirillo, N; Hassona, Y; Celentano, A; Lim, K P; Manchella, S; Parkinson, E K; Prime, S S

    2017-01-01

    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16 INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16 INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Menadione induces G2/M arrest in gastric cancer cells by down-regulation of CDC25C and proteasome mediated degradation of CDK1 and cyclin B1

    OpenAIRE

    Lee, Min Ho; Cho, Yoonjung; Kim, Do Hyun; Woo, Hyun Jun; Yang, Ji Yeong; Kwon, Hye Jin; Yeon, Min Ji; Park, Min; Kim, Sa-Hyun; Moon, Cheol; Tharmalingam, Nagendran; Kim, Tae Ue; Kim, Jong-Bae

    2016-01-01

    Menadione (vitamin K3) has been reported to induce apoptotic cell death and growth inhibition in various types of cancer cells. However, involvement of menadione in cell cycle control has not been considered in gastric cancer cells yet. In the current study, we have investigated whether menadione is involved in the cell cycle regulation and suppression of growth in gastric cancer cells. In the cell cycle analysis, we found that menadione induced G2/M cell cycle arrest in AGS cells. To elucida...

  4. Loss of let-7 up-regulates EZH2 in prostate cancer consistent with the acquisition of cancer stem cell signatures that are attenuated by BR-DIM.

    Directory of Open Access Journals (Sweden)

    Dejuan Kong

    Full Text Available The emergence of castrate-resistant prostate cancer (CRPC contributes to the high mortality of patients diagnosed with prostate cancer (PCa, which in part could be attributed to the existence and the emergence of cancer stem cells (CSCs. Recent studies have shown that deregulated expression of microRNAs (miRNAs contributes to the initiation and progression of PCa. Among several known miRNAs, let-7 family appears to play a key role in the recurrence and progression of PCa by regulating CSCs; however, the mechanism by which let-7 family contributes to PCa aggressiveness is unclear. Enhancer of Zeste homolog 2 (EZH2, a putative target of let-7 family, was demonstrated to control stem cell function. In this study, we found loss of let-7 family with corresponding over-expression of EZH2 in human PCa tissue specimens, especially in higher Gleason grade tumors. Overexpression of let-7 by transfection of let-7 precursors decreased EZH2 expression and repressed clonogenic ability and sphere-forming capacity of PCa cells, which was consistent with inhibition of EZH2 3'UTR luciferase activity. We also found that the treatment of PCa cells with BR-DIM (formulated DIM: 3,3'-diindolylmethane by Bio Response, Boulder, CO, abbreviated as BR-DIM up-regulated let-7 and down-regulated EZH2 expression, consistent with inhibition of self-renewal and clonogenic capacity. Moreover, BR-DIM intervention in our on-going phase II clinical trial in patients prior to radical prostatectomy showed upregulation of let-7 consistent with down-regulation of EZH2 expression in PCa tissue specimens after BR-DIM intervention. These results suggest that the loss of let-7 mediated increased expression of EZH2 contributes to PCa aggressiveness, which could be attenuated by BR-DIM treatment, and thus BR-DIM is likely to have clinical impact.

  5. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In-Gyu, E-mail: igkim@kaeri.re.kr [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Lee, Jae-Ha [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Department of Radiation Biotechnology and Applied Radioisotope, Korea University of Science and Technology (UST), 989-111 Daedeok-daero, Yusong-gu, Daejeon 305-353 (Korea, Republic of); Kim, Seo-Yoen; Kim, Jeong-Yul [Department of Radiation Biology, Environmental Radiation Research Group, Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Cho, Eun-Wie [Epigenomics Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2014-11-21

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation.

  6. Fibulin-3 negatively regulates ALDH1 via c-MET suppression and increases γ-radiation-induced sensitivity in some pancreatic cancer cell lines

    International Nuclear Information System (INIS)

    Kim, In-Gyu; Lee, Jae-Ha; Kim, Seo-Yoen; Kim, Jeong-Yul; Cho, Eun-Wie

    2014-01-01

    Highlights: • FBLN-3 gene was poorly expressed in some pancreatic cancer lines. • FBLN-3 promoter region was highly methylated in some pancreatic cancer cell lines. • FBLN-3 inhibited c-MET activation and expression and reduced cellular level of ALDH1. • FBLN-3/c-Met/ALDH1 axis modulates stemness and EMT in pancreatic cancer cells. - Abstract: Fibulin-3 (FBLN-3) has been postulated to be either a tumor suppressor or promoter depending on the cell type, and hypermethylation of the FBLN-3 promoter is often associated with human disease, especially cancer. We report that the promoter region of the FBLN-3 was significantly methylated (>95%) in some pancreatic cancer cell lines and thus FBLN-3 was poorly expressed in pancreatic cancer cell lines such as AsPC-1 and MiaPaCa-2. FBLN-3 overexpression significantly down-regulated the cellular level of c-MET and inhibited hepatocyte growth factor-induced c-MET activation, which were closely associated with γ-radiation resistance of cancer cells. Moreover, we also showed that c-MET suppression or inactivation decreased the cellular level of ALDH1 isozymes (ALDH1A1 or ALDH1A3), which serve as cancer stem cell markers, and subsequently induced inhibition of cell growth in pancreatic cancer cells. Therefore, forced overexpression of FBLN-3 sensitized cells to cytotoxic agents such as γ-radiation and strongly inhibited the stemness and epithelial to mesenchymal transition (EMT) property of pancreatic cancer cells. On the other hand, if FBLN3 was suppressed in FBLN-3-expressing BxPC3 cells, the results were opposite. This study provides the first demonstration that the FBLN-3/c-MET/ALDH1 axis in pancreatic cancer cells partially modulates stemness and EMT as well as sensitization of cells to the detrimental effects of γ-radiation

  7. Cooperation of decay-accelerating factor and membrane cofactor protein in regulating survival of human cervical cancer cells

    International Nuclear Information System (INIS)

    Gao, Ling-Juan; Guo, Shu-Yu; Cai, You-Qun; Gu, Ping-Qing; Su, Ya-Juan; Gong, Hui; Liu, Yun; Chen, Chen

    2009-01-01

    Decay-accelerating factor (DAF) and membrane cofactor protein (MCP) are the key molecules involved in cell protection against autologus complement, which restricts the action of complement at critical stages of the cascade reaction. The cooperative effect of DAF and MCP on the survival of human cervical cancer cell (ME180) has not been demonstrated. In this study we applied, for the first time, short hairpin RNA (shRNA) to knock down the expression of the DAF and MCP with the aim of exploiting complement more effectively for tumor cell damage. Meanwhile, we investigated the cooperative effects of DAF and MCP on the viability and migration, moreover the proliferation of ME180 cell. The results showed that shRNA inhibition of DAF and MCP expression enhanced complement-dependent cytolysis (CDC) up to 39% for MCP and up to 36% for DAF, and the combined inhibition of both regulators yielded further additive effects in ME180 cells. Thus, the activities of DAF and MCP, when present together, are greater than the sum of the two protein individually. These data indicated that combined DAF and MCP shRNA described in this study may offer an additional alternative to improve the efficacy of antibody-and complement-based cancer immunotherapy

  8. Cytolethal Distending Toxin Enhances Radiosensitivity in Prostate Cancer Cells by Regulating Autophagy

    Directory of Open Access Journals (Sweden)

    Hwai-Jeng Lin

    2017-06-01

    Full Text Available Cytolethal distending toxin (CDT produced by Campylobacter jejuni contains three subunits: CdtA, CdtB, and CdtC. Among these three toxin subunits, CdtB is the toxic moiety of CDT with DNase I activity, resulting in DNA double-strand breaks (DSB and, consequently, cell cycle arrest at the G2/M stage and apoptosis. Radiation therapy is an effective modality for the treatment of localized prostate cancer (PCa. However, patients often develop radioresistance. Owing to its particular biochemical properties, we previously employed CdtB as a therapeutic agent for sensitizing radioresistant PCa cells to ionizing radiation (IR. In this study, we further demonstrated that CDT suppresses the IR-induced autophagy pathway in PCa cells by attenuating c-Myc expression and therefore sensitizes PCa cells to radiation. We further showed that CDT prevents the formation of autophagosomes via decreased high-mobility group box 1 (HMGB1 expression and the inhibition of acidic vesicular organelle (AVO formation, which are associated with enhanced radiosensitivity in PCa cells. The results of this study reveal the detailed mechanism of CDT for the treatment of radioresistant PCa.

  9. CXCR4/Let-7a Axis Regulates Metastasis and Chemoresistance of Pancreatic Cancer Cells Through Targeting HMGA2

    Directory of Open Access Journals (Sweden)

    Guangfa Xiao

    2017-09-01

    Full Text Available Background/Aims: Pancreatic cancer cells (PCC is one of the most risky cancers and gemcitabine (GEM is the standard first-line drug for treating PCC. The PCC will develop drug resistance to GEM after a period of treatment. However, the detailed molecular mechanism of pathogenesis and drug resistance remains unresolved. Methods: we employed qRT-PCR and western blot to examine the expression level of CXCR4, let-7a and HMGA2. In addition, we used MTT assay to detect cell proliferation and transwell assay to measure migration and invasiveness. The expression level of epithelial marker E-cadherin and mesenthymal marker N-cadherin was detected by western blot. The apoptosis was determined using annexin V-FITC/PI apoptosis detection kit by flow cytometry. Results: we first proved that CXCR4 negatively regulated let-7a in PCC. Next, let-7a was confirmed to play crucial role in tumorigenesis, metastasis and drug resistance of pancreatic cancer cells Bxpc-3 and Panc-1 in vitro and in vivo. Finally, we identified HMGA2 as important downsteam target of let-7a in PCC and overexpression of HMGA2 restores cell proliferation, metastasis and chemosensitivity of GEM inhibited by let-7a. Conlusion: Taken together, we show an important signaling pathway involved in pathogenesis and drug resistance of PCC, thereby providing deeper insight into molecular mechanism by which CXCR4/let-7a regulates tumorigenesis and drug resistance of PCC. These findings will help us develop new strategies for diagnosis and treatment of PCC.

  10. TGFβ1-induced down-regulation of microRNA-138 contributes to epithelial-mesenchymal transition in primary lung cancer cells.

    Science.gov (United States)

    Zhang, Fang; Li, Tiepeng; Han, Lu; Qin, Peng; Wu, Zhao; Xu, Benling; Gao, Quanli; Song, Yongping

    2018-02-19

    The existence of cancer stem cells within the tumor could lead to cancer therapy resistance. TGFβ1 is considered as one of the most powerful players in the generation of CSCs through induction of epithelial-mesenchymal transition in different types of cancer including lung cancer, however, the detailed mechanisms by which TGFβ1 contribute to EMT induction and CSC maintenance remains unclear. Here, we showed primary lung cancer cells treated by TGFβ1 exhibit mesenchymal features, including morphology and expression of mesenchymal marker in a time-dependent manner. We also observed long-term TGFβ1 exposure leads to an enrichment of a sub-population of CD44 + CD90 + cells which represent CSCs in lung cancer cells. Moreover, the differential expression microRNAs between CSCs and non-CSCs were identified using next-generation sequencing to screen key miRNAs which might contribute to TGFβ1-induced EMT and CSCs generation. Among those differentially expressed miRNAs, the expression of microRNA-138 was time-dependently down-regulated by TGFβ1 treatment. We further demonstrated primary lung cancer cells, in which we knockdown the expression of miR-138, exhibit mesenchymal phenotypes and stem cell properties. Taken together, these findings indicate TGFβ1-induced down-regulation of microRNA-138 contributes to EMT in primary lung cancer cells, and suggest that miR-138 might serve as a potential therapeutic target. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. [Impact of siRNA-mediated down-regulation of CD147 on human breast cancer cells].

    Science.gov (United States)

    Li, Zhenqian; Li, Daoming; Li, Jiangwei; Huang, Pei; Qin, Hui

    2015-10-01

    To investigate the influence of siRNA-mediated down-regulation of CD147 on growth, proliferation and movement of human breast cancer cell line MDA-MB-231. The protein expression of CD147, MMP-2 and TIMP-2 of the MDA-MB-231 cells were analyzed by ABC. Lentiviral expression vector of CD147 gene was constructed and transfected into MDA-MB-231 cells. RT-PCR and Western blot were used to detect the mRNA and protein level changes of CD147 genes to identify the optimal time point, followed by detection of changes of mRNA and protein expression of MMP-2 and TIMP-2 genes. CCK-8 reagent method and cell scratch test were used to detect the proliferation and migration change of MDA-MB-231 cells. The nude mouse model of breast cancer by hypodermic injection with MDA-MB-231 cells was established to document the effect of CD147 siRNA on the tumor transplants. After transfection of lentiviral expression vector of CD147 gene, protein of CD147, MMP-2 and TIMP-2 were weakly or negative expressed, significantly weaker than those of control group (P CD147 and MMP-2 were 96.03% ± 0.84% and 96.03% ± 0.84%, respectively. Both CD147 mRNA and MMP-2 mRNA expression were down-regulated (P 0.05). No less than 2 days after transfection, cell growth of MDA-MB-231 cell line was found significantly inhibited (P CD147 led to reduction of volume and mass of nude mouses. The growth of the carcinoma transplant was inhibited upon siRNA-mediated down-regulation of CD147 (P CD147 may alter the MMP-2/TIMP-2 balance in MDA-MB-231 cells. CD147 gene silencing inhibits the proliferation and migration of MDA-MB-231 cells and the growth of carcinoma transplants in nude mice.

  12. EHD1 confers resistance to cisplatin in non-small cell lung cancer by regulating intracellular cisplatin concentrations

    International Nuclear Information System (INIS)

    Gao, Jing; Meng, Qingwei; Zhao, Yanbin; Chen, Xuesong; Cai, Li

    2016-01-01

    Non-small cell lung cancer (NSCLC) is one of the most aggressive types of cancer. However, resistance to cisplatin (CDDP) remains a major challenge in NSCLC treatment. The purpose of this study was to investigate the ability of EHD1 [Eps15 homology (EH) domain - containing protein 1] to confer CDDP resistance in NSCLC cells and to investigate mechanisms of this resistance. The associations between EHD1 expression in NSCLC specimens and clinicopathological features, including prognosis, were assessed by immunohistochemistry (IHC). Using DNA microarrays, we performed a genome-wide analysis of cisplatin-resistant NSCLC cells to identify the involvement of the EHD1 gene in this resistance. We overexpressed and knocked down EHD1 in cell lines to investigate the effect of this gene on proliferation and apoptosis. A quantitative analytical method for assessing CDDP in cells was developed. High-performance liquid chromatography was used to measure the concentration of cisplatin in cells. The immunohistochemistry assay showed that adjuvant chemotherapy-treated NSCLC patients expressing EHD1 exhibited reduced OS compared with patients who did not express EHD1 (P = 0.01). Moreover, DNA microarrays indicated that the EHD1 gene was upregulated in CDDP- resistant NSCLC cells. The IC50 value of CDDP in cells that overexpressed EHD1 was 3.3-fold greater than that in the A549-control line, and the IC50 value of EHD1 knockdown cells was at least 5.2-fold lower than that of the control cells, as evidenced by a CCK-8 assay. We found that the percentage of early apoptotic cells was significantly decreased in A549-EHD1 cells, but the rates of early apoptosis were higher in the EHD1 knockdown cell line than in the A549/DDP control line, as indicated by a flow cytometry analysis. High-performance liquid chromatography (HPLC) showed that the total platinum level was lower in A549-EHD1 cells than in control cells, and the concentration of CDDP was higher in the EHD1 knockdown cells than in

  13. Regulation of ROCK Activity in Cancer

    DEFF Research Database (Denmark)

    Morgan-Fisher, Marie; Wewer, Ulla M; Yoneda, Atsuko

    2013-01-01

    , these findings demonstrate additional modes to regulate ROCK activity. This review describes the molecular mechanisms of ROCK activity regulation in cancer, with emphasis on ROCK isoform-specific regulation and interaction partners, and discusses the potential of ROCKs as therapeutic targets in cancer.......Cancer-associated changes in cellular behavior, such as modified cell-cell contact, increased migratory potential, and generation of cellular force, all require alteration of the cytoskeleton. Two homologous mammalian serine/threonine kinases, Rho-associated protein kinases (ROCK I and II), are key...... regulators of the actin cytoskeleton acting downstream of the small GTPase Rho. ROCK is associated with cancer progression, and ROCK protein expression is elevated in several types of cancer. ROCKs exist in a closed, inactive conformation under quiescent conditions, which is changed to an open, active...

  14. Wogonin induced G1 cell cycle arrest by regulating Wnt/β-catenin signaling pathway and inactivating CDK8 in human colorectal cancer carcinoma cells

    International Nuclear Information System (INIS)

    He, Licheng; Lu, Na; Dai, Qinsheng; Zhao, Yue; Zhao, Li; Wang, Hu; Li, Zhiyu; You, Qidong; Guo, Qinglong

    2013-01-01

    Highlights: • Wogonin inhibited HCT116 cells growth and arrested at G1 phase of the cell cycle. • Wogonin down-regulated the canonical Wnt/β-catenin signaling pathway. • Wogonin interfered in the combination of β-catenin and TCF/Lef. • Wogonin limited the kinase activity of CDK8. - Abstract: Wogonin, a naturally occurring mono-flavonoid, has been reported to have tumor therapeutic potential and good selectivity both in vitro and in vivo. Herein, we investigated the anti-proliferation effects and associated mechanisms of wogonin in human colorectal cancer in vitro. The flow-cytometric analysis showed that wogonin induced a G1 phase cell cycle arrest in HCT116 cells in a concentration- and time-dependent manner. Meanwhile, the cell cycle-related proteins, such as cyclin A, E, D1, and CDK2, 4 were down-regulated in wogonin-induced G1 cell cycle arrest. Furthermore, we showed that the anti-proliferation and G1 arrest effect of wogonin on HCT116 cells was associated with deregulation of Wnt/β-catenin signaling pathway. Wogonin-treated cells showed decreased intracellular levels of Wnt proteins, and activated degradation complex to phosphorylated and targeted β-catenin for proteasomal degradation. Wogonin inhibited β-catenin-mediated transcription by interfering in the transcriptional activity of TCF/Lef, and repressing the kinase activity of CDK8 which has been considered as an oncogene involving in the development of colorectal cancers. Moreover, CDK8 siRNA-transfected HCT116 cells showed similar results to wogonin treated cells. Thus, our data suggested that wogonin induced anti-proliferation and G1 arrest via Wnt/β-catenin signaling pathway and it can be developed as a therapeutic agent against human colorectal cancer

  15. Myeov (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2

    LENUS (Irish Health Repository)

    Lawlor, Garrett

    2010-06-22

    Abstract Introduction We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. Aim To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. Methods siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 μ M, 0.1 μ M and 1 μ M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. Results Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 μ M, 0.1 μ M and 1 μ M PGE 2 respectively. Conclusion In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.

  16. MYEOV (myeloma overexpressed gene) drives colon cancer cell migration and is regulated by PGE2.

    LENUS (Irish Health Repository)

    Lawlor, Garrett

    2010-01-01

    INTRODUCTION: We have previously reported that Myeov (MYEloma OVerexpressed gene) expression is enhanced in colorectal cancer (CRC) and that it promotes CRC cell proliferation and invasion. The role of Myeov in CRC migration is unclear. ProstaglandinE2 (PGE 2) is a known factor in promoting CRC carcinogenesis. The role of PGE 2 in modulating Myeov expression has also not been defined. AIM: To assess the role of Myeov expression in CRC cell migration and to evaluate the role of PGE 2 in Myeov bioactivity. METHODS: siRNA mediated Myeov knockdown was achieved in T84 CRC cells. Knockdown was assessed using quantitative real time PCR. The effect of knockdown on CRC cell migration was assessed using a scratch wound healing assay. Separately, T84 cells were treated with PGE 2 (0.00025 micro M, 0.1 micro M and 1 micro M) from 30 min to 3 hours and the effect on Myeov gene expression was assessed using real time PCR. RESULTS: Myeov knockdown resulted in a significant reduction in CRC cell migration, observable as early as 12 hours (P < 0.05) with a 39% reduction compared to control at 36 hours (p < 0.01). Myeov expression was enhanced after treatment with PGE 2, with the greatest effect seen at 60 mins for all 3 PGE 2 doses. This response was dose dependent with a 290%, 550% & 1,000% increase in Myeov expression for 0.00025 micro M, 0.1 micro M and 1 micro M PGE 2 respectively. CONCLUSION: In addition to promoting CRC proliferation and invasion, our findings indicate that Myeov stimulates CRC cell migration, and its expression may be PGE 2 dependant.

  17. Negative regulation of β-catenin/Tcf signaling by naringenin in AGS gastric cancer cell

    International Nuclear Information System (INIS)

    Lee, Ju Hyung; Park, Chi Hoon; Jung, Kyung Chae; Rhee, Ho Sung; Yang, Chul Hak

    2005-01-01

    Functional activation of β-catenin/Tcf signaling plays an important role in early events in carcinogenesis. We examined the effect of naringenin against β-catenin/Tcf signaling in gastric cancer cells. Reporter gene assay showed that naringenin inhibited β-catenin/Tcf signaling efficiently. In addition, the inhibition of β-catenin/Tcf signaling by naringenin in HEK293 cells transiently transfected with constitutively mutant β-catenin gene, whose product is not phosphorylated by GSK3β, indicates that its inhibitory mechanism was related to β-catenin itself or downstream components. To investigate the precise inhibitory mechanism, we performed immunofluorescence, Western blot, and EMSA. As a result, our data revealed that the β-catenin distribution and the levels of nuclear β-catenin and Tcf-4 proteins were unchanged after naringenin treatment. Moreover, the binding activities of Tcf complexes to consensus DNA were not affected by naringenin. Taken together, these data suggest that naringenin inhibits β-catenin/Tcf signaling in gastric cancer with unknown mechanisms

  18. MAML1 regulates cell viability via the NF-{kappa}B pathway in cervical cancer cell lines

    Energy Technology Data Exchange (ETDEWEB)

    Kuncharin, Yanin [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Sangphech, Naunpun [Biotechnology Program, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Kueanjinda, Patipark [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Bhattarakosol, Parvapan [Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand); Palaga, Tanapat, E-mail: tanapat.p@chula.ac.th [Department of Microbiology, Faculty of Science, Chulalongkorn University, Payathai Road, Pathumwan, Bangkok 10330 (Thailand)

    2011-08-01

    The Notch signaling pathway plays important roles in tumorigenesis in a context-dependent manner. In human cervical cancer, alterations in Notch signaling have been reported, and both tumor-suppressing and tumor-promoting roles of Notch signaling have been proposed; however, the precise molecular mechanisms governing these roles in cervical cancer remain controversial. MAML is a transcriptional co-activator originally identified by its role in Notch signaling. Recent evidence suggests that it also plays a role in other signaling pathways, such as the p53 and {beta}-catenin pathways. MAML is required for stable formation of Notch transcriptional complexes at the promoters of Notch target genes. Chromosomal translocations affecting MAML have been shown to promote tumorigenesis. In this study, we used a truncated dominant-negative MAML1 (DN-MAML) to investigate the role of MAML in HPV-positive cervical cancer cell lines. Three human cervical cancer cell lines (HeLa, SiHa and CaSki) expressed all Notch receptors and the Notch target genes Hes1 and MAML1. Among these 3 cell lines, constitutive appearance of cleaved Notch1 was found only in CaSki cells, which suggests that Notch1 is constitutively activated in this cell line. Gamma secretase inhibitor (GSI) treatment, which suppresses Notch receptor activation, completely abrogated this form of Notch1 but had no effect on cell viability. Overexpression of DN-MAML by retroviral transduction in CaSki cells resulted in significant decreases in the mRNA levels of Hes1 and Notch1 but had no effects on the levels of MAML1, p53 or HPV E6/E7. DN-MAML expression induced increased viability of CaSki cells without any effect on cell cycle progression or cell proliferation. In addition, clonogenic assay experiments revealed that overexpression of DN-MAML resulted in increased colony formation compared to the overexpression of the control vector. When the status of the NF-{kappa}B pathway was investigated, CaSki cells overexpressing

  19. NF-κB regulation of endothelial cell function during LPS-induced toxemia and cancer

    Science.gov (United States)

    Kisseleva, Tatiana; Song, Li; Vorontchikhina, Marina; Feirt, Nikki; Kitajewski, Jan; Schindler, Christian

    2006-01-01

    The transcription factor NF-κB is an important regulator of homeostatic growth and inflammation. Although gene-targeting studies have revealed important roles for NF-κB, they have been complicated by component redundancy and lethal phenotypes. To examine the role of NF-κB in endothelial tissues, Tie2 promoter/enhancer–IκBαS32A/S36A transgenic mice were generated. These mice grew normally but exhibited enhanced sensitivity to LPS-induced toxemia, notable for an increase in vascular permeability and apoptosis. Moreover, B16-BL6 tumors grew significantly more aggressively in transgenic mice, underscoring a new role for NF-κB in the homeostatic response to cancer. Tumor vasculature in transgenic mice was extensive and disorganized. This correlated with a marked loss in tight junction formation and suggests that NF-κB plays an important role in the maintenance of vascular integrity and response to stress. PMID:17053836

  20. High expression of sphingosine kinase 1 and S1P receptors in chemotherapy-resistant prostate cancer PC3 cells and their camptothecin-induced up-regulation

    International Nuclear Information System (INIS)

    Akao, Yukihiro; Banno, Yoshiko; Nakagawa, Yoshihito; Hasegawa, Nobuko; Kim, Tack-Joong; Murate, Takashi; Igarashi, Yasuyuki; Nozawa, Yoshinori

    2006-01-01

    Although most of pharmacological therapies for cancer utilize the apoptotic machinery of the cells, the available anti-cancer drugs are limited due to the ability of prostate cancer cells to escape from the anti-cancer drug-induced apoptosis. A human prostate cancer cell line PC3 is resistant to camptothecin (CPT). To elucidate the mechanism of this resistance, we have examined the involvement of sphingosine kinase (SPHK) and sphingosine 1-phosphate (S1P) receptor in CPT-resistant PC3 and -sensitive LNCaP cells. PC3 cells exhibited higher activity accompanied with higher expression levels of protein and mRNA of SPHK1, and also elevated expression of S1P receptors, S1P 1 and S1P 3 , as compared with those of LNCaP cells. The knockdown of SPHK1 by small interfering RNA and inhibition of S1P receptor signaling by pertussis toxin in PC3 cells induced significant inhibition of cell growth, suggesting implication of SPHK1 and S1P receptors in cell proliferation in PC3 cells. Furthermore, the treatment of PC3 cells with CPT was found to induce up-regulation of the SPHK1/S1P signaling by induction of both SPHK1 enzyme and S1P 1 /S1P 3 receptors. These findings strongly suggest that high expression and up-regulation of SPHK1 and S1P receptors protect PC3 cells from the apoptosis induced by CPT

  1. [Mifepristone inhibites the migration of endometrial cancer cells through regulating H19 methylation].

    Science.gov (United States)

    Lu, Z Z; Yan, L; Zhang, H; Li, M J; Zhang, X H; Zhao, X X

    2016-06-23

    To investigate the effect and mechanism of mifepristone on the migration of human endometrial carcinoma cells. A human endometrial carcinoma cell line, Ishikawa cells, was cultured in vitro and treated with mifepristone at different concentrations. Wound healing assay was applied to detect the migration of Ishikawa cells. RT-PCR and methylation-specific PCR (MSP) were used to detect the levels of H19 mRNA and its DNA methylation. Western-blot was used to detect the expressions of HMGA2 and epithelial to mesenchymal transition (EMT) related proteins. When treated with different concentrations of mifepristone for 48 hours, the width of scratch of the the control group, the 5 mg/L and the 10 mg/L mifepristone treatment groups were (4.18±0.07)mm, (4.68±0.07)mm, and(4.99±0.07)mm, respectively (Pendometrial carcinoma cells partially through methylation-induced of transcriptional inhibition of H19, which results in the down-regulation of HMGA2 and vimentin and upregulation of E-cadherin.

  2. Wnt/β-Catenin Signaling Regulates the Expression of the Ammonium Permease Gene RHBG in Human Cancer Cells.

    Directory of Open Access Journals (Sweden)

    Ahmad Merhi

    Full Text Available Ammonium is a metabolic waste product mainly detoxified by the liver. Hepatic dysfunction can lead to cytotoxic accumulation of circulating ammonium and to subsequent encephalopathy. Transmembrane ammonium transport is a widely spread process ensured by the highly conserved proteins of the Mep-Amt-Rh superfamily, including the mammalian Rhesus (Rh factors. The regulatory mechanisms involved in the control of RH genes expression remain poorly studied. Here we addressed the expression regulation of one of these factors, RHBG. We identify HepG2 hepatocellular carcinoma cells and SW480 colon adenocarcinoma cells as expressing RHBG and show that its expression relies on β-catenin signaling. siRNA-mediated β-catenin knockdown resulted in significant reduction of RHBG mRNA in both cell lines. Pharmaceutical inhibition of the TCF4/β-catenin interaction or knockdown of the transcription factor TCF4 also downregulated RHBG expression. We identify a minimal RHBG regulatory sequence displaying a promoter activity and show that β-catenin and TCF4 bind to this fragment in vivo. We finally characterize the role of potential TCF4 binding sites in RHBG regulation. Taken together, our results indicate RHBG expression as a direct target of β-catenin regulation, a pathway frequently deregulated in many cancers and associated with tumorigenesis.

  3. INPP4B-mediated tumor resistance is associated with modulation of glucose metabolism via hexokinase 2 regulation in laryngeal cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Min, Joong Won [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Kwang Il [Molecular Imaging Research Center, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Hyun-Ah; Kim, Eun-Kyu; Noh, Woo Chul [Department of Surgery, Korea Cancer Center Hospital, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Jeon, Hong Bae [Biomedical Research Institute, MEDIPOST Co., Ltd., Seoul (Korea, Republic of); Cho, Dong-Hyung [Graduate School of East-West Medical Science, Kyung Hee University, Gyeonggi-do (Korea, Republic of); Oh, Jeong Su [Department of Genetic Engineering, Sungkyunkwan University, Suwon (Korea, Republic of); Park, In-Chul; Hwang, Sang-Gu [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of); Kim, Jae-Sung, E-mail: jaesung@kirams.re.kr [Division of Radiation Cancer Research, Korea Institute of Radiological and Medical Sciences, Seoul (Korea, Republic of)

    2013-10-11

    Highlights: •HIF-1α-regulated INPP4B enhances glycolysis. •INPP4B regulates aerobic glycolysis by inducing HK2 via Akt-mTOR pathway. •Blockage of INPP4B and HK2 sensitizes radioresistant laryngeal cancer cells to radiation and anticancer drug. •INPP4B is associated with HK2 in human laryngeal cancer tissues. -- Abstract: Inositol polyphosphate 4-phosphatase type II (INPP4B) was recently identified as a tumor resistance factor in laryngeal cancer cells. Herein, we show that INPP4B-mediated resistance is associated with increased glycolytic phenotype. INPP4B expression was induced by hypoxia and irradiation. Intriguingly, overexpression of INPP4B enhanced aerobic glycolysis. Of the glycolysis-regulatory genes, hexokinase 2 (HK2) was mainly regulated by INPP4B and this regulation was mediated through the Akt-mTOR pathway. Notably, codepletion of INPP4B and HK2 markedly sensitized radioresistant laryngeal cancer cells to irradiation or anticancer drug. Moreover, INPP4B was significantly associated with HK2 in human laryngeal cancer tissues. Therefore, these results suggest that INPP4B modulates aerobic glycolysis via HK2 regulation in radioresistant laryngeal cancer cells.

  4. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression.

    Directory of Open Access Journals (Sweden)

    Che-Ming Liu

    Full Text Available Cancer cells respond to stress by activating a variety of survival signaling pathways. A disintegrin and metalloproteinase (ADAM 9 is upregulated during cancer progression and hormone therapy, functioning in part through an increase in reactive oxygen species. Here, we present in vitro and in vivo evidence that therapeutic targeting of ADAM9 gene expression by lentivirus-delivered small hairpin RNA (shRNA significantly inhibited proliferation of human prostate cancer cell lines and blocked tumor growth in a murine model of prostate cancer bone metastasis. Cell cycle studies confirmed an increase in the G1-phase and decrease in the S-phase population of cancer cells under starvation stress conditions, which correlated with elevated intracellular superoxide levels. Microarray data showed significantly decreased levels of regenerating islet-derived family member 4 (REG4 expression in prostate cancer cells with knockdown of ADAM9 gene expression. This REG4 downregulation also resulted in induction of expression of p21(Cip1/WAF1, which negatively regulates cyclin D1 and blocks the G1/S transition. Our data reveal a novel molecular mechanism of ADAM9 in the regulation of prostate cancer cell proliferation, and suggests a combined modality of ADAM9 shRNA gene therapy and cytotoxic agents for hormone refractory and bone metastatic prostate cancer.

  5. Metastatic castration-resistant prostate cancer: a current view on drug therapy and alternative tumor cell regulation

    Directory of Open Access Journals (Sweden)

    R. A. Gafanov

    2018-01-01

    Full Text Available Prostate cancer (PC is one of the most common causes of death from malignant neoplasms in men in many countries around the world. Transmission of the signal in the androgenic axis of regulation is crucial for the development and progression of PC. Despite the constant dependence on androgen receptor signals in castration resistance, the use of new anti-androgenic drugs invariably leads to the stability  of the ongoing treatment. The interaction of androgen receptor and alternative (phosphoinositide-3-kinases, PI3K pathways in the regulation of cells can be one of the mechanisms of resistance to treatment. In this article, we describe current treatments for metastatic castration-resistant PC and the possible role of the PI3K pathway in the pathogenesis and progression of PC.

  6. Nogo-B (Reticulon-4B) functions as a negative regulator of the apoptotic pathway through the interaction with c-FLIP in colorectal cancer cells.

    Science.gov (United States)

    Kawaguchi, Nao; Tashiro, Keitaro; Taniguchi, Kohei; Kawai, Masaru; Tanaka, Keitaro; Okuda, Junji; Hayashi, Michihiro; Uchiyama, Kazuhisa

    2018-08-01

    Nogo-B is a member of the Nogo/Reticulon-4 family and has been reported to be an inducer of apoptosis in certain types of cancer cells. However, the role of Nogo-B in human cancer remains less understood. Here, we demonstrated the functions of Nogo-B in colorectal cancer cells. In clinical colorectal cancer specimens, Nogo-B was obviously overexpressed, as determined by immunohistochemistry; and Western blot analysis showed its expression level to be significantly up-regulated. Furthermore, knockdown of Nogo-B in two colorectal cancer cell lines, SW480 and DLD-1, by transfection with si-RNA (siR) resulted in significantly reduced cell viability and a dramatic increase in apoptosis with insistent overexpression of cleaved caspase-8 and cleaved PARP. The transfection with Nogo-B plasmid cancelled that apoptosis induced by siRNogoB in SW480 cells. Besides, combinatory treatment with siR-Nogo-B/staurosporine (STS) or siR-Nogo-B/Fas ligand (FasL) synergistically reduced cell viability and increased the expression of apoptotic signaling proteins in colorectal cancer cells. These results strongly support our contention that Nogo-B most likely played an oncogenic role in colorectal cancer cells, mainly by negatively regulating the extrinsic apoptotic pathway in them. Finally, we revealed that suppression of Nogo-B caused down-regulation of c-FLIP, known as a major anti-apoptotic protein, and activation of caspase-8 in the death receptor pathway. Interaction between Nogo-B and c-FLIP was shown by immunoprecipitation and immunofluorescence studies. In conclusion, Nogo-B was shown to play an important negative role in apoptotic signaling through its interaction with c-FLIP in colorectal cancer cells, and may thus become a novel therapeutic target for colorectal cancer. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells.

    Science.gov (United States)

    Mitsuda, Yoshihide; Morita, Ken; Kashiwazaki, Gengo; Taniguchi, Junichi; Bando, Toshikazu; Obara, Moeka; Hirata, Masahiro; Kataoka, Tatsuki R; Muto, Manabu; Kaneda, Yasufumi; Nakahata, Tatsutoshi; Liu, Pu Paul; Adachi, Souichi; Sugiyama, Hiroshi; Kamikubo, Yasuhiko

    2018-04-23

    The dual function of runt-related transcriptional factor 1 (RUNX1) as an oncogene or oncosuppressor has been extensively studied in various malignancies, yet its role in gastric cancer remains elusive. Up-regulation of the ErbB2/HER2 signaling pathway is frequently-encountered in gastric cancer and contributes to the maintenance of these cancer cells. This signaling cascade is partly mediated by son of sevenless homolog (SOS) family, which function as adaptor proteins in the RTK cascades. Herein we report that RUNX1 regulates the ErbB2/HER2 signaling pathway in gastric cancer cells through transactivating SOS1 expression, rendering itself an ideal target in anti-tumor strategy toward this cancer. Mechanistically, RUNX1 interacts with the RUNX1 binding DNA sequence located in SOS1 promoter and positively regulates it. Knockdown of RUNX1 led to the decreased expression of SOS1 as well as dephosphorylation of ErbB2/HER2, subsequently suppressed the proliferation of gastric cancer cells. We also found that our novel RUNX inhibitor (Chb-M') consistently led to the deactivation of the ErbB2/HER2 signaling pathway and was effective against several gastric cancer cell lines. Taken together, our work identified a novel interaction of RUNX1 and the ErbB2/HER2 signaling pathway in gastric cancer, which can potentially be exploited in the management of this malignancy.

  8. Allelic deletions of cell growth regulators during progression of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, H; von der Maase, H; Christensen, M

    2000-01-01

    Cell growth regulators include proteins of the p53 pathway encoded by the genes CDKN2A (p16, p14arf), MDM2, TP53, and CDKN1A (p21) as well as proteins encoded by genes like RB1, E2F, and MYCL. In the present study we investigated allelic deletions of all these genes in each recurrent bladder tumor...... difference in the numbers of gene loci hit by deletions muscle-invasive versus noninvasive tumors (P = 0.0000002), with the genes most often hit by deletions in muscle-invasive tumors being TP53, RB1, and MYCL. A number of novel findings were made. Losses of MYCL and RB1 alleles were more pronounced...... that a characteristic difference between recurrent noninvasive and recurrent progressing bladder tumors is loss of cell cycle-regulatory genes in the latter group....

  9. Downregulation of Cyclophilin A by siRNA diminishes non-small cell lung cancer cell growth and metastasis via the regulation of matrix metallopeptidase 9

    Directory of Open Access Journals (Sweden)

    Qian Zhe

    2012-10-01

    Full Text Available Abstract Background Cyclophilin A (CypA is a cytosolic protein possessing peptidyl-prolyl isomerase activity that was recently reported to be overexpressed in several cancers. Here, we explored the biology and molecular mechanism of CypA in non-small cell lung cancer (NSCLC. Methods The expression of CypA in human NSCLC cell lines was detected by real-time reverse transcription PCR. The RNA interference-mediated knockdown of CypA was established in two NSCLC cell lines (95C and A549. 239836 CypA inhibitor was also used to suppress CypA activity. Tumorigenesis was assessed based on cellular proliferation, colony formation assays, and anchorage-independent growth assays; metastasis was assessed based on wound healing and transwell assays. Results Suppression of CypA expression inhibited the cell growth and colony formation of A549 and 95C cells. CypA knockdown resulted in the inhibition of cell motility and invasion. Significantly, we show for the first time that CypA increased NSCLC cell invasion by regulating the activity of secreted matrix metallopeptidase 9 (MMP9. Likewise, suppression of CypA with 239836 CypA inhibitor decreased cell proliferation and MMP9 activity. Conclusions The suppression of CypA expression was correlated with decreased NSCLC cell tumorigenesis and metastasis.

  10. The Critical, Clinical Role of Interferon-Beta in Regulating Cancer Stem Cell Properties in Triple-Negative Breast Cancer.

    Science.gov (United States)

    Doherty, Mary R; Jackson, Mark W

    2018-05-11

    Triple-negative breast cancer (TNBC) the deadliest form of this disease currently lacks a targeted therapy and is characterized by increased risk of metastasis and presence of therapeutically resistant cancer stem cells (CSC). Recent evidence has demonstrated that the presence of an interferon (IFN)/signal transducer of activated transcription 1 (STAT1) gene signature correlates with improved therapeutic response and overall survival in TNBC patients. In agreement with these clinical observations, our recent work has demonstrated, in a cell model of TNBC that CSC have intrinsically repressed IFN signaling. Administration of IFN-β represses CSC properties, inducing a less aggressive non-CSC state. Moreover, an elevated IFN-β gene signature correlated with repressed CSC-related genes and an increased presence of tumor-infiltrating lymphocytes in TNBC specimens. We therefore propose that IFN-β be considered as a potential therapeutic option in the treatment of TNBC, to repress the CSC properties responsible for therapy failure. Future studies aim to improve methods to target delivery of IFN-β to tumors, to maximize therapeutic efficacy while minimizing systemic side effects.

  11. The PPARγ ligand ciglitazone regulates androgen receptor activation differently in androgen-dependent versus androgen-independent human prostate cancer cells

    International Nuclear Information System (INIS)

    Moss, Patrice E.; Lyles, Besstina E.; Stewart, LaMonica V.

    2010-01-01

    The androgen receptor (AR) regulates growth and progression of androgen-dependent as well as androgen-independent prostate cancer cells. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists have been reported to reduce AR activation in androgen-dependent LNCaP prostate cancer cells. To determine whether PPARγ ligands are equally effective at inhibiting AR activity in androgen-independent prostate cancer, we examined the effect of the PPARγ ligands ciglitazone and rosiglitazone on C4-2 cells, an androgen- independent derivative of the LNCaP cell line. Luciferase-based reporter assays and Western blot analysis demonstrated that PPARγ ligand reduced dihydrotestosterone (DHT)-induced increases in AR activity in LNCaP cells. However, in C4-2 cells, these compounds increased DHT-induced AR driven luciferase activity. In addition, ciglitazone did not significantly alter DHT-mediated increases in prostate specific antigen (PSA) protein or mRNA levels within C4-2 cells. siRNA-based experiments demonstrated that the ciglitazone-induced regulation of AR activity observed in C4-2 cells was dependent on the presence of PPARγ. Furthermore, overexpression of the AR corepressor cyclin D1 inhibited the ability of ciglitazone to induce AR luciferase activity in C4-2 cells. Thus, our data suggest that both PPARγ and cyclin D1 levels influence the ability of ciglitazone to differentially regulate AR signaling in androgen-independent C4-2 prostate cancer cells.

  12. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    International Nuclear Information System (INIS)

    Jiang, Jiahua; Jedinak, Andrej; Sliva, Daniel

    2011-01-01

    Highlights: ► Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. ► CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. ► GDNT inhibits expression of CDC20 in breast cancer cells. ► GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. ► GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes—ganoderic and lucidenic acids—the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  13. Ganodermanontriol (GDNT) exerts its effect on growth and invasiveness of breast cancer cells through the down-regulation of CDC20 and uPA

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Jiahua; Jedinak, Andrej [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Sliva, Daniel, E-mail: dsliva@iuhealth.org [Cancer Research Laboratory, Methodist Research Institute, Indiana University Health, Indianapolis, IN (United States); Department of Medicine, School of Medicine, Indiana University, Indianapolis, IN (United States); Indiana University Simon Cancer Center, School of Medicine, Indiana University, Indianapolis, IN (United States)

    2011-11-18

    Highlights: Black-Right-Pointing-Pointer Ganodermanontriol (GDNT), a Ganoderma mushroom alcohol, inhibits growth of breast cancer cells. Black-Right-Pointing-Pointer CDC20 is over-expressed in tumors but not in the tumor surrounding tissue in breast cancer patients. Black-Right-Pointing-Pointer GDNT inhibits expression of CDC20 in breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits cell adhesion, cell migration and cell invasion of breast cancer cells. Black-Right-Pointing-Pointer GDNT inhibits secretion of uPA and down-regulates expression of uPAR in breast cancer cells. -- Abstract: Ganoderma lucidum is a medicinal mushroom that has been recognized by Traditional Chinese Medicine (TCM). Although some of the direct anticancer activities are attributed to the presence of triterpenes-ganoderic and lucidenic acids-the activity of other compounds remains elusive. Here we show that ganodermanontriol (GDNT), a Ganoderma alcohol, specifically suppressed proliferation (anchorage-dependent growth) and colony formation (anchorage-independent growth) of highly invasive human breast cancer cells MDA-MB-231. GDNT suppressed expression of the cell cycle regulatory protein CDC20, which is over-expressed in precancerous and breast cancer cells compared to normal mammary epithelial cells. Moreover, we found that CDC20 is over-expressed in tumors when compared to the tissue surrounding the tumor in specimens from breast cancer patients. GDNT also inhibited invasive behavior (cell adhesion, cell migration, and cell invasion) through the suppression of secretion of urokinase-plasminogen activator (uPA) and inhibited expression of uPA receptor. In conclusion, mushroom GDNT is a natural agent that has potential as a therapy for invasive breast cancers.

  14. Monocyte to macrophage differentiation-associated (MMD) targeted by miR-140-5p regulates tumor growth in non-small cell lung cancer

    International Nuclear Information System (INIS)

    Li, Weina; He, Fei

    2014-01-01

    Highlights: • Expression of MMD is increased in lung cancer tissues. • Knockdown of MMD inhibits growth of A549 and LLC cells in vitro and in vivo. • MMD is a direct functional target of miR-140-5p. • MiR-140-5p/MMD axis regulates Erk1/2 signaling. - Abstract: Monocyte to macrophage differentiation-associated (MMD) is identified in macrophages as a gene associated with the differentiation from monocytes to macrophages. Recent microarray analysis for non-small cell lung cancer (NSCLC) suggests that MMD is an important signature associated with relapse and survival among patients with NSCLC. Therefore, we speculate that MMD likely plays a role in lung cancer. In this study, we found that the protein level of MMD was increased in lung cancer compared to benign lung tissues, and knockdown of MMD inhibited the growth of A549 and Lewis lung cancer cells (LLC) in vitro and in vivo. Integrated analysis demonstrated that MMD was a direct functional target of miR-140-5p. Furthermore, we found that miR-140-5p/MMD axis could affect the cell proliferation of lung cancer cells by regulating Erk signaling. Together, our results highlight the significance of miR-140-5p/MMD axis in lung cancer, and miR-140-5p/MMD axis could serve as new molecular targets for the therapy against lung cancer

  15. The effects of black cohosh on the regulation of estrogen receptor (ERα) and progesterone receptor (PR) in breast cancer cells.

    Science.gov (United States)

    Szmyd, Monica; Lloyd, Victoria; Hallman, Kelly; Aleck, Katie; Mladenovik, Viktoria; McKee, Christina; Morse, Mia; Bedgood, Tyler; Dinda, Sumi

    2018-01-01

    The North American plant Cimicifuga racemosa , also known as black cohosh (BC), is a herb that recently has gained attention for its hormonal effects. As the usage of hormone replacement therapy is declining due to its adverse effects in women with cancer, many are turning to herbal remedies like BC to treat menopausal symptoms. It is crucial to determine whether the effects of BC involve estrogen receptor-alpha (ERα). Previous studies from our laboratory have shown ERα to be a possible molecular target for BC. In this study, we examined the effects of BC (8% triterpene glycosides) alone and in combination with hormones and antihormones on the cellular viability, expression of ERα and progesterone receptor (PR)-A/B, and cytolocalization of ERα in ER (+) and PR-A/B (+) T-47D breast cancer cells. Cells were cultured and proteins were extracted and quantified. Western blot analysis revealed alterations in the expression of ERα and PR after treatment with BC (5-100 µM). BC induced a concentration-dependent decrease in ERα and PR protein levels when compared to the control. Image cytometric analysis with propidium iodide staining was used to enumerate changes in T-47D cell number and viability. A decrease in T-47D cell viability was observed upon treatment with 5-100 µM BC. The ideal concentration of BC (100 µM) was used in combination with hormones and antihormones in an effort to further understand the possible similarities between this compound and other known effectors of ERα and PR. After a 24-hour concomitant treatment with and/or in combination of BC, estradiol, ICI 182, 780, and Tamoxifen, downregulation of ERα and PR protein levels was observed. Delineating the role of BC in the regulation of ERα, PR, as well as its mechanisms of action, may be important in understanding the influence of BC on hormone receptors in breast cancer.

  16. SOX2 expression is associated with a cancer stem cell state and down-regulation of CDX2 in colorectal cancer

    International Nuclear Information System (INIS)

    Lundberg, Ida V.; Edin, Sofia; Eklöf, Vincy; Öberg, Åke; Palmqvist, Richard; Wikberg, Maria L.

    2016-01-01

    To improve current treatment strategies for patients with aggressive colorectal cancer (CRC), the molecular understanding of subgroups of CRC with poor prognosis is of vast importance. SOX2 positive tumors have been associated with a poor patient outcome, but the functional role of SOX2 in CRC patient prognosis is still unclear. An in vitro cell culture model expressing SOX2 was used to investigate the functional role of SOX2 in CRC. In vitro findings were verified using RNA from fresh frozen tumor tissue or immunohistochemistry on formalin fixed paraffin embedded (FFPE) tumor tissue from a cohort of 445 CRC patients. Using our in vitro model, we found that SOX2 expressing cells displayed several characteristics of cancer stem cells; such as a decreased proliferative rate, a spheroid growth pattern, and increased expression of stem cell markers CD24 and CD44. Cells expressing SOX2 also showed down-regulated expression of the intestinal epithelial marker CDX2. We next evaluated CDX2 expression in our patient cohort. CDX2 down-regulation was more often found in right sided tumors of high grade and high stage. Furthermore, a decreased expression of CDX2 was closely linked to MSI, CIMP-high as well as BRAF mutated tumors. A decreased expression of CDX2 was also, in a stepwise manner, strongly correlated to a poor patient prognosis. When looking at SOX2 expression in relation to CDX2, we found that SOX2 expressing tumors more often displayed a down-regulated expression of CDX2. In addition, SOX2 expressing tumors with a down-regulated CDX2 expression had a worse patient prognosis compared to those with retained CDX2 expression. Our results indicate that SOX2 expression induces a cellular stem cell state in human CRC with a decreased expression of CDX2. Furthermore, a down-regulated expression of CDX2 results in a poor patient prognosis in CRC and at least part of the prognostic importance of SOX2 is mediated through CDX2 down-regulation. The online version of this

  17. Squamous cell cancer (image)

    Science.gov (United States)

    Squamous cell cancer involves cancerous changes to the cells of the middle portion of the epidermal skin layer. It is ... malignant tumor, and is more aggressive than basal cell cancer, but still may be relatively slow-growing. It ...

  18. MicroRNA-129-5p Regulates Glycolysis and Cell Proliferation by Targeting the Glucose Transporter SLC2A3 in Gastric Cancer Cells

    Directory of Open Access Journals (Sweden)

    Di Chen

    2018-05-01

    Full Text Available Tumor cells increase their glucose consumption through aerobic glycolysis to manufacture the necessary biomass required for proliferation, commonly known as the Warburg effect. Accumulating evidences suggest that microRNAs (miRNAs interact with their target genes and contribute to metabolic reprogramming in cancer cells. By integrating high-throughput screening data and the existing miRNA expression datasets, we explored the roles of candidate glycometabolism-regulating miRNAs in gastric cancer (GC. Subsequent investigation of the characterized miRNAs indicated that miR-129-5p inhibits glucose metabolism in GC cells. miRNA-129-5p directly targets the 3′-UTR of SLC2A3, thereby suppressing glucose consumption, lactate production, cellular ATP levels, and glucose uptake of GC cells. In addition, the PI3K-Akt and MAPK signaling pathways are involved in the effects of the miR-129-5p/SLC2A3 axis, regulating GC glucose metabolism and growth. These results reveal a novel role of the miR-129-5p/SLC2A3 axis in reprogramming the glycometabolism process in GC cells and indicate a potential therapeutic target for the treatment of this disease.

  19. Immunohistochemical study of the expression of cell cycle regulating proteins at different stages of bladder cancer

    DEFF Research Database (Denmark)

    Primdahl, Hanne; von der Maase, Hans; Sørensen, Flemming Brandt

    2002-01-01

    ; group 1, 23 patients with recurrent stage Ta (non-invasive) tumors; group 2, 22 patients presenting at their first admission with T2-4 (muscle invasive) tumors; group 3, 24 patients who experienced disease progression from Ta or T1 (invasive in connective tissue) to a higher stage......PURPOSE: The cell cycle is known to be deregulated in cancer. We therefore analyzed the expression of the cell cycle related proteins p21, p27, p16, Rb, and L-myc by immunohistochemical staining of bladder tumors.METHODS: The tissue material consisted of bladder tumors from three groups of patients......(kip1) ( P=0.03), Rb ( P=0.00002), and L-myc ( P=0.00000007) in muscle invasive tumors compared to noninvasive tumors. Tumors presenting as muscle invasive at first diagnosis had significantly lower levels of p16/CDKN2A ( P=0.01) when compared to muscle invasive tumors that followed Ta or T1 precursor...

  20. Direct Regulation of Androgen Receptor Activity by Potent CYP17 Inhibitors in Prostate Cancer Cells*

    Science.gov (United States)

    Soifer, Harris S.; Souleimanian, Naira; Wu, Sijian; Voskresenskiy, Anatoliy M.; Kisaayak Collak, Filiz; Cinar, Bekir; Stein, Cy A.

    2012-01-01

    TOK-001 and abiraterone are potent 17-heteroarylsteroid (17-HAS) inhibitors of Cyp17, one of the rate-limiting enzymes in the biosynthesis of testosterone from cholesterol in prostate cancer cells. Nevertheless, the molecular mechanism underlying the prevention of prostate cell growth by 17-HASs still remains elusive. Here, we assess the effects of 17-HASs on androgen receptor (AR) activity in LNCaP and LAPC-4 cells. We demonstrate that both TOK-001 and abiraterone reduced AR protein and mRNA expression, and antagonized AR-dependent promoter activation induced by androgen. TOK-001, but not abiraterone, is an effective apparent competitor of the radioligand [3H]R1881 for binding to the wild type and various mutant AR (W741C, W741L) proteins. In agreement with these data, TOK-001 is a consistently superior inhibitor than abiraterone of R1881-induced transcriptional activity of both wild type and mutant AR. However, neither agent was able to trans-activate the AR in the absence of R1881. Our data demonstrate that phospho-4EBP1 levels are significantly reduced by TOK-001 and to a lesser extent by abiraterone alcohol, and suggest a mechanism by which cap-dependent translation is suppressed by blocking assembly of the eIF4F and eIF4G complex to the mRNA 5′ cap. Thus, the effects of these 17-HASs on AR signaling are complex, ranging from a decrease in testosterone production through the inhibition of Cyp17 as previously described, to directly reducing both AR protein expression and R1881-induced AR trans-activation. PMID:22174412

  1. Estrogen induced {beta}-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hee-Jung [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Chung, Tae-Wook; Kim, Cheorl-Ho [Department of Molecular and Cellular Glycobiology, College of Natural Science, Sungkyunkwan University, Suwon, Kyungki-do (Korea, Republic of); Jeong, Han-Sol; Joo, Myungsoo [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of); Youn, BuHyun, E-mail: bhyoun72@pusan.ac.kr [Department of Biological Sciences, College of Natural Sciences, Pusan National University, Busan (Korea, Republic of); Ha, Ki-Tae, E-mail: hagis@pusan.ac.kr [Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan-city, Gyeongsangnam-do (Korea, Republic of)

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. Black-Right-Pointing-Pointer Estrogen-induced B4GALT1 expression through the direct binding of ER-{alpha} to ERE in MCF-7 cells. Black-Right-Pointing-Pointer B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. Black-Right-Pointing-Pointer Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose {beta}-1,4-N-acetylglucosamine (Gal{beta}1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Gal{beta}1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-{alpha}-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering

  2. Estrogen induced β-1,4-galactosyltransferase 1 expression regulates proliferation of human breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Choi, Hee-Jung; Chung, Tae-Wook; Kim, Cheorl-Ho; Jeong, Han-Sol; Joo, Myungsoo; Youn, BuHyun; Ha, Ki-Tae

    2012-01-01

    Highlights: ► We examined the regulation and biological functions of B4GALT1 expression induced by estrogen. ► Estrogen-induced B4GALT1 expression through the direct binding of ER-α to ERE in MCF-7 cells. ► B4GALT1 expression activates the proliferation of MCF-7 cells via its receptor function. ► Thus, we suggest B4GALT1 as a molecular target for inhibiting breast cancer proliferation. -- Abstract: Beta 1,4-galactosyltransferase 1 (B4GALT1) synthesizes galactose β-1,4-N-acetylglucosamine (Galβ1-4GlcNAc) groups on N-linked sugar chains of glycoproteins, which play important roles in many biological events, including the proliferation and migration of cancer cells. A previous microarray study reported that this gene is expressed by estrogen treatment in breast cancer. In this study, we examined the regulatory mechanisms and biological functions of estrogen-induced B4GALT1 expression. Our data showed that estrogen-induced expression of B4GALT1 is localized in intracellular compartments and in the plasma membrane. In addition, B4GALT1 has an enzyme activity involved in the production of the Galβ1-4GlcNAc structure. The result from a promoter assay and chromatin immunoprecipitation revealed that 3 different estrogen response elements (EREs) in the B4GALT1 promoter are critical for responsiveness to estrogen. In addition, the estrogen antagonists ICI 182,780 and ER-α-ERE binding blocker TPBM inhibit the expression of estrogen-induced B4GALT1. However, the inhibition of signal molecules relating to the extra-nuclear pathway, including the G-protein coupled receptors, Ras, and mitogen-activated protein kinases, had no inhibitory effects on B4GALT1 expression. The knock-down of the B4GALT1 gene and the inhibition of membrane B4GALT1 function resulted in the significant inhibition of estrogen-induced proliferation of MCF-7 cells. Considering these results, we propose that estrogen regulates the expression of B4GALT1 through the direct binding of ER-α to ERE and

  3. TFPI alpha and beta regulate mRNAs and microRNAs involved in cancer biology and in the immune system in breast cancer cells.

    Directory of Open Access Journals (Sweden)

    Benedicte Stavik

    Full Text Available Emerging evidence indicate a new role of TFPI in cancer biology. We recently reported that both isoforms of TFPI induced apoptosis and inhibited proliferation of cancer cells. The signaling pathway(s mediating the effects of TFPI is, however, presently still unclear. Our goal was to further investigate the cellular processes affected by TFPI and to get insight into the molecular mechanisms involved in the effects of TFPI, using a global gene expression study approach. TFPIα or TFPIβ cDNA were transfected into SK-BR-3 breast cancer cells for stable overexpression. Global mRNA and microRNA (miRNA expressions were measured and functional annotation of the differentially expressed genes and miRNAs according to gene ontology terms was conducted. Selected results were validated using qRT-PCR and Western blot. A total of 242 and 801 mRNA transcripts and 120 and 46 miRNAs were differentially expressed in cells overexpressing TFPIα or TFPIβ, respectively. Overexpression of either isoform significantly affected the expression of genes involved in cell development (apoptosis, cell movement, migration, invasion, colony formation, growth, and adhesion and immune response. Network analyses revealed biological interactions between these genes and implied that several of the genes may be involved in both processes. The expression profiles also correlated significantly with clinical phenotype and outcome. Functional cluster analyses indicated altered activity of the epidermal growth factor receptor, small GTPases, and the NF-κB and JAK/STAT cascades when TFPI was overexpressed, and increased activity of the transcription factors NF-κB and Elk-1 and phospho-Akt levels was observed. Integrated mRNA-miRNA analyses showed that 19% and 32% of the differentially expressed genes in cells overexpressing TFPIα or TFPIβ, respectively, may have been regulated by miRNAs. Overexpression of TFPI in breast cancer cells affected the expression of mRNAs and mi

  4. TFPI alpha and beta regulate mRNAs and microRNAs involved in cancer biology and in the immune system in breast cancer cells.

    Science.gov (United States)

    Stavik, Benedicte; Skretting, Grethe; Olstad, Ole Kristoffer; Sletten, Marit; Dehli Vigeland, Magnus; Sandset, Per Morten; Iversen, Nina

    2012-01-01

    Emerging evidence indicate a new role of TFPI in cancer biology. We recently reported that both isoforms of TFPI induced apoptosis and inhibited proliferation of cancer cells. The signaling pathway(s) mediating the effects of TFPI is, however, presently still unclear. Our goal was to further investigate the cellular processes affected by TFPI and to get insight into the molecular mechanisms involved in the effects of TFPI, using a global gene expression study approach. TFPIα or TFPIβ cDNA were transfected into SK-BR-3 breast cancer cells for stable overexpression. Global mRNA and microRNA (miRNA) expressions were measured and functional annotation of the differentially expressed genes and miRNAs according to gene ontology terms was conducted. Selected results were validated using qRT-PCR and Western blot. A total of 242 and 801 mRNA transcripts and 120 and 46 miRNAs were differentially expressed in cells overexpressing TFPIα or TFPIβ, respectively. Overexpression of either isoform significantly affected the expression of genes involved in cell development (apoptosis, cell movement, migration, invasion, colony formation, growth, and adhesion) and immune response. Network analyses revealed biological interactions between these genes and implied that several of the genes may be involved in both processes. The expression profiles also correlated significantly with clinical phenotype and outcome. Functional cluster analyses indicated altered activity of the epidermal growth factor receptor, small GTPases, and the NF-κB and JAK/STAT cascades when TFPI was overexpressed, and increased activity of the transcription factors NF-κB and Elk-1 and phospho-Akt levels was observed. Integrated mRNA-miRNA analyses showed that 19% and 32% of the differentially expressed genes in cells overexpressing TFPIα or TFPIβ, respectively, may have been regulated by miRNAs. Overexpression of TFPI in breast cancer cells affected the expression of mRNAs and miRNAs involved in processes

  5. Squamous cell skin cancer

    Science.gov (United States)

    ... that reflect light more, such as water, sand, concrete, and areas that are painted white. The higher ... - skin - squamous cell; Skin cancer - squamous cell; Nonmelanoma skin cancer - squamous ...

  6. Cyclophilin B as a co-regulator of prolactin-induced gene expression and function in breast cancer cells.

    Science.gov (United States)

    Fang, Feng; Zheng, Jiamao; Galbaugh, Traci L; Fiorillo, Alyson A; Hjort, Elizabeth E; Zeng, Xianke; Clevenger, Charles V

    2010-06-01

    The effects of prolactin (PRL) during the pathogenesis of breast cancer are mediated in part though Stat5 activity enhanced by its interaction with its transcriptional inducer, the prolyl isomerase cyclophilin B (CypB). We have demonstrated that knockdown of CypB decreases cell growth, proliferation, and migration, and CypB expression is associated with malignant progression of breast cancer. In this study, we examined the effect of CypB knockdown on PRL signaling in breast cancer cells. CypB knockdown with two independent siRNAs was shown to impair PRL-induced reporter expression in breast cancer cell line. cDNA microarray analysis was performed on these cells to assess the effect of CypB reduction, and revealed a significant decrease in PRL-induced endogenous gene expression in two breast cancer cell lines. Parallel functional assays revealed corresponding alterations of both anchorage-independent cell growth and cell motility of breast cancer cells. Our results demonstrate that CypB expression levels significantly modulate PRL-induced function in breast cancer cells ultimately resulting in enhanced levels of PRL-responsive gene expression, cell growth, and migration. Given the increasingly appreciated role of PRL in the pathogenesis of breast cancer, the actions of CypB detailed here are of biological significance.

  7. The S100P/RAGE signaling pathway regulates expression of microRNA-21 in colon cancer cells.

    Science.gov (United States)

    Mercado-Pimentel, Melania E; Onyeagucha, Benjamin C; Li, Qing; Pimentel, Angel C; Jandova, Jana; Nelson, Mark A

    2015-08-19

    S100P signaling through the receptor for advanced glycation end-products (RAGE) contributes to colon cancer invasion and metastasis, but the mechanistic features of this process are obscure. Here, we investigate whether activation of S100P/RAGE signaling regulates oncogenic microRNA-21 (miR-21). We show that exogenous S100P up-regulates miR-21 levels in human colon cancer cells, whereas knockdown of S100P results in a decrease of miR-21. Furthermore, blockage of RAGE with anti-RAGE antibody suppresses S100P induction of miR-21. In addition, we found that S100P induction of miR-21 expression involves ERK and is suppressed by the MEK inhibitor U0126. Also, S100P treatment stimulates the enrichment of c-Fos, and AP-1 family members, at the miR-21 gene promoter. Copyright © 2015 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  8. Aqueous extract of Tribulus terrestris Linn induces cell growth arrest and apoptosis by down-regulating NF-κB signaling in liver cancer cells.

    Science.gov (United States)

    Kim, Hye Jin; Kim, Jin Chul; Min, Jung Sun; Kim, Mi-Jee; Kim, Ji Ae; Kor, Myung Ho; Yoo, Hwa Seung; Ahn, Jeong Keun

    2011-06-14

    A medicinal herb Tribulus terrestris Linn has been used to treat various diseases including hepatocellular carcinoma. The aim of the present study was to investigate the anticancer activity of Tribulus terrestris Linn (TT) in liver cancer cells. The antitumor activity of aqueous TT extract was analyzed by testing the cytotoxicity and the effect on clonogenecity in HepG2 cells. Apoptosis and cell cycle arrest induced by TT were dissected by flow cytometry and its inhibitory effect on NF-κB activity was determined by analyzing the expression levels of NF-κB/IκB subunit proteins. The suppression of NF-κB-regulated gene expression by TT was assessed by RT-PCR. TT extract repressed clonogenecity and proliferation, induced apoptosis, and enhanced accumulation in the G0/G1 phase of liver cancer cells. It also turned out that TT extract inhibited NF-κB-dependent reporter gene expression and NF-κB subunit p50 expression, while it enhanced the cellular level of IκBα by inhibiting the phosphorylation and degradation of IκBα. In addition, IKK activity was inhibited in a dose-dependent manner. Furthermore, TT extract suppressed the transcription of genes associated with cell cycle regulation, anti-apoptosis, and invasion. These data showed that TT extract blocks proliferation and induces apoptosis in human liver cancer cells through the inhibition of NF-κB signaling. Aqueous TT extract can be used as an anticancer drug for hepatocellular carcinoma patients. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  9. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer

    DEFF Research Database (Denmark)

    Bou Kheir, Tony; Futoma-Kazmierczak, Ewa; Jacobsen, Anders

    2011-01-01

    Gastric cancer is the fourth most common cancer in the world and the second most prevalent cause of cancer related death. The development of gastric cancer is mainly associated with H. Pylori infection leading to a focus in pathology studies on bacterial and environmental factors, and to a lesser...... malignancies. The current study is focused on identifying microRNAs involved in gastric carcinogenesis and to explore their mechanistic relevance by characterizing their targets....

  10. MAPK/JNK1 activation protects cells against cadmium-induced autophagic cell death via differential regulation of catalase and heme oxygenase-1 in oral cancer cells.

    Science.gov (United States)

    So, Keum-Young; Kim, Sang-Hun; Jung, Ki-Tae; Lee, Hyun-Young; Oh, Seon-Hee

    2017-10-01

    Antioxidant enzymes are related to oral diseases. We investigated the roles of heme oxygenase-1 (HO-1) and catalase in cadmium (Cd)-induced oxidative stress and the underlying molecular mechanism in oral cancer cells. Exposing YD8 cells to Cd reduced the expression levels of catalase and superoxide dismutase 1/2 and induced the expression of HO-1 as well as autophagy and apoptosis, which were reversed by N-acetyl-l-cysteine (NAC). Cd-exposed YD10B cells exhibited milder effects than YD8 cells, indicating that Cd sensitivity is associated with antioxidant enzymes and autophagy. Autophagy inhibition via pharmacologic and genetic modulations enhanced Cd-induced HO-1 expression, caspase-3 cleavage, and the production of reactive oxygen species (ROS). Ho-1 knockdown increased autophagy and apoptosis. Hemin treatment partially suppressed Cd-induced ROS production and apoptosis, but enhanced autophagy and CHOP expression, indicating that autophagy induction is associated with cellular stress. Catalase inhibition by pharmacological and genetic modulations increased Cd-induced ROS production, autophagy, and apoptosis, but suppressed HO-1, indicating that catalase is required for HO-1 induction. p38 inhibition upregulated Cd-induced phospho-JNK and catalase, but suppressed HO-1, autophagy, apoptosis. JNK suppression exhibited contrary results, enhancing the expression of phospho-p38. Co-suppression of p38 and JNK1 failed to upregulate catalase and procaspase-3, which were upregulated by JNK1 overexpression. Overall, the balance between the responses of p38 and JNK activation to Cd appears to have an important role in maintaining cellular homeostasis via the regulation of antioxidant enzymes and autophagy induction. In addition, the upregulation of catalase by JNK1 activation can play a critical role in cell protection against Cd-induced oxidative stress. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Phosphorylation and subcellular localization of p27Kip1 regulated by hydrogen peroxide modulation in cancer cells.

    Directory of Open Access Journals (Sweden)

    Irene L Ibañez

    Full Text Available The Cyclin-dependent kinase inhibitor 1B (p27Kip1 is a key protein in the decision between proliferation and cell cycle exit. Quiescent cells show nuclear p27Kip1, but this protein is exported to the cytoplasm in response to proliferating signals. We recently reported that catalase treatment increases the levels of p27Kip1 in vitro and in vivo in a murine model. In order to characterize and broaden these findings, we evaluated the regulation of p27Kip1 by hydrogen peroxide (H(2O(2 in human melanoma cells and melanocytes. We observed a high percentage of p27Kip1 positive nuclei in melanoma cells overexpressing or treated with exogenous catalase, while non-treated controls showed a cytoplasmic localization of p27Kip1. Then we studied the levels of p27Kip1 phosphorylated (p27p at serine 10 (S10 and at threonine 198 (T198 because phosphorylation at these sites enables nuclear exportation of this protein, leading to accumulation and stabilization of p27pT198 in the cytoplasm. We demonstrated by western blot a decrease in p27pS10 and p27pT198 levels in response to H(2O(2 removal in melanoma cells, associated with nuclear p27Kip1. Melanocytes also exhibited nuclear p27Kip1 and lower levels of p27pS10 and p27pT198 than melanoma cells, which showed cytoplasmic p27Kip1. We also showed that the addition of H(2O(2 (0.1 µM to melanoma cells arrested in G1 by serum starvation induces proliferation and increases the levels of p27pS10 and p27pT198 leading to cytoplasmic localization of p27Kip1. Nuclear localization and post-translational modifications of p27Kip1 were also demonstrated by catalase treatment of colorectal carcinoma and neuroblastoma cells, extending our findings to these other human cancer types. In conclusion, we showed in the present work that H(2O(2 scavenging prevents nuclear exportation of p27Kip1, allowing cell cycle arrest, suggesting that cancer cells take advantage of their intrinsic pro-oxidant state to favor cytoplasmic localization

  12. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells.

    Science.gov (United States)

    Zhang, Chuanzhao; Zhi, Wanqing Iris; Lu, Haiquan; Samanta, Debangshu; Chen, Ivan; Gabrielson, Edward; Semenza, Gregg L

    2016-10-04

    Exposure of breast cancer cells to hypoxia increases the percentage of breast cancer stem cells (BCSCs), which are required for tumor initiation and metastasis, and this response is dependent on the activity of hypoxia-inducible factors (HIFs). We previously reported that exposure of breast cancer cells to hypoxia induces the ALKBH5-mediated demethylation of N6-methyladenosine (m6A) in NANOG mRNA leading to increased expression of NANOG, which is a pluripotency factor that promotes BCSC specification. Here we report that exposure of breast cancer cells to hypoxia also induces ZNF217-dependent inhibition of m6A methylation of mRNAs encoding NANOG and KLF4, which is another pluripotency factor that mediates BCSC specification. Although hypoxia induced the BCSC phenotype in all breast-cancer cell lines analyzed, it did so through variable induction of pluripotency factors and ALKBH5 or ZNF217. However, in every breast cancer line, the hypoxic induction of pluripotency factor and ALKBH5 or ZNF217 expression was HIF-dependent. Immunohistochemistry revealed that expression of HIF-1α and ALKBH5 was concordant in all human breast cancer biopsies analyzed. ALKBH5 knockdown in MDA-MB-231 breast cancer cells significantly decreased metastasis from breast to lungs in immunodeficient mice. Thus, HIFs stimulate pluripotency factor expression and BCSC specification by negative regulation of RNA methylation.

  13. Ghrelin O-acyltransferase (GOAT) is expressed in prostate cancer tissues and cell lines and expression is differentially regulated in vitro by ghrelin

    Science.gov (United States)

    2013-01-01

    Background Ghrelin is a 28 amino acid peptide hormone that is expressed in the stomach and a range of peripheral tissues, where it frequently acts as an autocrine/paracrine growth factor. Ghrelin is modified by a unique acylation required for it to activate its cognate receptor, the growth hormone secretagogue receptor (GHSR), which mediates many of the actions of ghrelin. Recently, the enzyme responsible for adding the fatty acid residue (octanoyl/acyl group) to the third amino acid of ghrelin, GOAT (ghrelin O-acyltransferase), was identified. Methods We used cell culture, quantitative real-time reverse transcription (RT)-PCR and immunohistochemistry to demonstrate the expression of GOAT in prostate cancer cell lines and tissues from patients. Real-time RT-PCR was used to demonstrate the expression of prohormone convertase (PC)1/3, PC2 and furin in prostate cancer cell lines. Prostate-derived cell lines were treated with ghrelin and desacyl ghrelin and the effect on GOAT expression was measured using quantitative RT-PCR. Results We have demonstrated that GOAT mRNA and protein are expressed in the normal prostate and human prostate cancer tissue samples. The RWPE-1 and RWPE-2 normal prostate-derived cell lines and the LNCaP, DU145, and PC3 prostate cancer cell lines express GOAT and at least one other enzyme that is necessary to produce mature, acylated ghrelin from proghrelin (PC1/3, PC2 or furin). Finally, ghrelin, but not desacyl ghrelin (unacylated ghrelin), can directly regulate the expression of GOAT in the RWPE-1 normal prostate derived cell line and the PC3 prostate cancer cell line. Ghrelin treatment (100nM) for 6 hours significantly decreased GOAT mRNA expression two-fold (P ghrelin did not regulate GOAT expression in the DU145 and LNCaP prostate cancer cell lines. Conclusions This study demonstrates that GOAT is expressed in prostate cancer specimens and cell lines. Ghrelin regulates GOAT expression, however, this is likely to be cell-type specific

  14. Down-regulation of GRP78 is associated with the sensitivity of chemotherapy to VP-16 in small cell lung cancer NCI-H446 cells

    International Nuclear Information System (INIS)

    Wang, Yingyan; Wang, Wei; Wang, Siyan; Wang, Jiarui; Shao, Shujuan; Wang, Qi

    2008-01-01

    Chemotherapy resistance remains a major obstacle for the treatment of small cell lung cancer (SCLC). Glucose-regulated protein 78 (GRP78), an endoplasmic reticulum chaperone, plays a critical role in chemotherapy resistance in some cancers. However, whether the suppression of the chaperone can enhance the sensitivity of chemotherapy in SCLC is still unclear. The SCLC NCI-H446 cells were divided into three groups: BAPTA-AM→A23187-treated group, A23187-treated group and control-group. Immunofluorescence, western blot and RT-PCR were used to assess the expression of GRP78 at both protein and mRNA levels. Cell apoptosis and the cell cycle distributions of the cells were analyzed by flow cytometry in order to evaluate the therapeutic sensitivity to VP-16. The expression of GRP78 at both protein and mRNA levels in the BAPTA-AM→A23187-treated cells dramatically decreased as compared to that in both A23187-treated and control groups. After treatment by VP-16, the percentage of apoptotic cells in BAPTA-AM→A23187-treated cells were: 33.4 ± 1.01%, 48.2 ± 1.77%, 53.0 ± 1.43%, 56.5 ± 2.13%, respectively, corresponding to the concentrations of BAPTA-AM 10, 15, 25, 40 μM, which was statistically significant high in comparison with the A23187-treated group and untreated-group (7.18 ± 1.03% and 27.8 ± 1.45%, respectively, p < 0.05). The results from analysis of cell cycle distribution showed that there was a significantly decreased in G 1 phase and a dramatically increased in S phase for the BAPTA-AM→A23187-treated cells as compared with the untreated cells. BAPTA-AM is a strong inhibitor of GRP78 in the NCI-H446 cell line, the down-regulation of GRP78 can significantly increase the sensitivity to VP-16. The suppression of GRP78 may offer a new surrogated therapeutic approach to the clinical management of lung cancer

  15. Non-Canonical Hedgehog Signaling Is a Positive Regulator of the WNT Pathway and Is Required for the Survival of Colon Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Joseph L. Regan

    2017-12-01

    Full Text Available Summary: Colon cancer is a heterogeneous tumor driven by a subpopulation of cancer stem cells (CSCs. To study CSCs in colon cancer, we used limiting dilution spheroid and serial xenotransplantation assays to functionally define the frequency of CSCs in a panel of patient-derived cancer organoids. These studies demonstrated cancer organoids to be enriched for CSCs, which varied in frequency between tumors. Whole-transcriptome analysis identified WNT and Hedgehog signaling components to be enhanced in CSC-enriched tumors and in aldehyde dehydrogenase (ALDH-positive CSCs. Canonical GLI-dependent Hedgehog signaling is a negative regulator of WNT signaling in normal intestine and intestinal tumors. Here, we show that Hedgehog signaling in colon CSCs is autocrine SHH-dependent, non-canonical PTCH1 dependent, and GLI independent. In addition, using small-molecule inhibitors and RNAi against SHH-palmitoylating Hedgehog acyltransferase (HHAT, we demonstrate that non-canonical Hedgehog signaling is a positive regulator of WNT signaling and required for colon CSC survival. : Colon cancer is a heterogeneous tumor driven by a subpopulation(s of therapy-resistant cancer stem cells (CSCs. Regan et al. use 3D culture models to demonstrate that CSC survival is regulated by non-canonical, SHH-dependent, PTCH1-dependent Hedgehog signaling, which acts as a positive regulator of WNT signaling to block CSC differentiation. Keywords: WNT pathway, non-canonical Hedgehog signaling, cancer stem cell, colon cancer, cancer organoid, PTCH1, HHAT, SHH

  16. D-Glucosamine down-regulates HIF-1{alpha} through inhibition of protein translation in DU145 prostate cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jee-Young; Park, Jong-Wook; Suh, Seong-Il [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of); Baek, Won-Ki, E-mail: wonki@dsmc.or.kr [Chronic Disease Research Center, School of Medicine, Keimyung University, 194 Dongsan-Dong, Jung-Gu, Daegu 700-712 (Korea, Republic of)

    2009-04-24

    D-Glucosamine has been reported to inhibit proliferation of cancer cells in culture and in vivo. In this study we report a novel response to D-glucosamine involving the translation regulation of hypoxia inducible factor (HIF)-1{alpha} expression. D-Glucosamine caused a decreased expression of HIF-1{alpha} under normoxic and hypoxic conditions without affecting HIF-1{alpha} mRNA expression in DU145 prostate cancer cells. D-Glucosamine inhibited HIF-1{alpha} accumulation induced by proteasome inhibitor MG132 and prolyl hydroxylase inhibitor DMOG suggesting D-glucosamine reduces HIF-1{alpha} protein expression through proteasome-independent pathway. Metabolic labeling assays indicated that D-glucosamine inhibits translation of HIF-1{alpha} protein. In addition, D-glucosamine inhibited HIF-1{alpha} expression induced by serum stimulation in parallel with inhibition of p70S6K suggesting D-glucosamine inhibits growth factor-induced HIF-1{alpha} expression, at least in part, through p70S6K inhibition. Taken together, these results suggest that D-glucosamine inhibits HIF-1{alpha} expression through inhibiting protein translation and provide new insight into a potential mechanism of the anticancer properties of D-glucosamine.

  17. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

    Directory of Open Access Journals (Sweden)

    Elisabeth Hessmann

    2016-01-01

    Full Text Available Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis. Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy. Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR or induction of Sox9 expression, are required for tumor formation. Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation. We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling. Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9. Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

  18. The long non-coding RNA HOTAIR promotes the proliferation of serous ovarian cancer cells through the regulation of cell cycle arrest and apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Jun-jun [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Wang, Yan [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Ding, Jing-xin; Jin, Hong-yan [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China); Yang, Gong, E-mail: yanggong@fudan.edu.cn [Cancer Institute, Fudan University Shanghai Cancer Center, 270 Dong' an Road, Shanghai 200032 (China); Department of Oncology, Shanghai Medical College, Fudan University, 130 Dong' an Road, Shanghai 200032 (China); Hua, Ke-qin, E-mail: huakeqin@126.com [Department of Gynecology, Obstetrics and Gynecology Hospital, Fudan University, 419 Fangxie Road, Shanghai 200011 (China); Department of Obstetrics and Gynecology of Shanghai Medical College, Fudan University, 138 Yixueyuan Road, Shanghai 200032 (China); Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, 413 Zhaozhou Road, Shanghai 200011 (China)

    2015-05-01

    HOX transcript antisense RNA (HOTAIR) is a well-known long non-coding RNA (lncRNA) whose dysregulation correlates with poor prognosis and malignant progression in many forms of cancer. Here, we investigate the expression pattern, clinical significance, and biological function of HOTAIR in serous ovarian cancer (SOC). Clinically, we found that HOTAIR levels were overexpressed in SOC tissues compared with normal controls and that HOTAIR overexpression was correlated with an advanced FIGO stage and a high histological grade. Multivariate analysis revealed that HOTAIR is an independent prognostic factor for predicting overall survival in SOC patients. We demonstrated that HOTAIR silencing inhibited A2780 and OVCA429 SOC cell proliferation in vitro and that the anti-proliferative effects of HOTAIR silencing also occurred in vivo. Further investigation into the mechanisms responsible for the growth inhibitory effects by HOTAIR silencing revealed that its knockdown resulted in the induction of cell cycle arrest and apoptosis through certain cell cycle-related and apoptosis-related proteins. Together, these results highlight a critical role of HOTAIR in SOC cell proliferation and contribute to a better understanding of the importance of dysregulated lncRNAs in SOC progression. - Highlights: • HOTAIR overexpression correlates with an aggressive tumour phenotype and a poor prognosis in SOC. • HOTAIR promotes SOC cell proliferation both in vitro and in vivo. • The proliferative role of HOTAIR is associated with regulation of the cell cycle and apoptosis.

  19. Transforming Growth Factor-β Is an Upstream Regulator of Mammalian Target of Rapamycin Complex 2-Dependent Bladder Cancer Cell Migration and Invasion.

    Science.gov (United States)

    Gupta, Sounak; Hau, Andrew M; Al-Ahmadie, Hikmat A; Harwalkar, Jyoti; Shoskes, Aaron C; Elson, Paul; Beach, Jordan R; Hussey, George S; Schiemann, William P; Egelhoff, Thomas T; Howe, Philip H; Hansel, Donna E

    2016-05-01

    Our prior work identified the mammalian target of rapamycin complex 2 (mTORC2) as a key regulator of bladder cancer cell migration and invasion, although upstream growth factor mediators of this pathway in bladder cancer have not been well delineated. We tested whether transforming growth factor (TGF)-β, which can function as a promotility factor in bladder cancer cells, could regulate mTORC2-dependent bladder cancer cell motility and invasion. In human bladder cancers, the highest levels of phosphorylated SMAD2, a TGF-β signaling intermediate, were present in high-grade invasive bladder cancers and associated with more frequent recurrence and decreased disease-specific survival. Increased expression of TGF-β isoforms, receptors, and signaling components was detected in invasive high-grade bladder cancer cells that expressed Vimentin and lacked E-cadherin. Application of TGF-β induced phosphorylation of the Ser473 residue of AKT, a selective target of mTORC2, in a SMAD2- and SMAD4-independent manner and increased bladder cancer cell migration in a modified scratch wound assay and invasion through Matrigel. Inhibition of TGF-β receptor I using SB431542 ablated TGF-β-induced migration and invasion. A similar effect was seen when Rictor, a key mTORC2 component, was selectively silenced. Our results suggest that TGF-β can induce bladder cancer cell invasion via mTORC2 signaling, which may be applicable in most bladder cancers. Copyright © 2016. Published by Elsevier Inc.

  20. LincRNA-p21 Impacts Prognosis in Resected Non-Small Cell Lung Cancer Patients through Angiogenesis Regulation.

    Science.gov (United States)

    Castellano, Joan J; Navarro, Alfons; Viñolas, Nuria; Marrades, Ramon M; Moises, Jorge; Cordeiro, Anna; Saco, Adela; Muñoz, Carmen; Fuster, Dolors; Molins, Laureano; Ramirez, Josep; Monzo, Mariano

    2016-12-01

    Long intergenic noncoding RNA-p21 (lincRNA-p21) is a long noncoding RNA transcriptionally activated by tumor protein p53 (TP53) and hypoxia inducible factor 1 alpha subunit (HIF1A). It is involved in the regulation of TP53-dependent apoptosis and the Warburg effect. We have investigated the role of lincRNA-p21 in NSCLC. LincRNA-p21 expression was assessed in tumor and normal tissue from 128 patients with NSCLC and correlated with time to relapse and cancer-specific survival (CSS). H23, H1299, and HCC-44 cell lines were cultured in hypoxic conditions after silencing of lincRNA-p21. The TaqMan human angiogenesis array was used to explore angiogenesis-related gene expression. Levels of the protein vascular endothelial growth factor A were measured by enzyme-linked immunosorbent assay in the cell supernatants. Angiogenic capability was measured by human umbilical vein endothelial cell tube formation assay. Microvascular density in tumor samples was analyzed by immunohistochemistry. LincRNA-p21 was down-regulated in tumor tissue, but no association was observed with TP53 mutational status. High lincRNA-p21 levels were associated with poor CSS in all patients (p = 0.032). When patients were classified according to histological subtypes, the impact of lincRNA-p21 was confined to patients with adenocarcinoma in both time to relapse (p = 0.006) and CSS (p < 0.001). To explain the poor outcome of patients with high lincRNA-p21 expression, we studied the role of lincRNA-p21 in angiogenesis in vitro and observed a global downregulation in the expression of angiogenesis-related genes when lincRNA-p21 was inhibited. Moreover, supernatants from lincRNA-p21-inhibited cells were significantly less angiogenic and had lower levels of secreted vascular endothelial growth factor A than controls did. Finally, tumor samples with high lincRNA-p21 levels had higher microvascular density. Our findings suggest that lincRNA-p21 affects outcome in patients with NSCLC adenocarcinoma through

  1. MicroRNA Regulation of CD44+ Prostate Tumor Stem/Progenitor Cells and Prostate Cancer Development/Metastasis

    Science.gov (United States)

    2013-05-01

    cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 2007;445:106–10. 11. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan...broad-lineage differentiation potential and were able to regenerate mam- mary ductal structures in vivo. Likewise, breast cancer cells with high ALDH

  2. LeftyA sensitive cytosolic pH regulation and glycolytic flux in Ishikawa human endometrial cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Salker, Madhuri S.; Zhou, Yuetao; Singh, Yogesh [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany); Brosens, Jan [Division of Reproductive Health, Warwick Medical School, Clinical Sciences Research Laboratories, University Hospital, Coventry CV2 2DX (United Kingdom); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tuebingen, 72076 Tuebingen (Germany)

    2015-05-08

    Objective: LeftyA, a powerful regulator of stemness, embryonic differentiation, and reprogramming of cancer cells, counteracts cell proliferation and tumor growth. Key properties of tumor cells include enhanced glycolytic flux, which is highly sensitive to cytosolic pH and thus requires export of H{sup +} and lactate. H{sup +} extrusion is in part accomplished by Na{sup +}/H{sup +} exchangers, such as NHE1. An effect of LeftyA on transport processes has, however, never been reported. The present study thus explored whether LeftyA modifies regulation of cytosolic pH (pHi) in Ishikawa cells, a well differentiated endometrial carcinoma cell model. Methods: NHE1 transcript levels were determined by qRT-PCR, NHE1 protein abundance quantified by Western blotting, pH{sub i} estimated utilizing (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein [BCECF] fluorescence, Na{sup +}/H{sup +} exchanger activity from Na{sup +} dependent realkalinization after an ammonium pulse, and lactate concentration in the supernatant utilizing an enzymatic assay and subsequent colorimetry. Results: A 2 h treatment with LeftyA (8 ng/ml) significantly decreased NHE1 transcript levels (by 99.6%), NHE1 protein abundance (by 71%), Na{sup +}/H{sup +} exchanger activity (by 55%), pHi (from 7.22 ± 0.02 to 7.05 ± 0.02), and lactate release (by 41%). Conclusions: LeftyA markedly down-regulates NHE1 expression, Na{sup +}/H{sup +} exchanger activity, pHi, and lactate release in Ishikawa cells. Those effects presumably contribute to cellular reprogramming and growth inhibition. - Highlights: • LeftyA, an inhibitor of tumor growth, reduces Na{sup +}/H{sup +}-exchanger activity by 55%. • LeftyA decreases NHE1 transcripts by 99.6% and NHE1 protein by 71%. • LeftyA decreases cytosolic pH from 7.22 ± 0.02 to 7.05 ± 0.02. • Cytosolic acidification by Lefty A decreases glycolysis by 41%. • Cytosolic acidification by Lefty A compromises energy production of tumor cells.

  3. Direct regulation of E-cadherin by targeted histone methylation of TALE-SET fusion protein in cancer cells.

    Science.gov (United States)

    Cho, Hyun-Soo; Kang, Jeong Gu; Lee, Jae-Hye; Lee, Jeong-Ju; Jeon, Seong Kook; Ko, Jeong-Heon; Kim, Dae-Soo; Park, Kun-Hyang; Kim, Yong-Sam; Kim, Nam-Soon

    2015-09-15

    TALE-nuclease chimeras (TALENs) can bind to and cleave specific genomic loci and, are used to engineer gene knockouts and additions. Recently, instead of using the FokI domain, epigenetically active domains, such as TET1 and LSD1, have been combined with TAL effector domains to regulate targeted gene expression via DNA and histone demethylation. However, studies of histone methylation in the TALE system have not been performed. Therefore, in this study, we established a novel targeted regulation system with a TAL effector domain and a histone methylation domain. To construct a TALE-methylation fusion protein, we combined a TAL effector domain containing an E-Box region to act as a Snail binding site and the SET domain of EHMT 2 to allow for histone methylation. The constructed TALE-SET module (TSET) repressed the expression of E-cadherin via by increasing H3K9 dimethylation. Moreover, the cells that overexpressed TSET showed increased cell migration and invasion. This is the first phenotype-based study of targeted histone methylation by the TALE module, and this new system can be applied in new cancer therapies to reduce side effects.

  4. Effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 pathway.

    Science.gov (United States)

    Zhang, Song-An; Niyazi, Hu-Er-Xi-Dan; Hong, Wen; Tuluwengjiang, Gu-Li-Xian; Zhang, Lei; Zhang, Yang; Su, Wei-Peng; Bao, Yong-Xing

    2017-03-01

    This study aimed to investigate the effect of EBI3 on radiation-induced immunosuppression of cervical cancer HeLa cells by regulating Treg cells through PD-1/PD-L1 signaling pathway. A total of 43 adult female Wistar rats were selected and injected with HeLa cells in the caudal vein to construct a rat model of cervical cancer. All model rats were randomly divided into the radiotherapy group ( n = 31) and the control group ( n = 12). The immunophenotype of Treg cells was detected by the flow cytometry. The protein expressions of EBI3, PD-1, and PD-L1 in cervical cancer tissues were tested by the streptavidin-peroxidase method. HeLa cells in the logarithmic growth phase were divided into four groups: the blank, the negative control group, the EBI3 mimics group, and the EBI3 inhibitors group. Western blotting was used to detect PD-1 and PD-L1 protein expressions. MTT assay was performed to measure the proliferation of Treg cells. Flow cytometry was used to detect cell cycle and apoptosis, and CD4 + /CD8 + T cell ratio in each group. Compared with before and 1 week after radiotherapy, the percentages of CD4 + T cells and CD8 + T cells were significantly decreased in the radiotherapy group at 1 month after radiotherapy. Furthermore, down-regulation of EBI3 and up-regulation of PD-1 and PD-L1 were observed in cervical cancer tissues at 1 month after radiotherapy. In comparison to the blank and negative control groups, increased expression of EBI3 and decreased expressions of PD-1 and PD-L1 were found in the EBI3 mimics group. However, the EBI3 inhibitors group had a lower expression of EBI3 and higher expressions of PD-1 and PD-L1 than those in the blank and negative control groups. The EBI3 mimics group showed an increase in the optical density value (0.43 ± 0.05), while a decrease in the optical density value (0.31 ± 0.02) was found in the EBI3 inhibitors group. Moreover, compared with the blank and negative control groups, the apoptosis rates

  5. Epigenetic suppression of neprilysin regulates breast cancer invasion.

    Science.gov (United States)

    Stephen, H M; Khoury, R J; Majmudar, P R; Blaylock, T; Hawkins, K; Salama, M S; Scott, M D; Cosminsky, B; Utreja, N K; Britt, J; Conway, R E

    2016-03-07

    In women, invasive breast cancer is the second most common cancer and the second cause of cancer-related death. Therefore, identifying novel regulators of breast cancer invasion could lead to additional biomarkers and therapeutic targets. Neprilysin, a cell-surface enzyme that cleaves and inactivates a number of substrates including endothelin-1 (ET1), has been implicated in breast cancer, but whether neprilysin promotes or inhibits breast cancer cell progression and metastasis is unclear. Here, we asked whether neprilysin expression predicts and functionally regulates breast cancer cell invasion. RT-PCR and flow cytometry analysis of MDA-MB-231 and MCF-7 breast cancer cell lines revealed decreased neprilysin expression compared with normal epithelial cells. Expression was also suppressed in invasive ductal carcinoma (IDC) compared with normal tissue. In addition, in vtro invasion assays demonstrated that neprilysin overexpression decreased breast cancer cell invasion, whereas neprilysin suppression augmented invasion. Furthermore, inhibiting neprilysin in MCF-7 breast cancer cells increased ET1 levels significantly, whereas overexpressing neprilysin decreased extracellular-signal related kinase (ERK) activation, indicating that neprilysin negatively regulates ET1-induced activation of mitogen-activated protein kinase (MAPK) signaling. To determine whether neprilysin was epigenetically suppressed in breast cancer, we performed bisulfite conversion analysis of breast cancer cells and clinical tumor samples. We found that the neprilysin promoter was hypermethylated in breast cancer; chemical reversal of methylation in MDA-MB-231 cells reactivated neprilysin expression and inhibited cancer cell invasion. Analysis of cancer databases revealed that neprilysin methylation significantly associates with survival in stage I IDC and estrogen receptor-negative breast cancer subtypes. These results demonstrate that neprilysin negatively regulates the ET axis in breast cancer

  6. Borealin/Dasra B is a cell cycle-regulated chromosomal passenger protein and its nuclear accumulation is linked to poor prognosis for human gastric cancer

    International Nuclear Information System (INIS)

    Chang, J.-L.; Chen, T.-H.; Wang, C.-F.; Chiang, Y.-H.; Huang, Y.-L.; Wong, F.-H.; Chou, C.-K.; Chen, C.-M.

    2006-01-01

    Chromosomal passenger proteins including Aurora B, Survivin, and Borealin/Dasra B, also called CDCA8/FLJ10468, are known to play crucial roles during mitosis and cell division. Inappropriate chromosomal segregation and cell division may cause auneuploidy leading to cancer. However, it is still unclear how the expression of chromosomal passenger proteins may be linked to cancer. In this study, we demonstrated that Borealin is a cell cycle-regulated gene and is upregulated at G2-M phases of the cell cycle. We showed that Borealin interacts with Survivin but not with Aurora B. The interaction domain of Survivin in Borealin was mapped to the N-terminal 92 amino-acid residues of Borealin. To examine the linkage between expression of Borealin and cancer, we performed immunohistochemistry analysis using anti-Borealin specific antibody on the paraffin-embedded gastric cancer tissues. Our results showed that Borealin expression is significantly correlated with Survivin (P = 0.003) and Ki67 (P = 0.007) in gastric cancer. Interestingly, an increased nuclear Borealin level reveals borderline association with a poor survival rate (P = 0.047). Taken together, our results demonstrated that Borealin is a cell cycle-regulated chromosomal passenger protein and its aberrant expression is linked to a poor prognosis for gastric cancer

  7. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2

    OpenAIRE

    Lin, Pei-Chin; Huang, Hsien-Da; Chang, Chun-Chi; Chang, Ya-Sian; Yen, Ju-Chen; Lee, Chien-Chih; Chang, Wen-Hsin; Liu, Ta-Chih; Chang, Jan-Gowth

    2016-01-01

    Background Long noncoding RNAs (lncRNAs) play crucial roles in tumorigenesis, and lncRNA taurine-upregulated gene 1 (TUG1) has been proven to be associated with several human cancers. However, the mechanisms of TUG1-involved regulation remain largely unknown. Methods We examined the expressions of TUG1 in a cohort of 89 patients with non-small cell lung cancer (NSCLC) to determine the association between TUG1 expression and clinical parameters. We used circular chromosome conformation capture...

  8. Dietary Regulation of PTEN Signaling and Mammary Tumor Initiating Cells: Implications for Breast Cancer Prevention

    Science.gov (United States)

    2012-07-01

    turmeric [37], resveratrol from grape [38], capsaicin from chili pepper [39], flavonoids such as hesperetin and naringenin in citrus fruits and tomatoes... flavonoids and citrus juices. Nutr Cancer 1996;26:167–81. [41] Tomar RS, Shiao R. Early life and adult exposure to isoflavones and breast cancer risk. J

  9. Inhibition of p70S6K2 down-regulates Hedgehog/GLI pathway in non-small cell lung cancer cell lines

    Directory of Open Access Journals (Sweden)

    Kotani Hidehito

    2009-07-01

    Full Text Available Abstract Background The Hedgehog (HH pathway promotes tumorigenesis in a diversity of cancers. Activation of the HH signaling pathway is caused by overexpression of HH ligands or mutations in the components of the HH/GLI1 cascade, which lead to increased transactivation of GLI transcription factors. Although negative kinase regulators that antagonize the activity of GLI transcription factors have been reported, including GSK3β, PKA and CK1s, little is known regarding positive kinase regulators that are suitable for use on cancer therapeutic targets. The present study attempted to identify kinases whose silencing inhibits HH/GLI signalling in non-small cell lung cancer (NSCLC. Results To find positive kinase regulators in the HH pathway, kinome-wide siRNA screening was performed in a NSCLC cell line, A549, harboring the GLI regulatory reporter gene. This showed that p70S6K2-silencing remarkably reduced GLI reporter gene activity. The decrease in the activity of the HH pathway caused by p70S6K2-inhibition was accompanied by significant reduction in cell viability. We next investigated the mechanism for p70S6K2-mediated inhibition of GLI1 transcription by hypothesizing that GSK3β, a negative regulator of the HH pathway, is activated upon p70S6K2-silencing. We found that phosphorylated-GSK3β (Ser9 was reduced by p70S6K2-silencing, causing a decreased level of GLI1 protein. Finally, to further confirm the involvement of p70S6K2 in GLI1 signaling, down-regulation in GLI-mediated transcription by PI3KCA-inhibition was confirmed, establishing the pivotal role of the PI3K/p70S6K2 pathway in GLI1 cascade regulation. Conclusion We report herein that inhibition of p70S6K2, known as a downstream effector of the PI3K pathway, remarkably decreases GLI-mediated transactivation in NSCLC by reducing phosphorylated-GSK3β followed by GLI1 degradation. These results infer that p70S6K2 is a potential therapeutic target for NSCLC with hyperactivated HH/GLI pathway.

  10. Salinomycin enhances cisplatin-induced cytotoxicity in human lung cancer cells via down-regulation of AKT-dependent thymidylate synthase expression.

    Science.gov (United States)

    Ko, Jen-Chung; Zheng, Hao-Yu; Chen, Wen-Ching; Peng, Yi-Shuan; Wu, Chia-Hung; Wei, Chia-Li; Chen, Jyh-Cheng; Lin, Yun-Wei

    2016-12-15

    Salinomycin, a polyether antibiotic, acts as a highly selective potassium ionophore and has anticancer activity on various cancer cell lines. Cisplatin has been proved as chemotherapy drug for advanced human non-small cell lung cancer (NSCLC). Thymidylate synthase (TS) is a key enzyme in the pyrimidine salvage pathway, and increased expression of TS is thought to be associated with resistance to cisplatin. In this study, we showed that salinomycin (0.5-2μg/mL) treatment down-regulating of TS expression in an AKT inactivation manner in two NSCLC cell lines, human lung adenocarcinoma A549 and squamous cell carcinoma H1703 cells. Knockdown of TS using small interfering RNA (siRNA) or inhibiting AKT activity with PI3K inhibitor LY294002 enhanced the cytotoxicity and cell growth inhibition of salinomycin. A combination of cisplatin and salinomycin resulted in synergistic enhancement of cytotoxicity and cell growth inhibition in NSCLC cells, accompanied with reduced activation of phospho-AKT, and TS expression. Overexpression of a constitutive active AKT (AKT-CA) expression vector reversed the salinomycin and cisplatin-induced synergistic cytotoxicity. In contrast, pretreatment with LY294002 further decreased the cell viability in salinomycin and cisplatin cotreated cells. Our findings suggested that the down-regulation of AKT-mediated TS expression by salinomycin enhanced the cisplatin-induced cytotoxicity in NSCLC cells. These results may provide a rationale to combine salinomycin with cisplatin for lung cancer treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. P38 pathway as a key downstream signal of connective tissue growth factor to regulate metastatic potential in non-small-cell lung cancer.

    Science.gov (United States)

    Kato, Shinichiro; Yokoyama, Satoru; Hayakawa, Yoshihiro; Li, Luhui; Iwakami, Yusuke; Sakurai, Hiroaki; Saiki, Ikuo

    2016-10-01

    Although the secretory matricellular protein connective tissue growth factor (CTGF) has been reported to be related to lung cancer metastasis, the precise mechanism by which CTGF regulates lung cancer metastasis has not been elucidated. In the present study, we show the molecular link between CTGF secretion and the p38 pathway in the invasive and metastatic potential of non-small-cell lung cancer (NSCLC). Among three different human NSCLC cell lines (PC-14, A549, and PC-9), their in vitro invasiveness was inversely correlated with the level of CTGF secretion. By supplementing or reducing CTGF secretion in NSCLC culture, dysregulation of the invasive and metastatic potential of NSCLC cell lines was largely compensated. By focusing on the protein kinases that are known to be regulated by CTGF, we found that the p38 pathway is a key downstream signal of CTGF to regulate the metastatic potential of NSCLC. Importantly, a negative correlation between CTGF and phosphorylation status of p38 was identified in The Cancer Genome Atlas lung adenocarcinoma dataset. In the context of the clinical importance of our findings, we showed that p38 inhibitor, SB203580, reduced the metastatic potential of NSCLC secreting low levels of CTGF. Collectively, our present findings indicate that the CTGF/p38 axis is a novel therapeutic target of NSCLC metastasis, particularly NSCLC secreting low levels of CTGF. © 2016 The Authors. Cancer Science published by John Wiley & Sons Australia, Ltd on behalf of Japanese Cancer Association.

  12. Adhesion-Dependent Regulation of Cell Growth and Apoptosis in Human Breast Cancer

    National Research Council Canada - National Science Library

    Helfman, David

    2002-01-01

    .... Normal epithelial cells require attachment to the extracellular matrix (ECM) for survival, and disruption of cell-ECM interactions results in induction of apoptosis, a phenomenon termed "anoikis...

  13. Regulation of androgen receptor transactivity and mTOR-S6 kinase pathway by Rheb in prostate cancer cell proliferation.

    Science.gov (United States)

    Kobayashi, Takashi; Shimizu, Yosuke; Terada, Naoki; Yamasaki, Toshinari; Nakamura, Eijiro; Toda, Yoshinobu; Nishiyama, Hiroyuki; Kamoto, Toshiyuki; Ogawa, Osamu; Inoue, Takahiro

    2010-06-01

    Ras homolog-enriched in brain (Rheb), a small GTP-binding protein, is associated with prostate carcinogenesis through activating mammalian target of rapamycin (mTOR) signaling pathway. This study aimed to elucidate whether Rheb promotes proliferation of prostate cancer cells and can act as a potent therapeutic target in prostate cancer. Prostate cancer cell lines and human prostatic tissues were examined for the expression of Rheb. The effects of forced expression or knockdown of Rheb on cell proliferation were also examined. Semi-quantitative and quantitative RT-PCR were performed to evaluate mRNA expression. Western blotting was used to examine protein expression. Cell count and WST-1 assay were used to measure cell proliferation. Fluorescence-activated cell sorting was used to assess the cell cycle. Rheb mRNA and protein expression was higher in more aggressive, androgen-independent prostate cancer cell lines PC3, DU145, and C4-2, compared with the less aggressive LNCaP. Rheb expression was higher in cancer tissues than in benign prostatic epithelia. Forced expression of Rheb in LNCaP cells accelerated proliferation without enhancing androgen receptor transactivity. Attenuation of Rheb expression or treatment with the mTOR inhibitor rapamycin decreased proliferation of PC3 and DU145 cells, with a decrease in the activated form of p70S6 kinase, one of the main targets of mTOR. Rheb potentiates proliferation of prostate cancer cells and inhibition of Rheb or mTOR can lead to suppressed proliferation of aggressive prostate cancer cell lines in vitro. Rheb and the mTOR pathway are therefore probable targets for suppressing prostate cancer.

  14. ATM Expression Predicts Veliparib and Irinotecan Sensitivity in Gastric Cancer by Mediating P53-Independent Regulation of Cell Cycle and Apoptosis.

    Science.gov (United States)

    Subhash, Vinod Vijay; Tan, Shi Hui; Yeo, Mei Shi; Yan, Fui Leng; Peethala, Praveen C; Liem, Natalia; Krishnan, Vaidehi; Yong, Wei Peng

    2016-12-01

    Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC 50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR. ©2016 American Association for Cancer Research.

  15. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells

    International Nuclear Information System (INIS)

    Sun, Qing; Liang, Ying; Zhang, Tianli; Wang, Kun; Yang, Xingsheng

    2017-01-01

    Objective: Estrogen receptor alpha 36 (ER-α36), a truncated variant of ER-α, is different from other nuclear receptors of the ER-α family. Previous findings indicate that ER-α36 might be involved in cell growth, proliferation, and differentiation in carcinomas and primarily mediates non-genomic estrogen signaling. However, studies on ER-α36 and cervical cancer are rare. This study aimed to detect the expression of ER-α36 in cervical cancer; the role of ER-α36 in 17-β-estradiol (E2)-induced invasion, migration and proliferation of cervical cancer; and their probable molecular mechanisms. Methods: Immunohistochemistry and immunofluorescence were used to determine the location of ER-α36 in cervical cancer tissues and cervical cell lines. CaSki and HeLa cell lines were transfected with lentiviruses to establish stable cell lines with knockdown and overexpression of ER-α36. Wound healing assay, transwell invasion assay, and EdU incorporation proliferation assay were performed to evaluate the migration, invasion, and proliferation ability. The phosphorylation levels of mitogen-activated protein kinases/extracellular signal-regulated kinase (MAPK/ERK) signaling molecules were examined with western blot analysis. Results: ER-α36 expression was detected in both cervical cell lines and cervical cancer tissues. Downregulation of ER-α36 significantly inhibited cell invasion, migration, and proliferation. Moreover, upregulation of ER-α36 increased the invasion, migration, and proliferation ability of CaSki and HeLa cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation. Conclusion: ER-α36 is localized on the plasma membrane and cytoplasm in both cervical cancer tissues and cell lines. ER-α36 mediates estrogen-stimulated MAPK/ERK activation and regulates migration, invasion, proliferation in cervical cancer cells. - Highlights: • ER-α36 is expressed on both cervical cell lines and cervical cancer tissues. • ER-α36 mediates estrogen

  16. Glucose transporters: expression, regulation and cancer

    Directory of Open Access Journals (Sweden)

    RODOLFO A. MEDINA

    2002-01-01

    Full Text Available Mammalian cells depend on glucose as a major substrate for energy production. Glucose is transported into the cell via facilitative glucose transporters (GLUT present in all cell types. Many GLUT isoforms have been described and their expression is cell-specific and subject to hormonal and environmental control. The kinetic properties and substrate specificities of the different isoforms are specifically suited to the energy requirements of the particular cell types. Due to the ubiquitousness of these transporters, their differential expression is involved in various disease states such as diabetes, ischemia and cancer. The majority of cancers and isolated cancer cell lines over-express the GLUT family members which are present in the respective tissue of origin under non-cancerous conditions. Moreover, due to the requirement of energy to feed uncontrolled proliferation, cancer cells often express GLUTs which under normal conditions would not be present in these tissues. This over-expression is predominantly associated with the likelihood of metastasis and hence poor patient prognosis. This article presents a review of the current literature on the regulation and expression of GLUT family members and has compiled clinical and research data on GLUT expression in human cancers and in isolated human cancer cell lines.

  17. Cyproterone acetate enhances TRAIL-induced androgen-independent prostate cancer cell apoptosis via up-regulation of death receptor 5.

    Science.gov (United States)

    Chen, Linjie; Wolff, Dennis W; Xie, Yan; Lin, Ming-Fong; Tu, Yaping

    2017-03-07

    cyproterone acetate-induced CHOP and DR5 up-regulation. More importantly, siRNA silencing of CHOP significantly reduced cyproterone acetate-induced DR5 up-regulation and TRAIL sensitivity in prostate cancer cells. Our study shows a novel effect of cyproterone acetate on apoptosis pathways in prostate cancer cells and raises the possibility that a combination of TRAIL with cyproterone acetate could be a promising strategy for treating castration-resistant prostate cancer.

  18. Suppressor of cytokine signaling (SOCS genes are silenced by DNA hypermethylation and histone deacetylation and regulate response to radiotherapy in cervical cancer cells.

    Directory of Open Access Journals (Sweden)

    Moon-Hong Kim

    Full Text Available Suppressor of cytokine signaling (SOCS family is an important negative regulator of cytokine signaling and deregulation of SOCS has been involved in many types of cancer. All cervical cancer cell lines tested showed lower expression of SOCS1, SOCS3, and SOCS5 than normal tissue or cell lines. The immunohistochemistry result for SOCS proteins in human cervical tissue also confirmed that normal tissue expressed higher level of SOCS proteins than neighboring tumor. Similar to the regulation of SOCS in other types of cancer, DNA methylation contributed to SOCS1 downregulation in CaSki, ME-180, and HeLa cells. However, the expression of SOCS3 or SOCS5 was not recovered by the inhibition of DNA methylation. Histone deacetylation may be another regulatory mechanism involved in SOCS1 and SOCS3 expression, however, SOCS5 expression was neither affected by DNA methylation nor histone deacetylation. Ectopic expression of SOCS1 or SOCS3 conferred radioresistance to HeLa cells, which implied SOCS signaling regulates the response to radiation in cervical cancer. In this study, we have shown that SOCS expression repressed by, in part, epigenetically and altered SOCS1 and SOCS3 expression could contribute to the radiosensitive phenotype in cervical cancer.

  19. 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Ronghe, Amruta; Chatterjee, Anwesha [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Singh, Bhupendra [Department of Genetics, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Dandawate, Prasad [ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune (India); Abdalla, Fatma; Bhat, Nimee K. [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States); Padhye, Subhash [ISTRA, Department of Chemistry, Abeda Inamdar Senior College, University of Pune (India); Bhat, Hari K., E-mail: bhath@umkc.edu [Division of Pharmacology and Toxicology, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO 64108 (United States)

    2016-06-15

    Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and β by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERβ and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10 A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERβ plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition. - Highlights: • Resveratrol analog TIMBD inhibits growth of breast cancer cells. • TIMBD induces protein expression levels of ERβ and inhibits that of ERα. • TIMBD inhibits c-Myc and cyclin D1, and induces p53 and p21. • TIMBD suppresses c-Myc in an ER-dependent fashion.

  20. 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol}, 1 a novel resveratrol analog, differentially regulates estrogen receptors α and β in breast cancer cells

    International Nuclear Information System (INIS)

    Ronghe, Amruta; Chatterjee, Anwesha; Singh, Bhupendra; Dandawate, Prasad; Abdalla, Fatma; Bhat, Nimee K.; Padhye, Subhash; Bhat, Hari K.

    2016-01-01

    Breast cancer is a public health concern worldwide. Prolonged exposure to estrogens has been implicated in the development of breast neoplasms. Epidemiologic and experimental evidence suggest a chemopreventive role of phytoestrogens in breast cancers. Resveratrol, a naturally occurring phytoestrogen, has been shown to have potent anti-cancer properties. However, poor efficacy and bioavailability have prevented the use of resveratrol in clinics. In order to address these problems, we have synthesized a combinatorial library of azaresveratrol analogs and tested them for their ability to inhibit the proliferation of breast cancer cells. We have recently shown that 4-(E)-{(p-tolylimino)-methylbenzene-1,2-diol} (TIMBD), has better anti-cancer properties than resveratrol and any other resveratrol analog we have synthesized so far. The objective of this study was to investigate the regulation of estrogen receptors (ERs) α and β by TIMBD in breast cancer cell lines. We demonstrate that TIMBD significantly induces the mRNA and protein expression levels of ERβ and inhibits that of ERα. TIMBD inhibits mRNA and protein expression levels of oncogene c-Myc, and cell cycle protein cyclin D1, which are important regulators of cellular proliferation. TIMBD significantly induces protein expression levels of tumor suppressor genes p53 and p21 in MCF-7 cells. TIMBD inhibits c-Myc in an ERβ-dependent fashion in MCF-10 A and ERβ1-transfected MDA-MB-231 cells, suggesting regulation of ERs as an important upstream mechanism of this analog. ERβ plays a partial role in inhibition of proliferation by TIMBD while ERα overexpression does not significantly affect TIMBD's inhibition. - Highlights: • Resveratrol analog TIMBD inhibits growth of breast cancer cells. • TIMBD induces protein expression levels of ERβ and inhibits that of ERα. • TIMBD inhibits c-Myc and cyclin D1, and induces p53 and p21. • TIMBD suppresses c-Myc in an ER-dependent fashion.

  1. Galectin-3 facilitates cell motility in gastric cancer by up-regulating protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1.

    Directory of Open Access Journals (Sweden)

    Seok-Jun Kim

    Full Text Available BACKGROUND: Galectin-3 is known to regulate cancer metastasis. However, the underlying mechanism has not been defined. Through the DNA microarray studies after galectin-3 silencing, we demonstrated here that galectin-3 plays a key role in up-regulating the expressions of protease-activated receptor-1 (PAR-1 and matrix metalloproteinase-1 (MMP-1 PAR-1 thereby promoting gastric cancer metastasis. METHODOLOGY/PRINCIPAL FINDINGS: We examined the expression levels of Galectin-3, PAR-1, and MMP-1 in gastric cancer patient tissues and also the effects of silencing these proteins with specific siRNAs and of over-expressing them using specific lenti-viral constructs. We also employed zebrafish embryo model for analysis of in vivo gastric cancer cell invasion. These studies demonstrated that: a galectin-3 silencing decreases the expression of PAR-1. b galectin-3 over-expression increases cell migration and invasion and this increase can be reversed by PAR-1 silencing, indicating that galectin-3 increases cell migration and invasion via PAR-1 up-regulation. c galectin-3 directly interacts with AP-1 transcriptional factor, and this complex binds to PAR-1 promoter and drives PAR-1 transcription. d galectin-3 also amplifies phospho-paxillin, a PAR-1 downstream target, by increasing MMP-1 expression. MMP-1 silencing blocks phospho-paxillin amplification and cell invasion caused by galectin-3 over-expression. e Silencing of either galectin-3, PAR-1 or MMP-1 significantly reduced cell migration into the vessels in zebrafish embryo model. f Galectin-3, PAR-1, and MMP-1 are highly expressed and co-localized in malignant tissues from gastric cancer patients. CONCLUSIONS/SIGNIFICANCE: Galectin-3 plays the key role of activating cell surface receptor through production of protease and boosts gastric cancer metastasis. Galectin-3 has the potential to serve as a useful pharmacological target for prevention of gastric cancer metastasis.

  2. Curcumin enhances TRAIL-induced apoptosis of breast cancer cells by regulating apoptosis-related proteins

    Czech Academy of Sciences Publication Activity Database

    Park, S.; Cho, D. J.; Anděra, Ladislav; Suh, N.; Kim, I.

    2013-01-01

    Roč. 383, 1-2 (2013), s. 39-48 ISSN 0300-8177 Institutional support: RVO:68378050 Keywords : TRAIL * curcumin * apoptosis * breast cancer Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.388, year: 2013

  3. The Expression and Regulation of the Cell Adhesion Molecule CD44 in Human Breast Cancer

    National Research Council Canada - National Science Library

    Ge, Lisheng

    1997-01-01

    ... alternative splicing signals of CD44 variant exons as control elements in CEPT. In our colon cancer metastasis to liver model, we developed dual modulation vectors to increase tissue-specific expression of cytosine deaminase (CD...

  4. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase