WorldWideScience

Sample records for regulates basal disease

  1. An autocrine ATP release mechanism regulates basal ciliary activity in airway epithelium.

    Science.gov (United States)

    Droguett, Karla; Rios, Mariana; Carreño, Daniela V; Navarrete, Camilo; Fuentes, Christian; Villalón, Manuel; Barrera, Nelson P

    2017-07-15

    Extracellular ATP, in association with [Ca 2+ ] i regulation, is required to maintain basal ciliary beat frequency. Increasing extracellular ATP levels increases ciliary beating in airway epithelial cells, maintaining a sustained response by inducing the release of additional ATP. Extracellular ATP levels in the millimolar range, previously associated with pathophysiological conditions of the airway epithelium, produce a transient arrest of ciliary activity. The regulation of ciliary beat frequency is dependent on ATP release by hemichannels (connexin/pannexin) and P2X receptor activation, the blockage of which may even stop ciliary movement. The force exerted by cilia, measured by atomic force microscopy, is reduced following extracellular ATP hydrolysis. This result complements the current understanding of the ciliary beating regulatory mechanism, with special relevance to inflammatory diseases of the airway epithelium that affect mucociliary clearance. Extracellular nucleotides, including ATP, are locally released by the airway epithelium and stimulate ciliary activity in a [Ca 2+ ] i -dependent manner after mechanical stimulation of ciliated cells. However, it is unclear whether the ATP released is involved in regulating basal ciliary activity and mediating changes in ciliary activity in response to chemical stimulation. In the present study, we evaluated ciliary beat frequency (CBF) and ciliary beating forces in primary cultures from mouse tracheal epithelium, using videomicroscopy and atomic force microscopy (AFM), respectively. Extracellular ATP levels and [Ca 2+ ] i were measured by luminometric and fluorimetric assays, respectively. Uptake of ethidium bromide was measured to evaluate hemichannel functionality. We show that hydrolysis of constitutive extracellular ATP levels with apyrase (50 U ml -1 ) reduced basal CBF by 45% and ciliary force by 67%. The apyrase effect on CBF was potentiated by carbenoxolone, a hemichannel inhibitor, and oxidized ATP, an

  2. Positron emission tomography and basal ganglia functions

    International Nuclear Information System (INIS)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi

    1990-01-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs

  3. Positron emission tomography and basal ganglia functions

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Motohiro; Otsuka, Makoto; Taniwaki, Koukyo; Hosokawa, Shinichi; Kuwabara, Yasuo; Ichiya, Yuichi [Kyushu Univ., Fukuoka (Japan). Faculty of Medicine

    1990-05-01

    With the advent of positron emission tomography (PET), studies on the human brain function and pathophysiology of brain damage have been extremely progressed. It is well-known that the basal ganglia plays an important role as one of the central nervous system involved in exercise regulation. More recently, the potential involvement of the basal ganglia in psychological processes, such as cognitive function, has been pointed out, receiving much attention. In spite of such a lot of studies, however, basal ganglia function remains unclear. This paper describes the relationships between PET findings and basal ganglia function. PET findings are discussed in relation to brain energy metabolism and striatal dopamine function. Pathophysiology of the basal ganglia are described in terms of the following diseases: Parkinson's disease, Parkinson's syndrome, progressive supranuclear palsy, Huntington's disease, and dystonia. Physiological backgrounds of the basal ganglia for PET images are also referred to. (N.K.) 75 refs.

  4. Basal ganglia circuits changes in Parkinson's disease patients.

    Science.gov (United States)

    Wu, Tao; Wang, Jue; Wang, Chaodong; Hallett, Mark; Zang, Yufeng; Wu, Xiaoli; Chan, Piu

    2012-08-22

    Functional changes in basal ganglia circuitry are responsible for the major clinical features of Parkinson's disease (PD). Current models of basal ganglia circuitry can only partially explain the cardinal symptoms in PD. We used functional MRI to investigate the causal connectivity of basal ganglia networks from the substantia nigra pars compacta (SNc) in PD in the movement and resting state. In controls, SNc activity predicted increased activity in the supplementary motor area, the default mode network, and dorsolateral prefrontal cortex, but, in patients, activity predicted decreases in the same structures. The SNc had decreased connectivity with the striatum, globus pallidus, subthalamic nucleus, thalamus, supplementary motor area, dorsolateral prefrontal cortex, insula, default mode network, temporal lobe, cerebellum, and pons in patients compared to controls. Levodopa administration partially normalized the pattern of connectivity. Our findings show how the dopaminergic system exerts influences on widespread brain networks, including motor and cognitive networks. The pattern of basal ganglia network connectivity is abnormal in PD secondary to dopamine depletion, and is more deviant in more severe disease. Use of functional MRI with network analysis appears to be a useful method to demonstrate basal ganglia pathways in vivo in human subjects. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  5. Balancing the Basal Ganglia Circuitry: A Possible New Role for Dopamine D2 Receptors in Health and Disease

    OpenAIRE

    Cazorla, Maxime; Kang, Un Jung; Kellendonk, Christoph

    2015-01-01

    Current therapies for treating movement disorders such as Parkinson’s disease are effective but limited by undesirable and intractable side effects. Developing more effective therapies will require better understanding of what causes basal ganglia dys-regulation and why medication-induced side effects develop. Although basal ganglia have been extensively studied in the last decades, its circuit anatomy is very complex, and significant controversy exists as to how the interplay of different ba...

  6. Salicylic acid regulates basal resistance to Fusarium head blight in wheat.

    Science.gov (United States)

    Makandar, Ragiba; Nalam, Vamsi J; Lee, Hyeonju; Trick, Harold N; Dong, Yanhong; Shah, Jyoti

    2012-03-01

    Fusarium head blight (FHB) is a destructive disease of cereal crops such as wheat and barley. Previously, expression in wheat of the Arabidopsis NPR1 gene (AtNPR1), which encodes a key regulator of salicylic acid (SA) signaling, was shown to reduce severity of FHB caused by Fusarium graminearum. It was hypothesized that SA signaling contributes to wheat defense against F. graminearum. Here, we show that increased accumulation of SA in fungus-infected spikes correlated with elevated expression of the SA-inducible pathogenesis-related 1 (PR1) gene and FHB resistance. In addition, FHB severity and mycotoxin accumulation were curtailed in wheat plants treated with SA and in AtNPR1 wheat, which is hyper-responsive to SA. In support of a critical role for SA in basal resistance to FHB, disease severity was higher in wheat expressing the NahG-encoded salicylate hydroxylase, which metabolizes SA. The FHB-promoting effect of NahG was overcome by application of benzo (1,2,3), thiadiazole-7 carbothioic acid S-methyl ester, a synthetic functional analog of SA, thus confirming an important role for SA signaling in basal resistance to FHB. We further demonstrate that jasmonate signaling has a dichotomous role in wheat interaction with F. graminearum, constraining activation of SA signaling during early stages of infection and promoting resistance during the later stages of infection.

  7. Psychological Assessment of Patients With Biotin-Thiamine-Responsive Basal Ganglia Disease.

    Science.gov (United States)

    Alfadhel, Majid; Al-Bluwi, Amal

    2017-01-01

    Biotin-thiamine-responsive basal ganglia disease is a devastating autosomal recessive inherited neurological disorder. We conducted a retrospective chart review of all patients with biotin-thiamine-responsive basal ganglia disease who underwent a formal psychological assessment. Six females and 3 males were included. Five patients (56%) had an average IQ, two patients (22%) had mild delay, and two (22%) had severe delay. A normal outcome was directly related to the time of diagnosis and initiation of treatment. Early diagnosis and immediate commencement of treatment were associated with a favorable outcome and vice versa. The most affected domain was visual motor integration, while understanding and mathematical problem-solving were the least affected. In summary, this is the first study discussing the psychological assessment of patients with biotin-thiamine-responsive basal ganglia disease. The results of this study alert clinicians to consider prompt initiation of biotin and thiamine in any patient presenting with neuroregression and a basal ganglia lesion on a brain magnetic resonance imaging.

  8. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A L; Wilcock, Gordon K; Filippini, Nicola; Zamboni, Giovanna; Hu, Michele T M; Mackay, Clare E

    2015-01-01

    Resting state functional MRI (rs-fMRI) has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD). In order to assess whether changes within the basal ganglia network (BGN) are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD). Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  9. Comparative histochemical study of Bowen’s disease and actinic keratosis: preserved normal basal cells in Bowen’s disease

    Directory of Open Access Journals (Sweden)

    H Ishida

    2009-12-01

    Full Text Available The degree of DNA-instability as revealed by immunohistochemical staining with anti-cytidine antibody after acid hydrolysis (DNA-instability test has been recently used as a marker of malignancy. This technique was applied to examine 17 skin tissue samples of Bowen’s disease, 47 of actinic keratosis, 15 of squamous cell carcinoma, 5 of seborrheic keratosis, and 10 of normal skin. All benign neoplastic cells of seborrheic keratosis and normal epidermal cells were negative. On the other hand, all cancer cells were positive with the DNA-instability test, indicating their malignancy, but all basal cells in Bowen’s disease were completely negative. Compatible with this result, the basal cells in Bowen’s disease were characteristically normal as evident in other histochemical examinations. Thus, they were negative with p53 immunohistochemistry, with normal signals of chromosome 17 in situ hybridisation and argyrophilic nucleolar organiser region, and showed slightly enhanced proliferative activity as revealed by proliferating cell nuclear antigen immunohistochemistry. Immunohistochemical staining with 34 ß E12 (monoclonal antibody against cytokeratins 1, 5, 10, and 14, which stains all normal epidermal keratinocytes including basal cells, showed that only the basal cells of Bowen’s disease stained strongly and homogeneously, while all cancer cells in the upper layers of Bowen’s disease and all layers of actinic keratosis were only sporadically or weakly stained. Staining with 34 ß B4 (monoclonal antibody against cytokeratin 1, which recognises the whole epidermis except for the basal layer in the normal epidermis, showed that the basal cells in the Bowen’s disease were completely negative, and lower layer cells in the actinic keratosis and upper layer cells in Bowen’s disease were only sporadically stained positive, although the superficial layer cells in actinic keratosis stained strongly and homogeneously. Our findings clearly

  10. The role of basal ganglia in language production: evidence from Parkinson's disease.

    Science.gov (United States)

    Macoir, Joël; Fossard, Marion; Mérette, Chantal; Langlois, Mélanie; Chantal, Sophie; Auclair-Ouellet, Noémie

    2013-01-01

    According to the dominant view in the literature, basal ganglia do not play a direct role in language but are involved in cognitive control required by linguistic and non-linguistic processing. In Parkinson's disease, basal ganglia impairment leads to motor symptoms and language deficits; those affecting the production of verbs have been frequently explored. According to a controversial theory, basal ganglia play a specific role in the conjugation of regular verbs as compared to irregular verbs. We report the results of 15 patients with Parkinson's disease in experimental conjugation tasks. They performed below healthy controls but their performance did not differ for regular and irregular verbs. These results confirm that basal ganglia are involved in language processing but do not play a specific role in verb production.

  11. Aberrant functional connectivity within the basal ganglia of patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Michal Rolinski

    2015-01-01

    Full Text Available Resting state functional MRI (rs-fMRI has been previously shown to be a promising tool for the assessment of early Parkinson's disease (PD. In order to assess whether changes within the basal ganglia network (BGN are disease specific or relate to neurodegeneration generally, BGN connectivity was assessed in 32 patients with early PD, 19 healthy controls and 31 patients with Alzheimer's disease (AD. Voxel-wise comparisons demonstrated decreased connectivity within the basal ganglia of patients with PD, when compared to patients with AD and healthy controls. No significant changes within the BGN were seen in AD, when compared to healthy controls. Moreover, measures of functional connectivity extracted from regions within the basal ganglia were significantly lower in the PD group. Consistent with previous radiotracer studies, the greatest change when compared to the healthy control group was seen in the posterior putamen of PD subjects. When combined into a single component score, this method differentiated PD from AD and healthy control subjects, with a diagnostic accuracy of 81%. Rs-fMRI can be used to demonstrate the aberrant functional connectivity within the basal ganglia of patients with early PD. These changes are likely to be representative of patho-physiological basal ganglia dysfunction and are not associated with generalised neurodegeneration seen in AD. Further studies are necessary to ascertain whether this method is sensitive enough to detect basal ganglia dysfunction in prodromal PD, and its utility as a potential diagnostic biomarker for premotor and early motoric disease.

  12. Activity of the basal ganglia in Parkinson's disease estimated by PET

    International Nuclear Information System (INIS)

    Ohye, Chihiro

    1995-01-01

    Positron emission tomographic (PET) studies on the local cerebral blood flow, oxygen metabolic rate, glucose metabolic rate in the basal ganglia of Parkinson's disease are reviewed. PET has demonstrated that blood flow was decreased in the cerebral cortex, especially the frontal region, of Parkinson's disease and that specific change in blood flow or metabolic rate in the basal ganglia was detected only in patients with hemi-parkinsonism. In authors' study on PET using 18 FDG in patients with tremor type and rigid type Parkinson's disease, changes in blood flow and metabolic rate were minimal at the basal ganglia level in tremor type patients, but cortical blood flow was decreased and metabolic rate was more elevated in the basal ganglia in rigid type patients. These findings were correlated with depth micro-recordings obtained by stereotactic pallidotomy. PET studies have also revealed that activity in the nerve terminal was decreased with decreasing dopamine and that dopamine (mainly D 2 ) activity was remarkably increased. PET studies with specific tracers are promising in providing more accurate information about functional state of living human brain with minimal invasion to patients. (N.K.)

  13. Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson's disease and Huntington's disease

    Science.gov (United States)

    Hausdorff, J. M.; Cudkowicz, M. E.; Firtion, R.; Wei, J. Y.; Goldberger, A. L.

    1998-01-01

    The basal ganglia are thought to play an important role in regulating motor programs involved in gait and in the fluidity and sequencing of movement. We postulated that the ability to maintain a steady gait, with low stride-to-stride variability of gait cycle timing and its subphases, would be diminished with both Parkinson's disease (PD) and Huntington's disease (HD). To test this hypothesis, we obtained quantitative measures of stride-to-stride variability of gait cycle timing in subjects with PD (n = 15), HD (n = 20), and disease-free controls (n = 16). All measures of gait variability were significantly increased in PD and HD. In subjects with PD and HD, gait variability measures were two and three times that observed in control subjects, respectively. The degree of gait variability correlated with disease severity. In contrast, gait speed was significantly lower in PD, but not in HD, and average gait cycle duration and the time spent in many subphases of the gait cycle were similar in control subjects, HD subjects, and PD subjects. These findings are consistent with a differential control of gait variability, speed, and average gait cycle timing that may have implications for understanding the role of the basal ganglia in locomotor control and for quantitatively assessing gait in clinical settings.

  14. Basal ganglia modulation of thalamocortical relay in Parkinson's disease and dystonia.

    Science.gov (United States)

    Guo, Yixin; Park, Choongseok; Worth, Robert M; Rubchinsky, Leonid L

    2013-01-01

    Basal ganglia dysfunction has being implied in both Parkinson's disease and dystonia. While these disorders probably involve different cellular and circuit pathologies within and beyond basal ganglia, there may be some shared neurophysiological pathways. For example, pallidotomy and pallidal Deep Brain Stimulation (DBS) are used in symptomatic treatment of both disorders. Both conditions are marked by alterations of rhythmicity of neural activity throughout basal ganglia-thalamocortical circuits. Increased synchronized oscillatory activity in beta band is characteristic of Parkinson's disease, while different frequency bands, theta and alpha, are involved in dystonia. We compare the effect of the activity of GPi, the output nuclei of the basal ganglia, on information processing in the downstream neural circuits of thalamus in Parkinson's disease and dystonia. We use a data-driven computational approach, a computational model of the thalamocortical (TC) cell modulated by experimentally recorded data, to study the differences and similarities of thalamic dynamics in dystonia and Parkinson's disease. Our analysis shows no substantial differences in TC relay between the two conditions. Our results suggest that, similar to Parkinson's disease, a disruption of thalamic processing could also be involved in dystonia. Moreover, the degree to which TC relay fidelity is impaired is approximately the same in both conditions. While Parkinson's disease and dystonia may have different pathologies and differ in the oscillatory content of neural discharge, our results suggest that the effect of patterning of pallidal discharge is similar in both conditions. Furthermore, these results suggest that the mechanisms of GPi DBS in dystonia may involve improvement of TC relay fidelity.

  15. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson's disease.

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C; Mackay, Clare E; Hu, Michele T M

    2016-08-01

    SEE POSTUMA DOI101093/AWW131 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson's disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson's disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson's disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson's disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson's disease and 10 control subjects received (123)I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye movement sleep

  16. Do gap junctions regulate synchrony in the parkinsonian basal ganglia?

    NARCIS (Netherlands)

    Schwab, B.C.

    2016-01-01

    Patients with Parkinson’s disease (PD) typically suffer severely from different types of symptoms. Motor symptoms, restricting the patients’ ability to perform controlled movements in daily life, are of special clinical interest and have been related to neural activity in the basal ganglia.

  17. Basal Ganglia Circuits as Targets for Neuromodulation in Parkinson Disease.

    Science.gov (United States)

    DeLong, Mahlon R; Wichmann, Thomas

    2015-11-01

    The revival of stereotactic surgery for Parkinson disease (PD) in the 1990s, with pallidotomy and then with high-frequency deep brain stimulation (DBS), has led to a renaissance in functional surgery for movement and other neuropsychiatric disorders. To examine the scientific foundations and rationale for the use of ablation and DBS for treatment of neurologic and psychiatric diseases, using PD as the primary example. A summary of the large body of relevant literature is presented on anatomy, physiology, pathophysiology, and functional surgery for PD and other basal ganglia disorders. The signs and symptoms of movement disorders appear to result largely from signature abnormalities in one of several parallel and largely segregated basal ganglia thalamocortical circuits (ie, the motor circuit). The available evidence suggests that the varied movement disorders resulting from dysfunction of this circuit result from propagated disruption of downstream network activity in the thalamus, cortex, and brainstem. Ablation and DBS act to free downstream networks to function more normally. The basal ganglia thalamocortical circuit may play a key role in the expression of disordered movement, and the basal ganglia-brainstem projections may play roles in akinesia and disturbances of gait. Efforts are under way to target circuit dysfunction in brain areas outside of the traditionally implicated basal ganglia thalamocortical system, in particular, the pedunculopontine nucleus, to address gait disorders that respond poorly to levodopa and conventional DBS targets. Deep brain stimulation is now the treatment of choice for many patients with advanced PD and other movement disorders. The success of DBS and other forms of neuromodulation for neuropsychiatric disorders is the result of the ability to modulate circuit activity in discrete functional domains within the basal ganglia circuitry with highly focused interventions, which spare uninvolved areas that are often disrupted with

  18. Imaging insights into basal ganglia function, Parkinson's disease, and dystonia.

    Science.gov (United States)

    Stoessl, A Jon; Lehericy, Stephane; Strafella, Antonio P

    2014-08-09

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson's disease from healthy controls, and show great promise for differentiation between Parkinson's disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson's disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson's disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Basal ganglia dysfunction in idiopathic REM sleep behaviour disorder parallels that in early Parkinson’s disease

    Science.gov (United States)

    Rolinski, Michal; Griffanti, Ludovica; Piccini, Paola; Roussakis, Andreas A.; Szewczyk-Krolikowski, Konrad; Menke, Ricarda A.; Quinnell, Timothy; Zaiwalla, Zenobia; Klein, Johannes C.; Mackay, Clare E.

    2016-01-01

    Abstract See Postuma (doi:10.1093/aww131) for a scientific commentary on this article. Resting state functional magnetic resonance imaging dysfunction within the basal ganglia network is a feature of early Parkinson’s disease and may be a diagnostic biomarker of basal ganglia dysfunction. Currently, it is unclear whether these changes are present in so-called idiopathic rapid eye movement sleep behaviour disorder, a condition associated with a high rate of future conversion to Parkinson’s disease. In this study, we explore the utility of resting state functional magnetic resonance imaging to detect basal ganglia network dysfunction in rapid eye movement sleep behaviour disorder. We compare these data to a set of healthy control subjects, and to a set of patients with established early Parkinson’s disease. Furthermore, we explore the relationship between resting state functional magnetic resonance imaging basal ganglia network dysfunction and loss of dopaminergic neurons assessed with dopamine transporter single photon emission computerized tomography, and perform morphometric analyses to assess grey matter loss. Twenty-six patients with polysomnographically-established rapid eye movement sleep behaviour disorder, 48 patients with Parkinson’s disease and 23 healthy control subjects were included in this study. Resting state networks were isolated from task-free functional magnetic resonance imaging data using dual regression with a template derived from a separate cohort of 80 elderly healthy control participants. Resting state functional magnetic resonance imaging parameter estimates were extracted from the study subjects in the basal ganglia network. In addition, eight patients with rapid eye movement sleep behaviour disorder, 10 with Parkinson’s disease and 10 control subjects received 123I-ioflupane single photon emission computerized tomography. We tested for reduction of basal ganglia network connectivity, and for loss of tracer uptake in rapid eye

  20. Motor phenotype and magnetic resonance measures of basal ganglia iron levels in Parkinson's disease.

    Science.gov (United States)

    Bunzeck, Nico; Singh-Curry, Victoria; Eckart, Cindy; Weiskopf, Nikolaus; Perry, Richard J; Bain, Peter G; Düzel, Emrah; Husain, Masud

    2013-12-01

    In Parkinson's disease the degree of motor impairment can be classified with respect to tremor dominant and akinetic rigid features. While tremor dominance and akinetic rigidity might represent two ends of a continuum rather than discrete entities, it would be important to have non-invasive markers of any biological differences between them in vivo, to assess disease trajectories and response to treatment, as well as providing insights into the underlying mechanisms contributing to heterogeneity within the Parkinson's disease population. Here, we used magnetic resonance imaging to examine whether Parkinson's disease patients exhibit structural changes within the basal ganglia that might relate to motor phenotype. Specifically, we examined volumes of basal ganglia regions, as well as transverse relaxation rate (a putative marker of iron load) and magnetization transfer saturation (considered to index structural integrity) within these regions in 40 individuals. We found decreased volume and reduced magnetization transfer within the substantia nigra in Parkinson's disease patients compared to healthy controls. Importantly, there was a positive correlation between tremulous motor phenotype and transverse relaxation rate (reflecting iron load) within the putamen, caudate and thalamus. Our findings suggest that akinetic rigid and tremor dominant symptoms of Parkinson's disease might be differentiated on the basis of the transverse relaxation rate within specific basal ganglia structures. Moreover, they suggest that iron load within the basal ganglia makes an important contribution to motor phenotype, a key prognostic indicator of disease progression in Parkinson's disease. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. Sp1 and CREB regulate basal transcription of the human SNF2L gene

    International Nuclear Information System (INIS)

    Xia Yu; Jiang Baichun; Zou Yongxin; Gao Guimin; Shang Linshan; Chen Bingxi; Liu Qiji; Gong Yaoqin

    2008-01-01

    Imitation Switch (ISWI) is a member of the SWI2/SNF2 superfamily of ATP-dependent chromatin remodelers, which are involved in multiple nuclear functions, including transcriptional regulation, replication, and chromatin assembly. Mammalian genomes encode two ISWI orthologs, SNF2H and SNF2L. In order to clarify the molecular mechanisms governing the expression of human SNF2L gene, we functionally examined the transcriptional regulation of human SNF2L promoter. Reporter gene assays demonstrated that the minimal SNF2L promoter was located between positions -152 to -86 relative to the transcription start site. In this region we have identified a cAMP-response element (CRE) located at -99 to -92 and a Sp1-binding site at -145 to -135 that play a critical role in regulating basal activity of human SNF2L gene, which were proven by deletion and mutation of specific binding sites, EMSA, and down-regulating Sp1 and CREB via RNAi. This study provides the first insight into the mechanisms that control basal expression of human SNF2L gene

  2. Interaction of synchronized dynamics in cortex and basal ganglia in Parkinson's disease.

    Science.gov (United States)

    Ahn, Sungwoo; Zauber, S Elizabeth; Worth, Robert M; Witt, Thomas; Rubchinsky, Leonid L

    2015-09-01

    Parkinson's disease pathophysiology is marked by increased oscillatory and synchronous activity in the beta frequency band in cortical and basal ganglia circuits. This study explores the functional connections between synchronized dynamics of cortical areas and synchronized dynamics of subcortical areas in Parkinson's disease. We simultaneously recorded neuronal units (spikes) and local field potentials (LFP) from subthalamic nucleus (STN) and electroencephalograms (EEGs) from the scalp in parkinsonian patients, and analysed the correlation between the time courses of the spike-LFP synchronization and inter-electrode EEG synchronization. We found the (non-invasively obtained) time course of the synchrony strength between EEG electrodes and the (invasively obtained) time course of the synchrony between spiking units and LFP in STN to be weakly, but significantly, correlated with each other. This correlation is largest for the bilateral motor EEG synchronization, followed by bilateral frontal EEG synchronization. Our observations suggest that there may be multiple functional modes by which the cortical and basal ganglia circuits interact with each other in Parkinson's disease: not only may synchronization be observed between some areas in cortex and the basal ganglia, but also synchronization within cortex and within basal ganglia may be related, suggesting potentially a more global functional interaction. More coherent dynamics in one brain region may modulate or activate the dynamics of another brain region in a more powerful way, causing correlations between changes in synchrony strength in the two regions. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  3. Neuroradiology of basal ganglia diseases in children and adolescents

    International Nuclear Information System (INIS)

    Savoiardo, M.; Passerini, A.; D'Incerti, L.

    1987-01-01

    Computerized tomography and NMR imaging findings observed in the diseases affecting the basal ganglia in childhood and adolescence are discussed. First the dystonic syndromes associated with hereditary neurologic disorders of probable metabolic degenerative origin are considered; then the non-hereditary dystonias caused by various intoxications or acute insults are briefly discussed. 26 refs.; 4 figs

  4. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    Science.gov (United States)

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2015-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, advances in magnetic resonance enable the separation of patients with Parkinson’s disease from healthy controls, and show great promise for differentiation between Parkinson’s disease and other akinetic-rigid syndromes. Radionuclide imaging is useful to show the dopaminergic basis for both motor and behavioural complications of Parkinson’s disease and its treatment, and alterations in non-dopaminergic systems. Both PET and MRI can be used to study patterns of functional connectivity in the brain, which is disrupted in Parkinson’s disease and in association with its complications, and in other basal-ganglia disorders such as dystonia, in which an anatomical substrate is not otherwise apparent. Functional imaging is increasingly used to assess underlying pathological processes such as neuroinflammation and abnormal protein deposition. This imaging is another promising approach to assess the effects of treatments designed to slow disease progression. PMID:24954673

  5. Complex Dynamics in the Basal Ganglia: Health and Disease Beyond the Motor System.

    Science.gov (United States)

    Andres, Daniela S; Darbin, Olivier

    2018-01-01

    The rate and oscillatory hypotheses are the two main current frameworks of basal ganglia pathophysiology. Both hypotheses have emerged from research on movement disorders sharing similar conceptualizations. These pathological conditions are classified either as hypokinetic or hyperkinetic, and the electrophysiological hallmarks of basal ganglia dysfunction are categorized as prokinetic or antikinetic. Although nonmotor symptoms, including neurobehavioral symptoms, are a key manifestation of basal ganglia dysfunction, they are uncommonly accounted for in these models. In patients with Parkinson's disease, the broad spectrum of motor symptoms and neurobehavioral symptoms challenges the concept that basal ganglia disorders can be classified into two categories. The profile of symptoms of basal ganglia dysfunction is best characterized by a breakdown of information processing, accompanied at an electrophysiological level by complex alterations of spiking activity from basal ganglia neurons. The authors argue that the dynamics of the basal ganglia circuit cannot be fully characterized by linear properties such as the firing rate or oscillatory activity. In fact, the neuronal spiking stream of the basal ganglia circuit is irregular but has temporal structure. In this context, entropy was introduced as a measure of probabilistic irregularity in the temporal organization of neuronal activity of the basal ganglia, giving place to the entropy hypothesis of basal ganglia pathology. Obtaining a quantitative characterization of irregularity of spike trains from basal ganglia neurons is key to elaborating a new framework of basal ganglia pathophysiology.

  6. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer's Disease.

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R; Waldvogel, Henry J; Faull, Richard L

    2016-12-17

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer's disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer's disease.

  7. Proximity Interactions among Basal Body Components in Trypanosoma brucei Identify Novel Regulators of Basal Body Biogenesis and Inheritance

    Directory of Open Access Journals (Sweden)

    Hung Quang Dang

    2017-01-01

    Full Text Available The basal body shares similar architecture with centrioles in animals and is involved in nucleating flagellar axonemal microtubules in flagellated eukaryotes. The early-branching Trypanosoma brucei possesses a motile flagellum nucleated from the basal body that consists of a mature basal body and an adjacent pro-basal body. Little is known about the basal body proteome and its roles in basal body biogenesis and flagellar axoneme assembly in T. brucei. Here, we report the identification of 14 conserved centriole/basal body protein homologs and 25 trypanosome-specific basal body proteins. These proteins localize to distinct subdomains of the basal body, and several of them form a ring-like structure surrounding the basal body barrel. Functional characterization of representative basal body proteins revealed distinct roles in basal body duplication/separation and flagellar axoneme assembly. Overall, this work identified novel proteins required for basal body duplication and separation and uncovered new functions of conserved basal body proteins in basal body duplication and separation, highlighting an unusual mechanism of basal body biogenesis and inheritance in this early divergent eukaryote.

  8. Darier′s disease with warty dyskeratoma and basal cell epithelioma

    Directory of Open Access Journals (Sweden)

    Prabhakara V

    1996-01-01

    Full Text Available A 48-year old man with warty dirty papules over the seborrhoeic areas, also had a nodule with a central keratotic crater over the right cheek. Biopsy of this nodule revealed features of Darier′s disease, warty dyskeratoma and basal cell epithelioma. Even though Darier′s disease and warty dyskeratoma are considered as a distinct entities, the presence in the same lesion emphasizes the need for further studies on this association.

  9. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Science.gov (United States)

    Kwakowsky, Andrea; Milne, Michael R.; Waldvogel, Henry J.; Faull, Richard L.

    2016-01-01

    The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs) are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2) on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease. PMID:27999310

  10. Effect of Estradiol on Neurotrophin Receptors in Basal Forebrain Cholinergic Neurons: Relevance for Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Andrea Kwakowsky

    2016-12-01

    Full Text Available The basal forebrain is home to the largest population of cholinergic neurons in the brain. These neurons are involved in a number of cognitive functions including attention, learning and memory. Basal forebrain cholinergic neurons (BFCNs are particularly vulnerable in a number of neurological diseases with the most notable being Alzheimer’s disease, with evidence for a link between decreasing cholinergic markers and the degree of cognitive impairment. The neurotrophin growth factor system is present on these BFCNs and has been shown to promote survival and differentiation on these neurons. Clinical and animal model studies have demonstrated the neuroprotective effects of 17β-estradiol (E2 on neurodegeneration in BFCNs. It is believed that E2 interacts with neurotrophin signaling on cholinergic neurons to mediate these beneficial effects. Evidence presented in our recent study confirms that altering the levels of circulating E2 levels via ovariectomy and E2 replacement significantly affects the expression of the neurotrophin receptors on BFCN. However, we also showed that E2 differentially regulates neurotrophin receptor expression on BFCNs with effects depending on neurotrophin receptor type and neuroanatomical location. In this review, we aim to survey the current literature to understand the influence of E2 on the neurotrophin system, and the receptors and signaling pathways it mediates on BFCN. In addition, we summarize the physiological and pathophysiological significance of E2 actions on the neurotrophin system in BFCN, especially focusing on changes related to Alzheimer’s disease.

  11. Imaging insights into basal ganglia function, Parkinson’s disease, and dystonia

    OpenAIRE

    Stoessl, A. Jon; Lehericy, Stephane; Strafella, Antonio P.

    2014-01-01

    Recent advances in structural and functional imaging have greatly improved our ability to assess normal functions of the basal ganglia, diagnose parkinsonian syndromes, understand the pathophysiology of parkinsonism and other movement disorders, and detect and monitor disease progression. Radionuclide imaging is the best way to detect and monitor dopamine deficiency, and will probably continue to be the best biomarker for assessment of the effects of disease-modifying therapies. However, adva...

  12. Identification and characterization of a gibberellin-regulated protein, which is ASR5, in the basal region of rice leaf sheaths.

    Science.gov (United States)

    Takasaki, Hironori; Mahmood, Tariq; Matsuoka, Makoto; Matsumoto, Hiroshi; Komatsu, Setsuko

    2008-04-01

    Gibberellins (GAs) regulate growth and development in higher plants. To identify GA-regulated proteins during rice leaf sheath elongation, a proteomic approach was used. Proteins from the basal region of leaf sheath in rice seedling treated with GA(3) were analyzed by fluorescence two-dimensional difference gel electrophoresis. The levels of abscisic acid-stress-ripening-inducible 5 protein (ASR5), elongation factor-1 beta, translationally controlled tumor protein, fructose-bisphosphate aldolase and a novel protein increased; whereas the level of RuBisCO subunit binding-protein decreased by GA(3) treatment. ASR5 out of these six proteins was significantly regulated by GA(3) at the protein level but not at the mRNA level in the basal region of leaf sheaths. Since this protein is regulated not only by abscisic acid but also by GA(3), these results indicate that ASR5 might be involved in plant growth in addition to stress in the basal regions of leaf sheaths.

  13. Basal Cell Carcinoma in Type 2 Segmental Dariers Disease

    International Nuclear Information System (INIS)

    Robertson, L.; Sauder, M. B.

    2012-01-01

    Dariers disease (DD), also known as Keratosis Follicularis or Dariers-White disease, is a rare disorder of keratinisation. DD can present as a generalized autosomal dominant condition as well as a localized or segmental post zygotic condition (Vasquez et al., 2002). Clinical features of DD include greasy, warty papules and plaques on seborrhoeic areas, dystrophic nails, palmo-plantar pits, and papules on the dorsum of the hands and feet. Objective. We report a case of basal cell carcinoma developing in a patient with type 2 segmental DD. Conclusion. According to the current literature, Type 2 segmental disease is a rare presentation of Dariers disease with only 8 previous cases reported to date. In addition, non melanoma skin cancer (NMSC) arising from DD is rarely reported; however, there may be an association between DD and risk of carcinogenesis.

  14. Basal Cell Carcinoma in Type 2 Segmental Darier's Disease

    Directory of Open Access Journals (Sweden)

    Lynne Robertson

    2012-01-01

    Full Text Available Background. Darier's disease (DD, also known as Keratosis Follicularis or Darier-White disease, is a rare disorder of keratinization. DD can present as a generalized autosomal dominant condition as well as a localized or segmental postzygotic condition (Vázquez et al., 2002. Clinical features of DD include greasy, warty papules and plaques on seborrheic areas, dystrophic nails, palmo-plantar pits, and papules on the dorsum of the hands and feet. Objective. We report a case of basal cell carcinoma developing in a patient with type 2 segmental DD. Conclusion. According to the current literature, Type 2 segmental disease is a rare presentation of Darier's disease with only 8 previous cases reported to date. In addition, nonmelanoma skin cancer (NMSC arising from DD is rarely reported; however, there may be an association between DD and risk of carcinogenesis.

  15. Anticipatory guidance in type 2 diabetes to improve disease management; next steps after basal insulin.

    Science.gov (United States)

    Johnson, Eric L; Frias, Juan P; Trujillo, Jennifer M

    2018-03-23

    The alarming rise in the number of people living with type 2 diabetes (T2D) presents primary care physicians with increasing challenges associated with long-term chronic disease care. Studies have shown that the majority of patients are not achieving or maintaining glycemic goals, putting them at risk of a wide range of diabetes-related complications. Disease- and self-management programs have been shown to help patients improve their glycemic control, and are likely to be of particular benefit for patients with diabetes dealing with these issues. Anticipatory guidance is an individualized, proactive approach to patient education and counseling by a health-care professional to support patients in better coping with problems before they arise. It has been shown to improve disease outcomes in a variety of chronic conditions, including diabetes. While important at all stages, anticipatory guidance may be of particular importance during changes in treatment regimens, and especially during transition to, and escalation of, insulin-based regimens. The aim of this article is to provide advice to physicians on anticipatory guidance for basal-insulin dosing, focusing on appropriate basal-insulin-dose increase and prevention of potentially deleterious basal-insulin doses, so called overbasalization. It also provides an overview of new treatment options for patients with T2D who are not well controlled on basal-insulin therapy, fixed-ratio combinations of basal insulin and glucagon-like peptide-1 receptor agonists, and advice on the type of anticipatory guidance needed to ensure safe and appropriate switching to these therapies.

  16. The pedunculopontine tegmental nucleus as a motor and cognitive interface between the cerebellum and basal ganglia

    Directory of Open Access Journals (Sweden)

    Fumika Mori

    2016-11-01

    Full Text Available As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg are involved in the regulation of motor control (locomotion, posture and gaze and cognitive processes (attention, learning, and memory. The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition, and modulate aspects of executive function (such as motivation. In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation to relieve gait freezing and postural instability in advanced Parkinson’s disease patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function, and Parkinson’s disease.

  17. Oscillatory activity in the human basal ganglia: more than just beta, more than just Parkinson's disease.

    Science.gov (United States)

    Alegre, Manuel; Valencia, Miguel

    2013-10-01

    The implantation of deep brain stimulators in different structures of the basal ganglia to treat neurological and psychiatric diseases has allowed the recording of local field potential activity in these structures. The analysis of these signals has helped our understanding of basal ganglia physiology in health and disease. However, there remain some major challenges and questions for the future. In a recent work, Tan et al. (Tan, H., Pogosyan, A., Anam, A., Foltynie, T., Limousin, P., Zrinzo, L., et al. 2013. Frequency specific activity in subthalamic nucleus correlates with hand bradykinesia in Parkinson's disease. Exp. Neurol. 240,122-129) take profit of these recordings to study the changes in subthalamic oscillatory activity during the hold and release phases of a grasping paradigm, and correlate the changes in different frequency bands with performance parameters. They found that beta activity was related to the release phase, while force maintenance related most to theta and gamma/HFO activity. There was no significant effect of the motor state of the patient on this latter association. These findings suggest that the alterations in the oscillatory activity of the basal ganglia in Parkinson's disease are not limited to the beta band, and they involve aspects different from movement preparation and initiation. Additionally, these results highlight the usefulness of the combination of well-designed paradigms with recordings in off and on motor states (in Parkinson's disease), or in different pathologies, in order to understand not only the pathophysiology of the diseases affecting the patients, but also the normal physiology of the basal ganglia. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease.

    Science.gov (United States)

    Lammers, Nicolette M; Sondermeijer, Brigitte M; Twickler, Th B Marcel; de Bie, Rob M; Ackermans, Mariëtte T; Fliers, Eric; Schuurman, P Richard; La Fleur, Susanne E; Serlie, Mireille J

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry, alters basal endogenous glucose production (EGP) or insulin sensitivity in patients with Parkinson's disease (PD). We studied 8 patients with PD treated with DBS STN, in the basal state and during a hyperinsulinemic euglycemic clamp using a stable glucose isotope, in the stimulated and non-stimulated condition. We measured EGP, hepatic insulin sensitivity, peripheral insulin sensitivity (Rd), resting energy expenditure (REE), glucoregulatory hormones, and Parkinson symptoms, using the Unified Parkinson's Disease Rating Scale (UPDRS). Basal plasma glucose and EGP did not differ between the stimulated and non-stimulated condition. Hepatic insulin sensitivity was similar in both conditions and there were no significant differences in Rd and plasma glucoregulatory hormones between DBS on and DBS off. UPDRS was significantly higher in the non-stimulated condition. DBS of the STN in patients with PD does not influence basal EGP or insulin sensitivity. These results suggest that acute modulation of the motor basal ganglia circuitry does not affect glucose metabolism in humans.

  19. Cellular regulation of basal and FSH-stimulated cyclic AMP production in irradiated rat testes

    International Nuclear Information System (INIS)

    Kangasniemi, M.; Kaipia, A.; Toppari, J.; Mali, P.; Huhtaniemi, I.; Parvinen, M.

    1990-01-01

    Basal and follicle-stimulating hormone (FSH)-stimulated cyclic AMP (cAMP) productions by seminiferous tubular segments from irradiated adult rats were investigated at defined stages of the epithelial cycle when specific spermatogenic cells were low in number. Seven days post-irradiation, depletion of spermatogonia did not influence the basal cAMP production, but FSH response increased in stages II-VIII. Seventeen days post-irradiation when spermatocytes were low in number, there was a small increase in basal cAMP level in stages VII-VIII and FSH-stimulated cAMP production increased in stages VII-XII and XIII-I. At 38 days when pachytene spermatocytes and round spermatids (steps 1-6) were low in number, a decreased basal cAMP production was measured in stages II-VI and IX-XII. FSH-stimulated cAMP output increased in stages VII-XII but decreased in stages II-VI. At 52 days when all spermatids were low in number, basal cAMP levels decreased in all stages of the cycle, whereas FSH response was elevated only in stages VII-XII. All spermatogenic cell types seem to have an effect on cAMP production by the seminiferous tubule in a stage-specific fashion. Germ cells appear to regulate Sertoli cell FSH response in a paracrine way, and a part of cAMP may originate from spermatids stimulated by an unknown FSH-dependent Sertoli cell factor. The FSH-dependent functions may control such phenomena as spermatogonial proliferation, final maturation of spermatids, and onset of meiosis

  20. Dopamine-transporter SPECT and Dopamine-D2-receptor SPECT in basal ganglia diseases

    International Nuclear Information System (INIS)

    Hesse, S.; Barthel, H.; Seese, A.; Sabri, O.

    2007-01-01

    The basal ganglia comprise a group of subcortical nuclei, which are essential for motor control. Dysfunction of these areas, especially in dopaminergic transmission, results in disordered movement and neurological diseases such as Parkinson's disease, Wilson's disease, or Huntington disease. Positron emission tomography and single photon emission computed tomography (SPECT) have enhanced the understanding of the underlying pathophysiology, but they much more contribute to the early differential diagnosis of patients suffering from Parkinsonian syndrome in routine care. The present article provides dopamine transporter and D 2 receptor SPECT findings in selected movement disorders. (orig.)

  1. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Yanli [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Li, Hui [The Central Hospital of Wuhan, Tongji Medical College Huazhong University of Science Technology, Wuhan, 430000 (China); Zhang, Xiaoju [Department of Respiratory Medicine, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Shang, Jia [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China); Kang, Yi, E-mail: kykangyi@163.com [Department of Infectious Diseases, Zhengzhou University People' s Hospital (Henan Provincial People' s Hospital), Zhengzhou, 450003 (China)

    2016-01-29

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  2. Basal transcription of APOBEC3G is regulated by USF1 gene in hepatocyte

    International Nuclear Information System (INIS)

    Zeng, Yanli; Li, Hui; Zhang, Xiaoju; Shang, Jia; Kang, Yi

    2016-01-01

    Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3G (APOBEC3G, A3G) exert antiviral defense as an important factor of innate immunity. A variety of cytokines such as IFN-γ,IL2,IL15,IL7 could induce the transcription of A3G. However, the regulation of other nuclear factor on the transcription of A3G have not been reported at the present. To gain new insights into the transcriptional regulation of this restriction factor, we cloned and characterized the promoter region of A3G and investigate the modulation of USF1 gene on the transcription of A3G. We identified a 232 bp region that was sufficient to regulate the activity of full promoter. Transcriptional start sites (TSS) were identified by the luciferase reporter assays of plasmids containing full or shorter fragments of the A3G promoter. The results demonstrated that the core promoter of A3G is located within the region -159/-84 relative to the TSS. Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position -91/-86 relative to the major TSS) and was abolished after mutation of this DNA element. USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte, and the identified E-box represented a binding site for the USF1. - Highlights: • The core promoter of A3G is located within the region −159/−84 relative to the TSS. • Transcriptional activity of A3G core promoter regulated by USF1 was dependent on an E-box (located at position −91/−86 relative to the major TSS). • USF1 gene can take part in basal transcription regulation of the human A3G gene in hepatocyte.

  3. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function

    Directory of Open Access Journals (Sweden)

    Gina A. Smith

    2017-10-01

    Full Text Available Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A and vascular endothelial growth factor receptor 2 (VEGFR2 regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response.

  4. Microstructural Changes within the Basal Ganglia Differ between Parkinson Disease Subtypes.

    Science.gov (United States)

    Nagae, Lidia M; Honce, Justin M; Tanabe, Jody; Shelton, Erika; Sillau, Stefan H; Berman, Brian D

    2016-01-01

    Diffusion tensor imaging (DTI) of the substantia nigra has shown promise in detecting and quantifying neurodegeneration in Parkinson disease (PD). It remains unknown, however, whether differences in microstructural changes within the basal ganglia underlie PD motor subtypes. We investigated microstructural changes within the basal ganglia of mild to moderately affected PD patients using DTI and sought to determine if microstructural changes differ between the tremor dominant (TD) and postural instability/gait difficulty (PIGD) subtypes. Fractional anisotropy, mean diffusivity, radial, and axial diffusivity were obtained from bilateral caudate, putamen, globus pallidus, and substantia nigra of 21 PD patients (12 TD and 9 PIGD) and 20 age-matched healthy controls. T-tests and ANOVA methods were used to compare PD patients, subtypes, and controls, and Spearman correlations tested for relationships between DTI and clinical measures. We found our cohort of PD patients had reduced fractional anisotropy within the substantia nigra and increased mean and radial diffusivity within the substantia nigra and globus pallidus compared to controls, and that changes within those structures were largely driven by the PIGD subtype. Across all PD patients fractional anisotropy within the substantia nigra correlated with disease stage, while in PIGD patients increased diffusivity within the globus pallidus correlated with disease stage and motor severity. We conclude that PIGD patients have more severely affected microstructural changes within the substantia nigra compared to TD, and that microstructural changes within the globus pallidus may be particularly relevant for the manifestation of the PIGD subtype.

  5. Thermal history regulates methylbutenol basal emission rate in Pinus ponderosa.

    Science.gov (United States)

    Gray, Dennis W; Goldstein, Allen H; Lerdau, Manuel T

    2006-07-01

    Methylbutenol (MBO) is a 5-carbon alcohol that is emitted by many pines in western North America, which may have important impacts on the tropospheric chemistry of this region. In this study, we document seasonal changes in basal MBO emission rates and test several models predicting these changes based on thermal history. These models represent extensions of the ISO G93 model that add a correction factor C(basal), allowing MBO basal emission rates to change as a function of thermal history. These models also allow the calculation of a new emission parameter E(standard30), which represents the inherent capacity of a plant to produce MBO, independent of current or past environmental conditions. Most single-component models exhibited large departures in early and late season, and predicted day-to-day changes in basal emission rate with temporal offsets of up to 3 d relative to measured basal emission rates. Adding a second variable describing thermal history at a longer time scale improved early and late season model performance while retaining the day-to-day performance of the parent single-component model. Out of the models tested, the T(amb),T(max7) model exhibited the best combination of day-to-day and seasonal predictions of basal MBO emission rates.

  6. Role of basal ganglia in sleep-wake regulation: neural circuitry and clinical significance

    Directory of Open Access Journals (Sweden)

    Ramalingam Vetrivelan

    2010-11-01

    Full Text Available Researchers over the last decade have made substantial progress towards understanding the roles of dopamine and the basal ganglia in the control of sleep-wake behavior. In this review, we outline recent advancements regarding dopaminergic modulation of sleep through the basal ganglia (BG and extra-BG sites. Our main hypothesis is that dopamine promotes sleep by its action on the D2 receptors in the BG and promotes wakefulness by its action on D1 and D2 receptors in the extra-BG sites. This hypothesis implicates dopamine depletion in the BG (such as in Parkinson’s disease in causing frequent nighttime arousal and overall insomnia. Furthermore, the arousal effects of psychostimulants (methamphetamine, cocaine and modafinil may be linked to the ventral periaquductal grey (vPAG dopaminergic circuitry targeting the extra-BG sleep-wake network.

  7. Ubiquitination of basal VEGFR2 regulates signal transduction and endothelial function.

    Science.gov (United States)

    Smith, Gina A; Fearnley, Gareth W; Abdul-Zani, Izma; Wheatcroft, Stephen B; Tomlinson, Darren C; Harrison, Michael A; Ponnambalam, Sreenivasan

    2017-10-15

    Cell surface receptors can undergo recycling or proteolysis but the cellular decision-making events that sort between these pathways remain poorly defined. Vascular endothelial growth factor A (VEGF-A) and vascular endothelial growth factor receptor 2 (VEGFR2) regulate signal transduction and angiogenesis, but how signaling and proteolysis is regulated is not well understood. Here, we provide evidence that a pathway requiring the E1 ubiquitin-activating enzyme UBA1 controls basal VEGFR2 levels, hence metering plasma membrane receptor availability for the VEGF-A-regulated endothelial cell response. VEGFR2 undergoes VEGF-A-independent constitutive degradation via a UBA1-dependent ubiquitin-linked pathway. Depletion of UBA1 increased VEGFR2 recycling from endosome-to-plasma membrane and decreased proteolysis. Increased membrane receptor availability after UBA1 depletion elevated VEGF-A-stimulated activation of key signaling enzymes such as PLCγ1 and ERK1/2. Although UBA1 depletion caused an overall decrease in endothelial cell proliferation, surviving cells showed greater VEGF-A-stimulated responses such as cell migration and tubulogenesis. Our study now suggests that a ubiquitin-linked pathway regulates the balance between receptor recycling and degradation which in turn impacts on the intensity and duration of VEGF-A-stimulated signal transduction and the endothelial response. © 2017. Published by The Company of Biologists Ltd.

  8. Endotoxin-induced basal respiration alterations of renal HK-2 cells: A sign of pathologic metabolism down-regulation

    Energy Technology Data Exchange (ETDEWEB)

    Quoilin, C., E-mail: cquoilin@ulg.ac.be [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium); Mouithys-Mickalad, A. [Center of Oxygen Research and Development, Department of Chemistry, University of Liege, 4000 Liege (Belgium); Duranteau, J. [Department of Anaesthesia and Surgical ICU, CHU Bicetre, University Paris XI Sud, 94275 Le Kremlin Bicetre (France); Gallez, B. [Biomedical Magnetic Resonance Group, Louvain Drug Research Institute, Universite catholique de Louvain, 1200 Brussels (Belgium); Hoebeke, M. [Laboratory of Biomedical Spectroscopy, Department of Physics, University of Liege, 4000 Liege (Belgium)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer A HK-2 cells model of inflammation-induced acute kidney injury. Black-Right-Pointing-Pointer Two oximetry methods: high resolution respirometry and ESR spectroscopy. Black-Right-Pointing-Pointer Oxygen consumption rates of renal cells decrease when treated with LPS. Black-Right-Pointing-Pointer Cells do not recover normal respiration when the LPS treatment is removed. Black-Right-Pointing-Pointer This basal respiration alteration is a sign of pathologic metabolism down-regulation. -- Abstract: To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) both by high-resolution respirometry and electron spin resonance spectroscopy. These two complementary methods have shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.

  9. Crossed cerebellar and uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease

    International Nuclear Information System (INIS)

    Akiyama, H.; Harrop, R.; McGeer, P.L.; Peppard, R.; McGeer, E.G.

    1989-01-01

    We detected crossed cerebellar as well as uncrossed basal ganglia and thalamic diaschisis in Alzheimer's disease by positron emission tomography (PET) using 18 F-fluorodeoxyglucose. We studied a series of 26 consecutive, clinically diagnosed Alzheimer cases, including 6 proven by later autopsy, and compared them with 9 age-matched controls. We calculated asymmetry indices (AIs) of cerebral metabolic rate for matched left-right regions of interest (ROIs) and determined the extent of diaschisis by correlative analyses. For the Alzheimer group, we found cerebellar AIs correlated negatively, and thalamic AIs positively, with those of the cerebral hemisphere and frontal, temporal, parietal, and angular cortices, while basal ganglia AIs correlated positively with frontal cortical AIs. The only significant correlation of AIs for normal subjects was between the thalamus and cerebral hemisphere. These data indicate that PET is a sensitive technique for detecting diaschisis

  10. The role of inhibition in generating and controlling Parkinson's disease oscillations in the basal ganglia

    Directory of Open Access Journals (Sweden)

    Arvind eKumar

    2011-10-01

    Full Text Available Movement disorders in Parkinson's disease (PD are commonly associated with slow oscillations and increased synchrony of neuronal activity in the basal ganglia. The neural mechanisms underlying this dynamic network dysfunction, however, are only poorly understood. Here, we show that the strength of inhibitory inputs from striatum to globus pallidus external (GPe is a key parameter controlling oscillations in the basal ganglia. Specifically, the increase in striatal activity observed in PD is sufficient to unleash the oscillations in the basal ganglia. This finding allows us to propose a unified explanation for different phenomena: absence of oscillation in the healthy state of the basal ganglia, oscillations in dopamine-depleted state and quenching of oscillations under deep brain stimulation (DBS. These novel insights help us to better understand and optimize the function of DBS protocols. Furthermore, studying the model behaviour under transient increase of activity of the striatal neurons projecting to the indirect pathway, we are able to account for both motor impairment in PD patients and for reduced response inhibition in DBS implanted patients.

  11. Insights into Basal Signaling Regulation, Oligomerization, and Structural Organization of the Human G-Protein Coupled Receptor 83.

    Directory of Open Access Journals (Sweden)

    Anne Müller

    Full Text Available The murine G-protein coupled receptor 83 (mGPR83 is expressed in the hypothalamus and was previously suggested to be involved in the regulation of metabolism. The neuropeptide PEN has been recently identified as a potent GPR83 ligand. Moreover, GPR83 constitutes functionally relevant hetero-oligomers with other G-protein coupled receptors (GPCR such as the ghrelin receptor (GHSR or GPR171. Previous deletion studies also revealed that the long N-terminal extracellular receptor domain (eNDo of mGPR83 may act as an intra-molecular ligand, which participates in the regulation of basal signaling activity, which is a key feature of GPCR function. Here, we investigated particular amino acids at the eNDo of human GPR83 (hGPR83 by side-directed mutagenesis to identify determinants of the internal ligand. These studies were accompanied by structure homology modeling to combine functional insights with structural information. The capacity for hetero-oligomer formation of hGPR83 with diverse family A GPCRs such as the melanocortin-4 receptor (MC4R was also investigated, with a specific emphasis on the impact of the eNDo on oligomerization and basal signaling properties. Finally, we demonstrate that hGPR83 exhibits an unusual basal signaling for different effectors, which also supports signaling promiscuity. hGPR83 interacts with a variety of hypothalamic GPCRs such as the MC4R or GHSR. These interactions are not dependent on the ectodomain and most likely occur at interfaces constituted in the transmembrane regions. Moreover, several amino acids at the transition between the eNDo and transmembrane helix 1 were identified, where mutations lead also to biased basal signaling modulation.

  12. Basally activated nonselective cation currents regulate the resting membrane potential in human and monkey colonic smooth muscle

    Science.gov (United States)

    Dwyer, Laura; Rhee, Poong-Lyul; Lowe, Vanessa; Zheng, Haifeng; Peri, Lauren; Ro, Seungil; Sanders, Kenton M.

    2011-01-01

    Resting membrane potential (RMP) plays an important role in determining the basal excitability of gastrointestinal smooth muscle. The RMP in colonic muscles is significantly less negative than the equilibrium potential of K+, suggesting that it is regulated not only by K+ conductances but by inward conductances such as Na+ and/or Ca2+. We investigated the contribution of nonselective cation channels (NSCC) to the RMP in human and monkey colonic smooth muscle cells (SMC) using voltage- and current-clamp techniques. Qualitative reverse transcriptase-polymerase chain reaction was performed to examine potential molecular candidates for these channels among the transient receptor potential (TRP) channel superfamily. Spontaneous transient inward currents and holding currents were recorded in human and monkey SMC. Replacement of extracellular Na+ with equimolar tetraethylammonium or Ca2+ with Mn2+ inhibited basally activated nonselective cation currents. Trivalent cations inhibited these channels. Under current clamp, replacement of extracellular Na+ with N-methyl-d-glucamine or addition of trivalent cations caused hyperpolarization. Three unitary conductances of NSCC were observed in human and monkey colonic SMC. Molecular candidates for basally active NSCC were TRPC1, C3, C4, C7, M2, M4, M6, M7, V1, and V2 in human and monkey SMC. Comparison of the biophysical properties of these TRP channels with basally active NSCC (bINSCC) suggests that TRPM4 and specific TRPC heteromultimer combinations may underlie the three single-channel conductances of bINSCC. In conclusion, these findings suggest that basally activated NSCC contribute to the RMP in human and monkey colonic SMC and therefore may play an important role in determining basal excitability of colonic smooth muscle. PMID:21566016

  13. The Pedunculopontine Tegmental Nucleus as a Motor and Cognitive Interface between the Cerebellum and Basal Ganglia.

    Science.gov (United States)

    Mori, Fumika; Okada, Ken-Ichi; Nomura, Taishin; Kobayashi, Yasushi

    2016-01-01

    As an important component of ascending activating systems, brainstem cholinergic neurons in the pedunculopontine tegmental nucleus (PPTg) are involved in the regulation of motor control (locomotion, posture and gaze) and cognitive processes (attention, learning and memory). The PPTg is highly interconnected with several regions of the basal ganglia, and one of its key functions is to regulate and relay activity from the basal ganglia. Together, they have been implicated in the motor control system (such as voluntary movement initiation or inhibition), and modulate aspects of executive function (such as motivation). In addition to its intimate connection with the basal ganglia, projections from the PPTg to the cerebellum have been recently reported to synaptically activate the deep cerebellar nuclei. Classically, the cerebellum and basal ganglia were regarded as forming separated anatomical loops that play a distinct functional role in motor and cognitive behavioral control. Here, we suggest that the PPTg may also act as an interface device between the basal ganglia and cerebellum. As such, part of the therapeutic effect of PPTg deep brain stimulation (DBS) to relieve gait freezing and postural instability in advanced Parkinson's disease (PD) patients might also involve modulation of the cerebellum. We review the anatomical position and role of the PPTg in the pathway of basal ganglia and cerebellum in relation to motor control, cognitive function and PD.

  14. Changes in Body Compositions and Basal Metabolic Rates during Treatment of Graves’ Disease

    Directory of Open Access Journals (Sweden)

    Min Joo Kim

    2018-01-01

    Full Text Available Objectives. Because thyroid hormone is an important determinant of body weight and basal metabolic rate, we investigated the changes in the basal metabolic rate and body composition sequentially after treatment for Graves’ disease. Methods. A prospective cohort study was performed with six women newly diagnosed with Graves’ disease. During a 52-week treatment of methimazole, body composition, resting respiratory expenditure (REE, and handgrip strength were measured consecutively. Results. After methimazole treatment, body weight was initially increased (0–8 weeks, subsequently plateaued (8–24 weeks, and gradually decreased in the later period (24–52 weeks despite the decreased food intake. The measured REE was 40% higher than the predicted REE at baseline, and it gradually decreased after treatment. REE positively correlated with thyroid hormone levels, peripheral deiodinase activity, and thyroid’s secretory capacity. Body compositional analyses showed that the fat mass increased during an earlier period (4–12 weeks, while the lean mass increased significantly during the later period (26–52 weeks. Consistent with the lean mass changes, muscle strength also significantly increased during the later period. Conclusions. Treatment of Graves’ disease increased body weight and fat mass transiently with decreased REE. However, long-term compositional changes moved in a beneficial direction increasing lean mass and reinforcing muscle strength, following decreasing fat percentages.

  15. T2-weighted high-intensity signals in the basal ganglia as an interesting image finding in Unverricht-Lundborg disease.

    Science.gov (United States)

    Korja, Miikka; Ferlazzo, Edoardo; Soilu-Hänninen, Merja; Magaudda, Adriana; Marttila, Reijo; Genton, Pierre; Parkkola, Riitta

    2010-01-01

    We conducted a search for white matter changes (WMCs) in 13 Unverricht-Lundborg disease patients and compared the prevalence of WMCs in these patients to age-matched long-term epileptics and healthy controls. ULD patients had significantly more T2-weighted high-intensity signals on MRI than control subjects, due to the increased prevalence of these signals in the basal ganglia. Interestingly, ULD patients with the basal ganglia changes were overweight. Basal ganglia T2-weighted high-intensity signals are novel findings in ULD. 2009 Elsevier B.V. All rights reserved.

  16. RNA Helicase DDX5 Regulates MicroRNA Expression and Contributes to Cytoskeletal Reorganization in Basal Breast Cancer Cells

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Daojing; Huang, Jing; Hu, Zhi

    2011-11-15

    RNA helicase DDX5 (also p68) is involved in all aspects of RNA metabolism and serves as a transcriptional co-regulator, but its functional role in breast cancer remains elusive. Here, we report an integrative biology study of DDX5 in breast cancer, encompassing quantitative proteomics, global MicroRNA profiling, and detailed biochemical characterization of cell lines and human tissues. We showed that protein expression of DDX5 increased progressively from the luminal to basal breast cancer cell lines, and correlated positively with that of CD44 in the basal subtypes. Through immunohistochemistry analyses of tissue microarrays containing over 200 invasive human ductal carcinomas, we observed that DDX5 was upregulated in the majority of malignant tissues, and its expression correlated strongly with those of Ki67 and EGFR in the triple-negative tumors. We demonstrated that DDX5 regulated a subset of MicroRNAs including miR-21 and miR-182 in basal breast cancer cells. Knockdown of DDX5 resulted in reorganization of actin cytoskeleton and reduction of cellular proliferation. The effects were accompanied by upregulation of tumor suppressor PDCD4 (a known miR-21 target); as well as upregulation of cofilin and profilin, two key proteins involved in actin polymerization and cytoskeleton maintenance, as a consequence of miR-182 downregulation. Treatment with miR-182 inhibitors resulted in morphologic phenotypes resembling those induced by DDX5 knockdown. Using bioinformatics tools for pathway and network analyses, we confirmed that the network for regulation of actin cytoskeleton was predominantly enriched for the predicted downstream targets of miR-182. Our results reveal a new functional role of DDX5 in breast cancer via the DDX5→miR-182→actin cytoskeleton pathway, and suggest the potential clinical utility of DDX5 and its downstream MicroRNAs in the theranostics of breast cancer.

  17. Behavioural effects of basal ganglia rho-kinase inhibition in the unilateral 6-hydroxydopamine rat model of Parkinson's disease.

    Science.gov (United States)

    Inan, Salim Yalcin; Soner, Burak Cem; Sahin, Ayse Saide

    2016-08-01

    Parkinson's disease (PD) is one of the most common neurodegenerative disorders, which affects more than six million people in the world. While current available pharmacological therapies for PD in the early stages of the disease usually improve motor symptoms, they cause side effects, such as fluctuations and dyskinesias in the later stages. In this later stage, high frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) is a treatment option which is most successful to treat drug resistant advanced PD. It has previously been demonstrated that activation of Rho/Rho-kinase pathway is involved in the dopaminergic cell degeneration which is one of the main characteristics of PD pathology. In addition, the involvement of this pathway has been suggested in diverse cellular events in the central nervous system; such as epilepsy, anxiety-related behaviors, regulation of dendritic and axonal morphology, antinociception, subarachnoid haemorrhage, spinal cord injury and amyotrophic lateral sclerosis. However, up to date, to our knowledge there are no previous reports showing the beneficial effects of the potent Rho-kinase inhibitor Y-27632 in the 6-hydroxydopamine (6-OHDA) rat model of PD. Therefore, in the present study, we investigated the behavioural effects of basal ganglia Y-27632 microinjections in this PD model. Our results indicated that basal ganglia Y-27632 microinjections significantly decreased the number of contralateral rotations-induced by apomorphine, significantly increased line crossings in the open-field test, contralateral forelimb use in the limb-use asymmetry test and contralateral tape playing time in the somatosensory asymmetry test, which may suggest that Y-27632 could be a potentially active antiparkinsonian agent.

  18. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity.

    Science.gov (United States)

    Espinosa, Nelson; Alonso, Alejandra; Morales, Cristian; Espinosa, Pedro; Chávez, Andrés E; Fuentealba, Pablo

    2017-11-17

    The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  19. A neural mass model of basal ganglia nuclei simulates pathological beta rhythm in Parkinson's disease

    Science.gov (United States)

    Liu, Fei; Wang, Jiang; Liu, Chen; Li, Huiyan; Deng, Bin; Fietkiewicz, Chris; Loparo, Kenneth A.

    2016-12-01

    An increase in beta oscillations within the basal ganglia nuclei has been shown to be associated with movement disorder, such as Parkinson's disease. The motor cortex and an excitatory-inhibitory neuronal network composed of the subthalamic nucleus (STN) and the external globus pallidus (GPe) are thought to play an important role in the generation of these oscillations. In this paper, we propose a neuron mass model of the basal ganglia on the population level that reproduces the Parkinsonian oscillations in a reciprocal excitatory-inhibitory network. Moreover, it is shown that the generation and frequency of these pathological beta oscillations are varied by the coupling strength and the intrinsic characteristics of the basal ganglia. Simulation results reveal that increase of the coupling strength induces the generation of the beta oscillation, as well as enhances the oscillation frequency. However, for the intrinsic properties of each nucleus in the excitatory-inhibitory network, the STN primarily influences the generation of the beta oscillation while the GPe mainly determines its frequency. Interestingly, describing function analysis applied on this model theoretically explains the mechanism of pathological beta oscillations.

  20. Involvement of dopamine loss in extrastriatal basal ganglia nuclei in the pathophysiology of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Abdelhamid eBenazzouz

    2014-05-01

    Full Text Available Parkinson’s disease is a neurological disorder characterized by the manifestation of motor symptoms, such as akinesia, muscle rigidity and tremor at rest. These symptoms are classically attributed to the degeneration of dopamine neurons in the pars compacta of substantia nigra (SNc, which results in a marked dopamine depletion in the striatum. It is well established that dopamine neurons in the SNc innervate not only the striatum, which is the main target, but also other basal ganglia nuclei including the two segments of globus pallidus and the subthalamic nucleus. The role of dopamine and its depletion in the striatum is well known, however, the role of dopamine depletion in the pallidal complex and the subthalamic nucleus in the genesis of their abnormal neuronal activity and in parkinsonian motor deficits is still not clearly determined. Based on recent experimental data from animal models of Parkinson's disease in rodents and non-human primates and also from parkinsonian patients, this review summarizes current knowledge on the role of dopamine in the modulation of basal ganglia neuronal activity and also the role of dopamine depletion in these nuclei in the pathophysiology of Parkinson's disease.

  1. Basal and Adrenocorticotropic Hormone Stimulated Plasma Cortisol Levels Among Egyptian Autistic Children: Relation to Disease Severity

    Directory of Open Access Journals (Sweden)

    Hewedi Doaa H

    2010-10-01

    Full Text Available Abstract Background Autism is a disorder of early childhood characterized by social impairment, communication abnormalities and stereotyped behaviors. The hypothalamic-pituitary-adrenocortical (HPA axis deserves special attention, since it is the basis for emotions and social interactions that are affected in autism. Aim To assess basal and stimulated plasma cortisol, and adrenocorticotropic hormone (ACTH levels in autistic children and their relationship to disease characteristics. Methods Fifty autistic children were studied in comparison to 50 healthy age-, sex- and pubertal stage- matched children. All subjects were subjected to clinical evaluation and measurement of plasma cortisol (basal and stimulated and ACTH. In addition, electroencephalography (EEG and intelligence quotient (IQ assessment were done for all autistic children. Results Sixteen% of autistic patients had high ACTH, 10% had low basal cortisol and 10% did not show adequate cortisol response to ACTH stimulation. Autistic patients had lower basal (p = 0.032 and stimulated cortisol (p = 0.04 and higher ACTH (p = 0.01 than controls. Childhood Autism Rating Scale (CARS score correlated positively with ACTH (r = 0.71, p = 0.02 and negatively with each of basal (r = -0.64, p = 0.04 and stimulated cortisol (r = -0.88, p Conclusions The observed hormonal changes may be due to a dysfunction in the HPA axis in autistic individuals. Further studies are warranted regarding the role of HPA axis dysfunction in the pathogenesis of autism.

  2. Basal ganglia lesions in children and adults

    Energy Technology Data Exchange (ETDEWEB)

    Bekiesinska-Figatowska, Monika, E-mail: m.figatowska@mp.pl [Department of Diagnostic Imaging, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Mierzewska, Hanna, E-mail: h.mierzewska@gmail.com [Department of Neurology of Children and Adolescents, Institute of Mother and Child, ul. Kasprzaka 17a, 01-211 Warsaw (Poland); Jurkiewicz, Elżbieta, E-mail: e-jurkiewicz@o2.pl [Department of Diagnostic Imaging, Children' s Memorial Health Institute, Al. Dzieci Polskich 20, 04-730 Warsaw (Poland)

    2013-05-15

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive.

  3. Basal ganglia lesions in children and adults

    International Nuclear Information System (INIS)

    Bekiesinska-Figatowska, Monika; Mierzewska, Hanna; Jurkiewicz, Elżbieta

    2013-01-01

    The term “basal ganglia” refers to caudate and lentiform nuclei, the latter composed of putamen and globus pallidus, substantia nigra and subthalamic nuclei and these deep gray matter structures belong to the extrapyramidal system. Many diseases may present as basal ganglia abnormalities. Magnetic resonance imaging (MRI) and computed tomography (CT) – to a lesser degree – allow for detection of basal ganglia injury. In many cases, MRI alone does not usually allow to establish diagnosis but together with the knowledge of age and circumstances of onset and clinical course of the disease is a powerful tool of differential diagnosis. The lesions may be unilateral: in Rassmussen encephalitis, diabetes with hemichorea/hemiballism and infarction or – more frequently – bilateral in many pathologic conditions. Restricted diffusion is attributable to infarction, acute hypoxic–ischemic injury, hypoglycemia, Leigh disease, encephalitis and CJD. Contrast enhancement may be seen in cases of infarction and encephalitis. T1-hyperintensity of the lesions is uncommon and may be observed unilaterally in case of hemichorea/hemiballism and bilaterally in acute asphyxia in term newborns, in hypoglycemia, NF1, Fahr disease and manganese intoxication. Decreased signal intensity on GRE/T2*-weighted images and/or SWI indicating iron, calcium or hemosiderin depositions is observed in panthotenate kinase-associated neurodegeneration, Parkinson variant of multiple system atrophy, Fahr disease (and other calcifications) as well as with the advancing age. There are a few papers in the literature reviewing basal ganglia lesions. The authors present a more detailed review with rich iconography from the own archive

  4. The automatic regulation of the basal dose on the insulin pump for the treatment of patients that have Diabetes type 1.

    Science.gov (United States)

    Mehanović, Sifet; Mujić, Midhat

    2010-05-01

    Diabetes mellitus type 1 is a chronic metabolic disorder, and its main characteristic is Hyperglycemia. It usually occurs in the early years because of the absolute or relative absence of the active insulin that is caused by the autoimmune disease of the beta cells of the pancreas. Despite the numerous researches and efforts of the scientists, the therapy for Diabetes type 1 is based on the substitution of insulin. Even though the principles of the therapy have not changed so much, still some important changes have occurred in the production and usage of insulin. Lately, the insulin pumps are more frequent in the therapy for Diabetes type 1. The functioning of the pump is based on the continuing delivery of insulin in a small dose ("the basal dose"), that keeps the level of glycemia in the blood constant. The increase of glycemia during the meal is reduced with the additional dose of insulin ("the bolus dose"). The use of the insulin pumps and the continuing glucose sensors has provided an easier and more efficient monitoring of the diabetes, a better metabolic control and a better life quality for the patient and his/her family. This work presents the way of automatic regulation of the basal dose of insulin through the synthesis of the functions of the insulin pump and the continuing glucose sensor. The aim is to give a contribution to the development of the controlling algorithm on the insulin pump for the automatic regulation of the glucose concentration in the blood. This could be a step further which is closer to the delivery of the dose of insulin that is really needed for the basic needs of the organism, and a significant contribution is given to the development of the artificial pancreas.

  5. The Automatic Regulation of the Basal Dose on the Insulin Pump for the Treatment of Patients that have Diabetes Type 1

    Directory of Open Access Journals (Sweden)

    Sifet Mehanović

    2010-05-01

    Full Text Available Diabetes mellitus type 1 is a chronic metabolic disorder, and its main characteristic is Hyperglycemia. It usually occurs in the early years because of the absolute or relative absence of the active insulin that is caused by the autoimmune disease of the β cells of the pancreas. Despite the numerous researches and efforts of the scientists, the therapy for Diabetes type 1 is based on the substitution of insulin. Even though the principles of the therapy have not changed so much, still some important changes have occurred in the production and usage of insulin. Lately, the insulin pumps are more frequent in the therapy for Diabetes type 1. The functioning of the pump is based on the continuing delivery of insulin in a small dose (“the basal dose”, that keeps the level of glycemia in the blood constant. The increase of glycemia during the meal is reduced with the additional dose of insulin (“the bolus dose”. The use of the insulin pumps and the continuing glucose sensors has provided an easier and more efficient monitoring of the diabetes, a better metabolic control and a better life quality for the patient and his/her family.This work presents the way of automatic regulation of the basal dose of insulin through the synthesis of the functions of the insulin pump and the continuing glucose sensor. The aim is to give a contribution to the development of the controlling algorithm on the insulin pump for the automatic regulation of the glucose concentration in the blood. This could be a step further which is closer to the delivery of the dose of insulin that is really needed for the basic needs of the organism, and a significant contribution is given to the development of the artificial pancreas.

  6. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Tomáš Sieger

    Full Text Available The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  7. Basal ganglia neuronal activity during scanning eye movements in Parkinson's disease.

    Science.gov (United States)

    Sieger, Tomáš; Bonnet, Cecilia; Serranová, Tereza; Wild, Jiří; Novák, Daniel; Růžička, Filip; Urgošík, Dušan; Růžička, Evžen; Gaymard, Bertrand; Jech, Robert

    2013-01-01

    The oculomotor role of the basal ganglia has been supported by extensive evidence, although their role in scanning eye movements is poorly understood. Nineteen Parkinsońs disease patients, which underwent implantation of deep brain stimulation electrodes, were investigated with simultaneous intraoperative microelectrode recordings and single channel electrooculography in a scanning eye movement task by viewing a series of colored pictures selected from the International Affective Picture System. Four patients additionally underwent a visually guided saccade task. Microelectrode recordings were analyzed selectively from the subthalamic nucleus, substantia nigra pars reticulata and from the globus pallidus by the WaveClus program which allowed for detection and sorting of individual neurons. The relationship between neuronal firing rate and eye movements was studied by crosscorrelation analysis. Out of 183 neurons that were detected, 130 were found in the subthalamic nucleus, 30 in the substantia nigra and 23 in the globus pallidus. Twenty percent of the neurons in each of these structures showed eye movement-related activity. Neurons related to scanning eye movements were mostly unrelated to the visually guided saccades. We conclude that a relatively large number of basal ganglia neurons are involved in eye motion control. Surprisingly, neurons related to scanning eye movements differed from neurons activated during saccades suggesting functional specialization and segregation of both systems for eye movement control.

  8. Mediator MED23 regulates basal transcription in vivo via an interaction with P-TEFb.

    Science.gov (United States)

    Wang, Wei; Yao, Xiao; Huang, Yan; Hu, Xiangming; Liu, Runzhong; Hou, Dongming; Chen, Ruichuan; Wang, Gang

    2013-01-01

    The Mediator is a multi-subunit complex that transduces regulatory information from transcription regulators to the RNA polymerase II apparatus. Growing evidence suggests that Mediator plays roles in multiple stages of eukaryotic transcription, including elongation. However, the detailed mechanism by which Mediator regulates elongation remains elusive. In this study, we demonstrate that Mediator MED23 subunit controls a basal level of transcription by recruiting elongation factor P-TEFb, via an interaction with its CDK9 subunit. The mRNA level of Egr1, a MED23-controlled model gene, is reduced 4-5 fold in Med23 (-/-) ES cells under an unstimulated condition, but Med23-deficiency does not alter the occupancies of RNAP II, GTFs, Mediator complex, or activator ELK1 at the Egr1 promoter. Instead, Med23 depletion results in a significant decrease in P-TEFb and RNAP II (Ser2P) binding at the coding region, but no changes for several other elongation regulators, such as DSIF and NELF. ChIP-seq revealed that Med23-deficiency partially reduced the P-TEFb occupancy at a set of MED23-regulated gene promoters. Further, we demonstrate that MED23 interacts with CDK9 in vivo and in vitro. Collectively, these results provide the mechanistic insight into how Mediator promotes RNAP II into transcription elongation.

  9. Gibberellin-regulated gene in the basal region of rice leaf sheath encodes basic helix-loop-helix transcription factor.

    Science.gov (United States)

    Komatsu, Setsuko; Takasaki, Hironori

    2009-07-01

    Genes regulated by gibberellin (GA) during leaf sheath elongation in rice seedlings were identified using the transcriptome approach. mRNA from the basal regions of leaf sheaths treated with GA3 was analyzed by high-coverage gene expression profiling. 33,004 peaks were detected, and 30 transcripts showed significant changes in the presence of GA3. Among these, basic helix-loop-helix transcription factor (AK073385) was significantly upregulated. Quantitative PCR analysis confirmed that expression of AK073385 was controlled by GA3 in a time- and dose-dependent manner. Basic helix-loop-helix transcription factor (AK073385) is therefore involved in the regulation of gene expression by GA3.

  10. The role of the basal ganglia in learning and memory: Insight from Parkinson's disease

    Science.gov (United States)

    2013-01-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. PMID:21945835

  11. The role of the basal ganglia in learning and memory: insight from Parkinson's disease.

    Science.gov (United States)

    Foerde, Karin; Shohamy, Daphna

    2011-11-01

    It has long been known that memory is not a single process. Rather, there are different kinds of memory that are supported by distinct neural systems. This idea stemmed from early findings of dissociable patterns of memory impairments in patients with selective damage to different brain regions. These studies highlighted the role of the basal ganglia in non-declarative memory, such as procedural or habit learning, contrasting it with the known role of the medial temporal lobes in declarative memory. In recent years, major advances across multiple areas of neuroscience have revealed an important role for the basal ganglia in motivation and decision making. These findings have led to new discoveries about the role of the basal ganglia in learning and highlighted the essential role of dopamine in specific forms of learning. Here we review these recent advances with an emphasis on novel discoveries from studies of learning in patients with Parkinson's disease. We discuss how these findings promote the development of current theories away from accounts that emphasize the verbalizability of the contents of memory and towards a focus on the specific computations carried out by distinct brain regions. Finally, we discuss new challenges that arise in the face of accumulating evidence for dynamic and interconnected memory systems that jointly contribute to learning. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. Chronic Stress Decreases Basal Levels of Memory-Related Signaling Molecules in Area CA1 of At-Risk (Subclinical) Model of Alzheimer's Disease.

    Science.gov (United States)

    Alkadhi, Karim A; Tran, Trinh T

    2015-08-01

    An important factor that may affect the severity and time of onset of Alzheimer's disease (AD) is chronic stress. Epidemiological studies report that chronically stressed individuals are at an increased risk for developing AD. The purpose of this study was to reveal whether chronic psychosocial stress could hasten the appearance of AD symptoms including changes in basal levels of cognition-related signaling molecules in subjects who are at risk for the disease. We investigated the effect of chronic psychosocial stress on basal levels of memory-related signaling molecules in area CA1 of subclinical rat model of AD. The subclinical symptomless rat model of AD was induced by osmotic pump continuous intracerebroventricular (ICV) infusion of 160 pmol/day Aβ1-42 for 14 days. Rats were chronically stressed using the psychosocial stress intruder model. Western blot analysis of basal protein levels of important signaling molecules in hippocampal area CA1 showed no significant difference between the subclinical AD rat model and control rat. Following six weeks of psychosocial stress, molecular analysis showed that subclinical animals subjected to stress have significantly reduced basal levels of p-CaMKII and decreased p-CaMKII/t-CaMKII ratio as well as decreased basal levels of p-CREB, total CREB, and BDNF. The present results suggest that these changes in basal levels of signaling molecules may be responsible for impaired learning, memory, and LTP in this rat model, which support the proposition that chronic stress may accelerate the emergence of AD in susceptible individuals.

  13. The molecular basis of the genesis of basal tone in internal anal sphincter

    Science.gov (United States)

    Zhang, Cheng-Hai; Wang, Pei; Liu, Dong-Hai; Chen, Cai-Ping; Zhao, Wei; Chen, Xin; Chen, Chen; He, Wei-Qi; Qiao, Yan-Ning; Tao, Tao; Sun, Jie; Peng, Ya-Jing; Lu, Ping; Zheng, Kaizhi; Craige, Siobhan M.; Lifshitz, Lawrence M.; Keaney Jr, John F.; Fogarty, Kevin E.; ZhuGe, Ronghua; Zhu, Min-Sheng

    2016-01-01

    Smooth muscle sphincters exhibit basal tone and control passage of contents through organs such as the gastrointestinal tract; loss of this tone leads to disorders such as faecal incontinence. However, the molecular mechanisms underlying this tone remain unknown. Here, we show that deletion of myosin light-chain kinases (MLCK) in the smooth muscle cells from internal anal sphincter (IAS-SMCs) abolishes basal tone, impairing defecation. Pharmacological regulation of ryanodine receptors (RyRs), L-type voltage-dependent Ca2+ channels (VDCCs) or TMEM16A Ca2+-activated Cl− channels significantly changes global cytosolic Ca2+ concentration ([Ca2+]i) and the tone. TMEM16A deletion in IAS-SMCs abolishes the effects of modulators for TMEM16A or VDCCs on a RyR-mediated rise in global [Ca2+]i and impairs the tone and defecation. Hence, MLCK activation in IAS-SMCs caused by a global rise in [Ca2+]i via a RyR-TMEM16A-VDCC signalling module sets the basal tone. Targeting this module may lead to new treatments for diseases like faecal incontinence. PMID:27101932

  14. The expanding universe of disorders of the basal ganglia.

    Science.gov (United States)

    Obeso, Jose A; Rodriguez-Oroz, Maria C; Stamelou, Maria; Bhatia, Kailash P; Burn, David J

    2014-08-09

    The basal ganglia were originally thought to be associated purely with motor control. However, dysfunction and pathology of different regions and circuits are now known to give rise to many clinical manifestations beyond the association of basal ganglia dysfunction with movement disorders. Moreover, disorders that were thought to be caused by dysfunction of the basal ganglia only, such as Parkinson's disease and Huntington's disease, have diverse abnormalities distributed not only in the brain but also in the peripheral and autonomic nervous systems; this knowledge poses new questions and challenges. We discuss advances and the unanswered questions, and ways in which progress might be made. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Ezh2 represses the basal cell lineage during lung endoderm development.

    Science.gov (United States)

    Snitow, Melinda E; Li, Shanru; Morley, Michael P; Rathi, Komal; Lu, Min Min; Kadzik, Rachel S; Stewart, Kathleen M; Morrisey, Edward E

    2015-01-01

    The development of the lung epithelium is regulated in a stepwise fashion to generate numerous differentiated and stem cell lineages in the adult lung. How these different lineages are generated in a spatially and temporally restricted fashion remains poorly understood, although epigenetic regulation probably plays an important role. We show that the Polycomb repressive complex 2 component Ezh2 is highly expressed in early lung development but is gradually downregulated by late gestation. Deletion of Ezh2 in early lung endoderm progenitors leads to the ectopic and premature appearance of Trp63+ basal cells that extend the entire length of the airway. Loss of Ezh2 also leads to reduced secretory cell differentiation. In their place, morphologically similar cells develop that express a subset of basal cell genes, including keratin 5, but no longer express high levels of either Trp63 or of standard secretory cell markers. This suggests that Ezh2 regulates the phenotypic switch between basal cells and secretory cells. Together, these findings show that Ezh2 restricts the basal cell lineage during normal lung endoderm development to allow the proper patterning of epithelial lineages during lung formation. © 2015. Published by The Company of Biologists Ltd.

  16. ESC-Derived Basal Forebrain Cholinergic Neurons Ameliorate the Cognitive Symptoms Associated with Alzheimer’s Disease in Mouse Models

    Directory of Open Access Journals (Sweden)

    Wei Yue

    2015-11-01

    Full Text Available Degeneration of basal forebrain cholinergic neurons (BFCNs is associated with cognitive impairments of Alzheimer’s disease (AD, implying that BFCNs hold potentials in exploring stem cell-based replacement therapy for AD. However, studies on derivation of BFCNs from embryonic stem cells (ESCs are limited, and the application of ESC-derived BFCNs remains to be determined. Here, we report on differentiation approaches for directing both mouse and human ESCs into mature BFCNs. These ESC-derived BFCNs exhibit features similar to those of their in vivo counterparts and acquire appropriate functional properties. After transplantation into the basal forebrain of AD model mice, ESC-derived BFCN progenitors predominantly differentiate into mature cholinergic neurons that functionally integrate into the endogenous basal forebrain cholinergic projection system. The AD mice grafted with mouse or human BFCNs exhibit improvements in learning and memory performances. Our findings suggest a promising perspective of ESC-derived BFCNs in the development of stem cell-based therapies for treatment of AD.

  17. Nevoid Basal Cell Carcinoma Syndrome (Gorlin Syndrome).

    Science.gov (United States)

    Bresler, Scott C; Padwa, Bonnie L; Granter, Scott R

    2016-06-01

    Nevoid basal cell carcinoma syndrome, or basal cell nevus syndrome (Gorlin syndrome), is a rare autosomal dominantly inherited disorder that is characterized by development of basal cell carcinomas from a young age. Other distinguishing clinical features are seen in a majority of patients, and include keratocystic odontogenic tumors (formerly odontogenic keratocysts) as well as dyskeratotic palmar and plantar pitting. A range of skeletal and other developmental abnormalities are also often seen. The disorder is caused by defects in hedgehog signaling which result in constitutive pathway activity and tumor cell proliferation. As sporadic basal cell carcinomas also commonly harbor hedgehog pathway aberrations, therapeutic agents targeting key signaling constituents have been developed and tested against advanced sporadically occurring tumors or syndromic disease, leading in 2013 to FDA approval of the first hedgehog pathway-targeted small molecule, vismodegib. The elucidation of the molecular pathogenesis of nevoid basal cell carcinoma syndrome has resulted in further understanding of the most common human malignancy.

  18. A three-dimensional histological atlas of the human basal ganglia. II. Atlas deformation strategy and evaluation in deep brain stimulation for Parkinson disease.

    Science.gov (United States)

    Bardinet, Eric; Bhattacharjee, Manik; Dormont, Didier; Pidoux, Bernard; Malandain, Grégoire; Schüpbach, Michael; Ayache, Nicholas; Cornu, Philippe; Agid, Yves; Yelnik, Jérôme

    2009-02-01

    The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

  19. Basal Ganglia, Dopamine and Temporal Processing: Performance on Three Timing Tasks on and off Medication in Parkinson's Disease

    Science.gov (United States)

    Jones, Catherine R. G.; Malone, Tim J. L.; Dirnberger, Georg; Edwards, Mark; Jahanshahi, Marjan

    2008-01-01

    A pervasive hypothesis in the timing literature is that temporal processing in the milliseconds and seconds range engages the basal ganglia and is modulated by dopamine. This hypothesis was investigated by testing 12 patients with Parkinson's disease (PD), both "on" and "off" dopaminergic medication, and 20 healthy controls on three timing tasks.…

  20. Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation.

    Directory of Open Access Journals (Sweden)

    Adam S Hamlin

    Full Text Available Loss of integrity of the basal forebrain cholinergic neurons is a consistent feature of Alzheimer's disease, and measurement of basal forebrain degeneration by magnetic resonance imaging is emerging as a sensitive diagnostic marker for prodromal disease. It is also known that Alzheimer's disease patients perform poorly on both real space and computerized cued (allothetic or uncued (idiothetic recall navigation tasks. Although the hippocampus is required for allothetic navigation, lesions of this region only mildly affect idiothetic navigation. Here we tested the hypothesis that the cholinergic medial septo-hippocampal circuit is important for idiothetic navigation. Basal forebrain cholinergic neurons were selectively lesioned in mice using the toxin saporin conjugated to a basal forebrain cholinergic neuronal marker, the p75 neurotrophin receptor. Control animals were able to learn and remember spatial information when tested on a modified version of the passive place avoidance test where all extramaze cues were removed, and animals had to rely on idiothetic signals. However, the exploratory behaviour of mice with cholinergic basal forebrain lesions was highly disorganized during this test. By contrast, the lesioned animals performed no differently from controls in tasks involving contextual fear conditioning and spatial working memory (Y maze, and displayed no deficits in potentially confounding behaviours such as motor performance, anxiety, or disturbed sleep/wake cycles. These data suggest that the basal forebrain cholinergic system plays a specific role in idiothetic navigation, a modality that is impaired early in Alzheimer's disease.

  1. Loss of Dickkopf 3 Promotes the Tumorigenesis of Basal Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Eva Lorsy

    Full Text Available Dickkopf 3 (DKK3 has been associated with tumor suppression of various tumor entities including breast cancer. However, the functional impact of DKK3 on the tumorigenesis of distinct molecular breast cancer subtypes has not been considered so far. Therefore, we initiated a study analyzing the subtype-specific DKK3 expression pattern as well as its prognostic and functional impact with respect to breast cancer subtypes. Based on three independent tissue cohorts including one in silico dataset (n = 30, n = 463 and n = 791 we observed a clear down-regulation of DKK3 expression in breast cancer samples compared to healthy breast tissue controls on mRNA and protein level. Interestingly, most abundant reduction of DKK3 expression was detected in the highly aggressive basal breast cancer subtype. Analyzing a large in silico dataset comprising 3,554 cases showed that low DKK3 mRNA expression was significantly associated with reduced recurrence free survival (RFS of luminal and basal-like breast cancer cases. Functionally, DKK3 re-expression in human breast cancer cell lines led to suppression of cell growth possibly mediated by up-regulation of apoptosis in basal-like but not in luminal-like breast cancer cell lines. Moreover, ectopic DKK3 expression in mesenchymal basal breast cancer cells resulted in partial restoration of epithelial cell morphology which was molecularly supported by higher expression of epithelial markers like E-Cadherin and down-regulation of mesenchymal markers such as Snail 1. Hence, we provide evidence that down-regulation of DKK3 especially promotes tumorigenesis of the aggressive basal breast cancer subtype. Further studies decoding the underlying molecular mechanisms of DKK3-mediated effects may help to identify novel targeted therapies for this clinically highly relevant breast cancer subtype.

  2. Multiple Frequencies in the Basal Ganglia in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Clare M. Davidson

    2015-01-01

    Full Text Available In recent years, the authors have developed what appears to be a very successful phenomenological model for analyzing the role of deep brain stimulation (DBS in alleviating the symptoms of Parkinson's disease. In this paper, we extend the scope of the model by using it to predict the generation of new frequencies from networks tuned to a specific frequency, or indeed not self-oscillatory at all. We have discussed two principal cases: firstly where the constituent systems are coupled in an excitatory-excitatory fashion, which we designate by ``+/+''; and secondly where the constituent systems are coupled in an excitatory-inhibitory fashion, which we designate ``+/-''. The model predicts that from a basic system tuned to tremor frequency we can generate an unlimited range of frequencies. We illustrate in particular, starting from systems which are initially non-oscillatory, that when the coupling coefficient exceeds a certain value, the system begins to oscillate at an amplitude which increases with the coupling strength. Another very interesting feature, which has been shown by colleagues of ours to arise through the coupling of complicated networks based on the physiology of the basal ganglia, can be illustrated by the root locus method which shows that increasing and decreasing frequencies of oscillation, existing simultaneously, have the property that their geometric mean remains substantially constant as the coupling strength is varied. We feel that with the present approach, we have provided another tool for understanding the existence and interaction of pathological oscillations which underlie, not only Parkinson's disease, but other conditions such as Tourette's syndrome, depression and epilepsy.

  3. Functional Neuroanatomy and Behavioural Correlates of the Basal Ganglia: Evidence from Lesion Studies

    Directory of Open Access Journals (Sweden)

    Peter Ward

    2013-01-01

    Full Text Available Introduction: The basal ganglia are interconnected with cortical areas involved in behavioural, cognitive and emotional processes, in addition to movement regulation. Little is known about which of these functions are associated with individual basal ganglia substructures.

  4. Computed tomography of calcification of the basal ganglia

    International Nuclear Information System (INIS)

    Park, Churl Min; Suh, Soo Jhi; Kim, Soon Yong

    1981-01-01

    Calcifications of the basal ganglia are rarely found at routine autopsies and in skull radiographs. CT is superior to the plain skull radiographs in detecting intracranial attenuation differences and may be stated to be the method of choice in the diagnosis of intracranial calcifications. Of 5985 brain CT scans performed in Kyung Hee University Hospital during past 3 years, 36 cases were found to have high attenuation lesions suggesting calcifications within basal ganglia. 1. The incidence of basal ganglia calcification on CT scan was about 0.6%. 2. Of these 36 cases, 34 cases were bilateral and the remainder was unilateral. 3. The plain skull films of 23 cases showed visible calcification of basal ganglia in 3 cases (13%). 4. No specific metabolic disease was noted in the cases

  5. Somatic Cell Fusions Reveal Extensive Heterogeneity in Basal-like Breast Cancer

    Directory of Open Access Journals (Sweden)

    Ying Su

    2015-06-01

    Full Text Available Basal-like and luminal breast tumors have distinct clinical behavior and molecular profiles, yet the underlying mechanisms are poorly defined. To interrogate processes that determine these distinct phenotypes and their inheritance pattern, we generated somatic cell fusions and performed integrated genetic and epigenetic (DNA methylation and chromatin profiling. We found that the basal-like trait is generally dominant and is largely defined by epigenetic repression of luminal transcription factors. Definition of super-enhancers highlighted a core program common in luminal cells but a high degree of heterogeneity in basal-like breast cancers that correlates with clinical outcome. We also found that protein extracts of basal-like cells are sufficient to induce a luminal-to-basal phenotypic switch, implying a trigger of basal-like autoregulatory circuits. We determined that KDM6A might be required for luminal-basal fusions, and we identified EN1, TBX18, and TCF4 as candidate transcriptional regulators of the luminal-to-basal switch. Our findings highlight the remarkable epigenetic plasticity of breast cancer cells.

  6. Nevoid basal cell carcinoma syndrome; Naevoid Basalzellkarzinom-Syndrom

    Energy Technology Data Exchange (ETDEWEB)

    Grgic, A.; Heinrich, M.; Heckmann, M.; Kramann, B. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Abt. fuer Diagnostische und Interventionelle Radiologie; Aliani, S. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Klinik fuer Kinder- und Jugendmedizin; Dill-Mueller, D. [Universitaetsklinikum des Saarlandes, Homburg/Saar (Germany). Hautklinik und Poliklinik; Uder, M. [Erlange-Nuernberg Univ. (Germany). Inst. fuer Diagnostische Radiologie

    2005-07-01

    Nevoid Basal Cell Carcinoma Syndrome (NBCCS) is an autosomal-dominant disorder characterized by multiple basal cell carcinomas, jaw cysts, palmar/plantar pits, calcification of the falx cerebri, and spine and rib anomalies. The combination of clinical, imaging, and histological findings is helpful in identifying NBCCS patients. Imaging plays a crucial role in evaluation of these patients. We present a wide variety of clinical and radiological findings characteristic of this disease. (orig.)

  7. Basal Cell Carcinoma

    Science.gov (United States)

    ... Kids’ zone Video library Find a dermatologist Basal cell carcinoma Overview Basal cell carcinoma: This skin cancer ... that has received years of sun exposure. Basal cell carcinoma: Overview Basal cell carcinoma (BCC) is the ...

  8. Electrocorticography reveals beta desynchronization in the basal ganglia-cortical loop during rest tremor in Parkinson's disease.

    Science.gov (United States)

    Qasim, Salman E; de Hemptinne, Coralie; Swann, Nicole C; Miocinovic, Svjetlana; Ostrem, Jill L; Starr, Philip A

    2016-02-01

    The pathophysiology of rest tremor in Parkinson's disease (PD) is not well understood, and its severity does not correlate with the severity of other cardinal signs of PD. We hypothesized that tremor-related oscillatory activity in the basal-ganglia-thalamocortical loop might serve as a compensatory mechanism for the excessive beta band synchronization associated with the parkinsonian state. We recorded electrocorticography (ECoG) from the sensorimotor cortex and local field potentials (LFP) from the subthalamic nucleus (STN) in patients undergoing lead implantation for deep brain stimulation (DBS). We analyzed differences in measures of network synchronization during epochs of spontaneous rest tremor, versus epochs without rest tremor, occurring in the same subjects. The presence of tremor was associated with reduced beta power in the cortex and STN. Cortico-cortical coherence and phase-amplitude coupling (PAC) decreased during rest tremor, as did basal ganglia-cortical coherence in the same frequency band. Cortical broadband gamma power was not increased by tremor onset, in contrast to the movement-related gamma increase typically observed at the onset of voluntary movement. These findings suggest that the cortical representation of rest tremor is distinct from that of voluntary movement, and support a model in which tremor acts to decrease beta band synchronization within the basal ganglia-cortical loop. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Nevoid basal cell carcinoma syndrome—case report and genetic study

    Directory of Open Access Journals (Sweden)

    Yu-Feng Huang

    2010-09-01

    Full Text Available Nevoid basal cell carcinoma syndrome (also named Gorlin-Goltz syndrome is a rare disease. Commonly seen features include multiple odontogenic keratocysts (OKCs, nevus-like basal cell carcinoma, and bifid ribs. Genetic alterations of the PTCH1 gene are associated with the disease. Herein, we report the case of a 15-year-old girl who presented with multiple OKCs, a bifid rib, ectopic calcification of the falx cer-ebri, and an arachnoid cyst of the cerebrum. No basal cell carcinoma was identified. In addition, a search for genetic alterations was performed on the patient. We identified a genetic mutation of C→T in exon 12 (c.1686 bp and a G→C mutation in intron 13 (g.91665 bp of the PTCH1 gene. Although a similar mutation in exon 12 was reported in a literature search, the mutation in intron 13 has not previously been reported. The patient has continued to be followed-up almost 3 years after the surgery with no recurrence of the OKCs or development of basal cell carcinoma.

  10. Interaction of basal forebrain cholinergic neurons with the glucocorticoid system in stress regulation and cognitive impairment

    Directory of Open Access Journals (Sweden)

    Saswati ePaul

    2015-04-01

    Full Text Available A substantial number of studies on basal forebrain cholinergic neurons (BFCN have provided compelling evidence for their role in the etiology of stress, cognitive aging, Alzheimer’s disease (AD, and other neurodegenerative diseases. BFCN project to a broad range of cortical sites and limbic structures, including the hippocampus, and are involved in stress and cognition. In particular, the hippocampus, the primary target tissue of the glucocorticoid stress hormones, is associated with cognitive function in tandem with hypothalamic-pituitary-adrenal (HPA axis modulation. The present review summarizes glucocorticoid and HPA axis research to date in an effort to establish the manner in which stress affects the release of acetylcholine, glucocorticoids, and their receptor in the context of cognitive processes. We attempt to provide the molecular interactive link between the glucocorticoids and cholinergic system that contributes to BFCN degeneration in stress-induced acceleration of cognitive decline in aging and AD. We also discuss the importance of animal models in facilitating such studies for pharmacological use, which could help decipher disease states and propose leads for pharmacological intervention.

  11. Learning and memory functions of the Basal Ganglia.

    Science.gov (United States)

    Packard, Mark G; Knowlton, Barbara J

    2002-01-01

    Although the mammalian basal ganglia have long been implicated in motor behavior, it is generally recognized that the behavioral functions of this subcortical group of structures are not exclusively motoric in nature. Extensive evidence now indicates a role for the basal ganglia, in particular the dorsal striatum, in learning and memory. One prominent hypothesis is that this brain region mediates a form of learning in which stimulus-response (S-R) associations or habits are incrementally acquired. Support for this hypothesis is provided by numerous neurobehavioral studies in different mammalian species, including rats, monkeys, and humans. In rats and monkeys, localized brain lesion and pharmacological approaches have been used to examine the role of the basal ganglia in S-R learning. In humans, study of patients with neurodegenerative diseases that compromise the basal ganglia, as well as research using brain neuroimaging techniques, also provide evidence of a role for the basal ganglia in habit learning. Several of these studies have dissociated the role of the basal ganglia in S-R learning from those of a cognitive or declarative medial temporal lobe memory system that includes the hippocampus as a primary component. Evidence suggests that during learning, basal ganglia and medial temporal lobe memory systems are activated simultaneously and that in some learning situations competitive interference exists between these two systems.

  12. Toward sophisiticated basal ganglia neuromodulation: review on basal gaglia deep brain stimulation

    Science.gov (United States)

    Da Cunha, Claudio; Boschen, Suelen L.; Gómez-A, Alexander; Ross, Erika K.; Gibson, William S. J.; Min, Hoon-Ki; Lee, Kendall H.; Blaha, Charles D.

    2015-01-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson’s disease, Huntington’s disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. PMID:25684727

  13. Toward sophisticated basal ganglia neuromodulation: Review on basal ganglia deep brain stimulation.

    Science.gov (United States)

    Da Cunha, Claudio; Boschen, Suelen L; Gómez-A, Alexander; Ross, Erika K; Gibson, William S J; Min, Hoon-Ki; Lee, Kendall H; Blaha, Charles D

    2015-11-01

    This review presents state-of-the-art knowledge about the roles of the basal ganglia (BG) in action-selection, cognition, and motivation, and how this knowledge has been used to improve deep brain stimulation (DBS) treatment of neurological and psychiatric disorders. Such pathological conditions include Parkinson's disease, Huntington's disease, Tourette syndrome, depression, and obsessive-compulsive disorder. The first section presents evidence supporting current hypotheses of how the cortico-BG circuitry works to select motor and emotional actions, and how defects in this circuitry can cause symptoms of the BG diseases. Emphasis is given to the role of striatal dopamine on motor performance, motivated behaviors and learning of procedural memories. Next, the use of cutting-edge electrochemical techniques in animal and human studies of BG functioning under normal and disease conditions is discussed. Finally, functional neuroimaging studies are reviewed; these works have shown the relationship between cortico-BG structures activated during DBS and improvement of disease symptoms. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Assessment of Cerebral Hemodynamic Changes in Pediatric Patients with Moyamoya Disease Using Probabilistic Maps on Analysis of Basal/Acetazolamide Stress Brain Perfusion SPECT

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ho Young; Lee, Jae Sung; Kim, Seung Ki; Wang, Kyu Chang; Cho, Byung Kyu; Chung, June Key; Lee, Myung Chul; Lee, Dong Soo [Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2008-06-15

    To evaluate the hemodynamic changes and the predictive factors of the clinical outcome in pediatric patients with moyamoya disease, we analyzed pre/post basal/acetazolamide stress brain perfusion SPECT with automated volume of interest (VOIs) method. Total fifty six (M:F=33:24, age 6.7{+-}3.2 years) pediatric patients with moyamoya disease, who underwent basal/acetazolamide stress brain perfusion SPECT within 6 before and after revascularization surgery (encephalo-duro-arterio-synangiosis (EDAS) with frontal encephalo-galeo-synangiosis (EGS) and EDAS only followed on contralateral hemisphere), and followed-up more than 6 months after post-operative SPECT, were included. A mean follow-up period after post-operative SPECT was 33{+-}21 months. Each patient's SPECT image was spatially normalized to Korean template with the SPM2. For the regional count normalization, the count of pons was used as a reference region. The basal/acetazolamide-stressed cerebral blood flow (CBF), the cerebral vascular reserve index (CVRI), and the extent of area with significantly decreased basal/acetazolamide- stressed rCBF than age-matched normal control were evaluated on both medial frontal, frontal, parietal, occipital lobes, and whole brain in each patient's images. The post-operative clinical outcome was assigned as good, poor according to the presence of transient ischemic attacks and/or fixed neurological deficits by pediatric neurosurgeon. In a paired t-test, basal/acetazolamide-stressed rCBF and the CVRI were significantly improved after revascularization (p<0.05). The significant difference in the pre-operative basal/acetazolamide-stressed rCBF and the CVRI between the hemispheres where EDAS with frontal EGS was performed and their contralateral counterparts where EDAS only was done disappeared after operation (p<0.05). In an independent student t-test, the pre-operative basal rCBF in the medial frontal gyrus, the post-operative CVRI in the frontal lobe and the parietal

  15. Single-photon-emission-computed-tomography (SPECT) in basal ganglia disorders

    International Nuclear Information System (INIS)

    Tatsch, K.

    1997-01-01

    In the past, SPECT investigations of regional cerebral blood flow have played a minor role in the diagnostic work-up of patients with basal ganglia disorders. More recently, however, interest in nuclear medicine procedures has dramatically increased since with the development of selective receptor ligands diagnostic tools have been provided which address the pathology in basal ganglia disorders more specifically than other diagnostic modalities. Evaluations of the pre- and postsynaptic aspects of the dopaminergic system, for example, deliver not only interesting data from the scientific point of view but also for the daily routine work. This paper summarizes some of the experience reported in the literature on SPECT investigations in basal ganglia disorders, such as Parkinson's disease, parkinsonian syndromes of other etiology, Wilson's and Huntington's disease, focal dystonias, and schizophrenia under treatment with neuroleptics. (orig.) [de

  16. Wrecked regulation of intrinsically disordered proteins in diseases: Pathogenicity of deregulated regulators

    Directory of Open Access Journals (Sweden)

    Vladimir N. Uversky

    2014-07-01

    Full Text Available Biologically active proteins without stable tertiary structure are common in all known proteomes. Functions of these intrinsically disordered proteins (IDPs are typically related to regulation, signaling and control. Cellular levels of these important regulators are tightly regulated by a variety mechanisms ranging from firmly controlled expression to precisely targeted degradation. Functions of IDPs are controlled by binding to specific partners, alternative splicing, and posttranslational modifications among other means. In the norm, right amounts of precisely activated IDPs have to be present in right time at right places. Wrecked regulation brings havoc to the ordered world of disordered proteins, leading to protein misfolding, misidentification, and missignaling that give rise to numerous human diseases, such as cancer, cardiovascular disease, neurodegenerative diseases, and diabetes. Among factors inducing pathogenic transformations of IDPs are various cellular mechanisms, such as chromosomal translocations, damaged splicing, altered expression, frustrated posttranslational modifications, aberrant proteolytic degradation, and defective trafficking. This review presents some of the aspects of deregulated regulation of IDPs leading to human diseases.

  17. Idiopathic Basal Ganglia Calcification Presented with Impulse Control Disorder

    OpenAIRE

    Sahin, Cem; Levent, Mustafa; Akbaba, Gulhan; Kara, Bilge; Yeniceri, Emine Nese; Inanc, Betul Battaloglu

    2015-01-01

    Primary familial brain calcification (PFBC), also referred to as Idiopathic Basal Ganglia Calcification (IBGC) or “Fahr’s disease,” is a clinical condition characterized by symmetric and bilateral calcification of globus pallidus and also basal ganglions, cerebellar nuclei, and other deep cortical structures. It could be accompanied by parathyroid disorder and other metabolic disturbances. The clinical features are dysfunction of the calcified anatomic localization. IBGC most commonly present...

  18. Primary Cutaneous Carcinosarcoma of the Basal Cell Subtype Should Be Treated as a High-Risk Basal Cell Carcinoma.

    Science.gov (United States)

    Bourgeault, Emilie; Alain, Jimmy; Gagné, Eric

    2015-01-01

    Cutaneous carcinosarcoma is a rare primary tumor of the skin, characterized by biphasic epithelial and mesenchymal differentiation. Due to the limited number of cases reported, there is no consensus regarding treatment and prognosis. Some authors suggest that cutaneous carcinosarcomas should be viewed as aggressive tumors, with ancillary imaging used to evaluate potential metastatic disease. Other reports demonstrate an indolent disease course, especially with epidermal-type cutaneous carcinosarcomas. We report a case of cutaneous carcinosarcoma, which we treated with electrodessication and curettage following a shave biopsy. The tumor had an epithelial component resembling a basal cell carcinoma and a fibrosarcomatous stroma. At 1-year follow-up, our patient did not show evidence of recurrence or metastasis. Our case suggests that a cutaneous carcinosarcoma with an epithelial component composed of basal cell carcinoma can be regarded as a high-risk nonmelanoma skin cancer. © The Author(s) 2015.

  19. Treatment of biotin-responsive basal ganglia disease: Open comparative study between the combination of biotin plus thiamine versus thiamine alone.

    Science.gov (United States)

    Tabarki, Brahim; Alfadhel, Majid; AlShahwan, Saad; Hundallah, Khaled; AlShafi, Shatha; AlHashem, Amel

    2015-09-01

    To compare the combination of biotin plus thiamine to thiamine alone in treating patients with biotin-responsive basal ganglia disease in an open-label prospective, comparative study. twenty patients with genetically proven biotin-responsive basal ganglia disease were enrolled, and received for at least 30 months a combination of biotin plus thiamine or thiamine alone. The outcome measures included duration of the crisis, number of recurrence/admissions, the last neurological examination, the severity of dystonia using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS), and the brain MRI findings during the crisis and after 30 months of follow-up. Ten children with a mean age of 6 years(1/2) were recruited in the biotin plus thiamine group (group 1) and ten children (6 females and 4 males) with a mean age of 6 years and 2 months were recruited in the thiamine group (group 2). After 2 years of follow-up treatment, 6 of 20 children achieved complete remission, 10 had minimal sequelae in the form of mild dystonia and dysarthria (improvement of the BFMDRS, mean: 80%), and 4 had severe neurologic sequelae. All these 4 patients had delayed diagnosis and management. Regarding outcome measures, both groups have a similar outcome regarding the number of recurrences, the neurologic sequelae (mean BFMDS score between the groups, p = 0.84), and the brain MRI findings. The only difference was the duration of the acute crisis: group 1 had faster recovery (2 days), versus 3 days in group 2 (p = 0.005). Our study suggests that over 30 months of treatment, the combination of biotin plus thiamine is not superior to thiamine alone in the treatment of biotin-responsive basal ganglia disease. Copyright © 2015 European Paediatric Neurology Society. Published by Elsevier Ltd. All rights reserved.

  20. A case of squamous cell carchinoma, basal cell epithelioma and Bowen's disease arising from chronic radiodermatitis

    International Nuclear Information System (INIS)

    Matsushima, Hironori; Yamasaki, Kenshi; Hatamochi, Atsushi; Shinkai, Hiroshi

    1997-01-01

    We report a case of multiple cancers developing in chronic radiodermatitis. A 43-year-old Japanese male presented with chronic radiodermatitis on both dorsal surfaces of his fingers, following a long-term irradiation by Grenz rays for the treatment of psoriasis vulgaris. At the same site, he developed squamous cell carcinoma and Bowen's disease 7 years after the last irradiation. Three years later, he noticed a black papule on the dorsal surface of his right middle finger. After a histological examination, this papule diagnosed to be basal cell epithelioma. (author)

  1. Reduced basal autophagy and impaired mitochondrial dynamics due to loss of Parkinson's disease-associated protein DJ-1.

    Directory of Open Access Journals (Sweden)

    Guido Krebiehl

    2010-02-01

    Full Text Available Mitochondrial dysfunction and degradation takes a central role in current paradigms of neurodegeneration in Parkinson's disease (PD. Loss of DJ-1 function is a rare cause of familial PD. Although a critical role of DJ-1 in oxidative stress response and mitochondrial function has been recognized, the effects on mitochondrial dynamics and downstream consequences remain to be determined.Using DJ-1 loss of function cellular models from knockout (KO mice and human carriers of the E64D mutation in the DJ-1 gene we define a novel role of DJ-1 in the integrity of both cellular organelles, mitochondria and lysosomes. We show that loss of DJ-1 caused impaired mitochondrial respiration, increased intramitochondrial reactive oxygen species, reduced mitochondrial membrane potential and characteristic alterations of mitochondrial shape as shown by quantitative morphology. Importantly, ultrastructural imaging and subsequent detailed lysosomal activity analyses revealed reduced basal autophagic degradation and the accumulation of defective mitochondria in DJ-1 KO cells, that was linked with decreased levels of phospho-activated ERK2.We show that loss of DJ-1 leads to impaired autophagy and accumulation of dysfunctional mitochondria that under physiological conditions would be compensated via lysosomal clearance. Our study provides evidence for a critical role of DJ-1 in mitochondrial homeostasis by connecting basal autophagy and mitochondrial integrity in Parkinson's disease.

  2. Nitric oxide modulation of the basal ganglia circuitry: therapeutic implication for Parkinson's disease and other motor disorders.

    Science.gov (United States)

    Pierucci, Massimo; Galati, Salvatore; Valentino, Mario; Di Matteo, Vincenzo; Benigno, Arcangelo; Pitruzzella, Alessandro; Muscat, Richard; Di Giovanni, Giuseppe

    2011-11-01

    Several recent studies have emphasized a crucial role for the nitrergic system in movement control and the pathophysiology of the basal ganglia (BG). These observations are supported by anatomical evidence demonstrating the presence of nitric oxide synthase (NOS) in all the basal ganglia nuclei. In fact, nitrergic terminals have been reported to make synaptic contacts with both substantia nigra dopamine-containing neurons and their terminal areas such as the striatum, the globus pallidus and the subthalamus. These brain areas contain a high expression of nitric oxide (NO)-producing neurons, with the striatum having the greatest number, together with important NO afferent input. In this paper, the distribution of NO in the BG nuclei will be described. Furthermore, evidence demonstrating the nitrergic control of BG activity will be reviewed. The new avenues that the increasing knowledge of NO in motor control has opened for exploring the pathophysiology and pharmacology of Parkinson's disease and other movement disorders will be discussed. For example, inhibition of striatal NO/guanosine monophosphate signal pathway by phosphodiesterases seems to be effective in levodopa-induced dyskinesia. However, the results of experimental studies have to be interpreted with caution given the complexities of nitrergic signalling and the limitations of animal models. Nevertheless, the NO system represents a promising pharmacological intervention for treating Parkinson's disease and related disorders.

  3. Vascular Risk Factors and Diseases Modulate Deficits of Reward-Based Reversal Learning in Acute Basal Ganglia Stroke.

    Directory of Open Access Journals (Sweden)

    Ulla K Seidel

    Full Text Available Besides motor function, the basal ganglia have been implicated in feedback learning. In patients with chronic basal ganglia infarcts, deficits in reward-based reversal learning have previously been described.We re-examined the acquisition and reversal of stimulus-stimulus-reward associations and acquired equivalence in eleven patients with acute basal ganglia stroke (8 men, 3 women; 57.8±13.3 years, whose performance was compared eleven healthy subjects of comparable age, sex distribution and education, who were recruited outside the hospital. Eleven hospitalized patients with a similar vascular risk profile as the stroke patients but without stroke history served as clinical control group.In a neuropsychological assessment 7±3 days post-stroke, verbal and spatial short-term and working memory and inhibition control did not differ between groups. Compared with healthy subjects, control patients with vascular risk factors exhibited significantly reduced performance in the reversal phase (F[2,30] = 3.47; p = 0.044; post-hoc comparison between risk factor controls and healthy controls: p = 0.030, but not the acquisition phase (F[2,30] = 1.01; p = 0.376 and the acquired equivalence (F[2,30] = 1.04; p = 0.367 tasks. In all tasks, the performance of vascular risk factor patients closely resembled that of basal ganglia stroke patients. Correlation studies revealed a significant association of the number of vascular risk factors with reversal learning (r = -0.33, p = 0.012, but not acquisition learning (r = -0.20, p = 0.121 or acquired equivalence (r = -0.22, p = 0.096.The previously reported impairment of reward-based learning may be attributed to vascular risk factors and associated diseases, which are enriched in stroke patients. This study emphasizes the necessity of appropriate control subjects in cognition studies.

  4. Basal Root Rot, a new Disease of Teak (Tectona grandis in Malaysia caused by Phellinus noxius

    Directory of Open Access Journals (Sweden)

    Mohd Farid, A.

    2005-01-01

    Full Text Available Basal root rot of teak was first reported from Sabak Bernam, Selangor making this the first report of the disease on teak in Peninsular Malaysia. The fungus found associated with the disease was Phellinus noxious. The disease aggressively killed its host irrespective of the host health status. Bark depression at the root collar which was visible from a distance was the characteristic symptom and the main indicator in identifying the disease in the plantation since above ground symptoms of the canopy could not be differentiated from crowns of healthy trees. However, although above ground symptoms were not easily discernible, the disease was already advanced and the trees mostly beyond treatment; 3.4 % of the trees in the plantation were affected and the disease occurred both on solitary trees and in patches. Below ground, infected trees had rotted root systems, mainly below and around the collar region with brown discolored wood and irregular golden-brown honeycomb-like pockets of fungal hyphae in the wood. Pathogenicity tests showed that the fungus produced symptoms similar to those observed in the plantation and killed two year-old teak plants. The disease killed all the inoculated hosts within three months, irrespective of wounded or unwounded treatments.

  5. Two appendages homologous between basal bodies and centrioles are formed using distinct Odf2 domains.

    Science.gov (United States)

    Tateishi, Kazuhiro; Yamazaki, Yuji; Nishida, Tomoki; Watanabe, Shin; Kunimoto, Koshi; Ishikawa, Hiroaki; Tsukita, Sachiko

    2013-11-11

    Ciliogenesis is regulated by context-dependent cellular cues, including some transduced through appendage-like structures on ciliary basal bodies called transition fibers and basal feet. However, the molecular basis for this regulation is not fully understood. The Odf2 gene product, ODF2/cenexin, is essential for both ciliogenesis and the formation of the distal and subdistal appendages on centrioles, which become basal bodies. We examined the effects of Odf2 deletion constructs on ciliogenesis in Odf2-knockout F9 cells. Electron microscopy revealed that ciliogenesis and transition fiber formation required the ODF2/cenexin fragment containing amino acids (aa) 188-806, whereas basal foot formation required aa 1-59 and 188-806. These sequences also formed distal and subdistal appendages, respectively, indicating that the centriole appendages are molecularly analogous to those on basal bodies. We used the differential formation of appendages by Odf2 deletion constructs to study the incorporation and function of molecules associated with each appendage type. We found that transition fibers and distal appendages were required for ciliogenesis and subdistal appendages stabilized the centrosomal microtubules.

  6. A basal stem cell signature identifies aggressive prostate cancer phenotypes

    Science.gov (United States)

    Smith, Bryan A.; Sokolov, Artem; Uzunangelov, Vladislav; Baertsch, Robert; Newton, Yulia; Graim, Kiley; Mathis, Colleen; Cheng, Donghui; Stuart, Joshua M.; Witte, Owen N.

    2015-01-01

    Evidence from numerous cancers suggests that increased aggressiveness is accompanied by up-regulation of signaling pathways and acquisition of properties common to stem cells. It is unclear if different subtypes of late-stage cancer vary in stemness properties and whether or not these subtypes are transcriptionally similar to normal tissue stem cells. We report a gene signature specific for human prostate basal cells that is differentially enriched in various phenotypes of late-stage metastatic prostate cancer. We FACS-purified and transcriptionally profiled basal and luminal epithelial populations from the benign and cancerous regions of primary human prostates. High-throughput RNA sequencing showed the basal population to be defined by genes associated with stem cell signaling programs and invasiveness. Application of a 91-gene basal signature to gene expression datasets from patients with organ-confined or hormone-refractory metastatic prostate cancer revealed that metastatic small cell neuroendocrine carcinoma was molecularly more stem-like than either metastatic adenocarcinoma or organ-confined adenocarcinoma. Bioinformatic analysis of the basal cell and two human small cell gene signatures identified a set of E2F target genes common between prostate small cell neuroendocrine carcinoma and primary prostate basal cells. Taken together, our data suggest that aggressive prostate cancer shares a conserved transcriptional program with normal adult prostate basal stem cells. PMID:26460041

  7. Draft Genome Sequence of the Phytopathogenic Fungus Ganoderma boninense, the Causal Agent of Basal Stem Rot Disease on Oil Palm.

    Science.gov (United States)

    Utomo, Condro; Tanjung, Zulfikar Achmad; Aditama, Redi; Buana, Rika Fithri Nurani; Pratomo, Antonius Dony Madu; Tryono, Reno; Liwang, Tony

    2018-04-26

    Ganoderma boninense is the dominant fungal pathogen of basal stem rot (BSR) disease on Elaeis guineensis We sequenced the nuclear genome of mycelia using both Illumina and Pacific Biosciences platforms for assembly of scaffolds. The draft genome comprised 79.24 Mb, 495 scaffolds, and 26,226 predicted coding sequences. Copyright © 2018 Utomo et al.

  8. The {Delta}Np63 Proteins Are Key Allies of BRCA1 in the Prevention of Basal-Like Breast Cancer.

    LENUS (Irish Health Repository)

    Buckley, Niamh E

    2011-03-01

    Little is known about the origin of basal-like breast cancers, an aggressive disease that is highly similar to BRCA1-mutant breast cancers. p63 family proteins that are structurally related to the p53 suppressor protein are known to function in stem cell regulation and stratified epithelia development in multiple tissues, and p63 expression may be a marker of basal-like breast cancers. Here we report that ΔNp63 isoforms of p63 are transcriptional targets for positive regulation by BRCA1. Our analyses of breast cancer tissue microarrays and BRCA1-modulated breast cancer cell lines do not support earlier reports that p63 is a marker of basal-like or BRCA1 mutant cancers. Nevertheless, we found that BRCA1 interacts with the specific p63 isoform ΔNp63γ along with transcription factor isoforms AP-2α and AP-2γ. BRCA1 required ΔNp63γ and AP-2γ to localize to an intronic enhancer region within the p63 gene to upregulate transcription of the ΔNp63 isoforms. In mammary stem\\/progenitor cells, siRNA-mediated knockdown of ΔNp63 expression resulted in genomic instability, increased cell proliferation, loss of DNA damage checkpoint control, and impaired growth control. Together, our findings establish that transcriptional upregulation of ΔNp63 proteins is critical for BRCA1 suppressor function and that defects in BRCA1-ΔNp63 signaling are key events in the pathogenesis of basal-like breast cancer. Cancer Res; 71(5); 1933-44. ©2011 AACR.

  9. Bee Venom Alleviates Motor Deficits and Modulates the Transfer of Cortical Information through the Basal Ganglia in Rat Models of Parkinson's Disease.

    Science.gov (United States)

    Maurice, Nicolas; Deltheil, Thierry; Melon, Christophe; Degos, Bertrand; Mourre, Christiane; Amalric, Marianne; Kerkerian-Le Goff, Lydia

    2015-01-01

    Recent evidence points to a neuroprotective action of bee venom on nigral dopamine neurons in animal models of Parkinson's disease (PD). Here we examined whether bee venom also displays a symptomatic action by acting on the pathological functioning of the basal ganglia in rat PD models. Bee venom effects were assessed by combining motor behavior analyses and in vivo electrophysiological recordings in the substantia nigra pars reticulata (SNr, basal ganglia output structure) in pharmacological (neuroleptic treatment) and lesional (unilateral intranigral 6-hydroxydopamine injection) PD models. In the hemi-parkinsonian 6-hydroxydopamine lesion model, subchronic bee venom treatment significantly alleviates contralateral forelimb akinesia and apomorphine-induced rotations. Moreover, a single injection of bee venom reverses haloperidol-induced catalepsy, a pharmacological model reminiscent of parkinsonian akinetic deficit. This effect is mimicked by apamin, a blocker of small conductance Ca2+-activated K+ (SK) channels, and blocked by CyPPA, a positive modulator of these channels, suggesting the involvement of SK channels in the bee venom antiparkinsonian action. In vivo electrophysiological recordings in the substantia nigra pars reticulata (basal ganglia output structure) showed no significant effect of BV on the mean neuronal discharge frequency or pathological bursting activity. In contrast, analyses of the neuronal responses evoked by motor cortex stimulation show that bee venom reverses the 6-OHDA- and neuroleptic-induced biases in the influence exerted by the direct inhibitory and indirect excitatory striatonigral circuits. These data provide the first evidence for a beneficial action of bee venom on the pathological functioning of the cortico-basal ganglia circuits underlying motor PD symptoms with potential relevance to the symptomatic treatment of this disease.

  10. Correlation transfer from basal ganglia to thalamus in Parkinson's disease

    Science.gov (United States)

    Pamela, Reitsma; Brent, Doiron; Jonathan, Rubin

    2011-01-01

    Spike trains from neurons in the basal ganglia of parkinsonian primates show increased pairwise correlations, oscillatory activity, and burst rate compared to those from neurons recorded during normal brain activity. However, it is not known how these changes affect the behavior of downstream thalamic neurons. To understand how patterns of basal ganglia population activity may affect thalamic spike statistics, we study pairs of model thalamocortical (TC) relay neurons receiving correlated inhibitory input from the internal segment of the globus pallidus (GPi), a primary output nucleus of the basal ganglia. We observe that the strength of correlations of TC neuron spike trains increases with the GPi correlation level, and bursty firing patterns such as those seen in the parkinsonian GPi allow for stronger transfer of correlations than do firing patterns found under normal conditions. We also show that the T-current in the TC neurons does not significantly affect correlation transfer, despite its pronounced effects on spiking. Oscillatory firing patterns in GPi are shown to affect the timescale at which correlations are best transferred through the system. To explain this last result, we analytically compute the spike count correlation coefficient for oscillatory cases in a reduced point process model. Our analysis indicates that the dependence of the timescale of correlation transfer is robust to different levels of input spike and rate correlations and arises due to differences in instantaneous spike correlations, even when the long timescale rhythmic modulations of neurons are identical. Overall, these results show that parkinsonian firing patterns in GPi do affect the transfer of correlations to the thalamus. PMID:22355287

  11. Bilateral hyperintense basal ganglia on T1-weighted image

    International Nuclear Information System (INIS)

    Baik, Seung Kug; Ahn, Woo Hyun; Choi, Han Yong; Kim, Bong Gi

    1994-01-01

    Bilateral high signal intensity in basal ganglia on T1-weighted images is unusual, the purpose of this study is to describe the pattern of high signal intensity and underlying disease. During the last three years, 8 patients showed bilateral high signal intensity in basal ganglia on T1-weighted image, as compared with cerebral white matter. Authors analyzed the images and underlying causes retrospectively. Of 8 patients, 5 were male and 3 were female. The age ranged from 15 days to 79 years. All patient were examined by a 0.5T superconductive MRI. Images were obtained by spin echo multislice technique. Underlying causes were 4 cases of hepatopathy, 2 cases of calcium metabolism disorder, and one case each of neurofibromatosis and hypoxic brain injury. These process were bilateral in all cases and usually symmetric. In all cases the hyperintense areas were generally homogenous without mass effect or edema, although somewhat nodular appearance was seen in neurofibromatosis. Lesions were located in the globus pallidus and internal capsule in hepatopathy and neurofibromatosis, head of the caudate nucleus in disorder of calcum metabolism, and the globus pallidus in hypoxic brain injury. Although this study is limited by its patient population, bilateral hyperintense basal ganglia is associated with various disease entities. On analysis of hyperintense basal ganglia lesion, the knowledge of clinical information improved diagnostic accuracy

  12. Review: electrophysiology of basal ganglia and cortex in models of Parkinson disease.

    Science.gov (United States)

    Ellens, Damien J; Leventhal, Daniel K

    2013-01-01

    Incomplete understanding of the systems-level pathophysiology of Parkinson Disease (PD) remains a significant barrier to improving its treatment. Substantial progress has been made, however, due to the availability of neurotoxins that selectively target monoaminergic (in particular, dopaminergic) neurons. This review discusses the in vivo electrophysiology of basal ganglia (BG), thalamic, and cortical regions after dopamine-depleting lesions. These include firing rate changes, neuronal burst-firing, neuronal oscillations, and neuronal synchrony that result from a combination of local microanatomic changes and network-level interactions. While much is known of the clinical and electrophysiological phenomenology of dopamine loss, a critical gap in our conception of PD pathophysiology is the link between them. We discuss potential mechanisms by which these systems-level electrophysiological changes may emerge, as well as how they may relate to clinical parkinsonism. Proposals for an updated understanding of BG function are reviewed, with an emphasis on how emerging frameworks will guide future research into the pathophysiology and treatment of PD.

  13. Genetic analysis of partial resistance to basal stem rot (Sclerotinia sclerotiorum in sunflower

    Directory of Open Access Journals (Sweden)

    Amouzadeh Masoumeh

    2013-01-01

    Full Text Available Basal stem rot, caused by Sclerotinia sclerotiorum (Lib. de Bary, is one of the major diseases of sunflower (Helianthus annuus L. in the world. Quantitative trait loci (QTLs implicated in partial resistance to basal stem rot disease were identified using 99 recombinant inbred lines (RILs from the cross between sunflower parental lines PAC2 and RHA266. The study was undertaken in a completely randomized design with three replications under controlled conditions. The RILs and their parental lines were inoculated with a moderately aggressive isolate of S. sclerotiorum (SSKH41. Resistance to disease was evaluated by measuring the percentage of necrosis area three days after inoculation. QTLs were mapped using an updated high-density SSR and SNP linkage map. ANOVA showed significant differences among sunflower lines for resistance to basal stem rot (P≤0.05. The frequency distribution of lines for susceptibility to disease showed a continuous pattern. Composite interval mapping analysis revealed 5 QTLs for percentage of necrotic area, localized on linkage groups 1, 3, 8, 10 and 17. The sign of additive effect was positive in 5 QTLs, suggesting that the additive allele for partial resistance to basal stem rot came from the paternal line (RHA266. The phenotypic variance explained by QTLs (R2 ranged from 0.5 to 3.16%. Identified genes (HUCL02246_1, GST and POD, and SSR markers (ORS338, and SSL3 encompassing the QTLs for partial resistance to basal stem rot could be good candidates for marker assisted selection.

  14. Levodopa Effect on Basal Ganglia Motor Circuit in Parkinson's Disease.

    Science.gov (United States)

    Gao, Lin-Lin; Zhang, Jia-Rong; Chan, Piu; Wu, Tao

    2017-01-01

    To investigate the effects of levodopa on the basal ganglia motor circuit (BGMC) in Parkinson's disease (PD). Thirty PD patients with asymmetrical bradykinesia and 30 control subjects were scanned using resting-state functional MRI. Functional connectivity of the BGMC was measured and compared before and after levodopa administration in patients with PD. The correlation between improvements in bradykinesia and changes in BGMC connectivity was examined. In the PD-off state (before medication), the posterior putamen and internal globus pallidus (GPi) had decreased connectivity while the subthalamic nucleus (STN) had enhanced connectivity within the BGMC relative to control subjects. Levodopa administration increased the connectivity of posterior putamen- and GPi-related networks but decreased the connectivity of STN-related networks. Improvements in bradykinesia were correlated with enhanced connectivity of the posterior putamen-cortical motor pathway and with decreased connectivity of the STN-thalamo-cortical motor pathway. In PD patients with asymmetrical bradykinesia, levodopa can partially normalize the connectivity of the BGMC with a larger effect on the more severely affected side. Moreover, the beneficial effect of levodopa on bradykinesia is associated with normalization of the striato-thalamo-cortical motor and STN-cortical motor pathways. Our findings inform the neural mechanism of levodopa treatment in PD. © 2016 John Wiley & Sons Ltd.

  15. Bilateral functional connectivity of the basal ganglia in patients with Parkinson's disease and its modulation by dopaminergic treatment.

    Science.gov (United States)

    Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter

    2013-01-01

    Parkinson's disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson's disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = -4.4, pbasal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei.

  16. Basal Cell Carcinomas in Gorlin Syndrome: A Review of 202 Patients

    International Nuclear Information System (INIS)

    Jones, E. A.; Shenton, A.; Evans, D. G.; Sajid, M. I.

    2011-01-01

    Gorlin syndrome (Naevoid Basal Cell Carcinoma Syndrome) is a rare autosomal dominant syndrome caused by mutations in the PTCH gene with a birth incidence of approximately 1 in 19,000. Patients develop multiple basal cell carcinomas of the skin frequently in early life and also have a predisposition to additional malignancies such as medulloblastoma. Gorlin Syndrome patients also have developmental defects such as bifid ribs and other complications such as jaw keratocysts. We studied the incidence and frequency of basal cell carcinomas in 202 Gorlin syndrome patients from 62 families and compared this to their gender and mutation type. Our data suggests that the incidence of basal cell carcinomas is equal between males and females and the mutation type cannot be used to predict disease burden

  17. Spatial statistical analysis of basal stem root disease under natural field epidemic of oil palm

    Science.gov (United States)

    Kamu, Assis; Phin, Chong Khim; Seman, Idris Abu; Wan, Hoong Hak; Mun, Ho Chong

    2015-02-01

    Oil palm or scientifically known as Elaeis guineensis Jacq. is the most important commodity crop in Malaysia and has greatly contributed to the economy growth of the country. As far as disease is concerned in the industry, Basal Stem Rot (BSR) caused by Ganoderma boninence remains the most important disease. BSR disease is the most widely studied with information available for oil palm disease in Malaysia. However, there is still limited study on the spatial as well as temporal pattern or distribution of the disease especially under natural field epidemic condition in oil palm plantation. The objective of this study is to spatially identify the pattern of BSR disease under natural field epidemic using two geospatial analytical techniques, which are quadrat analysis for the first order properties of partial pattern analysis and nearest-neighbor analysis (NNA) for the second order properties of partial pattern analysis. Two study sites were selected with different age of tree. Both sites are located in Tawau, Sabah and managed by the same company. The results showed that at least one of the point pattern analysis used which is NNA (i.e. the second order properties of partial pattern analysis) has confirmed the disease is complete spatial randomness. This suggests the spread of the disease is not from tree to tree and the age of palm does not play a significance role in determining the spatial pattern of the disease. From the spatial pattern of the disease, it would help in the disease management program and for the industry in the future. The statistical modelling is expected to help in identifying the right model to estimate the yield loss of oil palm due to BSR disease in the future.

  18. A case of squamous cell carchinoma, basal cell epithelioma and Bowen`s disease arising from chronic radiodermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Matsushima, Hironori; Yamasaki, Kenshi; Hatamochi, Atsushi; Shinkai, Hiroshi [Chiba Univ. (Japan). School of Medicine

    1997-10-01

    We report a case of multiple cancers developing in chronic radiodermatitis. A 43-year-old Japanese male presented with chronic radiodermatitis on both dorsal surfaces of his fingers, following a long-term irradiation by Grenz rays for the treatment of psoriasis vulgaris. At the same site, he developed squamous cell carcinoma and Bowen`s disease 7 years after the last irradiation. Three years later, he noticed a black papule on the dorsal surface of his right middle finger. After a histological examination, this papule diagnosed to be basal cell epithelioma. (author)

  19. Associations of olfactory bulb and depth of olfactory sulcus with basal ganglia and hippocampus in patients with Parkinson's disease.

    Science.gov (United States)

    Tanik, Nermin; Serin, Halil Ibrahim; Celikbilek, Asuman; Inan, Levent Ertugrul; Gundogdu, Fatma

    2016-05-04

    Parkinson's disease (PD) is a neurodegenerative disorder characterized by hyposmia in the preclinical stages. We investigated the relationships of olfactory bulb (OB) volume and olfactory sulcus (OS) depth with basal ganglia and hippocampal volumes. The study included 25 patients with PD and 40 age- and sex-matched control subjects. Idiopathic PD was diagnosed according to published diagnostic criteria. The Hoehn and Yahr (HY) scale, the motor subscale of the Unified Parkinson's Disease Rating Scale (UPDRS III), and the Mini-Mental State Examination (MMSE) were administered to participants. Volumetric measurements of olfactory structures, the basal ganglia, and hippocampus were performed using magnetic resonance imaging (MRI). OB volume and OS depth were significantly reduced in PD patients compared to healthy control subjects (p<0.001 and p<0.001, respectively). The OB and left putamen volumes were significantly correlated (p=0.048), and the depth of the right OS was significantly correlated with right hippocampal volume (p=0.018). We found significant correlations between OB and putamen volumes and OS depth and hippocampal volume. Our study is the first to demonstrate associations of olfactory structures with the putamen and hippocampus using MRI volumetric measurements. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Bilateral Functional Connectivity of the Basal Ganglia in Patients with Parkinson’s Disease and Its Modulation by Dopaminergic Treatment

    Science.gov (United States)

    Little, Simon; Tan, Huiling; Anzak, Anam; Pogosyan, Alek; Kühn, Andrea; Brown, Peter

    2013-01-01

    Parkinson’s disease is characterised by excessive subcortical beta oscillations. However, little is known about the functional connectivity of the two basal ganglia across hemispheres and specifically the role beta plays in this. We recorded local field potentials from the subthalamic nucleus bilaterally in 23 subjects with Parkinson’s disease at rest, on and off medication. We found suppression of low beta power in response to levodopa (t22 = −4.4, psynchronisation in the beta band and found significant amplitude co-modulation and phase locking values in 17 and 16 subjects respectively, off medication. There was a dissociable effect of levodopa on these measures, with a significant suppression only in low beta phase locking value (t22 = −2.8, p = 0.01) and not amplitude co-modulation. The absolute mean values of amplitude co-modulation (0.40±0.03) and phase synchronisation (0.29±0.02) off medication were, however, relatively low, suggesting that the two basal ganglia networks may have to be approached separately with independent sensing and stimulation during adaptive deep brain stimulation. In addition, our findings highlight the functional distinction between the lower and upper beta frequency ranges and between amplitude co-modulation and phase synchronization across subthalamic nuclei. PMID:24376574

  1. Treatment of basal cell epithelioma with high energy electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Y. (Hyogo-ken Cancer Center, Kobe (Japan)); Kumano, M.; Kumano, K.

    1981-11-01

    Thirty patients with basal cell epithelioma received high energy electron beam therapy. They were irradiated with a dose ranging from 4,800 rad (24 fractions, 35 days) to 12,000 rad (40 fractions, 57 days). Tumors disappeared in all cases. These were no disease-related deaths; in one patient there was recurrence after 2 years. We conclude that radiotherapy with high energy electron beam is very effective in the treatment of basal cell epithelioma.

  2. Enhancing biological control of basal stem rot disease (Ganoderma boninense) in oil palm plantations.

    Science.gov (United States)

    Susanto, A; Sudharto, P S; Purba, R Y

    2005-01-01

    Basal Stem Rot (BSR) disease caused by Ganoderma boninense is the most destructive disease in oil palm, especially in Indonesia and Malaysia. The available control measures for BSR disease such as cultural practices and mechanical and chemical treatment have not proved satisfactory due to the fact that Ganoderma has various resting stages such as melanised mycelium, basidiospores and pseudosclerotia. Alternative control measures to overcome the Ganoderma problem are focused on the use of biological control agents and planting resistant material. Present studies conducted at Indonesian Oil Palm Research Institute (IOPRI) are focused on enhancing the use of biological control agents for Ganoderma. These activities include screening biological agents from the oil palm rhizosphere in order to evaluate their effectiveness as biological agents in glasshouse and field trials, testing their antagonistic activities in large scale experiments and eradicating potential disease inoculum with biological agents. Several promising biological agents have been isolated, mainly Trichoderma harzianum, T. viride, Gliocladium viride, Pseudomonas fluorescens, and Bacillus sp. A glasshouse and field trial for Ganoderma control indicated that treatment with T. harzianum and G. viride was superior to Bacillus sp. A large scale trial showed that the disease incidence was lower in a field treated with biological agents than in untreated fields. In a short term programme, research activities at IOPRI are currently focusing on selecting fungi that can completely degrade plant material in order to eradicate inoculum. Digging holes around the palm bole and adding empty fruit bunches have been investigated as ways to stimulate biological agents.

  3. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder.

    Science.gov (United States)

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-04-09

    BACKGROUND Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. CASE REPORT We report the case of a 65-year-old Gypsy female who was admitted for a tetanic seizure, and who had a history of polyneuropathy, restless-leg syndrome, retinopathy, diabetes, hyperlipidemia, osteoporosis with consecutive hyperkyphosis, cervicalgia, lumbalgia, struma nodosa requiring thyroidectomy and consecutive hypothyroidism, adipositas, resection of a vocal chord polyp, arterial hypertension, coronary heart disease, atheromatosis of the aorta, peripheral artery disease, chronic obstructive pulmonary disease, steatosis hepatis, mild renal insufficiency, long-term hypocalcemia, hyperphosphatemia, impingement syndrome, spondylarthrosis of the lumbar spine, and hysterectomy. History and clinical presentation suggested a mitochondrial defect which also manifested as hypoparathyroidism or Fanconi syndrome resulting in BGC. After substitution of calcium, no further tetanic seizures occurred. CONCLUSIONS Patients with BGC should be investigated for a mitochondrial disorder. A mitochondrial disorder may also manifest as tetanic seizure.

  4. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    International Nuclear Information System (INIS)

    Zuccoli, Giulio; Yannes, Michael Paul; Nardone, Raffaele; Bailey, Ariel; Goldstein, Amy

    2015-01-01

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  5. Bilateral symmetrical basal ganglia and thalamic lesions in children: an update (2015)

    Energy Technology Data Exchange (ETDEWEB)

    Zuccoli, Giulio [Children' s Hospital of Pittsburgh of UPMC, Section of Neuroradiology, Pittsburgh, PA (United States); Yannes, Michael Paul [University of Pittsburgh School of Medicine, Department of Radiology, Pittsburgh, PA (United States); Nardone, Raffaele [Paracelsus Medical University, Department of Neurology, Christian Doppler Klinik, Salzburg (Austria); Bailey, Ariel [West Virginia University, Department of Radiology, Morgantown, WV (United States); Goldstein, Amy [Children' s Hospital of Pittsburgh of UPMC, Department of Neurology, Section of Metabolic Disorders and Neurogenetics, Pittsburgh, PA (United States)

    2015-10-15

    In children, many inherited or acquired neurological disorders may cause bilateral symmetrical signal intensity alterations in the basal ganglia and thalami. A literature review was aimed at assisting neuroradiologists, neurologists, infectious diseases specialists, and pediatricians to provide further understanding into the clinical and neuroimaging features in pediatric patients presenting with bilateral symmetrical basal ganglia and thalamic lesions on magnetic resonance imaging (MRI). We discuss hypoxic-ischemic, toxic, infectious, immune-mediated, mitochondrial, metabolic, and neurodegenerative disorders affecting the basal ganglia and thalami. Recognition and correct evaluation of basal ganglia abnormalities, together with a proper neurological examination and laboratory findings, may enable the identification of each of these clinical entities and lead to earlier diagnosis. (orig.)

  6. Bacterial diversity of oil palm Elaeis guineensis basal stems

    Science.gov (United States)

    Amran, Afzufira; Jangi, Mohd Sanusi; Aqma, Wan Syaidatul; Yusof, Nurul Yuziana Mohd; Bakar, Mohd Faizal Abu; Isa, Mohd Noor Mat

    2016-11-01

    Oil palm, Elaeis guineensis is one of the major industrial production crops in Malaysia. Basal stem rot, caused by the white fungus, Ganoderma boninense, is a disease that reduces oil palm yields in most production areas of the world. Understanding of bacterial community that is associated with Ganoderma infection will shed light on how this bacterial community contributes toward the severity of the infection. In this preliminary study, we assessed the bacterial community that inhabit the basal stems of E. guineensis based on 16S rRNA gene as a marker using next generation sequencing platform. This result showed that a total of 84,372 operational taxonomic-units (OTUs) were identified within six samples analyzed. A total 55,049 OTUs were assigned to known taxonomy whereas 29,323 were unassigned. Cyanobacteria, Bacteroidetes, Firmicutes and Proteobacteria were the most abundant phyla found in all six samples and the unique taxonomy assigned for each infected and healthy samples were also identified. The findings from this study will further enhance our knowledge in the interaction of bacterial communities against Ganoderma infection within the oil palm host plant and for a better management of the basal stems rot disease.

  7. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    International Nuclear Information System (INIS)

    O'Connor, William T.

    1998-01-01

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D 1 and D 2 receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D 1 receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D 2 receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia

  8. Functional neuroanatomy of the basal ganglia as studied by dual-probe microdialysis

    Energy Technology Data Exchange (ETDEWEB)

    O' Connor, William T. E-mail: woconn@iveagh.ucd.ie

    1998-11-01

    Dual probe microdialysis was employed in intact rat brain to investigate the effect of intrastriatal perfusion with selective dopamine D{sub 1} and D{sub 2} receptor agonists and with c-fos antisense oligonucleotide on (a) local GABA release in the striatum; (b) the internal segment of the globus pallidus and the substantia nigra pars reticulata, which is the output site of the strionigral GABA pathway; and (c) the external segment of the globus pallidus, which is the output site of the striopallidal GABA pathway. The data provide functional in vivo evidence for a selective dopamine D{sub 1} receptor-mediated activation of the direct strionigral GABA pathway and a selective dopamine D{sub 2} receptor inhibition of the indirect striopallidal GABA pathway and provides a neuronal substrate for parallel processing in the basal ganglia regulation of motor function. Taken together, these findings offer new therapeutic strategies for the treatment of dopamine-linked disorders such as Parkinson's disease, Huntington's disease, and schizophrenia.

  9. Task-rest modulation of basal ganglia connectivity in mild to moderate Parkinson's disease.

    Science.gov (United States)

    Müller-Oehring, Eva M; Sullivan, Edith V; Pfefferbaum, Adolf; Huang, Neng C; Poston, Kathleen L; Bronte-Stewart, Helen M; Schulte, Tilman

    2015-09-01

    Parkinson's disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG-cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen-medial parietal and pallidum-occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate-supramarginal gyrus and pallidum-inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal-cortical connectivity, specifically between caudate-prefrontal, caudate-precuneus, and putamen-motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance.

  10. Basal Cell Carcinomas in Gorlin Syndrome: A Review of 202 Patients

    Directory of Open Access Journals (Sweden)

    Elizabeth A. Jones

    2011-01-01

    Full Text Available Gorlin syndrome (Naevoid Basal Cell Carcinoma Syndrome is a rare autosomal dominant syndrome caused by mutations in the PTCH gene with a birth incidence of approximately 1 in 19,000. Patients develop multiple basal cell carcinomas of the skin frequently in early life and also have a predisposition to additional malignancies such as medulloblastoma. Gorlin Syndrome patients also have developmental defects such as bifid ribs and other complications such as jaw keratocysts. We studied the incidence and frequency of basal cell carcinomas in 202 Gorlin syndrome patients from 62 families and compared this to their gender and mutation type. Our data suggests that the incidence of basal cell carcinomas is equal between males and females and the mutation type cannot be used to predict disease burden.

  11. Alterations in Neuronal Activity in Basal Ganglia-Thalamocortical Circuits in the Parkinsonian State

    Directory of Open Access Journals (Sweden)

    Adriana eGalvan

    2015-02-01

    Full Text Available In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials, electroencephalograms or electrocorticograms. Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation therapy.

  12. Alterations in neuronal activity in basal ganglia-thalamocortical circuits in the parkinsonian state

    Science.gov (United States)

    Galvan, Adriana; Devergnas, Annaelle; Wichmann, Thomas

    2015-01-01

    In patients with Parkinson’s disease and in animal models of this disorder, neurons in the basal ganglia and related regions in thalamus and cortex show changes that can be recorded by using electrophysiologic single-cell recording techniques, including altered firing rates and patterns, pathologic oscillatory activity and increased inter-neuronal synchronization. In addition, changes in synaptic potentials or in the joint spiking activities of populations of neurons can be monitored as alterations in local field potentials (LFPs), electroencephalograms (EEGs) or electrocorticograms (ECoGs). Most of the mentioned electrophysiologic changes are probably related to the degeneration of diencephalic dopaminergic neurons, leading to dopamine loss in the striatum and other basal ganglia nuclei, although degeneration of non-dopaminergic cell groups may also have a role. The altered electrical activity of the basal ganglia and associated nuclei may contribute to some of the motor signs of the disease. We here review the current knowledge of the electrophysiologic changes at the single cell level, the level of local populations of neural elements, and the level of the entire basal ganglia-thalamocortical network in parkinsonism, and discuss the possible use of this information to optimize treatment approaches to Parkinson’s disease, such as deep brain stimulation (DBS) therapy. PMID:25698937

  13. Basal ganglia, movement disorders and deep brain stimulation: advances made through non-human primate research.

    Science.gov (United States)

    Wichmann, Thomas; Bergman, Hagai; DeLong, Mahlon R

    2018-03-01

    Studies in non-human primates (NHPs) have led to major advances in our understanding of the function of the basal ganglia and of the pathophysiologic mechanisms of hypokinetic movement disorders such as Parkinson's disease and hyperkinetic disorders such as chorea and dystonia. Since the brains of NHPs are anatomically very close to those of humans, disease states and the effects of medical and surgical approaches, such as deep brain stimulation (DBS), can be more faithfully modeled in NHPs than in other species. According to the current model of the basal ganglia circuitry, which was strongly influenced by studies in NHPs, the basal ganglia are viewed as components of segregated networks that emanate from specific cortical areas, traverse the basal ganglia, and ventral thalamus, and return to the frontal cortex. Based on the presumed functional domains of the different cortical areas involved, these networks are designated as 'motor', 'oculomotor', 'associative' and 'limbic' circuits. The functions of these networks are strongly modulated by the release of dopamine in the striatum. Striatal dopamine release alters the activity of striatal projection neurons which, in turn, influences the (inhibitory) basal ganglia output. In parkinsonism, the loss of striatal dopamine results in the emergence of oscillatory burst patterns of firing of basal ganglia output neurons, increased synchrony of the discharge of neighboring basal ganglia neurons, and an overall increase in basal ganglia output. The relevance of these findings is supported by the demonstration, in NHP models of parkinsonism, of the antiparkinsonian effects of inactivation of the motor circuit at the level of the subthalamic nucleus, one of the major components of the basal ganglia. This finding also contributed strongly to the revival of the use of surgical interventions to treat patients with Parkinson's disease. While ablative procedures were first used for this purpose, they have now been largely

  14. Nevoid basal cell carcinoma syndrome

    Science.gov (United States)

    NBCC syndrome; Gorlin-Goltz syndrome; Basal cell nevus syndrome; BCNS; Basal cell cancer - nevoid basal cell carcinoma syndrome ... Nevoid basal cell carcinoma nevus syndrome is a rare genetic ... syndrome is known as PTCH ("patched"). The gene is passed down ...

  15. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    Science.gov (United States)

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  16. A Mathematical Model of Levodopa Medication Effect on Basal Ganglia in Parkinson's Disease: An Application to the Alternate Finger Tapping Task.

    Science.gov (United States)

    Baston, Chiara; Contin, Manuela; Calandra Buonaura, Giovanna; Cortelli, Pietro; Ursino, Mauro

    2016-01-01

    Malfunctions in the neural circuitry of the basal ganglia (BG), induced by alterations in the dopaminergic system, are responsible for an array of motor disorders and milder cognitive issues in Parkinson's disease (PD). Recently Baston and Ursino (2015a) presented a new neuroscience mathematical model aimed at exploring the role of basal ganglia in action selection. The model is biologically inspired and reproduces the main BG structures and pathways, modeling explicitly both the dopaminergic and the cholinergic system. The present work aims at interfacing this neurocomputational model with a compartmental model of levodopa, to propose a general model of medicated Parkinson's disease. Levodopa effect on the striatum was simulated with a two-compartment model of pharmacokinetics in plasma joined with a motor effect compartment. The latter is characterized by the levodopa removal rate and by a sigmoidal relationship (Hill law) between concentration and effect. The main parameters of this relationship are saturation, steepness, and the half-maximum concentration. The effect of levodopa is then summed to a term representing the endogenous dopamine effect, and is used as an external input for the neurocomputation model; this allows both the temporal aspects of medication and the individual patient characteristics to be simulated. The frequency of alternate tapping is then used as the outcome of the whole model, to simulate effective clinical scores. Pharmacokinetic-pharmacodynamic modeling was preliminary performed on data of six patients with Parkinson's disease (both "stable" and "wearing-off" responders) after levodopa standardized oral dosing over 4 h. Results show that the model is able to reproduce the temporal profiles of levodopa in plasma and the finger tapping frequency in all patients, discriminating between different patterns of levodopa motor response. The more influential parameters are the Hill coefficient, related with the slope of the effect sigmoidal

  17. Effect of diet on maintenance of acid-basal balance in blood of dairy cows

    Directory of Open Access Journals (Sweden)

    Gaál T.

    2003-01-01

    Full Text Available High-performance breeds of ruminants often exhibit production disorders which can be accompanied by a disturbed acid-basal balance. Most of the disorders in the acid-basal balance are closely related to digressions in the diet norms of these animals. A deficiency or surplus of energy equally cause disorders in the acid-basal status of the organism. Metabolic acidosis is the most frequent of the four types of basic disorders in the acid-basal balance in ruminants. It appears as a consequence of rumen acidosis, ketosis, or diarrhea. Acute disorders in the acid-basal balance are far more dangerous than chronic ones. Therapy of the basic diseases is generally sufficient compensation for the effects of the acid-basal disorders, but in certain cases it is necessary to perform alkalization, that is, acidification of the rumen content using the necessary preparations.

  18. Past, present and future of the pathophysiological model of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Jose A Obeso

    2011-07-01

    Full Text Available The current model of basal ganglia was introduced two decades ago and has settled most of our current understanding of basal ganglia function and dysfunction. Extensive research efforts have been carried out in recent years leading to further refinement and understanding of the normal and diseased basal ganglia. Several questions, however, are yet to be resolved. This short review provides a synopsis of the evolution of thought regarding the pathophysiological model of the BG and summarizes the main recent findings and additions to this field of research. We have also tried to identify major challenges that need to be addressed and resolved in the near future. Detailed accounts and state-of-the-art developments concerning research on the basal ganglia are provided in the articles that make up this Special Issue.

  19. The Basal Ganglia and Adaptive Motor Control

    Science.gov (United States)

    Graybiel, Ann M.; Aosaki, Toshihiko; Flaherty, Alice W.; Kimura, Minoru

    1994-09-01

    The basal ganglia are neural structures within the motor and cognitive control circuits in the mammalian forebrain and are interconnected with the neocortex by multiple loops. Dysfunction in these parallel loops caused by damage to the striatum results in major defects in voluntary movement, exemplified in Parkinson's disease and Huntington's disease. These parallel loops have a distributed modular architecture resembling local expert architectures of computational learning models. During sensorimotor learning, such distributed networks may be coordinated by widely spaced striatal interneurons that acquire response properties on the basis of experienced reward.

  20. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    Science.gov (United States)

    Bivi, M. Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M. S.; Idris, Abu Seman

    2016-01-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease. PMID:27721689

  1. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid.

    Science.gov (United States)

    Bivi, M Shahul Hamid Rahamah; Paiko, Adamu Saidu; Khairulmazmi, Ahmad; Akhtar, M S; Idris, Abu Seman

    2016-10-01

    Continuous supplementation of mineral nutrients and salicylic acid (SA) as foliar application could improve efficacy in controlling basal stem rot (BSR) disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3%) was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA]) (5.0%) followed by T1 (5.5%), T5 (5.8%), T3 (8.3%), T6 (8.3%), T4 (13.3%), and T2 (15.8%) treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  2. Control of Basal Stem Rot Disease in Oil Palm by Supplementation of Calcium, Copper, and Salicylic Acid

    Directory of Open Access Journals (Sweden)

    M. Shahul Hamid Rahamah Bivi

    2016-10-01

    Full Text Available Continuous supplementation of mineral nutrients and salicylic acid (SA as foliar application could improve efficacy in controlling basal stem rot (BSR disease in oil palm seedling. It is revealed from the results that the highest disease severity index (58.3% was recorded in T8 treatments at 9 months after inoculation. The best disease control was achieved by T7 treatments (calcium/copper/SA [Ca/Cu/SA] (5.0% followed by T1 (5.5%, T5 (5.8%, T3 (8.3%, T6 (8.3%, T4 (13.3%, and T2 (15.8% treatments. Continuous supplementation of Ca/Cu/SA was found to be the most effective in controlling the disease and the high performance liquid chromatography results showed the detection of ergosterol at very low concentration in the treated samples. Moreover, the transmission electron microscopy analysis results clearly indicated that T7 treatment was also enhancing lignification, which was responsible for the thickness of the secondary cell walls and middle lamella compared to untreated samples. It was therefore, concluded that continuous supplementation of minerals nutrients and SA could effectively suppress disease severity by reducing ergosterol activity and also improve the process of lignification in the treated plants. Furthermore, this treatment also managed to delay the onset of BSR symptoms and promote the growth of the seedlings and eventually suppress the BSR disease.

  3. Basal encephalocele in an adult patient presenting with minor anomalies: a case report

    Science.gov (United States)

    2014-01-01

    Introduction Basal encephalocele is rare in adults. Congenital and acquired cases have been reported with regard to the developmental mechanism, and the pathology has not been elucidated in detail. Case presentation We encountered an adult with basal encephalocele strongly suggesting congenital development because of the presence of minor anomalies: strabismus and ocular hypertelorism. The disease manifested as persistent spontaneous cerebrospinal fluid rhinorrhea and repeated meningitis in a 66-year-old Japanese man. On computed tomography, brain tissue protruded through a part of the ethmoid bone of his right anterior skull base, and it was diagnosed as transethmoidal-type basal encephalocele. Regarding his facial form, the distance between his bilateral eyeballs was large compared to his facial width, and his canthal index (defined as inner to outer inter canthal ratio × 100) was calculated as 38.5, based on which it was judged as ocular hypertelorism. In addition, his right eyeball showed strabismus. A right frontotemporal craniotomy was performed for spontaneous cerebrospinal fluid rhinorrhea, and the defective dura mater region was patched with temporal fascia. Conclusions Mild minor anomalies that require no treatment are overlooked in adults, but the presence of several anomalies increases the possibility of congenital disease. Therefore, it may be necessary to examine minor anomalies in cases of adult basal encephalocele when considering the possibility that the disease may be congenital. PMID:24468320

  4. Regulation of basal gastric acid secretion by the glycogen synthase kinase GSK3.

    Science.gov (United States)

    Rotte, Anand; Pasham, Venkanna; Eichenmüller, Melanie; Yang, Wenting; Qadri, Syed M; Bhandaru, Madhuri; Lang, Florian

    2010-10-01

    According to previous observations, basal gastric acid secretion is downregulated by phosphoinositol-3-(PI3)-kinase, phosphoinositide-dependent kinase (PDK1), and protein kinase B (PKBβ/Akt2) signaling. PKB/Akt phosphorylates glycogen synthase kinase GSK3. The present study explored whether PKB/Akt-dependent GSK3-phosphorylation modifies gastric acid secretion. Utilizing 2',7'-bis-(carboxyethyl)-5(6')-carboxyfluorescein (BCECF)-fluorescence, basal gastric acid secretion was determined from Na(+)-independent pH recovery (∆pH/min) following an ammonium pulse, which reflects H(+)/K(+)-ATPase activity. Experiments were performed in gastric glands from gene-targeted mice (gsk3 ( KI )) with PKB/serum and glucocorticoid-inducible kinase (SGK)-insensitive GSKα,β, in which the serines within the PKB/SGK phosphorylation site were replaced by alanine (GSK3α(21A/21A), GSK3β(9A/9A)). The cytosolic pH in isolated gastric glands was similar in gsk3 ( KI ) and their wild-type littermates (gsk3 ( WT )). However, ∆pH/min was significantly larger in gsk3 ( KI ) than in gsk3 ( WT ) mice and ∆pH/min was virtually abolished by the H(+)/K(+)-ATPase inhibitor omeprazole (100 μM) in gastric glands from both gsk3 ( KI ) and gsk3 ( WT ). Plasma gastrin levels were lower in gsk3 ( KI ) than in gsk3 ( WT ). Both, an increase of extracellular K(+) concentration to 35 mM [replacing Na(+)/N-methyl-D: -glucamine (NMDG)] and treatment with forskolin (5 μM), significantly increased ∆pH/min to virtually the same value in both genotypes. The protein kinase A (PKA) inhibitor H89 (150 nM) and the H(2)-receptor antagonist ranitidine (100 μM) decreased ∆pH/min in gsk3 ( KI ) but not gsk3 ( WT ) and again abrogated the differences between the genotypes. The protein abundance of phosphorylated but not of total PKA was significantly larger in gsk3 ( KI ) than in gsk3 ( WT ). Basal gastric acid secretion is enhanced by the disruption of PKB/SGK-dependent phosphorylation and the

  5. Task-Rest Modulation of Basal Ganglia Connectivity in Mild to Moderate Parkinson’s Disease

    Science.gov (United States)

    Müller-Oehring, Eva M.; Sullivan, Edith V.; Pfefferbaum, Adolf; Huang, Neng C.; Poston, Kathleen L.; Bronte-Stewart, Helen M.; Schulte, Tilman

    2014-01-01

    Parkinson’s disease (PD) is associated with abnormal synchronization in basal ganglia-thalamo-cortical loops. We tested whether early PD patients without demonstrable cognitive impairment exhibit abnormal modulation of functional connectivity at rest, while engaged in a task, or both. PD and healthy controls underwent two functional MRI scans: a resting-state scan and a Stroop Match-to-Sample task scan. Rest-task modulation of basal ganglia (BG) connectivity was tested using seed-to-voxel connectivity analysis with task and rest time series as conditions. Despite substantial overlap of BG–cortical connectivity patterns in both groups, connectivity differences between groups had clinical and behavioral correlates. During rest, stronger putamen–medial parietal and pallidum–occipital connectivity in PD than controls was associated with worse task performance and more severe PD symptoms suggesting that abnormalities in resting-state connectivity denote neural network dedifferentiation. During the executive task, PD patients showed weaker BG-cortical connectivity than controls, i.e., between caudate–supramarginal gyrus and pallidum–inferior prefrontal regions, that was related to more severe PD symptoms and worse task performance. Yet, task processing also evoked stronger striatal–cortical connectivity, specifically between caudate–prefrontal, caudate–precuneus, and putamen–motor/premotor regions in PD relative to controls, which was related to less severe PD symptoms and better performance on the Stroop task. Thus, stronger task-evoked striatal connectivity in PD demonstrated compensatory neural network enhancement to meet task demands and improve performance levels. fMRI-based network analysis revealed that despite resting-state BG network compromise in PD, BG connectivity to prefrontal, premotor, and precuneus regions can be adequately invoked during executive control demands enabling near normal task performance. PMID:25280970

  6. Axillary basal cell carcinoma in patients with Goltz-Gorlin syndrome: report of basal cell carcinoma in both axilla of a woman with basal cell nevus syndrome and literature review.

    Science.gov (United States)

    Cohen, Philip R

    2014-08-17

    Basal cell carcinoma of the axilla, an area that is not usually exposed to the sun, is rare. Individuals with basal cell nevus syndrome, a disorder associated with a mutation in the patch 1 (PTCH1) gene, develop numerous basal cell carcinomas. To describe a woman with basal cell nevus syndrome who developed a pigmented basal cell carcinoma in each of her axilla and to review the features of axillary basal cell carcinoma patients with Goltz-Gorlin syndrome. Pubmed was used to search the following terms: axillary basal cell carcinoma and basal cell nevus syndrome. The papers and their citations were evaluated. Basal cell nevus syndrome patients with basal cell carcinoma of the axilla were observed in two women; this represents 2.5% (2 of 79) of the patients with axillary basal cell carcinoma. Both women had pigmented tumors that were histologically nonaggressive. The cancers did not recur after curettage or excision. Basal cell carcinoma of the axilla has only been described in 79 individuals; two of the patients were women with pigmented tumors who had basal cell nevus syndrome. Similar to other patients with axillary basal cell carcinoma, the tumors were histologically nonaggressive and did not recur following treatment. Whether PTCH1 gene mutation predisposes basal cell nevus patients to develop axillary basal cell carcinomas remains to be determined.

  7. Endothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells

    Science.gov (United States)

    Ding, Bi-Sen; Gomi, Kazunori; Rafii, Shahin; Crystal, Ronald G.; Walters, Matthew S.

    2015-01-01

    ABSTRACT Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growth of basal cells during co-culture through vascular endothelial growth factor A (VEGFA)-mediated signaling. Building on these findings, we found, by RNA sequencing analysis, that basal cells expressed multiple fibroblast growth factor (FGF) ligands (FGF2, FGF5, FGF11 and FGF13) and that only FGF2 and FGF5 were capable of functioning in a paracrine manner to activate classical FGF receptor (FGFR) signaling. Antibody-mediated blocking of FGFR1 during basal-cell–endothelial-cell co-culture significantly reduced the endothelial-cell-dependent basal cell growth. Stimulation of endothelial cells with basal-cell-derived growth factors induced endothelial cell expression of matrix metallopeptidase 14 (MMP14), and short hairpin RNA (shRNA)-mediated knockdown of endothelial cell MMP14 significantly reduced the endothelial-cell-dependent growth of basal cells. Overall, these data characterize a new growth-factor-mediated reciprocal ‘crosstalk’ between human airway basal cells and endothelial cells that regulates proliferation of basal cells. PMID:26116571

  8. Electrophysiological Evidences of Organization of Cortical Motor Information in the Basal Ganglia

    Directory of Open Access Journals (Sweden)

    Hirokazu Iwamuro

    2011-05-01

    Full Text Available During the last two decades, the many developments in the treatment of movement disorders such as Parkinson disease and dystonia have enhanced our understanding on organization of the basal ganglia, and this knowledge has led to other advances in the field. According to many electrophysiological and anatomical findings, it is considered that motor information from different cortical areas is processed through several cortico-basal ganglia loops principally in a parallel fashion and somatotopy from each cortical area is also well preserved in each loop. Moreover, recent studies suggest that not only the parallel processing but also some convergence of information occur through the basal ganglia. Information from cortical areas whose functions are close to each other tends to converge in the basal ganglia. The cortico-basal ganglia loops should be comprehended more as a network rather than as separated subdivisions. However, the functions of this convergence still remain unknown. It is important even for clinical doctors to be well informed about this kind of current knowledge because some symptoms of movement disorders may be explained by disorganization of the information network in the basal ganglia.

  9. Evaluation of Basal Serum Adrenocorticotropic Hormone and Cortisol Levels and Their Relationship with Nonalcoholic Fatty Liver Disease in Male Patients with Idiopathic Hypogonadotropic Hypogonadism.

    Science.gov (United States)

    Wang, Wen-Bo; She, Fei; Xie, Li-Fang; Yan, Wen-Hua; Ouyang, Jin-Zhi; Wang, Bao-An; Ma, Hang-Yun; Zang, Li; Mu, Yi-Ming

    2016-05-20

    Prolonged gonadal hormone deficiency in patients with idiopathic hypogonadotropic hypogonadism (IHH) may produce adverse effects on the endocrine homeostasis and metabolism. This study aimed to compare basal serum adrenocorticotropic hormone (ACTH) and cortisol levels between male IHH patients and healthy controls. Moreover, this study compared the basal hypothalamic-pituitary-adrenal (HPA) axis in patients with and without nonalcoholic fatty liver disease (NAFLD), and also evaluated the relationship between basal HPA axis and NAFLD in male IHH patients. This was a retrospective case-control study involving 75 Chinese male IHH patients (mean age 21.4 ± 3.8 years, range 17-30 years) and 135 healthy controls after matching for gender and age. All subjects underwent physical examination and blood testing for serum testosterone, luteinizing hormone, follicle-stimulating hormone, ACTH, and cortisol and biochemical tests. Higher basal serum ACTH levels (8.25 ± 3.78 pmol/L vs. 6.97 ± 2.81 pmol/L) and lower cortisol levels (366.70 ± 142.48 nmol/L vs. 452.82 ± 141.53 nmol/L) were observed in male IHH patients than healthy subjects (all pIHH patients also showed higher metabolism parameters and higher prevalence rate of NAFLD (34.9% vs. 4.4%) than the controls (all P IHH patients with NAFLD than those without NAFLD (all P IHH patients. Furthermore, NAFLD was independently associated with ACTH levels in male IHH patients by multiple linear regression analysis. The male IHH patients showed higher basal serum ACTH levels and lower cortisol levels than matched healthy controls. NAFLD was an independent associated factor for ACTH levels in male IHH patients. These preliminary findings provided evidence of the relationship between basal serum ACTH and NAFLD in male IHH patients.

  10. Time representation in reinforcement learning models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Samuel Joseph Gershman

    2014-01-01

    Full Text Available Reinforcement learning models have been influential in understanding many aspects of basal ganglia function, from reward prediction to action selection. Time plays an important role in these models, but there is still no theoretical consensus about what kind of time representation is used by the basal ganglia. We review several theoretical accounts and their supporting evidence. We then discuss the relationship between reinforcement learning models and the timing mechanisms that have been attributed to the basal ganglia. We hypothesize that a single computational system may underlie both reinforcement learning and interval timing—the perception of duration in the range of seconds to hours. This hypothesis, which extends earlier models by incorporating a time-sensitive action selection mechanism, may have important implications for understanding disorders like Parkinson's disease in which both decision making and timing are impaired.

  11. Is basal ultrasensitive measurement of calcitonin capable of substituting for the pentagastrin-stimulation test?

    Science.gov (United States)

    Pina, Géraldine; Dubois, Séverine; Murat, Arnaud; Berger, Nicole; Niccoli, Patricia; Peix, Jean-Louis; Cohen, Régis; Guillausseau, Claudine; Charrie, Anne; Chabre, Olivier; Cornu, Catherine; Borson-Chazot, Françoise; Rohmer, Vincent

    2013-03-01

    To evaluate a second-generation assay for basal serum calcitonin (CT) measurements compared with the pentagastrin-stimulation test for the diagnosis of inherited medullary thyroid carcinoma (MTC) and the follow-up of patients with MTC after surgery. Recent American Thyroid Association recommendations suggest the use of basal CT alone to diagnose and assess follow-up of MTC as the pentagastrin (Pg) test is unavailable in many countries. Multicentric prospective study. A total of 162 patients with basal CT basal and Pg-stimulated CT measurements using a second-generation assay with 5-ng/l functional sensitivity. Ninety-five per cent of patients with basal CT ≥ 5 ng/l and 25% of patients with basal CT stimulation test (Pg CT >10 ng/l). Compared with the reference Pg test, basal CT ≥ 5 ng/l had 99% specificity, a 95%-positive predictive value but only 35% sensitivity (P basal CT instead of the previously used 10-ng/l threshold. The ultrasensitive CT assay reduces the false-negative rate of basal CT measurements when diagnosing familial MTC and in postoperative follow-up compared with previously used assays. However, its sensitivity to detect C-cell disease remains lower than that of the Pg-stimulation test. © 2012 Blackwell Publishing Ltd.

  12. Do basal Ganglia amplify willed action by stochastic resonance? A model.

    Directory of Open Access Journals (Sweden)

    V Srinivasa Chakravarthy

    Full Text Available Basal ganglia are usually attributed a role in facilitating willed action, which is found to be impaired in Parkinson's disease, a pathology of basal ganglia. We hypothesize that basal ganglia possess the machinery to amplify will signals, presumably weak, by stochastic resonance. Recently we proposed a computational model of Parkinsonian reaching, in which the contributions from basal ganglia aid the motor cortex in learning to reach. The model was cast in reinforcement learning framework. We now show that the above basal ganglia computational model has all the ingredients of stochastic resonance process. In the proposed computational model, we consider the problem of moving an arm from a rest position to a target position: the two positions correspond to two extrema of the value function. A single kick (a half-wave of sinusoid, of sufficiently low amplitude given to the system in resting position, succeeds in taking the system to the target position, with high probability, only at a critical noise level. But for suboptimal noise levels, the model arm's movements resemble Parkinsonian movement symptoms like akinetic rigidity (low noise and dyskinesias (high noise.

  13. Freezing of gait in Parkinson's disease is associated with functional decoupling between the cognitive control network and the basal ganglia.

    Science.gov (United States)

    Shine, James M; Matar, Elie; Ward, Philip B; Frank, Michael J; Moustafa, Ahmed A; Pearson, Mark; Naismith, Sharon L; Lewis, Simon J G

    2013-12-01

    Recent neuroimaging evidence has led to the proposal that freezing of gait in Parkinson's disease is due to dysfunctional interactions between frontoparietal cortical regions and subcortical structures, such as the striatum. However, to date, no study has employed task-based functional connectivity analyses to explore this hypothesis. In this study, we used a data-driven multivariate approach to explore the impaired communication between distributed neuronal networks in 10 patients with Parkinson's disease and freezing of gait, and 10 matched patients with no clinical history of freezing behaviour. Patients performed a virtual reality gait task on two separate occasions (once ON and once OFF their regular dopaminergic medication) while functional magnetic resonance imaging data were collected. Group-level independent component analysis was used to extract the subject-specific time courses associated with five well-known neuronal networks: the motor network, the right- and left cognitive control networks, the ventral attention network and the basal ganglia network. We subsequently analysed both the activation and connectivity of these neuronal networks between the two groups with respect to dopaminergic state and cognitive load while performing the virtual reality gait task. During task performance, all patients used the left cognitive control network and the ventral attention network and in addition, showed increased connectivity between the bilateral cognitive control networks. However, patients with freezing demonstrated functional decoupling between the basal ganglia network and the cognitive control network in each hemisphere. This decoupling was also associated with paroxysmal motor arrests. These results support the hypothesis that freezing behaviour in Parkinson's disease is because of impaired communication between complimentary yet competing neural networks.

  14. Relationship between obsessive-compulsive disorders and diseases affecting primarily the basal ganglia Relação entre transtorno obsessivo-compulsivo e doenças neurológicas dos gânglios da base

    Directory of Open Access Journals (Sweden)

    Alex S. S. Freire Maia

    1999-12-01

    Full Text Available Obsessive-compulsive disorder (OCD has been reported in association with some neurological diseases that affect the basal ganglia such as Tourette's syndrome, Sydenham's chorea, Parkinson's disease, and Huntington's disease. Furthermore, studies such as neuroimaging, suggest a role of the basal ganglia in the pathophysiology of OCD. The aim of this paper is to describe the association of OCD and several neurologic disorders affecting the basal ganglia, report the existing evidences of the role of the basal ganglia in the pathophysiology of OCD, and analyze the mechanisms probably involved in this pathophysiology.O transtorno obsessivo-compulsivo (TOC tem sido reportado em associação com algumas doenças neurológicas que afetam primariamente os gânglios da base como a síndrome de Tourette , a coréia de Sydenham, a doença de Parkinson e a doença de Huntington. Da mesma forma, estudos de neuroimagem sugerem a participação dos gânglios da base na fisiopatologia do TOC. O objetivo deste estudo é rever a coexistência de TOC e várias doenças que afetam os gânglios da base, as evidências da participação dessas estruturas na fisiopatologia do TOC e os mecanismos neurais subjacentes a esse distúrbio psiquiátrico.

  15. Reduced brain perfusion in basal forebrain associated with cognitive decline in Alzheimer's diseases: a Tc-99m HMPAO SPECT study

    International Nuclear Information System (INIS)

    Lee, M.C.; Kang, H.; Kang, E.; Lee, J.S.; Lee, D.S.; Lee, D.W.; Cho, M.J.

    2002-01-01

    Aim: Reduction of regional cerebral blood flow (rCBF) in various cerebral regions and decline of cognitive function have been reported in Alzheimer's disease (AD) patients. The aim of this study was to identify the brain areas showing correlation between longitudinal changes of rCBFs and decline of general mental function, measured by Mini-Mental State Examination (MMSE) in probable Alzheimer's disease patients. Materials and Methods: Nine probable AD patients according to NINCDS-ADRDA criteria and DSM-IV were studied with Tc-99m HMPAO SPECT at an initial point and at the follow-up after a period of average 1.8 year. MMSE score was obtained in both occasions (average MMSE 16.4 at initial study; average MMSE = 8.1 at follow-up). Single SPECT was performed in 30 age-matched normal controls. Each SPECT image was normalized to the cerebellar activity. Using statistical parametric mapping (SPM99), correlation was analyzed between individual changes in rCBF of two SPECT scans and the MMSE scores at the time of each study in AD patients. In addition, the SPECT images of the initial study and the follow-up study were compared with SPECT images of the age-matched normal group respectively. Results: Significant correlation between longitudinal changes of rCBFs and MMSE scores was found in left basal forebrain region including substantia innominata (x, y, z = -24, 16, -23; P < .05, corrected). Within a short follow-up period of 1.8 years, cerebral hypoperfusion extended to various cortical regions from bilateral temporo-parietal to bilateral frontal regions and cingulate cortex, compared to normal controls. Conclusion: The decline of cognitive function in individual AD patients was correlated with rCBF reduction in left basal forebrain. This finding supports the cholinergic hypothesis of AD since hypoperfusion in basal forebrain region might indicate deterioration of cholinergic neurons in nucleus basalis of Meynert or substantia innominata

  16. Functional imaging of the cerebellum and basal ganglia during predictive motor timing in early Parkinson's disease.

    Science.gov (United States)

    Husárová, Ivica; Lungu, Ovidiu V; Mareček, Radek; Mikl, Michal; Gescheidt, Tomáš; Krupa, Petr; Bareš, Martin

    2014-01-01

    The basal ganglia and the cerebellum have both emerged as important structures involved in the processing of temporal information. We examined the roles of the cerebellum and striatum in predictive motor timing during a target interception task in healthy individuals (HC group; n = 21) and in patients with early Parkinson's disease (early stage PD group; n = 20) using functional magnetic resonance imaging. Despite having similar hit ratios, the PD failed more often than the HC to postpone their actions until the right moment and to adapt their behavior from one trial to the next. We found more activation in the right cerebellar lobule VI in HC than in early stage PD during successful trials. Successful trial-by-trial adjustments were associated with higher activity in the right putamen and lobule VI of the cerebellum in HC. We conclude that both the cerebellum and striatum are involved in predictive motor timing tasks. The cerebellar activity is associated exclusively with the postponement of action until the right moment, whereas both the cerebellum and striatum are needed for successful adaptation of motor actions from one trial to the next. We found a general ''hypoactivation'' of basal ganglia and cerebellum in early stage PD relative to HC, indicating that even in early stages of the PD there could be functional perturbations in the motor system beyond striatum. Copyright © 2011 by the American Society of Neuroimaging.

  17. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex

    OpenAIRE

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2015-01-01

    Purpose Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused ...

  18. Effect of basal forebrain stimulation on extracellular acetylcholine release and blood flow in the olfactory bulb.

    Science.gov (United States)

    Uchida, Sae; Kagitani, Fusako

    2017-05-12

    The olfactory bulb receives cholinergic basal forebrain input, as does the neocortex; however, the in vivo physiological functions regarding the release of extracellular acetylcholine and regulation of regional blood flow in the olfactory bulb are unclear. We used in vivo microdialysis to measure the extracellular acetylcholine levels in the olfactory bulb of urethane-anesthetized rats. Focal chemical stimulation by microinjection of L-glutamate into the horizontal limb of the diagonal band of Broca (HDB) in the basal forebrain, which is the main source of cholinergic input to the olfactory bulb, increased extracellular acetylcholine release in the ipsilateral olfactory bulb. When the regional cerebral blood flow was measured using laser speckle contrast imaging, the focal chemical stimulation of the HDB did not significantly alter the blood flow in the olfactory bulb, while increases were observed in the neocortex. Our results suggest a functional difference between the olfactory bulb and neocortex regarding cerebral blood flow regulation through the release of acetylcholine by cholinergic basal forebrain input.

  19. [Modern diagnosis and treatment in children with congenital basal encephalocele].

    Science.gov (United States)

    Sakharov, A V; Roginskiy, V V; Kapitanov, D N; Ivanov, A L; Shelesko, E V; Gorelyshev, S K; Evteev, A A; Lemeneva, N V; Zinkevich, D N; Kochkin, Yu A; Ozerova, V I; Satanin, L A

    Basal encephalocele is a rare disease that predominantly occurs in children. Its most common symptoms include nasal liquorrhea, difficulty in nasal breathing, and deformity of the naso-orbital region. The study group included 19 patients with basal encephalocele, aged 2 months to 18 years. Ten (59%) patients were operated on through a transnasal endoscopic approach; 3 (17.5%) patients were operated on through a transcranial approach; 4 (23.5%) patients were operated on using a combined approach: the patients underwent simultaneous elimination of a cranio-orbital region deformity using the basal transcranial approach as well as hernial sac resection and hernioplasty using the transnasal endoscopic approach. Two children had no surgery due to minimal symptoms and a lack of cerebrospinal fluid leak. Application of the algorithms for diagnosis and treatment of encephalocele, suggested by the authors, enabled making the timely diagnose, defining the optimal surgical tactics, and achieving good treatment results. A differentiated approach to the choice of a surgical technique for basal encephalocele, the use of auto-tissues for skull base reconstruction, intraoperative and postoperative lumbar drainage, and simultaneous elimination of deformity of the fronto-naso-orbital region enable avoiding complications and achieving good functional and aesthetic results.

  20. Functional neuroanatomy of the basal ganglia.

    Science.gov (United States)

    Lanciego, José L; Luquin, Natasha; Obeso, José A

    2012-12-01

    The "basal ganglia" refers to a group of subcortical nuclei responsible primarily for motor control, as well as other roles such as motor learning, executive functions and behaviors, and emotions. Proposed more than two decades ago, the classical basal ganglia model shows how information flows through the basal ganglia back to the cortex through two pathways with opposing effects for the proper execution of movement. Although much of the model has remained, the model has been modified and amplified with the emergence of new data. Furthermore, parallel circuits subserve the other functions of the basal ganglia engaging associative and limbic territories. Disruption of the basal ganglia network forms the basis for several movement disorders. This article provides a comprehensive account of basal ganglia functional anatomy and chemistry and the major pathophysiological changes underlying disorders of movement. We try to answer three key questions related to the basal ganglia, as follows: What are the basal ganglia? What are they made of? How do they work? Some insight on the canonical basal ganglia model is provided, together with a selection of paradoxes and some views over the horizon in the field.

  1. 1H MR spectroscopy of the basal ganglia in childhood: a semiquantitative analysis

    International Nuclear Information System (INIS)

    Lam, W.W.M.; Zhao, H.; Berry, G.T.; Kaplan, P.; Gibson, J.; Kaplan, B.S.

    1998-01-01

    Proton MR spectra of the basal ganglia were obtained from 28 patients, 24 male and 14 female, median age 16.3 months (5 weeks to 31 years). They included 17 patients with normal MRI of the basal ganglia without metabolic disturbance (control group) and 11 patients with various metabolic diseases: one case each of high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease, Galloway-Mowat syndrome, Pelizaeus-Merzbacher disease, hemolytic-uremic syndrome and Wilson disease and two cases of Alagille syndrome and methylmalonic acidemia with abnormal MRI of the basal ganglia or blood or urine analysis (abnormal group). The MR spectrum was measured by using STEAM. The MR-visible water content of the region of interest was obtained. Levels of myoinositol, choline, creatine and N -acetylaspartate were measured using a semiquantitative approach, with absolute reference calibration. In the control group, there was a gradual drop of water content over the first year of life; N -acetylaspartate, creatine and myoinositol levels showed no significant change with age, in contrast to the occipital, parietal and cerebellar regions. Choline showed a gradual decrease for the first 2 years of life and then remained fairly constant. In the abnormal group the water content was not significantly different. N -Acetylaspartate was decreased in patients with high serum sodium and high serum osmolarity, cobalamin C deficiency, Leigh disease and one case of methylmalonic acidemia. Decreased creatine was also found in Leigh disease, and decreased choline in Galloway-Mowat syndrome and Wilson disease. Myoinositol was elevated in the patient with abnormally high serum sodium, and decreased in the hemolytic-uremic syndrome. (orig.)

  2. Nevoid basal cell carcinoma syndrome (Gorlin-Goltz syndrome).

    Science.gov (United States)

    Kiran, N K; Tilak Raj, T N; Mukunda, K S; Rajashekar Reddy, V

    2012-10-01

    The Gorlin-Goltz syndrome, also known as nevoid basal cell carcinoma syndrome (NBCCS), is an infrequent multisystemic disease inherited in a dominant autosomal way, which shows a high level of penetrance and variable expressiveness. It is characterized by odontogenic keratocysts in the jaw, multiple basal cell nevi carcinomas and skeletal abnormalities. This syndrome may be diagnosed early by a dentist by routine radiographic exams in the first decade of life, since the odontogenic keratocysts are usually one of the first manifestations of the syndrome. This case report presents a patient diagnosed as NBCCS by clinical, radiographic and histological findings in a 13-year-old boy. This paper highlights the importance of early diagnosis of NBCCS which can help in preventive multidisciplinary approach to provide a better prognosis for the patient.

  3. Nevoid basal cell carcinoma syndrome (Gorlin-Goltz syndrome

    Directory of Open Access Journals (Sweden)

    N K Kiran

    2012-01-01

    Full Text Available The Gorlin-Goltz syndrome, also known as nevoid basal cell carcinoma syndrome (NBCCS, is an infrequent multisystemic disease inherited in a dominant autosomal way, which shows a high level of penetrance and variable expressiveness. It is characterized by odontogenic keratocysts in the jaw, multiple basal cell nevi carcinomas and skeletal abnormalities. This syndrome may be diagnosed early by a dentist by routine radiographic exams in the first decade of life, since the odontogenic keratocysts are usually one of the first manifestations of the syndrome. This case report presents a patient diagnosed as NBCCS by clinical, radiographic and histological findings in a 13-year-old boy. This paper highlights the importance of early diagnosis of NBCCS which can help in preventive multidisciplinary approach to provide a better prognosis for the patient.

  4. Cortical stimulation evokes abnormal responses in the dopamine-depleted rat basal ganglia.

    Science.gov (United States)

    Kita, Hitoshi; Kita, Takako

    2011-07-13

    The motor cortex (MC) sends massive projections to the basal ganglia. Motor disabilities in patients and animal models of Parkinson's disease (PD) may be caused by dopamine (DA)-depleted basal ganglia that abnormally process the information originating from MC. To study how DA depletion alters signal transfer in the basal ganglia, MC stimulation-induced (MC-induced) unitary responses were recorded from the basal ganglia of control and 6-hydroxydopamine-treated hemi-parkinsonian rats anesthetized with isoflurane. This report describes new findings about how DA depletion alters MC-induced responses. MC stimulation evokes an excitation in normally quiescent striatal (Str) neurons projecting to the globus pallidus external segment (GPe). After DA-depletion, the spontaneous firing of Str-GPe neurons increases, and MC stimulation evokes a shorter latency excitation followed by a long-lasting inhibition that was invisible under normal conditions. The increased firing activity and the newly exposed long inhibition generate tonic inhibition and a disfacilitation in GPe. The disfacilitation in GPe is then amplified in basal ganglia circuitry and generates a powerful long inhibition in the basal ganglia output nucleus, the globus pallidus internal segment. Intra-Str injections of a behaviorally effective dose of DA precursor l-3,4-dihydroxyphenylalanine effectively reversed these changes. These newly observed mechanisms also support the generation of pauses and burst activity commonly observed in the basal ganglia of parkinsonian subjects. These results suggest that the generation of abnormal response sequences in the basal ganglia contributes to the development of motor disabilities in PD and that intra-Str DA supplements effectively suppress abnormal signal transfer.

  5. Immunological regulation of metabolism--a novel quintessential role for the immune system in health and disease.

    Science.gov (United States)

    Schaefer, Jeremy S; Klein, John R

    2011-01-01

    The hypothalamus-pituitary-thyroid (HPT) axis is an integrated hormone network that is essential for maintaining metabolic homeostasis. It has long been known that thyroid stimulating hormone (TSH), a central component of the HPT axis, can be made by cells of the immune system; however, the role of immune system TSH remains enigmatic and most studies have viewed it as a cytokine used to regulate immune function. Recent studies now indicate that immune system-derived TSH, in particular, a splice variant of TSHβ that is preferentially made by cells of the immune system, is produced by a subset of hematopoietic cells that traffic to the thyroid. On the basis of these and other findings, we propose the novel hypothesis that the immune system is an active participant in the regulation of basal metabolism. We further speculate that this process plays a critical role during acute and chronic infections and that it contributes to a wide range of chronic inflammatory conditions with links to thyroid dysregulation. This hypothesis, which is amenable to empirical analysis, defines a previously unknown role for the immune system in health and disease, and it provides a dynamic connection between immune-endocrine interactions at the organismic level.

  6. Basal C-peptide Level as a Surrogate Marker of Subclinical Atherosclerosis in Type 2 Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Sung-Tae Kim

    2011-02-01

    Full Text Available BackgroundRecent studies have revealed that C-peptide induces smooth muscle cell proliferation and causes human atherosclerotic lesions in diabetic patients. The present study was designed to examine whether the basal C-peptide levels correlate with cardiovascular risk in type 2 diabetes mellitus (T2DM patients.MethodsData was obtained from 467 patients with T2DM from two institutions who were followed for four years. The medical findings of all patients were reviewed, and patients with creatinine >1.4 mg/dL, any inflammation or infection, hepatitis, or type 1 DM were excluded. The relationships between basal C-peptide and other clinical values were statistically analyzed.ResultsA simple correlation was found between basal C-peptide and components of metabolic syndrome (MS. Statistically basal C-peptide levels were significantly higher than the three different MS criteria used in the present study, the Adult Treatment Panel III (ATP III of the National Cholesterol Education Program's (NCEP's, World Health Organization (WHO, and the International Diabetes Federation (IDF criteria (NCEP-ATP III, P=0.001; IDF, P<0.001; WHO, P=0.029. The multiple regression analysis between intima-media thickness (IMT and clinical values showed that basal C-peptide significantly correlated with IMT (P=0.043, while the analysis between the 10-year coronary heart disease risk by the United Kingdom Prospective Diabetes Study risk engine and clinical values showed that basal C-peptide did not correlate with IMT (P=0.226.ConclusionBasal C-peptide is related to cardiovascular predictors (IMT of T2DM, suggesting that basal C-peptide does provide a further indication of cardiovascular disease.

  7. Clustering gene expression regulators: new approach to disease subtyping.

    Directory of Open Access Journals (Sweden)

    Mikhail Pyatnitskiy

    Full Text Available One of the main challenges in modern medicine is to stratify different patient groups in terms of underlying disease molecular mechanisms as to develop more personalized approach to therapy. Here we propose novel method for disease subtyping based on analysis of activated expression regulators on a sample-by-sample basis. Our approach relies on Sub-Network Enrichment Analysis algorithm (SNEA which identifies gene subnetworks with significant concordant changes in expression between two conditions. Subnetwork consists of central regulator and downstream genes connected by relations extracted from global literature-extracted regulation database. Regulators found in each patient separately are clustered together and assigned activity scores which are used for final patients grouping. We show that our approach performs well compared to other related methods and at the same time provides researchers with complementary level of understanding of pathway-level biology behind a disease by identification of significant expression regulators. We have observed the reasonable grouping of neuromuscular disorders (triggered by structural damage vs triggered by unknown mechanisms, that was not revealed using standard expression profile clustering. For another experiment we were able to suggest the clusters of regulators, responsible for colorectal carcinoma vs adenoma discrimination and identify frequently genetically changed regulators that could be of specific importance for the individual characteristics of cancer development. Proposed approach can be regarded as biologically meaningful feature selection, reducing tens of thousands of genes down to dozens of clusters of regulators. Obtained clusters of regulators make possible to generate valuable biological hypotheses about molecular mechanisms related to a clinical outcome for individual patient.

  8. The human airway epithelial basal cell transcriptome.

    Directory of Open Access Journals (Sweden)

    Neil R Hackett

    2011-05-01

    Full Text Available The human airway epithelium consists of 4 major cell types: ciliated, secretory, columnar and basal cells. During natural turnover and in response to injury, the airway basal cells function as stem/progenitor cells for the other airway cell types. The objective of this study is to better understand human airway epithelial basal cell biology by defining the gene expression signature of this cell population.Bronchial brushing was used to obtain airway epithelium from healthy nonsmokers. Microarrays were used to assess the transcriptome of basal cells purified from the airway epithelium in comparison to the transcriptome of the differentiated airway epithelium. This analysis identified the "human airway basal cell signature" as 1,161 unique genes with >5-fold higher expression level in basal cells compared to differentiated epithelium. The basal cell signature was suppressed when the basal cells differentiated into a ciliated airway epithelium in vitro. The basal cell signature displayed overlap with genes expressed in basal-like cells from other human tissues and with that of murine airway basal cells. Consistent with self-modulation as well as signaling to other airway cell types, the human airway basal cell signature was characterized by genes encoding extracellular matrix components, growth factors and growth factor receptors, including genes related to the EGF and VEGF pathways. Interestingly, while the basal cell signature overlaps that of basal-like cells of other organs, the human airway basal cell signature has features not previously associated with this cell type, including a unique pattern of genes encoding extracellular matrix components, G protein-coupled receptors, neuroactive ligands and receptors, and ion channels.The human airway epithelial basal cell signature identified in the present study provides novel insights into the molecular phenotype and biology of the stem/progenitor cells of the human airway epithelium.

  9. Multiple garlic (Allium sativum L.) microRNAs regulate the immunity against the basal rot fungus Fusarium oxysporum f. sp. Cepae.

    Science.gov (United States)

    Chand, Subodh Kumar; Nanda, Satyabrata; Mishra, Rukmini; Joshi, Raj Kumar

    2017-04-01

    The basal plate rot fungus, Fusarium oxysporum f. sp. cepae (FOC), is the most devastating pathogen posing a serious threat to garlic (Allium sativum L.) production worldwide. MicroRNAs (miRNAs) are key modulators of gene expression related to development and defense responses in eukaryotes. However, the miRNA species associated with garlic immunity against FOC are yet to be explored. In the present study, a small RNA library developed from FOC infected resistant garlic line was sequenced to identify immune responsive miRNAs. Forty-five miRNAs representing 39 conserved and six novel sequences responsive to FOC were detected. qRT-PCR analyses further classified them into three classes based on their expression patterns in susceptible line CBT-As11 and in the resistant line CBT-As153. North-blot analyses of six selective miRNAs confirmed the qRT-PCR results. Expression studies on a selective set of target genes revealed a negative correlation with the complementary miRNAs. Furthermore, transgenic garlic plant overexpresing miR164a, miR168a and miR393 showed enhanced resistance to FOC, as revealed by decreased fungal growth and up-regulated expression of defense-responsive genes. These results indicate that multiple miRNAs are involved in garlic immunity against FOC and that the overexpression of miR164a, miR168a and miR393 can augment garlic resistance to Fusarium basal rot infection. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Regulation mechanisms of pituitary-thyroid axis in normal subjects and patients with Graves' disease

    International Nuclear Information System (INIS)

    Takagi, Shinko; Yamauchi, Kazuyuki; Mori, Yuichi

    1986-01-01

    The regulatory mechanism of the pituitary-thyroid axis in normal subjects and patients with Graves' disease was investigated using a highly sensitive TSH assay based on the immunoradiometric assay. All of the normal subjects had detectable TSH values within the range 0.35 to 6.0 μU/ml. No negative correlations between TSH and free thyroid hormones existed in normal subjects. Patients with thyroid carcinoma who seemed to have normal pituitary-thyroid function showed a rapid increase of TSH after total thyroidectomy. On the other hand, while untreated patients with Graves' disease all had undetectable TSH values, these patients took 1 to 3.5 months longer to normalize their TSH values than to normalize free thyroid hormones on antithyroid drug therapy. During the recovery phase by the treatment with decrease of antithyroid drug or supplement of T 4 from iatrogenic hypothyroid state after treatment for Graves' disease and thyroid carcinoma, normalization of TSH levels was delayed than that of free thyroid hormones. Patients with Graves' disease in remission showed an extremely positive correlation between basal and peak TSH levels in TRH test, and a negative correlation between basal TSH and FT 4 . In conclusion, an individual patient may have a different set point concerning the regulatory mechanism of the pituitary-thyroid axis, and the persistence of the hyperthyroid state would seem to have caused some reversible dysfunction of the pituitary gland. (author)

  11. The Potential Role of Hedgehog Signaling in the Luminal/Basal Phenotype of Breast Epithelia and in Breast Cancer Invasion and Metastasis

    Energy Technology Data Exchange (ETDEWEB)

    Flemban, Arwa [Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol BS16 1QY (United Kingdom); Department of Pathology, Faculty of Medicine, Umm Al-Qura University, Makkah 24382 (Saudi Arabia); Qualtrough, David, E-mail: david.qualtrough@uwe.ac.uk [Department of Biological, Biomedical and Analytical Sciences, Faculty of Health and Applied Sciences, University of West of England, Bristol BS16 1QY (United Kingdom)

    2015-09-16

    The epithelium of the lactiferous ducts in the breast is comprised of luminal epithelial cells and underlying basal myoepithelial cells. The regulation of cell fate and transit of cells between these two cell types remains poorly understood. This relationship becomes of greater importance when studying the subtypes of epithelial breast carcinoma, which are categorized according to their expression of luminal or basal markers. The epithelial mesenchymal transition (EMT) is a pivotal event in tumor invasion. It is important to understand mechanisms that regulate this process, which bears relation to the normal dynamic of epithelial/basal phenotype regulation in the mammary gland. Understanding this process could provide answers for the regulation of EMT in breast cancer, and thereby identify potential targets for therapy. Evidence points towards a role for hedgehog signaling in breast tissue homeostasis and also in mammary neoplasia. This review examines our current understanding of role of the hedgehog-signaling (Hh) pathway in breast epithelial cells both during breast development and homeostasis and to assess the potential misappropriation of Hh signals in breast neoplasia, cancer stem cells and tumor metastasis via EMT.

  12. The Potential Role of Hedgehog Signaling in the Luminal/Basal Phenotype of Breast Epithelia and in Breast Cancer Invasion and Metastasis

    International Nuclear Information System (INIS)

    Flemban, Arwa; Qualtrough, David

    2015-01-01

    The epithelium of the lactiferous ducts in the breast is comprised of luminal epithelial cells and underlying basal myoepithelial cells. The regulation of cell fate and transit of cells between these two cell types remains poorly understood. This relationship becomes of greater importance when studying the subtypes of epithelial breast carcinoma, which are categorized according to their expression of luminal or basal markers. The epithelial mesenchymal transition (EMT) is a pivotal event in tumor invasion. It is important to understand mechanisms that regulate this process, which bears relation to the normal dynamic of epithelial/basal phenotype regulation in the mammary gland. Understanding this process could provide answers for the regulation of EMT in breast cancer, and thereby identify potential targets for therapy. Evidence points towards a role for hedgehog signaling in breast tissue homeostasis and also in mammary neoplasia. This review examines our current understanding of role of the hedgehog-signaling (Hh) pathway in breast epithelial cells both during breast development and homeostasis and to assess the potential misappropriation of Hh signals in breast neoplasia, cancer stem cells and tumor metastasis via EMT

  13. The Arabidopsis DREB2 genetic pathway is constitutively repressed by basal phosphoinositide-dependent phospholipase C coupled to diacylglycerol kinase in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Nabila eDjafi

    2013-08-01

    Full Text Available Phosphoinositide-dependent phospholipases C (PI-PLCs are activated in response to various stimuli. They utilize substrates provided by type III-Phosphatidylinositol-4 kinases (PI4KIII to produce inositol triphosphate and diacylglycerol (DAG that is phosphorylated into phosphatidic acid (PA by DAG-kinases (DGKs. The roles of PI4KIIIs, PI-PLCs and DGKs in basal signalling are poorly understood. We investigated the control of gene expression by basal PI-PLC pathway in Arabidopsis thaliana suspension cells. A transcriptome-wide analysis allowed the identification of genes whose expression was altered by edelfosine, 30 µM wortmannin or R59022, inhibitors of PI-PLCs, PI4KIIIs and DGKs, respectively. We found that a gene responsive to one of these molecules is more likely to be similarly regulated by the other two inhibitors. The common action of these agents is to inhibit PA formation, showing that basal PI-PLCs act, in part, on gene expression through their coupling to DGKs. Amongst the genes up-regulated in presence of the inhibitors, were some DREB2 genes, in suspension cells and in seedlings. The DREB2 genes encode transcription factors with major roles in responses to environmental stresses, including dehydration. They bind to C-repeat motifs, known as Drought-Responsive Elements, that are indeed enriched in the promoters of genes up-regulated by PI-PLC pathway inhibitors. PA can also be produced by phospholipases D (PLDs. We show that the DREB2 genes that are up-regulated by PI-PLC inhibitors are positively or negatively regulated, or indifferent, to PLD basal activity. Our data show that the DREB2 genetic pathway is constitutively repressed in resting conditions and that DGK coupled to PI-PLC is active in this process, in suspension cells and seedlings. We discuss how this basal negative regulation of DREB2 genes is compatible with their stress-triggered positive regulation.

  14. Expression of heparanase in basal cell carcinoma and squamous cell carcinoma.

    Science.gov (United States)

    Pinhal, Maria Aparecida Silva; Almeida, Maria Carolina Leal; Costa, Alessandra Scorse; Theodoro, Thérèse Rachell; Serrano, Rodrigo Lorenzetti; Machado, Carlos D'Apparecida Santos

    2016-01-01

    Heparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer. Evaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control). Glycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR). The A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma. The glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment.

  15. Preferential control of basal dendritic protrusions by EphB2.

    Directory of Open Access Journals (Sweden)

    Matthew S Kayser

    2011-02-01

    Full Text Available The flow of information between neurons in many neural circuits is controlled by a highly specialized site of cell-cell contact known as a synapse. A number of molecules have been identified that are involved in central nervous system synapse development, but knowledge is limited regarding whether these cues direct organization of specific synapse types or on particular regions of individual neurons. Glutamate is the primary excitatory neurotransmitter in the brain, and the majority of glutamatergic synapses occur on mushroom-shaped protrusions called dendritic spines. Changes in the morphology of these structures are associated with long-lasting modulation of synaptic strength thought to underlie learning and memory, and can be abnormal in neuropsychiatric disease. Here, we use rat cortical slice cultures to examine how a previously-described synaptogenic molecule, the EphB2 receptor tyrosine kinase, regulates dendritic protrusion morphology in specific regions of the dendritic arbor in cortical pyramidal neurons. We find that alterations in EphB2 signaling can bidirectionally control protrusion length, and knockdown of EphB2 expression levels reduces the number of dendritic spines and filopodia. Expression of wild-type or dominant negative EphB2 reveals that EphB2 preferentially regulates dendritic protrusion structure in basal dendrites. Our findings suggest that EphB2 may act to specify synapse formation in a particular subcellular region of cortical pyramidal neurons.

  16. Adenoid basal hyperplasia of the uterine cervix: a lesion of reserve cell type, distinct from adenoid basal carcinoma.

    Science.gov (United States)

    Kerdraon, Olivier; Cornélius, Aurélie; Farine, Marie-Odile; Boulanger, Loïc; Wacrenier, Agnès

    2012-12-01

    Adenoid basal hyperplasia is an underrecognized cervical lesion, resembling adenoid basal carcinoma, except the absence of deep invasion into the stroma. We report a series of 10 cases, all extending less than 1 mm from the basement membrane. Our results support the hypothesis that adenoid basal hyperplasia arises from reserve cells of the cervix. Lesions were found close to the squamocolumnar junction, in continuity with the nearby subcolumnar reserve cells. They shared the same morphology and immunoprofile using a panel of 4 antibodies (keratin 5/6, keratin 14, keratin 7 and p63) designed to differentiate reserve cells from mature squamous cells and endocervical columnar cells. We detected no human papillomavirus infection by in situ hybridization targeting high-risk human papillomavirus, which was concordant with the absence of immunohistochemical p16 expression. We demonstrated human papillomavirus infection in 4 (80%) of 5 adenoid basal carcinoma, which is in the same range as previous studies (88%). Thus, adenoid basal hyperplasia should be distinguished from adenoid basal carcinoma because they imply different risk of human papillomavirus infection and of subsequent association with high-grade invasive carcinoma. In our series, the most reliable morphological parameters to differentiate adenoid basal hyperplasia from adenoid basal carcinoma were the depth of the lesion and the size of the lesion nests. Furthermore, squamous differentiation was rare in adenoid basal hyperplasia and constant in adenoid basal carcinoma. Finally, any mitotic activity and/or an increase of Ki67 labeling index should raise the hypothesis of adenoid basal carcinoma. Copyright © 2012 Elsevier Inc. All rights reserved.

  17. Implications of basal micro-earthquakes and tremor for ice stream mechanics: Stick-slip basal sliding and till erosion

    Science.gov (United States)

    Barcheck, C. Grace; Tulaczyk, Slawek; Schwartz, Susan Y.; Walter, Jacob I.; Winberry, J. Paul

    2018-03-01

    The Whillans Ice Plain (WIP) is unique among Antarctic ice streams because it moves by stick-slip. The conditions allowing stick-slip and its importance in controlling ice dynamics remain uncertain. Local basal seismicity previously observed during unstable slip is a clue to the mechanism of ice stream stick-slip and a window into current basal conditions, but the spatial extent and importance of this basal seismicity are unknown. We analyze data from a 2010-2011 ice-plain-wide seismic and GPS network to show that basal micro-seismicity correlates with large-scale patterns in ice stream slip behavior: Basal seismicity is common where the ice moves the least between unstable slip events, with small discrete basal micro-earthquakes happening within 10s of km of the central stick-slip nucleation area and emergent basal tremor occurring downstream of this area. Basal seismicity is largely absent in surrounding areas, where inter-slip creep rates are high. The large seismically active area suggests that a frictional sliding law that can accommodate stick-slip may be appropriate for ice stream beds on regional scales. Variability in seismic behavior over inter-station distances of 1-10 km indicates heterogeneity in local bed conditions and frictional complexity. WIP unstable slips may nucleate when stick-slip basal earthquake patches fail over a large area. We present a conceptual model in which basal seismicity results from slip-weakening frictional failure of over-consolidated till as it is eroded and mobilized into deforming till.

  18. Sonographic detection of basal ganglia abnormalities in spasmodic dysphonia.

    Science.gov (United States)

    Walter, U; Blitzer, A; Benecke, R; Grossmann, A; Dressler, D

    2014-02-01

    Abnormalities of the lenticular nucleus (LN) on transcranial sonography (TCS) are a characteristic finding in idiopathic segmental and generalized dystonia. Our intention was to study whether TCS detects basal ganglia abnormalities also in spasmodic dysphonia, an extremely focal form of dystonia. Transcranial sonography of basal ganglia, substantia nigra and ventricles was performed in 14 patients with spasmodic dysphonia (10 women, four men; disease duration 16.5 ± 6.1 years) and 14 age- and sex-matched healthy controls in an investigator-blinded setting. Lenticular nucleus hyperechogenicity was found in 12 spasmodic dysphonia patients but only in one healthy individual (Fisher's exact test, P spasmodic dysphonia severity (Spearman test, r = 0.82, P spasmodic dysphonia to that of more widespread forms of dystonia. © 2013 The Author(s) European Journal of Neurology © 2013 EFNS.

  19. Deep RNA-Seq analysis reveals unexpected features of human prostate basal epithelial cells

    Directory of Open Access Journals (Sweden)

    Dingxiao Zhang

    2016-03-01

    Full Text Available Prostate cancer is the second leading cause of cancer-related deaths among American men [1]. The prostate gland mainly contains basal and luminal cells, which are constructed as a pseudostratified epithelium. Annotation of prostate epithelial transcriptomes provides a foundation for discoveries that can impact disease understanding and treatment. Here, for the first time, we describe a whole-genome transcriptome analysis of human benign prostatic basal and luminal populations by using deep RNA sequencing (GSE67070 [2]. Combined with comprehensive molecular and biological characterizations, we show that the differential gene expression profiles account for their distinct functional phenotypes. Strikingly, in contrast to luminal cells, basal cells preferentially express gene categories associated with stem cells, neural and neuronal development, and RNA processing. Of clinical relevance, the treatment failed castration-resistant and anaplastic prostate cancers molecularly resemble a basal-like phenotype. We also identified genes associated with patient clinical outcome. Therefore, we provide a gene expression resource for understanding human prostate epithelial lineages, and link the cell-type specific gene signatures to subtypes of prostate cancer development. Keywords: Prostate epithelial cells, Basal cells, Luminal cells, RNA-seq

  20. Pharmacologic MRI (phMRI) as a tool to differentiate Parkinson's disease-related from age-related changes in basal ganglia function.

    Science.gov (United States)

    Andersen, Anders H; Hardy, Peter A; Forman, Eric; Gerhardt, Greg A; Gash, Don M; Grondin, Richard C; Zhang, Zhiming

    2015-02-01

    The prevalence of both parkinsonian signs and Parkinson's disease (PD) per se increases with age. Although the pathophysiology of PD has been studied extensively, less is known about the functional changes taking place in the basal ganglia circuitry with age. To specifically address this issue, 3 groups of rhesus macaques were studied: normal middle-aged animals (used as controls), middle-aged animals with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism, and aged animals (>20 years old) with declines in motor function. All animals underwent the same behavioral and pharmacologic magnetic resonance imaging (phMRI) procedures to measure changes in basal ganglia function in response to dopaminergic drug challenges consisting of apomorphine administration followed by either a D1 (SCH23390) or a D2 (raclopride) receptor antagonist. Significant functional changes were predominantly seen in the external segment of the globus pallidus (GPe) in aged animals and in the striatum (caudate nucleus and putamen) in MPTP-lesioned animals. Despite significant differences seen in the putamen and GPe between MPTP-lesioned versus aged animals, a similar response profile to dopaminergic stimulations was found between these 2 groups in the internal segment of the GP. In contrast, the pharmacologic responses seen in the control animals were much milder compared with the other 2 groups in all the examined areas. Our phMRI findings in MPTP-lesioned parkinsonian and aged animals suggest that changes in basal ganglia function in the elderly may differ from those seen in parkinsonian patients and that phMRI could be used to distinguish PD from other age-associated functional alterations in the brain. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Ablation of cdk4 and cdk6 affects proliferation of basal progenitor cells in the developing dorsal and ventral forebrain.

    Science.gov (United States)

    Grison, Alice; Gaiser, Carine; Bieder, Andrea; Baranek, Constanze; Atanasoski, Suzana

    2018-03-23

    Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol, 2018. © 2018 Wiley Periodicals, Inc.

  2. Cholinergic Basal Forebrain Lesion Decreases Neurotrophin Signaling without Affecting Tau Hyperphosphorylation in Genetically Susceptible Mice.

    Science.gov (United States)

    Turnbull, Marion T; Coulson, Elizabeth J

    2017-01-01

    Alzheimer's disease (AD) is a progressive, irreversible neurodegenerative disease that destroys memory and cognitive function. Aggregates of hyperphosphorylated tau protein are a prominent feature in the brain of patients with AD, and are a major contributor to neuronal toxicity and disease progression. However, the factors that initiate the toxic cascade that results in tau hyperphosphorylation in sporadic AD are unknown. Here we investigated whether degeneration of basal forebrain cholinergic neurons (BFCNs) and/or a resultant decrease in neurotrophin signaling cause aberrant tau hyperphosphorylation. Our results reveal that the loss of BFCNs in pre-symptomatic pR5 (P301L) tau transgenic mice results in a decrease in hippocampal brain-derived neurotrophic factor levels and reduced TrkB receptor activation. However, there was no exacerbation of the levels of phosphorylated tau or its aggregation in the hippocampus of susceptible mice. Furthermore the animals' performance in a hippocampal-dependent learning and memory task was unaltered, and no changes in hippocampal synaptic markers were observed. This suggests that tau pathology is likely to be regulated independently of BFCN degeneration and the corresponding decrease in hippocampal neurotrophin levels, although these features may still contribute to disease etiology.

  3. Future of newer basal insulin

    OpenAIRE

    Madhu, S. V.; Velmurugan, M.

    2013-01-01

    Basal insulin have been developed over the years. In recent times newer analogues have been added to the armanentarium for diabetes therapy. This review specifically reviews the current status of different basal insulins

  4. PPARγ isoforms differentially regulate metabolic networks to mediate mouse prostatic epithelial differentiation.

    Science.gov (United States)

    Strand, D W; Jiang, M; Murphy, T A; Yi, Y; Konvinse, K C; Franco, O E; Wang, Y; Young, J D; Hayward, S W

    2012-08-09

    Recent observations indicate prostatic diseases are comorbidities of systemic metabolic dysfunction. These discoveries revealed fundamental questions regarding the nature of prostate metabolism. We previously showed that prostate-specific ablation of PPARγ in mice resulted in tumorigenesis and active autophagy. Here, we demonstrate control of overlapping and distinct aspects of prostate epithelial metabolism by ectopic expression of individual PPARγ isoforms in PPARγ knockout prostate epithelial cells. Expression and activation of either PPARγ 1 or 2 reduced de novo lipogenesis and oxidative stress and mediated a switch from glucose to fatty acid oxidation through regulation of genes including Pdk4, Fabp4, Lpl, Acot1 and Cd36. Differential effects of PPARγ isoforms included decreased basal cell differentiation, Scd1 expression and triglyceride fatty acid desaturation and increased tumorigenicity by PPARγ1. In contrast, PPARγ2 expression significantly increased basal cell differentiation, Scd1 expression and AR expression and responsiveness. Finally, in confirmation of in vitro data, a PPARγ agonist versus high-fat diet (HFD) regimen in vivo confirmed that PPARγ agonization increased prostatic differentiation markers, whereas HFD downregulated PPARγ-regulated genes and decreased prostate differentiation. These data provide a rationale for pursuing a fundamental metabolic understanding of changes to glucose and fatty acid metabolism in benign and malignant prostatic diseases associated with systemic metabolic stress.

  5. Toward a functional analysis of the basal ganglia.

    Science.gov (United States)

    Hayes, A E; Davidson, M C; Keele, S W; Rafal, R D

    1998-03-01

    Parkinson patients were tested in two paradigms to test the hypothesis that the basal ganglia are involved in the shifting of attentional set. Set shifting means a respecification of the conditions that regulate responding, a process sometimes referred to as an executive process. In one paradigm, upon the appearance of each stimulus, subjects were instructed to respond either to its color or to its shape. In a second paradigm, subjects learned to produce short sequences of three keypresses in response to two arbitrary stimuli. Reaction times were compared for the cases where set either remained the same or changed for two successive stimuli. Parkinson patients were slow to change set compared to controls. Parkinson patients were also less able to filter the competing but irrelevant set than were control subjects. The switching deficit appears to be dopamine based; the magnitude of the shifting deficit was related to the degree to which 1-dopa-based medication ameliorated patients' motor symptoms. Moreover, temporary withholding of medication, a so-called off manipulation, increased the time to switch. Using the framework of equilibrium point theory of movement, we discuss how a set switching deficit may also underlie clinical motor disturbances seen in Parkinson's disease.

  6. Endocytosis-independent function of clathrin heavy chain in the control of basal NF-κB activation.

    Directory of Open Access Journals (Sweden)

    Man Lyang Kim

    Full Text Available BACKGROUND: Nuclear factor-κB (NF-κB is a transcription factor that regulates the transcription of genes involved in a variety of biological processes, including innate and adaptive immunity, stress responses and cell proliferation. Constitutive or excessive NF-κB activity has been associated with inflammatory disorders and higher risk of cancer. In contrast to the mechanisms controlling inducible activation, the regulation of basal NF-κB activation is not well understood. Here we test whether clathrin heavy chain (CHC contributes to the regulation of basal NF-κB activity in epithelial cells. METHODOLOGY: Using RNA interference to reduce endogenous CHC expression, we found that CHC is required to prevent constitutive activation of NF-κB and gene expression. Immunofluorescence staining showed constitutive nuclear localization of the NF-κB subunit p65 in absence of stimulation after CHC knockdown. Elevated basal p65 nuclear localization is caused by constitutive phosphorylation and degradation of inhibitor of NF-κB alpha (IκBα through an IκB kinase α (IKKα-dependent mechanism. The role of CHC in NF-κB signaling is functionally relevant as constitutive expression of the proinflammatory chemokine interleukin-8 (IL-8, whose expression is regulated by NF-κB, was found after CHC knockdown. Disruption of clathrin-mediated endocytosis by chemical inhibition or depletion of the μ2-subunit of the endocytosis adaptor protein AP-2, and knockdown of clathrin light chain a (CHLa, failed to induce constitutive NF-κB activation and IL-8 expression, showing that CHC acts on NF-κB independently of endocytosis and CLCa. CONCLUSIONS: We conclude that CHC functions as a built-in molecular brake that ensures a tight control of basal NF-κB activation and gene expression in unstimulated cells. Furthermore, our data suggest a potential link between a defect in CHC expression and chronic inflammation disorder and cancer.

  7. Basal cell carcinoma-treatment with cryosurgery

    Directory of Open Access Journals (Sweden)

    Kaur S

    2003-03-01

    Full Text Available Basal cell carcinoma is a common cutaneous malignancy, frequently occurring over the face in elderly individuals. Various therapeutic modalities are available to treat these tumors. We describe three patients with basal cell carcinoma successfully treated with cryosurgery and discuss the indications and the use of this treatment modality for basal cell carcinomas.

  8. Synergy as a new and sensitive marker of basal ganglia dysfunction: A study of asymptomatic welders.

    Science.gov (United States)

    Lewis, Mechelle M; Lee, Eun-Young; Jo, Hang Jin; Du, Guangwei; Park, Jaebum; Flynn, Michael R; Kong, Lan; Latash, Mark L; Huang, Xuemei

    2016-09-01

    Multi-digit synergies, a recently developed, theory-based method to quantify stability of motor action, are shown to reflect basal ganglia dysfunction associated with parkinsonian syndromes. In this study, we tested the hypothesis that multi-digit synergies may capture early and subclinical basal ganglia dysfunction. We chose asymptomatic welders to test the hypothesis because the basal ganglia are known to be most susceptible to neurotoxicity caused by welding-related metal accumulation (such as manganese and iron). Twenty right-handed welders and 13 matched controls were invited to perform single- and multi-finger pressing tasks using the fingers of the right or left hand. Unified Parkinson's Disease Rating Scale and Grooved Pegboard scores were used to gauge gross and fine motor dysfunction, respectively. High-resolution (3T) T1-weighted, T2-weighted, T1 mapping, susceptibility, and diffusion tensor MRIs were obtained to reflect manganese, iron accumulation, and microstructural changes in basal ganglia. The synergy index stabilizing total force and anticipatory synergy adjustments were computed, compared between groups, and correlated with estimates of basal ganglia manganese [the pallidal index, R1 (1/T1)], iron [R2* (1/T2*)], and microstructural changes [fractional anisotropy and mean diffusivity]. There were no significant differences in Unified Parkinson's Disease Rating Scale (total or motor subscale) or Grooved Pegboard test scores between welders and controls. The synergy index during steady-state accurate force production was decreased significantly in the left hand of welders compared to controls (p=0.004) but did not reach statistical significance in the right hand (p=0.16). Anticipatory synergy adjustments, however, were not significantly different between groups. Among welders, higher synergy indices in the left hand were associated significantly with higher fractional anisotropy values in the left globus pallidus (R=0.731, psynergy metrics may serve

  9. Basal cell carcinoma, squamous cell carcinoma and melanoma of the head and face.

    Science.gov (United States)

    Feller, L; Khammissa, R A G; Kramer, B; Altini, M; Lemmer, J

    2016-02-05

    Ultraviolet light (UV) is an important risk factor for cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin. These cancers most commonly affect persons with fair skin and blue eyes who sunburn rather than suntan. However, each of these cancers appears to be associated with a different pattern of UV exposure and to be mediated by different intracellular molecular pathways.Some melanocortin 1 receptor (MC1R) gene variants play a direct role in the pathogenesis of cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma apart from their role in determining a cancer-prone pigmentory phenotype (fair skin, red hair, blue eyes) through their interactions with other genes regulating immuno-inflammatory responses, DNA repair or apoptosis.In this short review we focus on the aetiological role of UV in cutaneous basal cell carcinoma, cutaneous squamous cell carcinoma and cutaneous melanoma of the skin, and on some associated biopathological events.

  10. Metastatic giant basal cell carcinoma: a case report.

    Science.gov (United States)

    Bellahammou, Khadija; Lakhdissi, Asmaa; Akkar, Othman; Rais, Fadoua; Naoual, Benhmidou; Elghissassi, Ibrahim; M'rabti, Hind; Errihani, Hassan

    2016-01-01

    Basal cell carcinoma is the most common skin cancer, characterised by a slow growing behavior, metastasis are extremely rare, and it occurs in less than 0, 1% of all cases. Giant basal cell carcinoma is a rare form of basal cell carcinoma, more aggressive and defined as a tumor measuring more than 5 cm at its largest diameter. Only 1% of all basal cell carcinoma develops to a giant basal cell carcinoma, resulting of patient's negligence. Giant basal cell carcinoma is associated with higher potential of metastasis and even death, compared to ordinary basal cell carcinoma. We report a case of giant basal cell carcinoma metastaticin lung occurring in a 79 years old male patient, with a fatal evolution after one course of systemic chemotherapy. Giant basal cell carcinoma is a very rare entity, early detection of these tumors could prevent metastasis occurrence and improve the prognosis of this malignancy.

  11. Centrality of striatal cholinergic transmission in basal ganglia function

    Directory of Open Access Journals (Sweden)

    Paola eBonsi

    2011-02-01

    Full Text Available Work over the past two decades revealed a previously unexpected role for striatal cholinergic interneurons in the context of basal ganglia function. The recognition that these interneurons are essential in synaptic plasticity and motor learning represents a significant step ahead in deciphering how the striatum processes cortical inputs, and why pathological circumstances cause motor dysfunction.Loss of the reciprocal modulation between dopaminergic inputs and the intrinsic cholinergic innervation within the striatum appears to be the trigger for pathophysiological changes occurring in basal ganglia disorders. Accordingly, there is now compelling evidence showing profound changes in cholinergic markers in these disorders, in particular Parkinson’s disease and dystonia.Based on converging experimental and clinical evidence, we provide an overview of the role of striatal cholinergic transmission in physiological and pathological conditions, in the context of the pathogenesis of movement disorders.

  12. Beneficial effect of intralesionally injected 5-fluorouracil on basal cell epithelioma associated with radiodermatitis

    Energy Technology Data Exchange (ETDEWEB)

    Hata, Seiichiro (Osaka Univ. (Japan). Faculty of Medicine)

    1984-06-01

    A 81-year-old male had perioral radiodermatitis of 50 years' duration which was associated with Bowen's disease and basal cell epitheliomas since age 59 years. One of those basal cell epitheliomas treated with topical 5-FU and bleomycin ointments increased to form an ulcer of 25 x 15mm in size nearby the right side of nose, accompanying with a fistule to the oral cavity while he hesitated to visit the hospital. 5-FU was intralesionally injected into the tumor. After the injections in total dose of 6,550mg the ulcer got epithelized and the biopsy could not reveal the tumor cell. The case proves the effectiveness of intralesional injection of 5-FU for basal cell epithelioma which avoids the surgical excision.

  13. Nerve signaling regulates basal keratinocyte proliferation in the blastema apical epithelial cap in the axolotl (Ambystoma mexicanum).

    Science.gov (United States)

    Satoh, Akira; Bryant, Susan V; Gardiner, David M

    2012-06-15

    The ability of adult vertebrates to repair tissue damage is widespread and impressive; however, the ability to regenerate structurally complex organs such as the limb is limited largely to the salamanders. The fact that most of the tissues of the limb can regenerate has led investigators to question and identify the barriers to organ regeneration. From studies in the salamander, it is known that one of the earliest steps required for successful regeneration involves signaling between nerves and the wound epithelium/apical epithelial cap (AEC). In this study we confirm an earlier report that the keratinocytes of the AEC acquire their function coincident with exiting the cell cycle. We have discovered that this unique, coordinated behavior is regulated by nerve signaling and is associated with the presence of gap junctions between the basal keratinocytes of the AEC. Disruption of nerve signaling results in a loss of gap junction protein, the reentry of the cells into the cell cycle, and regenerative failure. Finally, coordinated exit from the cell cycle appears to be a conserved behavior of populations of cells that function as signaling centers during both development and regeneration. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Effects of Focal Basal Ganglia Lesions on Timing and Force Control

    Science.gov (United States)

    Aparicio, P.; Diedrichsen, J.; Ivry, R.B.

    2005-01-01

    Studies of basal ganglia dysfunction in humans have generally involved patients with degenerative disorders, notably Parkinson's disease. In many instances, the performance of these patients is compared to that of patients with focal lesions of other brain structures such as the cerebellum. In the present report, we studied the performance of…

  15. A biophysical model of the cortex-basal ganglia-thalamus network in the 6-OHDA lesioned rat model of Parkinson's disease.

    Science.gov (United States)

    Kumaravelu, Karthik; Brocker, David T; Grill, Warren M

    2016-04-01

    Electrical stimulation of sub-cortical brain regions (the basal ganglia), known as deep brain stimulation (DBS), is an effective treatment for Parkinson's disease (PD). Chronic high frequency (HF) DBS in the subthalamic nucleus (STN) or globus pallidus interna (GPi) reduces motor symptoms including bradykinesia and tremor in patients with PD, but the therapeutic mechanisms of DBS are not fully understood. We developed a biophysical network model comprising of the closed loop cortical-basal ganglia-thalamus circuit representing the healthy and parkinsonian rat brain. The network properties of the model were validated by comparing responses evoked in basal ganglia (BG) nuclei by cortical (CTX) stimulation to published experimental results. A key emergent property of the model was generation of low-frequency network oscillations. Consistent with their putative pathological role, low-frequency oscillations in model BG neurons were exaggerated in the parkinsonian state compared to the healthy condition. We used the model to quantify the effectiveness of STN DBS at different frequencies in suppressing low-frequency oscillatory activity in GPi. Frequencies less than 40 Hz were ineffective, low-frequency oscillatory power decreased gradually for frequencies between 50 Hz and 130 Hz, and saturated at frequencies higher than 150 Hz. HF STN DBS suppressed pathological oscillations in GPe/GPi both by exciting and inhibiting the firing in GPe/GPi neurons, and the number of GPe/GPi neurons influenced was greater for HF stimulation than low-frequency stimulation. Similar to the frequency dependent suppression of pathological oscillations, STN DBS also normalized the abnormal GPi spiking activity evoked by CTX stimulation in a frequency dependent fashion with HF being the most effective. Therefore, therapeutic HF STN DBS effectively suppresses pathological activity by influencing the activity of a greater proportion of neurons in the output nucleus of the BG.

  16. Why we can talk, debate, and change our minds: neural circuits, basal ganglia operations, and transcriptional factors.

    Science.gov (United States)

    Lieberman, Philip

    2014-12-01

    Ackermann et al. disregard attested knowledge concerning aphasia, Parkinson disease, cortical-to-striatal circuits, basal ganglia, laryngeal phonation, and other matters. Their dual-pathway model cannot account for "what is special about the human brain." Their human cortical-to-laryngeal neural circuit does not exist. Basal ganglia operations, enhanced by mutations on FOXP2, confer human motor-control, linguistic, and cognitive capabilities.

  17. Organizational changes of the daughter basal complex during the parasite replication of Toxoplasma gondii.

    Directory of Open Access Journals (Sweden)

    Ke Hu

    2008-01-01

    Full Text Available The apicomplexans are a large group of parasitic protozoa, many of which are important human and animal pathogens, including Plasmodium falciparum and Toxoplasma gondii. These parasites cause disease only when they replicate, and their replication is critically dependent on the proper assembly of the parasite cytoskeletons during cell division. In addition to their importance in pathogenesis, the apicomplexan parasite cytoskeletons are spectacular structures. Therefore, understanding the cytoskeletal biogenesis of these parasites is important not only for parasitology but also of general interest to broader cell biology. Previously, we found that the basal end of T. gondii contains a novel cytoskeletal assembly, the basal complex, a cytoskeletal compartment constructed in concert with the daughter cortical cytoskeleton during cell division. This study focuses on key events during the biogenesis of the basal complex using high resolution light microscopy, and reveals that daughter basal complexes are established around the duplicated centrioles independently of the structural integrity of the daughter cortical cytoskeleton, and that they are dynamic "caps" at the growing ends of the daughters. Compartmentation and polarization of the basal complex is first revealed at a late stage of cell division upon the recruitment of an EF-hand containing calcium binding protein, TgCentrin2. This correlates with the constriction of the basal complex, a process that can be artificially induced by increasing cellular calcium concentration. The basal complex is therefore likely to be a new kind of centrin-based contractile apparatus.

  18. The Development of the Basal Ganglia in Capuchin Monkeys (Cebus apella)

    Science.gov (United States)

    Phillips, Kimberley A.; Sobieski, Courtney A.; Gilbert, Valerie R.; Chiappini-Williamson, Christine; Sherwood, Chet C.; Strick, Peter L.

    2010-01-01

    The basal ganglia are subcortical structures involved in the planning, initiation and regulation of movement as well as a variety of non-motor, cognitive and affective functions. Capuchin monkeys share several important characteristics of development with humans, including a prolonged infancy and juvenile period, a long lifespan, and complex manipulative abilities. This makes capuchins important comparative models for understanding age-related neuroanatomical changes in these structures. Here we report developmental volumetric data on the three subdivisions of the basal ganglia, the caudate, putamen and globus pallidus in brown capuchin monkeys (Cebus apella). Based on a cross-sectional sample, we describe brain development in 28 brown capuchin monkeys (male n = 17, female n = 11; age range = 2 months – 20 years) using high-resolution structural MRI. We found that the raw volumes of the putamen and caudate varied significantly with age, decreasing in volume from birth through early adulthood. Notably, developmental changes did not differ between sexes. Because these observed developmental patterns are similar to humans, our results suggest that capuchin monkeys may be useful animal models for investigating neurodevelopmental disorders of the basal ganglia. PMID:20227397

  19. [Emotion and basal ganglia (II): what can we learn from subthalamic nucleus deep brain stimulation in Parkinson's disease?].

    Science.gov (United States)

    Péron, J; Dondaine, T

    2012-01-01

    The subthalamic nucleus deep-brain stimulation Parkinson's disease patient model seems to represent a unique opportunity for studying the functional role of the basal ganglia and notably the subthalamic nucleus in human emotional processing. Indeed, in addition to constituting a therapeutic advance for severely disabled Parkinson's disease patients, deep brain stimulation is a technique, which selectively modulates the activity of focal structures targeted by surgery. There is growing evidence of a link between emotional impairments and deep-brain stimulation of the subthalamic nucleus. In this context, according to the definition of emotional processing exposed in the companion paper available in this issue, the aim of the present review will consist in providing a synopsis of the studies that investigated the emotional disturbances observed in subthalamic nucleus deep brain stimulation Parkinson's disease patients. This review leads to the conclusion that several emotional components would be disrupted after subthalamic nucleus deep brain stimulation in Parkinson's disease: subjective feeling, neurophysiological activation, and motor expression. Finally, after a description of the limitations of this study model, we discuss the functional role of the subthalamic nucleus (and the striato-thalamo-cortical circuits in which it is involved) in emotional processing. It seems reasonable to conclude that the striato-thalamo-cortical circuits are indeed involved in emotional processing and that the subthalamic nucleus plays a central in role the human emotional architecture. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  20. Photodynamic therapy for basal cell carcinoma.

    Science.gov (United States)

    Fargnoli, Maria Concetta; Peris, Ketty

    2015-11-01

    Topical photodynamic therapy is an effective and safe noninvasive treatment for low-risk basal cell carcinoma, with the advantage of an excellent cosmetic outcome. Efficacy of photodynamic therapy in basal cell carcinoma is supported by substantial research and clinical trials. In this article, we review the procedure, indications and clinical evidences for the use of photodynamic therapy in the treatment of basal cell carcinoma.

  1. Impact of surgery targeting the caudal intralaminar thalamic nuclei on the pathophysiological functioning of basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Kerkerian-Le Goff, Lydia; Bacci, Jean-Jacques; Jouve, Loreline; Melon, Christophe; Salin, Pascal

    2009-02-16

    There is accumulating evidence that the centre median-parafascicular (CM/Pf) complex of the thalamus is implicated in basal ganglia-related movement disorders and notably in Parkinson's disease. However, the impact of the changes affecting CM/Pf on the pathophysiological functioning of basal ganglia in parkinsonian state remains poorly understood. To address this issue, we have examined the effects of excitotoxic lesion of CM/Pf and of 6-hydroxydopamine-induced lesion of nigral dopamine neurons, separately or in association, on gene expression of markers of neuronal activity in the rat basal ganglia (striatal neuropeptide precursors, GAD67, cytochrome oxidase subunit I) by quantitative in situ hybridization histochemistry. CM/Pf lesion prevented the changes produced by the dopamine denervation in the components of the indirect pathway connecting the striatum to the output structures (striatopallidal neurons, globus pallidus, subthalamic nucleus), and among the output structures, in the entopeduncular nucleus. Preliminary data on the effects of deep brain stimulation of CM/Pf in rats with nigral dopamine lesion show that this surgical approach produces efficient anti-akinetic effect associated with partial reversal of the dopamine lesion-induced increase in striatal preproenkephalin A mRNA levels, a marker of the striatopallidal neurons. These data, which provide substrates for the potential of CM/Pf surgery in the treatment of movement disorders, are discussed in comparison with the effects of lesion or deep brain stimulation of the subthalamic nucleus, the currently preferred target for the surgical treatment of PD.

  2. Basal ganglia calcification as a putative cause for cognitive decline

    OpenAIRE

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    ABSTRACT Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological an...

  3. Elevated YAP and its downstream targets CCN1 and CCN2 in basal cell carcinoma: impact on keratinocyte proliferation and stromal cell activation.

    Science.gov (United States)

    Quan, Taihao; Xu, Yiru; Qin, Zhaoping; Robichaud, Patrick; Betcher, Stephanie; Calderone, Ken; He, Tianyuan; Johnson, Timothy M; Voorhees, John J; Fisher, Gary J

    2014-04-01

    Yes-associated protein (YAP) is a transcriptional co-activator of hippo signaling pathway, which plays an important role in organ size control and tumorigenesis. Here we report that YAP and its downstream transcriptional targets CCN1 and CCN2 are markedly elevated in keratinocytes in human skin basal cell carcinoma tumor islands. In human keratinocytes, knockdown of YAP significantly reduced expression of CCN1 and CCN2, and repressed proliferation and survival. This inhibition of proliferation and survival was rescued by restoration of CCN1 expression, but not by CCN2 expression. In basal cell carcinoma stroma, CCN2-regulated genes type I collagen, fibronectin, and α-smooth muscle actin were highly expressed. Furthermore, atomic force microscopy revealed increased tissue stiffness in basal cell carcinoma stroma compared to normal dermis. These data provide evidence that up-regulation of YAP in basal cell carcinoma impacts both aberrant keratinocyte proliferation, via CCN1, and tumor stroma cell activation and stroma remodeling, via CCN2. Targeting YAP and/or CCN1 and CCN2 may provide clinical benefit in basal cell carcinoma. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  4. Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion

    International Nuclear Information System (INIS)

    Mao, Haoping; Wang, Hong; Ma, Shangwei; Xu, Yantong; Zhang, Han; Wang, Yuefei; Niu, Zichang; Fan, Guanwei; Zhu, Yan; Gao, Xiu Mei

    2014-01-01

    Excess or deficiency of catecholamine (CA) secretion was related with several diseases. Recently, estrogen and phytoestrogens were reported to regulate the activity of CA system. Bakuchiol is a phytoestrogen isolated from the seeds of Psoralea corylifolia L. (Leguminosae) which has been used in Traditional Chinese medicine as a tonic or aphrodisiac. In the present study, bovine adrenal medullary cells were employed to investigate the effects and mechanisms of bakuchiol on the regulation of CA secretion. Further, its anti-depressant like and anti-stress effects were evaluated by using behavioral despair and chronic immobilization stress models. Our results indicated that bakuchiol showed bidirectional regulation on CA secretion. It stimulated basal CA secretion in a concentration dependent manner (p + (p + induced CA secretion was related with reduction of intracellular calcium rise. In vivo experiments, we found that bakuchiol significantly reduced immobilization time in behavioral despair mouse (p < 0.05 or 0.01), and plasma epinephrine (E) and norepinephrine (NE) levels in chronic immobilization stress (p < 0.05). Overall, these results present a bidirectional regulation of bakuchiol on CA secretion which indicated that bakuchiol may exert anti-stress and the potential anti-depressant-like effects. - Highlights: • Bakuchiol stimulated basal catecholamine secretion. • Bakuchiol inhibited various secretagogues induced catecholamine secretion. • Bakuchiol may have anti-stress and the potential anti-depression-like effects

  5. Red Dot Basal Cell Carcinoma: Report of Cases and Review of This Unique Presentation of Basal Cell Carcinoma.

    Science.gov (United States)

    Cohen, Philip R

    2017-03-22

    Red dot basal cell carcinoma is a unique variant of basal cell carcinoma. Including the three patients described in this report, red dot basal cell carcinoma has only been described in seven individuals. This paper describes the features of two males and one female with red dot basal cell carcinoma and reviews the characteristics of other patients with this clinical subtype of basal cell carcinoma. A 70-year-old male developed a pearly-colored papule with a red dot in the center on his nasal tip. A 71-year-old male developed a red dot surrounded by a flesh-colored papule on his left nostril. Lastly, a 74-year-old female developed a red dot within an area of erythema on her left mid back. Biopsy of the lesions all showed nodular and/or superficial basal cell carcinoma. Correlation of the clinical presentation and pathology established the diagnosis of red dot basal cell carcinoma. The tumors were treated by excision using the Mohs surgical technique. Pubmed was searched with the keyword: basal, cell, cancer, carcinoma, dot, red, and skin. The papers generated by the search and their references were reviewed. Red dot basal cell carcinoma has been described in three females and two males; the gender was not reported in two patients. The tumor was located on the nose (five patients), back (one patient) and thigh (one patient). Cancer presented as a solitary small red macule or papule; often, the carcinoma was surrounded by erythema or a flesh-colored papule. Although basal cell carcinomas usually do not blanch after a glass microscope slide is pressed against them, the red dot basal cell carcinoma blanched after diascopy in two of the patients, resulting in a delay of diagnosis in one of these individuals. Dermoscopy may be a useful non-invasive modality for evaluating skin lesions when the diagnosis of red dot basal cell carcinoma is considered. Mohs surgery is the treatment of choice; in some of the patients, the ratio of the area of the postoperative wound to that

  6. Cerebral blood flow SPECT scanning in cortico-basal degeneration

    International Nuclear Information System (INIS)

    Slawek, J.; Walczak, A.; Krupa-Olchawa, J.; Lass, P.; Dubaniewicz, M.

    1999-01-01

    Idiopathic Parkinson's disease accounts for ca. 75% of all cases of Parkinsonism. Corticobasal degeneration is a relatively rare example of the so-called ''Parkinson-plus'' syndrome. The authors present the case of a 56-year-old woman with rigidity and atypical tremor of upper extremity followed by gait apraxia, dysarthria, bilateral pyramidal signs and myoclonus. There was no improvement after treatment with L-dopa. The disease has progressed, but the patient is still alive. On the basis of clinical data a diagnosis of corticobasal degeneration has been established. Cerebral blood flow SPECT scanning revealed diffuse hypoperfusion of left frontal lobe, antero-inferior part of the left temporal lobe and left basal ganglia. The case illustrates the usefulness of brain SPECT in atypical forma of Parkinson's disease. (author)

  7. Regulation of sorLA in general and in Alzheimer's disease

    DEFF Research Database (Denmark)

    Andersen, Olav Michael; Poulsen, Annemarie Svane Aavild; Zole, Egija

    Background: The Sortillin-related receptor (sorLA) is involved in cellular trafficking and processing of the Amyloid precursor protein (APP). A decrease in sorLA expression has been identified in brain tissue from patients suffering from Alzheimer's disease (AD), suggesting that sorLA may be a key...... tissue from patients with Alzheimer's disease. Conclusions: We have investigated the regulation of sorLA expression and identified several cis - and trans -regulatory elements important for the proper expression of sorLA. These studies may help to elucidate the mechanisms underlying the observ ed down...... regulation of sorLA and the linkage to disease onset of SORL1 SNPs in AD patients....

  8. Basal cell carcinoma treated with MTDQ and irradiation

    International Nuclear Information System (INIS)

    Pollak, Z.; Fodor, J.; Erdelyi, V.; Bihari, O.; Eckhardt, S.

    1979-01-01

    Patients with basal cell carcinoma of the skin were treated with combined MTDQ (6,6'-methylene-bis-(2,2,4-trimethyl-1,2-dihydroquinoline)) adminstration and irradiation. Significantly better results were obtained with a skin exposure of 2000 R combined with MTDQ than with the same dose alone. The results were comparable to those obtained with an exposure of 4000 R. MTDQ adminstration induced disease of tissular malonaldehyde concentration and suggested the peroxide-decomposing action of the radiation sensitizer. (Auth.)

  9. SHELL DISEASES AND TOXINS REGULATED BY LAW

    Directory of Open Access Journals (Sweden)

    Natalija Topić Popović

    1999-06-01

    Full Text Available There is a long tradition of cultivating shells in Croatia, and the shell industry has a good perspective of further development. Since shells are delicate organisms that require special breeding conditions and climate, they are also subject to many diseases. Bonamiosis, haplospioridiosis, marteiliosis, microcytosis and perkinsosis are stated by the International Bureau for Epizootics as shell diseases that, in keeping with law, must be reported, and iridovirosis as a disease of a potential international importance. The same diseases are regulated by the Veterinary Law from 1997 as infectious diseases prevention of which is of an interest for the Republic of Croatia. Although, according to the law, it does not have to be prevented, in this article the disease Mytilicola is also described. According to the Health Department Statute from 1994, eatable part of shells are being tested for toxins of some marine dinoflagelates that can damage human health, and these are PSP (Paralytic Shellfish Poison, DSP (Diarrhoeic Shellfish Poison and NSP (Neuroparalytic Shellfish Poison.

  10. Impact of Basal Conditions on Grounding-Line Retreat

    Science.gov (United States)

    Koellner, S. J.; Parizek, B. R.; Alley, R. B.; Muto, A.; Holschuh, N.; Nowicki, S.

    2017-12-01

    An often-made assumption included in ice-sheet models used for sea-level projections is that basal rheology is constant throughout the domain of the simulation. The justification in support of this assumption is that physical data for determining basal rheology is limited and a constant basal flow law can adequately approximate current as well as past behavior of an ice-sheet. Prior studies indicate that beneath Thwaites Glacier (TG) there is a ridge-and-valley bedrock structure which likely promotes deformation of soft tills within the troughs and sliding, more akin to creep, over the harder peaks; giving rise to a spatially variable basal flow law. Furthermore, it has been shown that the stability of an outlet glacier varies with the assumed basal rheology, so accurate projections almost certainly need to account for basal conditions. To test the impact of basal conditions on grounding-line evolution forced by ice-shelf perturbations, we modified the PSU 2-D flowline model to enable the inclusion of spatially variable basal rheology along an idealized bedrock profile akin to TG. Synthetic outlet glacier "data" were first generated under steady-state conditions assuming a constant basal flow law and a constant basal friction coefficient field on either a linear or bumpy sloping bed. In following standard procedures, a suite of models were then initialized by assuming different basal rheologies and then determining the basal friction coefficients that produce surface velocities matching those from the synthetic "data". After running each of these to steady state, the standard and full suite of models were forced by drastically reducing ice-shelf buttressing through side-shear and prescribed basal-melting perturbations. In agreement with previous findings, results suggest a more plastic basal flow law enhances stability in response to ice-shelf perturbations by flushing ice from farther upstream to sustain the grounding-zone mass balance required to prolong the

  11. Correlation set analysis: detecting active regulators in disease populations using prior causal knowledge

    Directory of Open Access Journals (Sweden)

    Huang Chia-Ling

    2012-03-01

    Full Text Available Abstract Background Identification of active causal regulators is a crucial problem in understanding mechanism of diseases or finding drug targets. Methods that infer causal regulators directly from primary data have been proposed and successfully validated in some cases. These methods necessarily require very large sample sizes or a mix of different data types. Recent studies have shown that prior biological knowledge can successfully boost a method's ability to find regulators. Results We present a simple data-driven method, Correlation Set Analysis (CSA, for comprehensively detecting active regulators in disease populations by integrating co-expression analysis and a specific type of literature-derived causal relationships. Instead of investigating the co-expression level between regulators and their regulatees, we focus on coherence of regulatees of a regulator. Using simulated datasets we show that our method performs very well at recovering even weak regulatory relationships with a low false discovery rate. Using three separate real biological datasets we were able to recover well known and as yet undescribed, active regulators for each disease population. The results are represented as a rank-ordered list of regulators, and reveals both single and higher-order regulatory relationships. Conclusions CSA is an intuitive data-driven way of selecting directed perturbation experiments that are relevant to a disease population of interest and represent a starting point for further investigation. Our findings demonstrate that combining co-expression analysis on regulatee sets with a literature-derived network can successfully identify causal regulators and help develop possible hypothesis to explain disease progression.

  12. Altered neuronal firing pattern of the basal ganglia nucleus plays a role in levodopa-induced dyskinesia in patients with Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Xiaoyu eLi

    2015-11-01

    Full Text Available Background: Levodopa therapy alleviates the symptoms of Parkinson's disease (PD, but long-term treatment often leads to motor complications such as levodopa-induced dyskinesia (LID. Aim: To explore the neuronal activity in the basal ganglia nuclei in patients with PD and LID. Methods: Thirty patients with idiopathic PD (age, 55.1±11.0 years; disease duration, 8.7±5.6 years were enrolled between August 2006 and August 2013 at the Xuanwu Hospital, Capital Medical University, China. Their Hoehn and Yahr scores ranged from 2 to 4 and their UPDRS III scores were 28.5±5.2. Fifteen of them had severe LID (UPDRS IV scores of 6.7±1.6. Microelectrode recording was performed in the globus pallidus internus (GPi and subthalamic nucleus (STN during pallidotomy (n=12 or STN deep brain stimulation (DBS; bilateral, n=12; unilateral, n=6. The firing patterns and frequencies of various cell types were analyzed by assessing single cell interspike intervals (ISIs and the corresponding coefficient of variation (CV. Results: A total of 295 neurons were identified from the GPi (n=12 and STN (n=18. These included 26 (8.8% highly grouped discharge, 30 (10.2% low frequency firing, 78 (26.4% rapid tonic discharge, 103 (34.9% irregular activity, and 58 (19.7% tremor-related activity. There were significant differences between the two groups (P<0.05 for neurons with irregular firing, highly irregular cluster-like firing, and low-frequency firing. Conclusion: Altered neuronal activity was observed in the basal ganglia nucleus of GPi and STN, and may play important roles in the pathophysiology of PD and LID.

  13. DMPD: Toll-like receptors regulation of viral infection and disease. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 18280610 Toll-like receptors regulation of viral infection and disease. Thompson JM...how Toll-like receptors regulation of viral infection and disease. PubmedID 18280610 Title Toll-like recepto...rs regulation of viral infection and disease. Authors Thompson JM, Iwasaki A. Pub

  14. Basal-body-associated macromolecules: a continuing debate.

    Science.gov (United States)

    Pierre Mignot, J; Brugerolle, G; Didier, P; Bornens, M

    1993-07-01

    Controversy over the possibility that centrioles/basal bodies contain nucleic acids has overshadowed results demonstrating other macromolecules in the lumen of these organelles. Glycogen particles, which are known to be present within the lumen of the centriole/basal body of sperm cells, have now been found in basal bodies of protists belonging to three different groups. Here, we extend the debate on a role for RNA in basal body/centriole function and speculate on the origin and the function of centriolar glycogen.

  15. Interaction between the 5-HT system and the basal ganglia: Functional implication and therapeutic perspective in Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Cristina eMiguelez

    2014-03-01

    Full Text Available The neurotransmitter serotonin (5-HT has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7 and ligand-gated ion channels (5-HT3. The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN share common projecting areas, in the basal ganglia (BG nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen, subthalamic nucleus (STN, internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe and substantia nigra (pars compacta, SNc, and pars reticulata, SNr. The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson’s disease. This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating Parkinson’s disease and the motor complications induced by chronic treatment with L-DOPA.

  16. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    Science.gov (United States)

    Nicolas, Francisco Esteban; Moxon, Simon; de Haro, Juan P.; Calo, Silvia; Grigoriev, Igor V.; Torres-Martínez, Santiago; Moulton, Vincent; Ruiz-Vázquez, Rosa M.; Dalmay, Tamas

    2010-01-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi. PMID:20427422

  17. Endogenous short RNAs generated by Dicer 2 and RNA-dependent RNA polymerase 1 regulate mRNAs in the basal fungus Mucor circinelloides

    Energy Technology Data Exchange (ETDEWEB)

    Grigoriev, Igor; Nicolas, Francisco; Moxon, Simon; Haro, Juan de; Calo, Silvia; Torres-Martinez, Santiago; Moulton, Vincent; Ruiz-Vazquez, Rosa; Dalmay, Tamas

    2011-09-01

    Endogenous short RNAs (esRNAs) play diverse roles in eukaryotes and usually are produced from double-stranded RNA (dsRNA) by Dicer. esRNAs are grouped into different classes based on biogenesis and function but not all classes are present in all three eukaryotic kingdoms. The esRNA register of fungi is poorly described compared to other eukaryotes and it is not clear what esRNA classes are present in this kingdom and whether they regulate the expression of protein coding genes. However, evidence that some dicer mutant fungi display altered phenotypes suggests that esRNAs play an important role in fungi. Here, we show that the basal fungus Mucor circinelloides produces new classes of esRNAs that map to exons and regulate the expression of many protein coding genes. The largest class of these exonic-siRNAs (ex-siRNAs) are generated by RNA-dependent RNA Polymerase 1 (RdRP1) and dicer-like 2 (DCL2) and target the mRNAs of protein coding genes from which they were produced. Our results expand the range of esRNAs in eukaryotes and reveal a new role for esRNAs in fungi

  18. Ultra-high field magnetic resonance imaging of the basal ganglia and related structures

    NARCIS (Netherlands)

    Plantinga, B.R.; Temel, Y.; Roebroeck, A.; Uludag, K.; Ivanov, D.; Kuijf, M.L.; ter Haar Romeny, B.M.

    2014-01-01

    Deep brain stimulation is a treatment for Parkinson's disease and other related disorders, involving the surgical placement of electrodes in the deeply situated basal ganglia or thalamic structures. Good clinical outcome requires accurate targeting. However, due to limited visibility of the target

  19. Report Card on Basal Readers.

    Science.gov (United States)

    Goodman, Kenneth S.; And Others

    This report examines the nature of the modern basal reader, its economics, and use. First, the report provides a history showing how the confluence of business principles, positivistic science, and behavioral psychology led to the transformation of reading textbooks into basal readers. Next, the report examines objectives and subjective factors…

  20. Acute movement disorder with bilateral basal ganglia lesions in diabetic uremia

    Directory of Open Access Journals (Sweden)

    Gurusidheshwar M Wali

    2011-01-01

    Full Text Available Acute movement disorder associated with symmetrical basal ganglia lesions occurring in the background of diabetic end stage renal disease is a recently described condition. It has distinct clinico-radiological features and is commonly described in Asian patients. We report the first Indian case report of this potentially reversible condition and discuss its various clinico-radiological aspects.

  1. Basal ganglia disorders studied by positron emission tomography

    International Nuclear Information System (INIS)

    Shinotoh, Hitoshi

    1994-01-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [ 18 F]6-fluoro-L-dopa ([ 18 F]dopa), and striatal dopamine receptor density with suitable PET ligands. [ 18 F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [ 18 F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [ 18 F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [ 18 F] dopa uptake is lower in MSA than PD. However, [ 18 F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [ 18 F]dopa uptake overlap. D 1 and D 2 receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [ 18 F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D 2 receptor binding have been reported in the striatum of PSP patients. The reduction in D 2 receptor binding is more prominent in the caudate than putamen. Striatal [ 18 F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D 2 receptor binding is markedly reduced in patients with Huntington's disease, while striatal [ 18 F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. These PET findings are useful in the differential diagnosis of basal ganglia disorders. (J.P.N.) 55 refs

  2. Ketamine-induced oscillations in the motor circuit of the rat basal ganglia.

    Directory of Open Access Journals (Sweden)

    María Jesús Nicolás

    Full Text Available Oscillatory activity can be widely recorded in the cortex and basal ganglia. This activity may play a role not only in the physiology of movement, perception and cognition, but also in the pathophysiology of psychiatric and neurological diseases like schizophrenia or Parkinson's disease. Ketamine administration has been shown to cause an increase in gamma activity in cortical and subcortical structures, and an increase in 150 Hz oscillations in the nucleus accumbens in healthy rats, together with hyperlocomotion.We recorded local field potentials from motor cortex, caudate-putamen (CPU, substantia nigra pars reticulata (SNr and subthalamic nucleus (STN in 20 awake rats before and after the administration of ketamine at three different subanesthetic doses (10, 25 and 50 mg/Kg, and saline as control condition. Motor behavior was semiautomatically quantified by custom-made software specifically developed for this setting.Ketamine induced coherent oscillations in low gamma (~ 50 Hz, high gamma (~ 80 Hz and high frequency (HFO, ~ 150 Hz bands, with different behavior in the four structures studied. While oscillatory activity at these three peaks was widespread across all structures, interactions showed a different pattern for each frequency band. Imaginary coherence at 150 Hz was maximum between motor cortex and the different basal ganglia nuclei, while low gamma coherence connected motor cortex with CPU and high gamma coherence was more constrained to the basal ganglia nuclei. Power at three bands correlated with the motor activity of the animal, but only coherence values in the HFO and high gamma range correlated with movement. Interactions in the low gamma band did not show a direct relationship to movement.These results suggest that the motor effects of ketamine administration may be primarily mediated by the induction of coherent widespread high-frequency activity in the motor circuit of the basal ganglia, together with a frequency

  3. Basal and adenosine receptor-stimulated levels of cAMP are reduced in lymphocytes from alcoholic patients

    International Nuclear Information System (INIS)

    Diamond, I.; Wrubel, B.; Estrin, W.; Gordon, A.

    1987-01-01

    Alcoholism causes serious neurologic disease that may be due, in part, to the ability of ethanol to interact with neural cell membranes and change neuronal function. Adenosine receptors are membrane-bound proteins that appear to mediate some of the effects of ethanol in the brain. Human lymphocytes also have adenosine receptors, and their activation causes increases in cAMP levels. To test the hypothesis that basal and adenosine receptor-stimulated cAMP levels in lymphocytes might be abnormal in alcoholism, the authors studied lymphocytes from 10 alcoholic subjects, 10 age- and sex-matched normal individuals, and 10 patients with nonalcoholic liver disease. Basal and adenosine receptor-stimulated cAMP levels were reduced 75% in lymphocytes from alcoholic subjects. Also, there was a 76% reduction in ethanol stimulation of cAMP accumulation in lymphocytes from alcoholics. Similar results were demonstrable in isolated T cells. Unlike other laboratory tests examined, these measurements appeared to distinguish alcoholics from normal subjects and from patients with nonalcoholic liver disease. Reduced basal and adenosine receptor-stimulated levels of cAMP in lymphocytes from alcoholics may reflect a change in cell membranes due either to chronic alcohol abuse or to a genetic predisposition unique to alcoholic subjects

  4. The Concerted Action of Type 2 and Type 3 Deiodinases Regulates the Cell Cycle and Survival of Basal Cell Carcinoma Cells.

    Science.gov (United States)

    Miro, Caterina; Ambrosio, Raffaele; De Stefano, Maria Angela; Di Girolamo, Daniela; Di Cicco, Emery; Cicatiello, Annunziata Gaetana; Mancino, Giuseppina; Porcelli, Tommaso; Raia, Maddalena; Del Vecchio, Luigi; Salvatore, Domenico; Dentice, Monica

    2017-04-01

    Thyroid hormones (THs) mediate pleiotropic cellular processes involved in metabolism, cellular proliferation, and differentiation. The intracellular hormonal environment can be tailored by the type 1 and 2 deiodinase enzymes D2 and D3, which catalyze TH activation and inactivation respectively. In many cellular systems, THs exert well-documented stimulatory or inhibitory effects on cell proliferation; however, the molecular mechanisms by which they control rates of cell cycle progression have not yet been entirely clarified. We previously showed that D3 depletion or TH treatment influences the proliferation and survival of basal cell carcinoma (BCC) cells. Surprisingly, we also found that BCC cells express not only sustained levels of D3 but also robust levels of D2. The aim of the present study was to dissect the contribution of D2 to TH metabolism in the BCC context, and to identify the molecular changes associated with cell proliferation and survival induced by TH and mediated by D2 and D3. We used the CRISPR/Cas9 technology to genetically deplete D2 and D3 in BCC cells and studied the consequences of depletion on cell cycle progression and on cell death. Cell cycle progression was analyzed by fluorescence activated cell sorting analysis of synchronized cells, and the apoptosis rate by annexin V incorporation. Mechanistic investigations revealed that D2 inactivation accelerates cell cycle progression thereby enhancing the proportion of S-phase cells and cyclin D1 expression. Conversely, D3 mutagenesis drastically suppressed cell proliferation and enhanced apoptosis of BCC cells. Furthermore, the basal apoptotic rate was oppositely regulated in D2- and D3-depleted cells. Our results indicate that BCC cells constitute an example in which the TH signal is finely tuned by the concerted expression of opposite-acting deiodinases. The dual regulation of D2 and D3 expression plays a critical role in cell cycle progression and cell death by influencing cyclin D1-mediated

  5. Atrophy of the basal ganglia as the initial diagnostic sign of germinoma in the basal ganglia

    Energy Technology Data Exchange (ETDEWEB)

    Okamoto, K.; Ishikawa, K.; Takahashi, N.; Furusawa, T.; Sakai, K. [Department of Radiology, Niigata University Faculty of Medicine (Japan); Ito, J.; Tokiguchi, S. [Department of Radiology, Niigata University Faculty of Dentistry (Japan); Morii, K. [Department of Neurosurgery, Niigata University Brain Research Institute (Japan); Yamada, M. [Department of Pathology, Niigata University Brain Research Institute (Japan)

    2002-05-01

    Germ-cell tumors of the central nervous system generally develop in the midline, but the tumors can also occur in the basal ganglia and/or thalamus. However, MR images have rarely been documented in the early stage of the tumor in these regions. We retrospectively reviewed MR images obtained on admission and approximately 3 years earlier in two patients with germinoma in the basal ganglia, and compared them with CT. In addition to hyperdensity on CT, both hyperintensity on T1-weighted images and a small hyperintense lesion on T2-weighted images were commonly seen in the basal ganglia. These findings may be early MRI signs of germinoma in this region, and the earliest and most characteristic diagnostic feature on MRI was atrophy of the basal ganglia, which was recognizable before development of hemiparesis. (orig.)

  6. Basal Forebrain Cholinergic Deficits Reduce Glucose Metabolism and Function of Cholinergic and GABAergic Systems in the Cingulate Cortex.

    Science.gov (United States)

    Jeong, Da Un; Oh, Jin Hwan; Lee, Ji Eun; Lee, Jihyeon; Cho, Zang Hee; Chang, Jin Woo; Chang, Won Seok

    2016-01-01

    Reduced brain glucose metabolism and basal forebrain cholinergic neuron degeneration are common features of Alzheimer's disease and have been correlated with memory function. Although regions representing glucose hypometabolism in patients with Alzheimer's disease are targets of cholinergic basal forebrain neurons, the interaction between cholinergic denervation and glucose hypometabolism is still unclear. The aim of the present study was to evaluate glucose metabolism changes caused by cholinergic deficits. We lesioned basal forebrain cholinergic neurons in rats using 192 immunoglobulin G-saporin. After 3 weeks, lesioned animals underwent water maze testing or were analyzed by ¹⁸F-2-fluoro-2-deoxyglucose positron emission tomography. During water maze probe testing, performance of the lesioned group decreased with respect to time spent in the target quadrant and platform zone. Cingulate cortex glucose metabolism in the lesioned group decreased, compared with the normal group. Additionally, acetylcholinesterase activity and glutamate decarboxylase 65/67 expression declined in the cingulate cortex. Our results reveal that spatial memory impairment in animals with selective basal forebrain cholinergic neuron damage is associated with a functional decline in the GABAergic and cholinergic system associated with cingulate cortex glucose hypometabolism.

  7. Nonsurgical Treatment Options for Basal Cell Carcinoma

    International Nuclear Information System (INIS)

    Lien, M. H.; Sondak, V. K.; Sondak, V. K.

    2011-01-01

    Basal cell carcinoma (BCC) remains the most common form of non melanoma skin cancer (NMSC) in Caucasians, with perhaps as many as 2 million new cases expected to occur in the United States in 2010. Many treatment options, including surgical interventions and nonsurgical alternatives, have been utilized to treat BCC. In this paper, two non-surgical options, imiquimod therapy and photodynamic therapy (PDT), will be discussed. Both modalities have demonstrated acceptable disease control rates, cosmetically superior outcomes, and short-term cost-effectiveness. Further studies evaluating long-term cure rates and long-term cost effectiveness of imiquimod therapy and PDT are needed.

  8. Nevoid basal cell carcinoma syndrome (Gorlin-Goltz syndrome). Case report.

    Science.gov (United States)

    Fini, G; Belli, E; Mici, E; Virciglio, P; Moricca, L M; D'Itri, L; Leonardi, A; Malavenda, M S; Krizzuk, D; Merola, R; Maturo, A; Pasta, V

    2013-01-01

    Gorlin-Goltz syndrome or nevoid basal cell carcinoma syndrome (NBCCS) comprises multiple basal cell carcinomas, keratocysts of the jaw, palmar/plantar pits, spine and rib anomalies, calcifications of the falx cerebri etc. The diagnosis is made according to clinical criteria (Kimonis Criteria) and genetic ones. We studied one family where father and then his sun resulted affected by each syndrome. Gorlin-Goltz syndrome is a rare disease diagnosed according to clinical criteria sometimes difficult to integrate. The family case we presented shows how you can get diagnosis even in older age and after numerous surgeries. Patients should be given special attention and therefore should be monitorized and need multidisciplinary treatments continued in time, even a trivial change of signs and symptoms may be an important indicator of a precipitating event which puts the patient's life under threat.

  9. Cholinergic Inputs from Basal Forebrain Add an Excitatory Bias to Odor Coding in the Olfactory Bulb

    Science.gov (United States)

    Rothermel, Markus; Carey, Ryan M.; Puche, Adam; Shipley, Michael T.

    2014-01-01

    Cholinergic modulation of central circuits is associated with active sensation, attention, and learning, yet the neural circuits and temporal dynamics underlying cholinergic effects on sensory processing remain unclear. Understanding the effects of cholinergic modulation on particular circuits is complicated by the widespread projections of cholinergic neurons to telencephalic structures that themselves are highly interconnected. Here we examined how cholinergic projections from basal forebrain to the olfactory bulb (OB) modulate output from the first stage of sensory processing in the mouse olfactory system. By optogenetically activating their axons directly in the OB, we found that cholinergic projections from basal forebrain regulate OB output by increasing the spike output of presumptive mitral/tufted cells. Cholinergic stimulation increased mitral/tufted cell spiking in the absence of inhalation-driven sensory input and further increased spiking responses to inhalation of odorless air and to odorants. This modulation was rapid and transient, was dependent on local cholinergic signaling in the OB, and differed from modulation by optogenetic activation of cholinergic neurons in basal forebrain, which led to a mixture of mitral/tufted cell excitation and suppression. Finally, bulbar cholinergic enhancement of mitral/tufted cell odorant responses was robust and occurred independent of the strength or even polarity of the odorant-evoked response, indicating that cholinergic modulation adds an excitatory bias to mitral/tufted cells as opposed to increasing response gain or sharpening response spectra. These results are consistent with a role for the basal forebrain cholinergic system in dynamically regulating the sensitivity to or salience of odors during active sensing of the olfactory environment. PMID:24672011

  10. Basal Cell Carcinoma is as Common as the Sum of all Other Cancers

    DEFF Research Database (Denmark)

    Holm, Ann-Sofie; Nissen, Christoffer V; Wulf, Hans Christian

    2016-01-01

    Reliable estimates of disease incidence are fundamental to planning future healthcare services. However, in many countries registration of basal cell carcinoma (BCC) is often non-existent. This study examines how many BCC treatments were carried out in Denmark in 2013. The Danish Cancer Registry...

  11. Metastatic Basal Cell Carcinoma Accompanying Gorlin Syndrome

    Directory of Open Access Journals (Sweden)

    Yeliz Bilir

    2014-01-01

    Full Text Available Gorlin-Goltz syndrome or basal cell nevus syndrome is an autosomal dominant syndrome characterized by skeletal anomalies, numerous cysts observed in the jaw, and multiple basal cell carcinoma of the skin, which may be accompanied by falx cerebri calcification. Basal cell carcinoma is the most commonly skin tumor with slow clinical course and low metastatic potential. Its concomitance with Gorlin syndrome, resulting from a mutation in a tumor suppressor gene, may substantially change morbidity and mortality. A 66-year-old male patient with a history of recurrent basal cell carcinoma was presented with exophthalmus in the left eye and the lesions localized in the left lateral orbita and left zygomatic area. His physical examination revealed hearing loss, gapped teeth, highly arched palate, and frontal prominence. Left orbital mass, cystic masses at frontal and ethmoidal sinuses, and multiple pulmonary nodules were detected at CT scans. Basal cell carcinoma was diagnosed from biopsy of ethmoid sinus. Based on the clinical and typical radiological characteristics (falx cerebri calcification, bifid costa, and odontogenic cysts, the patient was diagnosed with metastatic skin basal cell carcinoma accompanied by Gorlin syndrome. Our case is a basal cell carcinoma with aggressive course accompanying a rarely seen syndrome.

  12. Deep Brain Stimulation for Movement Disorders of Basal Ganglia Origin: Restoring Function or Functionality?

    Science.gov (United States)

    Wichmann, Thomas; DeLong, Mahlon R

    2016-04-01

    Deep brain stimulation (DBS) is highly effective for both hypo- and hyperkinetic movement disorders of basal ganglia origin. The clinical use of DBS is, in part, empiric, based on the experience with prior surgical ablative therapies for these disorders, and, in part, driven by scientific discoveries made decades ago. In this review, we consider anatomical and functional concepts of the basal ganglia relevant to our understanding of DBS mechanisms, as well as our current understanding of the pathophysiology of two of the most commonly DBS-treated conditions, Parkinson's disease and dystonia. Finally, we discuss the proposed mechanism(s) of action of DBS in restoring function in patients with movement disorders. The signs and symptoms of the various disorders appear to result from signature disordered activity in the basal ganglia output, which disrupts the activity in thalamocortical and brainstem networks. The available evidence suggests that the effects of DBS are strongly dependent on targeting sensorimotor portions of specific nodes of the basal ganglia-thalamocortical motor circuit, that is, the subthalamic nucleus and the internal segment of the globus pallidus. There is little evidence to suggest that DBS in patients with movement disorders restores normal basal ganglia functions (e.g., their role in movement or reinforcement learning). Instead, it appears that high-frequency DBS replaces the abnormal basal ganglia output with a more tolerable pattern, which helps to restore the functionality of downstream networks.

  13. Clinical variants, stages, and management of basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Lyubomir A Dourmishev

    2013-01-01

    Full Text Available Basal cell carcinoma (BCC is the most common paraneoplastic disease among human neoplasms. The tumor affects mainly photoexposed areas, most often in the head and seldom appears on genitalia and perigenital region. BCC progresses slowly and metastases are found in less than 0.5% of the cases; however, a considerable local destruction and mutilation could be observed when treatment is neglected or inadequate. Different variants as nodular, cystic, micronodular, superficial, pigment BCC are described in literature and the differential diagnosis in some cases could be difficult. The staging of BCC is made according to Tumor, Node, Metastasis (TNM classification and is essential for performing the adequate treatment. Numerous therapeutic methods established for treatment of BCC, having their advantages or disadvantages, do not absolutely dissolve the risk of relapses. The early diagnostics based on the good knowledge and timely organized and adequate treatment is a precondition for better prognosis. Despite the slow progress and numerous therapeutic methods, the basal cell carcinoma should not be underestimated.

  14. Apical versus Basal Neurogenesis Directs Cortical Interneuron Subclass Fate

    Directory of Open Access Journals (Sweden)

    Timothy J. Petros

    2015-11-01

    Full Text Available Fate determination in the mammalian telencephalon, with its diversity of neuronal subtypes and relevance to neuropsychiatric disease, remains a critical area of study in neuroscience. Most studies investigating this topic focus on the diversity of neural progenitors within spatial and temporal domains along the lateral ventricles. Often overlooked is whether the location of neurogenesis within a fate-restricted domain is associated with, or instructive for, distinct neuronal fates. Here, we use in vivo fate mapping and the manipulation of neurogenic location to demonstrate that apical versus basal neurogenesis influences the fate determination of major subgroups of cortical interneurons derived from the subcortical telencephalon. Somatostatin-expressing interneurons arise mainly from apical divisions along the ventricular surface, whereas parvalbumin-expressing interneurons originate predominantly from basal divisions in the subventricular zone. As manipulations that shift neurogenic location alter interneuron subclass fate, these results add an additional dimension to the spatial-temporal determinants of neuronal fate determination.

  15. The regulation of cerebral perfusion in patients with Alzheimer's disease.

    NARCIS (Netherlands)

    Beek, H.E.A. van

    2010-01-01

    This thesis aimed at investigating whether the regulation of cerebral perfusion is impaired in patients with Alzheimer’s disease and whether this regulation is altered by treatment with cholinesterase inhibitors. This aim has first been translated in two literature studies on the clinical and

  16. Caffeine and REM sleep deprivation: Effect on basal levels of signaling molecules in area CA1.

    Science.gov (United States)

    Alkadhi, Karim A; Alhaider, Ibrahim A

    2016-03-01

    We have investigated the neuroprotective effect of chronic caffeine treatment on basal levels of memory-related signaling molecules in area CA1 of sleep-deprived rats. Animals in the caffeine groups were treated with caffeine in drinking water (0.3g/l) for four weeks before they were REM sleep-deprived for 24h in the Modified Multiple Platforms paradigm. Western blot analysis of basal protein levels of plasticity- and memory-related signaling molecules in hippocampal area CA1 showed significant down regulation of the basal levels of phosphorylated- and total-CaMKII, phosphorylated- and total-CREB as well as those of BDNF and CaMKIV in sleep deprived rats. All these changes were completely prevented in rats that chronically consumed caffeine. The present findings suggest an important neuroprotective property of caffeine in sleep deprivation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Sclerodermiform basal cell carcinoma: how much can we rely on dermatoscopy to differentiate from non-aggressive basal cell carcinomas? Analysis of 1256 cases.

    Science.gov (United States)

    Husein-ElAhmed, Husein

    2018-03-01

    The behaviour of each basal cell carcinoma is known to be different according to the histological growth pattern. Among these aggressive lesions, sclerodermiform basal cell carcinomas are the most common type. This is a challenging-to-treat lesion due to its deep tissue invasion, rapid growth, risk of metastasis and overall poor prognosis if not diagnosed in early stages. To investigate if sclerodermiform basal cell carcinomas are diagnosed later compared to non-sclerodermiform basal cell carcinoma Method: All lesions excised from 2000 to 2010 were included. A pathologist classified the lesions in two cohorts: one with specimens of non-aggressive basal cell carcinoma (superficial, nodular and pigmented), and other with sclerodermiform basal cell carcinoma. For each lesion, we collected patient's information from digital medical records regarding: gender, age when first attending the clinic and the tumor location. 1256 lesions were included, out of which 296 (23.6%) corresponded to sclerodermiform basal cell carcinoma, whereas 960 (76.4%) were non-aggressive subtypes of basal cell carcinoma. The age of diagnosis was: 72.78±12.31 years for sclerodermiform basal cell and 69.26±13.87 years for non-aggressive basal cell carcinoma (Pbasal cell carcinomas are diagnosed on average 3.52 years later than non-aggressive basal cell carcinomas. Sclerodermiform basal cell carcinomas were diagnosed 3.40 years and 2.34 years later than non-aggressive basal cell carcinomas in younger and older patients respectively (P=.002 and P=.03, respectively). retrospective design. The diagnostic accuracy and primary clinic conjecture of sclerodermiform basal cell carcinomas is quite low compared to other forms of basal cell carcinoma such as nodular, superficial and pigmented. The dermoscopic vascular patterns, which is the basis for the diagnosis of non-melanocytic nonpigmented skin tumors, may not be particularly useful in identifying sclerodermiform basal cell carcinomas in early stages

  18. The relative phases of basal ganglia activities dynamically shape effective connectivity in Parkinson's disease.

    Science.gov (United States)

    Cagnan, Hayriye; Duff, Eugene Paul; Brown, Peter

    2015-06-01

    Optimal phase alignment between oscillatory neural circuits is hypothesized to optimize information flow and enhance system performance. This theory is known as communication-through-coherence. The basal ganglia motor circuit exhibits exaggerated oscillatory and coherent activity patterns in Parkinson's disease. Such activity patterns are linked to compromised motor system performance as evinced by bradykinesia, rigidity and tremor, suggesting that network function might actually deteriorate once a certain level of net synchrony is exceeded in the motor circuit. Here, we characterize the processes underscoring excessive synchronization and its termination. To this end, we analysed local field potential recordings from the subthalamic nucleus and globus pallidus of five patients with Parkinson's disease (four male and one female, aged 37-64 years). We observed that certain phase alignments between subthalamic nucleus and globus pallidus amplified local neural synchrony in the beta frequency band while others either suppressed it or did not induce any significant change with respect to surrogates. The increase in local beta synchrony directly correlated with how long the two nuclei locked to beta-amplifying phase alignments. Crucially, administration of the dopamine prodrug, levodopa, reduced the frequency and duration of periods during which subthalamic and pallidal populations were phase-locked to beta-amplifying alignments. Conversely ON dopamine, the total duration over which subthalamic and pallidal populations were aligned to phases that left beta-amplitude unchanged with respect to surrogates increased. Thus dopaminergic input shifted circuit dynamics from persistent periods of locking to amplifying phase alignments, associated with compromised motoric function, to more dynamic phase alignment and improved motoric function. This effect of dopamine on local circuit resonance suggests means by which novel electrical interventions might prevent resonance

  19. Neuroimmune regulation of microglial activity involved in neuroinflammation and neurodegenerative diseases.

    Science.gov (United States)

    González, Hugo; Elgueta, Daniela; Montoya, Andro; Pacheco, Rodrigo

    2014-09-15

    Neuroinflammation constitutes a fundamental process involved in the progression of several neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, amyotrophic lateral sclerosis and multiple sclerosis. Microglial cells play a central role in neuroinflammation, promoting neuroprotective or neurotoxic microenvironments, thus controlling neuronal fate. Acquisition of different microglial functions is regulated by intercellular interactions with neurons, astrocytes, the blood-brain barrier, and T-cells infiltrating the central nervous system. In this study, an overview of the regulation of microglial function mediated by different intercellular communications is summarised and discussed. Afterward, we focus in T-cell-mediated regulation of neuroinflammation involved in neurodegenerative disorders. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Insulin-like growth factor 1 and growth hormone in chronic liver disease

    DEFF Research Database (Denmark)

    Møller, Søren; Becker, Povl Ulrik

    1992-01-01

    , and hypothalamic levels. The basal and stimulated GH concentration is pathologically elevated in patients with chronic liver disease and may be due to a disturbed regulation. Alterations in liver IGF receptors in patients with chronic liver disease still require investigation as they may be important for the liver...... mainly due to the decreased liver function. Low levels of somatomedins are also seen in patients with growth hormone (GH) insufficiency, renal impairment, and malnutrition. GH stimulates the production of IGF-1, and both are part of a negative feedback system acting on hepatic, pituitary...

  1. Influence of basal ganglia on upper limb locomotor synergies. Evidence from deep brain stimulation and L-DOPA treatment in Parkinson's disease.

    Science.gov (United States)

    Crenna, P; Carpinella, I; Lopiano, L; Marzegan, A; Rabuffetti, M; Rizzone, M; Lanotte, M; Ferrarin, M

    2008-12-01

    Clinical evidence of impaired arm swing while walking in patients with Parkinson's disease suggests that basal ganglia and related systems play an important part in the control of upper limb locomotor automatism. To gain more information on this supraspinal influence, we measured arm and thigh kinematics during walking in 10 Parkinson's disease patients, under four conditions: (i) baseline (no treatment), (ii) therapeutic stimulation of the subthalamic nucleus (STN), (iii)L-DOPA medication and (iv) combined STN stimulation and L-DOPA. Ten age-matched controls provided reference data. Under baseline conditions the range of patients' arm motion was severely restricted, with no correlation with the excursion of the thigh. In addition, the arm swing was abnormally coupled in time with oscillation of the ipsilateral thigh. STN stimulation significantly increased the gait speed and improved the spatio-temporal parameters of arm and thigh motion. The kinematic changes as a function of gait speed changes, however, were significantly smaller for the upper than the lower limb, in contrast to healthy controls. Arm motion was also less responsive after L-DOPA. Simultaneous deep brain stimulation and L-DOPA had additive effects on thigh motion, but not on arm motion and arm-thigh coupling. The evidence that locomotor automatisms of the upper and lower limbs display uncorrelated impairment upon dysfunction of the basal ganglia, as well as different susceptibility to electrophysiological and pharmacological interventions, points to the presence of heterogeneously distributed, possibly partially independent, supraspinal control channels, whereby STN and dopaminergic systems have relatively weaker influence on the executive structures involved in the arm swing and preferential action on those for lower limb movements. These findings might be considered in the light of phylogenetic changes in supraspinal control of limb motion related to primate bipedalism.

  2. Application of arbuscular mycorrhizal fungi with Pseudomonas aeruginosa UPMP3 reduces the development of Ganoderma basal stem rot disease in oil palm seedlings.

    Science.gov (United States)

    Sundram, Shamala; Meon, Sariah; Seman, Idris Abu; Othman, Radziah

    2015-07-01

    The effect of arbuscular mycorrhizal fungi (AMF) in combination with endophytic bacteria (EB) in reducing development of basal stem rot (BSR) disease in oil palm (Elaeis guineensis) was investigated. BSR caused by Ganoderma boninense leads to devastating economic loss and the oil palm industry is struggling to control the disease. The application of two AMF with two EB as biocontrol agents was assessed in the nursery and subsequently, repeated in the field using bait seedlings. Seedlings pre-inoculated with a combination of Glomus intraradices UT126, Glomus clarum BR152B and Pseudomonas aeruginosa UPMP3 significantly reduced disease development measured as the area under disease progression curve (AUDPC) and the epidemic rate (R L) of disease in the nursery. A 20-month field trial using similar treatments evaluated disease development in bait seedlings based on the rotting area/advancement assessed in cross-sections of the seedling base. Data show that application of Glomus intraradices UT126 singly reduced disease development of BSR, but that combination of the two AMF with P. aeruginosa UPMP3 significantly improved biocontrol efficacy in both nursery and fields reducing BSR disease to 57 and 80%, respectively. The successful use of bait seedlings in the natural environment to study BSR development represents a promising alternative to nursery trial testing in the field with shorter temporal assessment.

  3. Basal encephalocele and morning glory syndrome.

    Science.gov (United States)

    Caprioli, J; Lesser, R L

    1983-01-01

    Basal encephaloceles are often associated with other midline anomalies such as hypertelorism, broad nasal root, cleft lip, and cleft palate. Optic disc anomalies such as pallor, dysplasia, optic pit, coLoboma, and megalopapilla have been reported to occur in patients with basal encephalocele We report a case of a child with a sphenoethmoidal encephalocele and morning glory syndrome of the optic nerve. The presence of such optic nerve anomalies with facial midline anomalies should alert the clinician to the possible presence of a basal encephalocele. Images PMID:6849854

  4. [Legislative regulation of production and turnover of products for people with different diseases].

    Science.gov (United States)

    Pritul'skaia, N V; Motuzka, Iu N; Antiushko, D L

    2013-01-01

    This article presents results of analysis of existing regulatory documents and approaches to the legislative regulation of production and turnover of special dietary products for people with specific diseases in EU, Ukraine and Russian Federation. According to the EU legislation, production and turnover of food products for nutritional support of people during specific diseases and the rehabilitation period are regulated by the Commission Directive 1999/21/EC, 2009/39/ES, by Regulation Commission (EU) No 953/2009 and documents of Codex Committee. Special food products for people with specific diseases in Ukrainian legislation are classified as nutrition products for special dietary use and are regulated by the following Laws of Ukraine "On the safety and quality of food", "On ensuring of sanitary and epidemiological welfare of the population", "On Consumer Rights Protection", "On advertising" and by other non-legislative acts. According to the current legislation of the Russian Federation, the products for people with specific diseases are classified as healthy dietary food products. The basis of the legal framework are federal laws "On the quality and safety of food", "On the sanitary-epidemiological welfare of the populations", "On technical regulations and technical regulations of the Customs Union "On Food Safety" and "On the safety of certain types of specialized food products, including healthy dietary food products and therapeutic dietary food products". There is no common approach to the legal regulation of production and turnover of products for people with specific diseases in the world. The proposals for further harmonization of regulatory control in this area have been developed.

  5. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output

    OpenAIRE

    Humphries, Mark D.; Gurney, Kevin

    2012-01-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contr...

  6. Interaction between the 5-HT system and the basal ganglia: functional implication and therapeutic perspective in Parkinson's disease.

    Science.gov (United States)

    Miguelez, Cristina; Morera-Herreras, Teresa; Torrecilla, Maria; Ruiz-Ortega, Jose A; Ugedo, Luisa

    2014-01-01

    The neurotransmitter serotonin (5-HT) has a multifaceted function in the modulation of information processing through the activation of multiple receptor families, including G-protein-coupled receptor subtypes (5-HT1, 5-HT2, 5-HT4-7) and ligand-gated ion channels (5-HT3). The largest population of serotonergic neurons is located in the midbrain, specifically in the raphe nuclei. Although the medial and dorsal raphe nucleus (DRN) share common projecting areas, in the basal ganglia (BG) nuclei serotonergic innervations come mainly from the DRN. The BG are a highly organized network of subcortical nuclei composed of the striatum (caudate and putamen), subthalamic nucleus (STN), internal and external globus pallidus (or entopeduncular nucleus in rodents, GPi/EP and GPe) and substantia nigra (pars compacta, SNc, and pars reticulata, SNr). The BG are part of the cortico-BG-thalamic circuits, which play a role in many functions like motor control, emotion, and cognition and are critically involved in diseases such as Parkinson's disease (PD). This review provides an overview of serotonergic modulation of the BG at the functional level and a discussion of how this interaction may be relevant to treating PD and the motor complications induced by chronic treatment with L-DOPA.

  7. Reduced topological efficiency in cortical-basal Ganglia motor network of Parkinson's disease: a resting state fMRI study.

    Science.gov (United States)

    Wei, Luqing; Zhang, Jiuquan; Long, Zhiliang; Wu, Guo-Rong; Hu, Xiaofei; Zhang, Yanling; Wang, Jian

    2014-01-01

    Parkinson's disease (PD) is mainly characterized by dopamine depletion of the cortico-basal ganglia (CBG) motor circuit. Given that dopamine dysfunction could affect functional brain network efficiency, the present study utilized resting-state fMRI (rs-fMRI) and graph theoretical approach to investigate the topological efficiency changes of the CBG motor network in patients with PD during a relatively hypodopaminergic state (12 hours after a last dose of dopamimetic treatment). We found that PD compared with controls had remarkable decreased efficiency in the CBG motor network, with the most pronounced changes observed in rostral supplementary motor area (pre-SMA), caudal SMA (SMA-proper), primary motor cortex (M1), primary somatosensory cortex (S1), thalamus (THA), globus pallidus (GP), and putamen (PUT). Furthermore, reduced efficiency in pre-SMA, M1, THA and GP was significantly correlated with Unified Parkinson's Disease Rating Scale (UPDRS) motor scores in PD patients. Together, our results demonstrate that individuals with PD appear to be less effective at information transfer within the CBG motor pathway, which provides a novel perspective on neurobiological explanation for the motor symptoms in patients. These findings are in line with the pathophysiology of PD, suggesting that network efficiency metrics may be used to identify and track the pathology of PD.

  8. Patterned basal seismicity shows sub-ice stream bedforms

    Science.gov (United States)

    Barcheck, C. G.; Tulaczyk, S. M.; Schwartz, S. Y.

    2017-12-01

    Patterns in seismicity emanating from the bottom of fast-moving ice streams and glaciers may indicate localized patches of higher basal resistance— sometimes called 'sticky spots', or otherwise varying basal properties. These seismogenic basal areas resist an unknown portion of the total driving stress of the Whillans Ice Plain (WIP), in West Antarctica, but may play an important role in the WIP stick-slip cycle and ice stream slowdown. To better understand the mechanism and importance of basal seismicity beneath the WIP, we analyze seismic data collected by a small aperture (micro-earthquakes in Dec 2014, and we compare the resulting map of seismicity to ice bottom depth measured by airborne radar. The number of basal earthquakes per area within the network is spatially heterogeneous, but a pattern of two 400m wide streaks of high seismicity rates is evident, with >50-500 earthquakes detected per 50x50m grid cell in 2 weeks. These seismically active streaks are elongated approximately in the ice flow direction with a spacing of 750m. Independent airborne radar measurements of ice bottom depth from Jan 2013 show a low-amplitude ( 5m) undulation in the basal topography superposed on a regional gradient in ice bottom depth. The flow-perpendicular wavelength of these low-amplitude undulations is comparable to the spacing of the high seismicity bands, and the streaks of high seismicity intersect local lows in the undulating basal topography. We interpret these seismic and radar observations as showing seismically active sub-ice stream bedforms that are low amplitude and elongated in the direction of ice flow, comparable to the morphology of mega scale glacial lineations (MSGLs), with high basal seismicity rates observed in the MSGL troughs. These results have implications for understanding the formation mechanism of MSGLS and well as understanding the interplay between basal topographic roughness, spatially varying basal till and hydrologic properties, basal

  9. IGF-1 Receptor Differentially Regulates Spontaneous and Evoked Transmission via Mitochondria at Hippocampal Synapses

    Science.gov (United States)

    Gazit, Neta; Vertkin, Irena; Shapira, Ilana; Helm, Martin; Slomowitz, Edden; Sheiba, Maayan; Mor, Yael; Rizzoli, Silvio; Slutsky, Inna

    2016-01-01

    Summary The insulin-like growth factor-1 receptor (IGF-1R) signaling is a key regulator of lifespan, growth, and development. While reduced IGF-1R signaling delays aging and Alzheimer’s disease progression, whether and how it regulates information processing at central synapses remains elusive. Here, we show that presynaptic IGF-1Rs are basally active, regulating synaptic vesicle release and short-term plasticity in excitatory hippocampal neurons. Acute IGF-1R blockade or transient knockdown suppresses spike-evoked synaptic transmission and presynaptic cytosolic Ca2+ transients, while promoting spontaneous transmission and resting Ca2+ level. This dual effect on transmitter release is mediated by mitochondria that attenuate Ca2+ buffering in the absence of spikes and decrease ATP production during spiking activity. We conclude that the mitochondria, activated by IGF-1R signaling, constitute a critical regulator of information processing in hippocampal neurons by maintaining evoked-to-spontaneous transmission ratio, while constraining synaptic facilitation at high frequencies. Excessive IGF-1R tone may contribute to hippocampal hyperactivity associated with Alzheimer’s disease. Video Abstract PMID:26804996

  10. Neglected Giant Scalp Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Anne Kristine Larsen, MD

    2014-03-01

    Full Text Available Summary: Rarely, basal cell carcinoma grows to a giant size, invading the underlying deep tissue and complicating the treatment and reconstruction modalities. A giant basal cell carcinoma on the scalp is in some cases treated with a combination of surgery and radiation therapy, resulting in local control, a satisfactory long-term cosmetic and functional result. We present a case with a neglected basal cell scalp carcinoma, treated with wide excision and postoperative radiotherapy, reconstructed with a free latissimus dorsi flap. The cosmetic result is acceptable and there is no sign of recurrence 1 year postoperatively.

  11. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation

    Science.gov (United States)

    Naya, Daniel E.; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-01-01

    Thermal conductance measures the ease with which heat leaves or enters  an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)—in such a way that a scale-invariant ratio between both variables is equal to one—as could be expected from the Scholander–Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs. PMID:23902915

  12. Thermal conductance and basal metabolic rate are part of a coordinated system for heat transfer regulation.

    Science.gov (United States)

    Naya, Daniel E; Spangenberg, Lucía; Naya, Hugo; Bozinovic, Francisco

    2013-09-22

    Thermal conductance measures the ease with which heat leaves or enters an organism's body. Although the analysis of this physiological variable in relation to climatic and ecological factors can be traced to studies by Scholander and colleagues, only small advances have occurred ever since. Here, we analyse the relationship between minimal thermal conductance estimated during summer (Cmin) and several ecological, climatic and geographical factors for 127 rodent species, in order to identify the exogenous factors that have potentially affected the evolution of thermal conductance. In addition, we evaluate whether there is compensation between Cmin and basal metabolic rate (BMR)-in such a way that a scale-invariant ratio between both variables is equal to one-as could be expected from the Scholander-Irving model of heat transfer. Our major findings are (i) annual mean temperature is the best single predictor of mass-independent Cmin. (ii) After controlling for the effect of body mass, there is a strong positive correlation between log10 (Cmin) and log10 (BMR). Further, the slope of this correlation is close to one, indicating an almost perfect compensation between both physiological variables. (iii) Structural equation modelling indicated that Cmin values are adjusted to BMR values and not the other way around. Thus, our results strongly suggest that BMR and thermal conductance integrate a coordinated system for heat regulation in endothermic animals and that summer conductance values are adjusted (in an evolutionary sense) to track changes in BMRs.

  13. Dishevelled links basal body docking and orientation in ciliated epithelial cells

    Science.gov (United States)

    Vladar, Eszter K.; Axelrod, Jeffrey D.

    2014-01-01

    Some epithelia contain cells with multiple, motile cilia that beat in a concerted fashion. New tools and experimental systems have facilitated molecular studies of cilium biogenesis and of the coordinated planar polarization of cilia that leads to their concerted motility. Recent, elegant work by Park and colleagues, using embryonic frog epidermis, demonstrates that Dishevelled (Dvl), a key regulator of both the Wnt/β-catenin and Planar Cell Polarity (PCP) pathways, controls both the docking and planar polarization of ciliary basal bodies. PMID:18819800

  14. Fusarium basal rot in the Netherlands

    NARCIS (Netherlands)

    Visser, de C.L.M.; Broek, van den R.C.F.M.; Brink, van den L.

    2006-01-01

    Fusarium basal rot of onion, caused by Fusarium oxysporum f.sp. cepae, is a steadily increasing problem in The Netherlands. Financial losses for Dutch farmers confronted with Fusarium basal rot is substantial, due to yield reduction and high storage costs. This paper describes the development and

  15. The future of basal insulin supplementation

    NARCIS (Netherlands)

    Simon, Airin C. R.; DeVries, J. Hans

    2011-01-01

    This review presents an overview of the candidates for an improved basal insulin in the pharmaceutical pipeline. The first new basal insulin to enter the market is most likely insulin degludec (IDeg), currently reporting in phase 3 of development, from Novo Nordisk (Bagsvaerd, Denmark). IDeg has a

  16. Using a hybrid neuron in physiologically inspired models of the basal ganglia

    Directory of Open Access Journals (Sweden)

    Corey Michael Thibeault

    2013-07-01

    Full Text Available Our current understanding of the basal ganglia has facilitated the creation of computational models that have contributed novel theories, explored new functional anatomy and demonstrated results complementing physiological experiments. However, the utility of these models extends beyond these applications. Particularly in neuromorphic engineering, where the basal ganglia's role in computation is important for applications such as power efficient autonomous agents and model-based control strategies. The neurons used in existing computational models of the basal ganglia however, are not amenable for many low-power hardware implementations. Motivated by a need for more hardware accessible networks, we replicate four published models of the basal ganglia, spanning single neuron and small networks, replacing the more computationally expensive neuron models with an Izhikevich hybrid neuron. This begins with a network modeling action-selection, where the basal activity levels and the ability to appropriately select the most salient input is reproduced. A Parkinson's disease model is then explored under normal conditions, Parkinsonian conditions and during subthalamic nucleus deep brain stimulation. The resulting network is capable of replicating the loss of thalamic relay capabilities in the Parkinsonian state and its return under deep brain stimulation. This is also demonstrated using a network capable of action-selection. Finally, a study of correlation transfer under different patterns of Parkinsonian activity is presented. These networks successfully captured the significant results of the originals studies. This not only creates a foundation for neuromorphic hardware implementations but may also support the development of large-scale biophysical models. The former potentially providing a way of improving the efficacy of deep brain stimulation and the latter allowing for the efficient simulation of larger more comprehensive networks.

  17. Modern basal insulin analogs: An incomplete story

    OpenAIRE

    Singh, Awadhesh Kumar; Gangopadhyay, Kalyan Kumar

    2014-01-01

    The currently available basal insulin does not completely mimic the endogenous insulin secretion. This has continued to promote the search for ideal basal insulin. The newer basal insulin have primarily focused on increasing the duration of action, reducing variability, and reducing the incidence of hypoglycemia, particularly nocturnal. However, the changing criteria of hypoglycemia within a short span of a few years along with the surprising introduction of major cardiac events as another ou...

  18. Computerized tomographic diagnosis of basal skull fracture

    International Nuclear Information System (INIS)

    Tanaka, Tokutaro; Shimoyama, Ichiro; Endoh, Mitsutoshi; Ninchoji, Toshiaki; Uemura, Kenichi.

    1984-01-01

    The diagnosis of basal skull fractures used to be difficult, particularly on the basis of routine skull roentgenography alone. We have now examined the diagnostic value of conventional computerized tomography in basal skull fractures. We studied 82 cases clinically diagnosed as basal skull fractures. We examined them based on at least one of the following computerized tomographic criteria for basal skull fractures: 1) fracture line(s), 2) intracranial air, 3) fluid in the paranasal sinuses, and 4) fluid in the middle ear, including the mastoid air cells. The signs of the fracture line and of the intracranial air are definite indications of basal skull fracture, but the signs of fluid in the paranasal sinuses and/or in the middle ear are not definite. When combined, however, with such other clinical signs as black eye, Battle's sign, CSF leakage, CSF findings, and profuse nasal or ear bleeding, the diagnosis is more reliable. Seventy cases (85.4%) in this series had basal skull fractures according to our computerized tomographic criteria. Among them , 26 cases (31.7%) were diagnosed with fracture lines, 17 cases (20.7%) with intracranial air, 16 cases (19.5%) with fluid in the paranasal sinuses, 10 cases (12.2%) with fluid in the middle ear, and one case (1.2%) with fluid in both. Twelve cases (14.6%) of the 82 cases clinically diagnosed as basal skull fractures could not have been diagnosed on our computerized tomographic criteria alone. We diagnosed them because of CSF leakage, CSF findings, surgical findings, etc. (author)

  19. Phenotypic spectrum of probable and genetically-confirmed idiopathic basal ganglia calcification.

    Science.gov (United States)

    Nicolas, Gaël; Pottier, Cyril; Charbonnier, Camille; Guyant-Maréchal, Lucie; Le Ber, Isabelle; Pariente, Jérémie; Labauge, Pierre; Ayrignac, Xavier; Defebvre, Luc; Maltête, David; Martinaud, Olivier; Lefaucheur, Romain; Guillin, Olivier; Wallon, David; Chaumette, Boris; Rondepierre, Philippe; Derache, Nathalie; Fromager, Guillaume; Schaeffer, Stéphane; Krystkowiak, Pierre; Verny, Christophe; Jurici, Snejana; Sauvée, Mathilde; Vérin, Marc; Lebouvier, Thibaud; Rouaud, Olivier; Thauvin-Robinet, Christel; Rousseau, Stéphane; Rovelet-Lecrux, Anne; Frebourg, Thierry; Campion, Dominique; Hannequin, Didier

    2013-11-01

    Idiopathic basal ganglia calcification is characterized by mineral deposits in the brain, an autosomal dominant pattern of inheritance in most cases and genetic heterogeneity. The first causal genes, SLC20A2 and PDGFRB, have recently been reported. Diagnosing idiopathic basal ganglia calcification necessitates the exclusion of other causes, including calcification related to normal ageing, for which no normative data exist. Our objectives were to diagnose accurately and then describe the clinical and radiological characteristics of idiopathic basal ganglia calcification. First, calcifications were evaluated using a visual rating scale on the computerized tomography scans of 600 consecutively hospitalized unselected controls. We determined an age-specific threshold in these control computerized tomography scans as the value of the 99th percentile of the total calcification score within three age categories: 60 years. To study the phenotype of the disease, patients with basal ganglia calcification were recruited from several medical centres. Calcifications that rated below the age-specific threshold using the same scale were excluded, as were patients with differential diagnoses of idiopathic basal ganglia calcification, after an extensive aetiological assessment. Sanger sequencing of SLC20A2 and PDGFRB was performed. In total, 72 patients were diagnosed with idiopathic basal ganglia calcification, 25 of whom bore a mutation in either SLC20A2 (two families, four sporadic cases) or PDGFRB (one family, two sporadic cases). Five mutations were novel. Seventy-one per cent of the patients with idiopathic basal ganglia calcification were symptomatic (mean age of clinical onset: 39 ± 20 years; mean age at last evaluation: 55 ± 19 years). Among them, the most frequent signs were: cognitive impairment (58.8%), psychiatric symptoms (56.9%) and movement disorders (54.9%). Few clinical differences appeared between SLC20A2 and PDGFRB mutation carriers. Radiological analysis

  20. The AAA protein spastin possesses two levels of basal ATPase activity.

    Science.gov (United States)

    Fan, Xiangyu; Lin, Zhijie; Fan, Guanghui; Lu, Jing; Hou, Yongfei; Habai, Gulijiazi; Sun, Linyue; Yu, Pengpeng; Shen, Yuequan; Wen, Maorong; Wang, Chunguang

    2018-04-30

    The AAA ATPase spastin is a microtubule-severing enzyme that plays important roles in various cellular events including axon regeneration. Herein, we found that the basal ATPase activity of spastin is negatively regulated by spastin concentration. By determining a spastin crystal structure, we demonstrate the necessity of intersubunit interactions between spastin AAA domains. Neutralization of the positive charges in the microtubule-binding domain (MTBD) of spastin dramatically decreases the ATPase activity at low concentration, although the ATP-hydrolyzing potential is not affected. These results demonstrate that, in addition to the AAA domain, the MTBD region of spastin is also involved in regulating ATPase activity, making interactions between spastin protomers more complicated than expected. © 2018 Federation of European Biochemical Societies.

  1. Protective microglia and its regulation in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Weidong Le

    2016-09-01

    Full Text Available Microglia mediated neuroinflammation is a hallmark of Parkinson’s disease (PD. It has been reported that microglia in the brain of PD have both neurotoxic and neuroprotective effects, depending on the microglial activation states. In this review, we will focus on the recent research findings of the neuroprotective role of microglia-mediated neuroinflammation in PD. Accumulating new evidences have indicated that the protective mechanisms of microglia may result from its regulation of transrepression pathways via nuclear receptors, anti-inflammatory responses, neuron-microglia crosstalk, histone modification and microRNA regulation. All of these protective mechanisms of microglia orchestrate with each other to repress the production of neurotoxic inflammatory components. Since the detrimental effects of inflammation overwhelm the protective effects of microglia during the disease progression of PD, exploring an in-depth understanding of the protective mechanisms of microglia and promoting the transformation of beneficial microglia are urgently important for the treatment of PD.

  2. Patients' perceptions of their cosmetic appearance more than ten years after radiotherapy for basal cell carcinoma

    International Nuclear Information System (INIS)

    Cooper, J.S.

    1988-01-01

    Of 47 elderly patients treated by simple radiotherapeutic techniques for basal cell carcinomas, 12 are alive and free of disease more than 10 years after treatment. They were asked to rate their perception of the current cosmetic appearance of their lesions on a scale consisting of: excellent, very good, good, mediocre, and poor. Six of the 12 rated their cosmetic appearance as excellent, three considered it very good, and three called it good. Despite undeniable objective deterioration of the cosmetic appearance of irradiated basal cell carcinomas, patients appear to be pleased with the results. (author)

  3. Therapeutic modulation of miRNA for the treatment of proinflammatory lung diseases.

    LENUS (Irish Health Repository)

    Hassan, Tidi

    2012-03-01

    miRNAs are short, nonprotein coding RNAs that regulate target gene expression principally by causing translational repression and\\/or mRNA degradation. miRNAs are involved in most mammalian biological processes and have pivotal roles in controlling the expression of factors involved in basal and stimulus-induced signaling pathways. Considering their central role in the regulation of gene expression, miRNAs represent therapeutic drug targets. Here we describe how miRNAs are involved in the regulation of aspects of innate immunity and inflammation, what happens when this goes awry, such as in the chronic inflammatory lung diseases cystic fibrosis and asthma, and discuss the current state-of-the-art miRNA-targeted therapeutics.

  4. Effects of Basal Insulin Analog and Metformin on Glycaemia Control and Weight as Risk Factors for Endothelial Dysfunction

    Directory of Open Access Journals (Sweden)

    Belma Aščić – Buturović

    2008-11-01

    Full Text Available Obese patients with type 2 diabetes and impaired glucose tolerance are at increased risk of development of cardiovascular diseases. Endothelial dysfunction may be a reason for development of atherosclerosis and cardiovascular diseases. Lifestyle modification, increased physical activity, weight reduction, energy restricted diet and good glycaemia control can be useful for the endothelial function improvement and may decrease the risk of cardiovascular diseases. The aim of this study was to evaluate the effects of basal insulin analog and metformin on glycaemia control and weight as risk factors of endothelial dysfunction. Total of 15 patients (9 male and 6 female with type 2 diabetes were studied. The patients were monitored over six months period. Glycated hemoglobin (HbA1c, fasting plasma glucose (FPG, postprandial plasma glucose (PPG, and body mass index (BMI were observed. Mean age of the subjects was 53,4 ± 6,27 years. Mean diabetes duration was 3,71 ± 1,89 years. At the end of the study mean body mass index decreased from 27,5 ± 1,45 kg/m2 to 25,7 ±1,22 kg/m2. In this study we included diabetic patients with fasting glycaemia over 7 mmol/ dm3, postmeal glycaemia over 7,8 mmol/dm3 and glycated hemoglobin over 7%. Prior to the study, the patients were treated with premix insulin divided in two daily doses and metformin after the lunch, which did not result in sufficient regulation of glycaemia. We started treatment with one daily insulin basal analog and three daily doses of metformin and monitored the above mentioned parameters. We advised patients to change their lifestyle, to practice energy restricted diet and to increase their daily physical activity. Insulin doses were titrated separately for each patient (0,7-1 IU/kg. Weight reduction was recorded after the study. Mean fasting glycaemia decreased from 8,6±0,49 mmol/dm3 to 7,04±0,19 mmol/dm3 (p < 0,05. Mean postmeal glycaemia decreased from 9,74 ± 0,79 mmol/dm3 to 7,6 ± 0

  5. Phylogenetic differences of mammalian basal metabolic rate are not explained by mitochondrial basal proton leak.

    Science.gov (United States)

    Polymeropoulos, E T; Heldmaier, G; Frappell, P B; McAllan, B M; Withers, K W; Klingenspor, M; White, C R; Jastroch, M

    2012-01-07

    Metabolic rates of mammals presumably increased during the evolution of endothermy, but molecular and cellular mechanisms underlying basal metabolic rate (BMR) are still not understood. It has been established that mitochondrial basal proton leak contributes significantly to BMR. Comparative studies among a diversity of eutherian mammals showed that BMR correlates with body mass and proton leak. Here, we studied BMR and mitochondrial basal proton leak in liver of various marsupial species. Surprisingly, we found that the mitochondrial proton leak was greater in marsupials than in eutherians, although marsupials have lower BMRs. To verify our finding, we kept similar-sized individuals of a marsupial opossum (Monodelphis domestica) and a eutherian rodent (Mesocricetus auratus) species under identical conditions, and directly compared BMR and basal proton leak. We confirmed an approximately 40 per cent lower mass specific BMR in the opossum although its proton leak was significantly higher (approx. 60%). We demonstrate that the increase in BMR during eutherian evolution is not based on a general increase in the mitochondrial proton leak, although there is a similar allometric relationship of proton leak and BMR within mammalian groups. The difference in proton leak between endothermic groups may assist in elucidating distinct metabolic and habitat requirements that have evolved during mammalian divergence.

  6. Two cases of basal cell carcinoma arising from chronic radiation dermatitis

    International Nuclear Information System (INIS)

    Wakamori, Takeshi; Takenaka, Hideya; Ueda, Eiichiro; Katoh, Norito; Kishimoto, Saburo

    2003-01-01

    A 48-year-old female and a 51-year-old male with basal cell carcinoma (BCC) arising from chronic radiation dermatitis are reviewed. They are treated with radiotherapy for hemangioma on their right cheek in their childhood. Review in the literature showed high incidence of the histological diagnosis of malignant skin tumors arising from chronic radiation dermatitis are follows: squamous cell carcinoma (SCC), BCC, sarcoma, and Bowen's disease. (author)

  7. Basal Cell Carcinoma: Pathogenesis, Epidemiology, Clinical Features, Diagnosis, Histopathology, and Management

    Science.gov (United States)

    Marzuka, Alexander G.; Book, Samuel E.

    2015-01-01

    Basal cell carcinoma (BCC) is the most common malignancy. Exposure to sunlight is the most important risk factor. Most, if not all, cases of BCC demonstrate overactive Hedgehog signaling. A variety of treatment modalities exist and are selected based on recurrence risk, importance of tissue preservation, patient preference, and extent of disease. The pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management of BCC will be discussed in this review. PMID:26029015

  8. Bilateral basal ganglia necrosis following exogenous toxins shown on computer tomography

    Energy Technology Data Exchange (ETDEWEB)

    Rodiek, S

    1982-09-01

    By means of cranial computer tomography, it is possible to demonstrate the cerebral consequences of severe intoxications in vivo. A variety of different toxic agents produce similar disease patterns, which are thought to be due to fall in blood pressure caused by the toxin. The lesions are mainly localised in the basal ganglia at the borders of contiguous vascular territories. Six patients observed by the authors are described.

  9. Bidirectional regulation of bakuchiol, an estrogenic-like compound, on catecholamine secretion

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Haoping; Wang, Hong; Ma, Shangwei; Xu, Yantong; Zhang, Han; Wang, Yuefei [Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae (China); Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin (China); Niu, Zichang [First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin (China); Fan, Guanwei; Zhu, Yan [Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae (China); Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin (China); Gao, Xiu Mei, E-mail: gaoxiumei@tjutcm.edu.cn [Tianjin State Key Laboratory of Modern Chinese Medicine, Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae (China); Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin (China)

    2014-01-01

    Excess or deficiency of catecholamine (CA) secretion was related with several diseases. Recently, estrogen and phytoestrogens were reported to regulate the activity of CA system. Bakuchiol is a phytoestrogen isolated from the seeds of Psoralea corylifolia L. (Leguminosae) which has been used in Traditional Chinese medicine as a tonic or aphrodisiac. In the present study, bovine adrenal medullary cells were employed to investigate the effects and mechanisms of bakuchiol on the regulation of CA secretion. Further, its anti-depressant like and anti-stress effects were evaluated by using behavioral despair and chronic immobilization stress models. Our results indicated that bakuchiol showed bidirectional regulation on CA secretion. It stimulated basal CA secretion in a concentration dependent manner (p < 0.01), while it reduced 300 μM acetylcholine (ACh) (p < 0.01), 100 μM veratridine (Ver) (p < 0.01) and 56 mM K{sup +} (p < 0.05) induced CA secretion, respectively. We also found that the stimulation of basal CA secretion by bakuchiol may act through estrogen-like effect and the JNK pathway in an extra-cellular calcium independent manner. Further, bakuchiol elevated tyrosine hydroxylase Ser40 and Ser31 phosphorylation (p < 0.01) through the PKA and ERK1/2 pathways, respectively. Bakuchiol inhibited ACh, Ver and 56 mM K{sup +} induced CA secretion was related with reduction of intracellular calcium rise. In vivo experiments, we found that bakuchiol significantly reduced immobilization time in behavioral despair mouse (p < 0.05 or 0.01), and plasma epinephrine (E) and norepinephrine (NE) levels in chronic immobilization stress (p < 0.05). Overall, these results present a bidirectional regulation of bakuchiol on CA secretion which indicated that bakuchiol may exert anti-stress and the potential anti-depressant-like effects. - Highlights: • Bakuchiol stimulated basal catecholamine secretion. • Bakuchiol inhibited various secretagogues induced catecholamine secretion

  10. Multipotent Basal Stem Cells, Maintained in Localized Proximal Niches, Support Directed Long-Ranging Epithelial Flows in Human Prostates

    Directory of Open Access Journals (Sweden)

    Mohammad Moad

    2017-08-01

    Full Text Available Sporadic mitochondrial DNA mutations serve as clonal marks providing access to the identity and lineage potential of stem cells within human tissues. By combining quantitative clonal mapping with 3D reconstruction of adult human prostates, we show that multipotent basal stem cells, confined to discrete niches in juxta-urethral ducts, generate bipotent basal progenitors in directed epithelial migration streams. Basal progenitors are then dispersed throughout the entire glandular network, dividing and differentiating to replenish the loss of apoptotic luminal cells. Rare lineage-restricted luminal stem cells, and their progeny, are confined to proximal ducts and provide only minor contribution to epithelial homeostasis. In situ cell capture from clonal maps identified delta homolog 1 (DLK1 enrichment of basal stem cells, which was validated in functional spheroid assays. This study establishes significant insights into niche organization and function of prostate stem and progenitor cells, with implications for disease.

  11. Influence of deep brain stimulation on postural stability in patients with Parkinson disease

    OpenAIRE

    Zelenková, Jana

    2012-01-01

    Parkinson's disease is a neurodegenerative disease of the basal ganglia. Its main symptoms are rigidity, tremor, bradykinesia, hypokinesia and postural instability. One possible way how to infuence diseases is neurosurgical treatment - deep brain stimulation. The principle is the implantation of electrodes in the basal ganglia and modulation of activity of the basal ganglia circuits due to electrical stimulation. Stimulation affects the motor symptoms of Parkinson's disease. This thesis deals...

  12. Retinoic acid functions as a key GABAergic differentiation signal in the basal ganglia.

    Directory of Open Access Journals (Sweden)

    Christina Chatzi

    2011-04-01

    Full Text Available Although retinoic acid (RA has been implicated as an extrinsic signal regulating forebrain neurogenesis, the processes regulated by RA signaling remain unclear. Here, analysis of retinaldehyde dehydrogenase mutant mouse embryos lacking RA synthesis demonstrates that RA generated by Raldh3 in the subventricular zone of the basal ganglia is required for GABAergic differentiation, whereas RA generated by Raldh2 in the meninges is unnecessary for development of the adjacent cortex. Neurospheres generated from the lateral ganglionic eminence (LGE, where Raldh3 is highly expressed, produce endogenous RA, which is required for differentiation to GABAergic neurons. In Raldh3⁻/⁻ embryos, LGE progenitors fail to differentiate into either GABAergic striatal projection neurons or GABAergic interneurons migrating to the olfactory bulb and cortex. We describe conditions for RA treatment of human embryonic stem cells that result in efficient differentiation to a heterogeneous population of GABAergic interneurons without the appearance of GABAergic striatal projection neurons, thus providing an in vitro method for generation of GABAergic interneurons for further study. Our observation that endogenous RA is required for generation of LGE-derived GABAergic neurons in the basal ganglia establishes a key role for RA signaling in development of the forebrain.

  13. The Role of the Basal Ganglia in Implicit Contextual Learning: A Study of Parkinson's Disease

    Science.gov (United States)

    van Asselen, Marieke; Almeida, Ines; Andre, Rui; Januario, Cristina; Goncalves, Antonio Freire; Castelo-Branco, Miguel

    2009-01-01

    Implicit contextual learning refers to the ability to memorize contextual information from our environment. This contextual information can then be used to guide our attention to a specific location. Although the medial temporal lobe is important for this type of learning, the basal ganglia might also be involved considering its role in many…

  14. The Input-Output Relationship of the Cholinergic Basal Forebrain

    Directory of Open Access Journals (Sweden)

    Matthew R. Gielow

    2017-02-01

    Full Text Available Basal forebrain cholinergic neurons influence cortical state, plasticity, learning, and attention. They collectively innervate the entire cerebral cortex, differentially controlling acetylcholine efflux across different cortical areas and timescales. Such control might be achieved by differential inputs driving separable cholinergic outputs, although no input-output relationship on a brain-wide level has ever been demonstrated. Here, we identify input neurons to cholinergic cells projecting to specific cortical regions by infecting cholinergic axon terminals with a monosynaptically restricted viral tracer. This approach revealed several circuit motifs, such as central amygdala neurons synapsing onto basolateral amygdala-projecting cholinergic neurons or strong somatosensory cortical input to motor cortex-projecting cholinergic neurons. The presence of input cells in the parasympathetic midbrain nuclei contacting frontally projecting cholinergic neurons suggest that the network regulating the inner eye muscles are additionally regulating cortical state via acetylcholine efflux. This dataset enables future circuit-level experiments to identify drivers of known cortical cholinergic functions.

  15. Localized basal meningeal enhancement in tuberculous meningitis

    Energy Technology Data Exchange (ETDEWEB)

    Theron, Salomine; Andronikou, Savvas; Grobbelaar, Marie; Steyn, Freda; Mapukata, Ayanda; Plessis, Jaco du [University of Stellenbosch, Department of Radiology, Tygerberg Hospital, P.O. BOX 19063, Tygerberg (South Africa)

    2006-11-15

    Focal basal meningeal enhancement may produce a confusing CT picture in children with suspected tuberculous meningitis (TBM). To demonstrate the incidence, distribution and appearance of localized basal meningeal enhancement in children with TBM. CT scans of patients with definite (culture proven) and probable (CSF suggestive) TBM were retrospectively evaluated by two observers. Localized basal enhancement was documented as involving: unilateral cistern of the lateral fossa (CLF), unilateral sylvian fissure, unilateral CLF and sylvian fissure in combination, unilateral CLF and sylvian fissure with ipsi- or contralateral ambient cistern and isolated quadrigeminal plate cistern. The study included 130 patients with TBM (aged 2 months to 13 years 9 months). Focal basal enhancement was seen in 11 patients (8.5%). The sylvian fissure was involved most commonly, followed by the lateral fossa cistern. The ambient cistern was involved in three patients and the quadrigeminal plate cistern in one. Focal areas of enhancement corresponded to the areas of infarction in every patient. Focal basal meningeal enhancement is common (8.5%) in paediatric TBM. This must be kept in mind when evaluating CT scans in children presenting with focal neurological findings, seizures or meningism in communities where TBM is endemic. (orig.)

  16. Localized basal meningeal enhancement in tuberculous meningitis

    International Nuclear Information System (INIS)

    Theron, Salomine; Andronikou, Savvas; Grobbelaar, Marie; Steyn, Freda; Mapukata, Ayanda; Plessis, Jaco du

    2006-01-01

    Focal basal meningeal enhancement may produce a confusing CT picture in children with suspected tuberculous meningitis (TBM). To demonstrate the incidence, distribution and appearance of localized basal meningeal enhancement in children with TBM. CT scans of patients with definite (culture proven) and probable (CSF suggestive) TBM were retrospectively evaluated by two observers. Localized basal enhancement was documented as involving: unilateral cistern of the lateral fossa (CLF), unilateral sylvian fissure, unilateral CLF and sylvian fissure in combination, unilateral CLF and sylvian fissure with ipsi- or contralateral ambient cistern and isolated quadrigeminal plate cistern. The study included 130 patients with TBM (aged 2 months to 13 years 9 months). Focal basal enhancement was seen in 11 patients (8.5%). The sylvian fissure was involved most commonly, followed by the lateral fossa cistern. The ambient cistern was involved in three patients and the quadrigeminal plate cistern in one. Focal areas of enhancement corresponded to the areas of infarction in every patient. Focal basal meningeal enhancement is common (8.5%) in paediatric TBM. This must be kept in mind when evaluating CT scans in children presenting with focal neurological findings, seizures or meningism in communities where TBM is endemic. (orig.)

  17. [Epigenetic regulations and cerebral plasticity: towards new therapeutic options in neurodegenerative diseases?

    Science.gov (United States)

    Merienne, Karine; Boutillier, Anne-Laurence

    2016-01-01

    Although revealed in the 1950's, epigenetics is still a fast-growing field. Its delineations continuously evolve and become clarified. In particular, "neuroepigenetics", a notion that encompasses epigenetic regulations associated with neuronal processes, appears very promising. Indeed, the challenge to be undertaken in this sub-field is double. On the one hand, it should bring molecular comprehension of specific neuronal processes, some of them falling within the long term regulations, such as learning and memory. On the other hand, it could bring therapeutic options for brain diseases, e.g. neurodegenerative diseases such as Alzheimer's or Huntington's diseases. © Société de Biologie, 2017.

  18. Gaucher disease type I: assessment of basal metabolic rate in patients from southern Brazil.

    Science.gov (United States)

    Doneda, Divair; Lopes, André L; Oliveira, Alvaro R; Netto, Cristina B; Moulin, Cileide C; Schwartz, Ida V D

    2011-01-15

    Gaucher disease (GD) is characterized by clinical heterogeneity and is associated with metabolic abnormalities such as increased resting energy expenditure. To assess the basal metabolic rate (BMR) of patients with GD type I followed at the Gaucher Disease Reference Center of Rio Grande do Sul, Brazil. Fourteen patients (male=6) and 14 healthy controls matched by gender, age and body mass index (BMI) were included in the study. The nutritional status of patients was assessed by BMI. The BMR was measured by indirect calorimetry. In two patients, it was possible to perform BMR in the pre- and the post-treatment periods. Mean age and BMI of patients and controls were, respectively, 32.8 ± 17.6 and 32.1 ± 16.6 years and 23.3 ± 3.1 and 22.4 ± 3.1 kg/m(2). Twelve patients were receiving enzyme replacement therapy (ERT) with imiglucerase (mean duration of treatment=5.2 ± 4.3 years; mean dosage of imiglucerase=24.2 ± 7.3 UI/kg/inf). Five patients (36%) were overweight, and nine (64%) were normal weight. Mean BMR of patients on ERT was 27.1% higher than that of controls (p=0.007). There was no difference between the BMR of patients on ERT and not on ERT (n=4) (p=0.92). Comparing the BMR of patients on ERT and their controls with the BMR estimated by the Harris-Benedict equation, the BMR of patients was 6.3% higher than the estimated (p = 0.1), while the BMR of their controls was 17.0% lower than the estimated (p = 0.001). Most treated GD type I patients were normal weight. The patients including those on ERT showed higher BMR when compared to controls. Imiglucerase is probably unable to normalize the hypermetabolism presented by GD type I patients. Additional studies should be performed to confirm our findings. Copyright © 2010 Elsevier Inc. All rights reserved.

  19. Discovering hidden relationships between renal diseases and regulated genes through 3D network visualizations

    Directory of Open Access Journals (Sweden)

    Bhavnani Suresh K

    2010-11-01

    Full Text Available Abstract Background In a recent study, two-dimensional (2D network layouts were used to visualize and quantitatively analyze the relationship between chronic renal diseases and regulated genes. The results revealed complex relationships between disease type, gene specificity, and gene regulation type, which led to important insights about the underlying biological pathways. Here we describe an attempt to extend our understanding of these complex relationships by reanalyzing the data using three-dimensional (3D network layouts, displayed through 2D and 3D viewing methods. Findings The 3D network layout (displayed through the 3D viewing method revealed that genes implicated in many diseases (non-specific genes tended to be predominantly down-regulated, whereas genes regulated in a few diseases (disease-specific genes tended to be up-regulated. This new global relationship was quantitatively validated through comparison to 1000 random permutations of networks of the same size and distribution. Our new finding appeared to be the result of using specific features of the 3D viewing method to analyze the 3D renal network. Conclusions The global relationship between gene regulation and gene specificity is the first clue from human studies that there exist common mechanisms across several renal diseases, which suggest hypotheses for the underlying mechanisms. Furthermore, the study suggests hypotheses for why the 3D visualization helped to make salient a new regularity that was difficult to detect in 2D. Future research that tests these hypotheses should enable a more systematic understanding of when and how to use 3D network visualizations to reveal complex regularities in biological networks.

  20. Identification of Personalized Chemoresistance Genes in Subtypes of Basal-Like Breast Cancer Based on Functional Differences Using Pathway Analysis.

    Directory of Open Access Journals (Sweden)

    Tong Wu

    Full Text Available Breast cancer is a highly heterogeneous disease that is clinically classified into several subtypes. Among these subtypes, basal-like breast cancer largely overlaps with triple-negative breast cancer (TNBC, and these two groups are generally studied together as a single entity. Differences in the molecular makeup of breast cancers can result in different treatment strategies and prognoses for patients with different breast cancer subtypes. Compared with other subtypes, basal-like and other ER+ breast cancer subtypes exhibit marked differences in etiologic factors, clinical characteristics and therapeutic potential. Anthracycline drugs are typically used as the first-line clinical treatment for basal-like breast cancer subtypes. However, certain patients develop drug resistance following chemotherapy, which can lead to disease relapse and death. Even among patients with basal-like breast cancer, there can be significant molecular differences, and it is difficult to identify specific drug resistance proteins in any given patient using conventional variance testing methods. Therefore, we designed a new method for identifying drug resistance genes. Subgroups, personalized biomarkers, and therapy targets were identified using cluster analysis of differentially expressed genes. We found that basal-like breast cancer could be further divided into at least four distinct subgroups, including two groups at risk for drug resistance and two groups characterized by sensitivity to pharmacotherapy. Based on functional differences among these subgroups, we identified nine biomarkers related to drug resistance: SYK, LCK, GAB2, PAWR, PPARG, MDFI, ZAP70, CIITA and ACTA1. Finally, based on the deviation scores of the examined pathways, 16 pathways were shown to exhibit varying degrees of abnormality in the various subgroups, indicating that patients with different subtypes of basal-like breast cancer can be characterized by differences in the functional status of

  1. Patient awareness and sun protection behaviour following excision of basal cell carcinoma.

    Science.gov (United States)

    de Blacam, Catherine; Dermott, Clodagh Mc; Sugrue, Conor; Kilmartin, Darren; Kelly, Jack

    2017-02-01

    Limited information is available regarding disease awareness and sun protection behaviour in patients previously treated for non-melanoma skin cancer. Using a telephone-administered questionnaire, we investigated these characteristics in 250 patients in the west of Ireland who had undergone excision of basal cell carcinomas between January 2011 and December 2012. Only 28.8% of respondents knew that the lesion they had excised was a BCC and understood that there was a significant chance of developing another similar lesion in the next 3 years. Women and patients under age 65 were significantly better informed about their diagnosis than men (p = 0.021 and 0.000 respectively). The majority of patients (71.2%) knew that the overall effect of UV radiation on the skin was harmful and did employ some form of sun protection (avoid midday sun 72%; stay in shade 74%; wear hat 73.6%; wear sunscreen 72.8%). Females were statistically more likely to exercise better sun-protection behaviour (p = 0.002). While 76.8% of patients undertook some form of outdoor activity every day, only 22.8% wore sunscreen every day. Greater efforts should be made to communicate disease details and sun protection implications associated with basal cell carcinoma, especially to male patients. Improved population specific skin cancer awareness may lead to earlier detection and thus decrease both the patient morbidity and economic burden associated with locally advanced basal cell carcinoma. Copyright © 2015 Royal College of Surgeons of Edinburgh (Scottish charity number SC005317) and Royal College of Surgeons in Ireland. Published by Elsevier Ltd. All rights reserved.

  2. A Classic Case of Basal Cell Nevus Syndrome

    Directory of Open Access Journals (Sweden)

    Dattaprasad Dadhe

    2015-01-01

    Full Text Available The basal cell nevus syndrome is an autosomal dominant inherited condition characterized mainly by basal cell carcinomas, multiple keratinizing odontogenic tumors, and other systemic anomalies. As these manifestations do not alter the patient′s lifestyle, most of the cases are diagnosed through oral abnormalities. A classic case of basal cell nevus syndrome fulfilling almost all the major and minor criteria has been reported here.

  3. Regulation of CaMKII signaling in cardiovascular disease

    Directory of Open Access Journals (Sweden)

    Mariya Yordanova Mollova

    2015-08-01

    Full Text Available Heart failure (HF is a major cause of death in the developed countries. (Murray and Lopez, 1996;Koitabashi and Kass, 2012. Adverse cardiac remodeling that precedes heart muscle dysfunction is characterized by a myriad of molecular changes affecting the cardiomyocyte. Among these, alterations in protein kinase pathways play often an important mediator role since they link upstream pathologic stress signaling with downstream regulatory programs and thus affect both the structural and functional integrity of the heart muscle. In the context of cardiac disease, a profound understanding for the overriding mechanisms that regulate protein kinase activity (protein-protein interactions, post-translational modifications, or targeting via anchoring proteins is crucial for the development of specific and effective pharmacological treatment strategies targeting the failing myocardium.In this review, we focus on several mechanisms of upstream regulation of Ca2+/Calmodulin-dependent kinase II (CaM Kinase II, CaMKII that play a relevant pathophysiological role in the development and progression of cardiovascular disease; precise targeting of these mechanisms might therefore represent novel and promising tools for prevention and treatment of HF.

  4. Characterization of a Crabs Claw Gene in Basal Eudicot Species Epimedium sagittatum (Berberidaceae

    Directory of Open Access Journals (Sweden)

    Wei Sun

    2013-01-01

    Full Text Available The Crabs Claw (CRC YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc. Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes.

  5. Characterization of a Crabs Claw Gene in basal eudicot species Epimedium sagittatum (Berberidaceae).

    Science.gov (United States)

    Sun, Wei; Huang, Wenjun; Li, Zhineng; Lv, Haiyan; Huang, Hongwen; Wang, Ying

    2013-01-08

    The Crabs Claw (CRC) YABBY gene is required for regulating carpel development in angiosperms and has played an important role in nectary evolution during core eudicot speciation. The function or expression of CRC-like genes has been explored in two basal eudicots, Eschscholzia californica and Aquilegia formosa. To further investigate the function of CRC orthologous genes related to evolution of carpel and nectary development in basal eudicots, a CRC ortholog, EsCRC, was isolated and characterized from Epimedium sagittatum (Sieb. and Zucc.) Maxim. A phylogenetic analysis of EsCRC and previously identified CRC-like genes placed EsCRC within the basal eudicot lineage. Gene expression results suggest that EsCRC is involved in the development of sepals and carpels, but not nectaries. Phenotypic complementation of the Arabidopsis mutant crc-1 was achieved by constitutive expression of EsCRC. In addition, over-expression of EsCRC in Arabidopsis and tobacco gave rise to abaxially curled leaves. Transgenic results together with the gene expression analysis suggest that EsCRC may maintain a conserved function in carpel development and also play a novel role related to sepal formation. Absence of EsCRC and ElCRC expression in nectaries further indicates that nectary development in non-core eudicots is unrelated to expression of CRC-like genes.

  6. Triple-negative breast cancer with brain metastases: a comparison between basal-like and non-basal-like biological subtypes

    NARCIS (Netherlands)

    A. Niwińska (Anna); W. Olszewski (Wojciech); M. Murawska (Magdalena); K. Pogoda (Katarzyna)

    2011-01-01

    textabstractThe aim of this study was to divide the group of triple-negative breast cancer patients with brain metastases into basal-like and non-basal-like biological subtypes in order to compare clinical features and survival rates in those two groups. A comprehensive analysis of 111 consecutive

  7. Cyclin D2 in the basal process of neural progenitors is linked to non-equivalent cell fates

    Science.gov (United States)

    Tsunekawa, Yuji; Britto, Joanne M; Takahashi, Masanori; Polleux, Franck; Tan, Seong-Seng; Osumi, Noriko

    2012-01-01

    Asymmetric cell division plays an indispensable role during corticogenesis for producing new neurons while maintaining a self-renewing pool of apical progenitors. The cellular and molecular determinants favouring asymmetric division are not completely understood. Here, we identify a novel mechanism for generating cellular asymmetry through the active transportation and local translation of Cyclin D2 mRNA in the basal process. This process is regulated by a unique cis-regulatory sequence found in the 3′ untranslated region (3′UTR) of the mRNA. Unequal inheritance of Cyclin D2 protein to the basally positioned daughter cell with the basal process confers renewal of the apical progenitor after asymmetric division. Conversely, depletion of Cyclin D2 in the apically positioned daughter cell results in terminal neuronal differentiation. We demonstrate that Cyclin D2 is also expressed in the developing human cortex within similar domains, thus indicating that its role as a fate determinant is ancient and conserved. PMID:22395070

  8. Multiple-time-scale framework for understanding the progression of Parkinson's disease

    Science.gov (United States)

    Andres, D. S.; Gomez, F.; Ferrari, F. A. S.; Cerquetti, D.; Merello, M.; Viana, R.; Stoop, R.

    2014-12-01

    Parkinson's disease is marked by neurodegenerative processes that affect the pattern of discharge of basal ganglia neurons. The main features observed in the parkinsonian globus pallidus pars interna (GPi), a subdomain of the basal ganglia that is involved in the regulation of voluntary movement, are pathologically increased and synchronized neuronal activity. How these changes affect the implemented neuronal code is not well understood. Our experimental temporal structure-function analysis shows that in parkinsonian animals the rate-coding window of GPi neurons needed for the proper performance of voluntary actions is reduced. The model of the GPi network that we develop and discuss here reveals indeed that the size of the rate-coding window shrinks as the network activity increases and is expanded if the coupling strength among the neurons is increased. This leads to the novel interpretation that the pathological neuronal synchronization in Parkinson's disease in the GPi is the result of a collective attempt to counterbalance the shrinking of the rate-coding window due to increased activity in GPi neurons.

  9. Kynurenines in CNS disease: regulation by inflammatory cytokines

    Science.gov (United States)

    Campbell, Brian M.; Charych, Erik; Lee, Anna W.; Möller, Thomas

    2014-01-01

    The kynurenine pathway (KP) metabolizes the essential amino acid tryptophan and generates a number of neuroactive metabolites collectively called the kynurenines. Segregated into at least two distinct branches, often termed the “neurotoxic” and “neuroprotective” arms of the KP, they are regulated by the two enzymes kynurenine 3-monooxygenase and kynurenine aminotransferase, respectively. Interestingly, several enzymes in the pathway are under tight control of inflammatory mediators. Recent years have seen a tremendous increase in our understanding of neuroinflammation in CNS disease. This review will focus on the regulation of the KP by inflammatory mediators as it pertains to neurodegenerative and psychiatric disorders. PMID:24567701

  10. Variability of Basal Rate Profiles in Insulin Pump Therapy and Association with Complications in Type 1 Diabetes Mellitus.

    Science.gov (United States)

    Laimer, Markus; Melmer, Andreas; Mader, Julia K; Schütz-Fuhrmann, Ingrid; Engels, Heide-Rose; Götz, Gabriele; Pfeifer, Martin; Hermann, Julia M; Stettler, Christoph; Holl, Reinhard W

    2016-01-01

    Traditionally, basal rate profiles in continuous subcutaneous insulin infusion therapy are individually adapted to cover expected insulin requirements. However, whether this approach is indeed superior to a more constant BR profile has not been assessed so far. This study analysed the associations between variability of BR profiles and acute and chronic complications in adult type 1 diabetes mellitus. BR profiles of 3118 female and 2427 male patients from the "Diabetes-Patienten-Verlaufsdokumentation" registry from Germany and Austria were analysed. Acute and chronic complications were recorded 6 months prior and after the most recently documented basal rate. The "variability index" was calculated as variation of basal rate intervals in percent and describes the excursions of the basal rate intervals from the median basal rate. The variability Index correlated positively with severe hypoglycemia (r = .06; p1), hypoglycemic coma (r = .05; p = 0.002), and microalbuminuria (r = 0.05; p = 0.006). In addition, a higher variability index was associated with higher frequency of diabetic ketoacidosis (r = .04; p = 0.029) in male adult patients. Logistic regression analysis adjusted for age, gender, duration of disease and total basal insulin confirmed significant correlations of the variability index with severe hypoglycemia (β = 0.013; p1) and diabetic ketoacidosis (β = 0.012; p = 0.017). Basal rate profiles with higher variability are associated with an increased frequency of acute complications in adults with type 1 diabetes.

  11. The terminal basal mitosis of chicken retinal Lim1 horizontal cells is not sensitive to cisplatin-induced cell cycle arrest.

    Science.gov (United States)

    Shirazi Fard, Shahrzad; Thyselius, Malin; All-Ericsson, Charlotta; Hallböök, Finn

    2014-01-01

    For proper development, cells need to coordinate proliferation and cell cycle-exit. This is mediated by a cascade of proteins making sure that each phase of the cell cycle is controlled before the initiation of the next. Retinal progenitor cells divide during the process of interkinetic nuclear migration, where they undergo S-phase on the basal side, followed by mitoses on the apical side of the neuroepithelium. The final cell cycle of chicken retinal horizontal cells (HCs) is an exception to this general cell cycle behavior. Lim1 expressing (+) horizontal progenitor cells (HPCs) have a heterogenic final cell cycle, with some cells undergoing a terminal mitosis on the basal side of the retina. The results in this study show that this terminal basal mitosis of Lim1+ HPCs is not dependent on Chk1/2 for its regulation compared to retinal cells undergoing interkinetic nuclear migration. Neither activating nor blocking Chk1 had an effect on the basal mitosis of Lim1+ HPCs. Furthermore, the Lim1+ HPCs were not sensitive to cisplatin-induced DNA damage and were able to continue into mitosis in the presence of γ-H2AX without activation of caspase-3. However, Nutlin3a-induced expression of p21 did reduce the mitoses, suggesting the presence of a functional p53/p21 response in HPCs. In contrast, the apical mitoses were blocked upon activation of either Chk1/2 or p21, indicating the importance of these proteins during the process of interkinetic nuclear migration. Inhibiting Cdk1 blocked M-phase transition both for apical and basal mitoses. This confirmed that the cyclin B1-Cdk1 complex was active and functional during the basal mitosis of Lim1+ HPCs. The regulation of the final cell cycle of Lim1+ HPCs is of particular interest since it has been shown that the HCs are able to sustain persistent DNA damage, remain in the cell cycle for an extended period of time and, consequently, survive for months.

  12. Basal Cell Carcinoma Arising in a Tattooed Eyebrow

    Science.gov (United States)

    Lee, Jong-Sun; Park, Jin; Kim, Seong-Min; Kim, Han-Uk

    2009-01-01

    Malignant skin tumors, including squamous cell carcinoma and malignant melanoma, have occurred in tattoos. Seven documented cases of basal cell carcinoma associated with tattoos have also been reported in the medical literature. We encountered a patient with basal cell carcinoma in a tattooed eyebrow. We report on this case as the eighth reported case of a patient with basal cell carcinoma arising in a tattooed area. PMID:20523804

  13. Living with idiopathic basal ganglia calcification 3: a qualitative study describing the lives and illness of people diagnosed with a rare neurological disease.

    Science.gov (United States)

    Takeuchi, Tomiko; Muraoka, Koko; Yamada, Megumi; Nishio, Yuri; Hozumi, Isao

    2016-01-01

    Idiopathic basal ganglia calcification (IBGC) is a rare, intractable disease with unknown etiology. IBGC3 is a familial genetic disease defined by genetic mutations in the major causative gene ( SLC20A2 ). People with IBGC3 experience distress from the uncommon nature of their illness and uncertainty about treatment and prognoses. The present study aimed to describe the lives and illness of people with IBGC3. Participants were recruited from patients aged 20 years or older enrolled in a genetic study, who were diagnosed with IBGC3 and wanted to share their experiences. In-depth semi-structured interviews were conducted with six participants. Interviews were conducted between December 2012 and February 2014, and were recorded and transcribed verbatim. Qualitative data analysis was performed to identify categories and subcategories. Efforts were made to ensure the credibility, transferability, dependability, conformability, and validity of the data. Six thematic categories, 17 subcategories, and 143 codes emerged. The six categories were: (1) Frustration and anxiety with progression of symptoms without a diagnosis; (2) Confusion about diagnosis with an unfamiliar disease; (3) Emotional distress caused by a genetic disease; (4) Passive attitude toward life, being extra careful; (5) Taking charge of life, becoming active and engaged; and (6) Requests for healthcare. The qualitative data analysis indicated a need for genetic counseling, access to disease information, establishment of peer and family support systems, mental health services, and improvement in early intervention and treatment for the disease.

  14. Abnormal Cerebrovascular Reactivity in Patients with Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Carlos Henrique Ferreira Camargo

    2015-01-01

    Full Text Available Background. Orthostatic hypotension (OH is an important nonmotor manifestation of Parkinson’s disease (PD. Changes in cerebrovascular reactivity may contribute to this manifestation and can be monitored using transcranial Doppler. Objective. To identify possible changes in cerebrovascular reactivity in patients with OH. Methods. Twenty-two individuals were selected and divided into three groups: with and without OH and controls. Transcranial Doppler was used to assess basal mean blood flow velocity, postapnea mean blood flow velocity, percentage increase in mean blood flow velocity, and cerebrovascular reactivity as measured by the breath-holding index. Results. PD patients had lower values of basal velocity (p=0.019, postapnea velocity (p=0.0015, percentage increase in velocity (p=0.039, and breath-holding index (p=0.04 than the controls. Patients with OH had higher values of basal velocity (p=0.09 and postapnea velocity (p=0.19 but lower values of percentage increase in velocity (p=0.22 and breath-holding index (p=0.32 than patients without OH. Conclusions. PD patients present with abnormalities in a compensatory mechanism that regulates cerebral blood flow. OH could be an indicator of these abnormalities.

  15. Germinoma originating in the basal ganglia

    International Nuclear Information System (INIS)

    Anno, Y.; Hori, T.; Watanabe, T.; Takenobu, A.; Takigawa, H.; Kishimoto, M.; Tanaka, J.

    1990-01-01

    About 5-10% of primary intracranial germ cell tumors arise in basal ganglia and thalamus, where CT studies have been made. MR of the tumors in the pineal region, and to our knowledge, from one tumor in the basal ganglia were similar. In the present case, MR produced confusion in confirming diagnosis, which may require additional evidence from the clinical course, tumor markers, and CT images. (orig.)

  16. Nevoid basal cell carcinoma syndrome

    Directory of Open Access Journals (Sweden)

    Kannan Karthiga

    2006-01-01

    Full Text Available Binkley and Johnson first reported this syndrome in 1951. But it was in 1960, Gorlin-Goltz established the association of basal cell epithelioma, jaw cyst and bifid ribs, a combination which is now frequently known as Gorlin-Goltz syndrome as well as Nevoid Basal Cell Carcinoma Syndrome (NBCCS. NBCCS is inherited as an autosomal dominant trait with high penetrance and variable expressivity. NBCCS is characterized by variety of cutaneous, dental, osseous, opthalmic, neurologic and sexual abnormalities. One such case of Gorlin-Goltz syndrome is reported here with good illustrations.

  17. Basal cell carcinoma: PD-L1/PD-1 checkpoint expression and tumor regression after PD-1 blockade.

    Science.gov (United States)

    Lipson, Evan J; Lilo, Mohammed T; Ogurtsova, Aleksandra; Esandrio, Jessica; Xu, Haiying; Brothers, Patricia; Schollenberger, Megan; Sharfman, William H; Taube, Janis M

    2017-01-01

    Monoclonal antibodies that block immune regulatory proteins such as programmed death-1 (PD-1) have demonstrated remarkable efficacy in controlling the growth of multiple tumor types. Unresectable or metastatic basal cell carcinoma, however, has largely gone untested. Because PD-Ligand-1 (PD-L1) expression in other tumor types has been associated with response to anti-PD-1, we investigated the expression of PD-L1 and its association with PD-1 expression in the basal cell carcinoma tumor microenvironment. Among 40 basal cell carcinoma specimens, 9/40 (22%) demonstrated PD-L1 expression on tumor cells, and 33/40 (82%) demonstrated PD-L1 expression on tumor-infiltrating lymphocytes and associated macrophages. PD-L1 was observed in close geographic association to PD-1+ tumor infiltrating lymphocytes. Additionally, we present, here, the first report of an objective anti-tumor response to pembrolizumab (anti-PD-1) in a patient with metastatic PD-L1 (+) basal cell carcinoma, whose disease had previously progressed through hedgehog pathway-directed therapy. The patient remains in a partial response 14 months after initiation of therapy. Taken together, our findings provide a rationale for testing anti-PD-1 therapy in patients with advanced basal cell carcinoma, either as initial treatment or after acquired resistance to hedgehog pathway inhibition.

  18. Basal Cell Ameloblastoma: A Rare Histological Variant of an ...

    African Journals Online (AJOL)

    Ameloblastomas are an inscrutable group of oral tumors. Basal cell ameloblastoma is a rare variant of ameloblastoma with very few cases reported until date. The tumor is composed of more primitive cells and has less conspicuous peripheral palisading. It shows remarkable similarity to basal cell carcinoma, basal cell ...

  19. Molecular Conversations and the Development of the Hair Follicle and Basal Cell Carcinoma

    OpenAIRE

    Harris, Pamela Jo; Takebe, Naoko; Ivy, S. Percy

    2010-01-01

    The understanding of the anatomy and development of fetal and adult hair follicles and molecular study of the major embryonic pathways that regulate the hair follicle have led to exciting discoveries concerning the development of basal cell carcinoma (BCC). These studies have shed light on the major roles of Sonic hedgehog (Shh) signaling and its interactions with the insulin-like growth factor (IGF) axis in BCC development. New work, for example, explores a link between Shh signaling and IGF...

  20. Restoring the basal ganglia in Parkinson's disease to normal via multi-input phase-shifted deep brain stimulation.

    Science.gov (United States)

    Agarwal, Rahul; Sarma, Sridevi V

    2010-01-01

    Deep brain stimulation (DBS) injects a high frequency current that effectively disables the diseased basal ganglia (BG) circuit in Parkinson's disease (PD) patients, leading to a reversal of motor symptoms. Though therapeutic, high frequency stimulation consumes significant power forcing frequent surgical battery replacements and causing widespread influence into other brain areas which may lead to adverse side effects. In this paper, we conducted a rigorous study to assess whether low frequency signals can restore behavior in PD patients by restoring neural activity in the BG to the normal state. We used a biophysical-based model of BG nuclei and motor thalamus whose parameters can be set to simulate the normal state and the PD state with and without DBS. We administered pulse train DBS waveforms to the subthalamic nucleus (STN) with frequencies ranging from 1-150Hz. For each DBS frequency, we computed statistics on the simulated neural activity to assess whether it is restored to the normal state. In particular, we searched for DBS waveforms that suppress pathological bursting, oscillations, correlations and synchronization prevalent in the PD state and that enable thalamic cells to relay cortical inputs reliably. We found that none of the tested waveforms restores neural activity to the normal state. However, our simulations led us to construct a novel DBS strategy involving low frequency multi-input phaseshifted DBS to be administered into the STN. This strategy successfully suppressed all pathological symptoms in the BG in addition to enabling thalamic cells to relay cortical inputs reliably.

  1. Progranulin, lysosomal regulation and neurodegenerative disease.

    Science.gov (United States)

    Kao, Aimee W; McKay, Andrew; Singh, Param Priya; Brunet, Anne; Huang, Eric J

    2017-06-01

    The discovery that heterozygous and homozygous mutations in the gene encoding progranulin are causally linked to frontotemporal dementia and lysosomal storage disease, respectively, reveals previously unrecognized roles of the progranulin protein in regulating lysosome biogenesis and function. Given the importance of lysosomes in cellular homeostasis, it is not surprising that progranulin deficiency has pleiotropic effects on neural circuit development and maintenance, stress response, innate immunity and ageing. This Progress article reviews recent advances in progranulin biology emphasizing its roles in lysosomal function and brain innate immunity, and outlines future avenues of investigation that may lead to new therapeutic approaches for neurodegeneration.

  2. Degludec insulin: A novel basal insulin

    OpenAIRE

    Kalra, Sanjay; Unnikrishnan, Ambika Gopalakrishnan; Baruah, Manash; Kalra, Bharti

    2011-01-01

    This paper reviews a novel insulin analogue, degludec, which has the potential to emerge as an ideal basal insulin. It reviews the limitations of existing basal insulin and analogues, and highlights the need for a newer molecule. The paper discusses the potential advantages of degludec, while reviewing its pharmacologic and clinical studies done so far. The paper assesses the potential role of insulin degludec and degludec plus in clinical diabetes practice.

  3. Creation of computerized 3D MRI-integrated atlases of the human basal ganglia and thalamus

    Directory of Open Access Journals (Sweden)

    Abbas F. Sadikot

    2011-09-01

    Full Text Available Functional brain imaging and neurosurgery in subcortical areas often requires visualization of brain nuclei beyond the resolution of current Magnetic Resonance Imaging (MRI methods. We present techniques used to create: 1 a lower resolution 3D atlas, based on the Schaltenbrand and Wahren print atlas, which was integrated into a stereotactic neurosurgery planning and visualization platform (VIPER; and 2 a higher resolution 3D atlas derived from a single set of manually segmented histological slices containing nuclei of the basal ganglia, thalamus, basal forebrain and medial temporal lobe. Both atlases were integrated to a canonical MRI (Colin27 from a young male participant by manually identifying homologous landmarks. The lower resolution atlas was then warped to fit the MRI based on the identified landmarks. A pseudo-MRI representation of the high-resolution atlas was created, and a nonlinear transformation was calculated in order to match the atlas to the template MRI. The atlas can then be warped to match the anatomy of Parkinson’s disease surgical candidates by using 3D automated nonlinear deformation methods. By way of functional validation of the atlas, the location of the sensory thalamus was correlated with stereotactic intraoperative physiological data. The position of subthalamic electrode positions in patients with Parkinson’s disease was also evaluated in the atlas-integrated MRI space. Finally, probabilistic maps of subthalamic stimulation electrodes were developed, in order to allow group analysis of the location of contacts associated with the best motor outcomes. We have therefore developed, and are continuing to validate, a high-resolution computerized MRI-integrated 3D histological atlas, which is useful in functional neurosurgery, and for functional and anatomical studies of the human basal ganglia, thalamus and basal forebrain.

  4. Interaction of basal foliage removal and late season fungicide applications in management of Hop powdery mildew

    Science.gov (United States)

    Experiments were conducted over three years to evaluate whether fungicide applications could be ceased after the most susceptible stages of cone development (late July) without unduly affecting crop yield and quality when disease pressure was moderated with varying levels of basal foliage removal. I...

  5. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    Science.gov (United States)

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Young Human Cholinergic Neurons Respond to Physiological Regulators and Improve Cognitive Symptoms in an Animal Model of Alzheimer’s Disease

    Directory of Open Access Journals (Sweden)

    Annamaria Morelli

    2017-10-01

    Full Text Available The degeneration of cholinergic neurons of the nucleus basalis of Meynert (NBM in the basal forebrain (BF is associated to the cognitive decline of Alzheimer’s disease (AD patients. To date no resolutive therapies exist. Cell-based replacement therapy is a strategy currently under consideration, although the mechanisms underlying the generation of stem cell-derived NBM cholinergic neurons able of functional integration remain to be clarified. Since fetal brain is an optimal source of neuronal cells committed towards a specific phenotype, this study is aimed at isolating cholinergic neurons from the human fetal NBM (hfNBMs in order to study their phenotypic, maturational and functional properties. Extensive characterization confirmed the cholinergic identity of hfNBMs, including positivity for specific markers (such as choline acetyltransferase and acetylcholine (Ach release. Electrophysiological measurements provided the functional validation of hfNBM cells, which exhibited the activation of peculiar sodium (INa and potassium (IK currents, as well as the presence of functional cholinergic receptors. Accordingly, hfNBMs express both nicotinic and muscarinic receptors, which were activated by Ach. The hfNBMs cholinergic phenotype was regulated by the nerve growth factor (NGF, through the activation of the high-affinity NGF receptor TrkA, as well as by 17-β-estradiol through a peculiar recruitment of its own receptors. When intravenously administered in NBM-lesioned rats, hfNBMs determined a significant improvement in memory functions. Histological examination of brain sections showed that hfNBMs (labeled with PKH26 fluorescent dye prior to administration reached the damaged brain areas. The study provides a useful model to study the ontogenetic mechanisms regulating the development and maintenance of the human brain cholinergic system and to assess new lines of research, including disease modeling, drug discovery and cell-based therapy for AD.

  7. Regulations in the United States for cell transplantation clinical trials in neurological diseases

    Institute of Scientific and Technical Information of China (English)

    He Zhu; Yuanqing Tan; Qi Gu; Weifang Han; Zhongwen Li; Jason S Meyer; Baoyang Hu

    2015-01-01

    Objective: This study aimed to use a systematic approach to evaluate the current utilization, safety, and effectiveness of cell therapies for neurological diseases in human. And review the present regulations, considering United States (US) as a representative country, for cell transplantation in neurological disease and discuss the challenges facing the field of neurology in the coming decades. Methods:A detailed search was performed in systematic literature reviews of cellular‐based therapies in neurological diseases, using PubMed, web of science, and clinical trials. Regulations of cell therapy products used for clinical trials were searched from the Food and Drug Administration (FDA) and the National Institutes of Health (NIH). Results: Seven most common types of cell therapies for neurological diseases have been reported to be relatively safe with varying degrees of neurological recovery. And a series of regulations in US for cellular therapy was summarized including preclinical evaluations, sourcing material, stem cell manufacturing and characterization, cell therapy product, and clinical trials. Conclusions:Stem cell‐based therapy holds great promise for a cure of such diseases and will value a growing population of patients. However, regulatory permitting activity of the US in the sphere of stem cells, technologies of regenerative medicine and substitutive cell therapy are selective, theoretical and does not fit the existing norm and rules. Compiled well‐defined regulations to guide the application of stem cell products for clinical trials should be formulated.

  8. Relevance of detail in basal topography for basal slipperiness inversions: a case study on Pine Island Glacier, Antarctica

    Science.gov (United States)

    Kyrke-Smith, Teresa M.; Gudmundsson, G. Hilmar; Farrell, Patrick E.

    2018-04-01

    Given high-resolution satellite-derived surface elevation and velocity data, ice-sheet models generally estimate mechanical basal boundary conditions using surface-to-bed inversion methods. In this work, we address the sensitivity of results from inversion methods to the accuracy of the bed elevation data on Pine Island Glacier. We show that misfit between observations and model output is reduced when high-resolution bed topography is used in the inverse model. By looking at results with a range of detail included in the bed elevation, we consider the separation of basal drag due to the bed topography (form drag) and that due to inherent bed properties (skin drag). The mean value of basal shear stress is reduced when more detailed topography is included in the model. This suggests that without a fully resolved bed a significant amount of the basal shear stress recovered from inversion methods may be due to the unresolved bed topography. However, the spatial structure of the retrieved fields is robust as the bed accuracy is varied; the fields are instead sensitive to the degree of regularisation applied to the inversion. While the implications for the future temporal evolution of PIG are not quantified here directly, our work raises the possibility that skin drag may be overestimated in the current generation of numerical ice-sheet models of this area. These shortcomings could be overcome by inverting simultaneously for both bed topography and basal slipperiness.

  9. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer's Disease.

    Science.gov (United States)

    Daulatzai, Mak Adam

    2016-10-01

    Sporadic Alzheimer's disease (AD) is a devastating neurodegenerative disorder. It is essential to unravel its etiology and pathogenesis. This should enable us to study the presymptomatic stages of the disease and to analyze and reverse the antemortem behavioral, memory, and cognitive dysfunction. Prima facie, an ongoing chronic vulnerability involving neural insult may lead normal elderly to mild cognitive impairment (MCI) and then to AD. Development of effective preventive and therapeutic strategies to thwart the disease pathology obviously requires a thorough delineation of underlying disruptive neuropathological processes. Our sensory capacity for touch, smell, taste, hearing, and vision declines with advancing age. Declines in different sensory attributes are considered here to be the primary "first-tier pathologies." Olfactory loss is among the first clinical signs of neurodegenerative diseases including AD and Parkinson's disease (PD). Sensory dysfunction in the aged promotes pathological disturbances in the locus coeruleus, basal forebrain, entorhinal cortex, hippocampus, and several key areas of neocortex and brainstem. Hence, sensory dysfunction is the pivotal factor that may upregulate cognitive and memory dysfunction. The age-related constellation of comorbid pathological factors may include apolipoprotein E (APOE) genotype, obesity, diabetes, hypertension, alcohol abuse, head trauma, and obstructive sleep apnea. The concepts and trajectories delineated here are the dynamic pillars of the current hypothesis presented-it postulates that the sensory decline, in conjunction with the above pathologies, is crucial in triggering neurodegeneration and promoting cognitive/memory dysfunction in aging and AD. The application of this thesis can be important in formulating new multifactorial preventive and treatment strategies (suggested here) in order to attenuate cognitive and memory decline and ameliorate pathological dysfunction in aging, MCI, and AD.

  10. The effect of low frequency stimulation of the pedunculopontine tegmental nucleus on basal ganglia in a rat model of Parkinson's disease.

    Science.gov (United States)

    Park, Eunkyoung; Song, Inho; Jang, Dong Pyo; Kim, In Young

    2014-08-08

    The pedunculopontine nucleus (PPN) has recently been introduced as an alternative target to the subthalamic nucleus (STN) or globus pallidus internus (GPi) for the treatment of advanced Parkinson's disease with severe and medically intractable axial symptoms such as gait and postural impairment. However, it is little known about how electrical stimulation of the PPN affects control of neuronal activities between the PPN and basal ganglia. We examined how low frequency stimulation of the pedunculopontine tegmental nucleus (PPTg) affects control of neuronal activities between the PPN and basal ganglia in 6-OHDA lesioned rats. In order to identify the effect of low frequency stimulation on the PPTg, neuronal activity in both the STN and substantia nigra par reticulata (SNr) were recorded and subjected to quantitative analysis, including analysis of firing rates and firing patterns. In this study, we found that the firing rates of the STN and SNr were suppressed during low frequency stimulation of the PPTg. However, the firing pattern, in contrast to the firing rate, did not exhibit significant changes in either the STN or SNr of 6-OHDA lesioned rats during low frequency stimulation of the PPTg. In addition, we also found that the firing rate of STN and SNr neurons displaying burst and random pattern were decreased by low frequency stimulation of PPTg, while the neurons displaying regular pattern were not affected. These results indicate that low frequency stimulation of the PPTg affects neuronal activity in both the STN and SNr, and may represent electrophysiological efficacy of low frequency PPN stimulation. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  11. p73 regulates basal and starvation-induced liver metabolism in vivo

    OpenAIRE

    He, Zhaoyue; Agostini, Massimiliano; Liu, He; Melino, Gerry; Simon, Hans-Uwe

    2015-01-01

    As a member of the p53 gene family, p73 regulates cell cycle arrest, apoptosis, neurogenesis, immunity and inflammation. Recently, p73 has been shown to transcriptionally regulate selective metabolic enzymes, such as cytochrome c oxidase subunit IV isoform 1, glucose 6-phosphate dehydrogenase and glutaminase-2, resulting in significant effects on metabolism, including hepatocellular lipid metabolism, glutathione homeostasis and the pentose phosphate pathway. In order to further investigate th...

  12. Zonulin, regulation of tight junctions, and autoimmune diseases.

    Science.gov (United States)

    Fasano, Alessio

    2012-07-01

    Recent studies indicate that besides digestion and absorption of nutrients and water and electrolytes homeostasis, another key function of the intestine is to regulate the trafficking of environmental antigens across the host mucosal barrier. Intestinal tight junctions (TJs) create gradients for the optimal absorption and transport of nutrients and control the balance between tolerance and immunity to nonself antigens. To meet diverse physiological challenges, intestinal epithelial TJs must be modified rapidly and in a coordinated fashion by regulatory systems that orchestrate the state of assembly of the TJ multiprotein network. While considerable knowledge exists about TJ ultrastructure, relatively little is known about their physiological and pathophysiological regulation. Our discovery of zonulin, the only known physiologic modulator of intercellular TJs described so far, has increased our understanding of the intricate mechanisms that regulate the intestinal epithelial paracellular pathway and has led us to appreciate that its upregulation in genetically susceptible individuals leads to autoimmune diseases. © 2012 New York Academy of Sciences.

  13. Is Stimulated Thyroglobulin Necessary after Ablation in All Patients with Papillary Thyroid Carcinoma and Basal Thyroglobulin Detectable by a Second-Generation Assay?

    Directory of Open Access Journals (Sweden)

    Pedro Weslley Rosario

    2015-01-01

    Full Text Available Objective. To evaluate the percentage of elevated stimulated thyroglobulin (sTg and persistent or recurrent disease (PRD in patients with detectable basal Tg < 0.3 ng/mL. Methods. The sample consisted of 130 patients with papillary thyroid carcinoma (PTC who were at low risk of PRD and who had neck ultrasound (US without abnormalities, negative anti-Tg antibodies (TgAb, and detectable basal Tg < 0.3 ng/mL about 6 months after ablation. Results. sTg was <1 ng/mL in 88 patients (67.7%, between 1 and 2 ng/mL in 26 (20%, and ≥2 ng/mL in 16 (12.3%. Imaging methods revealed the absence of tumors in 16 patients with elevated sTg. During follow-up, Tg increased to 0.58 ng/mL in one patient and lymph node metastases were detected. Sixty-nine patients continued to have detectable Tg < 0.3 ng/mL and US revealed recurrence in only one patient. Sixty patients progressed to persistently undetectable Tg without apparent disease on US. Conclusions. In low-risk patients with PTC who have detectable basal Tg < 0.3 ng/mL after ablation, negative TgAb, and US, persistent disease is rare and eventual recurrences can be detected by basal Tg elevation and/or subsequent US assessments, with follow-up without sTg being an “alternative” to Tg stimulation.

  14. Podoplanin regulates mammary stem cell function and tumorigenesis by potentiating Wnt/β-catenin signaling.

    Science.gov (United States)

    Bresson, Laura; Faraldo, Marisa M; Di-Cicco, Amandine; Quintanilla, Miguel; Glukhova, Marina A; Deugnier, Marie-Ange

    2018-02-21

    Stem cells (SCs) drive mammary development, giving rise postnatally to an epithelial bilayer composed of luminal and basal myoepithelial cells. Dysregulation of SCs is thought to be at the origin of certain breast cancers; however, the molecular identity of SCs and the factors regulating their function remain poorly defined. We identified the transmembrane protein podoplanin (Pdpn) as a specific marker of the basal compartment, including multipotent SCs, and found Pdpn localized at the basal-luminal interface. Embryonic deletion of Pdpn targeted to basal cells diminished basal and luminal SC activity and affected the expression of several Wnt/β-catenin signaling components in basal cells. Moreover, Pdpn loss attenuated mammary tumor formation in a mouse model of β-catenin-induced breast cancer, limiting tumor-initiating cell expansion and promoting molecular features associated with mesenchymal-to-epithelial cell transition. In line with the loss-of-function data, we demonstrated that mechanistically Pdpn enhances Wnt/β-catenin signaling in mammary basal cells. Overall, this study uncovers a role for Pdpn in mammary SC function and, importantly, identifies Pdpn as a new regulator of Wnt/β-catenin signaling, a key pathway in mammary development and tumorigenesis. © 2018. Published by The Company of Biologists Ltd.

  15. Basal Cell Carcinoma: 10 Years of Experience

    International Nuclear Information System (INIS)

    Cigna, E.; Tarallo, M.; Maruccia, M.; Sorvillo, V.; Pollastrini, A.; Scuderi, N.

    2011-01-01

    Introduction. Basal cell carcinoma (BCC) is a locally invasive malignant epidermal tumour. Incidence is increasing by 10% per year; incidence of metastases is minimal, but relapses are frequent (40%-50%). The complete excision of the BCC allows reduction of relapse. Materials and Methods. The study cohort consists of 1123 patients underwent surgery for basal cell carcinoma between 1999 and 2009. Patient and tumor characteristics recorded are: age; gender; localization (head and neck, trunk, and upper and lower extremities), tumor size, excisional margins adopted, and relapses. Results. The study considered a group of 1123 patients affected by basal cell carcinoma. Relapses occurred in 30 cases (2,67%), 27 out of 30 relapses occurred in noble areas, where peripheral margin was <3mm. Incompletely excised basal cell carcinoma occurred in 21 patients (1,87%) and were treated with an additional excision. Discussion. Although guidelines indicate 3mm peripheral margin of excision in BCC <2cm, in our experience, a margin of less than 5mm results in a high risk of incomplete excisions

  16. Rehabilitation program based on sensorimotor recovery improves the static and dynamic balance and modifies the basal ganglia neurochemistry: A pilot 1H-MRS study on Parkinson's disease patients.

    Science.gov (United States)

    Delli Pizzi, Stefano; Bellomo, Rosa Grazia; Carmignano, Simona Maria; Ancona, Emilio; Franciotti, Raffaella; Supplizi, Marco; Barassi, Giovanni; Onofrj, Marco; Bonanni, Laura; Saggini, Raoul

    2017-12-01

    Rehabilitation interventions represent an alternative strategy to pharmacological treatment in order to slow or reverse some functional aspects of disability in Parkinson's disease (PD). To date, the neurophysiological mechanisms underlying rehabilitation-mediated improvement in PD patients are still poorly understood. Interestingly, growing evidence has highlighted a key role of the glutamate in neurogenesis and brain plasticity. The brain levels of glutamate, and of its precursor glutamine, can be detected in vivo and noninvasively as "Glx" by means of proton magnetic resonance spectroscopy (H-MRS). In the present pilot study, 7 PD patients with frequent falls and axial dystonia underwent 8-week rehabilitative protocol focused on sensorimotor improvement. Clinical evaluation and Glx quantification were performed before and after rehabilitation. The Glx assessment was focused on the basal ganglia in agreement with their key role in the motor functions. We found that the rehabilitation program improves the static and dynamic balance in PD patients, promoting a better global motor performance. Moreover, we observed that the levels of Glx within the left basal ganglia were higher after rehabilitation as compared with baseline. Thus, we posit that our sensorimotor rehabilitative protocol could stimulate the glutamate metabolism in basal ganglia and, in turn, neuroplasticity processes. We also hypothesize that these mechanisms could prepare the ground to restore the functional interaction among brain areas deputed to motor controls, which are affected in PD. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  17. [Exenteration of the Orbit for Basal Cell Carcinoma].

    Science.gov (United States)

    Furdová, A; Horkovičová, K; Krčová, I; Krásnik, V

    2015-08-01

    Primary treatment of basal cell carcinoma of the lower eyelid and the inner corner is essentially surgical, but advanced lesions require extensive surgical interventions. In some cases it is necessary to continue with the mutilating surgery--exenteration of the orbit. In this work we evaluate the indications of radical solutions in patients with basal cell carcinoma invading the orbit and the subsequent possibility for individually made prosthesis to cover the defect of the cavity. Indications to exenteration of the orbit in patients with basal cell carcinoma findings in 2008-2013. Case report of 2 patients. In period 2008-20013 at the Dept. of Ophthalmology, Comenius University in Bratislava totally 221 patients with histologically confirmed basal cell carcinoma of the eyelids and the inner corner were treated. In 5 cases (2.7 %) with infiltration of the orbit the radical surgical procedure, exenteration was necessary. In 3 patients exenteration was indicated as the first surgical procedure in the treatment of basal cell carcinoma, since they had never visited ophthalmologist before only at in the stage of infiltration of the orbit (stage T4). In one case was indicated exenteration after previous surgical interventions and relapses. After healing the cavity patients got individually prepared epithesis. Surgical treatment of basal cell carcinoma involves the radical removal of the neoplasm entire eyelid and stage T1 or T2 can effectively cure virtually all tumors with satisfactory cosmetic and functional results. In advanced stages (T4 stage) by infiltrating the orbit by basal cell carcinoma exenteration of the orbit is necessary. This surgery is a serious situation for the patient and also for his relatives. Individually made prosthesis helps the patient to be enrolled to the social environment.

  18. Polychlorinated biphenyl 126 stimulates basal and inducible aldosterone biosynthesis of human adrenocortical H295R cells

    International Nuclear Information System (INIS)

    Li, L.-A.; Wang, P.-W.; Chang, Louis W.

    2004-01-01

    To understand the effects of polychlorinated biphenyls (PCBs) on adrenal aldosterone biosynthesis, we have performed a systematical study to characterize the corresponding steroidogenic response of human adrenocortical cell line H295R to PCB126 exposure. We found that PCB126 at high concentrations stimulated basal and inducible aldosterone production. The aldosterone induction occurred concomitantly with activation of the CYP11B2 gene. Despite the fact that PCB126 acted in synergy with both potassium and angiotensin II (Ang II) in activation of aldosterone synthesis, PCB126 only modestly increased CYP11B2 mRNA expression in the presence of Ang II contrary to the synergistic transcriptional induction elicited by PCB126 and potassium. This implicated that PCB126 had differential interactions with the potassium and Ang II signaling systems in the regulation of aldosterone biosynthesis. In addition, high concentrations of PCB126 elevated transcriptional expression of the type I Ang II receptor (AT 1 ) and might thus sensitize the cellular Ang II responsiveness in both basal and inducible aldosterone biosynthesis. SF-1 was not involved in the PCB126-induced transcriptional regulation despite its importance in steroidogenic gene activation

  19. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew.

    Science.gov (United States)

    Liu, Jie; Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-03-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. © 2016 American Society of Plant Biologists. All Rights Reserved.

  20. Traumatic bilateral basal ganglia hematoma: A report of two cases

    OpenAIRE

    Bhargava, Pranshu; Grewal, Sarvpreet Singh; Gupta, Bharat; Jain, Vikas; Sobti, Harman

    2012-01-01

    Traumatic Basal ganglia hemorrhage is relatively uncommon. Bilateral basal ganglia hematoma after trauma is extremely rare and is limited to case reports. We report two cases of traumatic bilateral basal ganglia hemorrhage, and review the literature in brief. Both cases were managed conservatively.

  1. Subthalamic nucleus stimulation does not influence basal glucose metabolism or insulin sensitivity in patients with Parkinson's disease

    NARCIS (Netherlands)

    Lammers, Nicolette M.; Sondermeijer, Brigitte M.; Twickler, Th B. Marcel; de Bie, Rob M.; Ackermans, Mariëtte T.; Fliers, Eric; Schuurman, P. Richard; la Fleur, Susanne E.; Serlie, Mireille J.

    2014-01-01

    Animal studies have shown that central dopamine signaling influences glucose metabolism. As a first step to show this association in an experimental setting in humans, we studied whether deep brain stimulation (DBS) of the subthalamic nucleus (STN), which modulates the basal ganglia circuitry,

  2. Genetic activation, inactivation and deletion reveal a limited and nuanced role for somatostatin-containing basal forebrain neurons in behavioral state control.

    Science.gov (United States)

    Anaclet, Christelle; De Luca, Roberto; Venner, Anne; Malyshevskaya, Olga; Lazarus, Michael; Arrigoni, Elda; Fuller, Patrick M

    2018-05-07

    Recent studies have identified an especially important role for basal forebrain GABAergic (BF VGAT ) neurons in the regulation of behavioral waking and fast cortical rhythms associated with cognition. However, BF VGAT neurons comprise several neurochemically and anatomically distinct sub-populations, including parvalbumin- and somatostatin-containing BF VGAT neurons (BF Parv and BF SOM ), and it was recently reported that optogenetic activation of BF SOM neurons increases the probability of a wakefulness to non-rapid-eye movement (NREM) sleep transition when stimulated during the animal's rest period. This finding was unexpected given that most BF SOM neurons are not NREM sleep active and that central administration of the synthetic SOM analog, octreotide, suppresses NREM sleep or increases REM sleep. Here we employed a combination of genetically-driven chemogenetic and optogenetic activation, chemogenetic inhibition and ablation approaches to further explore the in vivo role of BF SOM neurons in arousal control. Our findings indicate that acute activation or inhibition of BF SOM neurons is neither wakefulness- nor NREM sleep-promoting, is without significant effect on the EEG, and that chronic loss of these neurons is without effect on total 24h sleep amounts, although a small but significant increase in waking was observed in the lesioned mice during the early active period. Our in vitro cell recordings further reveal electrophysiological heterogeneity in BF SOM neurons, specifically suggesting at least two distinct sub-populations. Taken together our data support the more nuanced view that BF SOM are electrically heterogeneous and are not NREM sleep- or wake-promoting per se , but may exert, in particular during the early active period, a modest inhibitory influence on arousal circuitry. SIGNIFICANCE STATEMENT The cellular basal forebrain (BF) is a highly complex area of the brain that is implicated in a wide-range of higher-level neurobiological processes

  3. Kinesiotherapy of Parkinson`s disease and Parkinson`s syndrom

    OpenAIRE

    Zechovská, Lenka

    2013-01-01

    Author: Lenka Zechovská Institution: Rehabilitation Clinic, Faculty of Medicine in Hradec Králové Title: Kinesiotherapy of Parkinson's disease and Parkinson's syndrome Supervisor: Mgr. Ivana Vondráková Number of pages: 115 Number of attachments: 8 Year of defence: 2013 Keywords: Parkinson's disease, basal ganglia, tremor, rigidity, hypokinesia Bachelor thesis deals with the problems of Parkinson's disease and Parkinson's syndrome. The theoretical part includes the basal ganglia pathophysiolog...

  4. Evolution of allosteric regulation in chorismate mutases from early plants

    Energy Technology Data Exchange (ETDEWEB)

    Kroll, Kourtney; Holland, Cynthia K.; Starks, Courtney M.; Jez, Joseph M.

    2017-09-28

    Plants, fungi, and bacteria synthesize the aromatic amino acids: l-phenylalanine, l-tyrosine, and l-tryptophan. Chorismate mutase catalyzes the branch point reaction of phenylalanine and tyrosine biosynthesis to generate prephenate. In Arabidopsis thaliana, there are two plastid-localized chorismate mutases that are allosterically regulated (AtCM1 and AtCM3) and one cytosolic isoform (AtCM2) that is unregulated. Previous analysis of plant chorismate mutases suggested that the enzymes from early plants (i.e. bryophytes/moss, lycophytes, and basal angiosperms) formed a clade distinct from the isoforms found in flowering plants; however, no biochemical information on these enzymes is available. To understand the evolution of allosteric regulation in plant chorismate mutases, we analyzed a basal lineage of plant enzymes homologous to AtCM1 based on sequence similarity. The chorismate mutases from the moss/bryophyte Physcomitrella patens (PpCM1 and PpCM2), the lycophyte Selaginella moellendorffii (SmCM), and the basal angiosperm Amborella trichopoda (AmtCM1 and AmtCM2) were characterized biochemically. Tryptophan was a positive effector for each of the five enzymes examined. Histidine was a weak positive effector for PpCM1 and AmtCM1. Neither tyrosine nor phenylalanine altered the activity of SmCM; however, tyrosine was a negative regulator of the other four enzymes. Phenylalanine down-regulates both moss enzymes and AmtCM2. The 2.0 Å X-ray crystal structure of PpCM1 in complex with the tryptophan identified the allosteric effector site and reveals structural differences between the R- (more active) and T-state (less active) forms of plant chorismate mutases. Molecular insight into the basal plant chorismate mutases guides our understanding of the evolution of allosteric regulation in these enzymes.

  5. Relationship of Basal laminar deposit and membranous debris to the clinical presentation of early age-related macular degeneration.

    Science.gov (United States)

    Sarks, Shirley; Cherepanoff, Svetlana; Killingsworth, Murray; Sarks, John

    2007-03-01

    To correlate basal laminar deposit (BLamD) and membranous debris, including basal linear deposit (BLinD), with the evolution of early age-related macular degeneration (AMD). A clinicopathologic collection of 132 eyes with a continuous layer of BLamD was reviewed. The thickness and type of BLamD and the sites of membranous debris deposition were correlated with the clinical progression of the disease. Two types of BLamD, termed early and late, were identified based on light microscopic appearance by using the picro-Mallory stain. The progressive accumulation of late type BLamD correlated well with increasing BLamD thickness, advancing RPE degeneration, poorer vision, increasing age, and clinically evident pigment changes. Membranous debris initially accumulated diffusely as BLinD, most eyes with BLinD and early BLamD remaining funduscopically normal. However, membranous debris also formed focal collections as basal mounds internal to the RPE basement membrane and as soft drusen external to the basement membrane. Eyes in which membranous debris remained confined to basal mounds belonged to older patients with poorer vision, whereas patients with soft drusen were younger and had better vision. The presence of BLinD and early BLamD define threshold AMD, which manifests clinically as a normal fundus. Although late BLamD correlates most closely with clinical pigment abnormalities, it is the quantity and sites of membranous debris accumulation that appear to determine whether the disease develops pigment changes only or follows the alternative pathway of soft drusen formation with its attendant greater risk of choroidal neovascularization (CNV).

  6. Immunohistochemical Characteristics of Triple Negative/Basal-like Breast Cancer

    OpenAIRE

    Emel Ebru PALA; Ümit BAYOL; Süheyla CUMURCU; Elif KESKİN

    2012-01-01

    Objective: Triple-negative-breast-cancer that accounts for 10-20% of all breast carcinomas is defined by the lack of estrogen receptor, progesterone receptor, HER2 expression, and agressive clinical behavior. Triple-negative-breast-cancer is categorized into basal like and other types. The basal-like subtype is characterized by the expression of myoepithelial/basal markers.Material and Method: We studied 41 immunohistochemically triplenegative- breast-cancer patients to determine EGFR, Cytoke...

  7. Endurance exercise training induces fat depot-specific differences in basal autophagic activity

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya, E-mail: tizawa@mail.doshisha.ac.jp

    2015-10-23

    The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4–5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly higher in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = −0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. - Highlights: • Autophagy has been associated with obesity and associated diseases. • We examined exercise-associated rat white adipose tissue (WAT) autophagy markers. • Exercise increased

  8. Endurance exercise training induces fat depot-specific differences in basal autophagic activity

    International Nuclear Information System (INIS)

    Tanaka, Goki; Kato, Hisashi; Izawa, Tetsuya

    2015-01-01

    The purpose of this study was to uncover the effect of exercise training on the expression of autophagy marker proteins in epididymal white adipose tissue (eWAT), inguinal WAT (iWAT), and the stromal vascular fraction (SVF) collected from eWAT. Male Wistar rats aged 4–5 weeks were randomly divided into two groups, sedentary control (n = 7) and exercise-trained (n = 7). Rats in the exercise-trained group were exercised on a treadmill set at a 5° incline 5 days/week for 9 weeks. We determined that the expression levels of an autophagosome-associating form of microtubule-associated protein 1 light chain 3 (LC3)-II and of p62 were significantly higher in eWAT from exercise-trained than from control rats, while those of adipose-specific deletion of autophagy-related protein (ATG7) and lysosomal-associated membrane protein type 2A (LAMP2a) showed no difference between groups. However, in iWAT, the expression levels of LC3-II and ATG7 were significantly higher in exercise-trained than in control rats. The expression of p62 was highly correlated with that of peroxisome proliferator-activated receptor γ (PPARγ), a master regulator of adipogenesis and lipid metabolism, in both WAT types (eWAT, r = 0.856, P < 0.05; iWAT, r = 0.762, P < 0.05), whereas LC3-II and PPARγ levels were highly correlated in eWAT (r = 0.765, P < 0.05) but not in iWAT (r = −0.306, ns). In SVF, the expression levels of LC3II, ATG7, and LAMP2a were significantly higher in exercise-trained than in control rats. These results suggest that exercise training suppresses basal autophagy activity in eWAT, but that this activity is enhanced in iWAT and SVF collected from eWAT. Thus, the adaptation of basal autophagic activity following exercise training exhibits fat depot-specific differences. - Highlights: • Autophagy has been associated with obesity and associated diseases. • We examined exercise-associated rat white adipose tissue (WAT) autophagy markers. • Exercise increased

  9. Increased basal glucose production in type 1 Gaucher's disease

    NARCIS (Netherlands)

    Corssmit, E. P.; Hollak, C. E.; Endert, E.; van Oers, M. H.; Sauerwein, H. P.; Romijn, J. A.

    1995-01-01

    To evaluate the metabolic effects of Gaucher's disease, glucose metabolism and parameters of fat metabolism were studied by indirect calorimetry and primed continuous infusion of [3-3H]glucose in seven clinically stable untreated patients with type 1 Gaucher's disease and in seven healthy matched

  10. Extrahepatic portal vein obstruction with parkinsonism and symmetric hyperintense basal ganglia on T1 weighted MRI

    Directory of Open Access Journals (Sweden)

    Jayalakshmi Sita

    2006-01-01

    Full Text Available Abnormal high signal in the globus pallidus on T1 weighted magnetic resonance imaging (MRI of the brain has been well described in patients with chronic liver disease. It may be related to liver dysfunction or portal-systemic shunting. We report a case of extra hepatic portal vein obstruction with portal hypertension and esophageal varices that presented with extra pyramidal features. T1 weighted MRI brain scans showed increased symmetrical signal intensities in the basal ganglia. Normal hepatic function in this patient emphasizes the role of portal- systemic communications in the development of these hyperintensities, which may be due to deposition of paramagnetic substances like manganese in the basal ganglia.

  11. Parkinson's disease as a system-level disorder

    NARCIS (Netherlands)

    Caligiore, D.; Helmich, R.C.G.; Hallett, M.; Moustafa, A.A.; Timmermann, L.; Toni, I.; Baldassarre, G.

    2016-01-01

    Traditionally, the basal ganglia have been considered the main brain region implicated in Parkinson's disease. This single area perspective gives a restricted clinical picture and limits therapeutic approaches because it ignores the influence of altered interactions between the basal ganglia and

  12. Integrated systems approach identifies risk regulatory pathways and key regulators in coronary artery disease.

    Science.gov (United States)

    Zhang, Yan; Liu, Dianming; Wang, Lihong; Wang, Shuyuan; Yu, Xuexin; Dai, Enyu; Liu, Xinyi; Luo, Shanshun; Jiang, Wei

    2015-12-01

    Coronary artery disease (CAD) is the most common type of heart disease. However, the molecular mechanisms of CAD remain elusive. Regulatory pathways are known to play crucial roles in many pathogenic processes. Thus, inferring risk regulatory pathways is an important step toward elucidating the mechanisms underlying CAD. With advances in high-throughput data, we developed an integrated systems approach to identify CAD risk regulatory pathways and key regulators. Firstly, a CAD-related core subnetwork was identified from a curated transcription factor (TF) and microRNA (miRNA) regulatory network based on a random walk algorithm. Secondly, candidate risk regulatory pathways were extracted from the subnetwork by applying a breadth-first search (BFS) algorithm. Then, risk regulatory pathways were prioritized based on multiple CAD-associated data sources. Finally, we also proposed a new measure to prioritize upstream regulators. We inferred that phosphatase and tensin homolog (PTEN) may be a key regulator in the dysregulation of risk regulatory pathways. This study takes a closer step than the identification of disease subnetworks or modules. From the risk regulatory pathways, we could understand the flow of regulatory information in the initiation and progression of the disease. Our approach helps to uncover its potential etiology. We developed an integrated systems approach to identify risk regulatory pathways. We proposed a new measure to prioritize the key regulators in CAD. PTEN may be a key regulator in dysregulation of the risk regulatory pathways.

  13. CT and MRI diagnosis of traumatic basal ganglia hemorrhage

    International Nuclear Information System (INIS)

    Wu Shike; Zhang Yalin; Xu Derong; Zou Gaowei; Chen Dan; He Sujun; Zhou Lichao

    2009-01-01

    Objective: To analyze CT and MRI features of traumatic basal ganglia hemorrhage and investigate the diagnostic value. Methods: 21 cases with traumatic basal ganglia hemorrhage diagnosed by clinic, CT and MRI in our hospital were collected in this study Plain CT scan were immediately performed in 21 cases after injury, plain MR scan were performed in 1 to 3 days. 12 cases of them underwent diffusion weighted imagine (DWI). The CT and MRI findings were retrospectively summarized. Results: 8 cases were found with simple traumatic basal ganglia hemorrhage. Complexity of basal ganglia hemorrhage occurred in 13 cases, 6 cases combined with subdural hemorrhage, 3 cases with epidural hematoma, 2 cases with subarachnoid hemorrhage, 6 cases with brain contusion and laceration in other locations, 4 cases with skull fracture. 26 lesions of basal ganglia hematoma were showed in 21 cases, 14 lesions of pallidum hemorrhage in 11 cases confirmed by MR could not be distinguished from calcification at the fast CT scan. 5 more lesions of brain contusion and laceration and 4 more lesions of brain white matter laceration were found by MR. Conclusion: CT in combination with MRI can diagnose traumatic basal ganglia hemorrhage and its complications early, comprehensively and accurately, which plays an important role in the clinical therapy selection and prognosis evaluation. (authors)

  14. Neuroanatomical correlates of intelligence in healthy young adults: the role of basal ganglia volume.

    Science.gov (United States)

    Rhein, Cosima; Mühle, Christiane; Richter-Schmidinger, Tanja; Alexopoulos, Panagiotis; Doerfler, Arnd; Kornhuber, Johannes

    2014-01-01

    In neuropsychiatric diseases with basal ganglia involvement, higher cognitive functions are often impaired. In this exploratory study, we examined healthy young adults to gain detailed insight into the relationship between basal ganglia volume and cognitive abilities under non-pathological conditions. We investigated 137 healthy adults that were between the ages of 21 and 35 years with similar educational backgrounds. Magnetic resonance imaging (MRI) was performed, and volumes of basal ganglia nuclei in both hemispheres were calculated using FreeSurfer software. The cognitive assessment consisted of verbal, numeric and figural aspects of intelligence for either the fluid or the crystallised intelligence factor using the intelligence test Intelligenz-Struktur-Test (I-S-T 2000 R). Our data revealed significant correlations of the caudate nucleus and pallidum volumes with figural and numeric aspects of intelligence, but not with verbal intelligence. Interestingly, figural intelligence associations were dependent on sex and intelligence factor; in females, the pallidum volumes were correlated with crystallised figural intelligence (r = 0.372, p = 0.01), whereas in males, the caudate volumes were correlated with fluid figural intelligence (r = 0.507, p = 0.01). Numeric intelligence was correlated with right-lateralised caudate nucleus volumes for both females and males, but only for crystallised intelligence (r = 0.306, p = 0.04 and r = 0.459, p = 0.04, respectively). The associations were not mediated by prefrontal cortical subfield volumes when controlling with partial correlation analyses. The findings of our exploratory analysis indicate that figural and numeric intelligence aspects, but not verbal aspects, are strongly associated with basal ganglia volumes. Unlike numeric intelligence, the type of figural intelligence appears to be related to distinct basal ganglia nuclei in a sex-specific manner. Subcortical brain structures thus may contribute substantially to

  15. Registration of an oilseed sunflower germplasm line HA-BSR1 highly tolerant to Sclerotinia basal stalk rot

    Science.gov (United States)

    Basal stalk rot (BSR) caused by Sclerotinia sclerotiorum (Lib.) de Bary is a devastating disease that causes a significant damage to worldwide sunflower (Helianthus annuus L.) production by reducing seed yield and quality. The objective of this research was to develop highly BSR tolerant sunflower g...

  16. Angiographic profile in childhood moyamoya disease

    International Nuclear Information System (INIS)

    Jayakumar, P.N.; Arya, B.Y.T.; Vasudev, M.K.

    1991-01-01

    The cerebral angiograms of 8 patients with childhood moyamoya disease showed that the common findings were stenosis/occlusion of the supraclinoid internal carotid artery and the proximal segments of the anterior and middle cerebral arteries and basal moyamoya. The volume of basal moyamoya and its collateral supply depended upon the stage of the disease. Leptomeningeal collaterals were frequent in the later stages. Stenotic lesions in the posterior circulation were seen in a majority (75%) of patients. A feature unique to the study was evidence of intracranial small-vessel disease and stenotic cervical internal carotid artery in half of the cases. The disease in the ethnic caucasian Indians seems largely similar to the classical disease frequently reported in the Japanese literature. (orig.)

  17. Clinicopathological evaluation of radiation induced basal cell carcinoma

    Directory of Open Access Journals (Sweden)

    Meibodi Naser

    2008-01-01

    Full Text Available Background: Development of skin neoplasms is one of the most important chronic complications of radiation therapy. Basal cell carcinoma (BCC is the most frequent carcinoma occurring at the region of the body to which radiotherapy was delivered. Aim: The aim of this study was to evaluate clinical and histological aspects of basal cell carcinoma in patients with a history of radiotherapy. Materials and Methods: Medical records and microscopic slides of 80 patients with basal cell carcinoma who had received radiotherapy (1996-2006 were reviewed in pathology department of Imam Reza hospital of Mashhad, Iran. Collected data were analyzed statistically using descriptive test. Results: 60 men and 20 women were included, majority of them in their sixties. Plaque was the most common clinical pattern of basal cell carcinoma. Fifty one percent of the patients had pigmented and 42.5% had multiple lesions. Scalp was the most common site of involvement. Histologically, macronodular and pigmented carcinoma were the most predominant forms of basal cell carcinoma. Discussion: Majority of patients had scalp involvement and multiple lesions. Nodular and pigmented forms were the most common histological findings. We suggest the need for close supervision in patients with a history of radio therapy in the past.

  18. Fiber tractography of the axonal pathways linking the basal ganglia and cerebellum in Parkinson disease: implications for targeting in deep brain stimulation.

    Science.gov (United States)

    Sweet, Jennifer A; Walter, Benjamin L; Gunalan, Kabilar; Chaturvedi, Ashutosh; McIntyre, Cameron C; Miller, Jonathan P

    2014-04-01

    Stimulation of white matter pathways near targeted structures may contribute to therapeutic effects of deep brain stimulation (DBS) for patients with Parkinson disease (PD). Two tracts linking the basal ganglia and cerebellum have been described in primates: the subthalamopontocerebellar tract (SPCT) and the dentatothalamic tract (DTT). The authors used fiber tractography to evaluate white matter tracts that connect the cerebellum to the region of the basal ganglia in patients with PD who were candidates for DBS. Fourteen patients with advanced PD underwent 3-T MRI, including 30-directional diffusion-weighted imaging sequences. Diffusion tensor tractography was performed using 2 regions of interest: ipsilateral subthalamic and red nuclei, and contralateral cerebellar hemisphere. Nine patients underwent subthalamic DBS, and the course of each tract was observed relative to the location of the most effective stimulation contact and the volume of tissue activated. In all patients 2 distinct tracts were identified that corresponded closely to the described anatomical features of the SPCT and DTT, respectively. The mean overall distance from the active contact to the DTT was 2.18 ± 0.35 mm, and the mean proportional distance relative to the volume of tissue activated was 1.35 ± 0.48. There was a nonsignificant trend toward better postoperative tremor control in patients with electrodes closer to the DTT. The SPCT and the DTT may be related to the expression of symptoms in PD, and this may have implications for DBS targeting. The use of tractography to identify the DTT might assist with DBS targeting in the future.

  19. Comparison of Appetite-regulating Hormones and Body Composition in Pediatric Patients in Predialysis Stage of Chronic Kidney Disease and Healthy Control Group

    Directory of Open Access Journals (Sweden)

    Mohammad Hassan Eftekhari

    2015-01-01

    Full Text Available Background: Protein-energy malnutrition (PEM is a common complication in pediatric patients with chronic kidney disease (CKD. Components incorporated in the regulation of appetite and body composition appear to be of the focus in renal insufficiency and may influence the CKD-associated PEM. The purpose of this study was to investigate plasma levels of appetite-regulating hormones and their correlation with the body composition variables in a pediatric in predialysis stage of CKD. Methods: Thirty children with CKD in predialysis stage were selected and compared with 30 healthy sex- and age-matched controls. Blood samples were collected in fasting. Serum total ghrelin, leptin, and obestatin levels were measured using enzyme immunometric assay methods. Anthropometric parameters measurement and body composition analysis were done using the bioelectric impedance analysis (BIA method. Results: Patients showed insignificant elevated total ghrelin (105.40±30.83 ng/l, leptin (5.32±1.17 ng/ml and obestatin (5.07±1.09 ng/ml levels in comparison with healthy participants. By using BIA, patients had significantly different Dry Lean Weight (P=0.048, Extra Cellular Water (P=0.045, Body Cell Mass (BCM (P=0.021, Basal Metabolic Rate (P=0.033 and Body Mass Index (P=0.029 compared with controls. Furthermore, the total body water was slightly and the ECW was significantly higher in CKD participants. There were significant negative correlation between obestatin and BCM (r=-0.40, P=0.03 and fat free mass index (FFMI (r=-0.40, P=0.029 in patients. Conclusion: It seems that our results are insufficient to clarify the role of appetite-regulating hormones in PEM in CKD patients. It is apparent that there are still many unknown parameters related to both appetite regulating and CKD-associated PEM.

  20. The incidence of metastatic basal cell carcinoma (mBCC) in Denmark, 1997-2010.

    Science.gov (United States)

    Nguyen-Nielsen, Mary; Wang, Lisa; Pedersen, Lars; Olesen, Anne Braae; Hou, Jeannie; Mackey, Howard; McCusker, Margaret; Basset-Seguin, Nicole; Fryzek, Jon; Vyberg, Mogens

    2015-01-01

    Few data exist on the occurrence of metastatic basal cell carcinoma (mBCC). To identify all cases of mBCC in Denmark over a 14-year period. We searched the Danish National Patient Registry covering all Danish hospitals, the Danish Cancer Registry, the National Pathology Registry and the Causes of Death Registry during the period 1997 to 2010 for potential cases of mBCC registered according to the International classification of diseases ICD-10 and the International Systemized Nomenclature of Medicine (SNOMED). We identified 126,627 patients with a history of primary basal cell carcinoma (BCC) in the registries during the 14-year study period. Using case identifications from the four registries, a total of 170 potential mBCC cases were identified. However, after a pathology review, only five cases could be confirmed, of which three were basosquamous carcinomas. The 14-year cumulative incidence proportion of mBCC was 0.0039% (95% CI 0.0016-0.0083) among individuals with a history of previous BCC (n = 126,627) and 0.0001% (95% CI 0.0000-0.0002) in the general population. MBCC is a rare disease and only a small proportion of potential cases identified in automated clinical databases or registries can be confirmed by pathology and medical record review.

  1. Serum Fetuin-A Levels in Patients with Bilateral Basal Ganglia Calcification.

    Science.gov (United States)

    Demiryurek, Bekir Enes; Gundogdu, Asli Aksoy

    2018-02-14

    The idiopathic basal ganglia calcification (Fahr syndrome) may occur due to senility. Fetuin-A is a negative acute phase reactant which inhibits calcium-phosphorus precipitation and vascular calcification. In this study, we aimed to evaluate whether serum fetuin-A levels correlate with bilateral basal ganglia calcification. Forty-five patients who had bilateral basal ganglia calcification on brain CT were selected according to the inclusion and exclusion criteria, and 45 age and gender-matched subjects without basal ganglia calcification were included for the control group. Serum fetuin-A levels were measured from venous blood samples. All participants were divided into two groups; with and without basal ganglia calcification. These groups were divided into subgroups regarding age (18-32 and 33-45 years of age) and gender (male, female). We detected lower levels of serum fetuin-A in patients with basal ganglia calcification compared with the subjects without basal ganglia calcification. In all subgroups (female, male, 18-32 years and 33-45 years), mean fetuin-A levels were significantly lower in patients with basal ganglia calcification (p = 0.017, p = 0.014, p = 0.024, p = 0.026, p = 0.01 respectively). And statistically significantly lower levels of fetuin-A was found to be correlated with the increasing densities of calcification in the calcified basal ganglia group (p-value: <0.001). Considering the role of fetuin-A in tissue calcification and inflammation, higher serum fetuin-A levels should be measured in patients with basal ganglia calcification. We believe that the measurement of serum fetuin-A may play a role in the prediction of basal ganglia calcification as a biomarker. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Sonic hedgehog-expressing basal cells are general post-mitotic precursors of functional taste receptor cells

    Science.gov (United States)

    Miura, Hirohito; Scott, Jennifer K.; Harada, Shuitsu; Barlow, Linda A.

    2014-01-01

    Background Taste buds contain ~60 elongate cells and several basal cells. Elongate cells comprise three functional taste cell types: I - glial cells, II - bitter/sweet/umami receptor cells, and III - sour detectors. Although taste cells are continuously renewed, lineage relationships among cell types are ill-defined. Basal cells have been proposed as taste bud stem cells, a subset of which express Sonic hedgehog (Shh). However, Shh+ basal cells turnover rapidly suggesting that Shh+ cells are precursors of some or all taste cell types. Results To fate map Shh-expressing cells, mice carrying ShhCreERT2 and a high (CAG-CAT-EGFP) or low (R26RLacZ) efficiency reporter allele were given tamoxifen to activate Cre in Shh+ cells. Using R26RLacZ, lineage-labeled cells occur singly within buds, supporting a post-mitotic state for Shh+ cells. Using either reporter, we show that Shh+ cells differentiate into all three taste cell types, in proportions reflecting cell type ratios in taste buds (I > II > III). Conclusions Shh+ cells are not stem cells, but are post-mitotic, immediate precursors of taste cells. Shh+ cells differentiate into each of the three taste cell types, and the choice of a specific taste cell fate is regulated to maintain the proper ratio within buds. PMID:24590958

  3. The Wheat Mediator Subunit TaMED25 Interacts with the Transcription Factor TaEIL1 to Negatively Regulate Disease Resistance against Powdery Mildew1

    Science.gov (United States)

    Zhang, Tianren; Jia, Jizeng; Sun, Jiaqiang

    2016-01-01

    Powdery mildew, caused by the biotrophic fungal pathogen Blumeria graminis f. sp. tritici, is a major limitation for the production of bread wheat (Triticum aestivum). However, to date, the transcriptional regulation of bread wheat defense against powdery mildew remains largely unknown. Here, we report the function and molecular mechanism of the bread wheat Mediator subunit 25 (TaMED25) in regulating the bread wheat immune response signaling pathway. Three homoalleles of TaMED25 from bread wheat were identified and mapped to chromosomes 5A, 5B, and 5D, respectively. We show that knockdown of TaMED25 by barley stripe mosaic virus-induced gene silencing reduced bread wheat susceptibility to the powdery mildew fungus during the compatible plant-pathogen interaction. Moreover, our results indicate that MED25 may play a conserved role in regulating bread wheat and barley (Hordeum vulgare) susceptibility to powdery mildew. Similarly, bread wheat ETHYLENE INSENSITIVE3-LIKE1 (TaEIL1), an ortholog of Arabidopsis (Arabidopsis thaliana) ETHYLENE INSENSITIVE3, negatively regulates bread wheat resistance against powdery mildew. Using various approaches, we demonstrate that the conserved activator-interacting domain of TaMED25 interacts physically with the separate amino- and carboxyl-terminal regions of TaEIL1, contributing to the transcriptional activation activity of TaEIL1. Furthermore, we show that TaMED25 and TaEIL1 synergistically activate ETHYLENE RESPONSE FACTOR1 (TaERF1) transcription to modulate bread wheat basal disease resistance to B. graminis f. sp. tritici by repressing the expression of pathogenesis-related genes and deterring the accumulation of reactive oxygen species. Collectively, we identify the TaMED25-TaEIL1-TaERF1 signaling module as a negative regulator of bread wheat resistance to powdery mildew. PMID:26813794

  4. Regulation of defensive function on gingival epithelial cells can prevent periodontal disease.

    Science.gov (United States)

    Fujita, Tsuyoshi; Yoshimoto, Tetsuya; Kajiya, Mikihito; Ouhara, Kazuhisa; Matsuda, Shinji; Takemura, Tasuku; Akutagawa, Keiichi; Takeda, Katsuhiro; Mizuno, Noriyoshi; Kurihara, Hidemi

    2018-05-01

    Periodontal disease is a bacterial biofilm-associated inflammatory disease that has been implicated in many systemic diseases. A new preventive method for periodontal disease needs to be developed in order to promote the health of the elderly in a super-aged society. The gingival epithelium plays an important role as a mechanical barrier against bacterial invasion and a part of the innate immune response to infectious inflammation in periodontal tissue. The disorganization of cell-cell interactions and subsequent inflammation contribute to the initiation of periodontal disease. These make us consider that regulation of host defensive functions, epithelial barrier and neutrophil activity, may become novel preventive methods for periodontal inflammation. Based on this concept, we have found that several agents regulate the barrier function of gingival epithelial cells and suppress the accumulation of neutrophils in the gingival epithelium. We herein introduce the actions of irsogladine maleate, azithromycin, amphotericin B, and Houttuynia cordata (dokudami in Japanese), which is commonly used in traditional medicine, on the epithelial barrier and neutrophil migration in gingival epithelial cells in vivo and in vitro , in order to provide support for the clinical application of these agents to the prevention of periodontal inflammation.

  5. MRI of the basal ganglia calcification

    International Nuclear Information System (INIS)

    Maeda, Masayuki; Murata, Tetsuhito; Kimura, Hirohiko

    1992-01-01

    MR imaging was performed for 11 patients (9 in Down's syndrome and 2 in idiopathic intracerebral calcification) who showed calcifications in bilateral basal ganglia on CT. High signal intensity in the basal ganglia was found only in one patient with idiopathic intracerebral calcification on T1-weighted image. The calcified areas of all patients in Down's syndrome did not show high signal intensity on T1-weighted image. The exact reasons why MRI exhibits the different signal intensities in calcified tissue on T1-weighted image are unknown. Further clinical investigations will be needed. (author)

  6. Adherence to Basal Insulin Therapy Among People with Type 2 Diabetes: A Retrospective Cohort Study of Costs and Patient Outcomes.

    Science.gov (United States)

    Perez-Nieves, Magaly; Boye, Kristina S; Kiljanski, Jacek; Cao, Dachung; Lage, Maureen J

    2018-04-11

    This research compares costs, resource utilization, and complications between adherent and nonadherent patients over the 3-year period post initiation on basal insulin therapy. The study utilized the US-based Truven Health MarketScan ® Research Databases from 2011 through 2015. Adults aged 18 years or older and identified with type 2 diabetes (T2D) who initiated therapy on basal insulin in 2012 were included. Patients were excluded if they were pregnant, filled their index basal insulin prescription via mail order, or were not continuously insured from 1 year before through 3 years following initiation of treatment with basal insulin. Instrumental variables were used to control for selection bias, and multivariable analyses were used to examine the associations between adherence to basal insulin therapy and costs, resource utilization, and acute complications. A total of 21,363 individuals were included in the study. Three years after initiating therapy on basal insulin, patients who were adherent over time to basal insulin treatment therapy (33.8% of patients) had significantly higher diabetes-related drug costs. However, patients' adherence was associated with significantly lower diabetes-related outpatient, acute care, and total costs. Results for all-cause costs were similar. Adherent patients also had significantly fewer all-cause and diabetes-related hospitalizations and emergency room visits and were significantly less likely to be diagnosed with an acute complication. Results of this study illustrate that despite higher drug costs, there are disease-specific and all-cause cost offsets and improved patient outcomes associated with adherence to basal insulin therapy for people with T2D. Eli Lilly and Company.

  7. Network effects of subthalamic deep brain stimulation drive a unique mixture of responses in basal ganglia output.

    Science.gov (United States)

    Humphries, Mark D; Gurney, Kevin

    2012-07-01

    Deep brain stimulation (DBS) is a remarkably successful treatment for the motor symptoms of Parkinson's disease. High-frequency stimulation of the subthalamic nucleus (STN) within the basal ganglia is a main clinical target, but the physiological mechanisms of therapeutic STN DBS at the cellular and network level are unclear. We set out to begin to address the hypothesis that a mixture of responses in the basal ganglia output nuclei, combining regularized firing and inhibition, is a key contributor to the effectiveness of STN DBS. We used our computational model of the complete basal ganglia circuit to show how such a mixture of responses in basal ganglia output naturally arises from the network effects of STN DBS. We replicated the diversification of responses recorded in a primate STN DBS study to show that the model's predicted mixture of responses is consistent with therapeutic STN DBS. We then showed how this 'mixture of response' perspective suggests new ideas for DBS mechanisms: first, that the therapeutic frequency of STN DBS is above 100 Hz because the diversification of responses exhibits a step change above this frequency; and second, that optogenetic models of direct STN stimulation during DBS have proven therapeutically ineffective because they do not replicate the mixture of basal ganglia output responses evoked by electrical DBS. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  8. Orthovoltage X-rays for Postoperative Treatment of Resected Basal Cell Carcinoma in the Head and Neck Area.

    Science.gov (United States)

    Duinkerken, Charlotte W; Lohuis, Peter J F M; Crijns, Marianne B; Navran, Arash; Haas, Rick L M; Hamming-Vrieze, Olga; Klop, W Martin C; van den Brekel, Michiel W M; Al-Mamgani, Abrahim

    Surgery is the golden standard for treating basal cell carcinomas. In case of positive tumor margins or recurrent disease, postoperative adjuvant or salvaging therapy is suggested to achieve good local control. To retrospectively report on local control and toxicity of postoperative radiotherapy by means of orthovoltage X-rays for residual or recurrent basal cell carcinoma after surgery in the head and neck area. Sixty-six surgically resected residual or recurrent basal cell carcinomas of the head and neck region were irradiated postoperatively by means of orthovoltage X-rays at the Netherlands Cancer Institute between January 2000 and February 2015. After a median follow-up duration of 30.5 months, only 5 recurrences were reported. The 5-year local control rates at 1, 3, and 5 years were 100%, 87%, and 87%, respectively. The 5-year local control rate was 92% for immediate postoperative radiotherapy of incompletely resected basal cell carcinomas, 90% for recurrences after 1 previously performed excision, and 71% for multiple recurrences, namely, a history of more than 1 excision ( P = .437). Acute toxicity healed spontaneously within 3 months. Late toxicities were mild. Radiotherapy by means of orthovoltage X-ray is an excellent alternative for re-excision in case of incompletely resected or recurrent basal cell carcinomas that are at risk of serious functional and cosmetic impairments after re-excision, with a 5-year local control rate of 87% and a low toxicity profile.

  9. Amyloid in basal cell carcinoma and seborrheic keratosis

    DEFF Research Database (Denmark)

    Olsen, K E; Westermark, Per

    1994-01-01

    The frequency of amyloid substance was studied in two different types of skin tumours: basal cell carcinoma and seborrheic keratosis. In 9 out of 49 cases of seborrheic keratosis amyloid substance was found. In the basal cell carcinomas, 194 out of 260 cases showed amyloid deposits, a rate...

  10. Understanding cell cycle and cell death regulation provides novel weapons against human diseases.

    Science.gov (United States)

    Wiman, K G; Zhivotovsky, B

    2017-05-01

    Cell division, cell differentiation and cell death are the three principal physiological processes that regulate tissue homoeostasis in multicellular organisms. The growth and survival of cells as well as the integrity of the genome are regulated by a complex network of pathways, in which cell cycle checkpoints, DNA repair and programmed cell death have critical roles. Disruption of genomic integrity and impaired regulation of cell death may both lead to uncontrolled cell growth. Compromised cell death can also favour genomic instability. It is becoming increasingly clear that dysregulation of cell cycle and cell death processes plays an important role in the development of major disorders such as cancer, cardiovascular disease, infection, inflammation and neurodegenerative diseases. Research achievements in these fields have led to the development of novel approaches for treatment of various conditions associated with abnormalities in the regulation of cell cycle progression or cell death. A better understanding of how cellular life-and-death processes are regulated is essential for this development. To highlight these important advances, the Third Nobel Conference entitled 'The Cell Cycle and Cell Death in Disease' was organized at Karolinska Institutet in 2016. In this review we will summarize current understanding of cell cycle progression and cell death and discuss some of the recent advances in therapeutic applications in pathological conditions such as cancer, neurological disorders and inflammation. © 2017 The Association for the Publication of the Journal of Internal Medicine.

  11. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI.

    Directory of Open Access Journals (Sweden)

    Christophe Lenglet

    Full Text Available Basal ganglia circuits are affected in neurological disorders such as Parkinson's disease (PD, essential tremor, dystonia and Tourette syndrome. Understanding the structural and functional connectivity of these circuits is critical for elucidating the mechanisms of the movement and neuropsychiatric disorders, and is vital for developing new therapeutic strategies such as deep brain stimulation (DBS. Knowledge about the connectivity of the human basal ganglia and thalamus has rapidly evolved over recent years through non-invasive imaging techniques, but has remained incomplete because of insufficient resolution and sensitivity of these techniques. Here, we present an imaging and computational protocol designed to generate a comprehensive in vivo and subject-specific, three-dimensional model of the structure and connections of the human basal ganglia. High-resolution structural and functional magnetic resonance images were acquired with a 7-Tesla magnet. Capitalizing on the enhanced signal-to-noise ratio (SNR and enriched contrast obtained at high-field MRI, detailed structural and connectivity representations of the human basal ganglia and thalamus were achieved. This unique combination of multiple imaging modalities enabled the in-vivo visualization of the individual human basal ganglia and thalamic nuclei, the reconstruction of seven white-matter pathways and their connectivity probability that, to date, have only been reported in animal studies, histologically, or group-averaged MRI population studies. Also described are subject-specific parcellations of the basal ganglia and thalamus into sub-territories based on their distinct connectivity patterns. These anatomical connectivity findings are supported by functional connectivity data derived from resting-state functional MRI (R-fMRI. This work demonstrates new capabilities for studying basal ganglia circuitry, and opens new avenues of investigation into the movement and neuropsychiatric

  12. computed tomography features of basal ganglia and periventricular

    African Journals Online (AJOL)

    HIV is probably the most common cause of basal ganglia and periventricular calcification today. on-enhanced computed tomography (NECT) shows diffuse cerebral atrophy in 90% of cases. Bilateral, symmetrical basal ganglia calcification is seen in 30% of cases, but virtually never before 1 year of age.1. CMV (FIG.2).

  13. Signal transduction mechanisms of K+-Cl- cotransport regulation and relationship to disease.

    Science.gov (United States)

    Adragna, N C; Ferrell, C M; Zhang, J; Di Fulvio, M; Temprana, C F; Sharma, A; Fyffe, R E W; Cool, D R; Lauf, P K

    2006-01-01

    The K+-Cl- cotransport (COT) regulatory pathways recently uncovered in our laboratory and their implication in disease state are reviewed. Three mechanisms of K+-Cl- COT regulation can be identified in vascular cells: (1) the Li+-sensitive pathway, (2) the platelet-derived growth factor (PDGF)-sensitive pathway and (3) the nitric oxide (NO)-dependent pathway. Ion fluxes, Western blotting, semi-quantitative RT-PCR, immunofluorescence and confocal microscopy were used. Li+, used in the treatment of manic depression, stimulates volume-sensitive K+-Cl- COT of low K+ sheep red blood cells at cellular concentrations 3 mM, causes cell swelling, and appears to regulate K+-Cl- COT through a protein kinase C-dependent pathway. PDGF, a potent serum mitogen for vascular smooth muscle cells (VSMCs), regulates membrane transport and is involved in atherosclerosis. PDGF stimulates VSM K+-Cl- COT in a time- and concentration-dependent manner, both acutely and chronically, through the PDGF receptor. The acute effect occurs at the post-translational level whereas the chronic effect may involve regulation through gene expression. Regulation by PDGF involves the signalling molecules phosphoinositides 3-kinase and protein phosphatase-1. Finally, the NO/cGMP/protein kinase G pathway, involved in vasodilation and hence cardiovascular disease, regulates K+-Cl- COT in VSMCs at the mRNA expression and transport levels. A complex and diverse array of mechanisms and effectors regulate K+-Cl- COT and thus cell volume homeostasis, setting the stage for abnormalities at the genetic and/or regulatory level thus effecting or being affected by various pathological conditions.

  14. Characterization of basal gene expression trends over a diurnal cycle in Xiphophorus maculatus skin, brain and liver.

    Science.gov (United States)

    Lu, Yuan; Reyes, Jose; Walter, Sean; Gonzalez, Trevor; Medrano, Geraldo; Boswell, Mikki; Boswell, William; Savage, Markita; Walter, Ronald

    2018-06-01

    Evolutionarily conserved diurnal circadian mechanisms maintain oscillating patterns of gene expression based on the day-night cycle. Xiphophorus fish have been used to evaluate transcriptional responses after exposure to various light sources and it was determined that each source incites distinct genetic responses in skin tissue. However, basal expression levels of genes that show oscillating expression patterns in day-night cycle, may affect the outcomes of such experiments, since basal gene expression levels at each point in the circadian path may influence the profile of identified light responsive genes. Lack of knowledge regarding diurnal fluctuations in basal gene expression patterns may confound the understanding of genetic responses to external stimuli (e.g., light) since the dynamic nature of gene expression implies animals subjected to stimuli at different times may be at very different stages within the continuum of genetic homeostasis. We assessed basal gene expression changes over a 24-hour period in 200 select Xiphophorus gene targets known to transcriptionally respond to various types of light exposure. We identified 22 genes in skin, 36 genes in brain and 28 genes in liver that exhibit basal oscillation of expression patterns. These genes, including known circadian regulators, produced the expected expression patterns over a 24-hour cycle when compared to circadian regulatory genes identified in other species, especially human and other vertebrate animal models. Our results suggest the regulatory network governing diurnal oscillating gene expression is similar between Xiphophorus and other vertebrates for the three Xiphophorus organs tested. In addition, we were able to categorize light responsive gene sets in Xiphophorus that do, and do not, exhibit circadian based oscillating expression patterns. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases

    Directory of Open Access Journals (Sweden)

    Dan-Dan Cao

    2016-05-01

    Full Text Available MicroRNAs (miRNAs are a class of small, well-conserved noncoding RNAs that regulate gene expression post-transcriptionally. They have been demonstrated to regulate a lot of biological pathways and cellular functions. Many miRNAs are dynamically regulated during central nervous system (CNS development and are spatially expressed in adult brain indicating their essential roles in neural development and function. In addition, accumulating evidence strongly suggests that dysfunction of miRNAs contributes to neurological diseases. These observations, together with their gene regulation property, implicated miRNAs to be the key regulators in the complex genetic network of the CNS. In this review, we first focus on the ways through which miRNAs exert the regulatory function and how miRNAs are regulated in the CNS. We then summarize recent findings that highlight the versatile roles of miRNAs in normal CNS physiology and their association with several types of neurological diseases. Subsequently we discuss the limitations of miRNAs research based on current studies as well as the potential therapeutic applications and challenges of miRNAs in neurological disorders. We endeavor to provide an updated description of the regulatory roles of miRNAs in normal CNS functions and pathogenesis of neurological diseases.

  16. Rethinking CKD Evaluation: Should We Be Quantifying Basal or Stimulated GFR to Maximize Precision and Sensitivity?

    Science.gov (United States)

    Molitoris, Bruce A.

    2017-01-01

    Chronic kidney disease (CKD) remains an increasing clinical problem. Although clinical risk factors and biomarkers for development and progression of CKD have been identified, there is no commercial surveillance technology to definitively diagnose and quantify the severity and progressive loss of glomerular filtration rate (GFR) in CKD. This has limited the study of potential therapies to late stages of CKD when FDA-registerable events are more likely. Since patient outcomes, including the rate of CKD progression, correlate with disease severity, and effective therapy may require early intervention, being able to diagnose and stratify patients by their level of decreased kidney function early on is key for translational progress. In addition, renal reserve, defined as the increase in GFR following stimulation, may improve the quantification of GFR based solely on basal levels. Various groups are developing and characterizing optical measurement techniques utilizing new minimally invasive or non-invasive approaches for quantifying basal and stimulated kidney function. This development has the potential to allow widespread individualization of therapy at an earlier disease stage. Therefore, the purposes of this review are to suggest why quantifying stimulated GFR, by activating renal reserve, may be advantageous in patients and review fluorescent technologies to deliver patient-specific GFR. PMID:28223001

  17. Effects of Basal Defoliation on Wine Aromas: A Meta-Analysis

    Directory of Open Access Journals (Sweden)

    Yu Wang

    2018-03-01

    Full Text Available Basal defoliation, as one of the most common viticulture management practices to modify fruit zone microclimates, has been widely applied aiming at improving wine quality. Wine aroma contributes greatly to wine quality, yet the effects of basal defoliation on wine aromas show discrepancies according to previous studies. This study is a meta-analysis performed to dissect the factors related to the influence of basal defoliation on volatile compounds in wine. Timing of basal defoliation plays an important role in the concentration of varietal aromas in wine. Pre-veraison defoliation induces an increase in β-damascenone and linalool as well as a reduction in 3-isobutyl-2-methoxypyrazine (IBMP. The effects of basal defoliation on certain volatile compounds relative to fermentation aromas in wine (1-hexanol, β-phenylethanol, 2-phenylethyl acetate, decanoic acid, and ethyl octanoate depend on grape maturity. There are also other factors, such as cultivar and climate conditions, that might be responsible for the effect of basal defoliation on wine aromas. The concentrations of isobutanol, isoamyl alcohol, hexanoic acid, and octanoic acid as well as ethyl isobutyrate, ethyl hexanoate, ethyl isovalerate, and ethyl decanoate in wine are not markedly affected by basal defoliation. Due to limited studies included in this meta-analysis, more trials are needed to confirm the current findings.

  18. Review of photodynamic therapy with 5-methyl aminolevulinate in actinic keratosis, epidermoid carcinoma and basal cell carcinoma

    International Nuclear Information System (INIS)

    Fallas Moya, Said

    2013-01-01

    A bibliographic review was conduced on the use of 5-methyl aminolevulinate in dermatology, specifically in the treatment of actinic keratosis, epidermoid carcinoma and basal cell carcinoma. The basic fundamentals of photodynamic therapy are described. The preparation and method of use of photodynamic therapy with 5-methyl aminolevulinate (MAL-PDT) are detailed. The clinical studies that were realized with photodynamic therapy for the treatment of actinic keratosis, epidermoid carcinoma and basal cell carcinoma are mentioned. Different photo-inducible agents and other current therapeutic options of first-line are compared. The MAL-PDT has have the advantage of to present less side effects and the same have been more tolerable than liquid nitrogen and 5 fluorouracil. The MAL-PDT has been considered as an effective option for the treatment of Bowen's disease. Invasive epidermoid carcinoma has existed without evidence to support the routine use of this therapeutic. For superficial basal cell carcinoma, the MAL-PDT has presented a high cure rate and transient and manageable side effects in extensive and multiple lesions. The MAL-PDT has been an effective and safe treatment in patients with basal cell carcinoma, for those with less depth of 2mm. The MAL-PDT could play an important role in the field of prevention with immunosuppressed patients, particularly, those that have required transplant and its immunosuppression has been pharmacological. The use or not of the MAL-PDT, should be evaluated individually for each patient and to have suitable characteristics for each disease that was cited in this review. The photodynamic therapy with 5-methyl aminolevulinate has been a therapeutic modality of considerable economy, however, it should be evaluated in the context of number of inquiries and side effects that have offered other therapeutic modalities [es

  19. Heterogeneity of limbal basal epithelial progenitor cells.

    Science.gov (United States)

    Hayashida, Yasutaka; Li, Wei; Chen, Ying-Ting; He, Hua; Chen, Szu-yu; Kheirkah, Ahmad; Zhu, Ying-Tien; Matsumoto, Yukihiro; Tseng, Scheffer C G

    2010-11-01

    Although corneal epithelial stem cells (SCs) are located at the limbus between the cornea and the conjunctiva, not all limbal basal epithelial cells are SCs. Using 2 dispase digestions to remove different amounts of limbal basal epithelial cells for cross-sections, flat mounts, and cytospin preparations, double immunostaining to pancytokeratins (PCK) and vimentin (Vim) identified 3 p63+ epithelial progenitors such as PCK-/Vim+, PCK/Vim, and PCK-/Vim+ and 1 p63+ mesenchymal cell, PCK-/Vim+. PCK-/Vim- progenitors had the smallest cell size were 10-20 times more enriched on collagen I-coated dishes in the 5-minute rapid adherent fraction that contained the highest percentage of p63+ cells but the lowest percentage of cytokeratin12+ cells, and gave rise to high Ki67 labeling and vivid clonal growth. In contrast, PCK+/Vim+ and PCK+/Vim- progenitors were found more in the slow-adherent fraction and yielded poor clonal growth. PCK/Vim progenitors and clusters of PCK-/Vim+ mesenchymal cells, which were neither melanocytes nor Langerhans cells, were located in the limbal basal region. Therefore, differential expression of PCK and Vim helps identify small PCK-/Vim- cells as the most likely candidate for SCs among a hierarchy of heterogeneous limbal basal progenitors, and their close association with PCK-/Vim+ presumed "niche" cells.

  20. Giant basal cell carcinoma Carcinoma basocelular gigante

    Directory of Open Access Journals (Sweden)

    Nilton Nasser

    2012-06-01

    Full Text Available The basal cell carcinoma is the most common skin cancer but the giant vegetating basal cell carcinoma reaches less than 0.5 % of all basal cell carcinoma types. The Giant BCC, defined as a lesion with more than 5 cm at its largest diameter, is a rare form of BCC and commonly occurs on the trunk. This patient, male, 42 years old presents a Giant Basal Cell Carcinoma which reaches 180 cm2 on the right shoulder and was negligent in looking for treatment. Surgical treatment was performed and no signs of dissemination or local recurrence have been detected after follow up of five years.O carcinoma basocelular é o tipo mais comum de câncer de pele, mas o carcinoma basocelular gigante vegetante não atinge 0,5% de todos os tipos de carcinomas basocelulares. O Carcinoma Basocelular Gigante, definido como lesão maior que 5 cm no maior diâmetro, é uma forma rara de carcinoma basocelular e comumente ocorre no tronco. Este paciente apresenta um Carcinoma Basocelular Gigante com 180cm² no ombro direito e foi negligente em procurar tratamento. Foi realizado tratamento cirúrgico e nenhum sinal de disseminação ou recorrência local foi detectada após 5 anos.

  1. Deep-Brain Stimulation for Basal Ganglia Disorders.

    Science.gov (United States)

    Wichmann, Thomas; Delong, Mahlon R

    2011-07-01

    The realization that medications used to treat movement disorders and psychiatric conditions of basal ganglia origin have significant shortcomings, as well as advances in the understanding of the functional organization of the brain, has led to a renaissance in functional neurosurgery, and particularly the use of deep brain stimulation (DBS). Movement disorders are now routinely being treated with DBS of 'motor' portions of the basal ganglia output nuclei, specifically the subthalamic nucleus and the internal pallidal segment. These procedures are highly effective and generally safe. Use of DBS is also being explored in the treatment of neuropsychiatric disorders, with targeting of the 'limbic' basal ganglia-thalamocortical circuitry. The results of these procedures are also encouraging, but many unanswered questions remain in this emerging field. This review summarizes the scientific rationale and practical aspects of using DBS for neurologic and neuropsychiatric disorders.

  2. Evaluation of Basal Serum Adrenocorticotropic Hormone and Cortisol Levels and Their Relationship with Nonalcoholic Fatty Liver Disease in Male Patients with Idiopathic Hypogonadotropic Hypogonadism

    Directory of Open Access Journals (Sweden)

    Wen-Bo Wang

    2016-01-01

    Conclusions: The male IHH patients showed higher basal serum ACTH levels and lower cortisol levels than matched healthy controls. NAFLD was an independent associated factor for ACTH levels in male IHH patients. These preliminary findings provided evidence of the relationship between basal serum ACTH and NAFLD in male IHH patients.

  3. Basal Serum Calcitonin, After Calcium Stimulation, and in the Needle Washout of Patients with Thyroid Nodules and Mild or Moderate Basal Hypercalcitoninemia.

    Science.gov (United States)

    Rosario, P W; Calsolari, M R

    2017-02-01

    This prospective study evaluated the concentrations of basal serum calcitonin (Ctn), Ctn after stimulation with calcium, and Ctn in the needle washout (FNA-Ctn) as predictors of sporadic medullary thyroid carcinoma (MTC) in patients with thyroid nodules and basal Ctn between 10 and 100 pg/ml. Forty-one patients were included in the study. MTC was diagnosed in only 6 patients (14.6%). None of the patients with basal Ctn≤24.6 pg/ml (n=26) or stimulated Ctn≤186.5 pg/ml (n=21) had MTC. All patients without MTC had basal Ctnstimulated Ctnbasal Ctn between 24.6 and 47 pg/ml (n=12), 3 (25%) had MTC. Among patients with stimulated Ctn between 186.5 and 655.2 pg/ml (n=18), 4 (22.2%) had MTC. FNA-Ctn distinguished nodules that were MTC (n=6) from those that were not (n=60), without overlapping results. In the calcium stimulation test, 19 patients (46.3%) reported some adverse effect, but none of them was severe or required specific treatment. Our results highlight that in patients without a history suspicious for MTC, mild or moderate basal hypercalcitoninemia should not establish the diagnosis of this tumor. Depending on the concentration found, basal Ctn should be sufficient to define patient management. In doubtful cases, FNA-Ctn seems to be the best diagnostic test. Calcium stimulation testing was safe, but more studies are needed to determine the Ctn cutoff after stimulation with calcium. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Basal ganglia disorders studied by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Shinotoh, Hitoshi [Chiba Univ. (Japan). School of Medicine

    1994-04-01

    Recent development of positron emitting radioligands has made it possible to investigate the alterations of neurotransmitter systems associated with basal ganglia disorders in vivo. The functional integrity of nigro-striatal dopaminergic terminals may be studied with [[sup 18]F]6-fluoro-L-dopa ([[sup 18]F]dopa), and striatal dopamine receptor density with suitable PET ligands. [[sup 18]F]dopa uptake in the striatum (putamen) is markedly reduced in patients with Parkinson's disease (PD). [[sup 18]F]dopa-PET is capable of detecting sub-clinical nigral dysfunction in asymptomatic patients with familial PD and those who become Parkinsonian on conventional doses of dopamine receptor antagonists. While putamen [[sup 18]F]dopa uptake is reduced to a similar level in patients with multiple system atrophy (MSA) and PD, caudate [[sup 18]F] dopa uptake is lower in MSA than PD. However, [[sup 18]F]dopa PET cannot consistently distinguish MSA from PD because individual ranges of caudate [[sup 18]F]dopa uptake overlap. D[sub 1] and D[sub 2] receptor binding is markedly reduced in the striatum (posterior putamen) of MSA patients. Therefore, dopamine receptor imaging is useful for the differential diagnosis of MSA and PD. Similar marked reductions in putamen and caudate [[sup 18]F]dopa uptake have been observed in patients with progressive supranuclear palsy (PSP). Moderate reductions in D[sub 2] receptor binding have been reported in the striatum of PSP patients. The reduction in D[sub 2] receptor binding is more prominent in the caudate than putamen. Striatal [[sup 18]F]dopa uptake is normal or only mildly reduced in patients with dopa responsive dystonia (DRD). D[sub 2] receptor binding is markedly reduced in patients with Huntington's disease, while striatal [[sup 18]F]dopa uptake is normal or mildly reduced. In summary, PET can demonstrate characteristic patterns of disruption of dopaminergic systems associated with basal ganglia disorders. (J.P.N.) 55 refs.

  5. Is there an association between Fahr′s disease and cardiac conduction system disease?: A case report

    Directory of Open Access Journals (Sweden)

    Prashanth Panduranga

    2012-01-01

    Full Text Available Background: Fahr′s disease is a rare neurodegenerative disorder of unknown cause characterized by idiopathic basal ganglia calcification that is associated with neuropsychiatric and cognitive impairment. No case of Fahr′s disease with associated cardiac conduction disease has been described in the literature to date. The objective of this case report was to describe a young female with various cardiac conduction system abnormalities and bilateral basal ganglia calcifica-tion suggestive of Fahr′s disease. Case Report: A 19-year-old female was transferred to our hospital for a pacemaker insertion. Her past medical history included cognitive impairment and asymptomatic congenital complete heart block since birth. Her manifestations in-cluded cognitive impairment, tremors, rigidity, ataxia, bilateral basal ganglia calcification without clinical manifesta-tions of mitochondrial cytopathy. She also had right bundle branch block, left anterior fascicular block, intermittent complete heart block, atrial arrhythmias with advanced atrioventricular blocks and ventricular asystole manifested by Stokes-Adams seizures, which was diagnosed as epilepsy. Conclusions: According to our knowledge, this was the first case report of a su spected association between Fahr′s disease and isolated cardiac conduction system disease. In addition, this case illustrated that in patients with heart blocks and seizures, a diagnosis of epilepsy needs to be made with caution and such patients need further evaluations by a cardiologist or electrophysiologist to consider pacing and prevent future catastrophic events.

  6. Distinct roles of basal forebrain cholinergic neurons in spatial and object recognition memory

    OpenAIRE

    Kana Okada; Kayo Nishizawa; Tomoko Kobayashi; Shogo Sakata; Kazuto Kobayashi

    2015-01-01

    Recognition memory requires processing of various types of information such as objects and locations. Impairment in recognition memory is a prominent feature of amnesia and a symptom of Alzheimer?s disease (AD). Basal forebrain cholinergic neurons contain two major groups, one localized in the medial septum (MS)/vertical diagonal band of Broca (vDB), and the other in the nucleus basalis magnocellularis (NBM). The roles of these cell groups in recognition memory have been debated, and it remai...

  7. The basal forebrain cholinergic system in aging and dementia : Rescuing cholinergic neurons from neurotoxic amyloid-beta 42 with memantine

    NARCIS (Netherlands)

    Nyakas, Csaba; Granic, Ivica; Halmy, Laszlo G.; Banerjee, Pradeep; Luiten, Paul G. M.

    2011-01-01

    The dysfunction and loss of basal forebrain cholinergic neurons and their cortical projections are among the earliest pathological events in the pathogenesis of Alzheimer's disease (AD). The evidence pointing to cholinergic impairments come from studies that report a decline in the activity of

  8. Purinergic Signalling in Inflammatory Renal Disease

    Directory of Open Access Journals (Sweden)

    Nishkantha eArulkumaran

    2013-07-01

    Full Text Available Extracellular purines have a role in renal physiology and adaption to inflammation. However, inflammatory renal disease may be mediated by extracellular purines, resulting in renal injury. The role of purinergic signalling is dependent on the concentrations of extracellular purines. Low basal levels of purines are important in normal homeostasis and growth. Concentrations of extracellular purines are significantly elevated during inflammation and mediate either an adaptive role or propagate local inflammation. Adenosine signalling mediates alterations in regional renal blood flow by regulation of the renal microcirculation, tubulo-glomerular feedback, and tubular transport of sodium and water. Increased extracellular ATP and renal P2 receptor-mediated inflammation are associated with various renal diseases, including hypertension, diabetic nephropathy, and glomerulonephritis. Experimental data suggests P2 receptor deficiency or receptor antagonism is associated with amelioration of antibody-mediated nephritis, suggesting a pathogenic (rather than adaptive role of purinergic signalling. We discuss the role of extracellular nucleotides in adaptation to ischaemic renal injury and in the pathogenesis of inflammatory renal disease.

  9. Airway Basal Cell Heterogeneity and Lung Squamous Cell Carcinoma.

    Science.gov (United States)

    Hynds, Robert E; Janes, Sam M

    2017-09-01

    Basal cells are stem/progenitor cells that maintain airway homeostasis, enact repair following epithelial injury, and are a candidate cell-of-origin for lung squamous cell carcinoma. Heterogeneity of basal cells is recognized in terms of gene expression and differentiation capacity. In this Issue, Pagano and colleagues isolate a subset of immortalized basal cells that are characterized by high motility, suggesting that they might also be heterogeneous in their biophysical properties. Motility-selected cells displayed an increased ability to colonize the lung in vivo The possible implications of these findings are discussed in terms of basal cell heterogeneity, epithelial cell migration, and modeling of metastasis that occurs early in cancer evolution. Cancer Prev Res; 10(9); 491-3. ©2017 AACR See related article by Pagano et al., p. 514 . ©2017 American Association for Cancer Research.

  10. Brain alpha-amylase - a novel energy regulator important in Alzheimer disease?

    NARCIS (Netherlands)

    Byman, Elin; Schultz, Nina; Huitinga, I.; Fex, Malin; Wennström, Malin

    2018-01-01

    Reduced glucose metabolism and formation of polyglucosan bodies (PGB) are, beside amyloid beta plaques and neurofibrillary tangles, well-known pathological findings associated with Alzheimer's disease (AD). Since both glucose availability and PGB are regulated by enzymatic degradation of glycogen,

  11. Use of basal stimulation at anesthesiology department

    OpenAIRE

    MARKOVÁ, Alena

    2012-01-01

    The theme ?The Use of Basal Stimulation at the Anaesthesiology and Resuscitation Department? was chosen in order to map out the use of this nursing method by the nurses and the staff who I cooperate with. The theoretical part deals with the environment at the Anaesthesiology and Resuscitation Department where the basal stimulation is used and also with special characteristics of the nursing care. Further, it deals with monitoring patients, causes of consciousness defects occurrence and kinds ...

  12. Safety and Efficacy Study of VY-AADC01 for Advanced Parkinson's Disease

    Science.gov (United States)

    2018-02-27

    Idiopathic Parkinson's Disease; Parkinson's Disease; Basal Ganglia Disease; Brain Diseases; Central Nervous System Diseases; Movement Disorders; Nervous System Diseases; Neurodegenerative Diseases; Parkinsonian Disorders

  13. Identifying the Basal Ganglia network model markers for medication-induced impulsivity in Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Pragathi Priyadharsini Balasubramani

    Full Text Available Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD or without ICD (PD-ON non-ICD, and OFF medication PD patients (PD-OFF. A neural network model of the Basal Ganglia (BG that has the capacity to predict the dysfunction of both the dopaminergic (DA and the serotonergic (5HT neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs, with D1 receptor (R alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning

  14. Identifying the Basal Ganglia network model markers for medication-induced impulsivity in Parkinson's disease patients.

    Science.gov (United States)

    Balasubramani, Pragathi Priyadharsini; Chakravarthy, V Srinivasa; Ali, Manal; Ravindran, Balaraman; Moustafa, Ahmed A

    2015-01-01

    Impulsivity, i.e. irresistibility in the execution of actions, may be prominent in Parkinson's disease (PD) patients who are treated with dopamine precursors or dopamine receptor agonists. In this study, we combine clinical investigations with computational modeling to explore whether impulsivity in PD patients on medication may arise as a result of abnormalities in risk, reward and punishment learning. In order to empirically assess learning outcomes involving risk, reward and punishment, four subject groups were examined: healthy controls, ON medication PD patients with impulse control disorder (PD-ON ICD) or without ICD (PD-ON non-ICD), and OFF medication PD patients (PD-OFF). A neural network model of the Basal Ganglia (BG) that has the capacity to predict the dysfunction of both the dopaminergic (DA) and the serotonergic (5HT) neuromodulator systems was developed and used to facilitate the interpretation of experimental results. In the model, the BG action selection dynamics were mimicked using a utility function based decision making framework, with DA controlling reward prediction and 5HT controlling punishment and risk predictions. The striatal model included three pools of Medium Spiny Neurons (MSNs), with D1 receptor (R) alone, D2R alone and co-expressing D1R-D2R. Empirical studies showed that reward optimality was increased in PD-ON ICD patients while punishment optimality was increased in PD-OFF patients. Empirical studies also revealed that PD-ON ICD subjects had lower reaction times (RT) compared to that of the PD-ON non-ICD patients. Computational modeling suggested that PD-OFF patients have higher punishment sensitivity, while healthy controls showed comparatively higher risk sensitivity. A significant decrease in sensitivity to punishment and risk was crucial for explaining behavioral changes observed in PD-ON ICD patients. Our results highlight the power of computational modelling for identifying neuronal circuitry implicated in learning, and its

  15. Reliability of basal plasma vasopressin concentrations in healthy male adults.

    Science.gov (United States)

    Quintana, Daniel S; Westlye, Lars T; Smerud, Knut T; Mahmoud, Ramy A; Djupesland, Per G; Andreassen, Ole A

    2017-10-01

    The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) play important and interrelated roles in modulating mammalian social behaviour. While the OT system has received considerable research attention for its potential to treat psychiatric symptoms, comparatively little is known about the role of the AVP system in human social behaviour. To better understand the intraindividual stability of basal AVP, the present study assessed the reproducibility of basal plasma AVP concentrations. Basal plasma AVP was assessed at four sampling points separated by 8 days, on average, in 16 healthy adult males. Only one out of six comparisons revealed strong evidence for reproducibility of basal AVP concentrations (visit 2 vs. visit 4: r=0.8, p0.1). The concordance correlation coefficient [0.15, 95% CI (-0.55, 0.73)] also revealed poor overall reproducibility. Poor reliability of basal AVP concentrations suggests future work covarying AVP with trait markers should proceed with careful consideration of intraindividual fluctuations.

  16. Mutations in SLC20A2 are a major cause of familial idiopathic basal ganglia calcification

    Science.gov (United States)

    Hsu, Sandy Chan; Sears, Renee L.; Lemos, Roberta R.; Quintáns, Beatriz; Huang, Alden; Spiteri, Elizabeth; Nevarez, Lisette; Mamah, Catherine; Zatz, Mayana; Pierce, Kerrie D.; Fullerton, Janice M.; Adair, John C.; Berner, Jon E.; Bower, Matthew; Brodaty, Henry; Carmona, Olga; Dobricić, Valerija; Fogel, Brent L.; García-Estevez, Daniel; Goldman, Jill; Goudreau, John L.; Hopfer, Suellen; Janković, Milena; Jaumà, Serge; Jen, Joanna C.; Kirdlarp, Suppachok; Klepper, Joerg; Kostić, Vladimir; Lang, Anthony E.; Linglart, Agnès; Maisenbacher, Melissa K.; Manyam, Bala V.; Mazzoni, Pietro; Miedzybrodzka, Zofia; Mitarnun, Witoon; Mitchell, Philip B.; Mueller, Jennifer; Novaković, Ivana; Paucar, Martin; Paulson, Henry; Simpson, Sheila A.; Svenningsson, Per; Tuite, Paul; Vitek, Jerrold; Wetchaphanphesat, Suppachok; Williams, Charles; Yang, Michele; Schofield, Peter R.; de Oliveira, João R. M.; Sobrido, María-Jesús

    2014-01-01

    Familial idiopathic basal ganglia calcification (IBGC) or Fahr’s disease is a rare neurodegenerative disorder characterized by calcium deposits in the basal ganglia and other brain regions, which is associated with neuropsychiatric and motor symptoms. Familial IBGC is genetically heterogeneous and typically transmitted in an autosomal dominant fashion. We performed a mutational analysis of SLC20A2, the first gene found to cause IBGC, to assess its genetic contribution to familial IBGC. We recruited 218 subjects from 29 IBGC-affected families of varied ancestry and collected medical history, neurological exam, and head CT scans to characterize each patient’s disease status. We screened our patient cohort for mutations in SLC20A2. Twelve novel (nonsense, deletions, missense, and splice site) potentially pathogenic variants, one synonymous variant, and one previously reported mutation were identified in 13 families. Variants predicted to be deleterious cosegregated with disease in five families. Three families showed nonsegregation with clinical disease of such variants, but retrospective review of clinical and neuroimaging data strongly suggested previous misclassification. Overall, mutations in SLC20A2 account for as many as 41 % of our familial IBGC cases. Our screen in a large series expands the catalog of SLC20A2 mutations identified to date and demonstrates that mutations in SLC20A2 are a major cause of familial IBGC. Non-perfect segregation patterns of predicted deleterious variants highlight the challenges of phenotypic assessment in this condition with highly variable clinical presentation. PMID:23334463

  17. Effect of an 8-week practice of externally triggered speech on basal ganglia activity of stuttering and fluent speakers.

    Science.gov (United States)

    Toyomura, Akira; Fujii, Tetsunoshin; Kuriki, Shinya

    2015-04-01

    The neural mechanisms underlying stuttering are not well understood. It is known that stuttering appears when persons who stutter speak in a self-paced manner, but speech fluency is temporarily increased when they speak in unison with external trigger such as a metronome. This phenomenon is very similar to the behavioral improvement by external pacing in patients with Parkinson's disease. Recent imaging studies have also suggested that the basal ganglia are involved in the etiology of stuttering. In addition, previous studies have shown that the basal ganglia are involved in self-paced movement. Then, the present study focused on the basal ganglia and explored whether long-term speech-practice using external triggers can induce modification of the basal ganglia activity of stuttering speakers. Our study of functional magnetic resonance imaging revealed that stuttering speakers possessed significantly lower activity in the basal ganglia than fluent speakers before practice, especially when their speech was self-paced. After an 8-week speech practice of externally triggered speech using a metronome, the significant difference in activity between the two groups disappeared. The cerebellar vermis of stuttering speakers showed significantly decreased activity during the self-paced speech in the second compared to the first experiment. The speech fluency and naturalness of the stuttering speakers were also improved. These results suggest that stuttering is associated with defective motor control during self-paced speech, and that the basal ganglia and the cerebellum are involved in an improvement of speech fluency of stuttering by the use of external trigger. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Vulvar basal cell carcinoma, a rare location

    Directory of Open Access Journals (Sweden)

    Cornelia Nitipir

    2018-05-01

    Full Text Available Basal Cell Carcinoma is the most common human malignant neoplasm. Vulvar basal cell carcinoma is rare, accounting for less than 5% of all vulvar neoplasms. Vulvar basal cell carcinomas are usually diagnosed late because they are often asymptomatic and tend to grow at slow rates. They are usually diagnosed late because they are often asymptomatic. However, these tumours may appear in areas which are normally covered with ultraviolet light. We present the case of a 60 years old woman diagnosed with invasive breast cancer for which she underwent surgery followed by chemotherapy and radiotherapy. The patient presented to our department with an ulcerated vulvar lesion. On inspection, the tumour measured 3/2 cm and was located on the left labium majus. The biopsy confirmed the diagnosis of vulvar basal cell carcinoma and a wide local excision was performed with no relapse at one year. In conclusion, early detection of BCC’s is critical to allow complete surgical cure so any abnormality on the vulva should be biopsied. A wide safety margin of 1cm should be achieved when resecting the tumour and the physician should keep in mind that the BCC’s of the vulva has a high recurrence rate. Previous chemotherapy is not associated with this type of non-melanoma skin cancer.

  19. Glycomic characterization of basal tears and changes with diabetes and diabetic retinopathy.

    Science.gov (United States)

    Nguyen-Khuong, Terry; Everest-Dass, Arun V; Kautto, Liisa; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H

    2015-03-01

    As a secreted fluid, the state of tear glycosylation is particularly important in the role of immunity of the ocular surface. Tears are a valuable source of non-invasive biomarkers for disease and there are continued efforts to characterize their components thoroughly. In this study, a small volume of basal tears (5 μL) was collected from healthy controls, patients with diabetes without retinopathy and patients with diabetes and retinopathy. The detailed N- and O-linked tear protein glycome was characterized and the relative abundance of each structure determined. Of the 50 N-linked glycans found, 89% were complex with 50% containing a bisecting N-acetylglucosamine, 65% containing a core fucose whilst 33% were sialylated. Of the 8 O-linked glycans detected, 3 were of cores 1 and 5 of core 2 type, with a majority of them being sialylated (90%). Additionally, these glycan structures were profiled across the three diabetic disease groups. Whilst the higher abundant structures did not alter across the three groups, only five low abundance N-linked glycans and 1 O-linked glycan did alter with the onset of diabetes mellitus and diabetic retinopathy (DR). These results suggest the conservation of glycan types on basal tear proteins between individuals and point to only small changes in glycan expression on the proteins in tears with the development of diabetes and DR. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  20. Sal-like 4 (SALL4) suppresses CDH1 expression and maintains cell dispersion in basal-like breast cancer.

    Science.gov (United States)

    Itou, Junji; Matsumoto, Yoshiaki; Yoshikawa, Kiyotsugu; Toi, Masakazu

    2013-09-17

    In cell cultures, the dispersed phenotype is indicative of the migratory ability. Here we characterized Sal-like 4 (SALL4) as a dispersion factor in basal-like breast cancer. Our shRNA-mediated SALL4 knockdown system and SALL4 overexpression system revealed that SALL4 suppresses the expression of adhesion gene CDH1, and positively regulates the CDH1 suppressor ZEB1. Cell behavior analyses showed that SALL4 suppresses intercellular adhesion and maintains cell motility after cell-cell interaction and cell division, which results in the dispersed phenotype. Our findings indicate that SALL4 functions to suppress CDH1 expression and to maintain cell dispersion in basal-like breast cancer. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. Basal cell epithelioma (carcinoma) in children and teenagers

    Energy Technology Data Exchange (ETDEWEB)

    Rahbari, H.; Mehregan, A.H.

    1982-01-15

    Among over 390,000 routine dermatopathologic specimens there were 85 cases diagnosed as basal cell epithelioma (carcinoma) (BCE) in persons 19 years old or younger. This number was refined to 40 cases de novo BCE in children and teenagers. Basal cell epithelioma unrelated to other conditions is rare in the young and it should be differentiated from similar fibroepithelial growths.

  2. Vismodegib in patients with advanced basal cell carcinoma (STEVIE): a pre-planned interim analysis of an international, open-label trial.

    Science.gov (United States)

    Basset-Seguin, Nicole; Hauschild, Axel; Grob, Jean-Jacques; Kunstfeld, Rainer; Dréno, Brigitte; Mortier, Laurent; Ascierto, Paolo A; Licitra, Lisa; Dutriaux, Caroline; Thomas, Luc; Jouary, Thomas; Meyer, Nicolas; Guillot, Bernard; Dummer, Reinhard; Fife, Kate; Ernst, D Scott; Williams, Sarah; Fittipaldo, Alberto; Xynos, Ioannis; Hansson, Johan

    2015-06-01

    The Hedgehog pathway inhibitor vismodegib has shown clinical benefit in patients with advanced basal cell carcinoma and is approved for treatment of patients with advanced basal cell carcinoma for whom surgery is inappropriate. STEVIE was designed to assess the safety of vismodegib in a situation similar to routine practice, with a long follow-up. In this multicentre, open-label trial, adult patients with histologically confirmed locally advanced basal cell carcinoma or metastatic basal cell carcinoma were recruited from regional referral centres or specialist clinics. Eligible patients were aged 18 years or older with an Eastern Cooperative Oncology Group (ECOG) performance status of 0-2, and adequate organ function. Patients with locally advanced basal cell carcinoma had to have been deemed ineligible for surgery. All patients received 150 mg oral vismodegib capsules once a day on a continuous basis in 28-day cycles. The primary objective was safety (incidence of adverse events until disease progression or unacceptable toxic effects), with assessments on day 1 of each treatment cycle (28 days) by principal investigator and coinvestigators at the site. Efficacy variables were assessed as secondary endpoints. The safety evaluable population included all patients who received at least one dose of study drug. Patients with histologically confirmed basal cell carcinoma who received at least one dose of study drug were included in the efficacy analysis. An interim analysis was pre-planned after 500 patients achieved 1 year of follow-up. This trial is registered with ClinicalTrials.gov, number NCT01367665. The study is still ongoing. Between June 30, 2011, and Nov 6, 2014, we enrolled 1227 patients. At clinical cutoff (Nov 6, 2013), 499 patients (468 with locally advanced basal cell carcinoma and 31 with metastatic basal cell carcinoma) had received study drug and had the potential to be followed up for 12 months or longer. Treatment was discontinued in 400 (80

  3. Autonomic regulation in fetuses with congenital heart disease.

    Science.gov (United States)

    Siddiqui, Saira; Wilpers, Abigail; Myers, Michael; Nugent, J David; Fifer, William P; Williams, Ismée A

    2015-03-01

    Exposure to antenatal stressors affects autonomic regulation in fetuses. Whether the presence of congenital heart disease (CHD) alters the developmental trajectory of autonomic regulation is not known. This prospective observational cohort study aimed to further characterize autonomic regulation in fetuses with CHD; specifically hypoplastic left heart syndrome (HLHS), transposition of the great arteries (TGA), and tetralogy of Fallot (TOF). From 11/2010 to 11/2012, 92 fetuses were enrolled: 41 controls and 51 with CHD consisting of 19 with HLHS, 12 with TGA, and 20 with TOF. Maternal abdominal fetal electrocardiogram (ECG) recordings were obtained at 3 gestational ages: 19-27 weeks (F1), 28-33 weeks (F2), and 34-38 weeks (F3). Fetal ECG was analyzed for mean heart rate along with 3 measures of autonomic variability of the fetal heart rate: interquartile range, standard deviation, and root mean square of the standard deviation of the heart rate (RMSSD), a measure of parasympathetic activity. During F1 and F2 periods, HLHS fetuses demonstrated significantly lower mean HR than controls (pHeart rate variability at F3, as measured by standard deviation, interquartile range, and RMSSD was lower in HLHS than controls (p<0.05). Other CHD subgroups showed a similar, though non-significant trend towards lower variability. Autonomic regulation in CHD fetuses differs from controls, with HLHS fetuses most markedly affected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Development and Application of a Microfluidics-Based Panel in the Basal/Luminal Transcriptional Characterization of Archival Bladder Cancers.

    Directory of Open Access Journals (Sweden)

    Doris Kim

    Full Text Available In the age of personalized medicine stratifying tumors into molecularly defined subtypes associated with distinctive clinical behaviors and predictable responses to therapies holds tremendous value. Towards this end, we developed a custom microfluidics-based bladder cancer gene expression panel for characterization of archival clinical samples. In silico analysis indicated that the content of our panel was capable of accurately segregating bladder cancers from several public datasets into the clinically relevant basal and luminal subtypes. On a technical level, our bladder cancer panel yielded robust and reproducible results when analyzing formalin-fixed, paraffin-embedded (FFPE tissues. We applied our panel in the analysis of a novel set of 204 FFPE samples that included non-muscle invasive bladder cancers (NMIBCs, muscle invasive disease (MIBCs, and bladder cancer metastases (METs. We found NMIBCs to be mostly luminal-like, MIBCs to include both luminal- and basal-like types, and METs to be predominantly of a basal-like transcriptional profile. Mutational analysis confirmed the expected enrichment of FGFR3 mutations in luminal samples, and, consistently, FGFR3 IHC showed high protein expression levels of the receptor in these tumors. Our bladder cancer panel enables basal/luminal characterization of FFPE tissues and with further development could be used for stratification of bladder cancer samples in the clinic.

  5. Regulation of human trophoblast GLUT1 glucose transporter by insulin-like growth factor I (IGF-I.

    Directory of Open Access Journals (Sweden)

    Marc U Baumann

    Full Text Available Glucose transport to the fetus across the placenta takes place via glucose transporters in the opposing faces of the barrier layer, the microvillous and basal membranes of the syncytiotrophoblast. While basal membrane content of the GLUT1 glucose transporter appears to be the rate-limiting step in transplacental transport, the factors regulating transporter expression and activity are largely unknown. In view of the many studies showing an association between IGF-I and fetal growth, we investigated the effects of IGF-I on placental glucose transport and GLUT1 transporter expression. Treatment of BeWo choriocarcinoma cells with IGF-I increased cellular GLUT1 protein. There was increased basolateral (but not microvillous uptake of glucose and increased transepithelial transport of glucose across the BeWo monolayer. Primary syncytial cells treated with IGF-I also demonstrated an increase in GLUT1 protein. Term placental explants treated with IGF-I showed an increase in syncytial basal membrane GLUT1 but microvillous membrane GLUT1 was not affected. The placental dual perfusion model was used to assess the effects of fetally perfused IGF-I on transplacental glucose transport and syncytial GLUT1 content. In control perfusions there was a decrease in transplacental glucose transport over the course of the perfusion, whereas in tissues perfused with IGF-I through the fetal circulation there was no change. Syncytial basal membranes from IGF-I perfused tissues showed an increase in GLUT1 content. These results demonstrate that IGF-I, whether acting via microvillous or basal membrane receptors, increases the basal membrane content of GLUT1 and up-regulates basal membrane transport of glucose, leading to increased transepithelial glucose transport. These observations provide a partial explanation for the mechanism by which IGF-I controls nutrient supply in the regulation of fetal growth.

  6. Fissura palatina reparada: fechamento velofaríngeo antes e durante o som basal Cleft palate repair: velopharyngeal closure before and during the basal tone

    Directory of Open Access Journals (Sweden)

    Giseane Conterno

    2010-04-01

    Full Text Available Portadores de fissura palatina apresentam inadequado fechamento velofaríngeo (FVF, com consequente hipernasalidade vocal que pode ser diminuída com o som basal. OBJETIVO: Comparar o FVF durante a realização do som basal com a emissão em registro modal, em pacientes com fissura palatina pós-forame reparada. MATERIAIS E MÉTODOS: Estudo de Casos com quatro homens adultos, portadores de fissura palatina pós-forame reparada. Imagens do FVF por nasofaringoscopia, durante a emissão da vogal [a] em registro modal e basal. Julgamento das imagens realizado por quatro otorrinolaringologistas. RESULTADOS: Em três sujeitos, não houve mudança no tipo de FVF entre os registros analisados; as modificações que ocorreram na maioria dos sujeitos referem-se apenas ao grau de movimentação das estruturas envolvidas, pois, em registro basal, o movimento das paredes laterais da faringe se manteve, o movimento da parede posterior da faringe estabilizou, o movimento do véu palatino diminuiu discretamente, e a Prega de Passavant se evidenciou. CONCLUSÕES: O tipo de FVF se manteve em três dos quatro sujeitos analisados, quando comparado o registro modal com o basal, havendo modificações no grau da movimentação das estruturas envolvidas, evidenciando a Prega de Passavant.Patients with palatine fissure have inadequate velopharyngeal closure (VPC, with consequent vocal hypernasality which can be reduced by a basal tone. AIM: to compare VPC during a basal tone with the emission of a modal recording, in patients with repaired post-foramen palatine fissure. MATERIALS AND METHODS: case study with four adult men, all with repaired post-foramen palatine fissure. VPC images through nasal-pharyngoscopy during the emission o f the [a] vowel in a modal and basal recording. The images were studied by four ENTs. RESULTS: in three subjects there was no change in the type of VPC considering the recordings analyzed; the changes which happened to most of the subjects

  7. Calcium regulation and Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Deepthi Rapaka

    2014-09-01

    Full Text Available Activation of the neuron induces transient fluctuations in [Ca2+]i. This transient rise in [Ca2+]i is dependent on calcium entry via calcium channels and release of calcium from intracellular stores, finally resulting in increase in calcium levels, which activates calcium regulatory proteins to restore the resting calcium levels by binding to the calcium-binding proteins, sequestration into the endoplasmic reticulum and the mitochondria, and finally extrusion of calcium spike potential from the cell by adenosine triphosphate-driven Ca2+ pumps and the Na+/Ca2+ exchanger. Improper regulation of calcium signaling, sequentially, likely contributes to synaptic dysfunction and excitotoxic and/or apoptotic death of the vulnerable neuronal populations. The cognitive decline associated with normal aging is not only due to neuronal loss, but is fairly the result of synaptic connectivity. Many evidences support that Ca2+ dyshomeostasis is implicated in normal brain aging. Thus the chief factor associated with Alzheimer’s disease was found to be increase in the levels of free intracellular calcium, demonstrating that the excessive levels might lead to cell death, which provides a key target for the calcium channel blockers might be used as the neuroprotective agents in Alzheimer’s disease.

  8. Pinpointing Synaptic Loss Caused by Alzheimer?s Disease with fMRI

    OpenAIRE

    Brickman, Adam M.; Small, Scott A.; Fleisher, Adam

    2009-01-01

    During its earliest stage, before cell loss and independent of amyloid plaques and neurofibrillary tangles, Alzheimer's disease (AD) causes synaptic loss affecting the basal functional properties of neurons. In principle, synaptic loss can be detected by measuring AD-induced changes in basal function, or by measuring stimulus-evoked responses on top of basal changes. Functional magnetic resonance imaging (fMRI) is sensitive to both basal changes and evoked-responses, and there are therefore t...

  9. Novel signal-dependent filter bank method for identification of multiple basal ganglia nuclei in Parkinsonian patients

    Science.gov (United States)

    Pinzon-Morales, R. D.; Orozco-Gutierrez, A. A.; Castellanos-Dominguez, G.

    2011-06-01

    Microelectrode recordings are a valuable tool for assisting localization targets during deep brain stimulation procedures in Parkinson's disease neurosurgery. Attempts to automate and standardize this process have been limited by variability in patient neurophysiology and strong dynamics of microelectrode recordings. In this paper, a methodology for the identification of basal ganglia nuclei is presented that is based on a signal-dependent filter bank method using microelectrode recordings. The method is a customized realization of the discrete wavelet transform via the lifting scheme that is optimally tuned by genetic algorithms. Using this method, unique mother wavelet functions that exhibit an adaptable spectrum to the microelectrode recording dynamic are generated. Additionally, by extracting morphological features from the space-transformed microelectrode recording, it is possible to integrate them into three-dimensional (3D) feature spaces with maximum class separability. Finally, high discriminant feature spaces are fed into basic classifiers to recognize up to four basal nuclei. Comparison with several existing wavelets highlights the characteristics of new mother wavelets. Additionally, classification results show that identification of addressed nuclei in the basal ganglia can be performed with 95% confidence.

  10. Nutritional components regulate the gut immune system and its association with intestinal immune disease development.

    Science.gov (United States)

    Lamichhane, Aayam; Kiyono, Hiroshi; Kunisawa, Jun

    2013-12-01

    The gut is equipped with a unique immune system for maintaining immunological homeostasis, and its functional immune disruption can result in the development of immune diseases such as food allergy and intestinal inflammation. Accumulating evidence has demonstrated that nutritional components play an important role in the regulation of gut immune responses and also in the development of intestinal immune diseases. In this review, we focus on the immunological functions of lipids, vitamins, and nucleotides in the regulation of the intestinal immune system and as potential targets for the control of intestinal immune diseases. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  11. Vismodegib (ERIVEDGE°) In basal cell carcinoma: too many unknowns.

    Science.gov (United States)

    2015-01-01

    Basal cell carcinomas are the most common skin cancers. They are usually localised and carry a good prognosis. There is no standard treatment for the rare patients with metastatic basal cell carcinoma or very extensive basal cell carcinoma for whom surgery or radiotherapy is inappropriate. Vismodegib, a cytotoxic drug, is claimed to prevent tumour growth by inhibiting a pathway involved in tissue repair and embryogenesis. It has been authorised in the European Union for patients with metastatic or locally advanced and extensive basal cell carcinoma. Clinical evaluation of vismodegib is based on a non-comparative clinical trial involving 104 patients, providing only weak evidence. Twenty-one months after the start of the trial, 7 patients with metastases (21%) and 6 patients with advanced basal cell carcinoma (10%) had died. Given the lack of a placebo group, there is no way of knowing whether vismodegib had any effect, positive or negative, on survival. There were no complete responses among patients with metastases, but about one-third of them had partial responses. Among the 63 patients with locally advanced basal cell carcinoma, there were 14 complete responses and 16 partial responses. The recurrence rate in patients with complete responses was not reported. Similar results were reported in two other uncontrolled trials available in mid-2014. Vismodegib has frequent and sometimes serious adverse effects, including muscle spasms, fatigue and severe hyponatraemia. Cases of severe weight loss, alopecia, ocular disorders, other cancers (including squamous cell carcinoma) and anaemia have also been reported. More data are needed on possible hepatic and cardiovascular adverse effects. A potent teratogenic effect was seen in experimental animals. As vismodegib enters semen, contraception is mandatory for both men (condoms) and women. In practice, vismodegib has frequent and varied adverse effects, some of which are serious, while its benefits are poorly documented

  12. Transcriptional regulation of HIV-1 host factor COMMD1 by the Sp family.

    Science.gov (United States)

    Kudo, Eriko; Taura, Manabu; Suico, Mary Ann; Goto, Hiroki; Kai, Hirofumi; Okada, Seiji

    2018-04-01

    Copper metabolism Murr1 domain containing 1 (COMMD1) has multiple functions in the regulation of protein stability at the plasma membrane and in the cytoplasm. However, the regulation of COMMD1 transcriptional has remained to be elucidated. In the present study, the 5'‑flanking region (‑1,192/+83 bp) of the human COMMD1 gene was cloned. It was observed that the COMMD1 promoter region contains GC‑rich region that has 7 putative Sp1‑binding sites via in silico analysis. The proximal promoter region at ‑289/+83 bp was required for COMMD1 basal promoter activity by deletion constructs of COMMD1 promoter. Moreover, Sp1 inhibitor, mithramycin A, suppressed basal COMMD1 promoter activity. The Sp1‑binding site (‑11/‑1 bp) in the proximal promoter region was a critical site for COMMD1 gene regulation by Sp1 and Sp3. Sp1 upregulated COMMD1 promoter activity, whereas Sp3 suppressed it. Endogenous Sp1 and Sp3 bound to the proximal promoter region of COMMD1. Taken together, Sp1 constitutively regulates the basal expression of the COMMD1 gene in human epithelial cell lines.

  13. Regulation of gamma-Secretase in Alzheimer's Disease

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Shuxia; Zhou, Hua; Walian, Peter; Jap, Bing

    2007-02-07

    The {gamma}-secretase complex is an intramembrane aspartyl protease that cleaves its substrates along their transmembrane regions. Sequential proteolytic processing of amyloid precursor protein by {beta}- and {gamma}-secretase produces amyloid {beta}-peptides, which are the major components of amyloid plaques in the brains of Alzheimer's disease patients. The {gamma}-secretase complex is therefore believed to be critical in the pathogenesis of Alzheimer's disease. Here we review the range of factors found to affect the nature and degree of {gamma}-secretase complex activity; these include {gamma}-secretase complex assembly and activation, the integral regulatory subunit CD147, transient or weak binding partners, the levels of cholesterol and sphingolipids in cell membranes, and inflammatory cytokines. Integrated knowledge of the molecular mechanisms supporting the actions of these factors is expected to lead to a comprehensive understanding of the functional regulation of the {gamma}-secretase complex, and this, in turn, should facilitate the development of novel therapeutic strategies for the treatment of Alzheimer's disease.

  14. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    International Nuclear Information System (INIS)

    Sugaya, Shigeru; Nakanishi, Hiroshi; Tanzawa, Hideki; Sugita, Katsuo; Kita, Kazuko; Suzuki, Nobuo

    2005-01-01

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested

  15. Down-regulation of SMT3A gene expression in association with DNA synthesis induction after X-ray irradiation in nevoid basal cell carcinoma syndrome (NBCCS) cells

    Energy Technology Data Exchange (ETDEWEB)

    Sugaya, Shigeru [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Nakanishi, Hiroshi [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Tanzawa, Hideki [Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Sugita, Katsuo [Department of Clinical Medicine, Faculty of Education, Chiba University, 1-33 Yayoi, Inage-ku, Chiba 263-8522 (Japan); Kita, Kazuko [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan); Suzuki, Nobuo [Department of Environmental Biochemistry, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670 (Japan)]. E-mail: nobuo@faculty.chiba-u.jp

    2005-10-15

    Fibroblast cells derived from nevoid basal carcinoma syndrome (NBCCS) patients show increased levels of DNA synthesis after X-ray irradiation. Genes, whose expression is modulated in association with the DNA synthesis induction, were searched by using PCR-based mRNA differential display analysis in one of the NBCCS cell lines, NBCCS1 cells. Decreased levels of SMT3A gene expression were found in X-ray-irradiated NBCCS1 cells. This decrease was also shown by RT-PCR analysis in another cell line, NBCCS3 cells. In addition to NBCCS cells, normal fibroblast cells showed the DNA synthesis induction after X-ray irradiation when they were treated with antisense oligonucleotides (AO) for SMT3A. However, treatment of normal fibroblasts with the random oligonucleotides (RO) resulted in decreased levels of DNA synthesis after X-ray irradiation. Thus, down-regulation of SMT3A gene expression may be involved in the DNA synthesis induction after X-ray irradiation in the NBCCS cells at least tested.

  16. Parallel basal ganglia circuits for decision making.

    Science.gov (United States)

    Hikosaka, Okihide; Ghazizadeh, Ali; Griggs, Whitney; Amita, Hidetoshi

    2018-03-01

    The basal ganglia control body movements, mainly, based on their values. Critical for this mechanism is dopamine neurons, which sends unpredicted value signals, mainly, to the striatum. This mechanism enables animals to change their behaviors flexibly, eventually choosing a valuable behavior. However, this may not be the best behavior, because the flexible choice is focused on recent, and, therefore, limited, experiences (i.e., short-term memories). Our old and recent studies suggest that the basal ganglia contain separate circuits that process value signals in a completely different manner. They are insensitive to recent changes in value, yet gradually accumulate the value of each behavior (i.e., movement or object choice). These stable circuits eventually encode values of many behaviors and then retain the value signals for a long time (i.e., long-term memories). They are innervated by a separate group of dopamine neurons that retain value signals, even when no reward is predicted. Importantly, the stable circuits can control motor behaviors (e.g., hand or eye) quickly and precisely, which allows animals to automatically acquire valuable outcomes based on historical life experiences. These behaviors would be called 'skills', which are crucial for survival. The stable circuits are localized in the posterior part of the basal ganglia, separately from the flexible circuits located in the anterior part. To summarize, the flexible and stable circuits in the basal ganglia, working together but independently, enable animals (and humans) to reach valuable goals in various contexts.

  17. Pallidal gap junctions-triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, T.; Zhao, Y.; Gils, S.A. van; Wezel, R.J.A. van

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  18. Pallidal gap junctions - Triggers of synchrony in Parkinson's disease?

    NARCIS (Netherlands)

    Schwab, B.C.; Heida, Tjitske; Zhao, Yan; van Gils, Stephanus A.; van Wezel, Richard Jack Anton

    2014-01-01

    Although increased synchrony of the neural activity in the basal ganglia may underlie the motor deficiencies exhibited in Parkinson's disease (PD), how this synchrony arises, propagates through the basal ganglia, and changes under dopamine replacement remains unknown. Gap junctions could play a

  19. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases

    Science.gov (United States)

    Li, W; Chen, Y-T; Hayashida, Y; Blanco, G; Kheirkah, A; He, H; Chen, S-Y; Liu, C-Y; Tseng, SCG

    2010-01-01

    Pax6 is the universal master control gene for eye morphogenesis. Other than retina and lens, Pax6 also expressed in the ocular surface epithelium from early gestation until the postnatal stage, in which little is known about the function of Pax6. In this study, corneal pannus tissues from patients with ocular surface diseases such as Stevens–Johnson syndrome (SJS), chemical burn, aniridia and recurrent pterygium were investigated. Our results showed that normal ocular surface epithelial cells expressed Pax6. However, corneal pannus epithelial cells from the above patients showed a decline or absence of Pax6 expression, accompanied by a decline or absence of K12 keratin but an increase of K10 keratin and filaggrin expression. Pannus basal epithelial cells maintained nuclear p63 expression and showed activated proliferation, evidenced by positive Ki67 and K16 keratin staining. On 3T3 fibroblast feeder layers, Pax6 immunostaining was negative in clones generated from epithelial cells harvested from corneal pannus from SJS or aniridia, but positive in those from the normal limbal epithelium; whereas western blots showed that some epithelial clones expanded from pannus retained Pax6 expression. Transient transfection of an adenoviral vector carrying EGFP–Pax6 transgenes into these Pax6− clones increased both Pax6 and K12 keratin expression. These results indicate that Pax6 helps to maintain the normal corneal epithelial phenotype postnatally, and that down-regulation of Pax6 is associated with abnormal epidermal differentiation in severe ocular surface diseases. Reintroduction of activation of the Pax6 gene might be useful in treating squamous metaplasia of the ocular surface epithelium. PMID:18027901

  20. Bilateral basal ganglia calcifications visualised on CT scan.

    OpenAIRE

    Brannan, T S; Burger, A A; Chaudhary, M Y

    1980-01-01

    Thirty-eight cases of basal ganglia calcification imaged on computed axial tomography were reviewed. Most cases were felt to represent senescent calcification. The possibility of a vascular aetiology in this group is discussed. A less common group of patients was identified with calcification secondary to abnormalities in calcium metabolism or radiation therapy. Three cases of basal ganglia calcifications were detected in juvenile epileptic patients receiving chronic anticonvulsants. These ca...

  1. Basal metabolic state governs AIF-dependent growth support in pancreatic cancer cells

    International Nuclear Information System (INIS)

    Scott, Andrew J.; Wilkinson, Amanda S.; Wilkinson, John C.

    2016-01-01

    Apoptosis-inducing factor (AIF), named for its involvement in cell death pathways, is a mitochondrial protein that regulates metabolic homeostasis. In addition to supporting the survival of healthy cells, AIF also plays a contributory role to the development of cancer through its enzymatic activity, and we have previously shown that AIF preferentially supports advanced-stage prostate cancer cells. Here we further evaluated the role of AIF in tumorigenesis by exploring its function in pancreatic cancer, a disease setting that most often presents at an advanced stage by the time of diagnosis. A bioinformatics approach was first employed to investigate AIF mRNA transcript levels in pancreatic tumor specimens vs. normal tissues. AIF-deficient pancreatic cancer cell lines were then established via lentiviral infection. Immunoblot analysis was used to determine relative protein quantities within cells. Cell viability was measured by flow cytometry; in vitro and Matrigel™ growth/survival using Coulter™ counting and phase contrast microscopy; and glucose consumption in the absence and presence of Matrigel™ using spectrophotometric methods. Archival gene expression data revealed a modest elevation of AIF transcript levels in subsets of pancreatic tumor specimens, suggesting a possible role in disease progression. AIF expression was then suppressed in a panel of five pancreatic cancer cell lines that display diverse metabolic phenotypes. AIF ablation selectively crippled the growth of cells in vitro in a manner that directly correlated with the loss of mitochondrial respiratory chain subunits and altered glucose metabolism, and these effects were exacerbated in the presence of Matrigel™ substrate. This suggests a critical metabolic role for AIF to pancreatic tumorigenesis, while the spectrum of sensitivities to AIF ablation depends on basal cellular metabolic phenotypes. Altogether these data indicate that AIF supports the growth and survival of metabolically defined

  2. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond.

    Science.gov (United States)

    Bakshi, Anshika; Chaudhary, Sandeep C; Rana, Mehtab; Elmets, Craig A; Athar, Mohammad

    2017-12-01

    Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs. © 2017 Wiley Periodicals, Inc.

  3. Parkinson's Disease

    Science.gov (United States)

    ... a long and relatively healthy life. What Causes Parkinson's Disease? In the very deep parts of the brain, there is a collection of nerve cells that help control movement, known as the basal ganglia (say: BAY-sul GAN-glee-ah). In a ...

  4. Frequency and function in the basal ganglia: the origins of beta and gamma band activity.

    Science.gov (United States)

    Blenkinsop, Alexander; Anderson, Sean; Gurney, Kevin

    2017-07-01

    Neuronal oscillations in the basal ganglia have been observed to correlate with behaviours, although the causal mechanisms and functional significance of these oscillations remain unknown. We present a novel computational model of the healthy basal ganglia, constrained by single unit recordings from non-human primates. When the model is run using inputs that might be expected during performance of a motor task, the network shows emergent phenomena: it functions as a selection mechanism and shows spectral properties that match those seen in vivo. Beta frequency oscillations are shown to require pallido-striatal feedback, and occur with behaviourally relevant cortical input. Gamma oscillations arise in the subthalamic-globus pallidus feedback loop, and occur during movement. The model provides a coherent framework for the study of spectral, temporal and functional analyses of the basal ganglia and lays the foundation for an integrated approach to study basal ganglia pathologies such as Parkinson's disease in silico. Neural oscillations in the basal ganglia (BG) are well studied yet remain poorly understood. Behavioural correlates of spectral activity are well described, yet a quantitative hypothesis linking time domain dynamics and spectral properties to BG function has been lacking. We show, for the first time, that a unified description is possible by interpreting previously ignored structure in data describing globus pallidus interna responses to cortical stimulation. These data were used to expose a pair of distinctive neuronal responses to the stimulation. This observation formed the basis for a new mathematical model of the BG, quantitatively fitted to the data, which describes the dynamics in the data, and is validated against other stimulus protocol experiments. A key new result is that when the model is run using inputs hypothesised to occur during the performance of a motor task, beta and gamma frequency oscillations emerge naturally during static-force and

  5. Basal testosterone, leadership and dominance: A field study and meta-analysis.

    Science.gov (United States)

    van der Meij, Leander; Schaveling, Jaap; van Vugt, Mark

    2016-10-01

    This article examines the role of basal testosterone as a potential biological marker of leadership and hierarchy in the workplace. First, we report the result of a study with a sample of male employees from different corporate organizations in the Netherlands (n=125). Results showed that employees with higher basal testosterone levels reported a more authoritarian leadership style, but this relationship was absent among those who currently held a real management position (i.e., they had at least one subordinate). Furthermore, basal testosterone levels were not different between managers and non-managers, and testosterone was not associated with various indicators of status and hierarchy such as number of subordinates, income, and position in the organizational hierarchy. In our meta-analysis (second study), we showed that basal testosterone levels were not associated with leadership in men nor in women (9 studies, n=1103). Taken together, our findings show that basal testosterone is not associated with having a leadership position in the corporate world or related to leadership styles in leaders. We suggest that basal testosterone could play a role in acquiring leadership positions through dominant and authoritarian behavior. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  6. Giant basal cell carcinoma of the eyelid: a case history | Fetohi | Pan ...

    African Journals Online (AJOL)

    Giant basal cell carcinoma of the eyelid: a case history. ... Abstract. Basal cell carcinoma is a type of skin cancer and rare, aggressive forms of basal cell ... She died 09 months after the end of irradiation in Intensive care unit due to septic shock.

  7. CT brain demonstration of basal ganglion calcification in adult HIV ...

    African Journals Online (AJOL)

    brain barrier has been postulated. Calcification of the basal ganglia in encephalopathic HIV/AIDS children has been relatively well documented. Only two adult HIV cases with basal ganglion calcification (BGC) have been reported in the literature.

  8. The impact of multichannel microelectrode recording (MER) in deep brain stimulation of the basal ganglia.

    Science.gov (United States)

    Kinfe, Thomas M; Vesper, Jan

    2013-01-01

    Deep brain stimulation (DBS) of the basal ganglia (Ncl. subthalamicus, Ncl. ventralis intermedius thalami, globus pallidus internus) has become an evidence-based and well-established treatment option in otherwise refractory movement disorders. The Ncl. subthalamicus (STN) is the target of choice in Parkinson's disease.However, a considerable discussion is currently ongoing with regard to the necessity for micro-electrode recording (MER) in DBS surgery.The present review provides an overview on deep brain stimulation and (MER) of the STN in patients with Parkinson's disease. Detailed description is given concerning the multichannel MER systems nowadays available for DBS of the basal ganglia, especially of the STN, as a useful tool for target refinement. Furthermore, an overview is given of the historical aspects, spatial mapping of the STN by MER, and its impact for accuracy and precision in current functional stereotactic neurosurgery.The pros concerning target refinement by MER means on the one hand, and cons including increased bleeding risk, increased operation time, local or general anesthesia, and single versus multichannel microelectrode recording are discussed in detail. Finally, the authors favor the use of MER with intraoperative testing combined with imaging to achieve a more precise electrode placement, aiming to ameliorate clinical outcome in therapy-resistant movement disorders.

  9. Nevoid Basal Cell Carcinoma Syndrome: A Case Report

    Directory of Open Access Journals (Sweden)

    Razavi

    2016-09-01

    Full Text Available Nevoid basal cell carcinoma syndrome (BCNS is an autosomal dominant inherited disorder. Multiple organ systems may be affected in this syndrome including abnormalities of the skin, skeletal system, genitourinary system and central nevus system. In this report, we present a case of Nevoid basal cell carcinoma syndrome in a 26-year-old male patient. The patient had multiple odontogenic keratocyst in the posterior of mandible, syndactyly in both hand and bifid rib. After enucleation and curettage, he was followed for two years. A number of both clinical and radiological criteria are used to diagnose this syndrome. Basal cell carcinoma syndrome is diagnosed with two major criteria or one major and two minor criteria. We must suspect this disorder in young patients with multiple odontogenic keratocyst and dental abnormalities whether related or not with other clinical manifestations or familial history.

  10. Automatic evaluation of speech rhythm instability and acceleration in dysarthrias associated with basal ganglia dysfunction

    Directory of Open Access Journals (Sweden)

    Jan eRusz

    2015-07-01

    Full Text Available Speech rhythm abnormalities are commonly present in patients with different neurodegenerative disorders. These alterations are hypothesized to be a consequence of disruption to the basal ganglia circuitry involving dysfunction of motor planning, programming and execution, which can be detected by a syllable repetition paradigm. Therefore, the aim of the present study was to design a robust signal processing technique that allows the automatic detection of spectrally-distinctive nuclei of syllable vocalizations and to determine speech features that represent rhythm instability and acceleration. A further aim was to elucidate specific patterns of dysrhythmia across various neurodegenerative disorders that share disruption of basal ganglia function. Speech samples based on repetition of the syllable /pa/ at a self-determined steady pace were acquired from 109 subjects, including 22 with Parkinson's disease (PD, 11 progressive supranuclear palsy (PSP, 9 multiple system atrophy (MSA, 24 ephedrone-induced parkinsonism (EP, 20 Huntington's disease (HD, and 23 healthy controls. Subsequently, an algorithm for the automatic detection of syllables as well as features representing rhythm instability and rhythm acceleration were designed. The proposed detection algorithm was able to correctly identify syllables and remove erroneous detections due to excessive inspiration and nonspeech sounds with a very high accuracy of 99.6%. Instability of vocal pace performance was observed in PSP, MSA, EP and HD groups. Significantly increased pace acceleration was observed only in the PD group. Although not significant, a tendency for pace acceleration was observed also in the PSP and MSA groups. Our findings underline the crucial role of the basal ganglia in the execution and maintenance of automatic speech motor sequences. We envisage the current approach to become the first step towards the development of acoustic technologies allowing automated assessment of rhythm

  11. Microtubule affinity-regulating kinases are potential druggable targets for Alzheimer's disease.

    Science.gov (United States)

    Annadurai, Narendran; Agrawal, Khushboo; Džubák, Petr; Hajdúch, Marián; Das, Viswanath

    2017-11-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects normal functions of the brain. Currently, AD is one of the leading causes of death in developed countries and the only one of the top ten diseases without a means to prevent, cure, or significantly slow down its progression. Therefore, newer therapeutic concepts are urgently needed to improve survival and the quality of life of AD patients. Microtubule affinity-regulating kinases (MARKs) regulate tau-microtubule binding and play a crucial role in neurons. However, their role in hyperphosphorylation of tau makes them potential druggable target for AD therapy. Despite the relevance of MARKs in AD pathogenesis, only a few small molecules are known to have anti-MARK activity and not much has been done to progress these compounds into therapeutic candidates. But given the diverse role of MARKs, the specificity of novel inhibitors is imperative for their successful translation from bench to bedside. In this regard, a recent co-crystal structure of MARK4 in association with a pyrazolopyrimidine-based inhibitor offers a potential scaffold for the development of more specific MARK inhibitors. In this manuscript, we review the biological role of MARKs in health and disease, and draw attention to the largely unexplored area of MARK inhibitors for AD.

  12. Time estimation in Parkinson's disease and degenerative cerebellar disease

    NARCIS (Netherlands)

    Beudel, Martijin; Galama, Sjoukje; Leenders, Klaus L.; de Jong, Bauke M.

    2008-01-01

    With functional MRI, we recently identified fronto-cerebellar activations in predicting time to reach a target and basal ganglia activation in velocity estimation, that is, small interval assessment. We now tested these functions in patients with Parkinson's disease (PD) and degenerative cerebellar

  13. Spontaneous sleep-wake cycle and sleep deprivation differently induce Bdnf1, Bdnf4 and Bdnf9a DNA methylation and transcripts levels in the basal forebrain and frontal cortex in rats.

    Science.gov (United States)

    Ventskovska, Olena; Porkka-Heiskanen, Tarja; Karpova, Nina N

    2015-04-01

    Brain-derived neurotrophic factor (Bdnf) regulates neuronal plasticity, slow wave activity and sleep homeostasis. Environmental stimuli control Bdnf expression through epigenetic mechanisms, but there are no data on epigenetic regulation of Bdnf by sleep or sleep deprivation. Here we investigated whether 5-methylcytosine (5mC) DNA modification at Bdnf promoters p1, p4 and p9 influences Bdnf1, Bdnf4 and Bdnf9a expression during the normal inactive phase or after sleep deprivation (SD) (3, 6 and 12 h, end-times being ZT3, ZT6 and ZT12) in rats in two brain areas involved in sleep regulation, the basal forebrain and cortex. We found a daytime variation in cortical Bdnf expression: Bdnf1 expression was highest at ZT6 and Bdnf4 lowest at ZT12. Such variation was not observed in the basal forebrain. Also Bdnf p1 and p9 methylation levels differed only in the cortex, while Bdnf p4 methylation did not vary in either area. Factorial analysis revealed that sleep deprivation significantly induced Bdnf1 and Bdnf4 with the similar pattern for Bdnf9a in both basal forebrain and cortex; 12 h of sleep deprivation decreased 5mC levels at the cortical Bdnf p4 and p9. Regression analysis between the 5mC promoter levels and the corresponding Bdnf transcript expression revealed significant negative correlations for the basal forebrain Bdnf1 and cortical Bdnf9a transcripts in only non-deprived rats, while these correlations were lost after sleep deprivation. Our results suggest that Bdnf transcription during the light phase of undisturbed sleep-wake cycle but not after SD is regulated at least partially by brain site-specific DNA methylation. © 2014 European Sleep Research Society.

  14. Inverting adherent cells for visualizing ECM interactions at the basal cell side

    Energy Technology Data Exchange (ETDEWEB)

    Gudzenko, Tetyana [DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany); Franz, Clemens M., E-mail: clemens.franz@kit.edu [DFG-Center for Functional Nanostructures, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1a, 76131 Karlsruhe (Germany)

    2013-05-15

    Interactions with the extracellular matrix (ECM) govern a wide range of cellular functions, including survival, migration and invasion. However, in adherent cells these interactions occur primarily on the basal cell side, making them inaccessible to high-resolution, surface-scanning imaging techniques such as atomic force microscopy (AFM) or scanning electron microscopy (SEM). Here we describe a fast and reliable method for inverting adherent cells, exposing the basal cell membrane for direct analysis by AFM or SEM in combination with fluorescence microscopy. Cells including their matrix adhesion sites remain intact during the inversion process and are transferred together with the complete array of basally associated ECM proteins. Molecular features of ECM proteins, such as the characteristic 67 nm collagen D-periodicity, are well preserved after inversion. To demonstrate the versatility of the method, we compared basal interactions of fibroblasts with fibrillar collagen I and fibronectin matrices. While fibroblasts remodel the fibronectin layer exclusively from above, they actively invade even thin collagen layers by contacting individual collagen nanofibrils both basally and apically through a network of cellular extensions. Cell–matrix entanglement coincides with enhanced cell spreading and flattening, indicating that nanoscale ECM interactions govern macroscopic changes in cell morphology. The presented cell inversion technique can thus provide novel insight into nanoscale cell–matrix interactions at the basal cell side. - Highlights: ► We present a novel method for inverting adherent cells to expose the basal cell side. ► Basal cell sides can be imaged at high resolution by AFM and SEM. ► Cells can be inverted together with the underlying extracellular matrix. ► AFM images of inverted cells provide a nanoscale look at basal cell–ECM interactions.

  15. High basal Wnt signaling is further induced by PI3K/mTor inhibition but sensitive to cSRC inhibition in mammary carcinoma cell lines with HER2/3 overexpression

    International Nuclear Information System (INIS)

    Timmermans-Sprang, Elpetra P. M.; Gracanin, Ana; Mol, Jan A.

    2015-01-01

    Elevated basal, ligand-independent, Wnt signaling in some canine breast cancer cells is not caused by classical mutations in APC, β-Catenin or GSK3β but, at least partially, by enhanced LEF1 expression. We examined the expression and function of EGFR/HER-regulated pathways on the ligand-independent Wnt signaling. Twelve canine mammary tumor cell lines with previously reported differential basal Wnt activity were used. The expression levels of genes related to EGF-signaling were analyzed by cluster analysis. Cell lines with a combined overexpression of EGF-related genes and enhanced basal Wnt activity were treated with PI3K/mTor or cSRC inhibitors or transfected with a construct expressing wild-type PTEN. Subsequently, effects were measured on Wnt activity, cell proliferation, gene expression and protein level. High basal Wnt/LEF1 activity was associated with overexpression of HER2/3, ID1, ID2, RAC1 and HSP90 together with low to absent cMET and PTEN mRNA expression, suggesting a connection between Wnt- and HER-signaling pathways. Inhibition of the HER-regulated PI3K/mTor pathway using the dual PI3K/mTor inhibitor BEZ235 or the mTor inhibitor Everolimus® resulted in reduced cell proliferation. In the cell line with high basal Wnt activity, however, an unexpected further increased Wnt activity was found that could be greatly reduced after inhibition of the HER-regulated cSRC activity. Inhibition of the PI3K/mTor pathway was associated with enhanced expression of β-Catenin, Axin2, MUC1, cMET, EGFR and HER2 and a somewhat increased β-Catenin protein content, whereas cSRC inhibition was associated with slightly enhanced HER3 and SLUG mRNA expression. A high protein expression of HER3 was found only in a cell line with high basal Wnt activity. High basal Wnt activity in some mammary cancer cell lines is associated with overexpression of HER-receptor related genes and HER3 protein, and the absence of PTEN. Inhibition of the PI3K/mTor pathway further stimulated

  16. Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations.

    Science.gov (United States)

    van Albada, S J; Gray, R T; Drysdale, P M; Robinson, P A

    2009-04-21

    Neuronal correlates of Parkinson's disease (PD) include a shift to lower frequencies in the electroencephalogram (EEG) and enhanced synchronized oscillations at 3-7 and 7-30 Hz in the basal ganglia, thalamus, and cortex. This study describes the dynamics of a recent physiologically based mean-field model of the basal ganglia-thalamocortical system, and shows how it accounts for many key electrophysiological correlates of PD. Its detailed functional connectivity comprises partially segregated direct and indirect pathways through two populations of striatal neurons, a hyperdirect pathway involving a corticosubthalamic projection, thalamostriatal feedback, and local inhibition in striatum and external pallidum (GPe). In a companion paper, realistic steady-state firing rates were obtained for the healthy state, and after dopamine loss modeled by weaker direct and stronger indirect pathways, reduced intrapallidal inhibition, lower firing thresholds of the GPe and subthalamic nucleus (STN), a stronger projection from striatum to GPe, and weaker cortical interactions. Here it is shown that oscillations around 5 and 20 Hz can arise with a strong indirect pathway, which also causes increased synchronization throughout the basal ganglia. Furthermore, increased theta power with progressive nigrostriatal degeneration is correlated with reduced alpha power and peak frequency, in agreement with empirical results. Unlike the hyperdirect pathway, the indirect pathway sustains oscillations with phase relationships that coincide with those found experimentally. Alterations in the responses of basal ganglia to transient stimuli accord with experimental observations. Reduced cortical gains due to both nigrostriatal and mesocortical dopamine loss lead to slower changes in cortical activity and may be related to bradykinesia. Finally, increased EEG power found in some studies may be partly explained by a lower effective GPe firing threshold, reduced GPe-GPe inhibition, and/or weaker

  17. Vitamin C improves basal metabolic rate and lipid profile in alloxan ...

    Indian Academy of Sciences (India)

    MADU

    3.1 Effect of vitamin C administration on basal metabolic rate. The basal metabolic rate values in diabetic rats and control are presented in figure 1. The basal metabolic rate (BMR) in diabetic rats was 1.19 ± 0.15 ml/h/g, while the BMR in control rats was 0.76 ± 0.89 ml/h/g. The BMR value in diabetic rats treated with vitamin ...

  18. Radiologic study of basal cell nevus syndrome

    Energy Technology Data Exchange (ETDEWEB)

    Park, Tae Won [Dept. of Oral Radiology, College of Dentistry, Seoul National University, Seoul (Korea, Republic of)

    1988-11-15

    Several cases of jaw cyst-basal cell nevus-bifid rib syndrome are presented. This syndrome consists principally of multiple jaw cysts, basal cell nevi, and bifid ribs but no one component is present in all patients. The purpose of this paper is to review the multiple characteristics of this syndrome and present three cases in a family and additional 4 cases. The many malformations associated with the syndrome have variable expressively. In the cases, multiple jaw cysts, pal mar and plantar pittings, bridging of sella, temporoparietal bossing, hypertelorism, cleft palate, and dystopia canthoru m have been observed.

  19. Radiologic study of basal cell nevus syndrome

    International Nuclear Information System (INIS)

    Park, Tae Won

    1988-01-01

    Several cases of jaw cyst-basal cell nevus-bifid rib syndrome are presented. This syndrome consists principally of multiple jaw cysts, basal cell nevi, and bifid ribs but no one component is present in all patients. The purpose of this paper is to review the multiple characteristics of this syndrome and present three cases in a family and additional 4 cases. The many malformations associated with the syndrome have variable expressively. In the cases, multiple jaw cysts, pal mar and plantar pittings, bridging of sella, temporoparietal bossing, hypertelorism, cleft palate, and dystopia canthoru m have been observed.

  20. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    Directory of Open Access Journals (Sweden)

    Marina de Figueiredo Ferreira

    2014-01-01

    Full Text Available Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission and basal metabolic rate (by indirect calorimetry; basal metabolic rate was also estimated by prediction equations. Results. There was a significant difference between the measured and the estimated basal metabolic rate determined by the FAO/WHO/UNU (Pvalue<0.021 and Huang et al. (Pvalue≤0.005 equations. Conclusion. The calculations using Owen et al’s. equation were the closest to the measured basal metabolic rate.

  1. The Effects of Cues on Neurons in the Basal Ganglia in Parkinson’s Disease

    Directory of Open Access Journals (Sweden)

    Sridevi V. Sarma

    2012-07-01

    Full Text Available Visual cues open a unique window to the understanding of Parkinson’s disease (PD. These cues can temporarily but dramatically improve PD motor symptoms. Although details are unclear, cues are believed to suppress pathological basal ganglia (BG activity through activation of corticostriatal pathways. In this study, we investigated human BG neurophysiology under different cued conditions. We evaluated bursting, 10-30Hz oscillations (OSCs, and directional tuning (DT dynamics in the subthalamic nucleus activity while 7 patients executed a two-step motor task. In the first step (predicted +cue, the patient moved to a target when prompted by a visual go cue that appeared 100% of the time. Here, the timing of the cue is predictable and the cue serves an external trigger to execute a motor plan. In the second step, the cue appeared randomly 50% of the time, and the patient had to move to the same target as in the first step. When it appeared (unpredicted +cue, the motor plan was to be triggered by the cue, but its timing was not predictable. When the cue failed to appear (unpredicted -cue, the motor plan was triggered by the absence of the visual cue. We found that during predicted +cue and unpredicted -cue trials, OSCs significantly decreased and DT significantly increased above baseline, though these modulations occurred an average of 640 milliseconds later in unpredicted -cue trials. Movement and reaction times were comparable in these trials. During unpredicted +cue trials, OSCs and DT failed to modulate though bursting significantly decreased after movement. Correspondingly, movement performance deteriorated. These findings suggest that during motor planning either a predictably timed external cue or an internally generated cue (generated by the absence of a cue trigger the execution of a motor plan in premotor cortex, whose increased activation then suppresses pathological activity in STN through direct pathways, leading to motor facilitation in

  2. Basal ganglia and gait control: apomorphine administration and internal pallidum stimulation in Parkinson's disease.

    Science.gov (United States)

    Grasso, R; Peppe, A; Stratta, F; Angelini, D; Zago, M; Stanzione, P; Lacquaniti, F

    1999-05-01

    Gait coordination was analyzed (four-camera 100 Hz ELITE system) in two groups of idiopathic Parkinson disease (PD) patients. Five patients underwent continuous infusion of apomorphine and were recorded in two different sessions (APO OFF and APO ON) in the same day. Three patients with a previous chronic electrode implantation in both internal globi pallidi (GPi) were recorded in the same experimental session with the electrodes on and off (STIM ON and STIM OFF). The orientation of both the trunk and the lower-limb segments was described with respect to the vertical in the sagittal plane. Lower-limb inter-segmental coordination was evaluated by analyzing the co-variation between thigh, shank, and foot elevation angles by means of orthogonal planar regression. At least 30 gait cycles per experimental condition were processed. We found that the trunk was bent forward in STIM OFF, whereas it was better aligned with the vertical in STIM ON in both PD groups. The legs never fully extended during the gait cycle in STIM OFF, whereas they extended before heel strike in STIM ON. The multisegmental coordination of the lower limb changed almost in parallel with the changes in trunk orientation. In STIM OFF, both the shape and the spatial orientation of the planar gait loops (thigh angle vs. shank angle vs. foot angle) differed from those of physiological locomotion, whereas in STIM ON the gait loop tended to resume features closer to the control. Switching the electrodes on and off in patients with GPi electrodes resulted in quasi-parallel changes of the trunk inclination and of the planar gait loop. The bulk of the data suggest that the basal-ganglia circuitry may be relevant in locomotion by providing an appropriate spatio-temporal framework for the control of posture and movement in a gravity-based body-centered frame of reference. Pallido-thalamic and/or pallido-mesencephalic pathways may influence the timing of the inter-segmental coordination for gait.

  3. Greenland deep boreholes inform on sliding and deformation of the basal ice

    Science.gov (United States)

    Dahl-Jensen, D.

    2017-12-01

    Repeated measurements of the deformation of the deep boreholes on the Greenland ice sheet informs on the basal sliding, near basal deformation and in general on the horizontal velocity through the ice. Results of the logging of the boreholes at Dye3, GRIP, NGRIP, NEEM and Camp Century through the last 40 years by the Danish Ice and Climate group will be presented and discussed. The results on the flow will be compared with the information on ice properties, impurity load and bedrock entrained material from the deep ice cores and the radio echo sounding images near the drill sites.The results show that the basal movement often happens in an impurity rich zone above the bedrock while pure basal sliding is limited even in the presence of basal water and significant basal melt.Most of the deep ice core sites are located close to ice divides where the surface velocity is limited so significant basal sliding is not expected. Exceptions are the surface velocities at Camp Century and Dye 3, both being 13 m/yr.Finally, the ongoing deep drilling at EGRIP will shortly be presented where we are drilling in the center of the North East Greenland Ice Stream (NEGIS).

  4. Basal erosion: barrier to earthquake propagation? Insight from the northern chilean forearc

    Science.gov (United States)

    Cubas, N.

    2017-12-01

    Subducted topographic features have often been suspected as barriers to large earthquake propagation. These features would induce basal erosion, leading to a large network of fractures impeding large nucleation or shear localization. Looking for correlation between basal erosion and megathrust ruptures is thus critical nowadays to understand earthquake mechanics and infer rupture scenarios. In this study, we propose to seek possible location of basal erosion from the forearc morphology by applying the critical taper theory. We focus on the North Chile subduction zone that has experienced four major earthquakes during the last two decades and where basal erosion and seamount subduction have already been suspected. Basal erosion should occur when the basal friction approaches the internal friction. We thus seek what part of the forearc is at critical state and select areas for which the two frictions are almost equal. We find a large band, located at 25km depth, from the Mejillones peninsula to the Iquique region at critical state with very high basal friction. The critical areas seem to surround the Tocopilla 2007 Mw 7.7 and the Iquique 2014 Mw 8.1 ruptures. When compared with the interseismic coupling, except for the Tocopilla segment, the critical areas are located in low-coupled zones. More interestingly, the reported normal faults of the forearc do not appear above the erosional areas but rather between them. These normal faults are systematically located above locked patches and seismic asperities. These areas are actually at extensional critical state and characterized by a very low effective friction. We thus suspect the extensional features to be related to earthquakes rather than basal erosion. We then look for similar relationships along the Sumatra subduction zone to see if basal erosion is a common process. The Tocopilla and Iquique earthquakes ruptured only part of the northern Chile seismic gap although the full segment was ready for a new large

  5. Guidance Cue Netrin-1 and the Regulation of Inflammation in Acute and Chronic Kidney Disease

    Directory of Open Access Journals (Sweden)

    Punithavathi Ranganathan

    2014-01-01

    Full Text Available Acute kidney injury (AKI is a common problem in the hospital setting and intensive care unit. Despite improved understanding, there are no effective therapies available to treat AKI. A large body of evidence strongly suggests that ischemia reperfusion injury is an inflammatory disease mediated by both adaptive and innate immune systems. Cell migration also plays an important role in embryonic development and inflammation, and this process is highly regulated to ensure tissue homeostasis. One such paradigm exists in the developing nervous system, where neuronal migration is mediated by a balance between chemoattractive and chemorepulsive signals. The ability of the guidance molecule netrin-1 to repulse or abolish attraction of neuronal cells expressing the UNC5B receptor makes it an attractive candidate for the regulation of inflammatory cell migration. Recent identification of netrin-1 as regulators of immune cell migration has led to a large number of studies looking into how netrin-1 controls inflammation and inflammatory cell migration. This review will focus on recent advances in understanding netrin-1 mediated regulation of inflammation during acute and chronic kidney disease and whether netrin-1 and its receptor activation can be used to treat acute and chronic kidney disease.

  6. A Case of Nonhealing Leg Ulcer: Basal Cell Carcinoma

    Directory of Open Access Journals (Sweden)

    Didem Didar Balcı

    2008-06-01

    Full Text Available A 75-year-old woman was admitted to our outpatient clinic with a three-year history of a painless, nonhealing ulcer located on the left lower leg. She had no response to previous therapy with local wound care. Skin examination revealed an ulcer 2.7 x 3.7 cm in size, and the surrounding skin showed minimal erythema. The surface of the ulcer demonstrated shiny granulation tissue. Biopsy of the ulcer edge and base showed basal cell carcinoma. Venous Doppler ultrasonography and dermatological examination did not reveal chronic venous insufficiency. Basal cell carcinomas rarely arise from previous long-term ulcers or developing de novo. We suggest that patients who develop non-healing leg ulcers, should be examined for basal cell carcinoma.

  7. Headmasters: Microglial regulation of learning and memory in health and disease

    Directory of Open Access Journals (Sweden)

    Laetitia Weinhard

    2018-03-01

    Full Text Available Microglia are mononuclear phagocytes that reside throughout the lifetime of the animal in the central nervous system (CNS. Originating from the yolk sac, microglial progenitors infiltrate the developing brain anlage even before the formation of the neural network. Mature microglial cells persist by slow rates of self-renewal that vary across brain regions. Eminent studies in the recent decade have highlighted a role for steady state microglia in neurogenesis, synaptic pruning, and formation and maintenance of connectivity within the CNS, which are critical to learning and memory functions. Activity- and learning-dependent synaptic remodeling by microglia has been described in various contexts. Molecular pathways, including signaling through fractalkine CX3CL1 and its receptor CX3CR1, transforming growth factor-beta, classical complement system, colony-stimulating factor 1 receptor, adaptor protein DAP12, and brain-derived neurotropic factor, have been proposed to be important mediators of synaptic plasticity regulated by microglia. Reactive, dysfunctional, or aged microglia are thought to impact learning and memory, and are implicated in human neurodegenerative disorders in which dementia is a hallmark. These disorders include Nasu-Hakola disease, hereditary diffuse leukoencephaly with spheroids, Alzheimer’s disease, frontotemporal dementia, and Parkinson’s disease. Focusing on microglia, here we discuss the potential detrimental effects and risks presented by microglia-specific genetic variants, the environmental factors that target microglia, and microglial aging that likely lead to progressive memory loss in neurodegenerative diseases. Finally, we consider some caveats of the animal model systems that to date have advanced our understanding of microglial regulation of learning and memory.

  8. Circuits regulating pleasure and happiness in bipolar disorder

    NARCIS (Netherlands)

    Loonen, Anton J. M.; Kupka, Ralph W.; Ivanova, Svetlana A.

    2017-01-01

    According to our model, the motivation for appetitive-searching vs. distress-avoiding behaviors is regulated by two parallel cortico-striato-thalamo-cortical (CSTC) re-entry circuits that include the core and the shell parts of the nucleus accumbens, respectively. An entire series of basal ganglia,

  9. Progression of urothelial carcinoma in situ of the urinary bladder: a switch from luminal to basal phenotype and related therapeutic implications.

    Science.gov (United States)

    Barth, Isabella; Schneider, Ursula; Grimm, Tobias; Karl, Alexander; Horst, David; Gaisa, Nadine T; Knüchel, Ruth; Garczyk, Stefan

    2018-05-01

    The stratification of bladder cancer into luminal and basal tumors has recently been introduced as a novel prognostic system in patient cohorts of muscle-invasive bladder cancer or high-grade papillary carcinomas. Using a representative immunohistochemistry panel, we analyzed luminal and basal marker expression in a large case series (n = 156) of urothelial carcinoma in situ (CIS), a precancerous lesion that frequently progresses to muscle-invasive disease. The majority of CIS cases was characterized by a positivity for luminal markers (aberrant cytokeratin (CK) 20 85% (132/156), GATA3 median Remmele score (score of staining intensity (0-3) multiplied with percentage of positive cells (0-4)): 12, estrogen receptor (ER) β Remmele score > 2: 88% (138/156), human epidermal growth factor receptor 2 (Her2) Dako score 3+ 32% (50/156), Her2 Dako score 2+ 33% (51/156)), and marginal expression of basal markers (CK5/6+ 2% (3/156), CK14+ 1% (2/156)). To further investigate phenotypic stability during disease progression, we compared 48 pairs of CIS and invasive tumors from the same biopsy. A highly significant loss of luminal marker expression (p < 0.001) was observed in the course of progression whereas an increase of basal marker expression (p < 0.01) was noted in the invasive compartment. Importantly, 91% of CIS cases demonstrated a positivity for at least one of the two predictive markers Her2 and ERβ, indicating that the analysis of Her2 and ERβ may help to identify CIS-patient subgroups prone to more efficient targeted treatment strategies. Larger prospective and biomarker-embedded clinical trials are needed to confirm and validate our preliminary findings.

  10. Body Composition and Basal Metabolic Rate in Women with Type 2 Diabetes Mellitus

    OpenAIRE

    de Figueiredo Ferreira, Marina; Detrano, Filipe; Coelho, Gabriela Morgado de Oliveira; Barros, Maria Elisa; Serrão Lanzillotti, Regina; Firmino Nogueira Neto, José; Portella, Emilson Souza; Serrão Lanzillotti, Haydée; Soares, Eliane de Abreu

    2014-01-01

    Objective. The aim of this study was to determine which of the seven selected equations used to predict basal metabolic rate most accurately estimated the measured basal metabolic rate. Methods. Twenty-eight adult women with type 2 diabetes mellitus participated in this cross-sectional study. Anthropometric and biochemical variables were measured as well as body composition (by absorptiometry dual X-ray emission) and basal metabolic rate (by indirect calorimetry); basal metabolic rate was als...

  11. DNA endoreduplication, RNA and protein synthesis during growth and development of the antheridial basal cell in Chara vulgaris L

    International Nuclear Information System (INIS)

    Malinowski, S.; Maszewski, J.

    1994-01-01

    Cytophotometric measurements of nuclear DNA contents and morphometric analyses indicate that the level of endo polyploidy plays an important role in determining the maximum size, transcriptional and translational activity that the antheridial basal cell attains during successive stages of spermatogenesis in Chara vulgaris. During the proliferative period of antheridial development, the metabolic activity of basal cell, expressed as the total incorporation of radioactive uridine and leucine was found to increase gradually with the increasing DNA C-values, yet both the synthesis of RNA and then the synthesis of proteins become reduced at the stage preceding spermiogenesis. In accordance with some earlier data, the obtained results seem to support the hypothesis that regulatory mechanisms of symplasmic connections between the antheridium and a thallus participate in the regulation of morphogenesis of the male sex organs in Chara. (author). 15 refs, 13 figs

  12. DNA dynamics play a role as a basal transcription factor in the positioning and regulation of gene transcription initiation

    OpenAIRE

    Alexandrov, Boian S.; Gelev, Vladimir; Yoo, Sang Wook; Alexandrov, Ludmil B.; Fukuyo, Yayoi; Bishop, Alan R.; Rasmussen, Kim ?.; Usheva, Anny

    2009-01-01

    We assess the role of DNA breathing dynamics as a determinant of promoter strength and transcription start site (TSS) location. We compare DNA Langevin dynamic profiles of representative gene promoters, calculated with the extended non-linear PBD model of DNA with experimental data on transcription factor binding and transcriptional activity. Our results demonstrate that DNA dynamic activity at the TSS can be suppressed by mutations that do not affect basal transcription factor binding–DNA co...

  13. Basal ganglia calcification as a putative cause for cognitive decline.

    Science.gov (United States)

    de Oliveira, João Ricardo Mendes; de Oliveira, Matheus Fernandes

    2013-01-01

    Basal ganglia calcifications (BGC) may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients.

  14. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    International Nuclear Information System (INIS)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki

    1988-01-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis. (author)

  15. Basal ganglia calcification on computed tomography in systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Nagaoka, Shohei; Tani, Kenji; Ishigatsubo, Yoshiaki and others

    1988-09-01

    The development of basal ganglia calcification was studied in 85 patients with systemic lupus erythematosus (SLE) by computed tomography (CT). Bilateral calcification of the basal ganglia was found to occur in 5 patients (5.9 %) with SLE, but was not seen in patients with rheumatoid arthritis and progressive systemic sclerosis. All were female with a mean age of 42 years (range 29 - 49). The patients with calcification of the basal ganglia had neurological symptoms, such as psychiatric problems (3 cases), grand mal seizures (1 case), CSF abnormalities (2 cases), and EEG changes (4 cases). There were significantly higher incidences of alopecia, cutaneous vasculitis, leukopenia, and thrombocytopenia in the group with calcifications than those in the group with normal CT findings. Circulating immune complexes were detected and LE tests were positive in 2 patients. Endocrinological examination showed no abnormality in any. We suggest that basal ganglia calcification in SLE might be related to cerebral vasculitis.

  16. Basal cell nevus syndrome: 2 case reports

    International Nuclear Information System (INIS)

    Kim, Jae Duk; Seo, Yo Seob; Kim, Jin Soo

    2008-01-01

    The basal cell nevus syndrome (BCNS) is an autosomal dominant disorder, characterized by basal cell carcinomas, odontogenic keratocysts and skeletal abnormalities. We experienced two cases that represented several characteristics of BCNS. Case 1: a thirty three year-old man visited CSU hospital. His radiographs showed four cystic lesions at both maxillary sinus and both mandibular angle, with bifid rib and ectopic calcification of falx cerebri. After marsupialization and enucleation, recurrent and newly developing tendency were found on his follow-up radiographs. Case 2: a seventeen year-old man had four large cystic lesions which were diagnosed as odontogenic keratocysts. He had craniofacial anomalies which included ectopic calcification and frontal bossing.

  17. The barley HvNAC6 transcription factor affects ABA accumulation and promotes basal resistance against powdery mildew

    DEFF Research Database (Denmark)

    Chen, Yan-Jun; Perera, Venura; Wagner, Michael

    2013-01-01

    Barley HvNAC6 is a member of the plant-specific NAC (NAM, ATAF1,2, CUC2) transcription factor family and we have shown previously that it acts as a positive regulator of basal resistance in barley against the biotrophic pathogen Blumeria graminis f. sp. hordei (Bgh). In this study, we use a trans...

  18. Basal Ganglia Calcification with Tetanic Seizure Suggest Mitochondrial Disorder

    OpenAIRE

    Finsterer, Josef; Enzelsberger, Barbara; Bastowansky, Adam

    2017-01-01

    Patient: Female, 65 Final Diagnosis: Mitochondrial disorder Symptoms: Headache ? tetanic seizure Medication: Diazepam Clinical Procedure: Admission Specialty: Neurology Objective: Challenging differential diagnosis Background: Basal ganglia calcification (BGC) is a rare sporadic or hereditary central nervous system (CNS) abnormality, characterized by symmetric or asymmetric calcification of the basal ganglia. Case Report: We report the case of a 65-year-old Gypsy female who was admitted for a...

  19. Common Standards of Basal Insulin Titration in T2DM

    Science.gov (United States)

    Arnolds, Sabine; Heise, Tim; Flacke, Frank; Sieber, Jochen

    2013-01-01

    Type 2 diabetes mellitus has become a worldwide major health problem, and the number of people affected is steadily increasing. Thus, not all patients suffering from the disease can be treated by specialized diabetes centers or outpatient clinics, but by primary care physicians. The latter, however, might have time constraints and have to deal with many kinds of diseases or with multimorbid patients, so their focus is not so much on lowering high blood glucose values. Thus, the physicians, as well as the patients themselves, are often reluctant to initiate and adjust insulin therapy, although basal insulin therapy is considered the appropriate strategy after oral antidiabetic drug failure, according to the latest international guidelines. A substantial number of clinical studies have shown that insulin initiation and optimization can be managed successfully by using titration algorithms—even in cases where patients themselves are the drivers of insulin titration. Nevertheless, tools and strategies are needed to facilitate this process in the daily life of both primary health care professionals and patients with diabetes. PMID:23759411

  20. Two cases of seborrheic keratosis with basal clear cells.

    Science.gov (United States)

    Anan, Takashi; Fukumoto, Takaya; Kimura, Tetsunori

    2017-03-01

    Seborrheic keratosis with basal clear cells (SKBCC) is an extremely rare histopathological variant of seborrheic keratosis that has histological similarities to melanoma in situ. We herein report two cases of SKBCC and provide the first description of the dermoscopic features of this condition, in addition to the histopathological findings. Both of the two lesions showed typical histological architectures of seborrheic keratosis with rows or focal clusters of monomorphic clear cells with abundant pale cytoplasm and small round nucleus in the basal layer. Immunohistochemical examination revealed that most clear cells were positive for high molecular weight cytokeratin (34βE12) in a peripheral pattern but were negative tor Melan-A. Dermoscopy revealed typical features of ordinary seborrheic keratosis, while unfortunately did not reflect the presence of basal clear cells. © 2016 Japanese Dermatological Association.

  1. Computed tomography of granulomatous basal meningitis caused by pneumococcus

    Energy Technology Data Exchange (ETDEWEB)

    Sonobe, Makoto; Takahashi, Shinichiro (Mito National Hospital, Ibaraki (Japan)); Ohara, Kazuo

    1983-07-01

    A case of 3-month-old female with ''granulomatous basal meningitis'' caused by pneumococcus was described. She suffered from high fever, vomiting, convulsion and loss of consciousness on January 28th, 1982. On admission the protein content of the spinal fluid was 280 mg/100 ml, the glucose 4 mg/100 ml and the cell count was 1206/3(L : 845, N : 361). Her symptoms and signs were deteriorated in spite of antibiotics and anticonvulsants. CT scan on the 10th day showed the enhanced basal cistern. She died on the 11th day but autopsy was not carried out. In this case, pneumococcus was cultured in CSF. This seemed to be the first case of ''granulomatous basal meningitis'' due to purulent meningitis in Japan.

  2. What basal ganglia changes underlie the parkinsonian state? The significance of neuronal oscillatory activity

    Science.gov (United States)

    Quiroga-Varela, A.; Walters, J.R.; Brazhnik, E.; Marin, C.; Obeso, J.A.

    2014-01-01

    One well accepted functional feature of the parkinsonian state is the recording of enhanced beta oscillatory activity in the basal ganglia. This has been demonstrated in patients with Parkinson's disease (PD) and in animal models such as the rat with 6-hydroxydopamine (6-OHDA)-induced lesion and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated monkeys, all of which are associated with severe striatal dopamine depletion. Neuronal hyper-synchronization in the beta (or any other) band is not present despite the presence of bradykinetic features in the rat and monkey models, suggesting that increased beta band power may arise when nigro-striatal lesion is advanced and that it is not an essential feature of the early parkinsonian state. Similar observations and conclusions have been previously made for increased neuronal firing rate in the subthalamic and globus pallidus pars interna nuclei. Accordingly, it is suggested that early parkinsonism may be associated with dynamic changes in basal ganglia output activity leading to reduced movement facilitation that may be an earlier feature of the parkinsonian state. PMID:23727447

  3. Uniformity in the basal metabolic rate of marsupials: its causes and consequences Uniformidad en la tasa metabólica basal de marsupiales: sus causas y consecuencias

    Directory of Open Access Journals (Sweden)

    BRIAN K. MACNAB

    2005-06-01

    Full Text Available Most of the variation (98.8 % in basal rate of metabolism (BMR in 70 species of marsupials is correlated with body mass, although lowland species have higher basal rates than highland species and burrowers have lower basal rates than non-burrowers. These factors collectively account for 99.2 % of the variation in marsupial BMR. Marsupials differ in BMR from eutherians by having no species with a high basal rate by general mammalian standards, even when consuming vertebrates or grass, food habits that are associated with very high basal rates in eutherians. The absence of high basal rates in marsupials reflects the absence of a correlation of rate of reproduction with basal rate, a correlation present in eutherians. These differences have two consequences: (1 marsupials are less tolerant of cold environments than eutherians, and (2 marsupials coexist with eutherians only when both have food habits associated with low basal rates and therefore when eutherians have reduced rates of reproduction. In Australia and South America marsupial carnivores diversified in the absence of eutherian equivalents. The importation to mainland Australia of dingos by humans appears to have been the immediate cause for the extinction of thylacines, Tasmanian devils, and eastern quolls. Carnivorous marsupials in South America were replaced by eutherians with the completion of the Panamanian land bridge. Macropods, which have lower basal rates than eutherian grazers, survive in central Australia probably because of their adjustment to xeric environments, whereas introduced domestic stock require the provision of water by humansGran parte de la variación (98,5 en la tasa metabólica basal de 70 especies de marsupiales se correlaciona con la masa corporal, aunque las especies de tierras bajas tienes tasas basales mayores que las de tierras altas, y las especies subterráneas tienes BMR’s menores que las no subterráneas. Colectivamente, estos factores dan cuenta de un

  4. Egr-1 regulates autophagy in cigarette smoke-induced chronic obstructive pulmonary disease.

    Directory of Open Access Journals (Sweden)

    Zhi-Hua Chen

    2008-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a progressive lung disease characterized by abnormal cellular responses to cigarette smoke, resulting in tissue destruction and airflow limitation. Autophagy is a degradative process involving lysosomal turnover of cellular components, though its role in human diseases remains unclear.Increased autophagy was observed in lung tissue from COPD patients, as indicated by electron microscopic analysis, as well as by increased activation of autophagic proteins (microtubule-associated protein-1 light chain-3B, LC3B, Atg4, Atg5/12, Atg7. Cigarette smoke extract (CSE is an established model for studying the effects of cigarette smoke exposure in vitro. In human pulmonary epithelial cells, exposure to CSE or histone deacetylase (HDAC inhibitor rapidly induced autophagy. CSE decreased HDAC activity, resulting in increased binding of early growth response-1 (Egr-1 and E2F factors to the autophagy gene LC3B promoter, and increased LC3B expression. Knockdown of E2F-4 or Egr-1 inhibited CSE-induced LC3B expression. Knockdown of Egr-1 also inhibited the expression of Atg4B, a critical factor for LC3B conversion. Inhibition of autophagy by LC3B-knockdown protected epithelial cells from CSE-induced apoptosis. Egr-1(-/- mice, which displayed basal airspace enlargement, resisted cigarette-smoke induced autophagy, apoptosis, and emphysema.We demonstrate a critical role for Egr-1 in promoting autophagy and apoptosis in response to cigarette smoke exposure in vitro and in vivo. The induction of autophagy at early stages of COPD progression suggests novel therapeutic targets for the treatment of cigarette smoke induced lung injury.

  5. A genome-wide scan reveals important roles of DNA methylation in human longevity by regulating age-related disease genes.

    Directory of Open Access Journals (Sweden)

    Fu-Hui Xiao

    Full Text Available It is recognized that genetic factors contribute to human longevity. Besides the hypothesis of existence of longevity genes, another suggests that a lower frequency of risk alleles decreases the incidence of age-related diseases in the long-lived people. However, the latter finds no support from recent genetic studies. Considering the crucial role of epigenetic modification in gene regulation, we then hypothesize that suppressing disease-related genes in longevity individuals is likely achieved by epigenetic modification, e.g. DNA methylation. To test this hypothesis, we investigated the genome-wide methylation profile in 4 Chinese female centenarians and 4 middle-aged controls using methyl-DNA immunoprecipitation sequencing. 626 differentially methylated regions (DMRs were observed between both groups. Interestingly, genes with these DMRs were enriched in age-related diseases, including type-2 diabetes, cardiovascular disease, stroke and Alzheimer's disease. This pattern remains rather stable after including methylomes of two white individuals. Further analyses suggest that the observed DMRs likely have functional roles in regulating disease-associated gene expressions, with some genes [e.g. caspase 3 (CASP3] being down-regulated whereas the others [i.e. interleukin 1 receptor, type 2 (IL1R2] up-regulated. Therefore, our study suggests that suppressing the disease-related genes via epigenetic modification is an important contributor to human longevity.

  6. Mental Symptoms in Huntington's Disease and a Possible Primary Aminergic Neuron Lesion

    Science.gov (United States)

    Mann, J. John; Stanley, Michael; Gershon, Samuel; Rossor, M.

    1980-12-01

    Monoamine oxidase activity was higher in the cerebral cortex and basal ganglia of patients dying from Huntington's disease than in controls. Enzyme kinetics and multiple substrate studies indicated that the increased activity was due to elevated concentrations of monoamine oxidase type B. Concentrations of homovanillic acid were increased in the cerebral cortex but not in the basal ganglia of brains of patients with Huntington's disease. These changes may represent a primary aminergic lesion that could underlie some of the mental symptoms of this disease.

  7. Topographic Organization of Cholinergic Innervation From the Basal Forebrain to the Visual Cortex in the Rat

    Directory of Open Access Journals (Sweden)

    Frédéric Huppé-Gourgues

    2018-03-01

    Full Text Available Acetylcholine is an important neurotransmitter for the regulation of visual attention, plasticity, and perceptual learning. It is released in the visual cortex predominantly by cholinergic projections from the basal forebrain, where stimulation may produce potentiation of visual processes. However, little is known about the fine organization of these corticopetal projections, such as whether basal forebrain neurons projecting to the primary and secondary visual cortical areas (V1 and V2, respectively are organized retinotopically. The aim of this study was to map these basal forebrain-V1/V2 projections. Microinjections of the fluorescent retrograde tracer cholera toxin b fragment in different sites within V1 and V2 in Long–Evans rats were performed. Retrogradely labeled cell bodies in the horizontal and vertical limbs of the diagonal band of Broca (HDB and VDB, respectively, nucleus basalis magnocellularis, and substantia innominata (SI, were mapped ex vivo with a computer-assisted microscope stage controlled by stereological software. Choline acetyltranferase immunohistochemistry was used to identify cholinergic cells. Our results showed a predominance of cholinergic projections coming from the HDB. These projections were not retinotopically organized but projections to V1 arised from neurons located in the anterior HDB/SI whereas projections to V2 arised from neurons located throughout the whole extent of HDB/SI. The absence of a clear topography of these projections suggests that BF activation can stimulate visual cortices broadly.

  8. Luminal epithelial cells within the mammary gland can produce basal cells upon oncogenic stress.

    Science.gov (United States)

    Hein, S M; Haricharan, S; Johnston, A N; Toneff, M J; Reddy, J P; Dong, J; Bu, W; Li, Y

    2016-03-17

    In the normal mammary gland, the basal epithelium is known to be bipotent and can generate either basal or luminal cells, whereas the luminal epithelium has not been demonstrated to contribute to the basal compartment in an intact and normally developed mammary gland. It is not clear whether cellular heterogeneity within a breast tumor results from transformation of bipotent basal cells or from transformation and subsequent basal conversion of the more differentiated luminal cells. Here we used a retroviral vector to express an oncogene specifically in a small number of the mammary luminal epithelial cells and tested their potential to produce basal cells during tumorigenesis. This in-vivo lineage-tracing work demonstrates that luminal cells are capable of producing basal cells on activation of either polyoma middle T antigen or ErbB2 signaling. These findings reveal the plasticity of the luminal compartment during tumorigenesis and provide an explanation for cellular heterogeneity within a cancer.

  9. Trichoepithelioma And Multiple Basal Cell Epithelioma

    Directory of Open Access Journals (Sweden)

    Dey S.K

    1996-01-01

    Full Text Available A combination of multiple trichoepithelioma and basal cell epithelioma is reported. Although malignant degeneration of trichoepithelioma is debated, clinical and histopathological studies, in our case, hint at that. The case is reported for its rarity.

  10. Differential expression of upstream stimulatory factor (USF 2 variants in eutopic endometria from women with endometriosis: estradiol regulation

    Directory of Open Access Journals (Sweden)

    Jazmin Castro

    2015-01-01

    Full Text Available BACKGROUND: Endometriosis, pro-inflammatory and invasive benign disease estrogen dependent, abnormally express in endometria the enzyme P450Arom, positively regulated by steroid factor-1 (SF-1. Our objective was to study the nuclear protein contents of upstream stimulating factor 2 (USF2a and USF2b, a positive regulator of SF-1, throughout the menstrual cycle in eutopic endometria from women with and without (control endometriosis and the involvement of nuclear estrogen receptors (ER and G-coupled protein estrogen receptor (GPER-1 RESULTS: Upstream stimulating factor 2 protein contents were higher in mid (USF2b and late (USF2a and USF2b secretory phase in eutopic endometria from endometriosis than control (p < 0.05. In isolated control epithelial cells incubated with E2 and PGE2, to resemble the endometriosis condition, the data showed: (a significant increase of USF2a and USF2b nuclear protein contents when treated with E2, PPT (specific agonist for ERa or G1 (specific agonist for GPER1; (b no increase in USF2 binding to SF-1 E-Box/DNA consensus sequence in E2-treated cells; (c USF2 variants protein contents were not modified by PGE2; (d SF-1 nuclear protein content was significantly higher than basal when treated with PGE2, E2 or G1, stimulation unaffected by ICI (nuclear ER antagonist; and (e increased (p < 0.05 cytosolic protein contents of P450Arom when treated with PGE2, E2, PPT or G1 compared to basal, effect that was additive with E2 + PGE2 together. Nevertheless, in endometriosis cells, the high USF2, SF-1 and P450Arom protein contents in basal condition were unmodified CONCLUSION: These data strongly suggest that USF2 variants and P450Arom are regulated by E2 through ERa and GPER1, whereas SF-1 through GPER1, visualized by the response of the cells obtained from control endometria, being unaffected the endogenously stimulated cells from endometriosis origin. The lack of E2 stimulation on USF2/SF-1 E-Box/DNA-sequence binding and the

  11. A Transcriptional Regulatory Network Containing Nuclear Receptors and Long Noncoding RNAs Controls Basal and Drug-Induced Expression of Cytochrome P450s in HepaRG Cells.

    Science.gov (United States)

    Chen, Liming; Bao, Yifan; Piekos, Stephanie C; Zhu, Kexin; Zhang, Lirong; Zhong, Xiao-Bo

    2018-07-01

    Cytochrome P450 (P450) enzymes are responsible for metabolizing drugs. Expression of P450s can directly affect drug metabolism, resulting in various outcomes in therapeutic efficacy and adverse effects. Several nuclear receptors are transcription factors that can regulate expression of P450s at both basal and drug-induced levels. Some long noncoding RNAs (lncRNAs) near a transcription factor are found to participate in the regulatory functions of the transcription factors. The aim of this study is to determine whether there is a transcriptional regulatory network containing nuclear receptors and lncRNAs controlling both basal and drug-induced expression of P450s in HepaRG cells. Small interfering RNAs or small hairpin RNAs were applied to knock down four nuclear receptors [hepatocyte nuclear factor 1 α (HNF1 α ), hepatocyte nuclear factor 4 α (HNF4 α ), pregnane X receptor (PXR), and constitutive androstane receptor (CAR)] as well as two lncRNAs [HNF1 α antisense RNA 1 (HNF1 α -AS1) and HNF4 α antisense RNA 1 (HNF4 α -AS1)] in HepaRG cells with or without treatment of phenobarbital or rifampicin. Expression of eight P450 enzymes was examined in both basal and drug-induced levels. CAR and PXR mainly regulated expression of specific P450s. HNF1 α and HNF4 α affected expression of a wide range of P450s as well as other transcription factors. HNF1 α and HNF4 α controlled the expression of their neighborhood lncRNAs, HNF1 α -AS1 and HNF4 α -AS1, respectively. HNF1 α -AS1 and HNF4 α -AS1 was also involved in the regulation of P450s and transcription factors in diverse manners. Altogether, our study concludes that a transcription regulatory network containing the nuclear receptors and lncRNAs controls both basal and drug-induced expression of P450s in HepaRG cells. Copyright © 2018 by The American Society for Pharmacology and Experimental Therapeutics.

  12. Basal cell carcinoma of the nipple-areola complex.

    Science.gov (United States)

    Ferguson, Mark S; Nouraei, S A Reza; Davies, Ben J H; McLean, N R

    2009-11-01

    Basal cell carcinoma (BCC) of the nipple-areola complex is uncommon. It has been suggested that BCCs in this region behave more aggressively, with a higher potential for distant spread, than in other anatomical sites. To address questions about etiology, behavior, optimal treatment, and prognosis of this entity. A literature search identifying all cases of BCC of the nipple and nipple-areola complex in the English literature from 1893 to 2008. Thirty-four cases of BCC of the nipple, areola, or both were identified, mostly affecting middle-aged men. The majority of patients were treated with tissue-sparing surgery. There was a metastatic rate of 9.1%, and one patient died from the disease (3.0%). The optimal treatment of this condition should be local excision, but patients with this condition should be followed up for primary site recurrence and axillary metastasis, because there is greater incidence than with BCC at other anatomical sites. Furthermore, proven axillary metastasis should be surgically treated.

  13. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.

    Science.gov (United States)

    Bates, Karl T; Maidment, Susannah C R; Allen, Vivian; Barrett, Paul M

    2012-03-01

    Ornithischia (the 'bird-hipped' dinosaurs) encompasses bipedal, facultative quadrupedal and quadrupedal taxa. Primitive ornithischians were small bipeds, but large body size and obligate quadrupedality evolved independently in all major ornithischian lineages. Numerous pelvic and hind limb features distinguish ornithischians from the majority of other non-avian dinosaurs. However, some of these features, notably a retroverted pubis and elongate iliac preacetabular process, appeared convergently in maniraptoran theropods, and were inherited by their avian descendants. During maniraptoran/avian evolution these pelvic modifications led to significant changes in the functions of associated muscles, involving alterations to the moment arms and the activation patterns of pelvic musculature. However, the functions of these features in ornithischians and their influence on locomotion have not been tested and remain poorly understood. Here, we provide quantitative tests of bipedal ornithischian muscle function using computational modelling to estimate 3D hind limb moment arms for the most complete basal ornithischian, Lesothosaurus diagnosticus. This approach enables sensitivity analyses to be carried out to explore the effects of uncertainties in muscle reconstructions of extinct taxa, and allows direct comparisons to be made with similarly constructed models of other bipedal dinosaurs. This analysis supports some previously proposed qualitative inferences of muscle function in basal ornithischians. However, more importantly, this work highlights ambiguities in the roles of certain muscles, notably those inserting close to the hip joint. Comparative analysis reveals that moment arm polarities and magnitudes in Lesothosaurus, basal tetanuran theropods and the extant ostrich are generally similar. However, several key differences are identified, most significantly in comparisons between the moment arms of muscles associated with convergent osteological features in

  14. Pathogenesis of Parkinson's disease

    OpenAIRE

    Riederer, Peter; Lange, Klaus W.

    1992-01-01

    The importance of genetic aspects, ageing, environmental factors, head trauma, defective mitochondrial respiration, altered iron metabolism, oxidative stress and glutamatergic overactivity of the basal ganglia in the pathogenesis of Parkinson's disease (PD) are considered in this review.

  15. PET activation in basal ganglia disorders: Parkinson's disease and dystonia

    International Nuclear Information System (INIS)

    Ceballos-Baumann, A.O.; Boecker, H.; Conrad, B.

    1997-01-01

    This article reviews PET activation studies with performance of different motor paradigms (joy-stick movements, imagination of movement, writing) in patients with movement disorders. The focus will be on Parkinson's disease (PD) and dystonia. PET findings will be related to clinical and electrophysiological observations. PET activation studies before and after therapeutic interventions such as pallidotomy in Parkinson's disease and botulinum toxin in writer's cramp are described. The contribution of PET activation studies to the understanding of the pathophysiology of dystonia and PD is discussed. (orig.) [de

  16. Ezrin is down-regulated in diabetic kidney glomeruli and regulates actin reorganization and glucose uptake via GLUT1 in cultured podocytes.

    Science.gov (United States)

    Wasik, Anita A; Koskelainen, Susanna; Hyvönen, Mervi E; Musante, Luca; Lehtonen, Eero; Koskenniemi, Kerttu; Tienari, Jukka; Vaheri, Antti; Kerjaschki, Dontscho; Szalay, Csaba; Révész, Csaba; Varmanen, Pekka; Nyman, Tuula A; Hamar, Peter; Holthöfer, Harry; Lehtonen, Sanna

    2014-06-01

    Diabetic nephropathy is a complication of diabetes and a major cause of end-stage renal disease. To characterize the early pathophysiological mechanisms leading to glomerular podocyte injury in diabetic nephropathy, we performed quantitative proteomic profiling of glomeruli isolated from rats with streptozotocin-induced diabetes and controls. Fluorescence-based two-dimensional difference gel electrophoresis, coupled with mass spectrometry, identified 29 differentially expressed spots, including actin-binding protein ezrin and its interaction partner, NHERF2, which were down-regulated in the streptozotocin group. Knockdown of ezrin by siRNA in cultured podocytes increased glucose uptake compared with control siRNA-transfected cells, apparently by increasing translocation of glucose transporter GLUT1 to the plasma membrane. Knockdown of ezrin also induced actin remodeling under basal conditions, but reduced insulin-stimulated actin reorganization. Ezrin-dependent actin remodeling involved cofilin-1 that is essential for the turnover and reorganization of actin filaments. Phosphorylated, inactive cofilin-1 was up-regulated in diabetic glomeruli, suggesting altered actin dynamics. Furthermore, IHC analysis revealed reduced expression of ezrin in the podocytes of patients with diabetes. Our findings suggest that ezrin may play a role in the development of the renal complication in diabetes by regulating transport of glucose and organization of the actin cytoskeleton in podocytes. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  17. Primary Sjogren%u2019s Syndrome Associated with Basal Cell Carcinoma: Case Report

    Directory of Open Access Journals (Sweden)

    Tugba Kosker

    2013-04-01

    Full Text Available Sjogren%u2019s syndrome is a chronic autoimmune disease characterized by xerostomia and xerophthalmia, known as the %u2018sicca symptoms%u2019. Patients with Sjogren%u2019s syndrome, characteristically have positive nuclear and cytoplasmic antigens, typically Anti-Ro/SSA and Anti-La/SSB because of lymphocytic infiltration of the exocrine glands. Patients with primary Sjogren%u2019s syndrome, develop systemic complications, non-Hodgkin lymphoma being the most feared of these. We describe here a case of Sjogren%u2019s syndrome with basal cell carcinoma, which presented with an ulcerated lesion on nasal dorsum.

  18. Dynamic thiol/disulphide homeostasis in patients with basal cell carcinoma.

    Science.gov (United States)

    Demirseren, Duriye Deniz; Cicek, Cagla; Alisik, Murat; Demirseren, Mustafa Erol; Aktaş, Akın; Erel, Ozcan

    2017-09-01

    The aim of this study is to measure and compare the dynamic thiol/disulphide homeostasis of patients with basal cell carcinoma and healthy subjects with a newly developed and original method. Thirty four patients attending our outpatient clinic and clinically and histopathologically diagnosed as nodular basal cell carcinoma, and age and gender matched 30 healthy individuals have been involved in the study. Thiol/disulphide homeostasis tests have been measured with a novel automatic spectrophotometric method developed and the results have been compared statistically. Serum native thiol and disulphide levels in the patient and control group show a considerable variance statistically (p = 0.028, 0.039, respectively). Total thiol levels do not reveal a considerable variation (p = 0.094). Disulphide/native thiol ratios and native thiol/total thiol ratios also show a considerable variance statistically (p = 0.012, 0.013, 0.010, respectively). Thiol disulphide homeostasis in patients with basal cell carcinoma alters in the way that disulphide gets lower and thiols get higher. Thiol/disulphide level is likely to have a role in basal cell carcinoma pathogenesis.

  19. New role for Cdc14 phosphatase: localization to basal bodies in the oomycete phytophthora and its evolutionary coinheritance with eukaryotic flagella.

    Directory of Open Access Journals (Sweden)

    Audrey M V Ah-Fong

    Full Text Available Cdc14 protein phosphatases are well known for regulating the eukaryotic cell cycle, particularly during mitosis. Here we reveal a distinctly new role for Cdc14 based on studies of the microbial eukaryote Phytophthora infestans, the Irish potato famine agent. While Cdc14 is transcribed constitutively in yeast and animal cells, the P. infestans ortholog is expressed exclusively in spore stages of the life cycle and not in vegetative hyphae where the bulk of mitosis takes place. PiCdc14 expression is first detected in nuclei at sporulation, and during zoospore formation the protein accumulates at the basal body, which is the site from which flagella develop. The association of PiCdc14 with basal bodies was supported by co-localization studies with the DIP13 basal body protein and flagellar β-tubulin, and by demonstrating the enrichment of PiCdc14 in purified flagella-basal body complexes. Overexpressing PiCdc14 did not cause defects in growth or mitosis in hyphae, but interfered with cytoplasmic partitioning during zoosporogenesis. This cytokinetic defect might relate to its ability to bind microtubules, which was shown using an in vitro cosedimentation assay. The use of gene silencing to reveal the precise function of PiCdc14 in flagella is not possible since we showed previously that silencing prevents the formation of the precursor stage, sporangia. Nevertheless, the association of Cdc14 with flagella and basal bodies is consistent with their phylogenetic distribution in eukaryotes, as species that lack the ability to produce flagella generally also lack Cdc14. An ancestral role of Cdc14 in the flagellar stage of eukaryotes is thereby proposed.

  20. Shell bone histology indicates terrestrial palaeoecology of basal turtles

    OpenAIRE

    Scheyer, Torsten; Sander, P. Martin

    2009-01-01

    The palaeoecology of basal turtles from the Late Triassic was classically viewed as being semi-aquatic, similar to the lifestyle of modern snapping turtles. Lately, this view was questioned based on limb bone proportions, and a terrestrial palaeoecology was suggested for the turtle stem. Here, we present independent shell bone microstructural evidence for a terrestrial habitat of the oldest and basal most well-known turtles, i.e. the Upper Triassic Proterochersis robusta and Proganochelys que...

  1. A synthesis of the basal thermal state of the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D.; Colgan, William T.; Gogineni, Prasad S.; Morlighem, Mathieu; Nowicki, Sophie M .J.; Paden, John D; Price, Stephen F.; Seroussi, Helene

    2016-01-01

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  2. A synthesis of the basal thermal state of the Greenland Ice Sheet.

    Science.gov (United States)

    MacGregor, Joseph A; Fahnestock, Mark A; Catania, Ginny A; Aschwanden, Andy; Clow, Gary D; Colgan, William T; Gogineni, S Prasad; Morlighem, Mathieu; Nowicki, Sophie M J; Paden, John D; Price, Stephen F; Seroussi, Hélène

    2016-08-10

    The basal thermal state of an ice sheet (frozen or thawed) is an important control upon its evolution, dynamics and response to external forcings. However, this state can only be observed directly within sparse boreholes or inferred conclusively from the presence of subglacial lakes. Here we synthesize spatially extensive inferences of the basal thermal state of the Greenland Ice Sheet to better constrain this state. Existing inferences include outputs from the eight thermomechanical ice-flow models included in the SeaRISE effort. New remote-sensing inferences of the basal thermal state are derived from Holocene radiostratigraphy, modern surface velocity and MODIS imagery. Both thermomechanical modeling and remote inferences generally agree that the Northeast Greenland Ice Stream and large portions of the southwestern ice-drainage systems are thawed at the bed, whereas the bed beneath the central ice divides, particularly their west-facing slopes, is frozen. Elsewhere, there is poor agreement regarding the basal thermal state. Both models and remote inferences rarely represent the borehole-observed basal thermal state accurately near NorthGRIP and DYE-3. This synthesis identifies a large portion of the Greenland Ice Sheet (about one third by area) where additional observations would most improve knowledge of its overall basal thermal state.

  3. Functional Role of Cyclin-Dependent Kinase 5 in the Regulation of Melanogenesis and Epidermal Structure.

    Science.gov (United States)

    Dong, Changsheng; Yang, Shanshan; Fan, Ruiwen; Ji, Kaiyuan; Zhang, Junzhen; Liu, Xuexian; Hu, Shuaipeng; Xie, Jianshan; Liu, Yu; Gao, Wenjun; Wang, Haidong; Yao, Jianbo; Smith, George W; Herrid, Muren

    2017-10-23

    The mammalian integumentary system plays important roles in body homeostasis, and dysfunction of melanogenesis or epidermal development may lead to a variety of skin diseases, including melanoma. Skin pigmentation in humans and coat color in fleece-producing animals are regulated by many genes. Among them, microphthalmia-associated transcription factor (MITF) and paired-box 3 (PAX3) are at the top of the cascade and regulate activities of many important melanogenic enzymes. Here, we report for the first time that cyclin-dependent kinase 5 (Cdk5) is an essential regulator of MITF and PAX3. Cdk5 knockdown in mice causes a lightened coat color, a polarized distribution of melanin and hyperproliferation of basal keratinocytes. Reduced expression of Keratin 10 (K10) resulting from Cdk5 knockdown may be responsible for an abnormal epidermal structure. In contrast, overexpression of Cdk5 in sheep (Ovis aries) only produces brown patches on a white background, with no other observable abnormalities. Collectively, our findings show that Cdk5 has an important functional role in the regulation of melanin production and transportation and in normal development of the integumentary system.

  4. Hemodynamics in the cerebral cortex and basal ganglia

    International Nuclear Information System (INIS)

    Yamaguchi, Shinya; Fukuyama, Hidenao; Yamauchi, Hiroshi; Kimura, Jun

    1991-01-01

    We examined ten healthy volunteers using positron emission tomography (PET) in order to elucidate regional changes and correlations in the cerebral circulation and oxygen metabolism. We also studied eight lacunar stroke patients so as to disclose the influences of vascular risk factors and aging on the cerebral blood flow and metabolism. We can conclude from our result as follows: (1) Cerebral blood volume (CBV) was minimum in the basal ganglia and cerebral blood flow (CBF)/CBV ratio was higher than that of cerebral cortex in healthy volunteers; (2) CBF of gray matter in healthy volunteers correlated with CBV and cerebral metabolic rate of oxygen where oxygen extraction fraction inversely correlated with CBF, CBV, and CBF/CBV; and (3) the basal ganglia CBF/CBV ratio in lacunar stroke patients was lower than that of healthy volunteers. These findings suggested that the perfusion pressure in the basal ganglia was so high in the normal condition than the angionecrosis or occlusion in the perforating arteries would be induced, especially in the aged and hypertensive patients. (author)

  5. Nonlinear predictive control for adaptive adjustments of deep brain stimulation parameters in basal ganglia-thalamic network.

    Science.gov (United States)

    Su, Fei; Wang, Jiang; Niu, Shuangxia; Li, Huiyan; Deng, Bin; Liu, Chen; Wei, Xile

    2018-02-01

    The efficacy of deep brain stimulation (DBS) for Parkinson's disease (PD) depends in part on the post-operative programming of stimulation parameters. Closed-loop stimulation is one method to realize the frequent adjustment of stimulation parameters. This paper introduced the nonlinear predictive control method into the online adjustment of DBS amplitude and frequency. This approach was tested in a computational model of basal ganglia-thalamic network. The autoregressive Volterra model was used to identify the process model based on physiological data. Simulation results illustrated the efficiency of closed-loop stimulation methods (amplitude adjustment and frequency adjustment) in improving the relay reliability of thalamic neurons compared with the PD state. Besides, compared with the 130Hz constant DBS the closed-loop stimulation methods can significantly reduce the energy consumption. Through the analysis of inter-spike-intervals (ISIs) distribution of basal ganglia neurons, the evoked network activity by the closed-loop frequency adjustment stimulation was closer to the normal state. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. A whole stand basal area projection model for Appalachian hardwoods

    Science.gov (United States)

    John R. Brooks; Lichun Jiang; Matthew Perkowski; Benktesh Sharma

    2008-01-01

    Two whole-stand basal area projection models were developed for Appalachian hardwood stands. The proposed equations are an algebraic difference projection form based on existing basal area and the change in age, trees per acre, and/or dominant height. Average equation error was less than 10 square feet per acre and residuals exhibited no irregular trends.

  7. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo (Nippon Medical School, Tokyo)

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  8. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Node, Yoji; Nakazawa, Shozo [Nippon Medical School, Tokyo

    1983-04-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm.

  9. Clinical studies of the calcification of the basal ganglia as disclosed by computed tomography

    International Nuclear Information System (INIS)

    Node, Yoji; Nakazawa, Shozo

    1983-01-01

    One hundred and twenty-nine of the 12,645 patients (1.0%) were found to have attenuating changes suggesting calcification of the basal ganglia. Thirty-seven of those patients were male and 92 were female. The calcification was bilateral and grossly symmetric in 108 of these patients (83.7%), while it was unilateral in 21 (16.3%). In the unilaterally located cases, 15 were on the left side and 6 were on the right side. In 128 of these patients (99.2%), calcification was located in the globus pallidus. Only one patient, whose diagnosis was hypoparathyroidism, had calcification in both the globus pallidus and the head of the caudate nucleus. The patients' ages ranged from 10 to 85 years (mean, 58), but 88.4% of the patients were more than 40 years old at the time of the CT scanning. The attenuation values of the lesions varied from 35 to 375 EMI units (mean, 55.7). Skull radiographs were performed in 120 of the 129 patients. Calcification was detected in only one patient, a 76-year-old woman, whose diagnosis was myasthenia gravis. The clinical diagnoses of the 129 patients were as follows: 37, headache; 22, cerebrovascular diseases (19, occlusive cerebrovascular diseases); 20, vertigo and/or tinnitus; 12, psychiatric disorders; 5, Parkinson's Syndrome; 2, hypopara thyroidism; 2, Fahr's disease; 2, familial basal ganglia calcification; 2, epilepsy, and 25, miscellaneous (including carcinoma, brain tumor, and trauma). Nervous system abnormalities were observed in 41 of the 129 patients (31.2%). Mental signs, such as disturbance of recent memory, mental retardation, and dementia, were noted in 14 patients. Movement disorders were noted in 13 patients. Other nervous-system abnormalities were sensory disturbances (5 patients) and seizures (4 patients). Abnormal EEG activities were noted in 9 patients; three patients showed epileptic activity, and six had a pathologically slow rhythm. (J.P.N.)

  10. Reduced basal and novelty-induced levels of activity-regulated cytoskeleton associated protein (Arc) and c-Fos mRNA in the cerebral cortex and hippocampus of APPswe/PS1ΔE9 transgenic mice

    DEFF Research Database (Denmark)

    Christensen, Ditte Z; Thomsen, Morten Skøtt; Mikkelsen, Jens D

    2013-01-01

    to a novel open field environment was compromised in different neocortical areas and the hippocampal formation in APP/PS1ΔE9 transgenic mice characterized by pronounced accumulation and deposition of beta amyloid (Aβ). Notably, the basal level of Arc and c-fos mRNA in the neocortex was significantly lower...... in APP/PS1ΔE9 compared to wild-type mice. Novelty exposure induced an increase in Arc and c-Fos mRNA in the medial prefrontal cortex (mPFC), parietal cortex, and hippocampal formation in both APP/PS1ΔE9 transgenic and wild-type mice. However, novelty-induced IEG expression did not reach the same levels...... in a transgenic mouse model of Alzheimer's disease, which is most pronounced in cortical regions, indicating that a decreased functional response in IEG expression could be partly responsible for the cognitive deficits observed in patients with Alzheimer's disease....

  11. Evaluation of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal axis.

    Science.gov (United States)

    Ding, Yu; Li, Juan; Yu, Yongguo; Yang, Peirong; Li, Huaiyuan; Shen, Yongnian; Huang, Xiaodong; Liu, Shijian

    2018-03-28

    This study aimed to identify the predictive value of basal sex hormone levels for activation of the hypothalamic-pituitary-gonadal (HPG) axis in girls. Gonadotropin-releasing hormone (GnRH) stimulation tests were performed and evaluated in a total of 1750 girls with development of secondary sex characteristics. Correlation analyses were conducted between basal sex hormones and peak luteinizing hormone (LH) levels ≥5 IU/L during the GnRH stimulation test. Receiver operating characteristic (ROC) curves for basal levels of LH, follicle-stimulating hormone (FSH), LH/FSH, and estradiol (E2) before the GnRH stimulation test were plotted. The area under the curve (AUC) and 95% confidence intervals (CIs) were measured for each curve. The maximum AUC value was observed for basal LH levels (0.77, 95% CI: 0.74-0.79), followed by basal FSH levels (0.73, 95% CI: 0.70-0.75), the basal LH/FSH ratio (0.68, 95% CI: 0.65-0.71), and basal E2 levels (0.61, 95% CI: 0.59-0.64). The appropriate cutoff value of basal LH levels associated with a positive response of the GnRH stimulation test was 0.35 IU/L, with a sensitivity of 63.96% and specificity of 76.3% from the ROC curves when Youden's index showed the maximum value. When 100% of patients had peak LH levels ≥5 IU/L, basal LH values were >2.72 IU/L, but the specificity was only 5.45%. Increased basal LH levels are a significant predictor of a positive response during the GnRH stimulation test for assessing activation of the HPG axis in most girls with early pubertal signs.

  12. Basal Ganglia Activity Mirrors a Benefit of Action and Reward on Long-Lasting Event Memory.

    Science.gov (United States)

    Koster, Raphael; Guitart-Masip, Marc; Dolan, Raymond J; Düzel, Emrah

    2015-12-01

    The expectation of reward is known to enhance a consolidation of long-term memory for events. We tested whether this effect is driven by positive valence or action requirements tied to expected reward. Using a functional magnetic resonance imaging (fMRI) paradigm in young adults, novel images predicted gain or loss outcomes, which in turn were either obtained or avoided by action or inaction. After 24 h, memory for these images reflected a benefit of action as well as a congruence of action requirements and valence, namely, action for reward and inaction for avoidance. fMRI responses in the hippocampus, a region known to be critical for long-term memory function, reflected the anticipation of inaction. In contrast, activity in the putamen mirrored the congruence of action requirement and valence, whereas other basal ganglia regions mirrored overall action benefits on long-lasting memory. The findings indicate a novel type of functional division between the hippocampus and the basal ganglia in the motivational regulation of long-term memory consolidation, which favors remembering events that are worth acting for. © The Author 2015. Published by Oxford University Press.

  13. Basal ganglia calcification as a putative cause for cognitive decline

    Directory of Open Access Journals (Sweden)

    João Ricardo Mendes de Oliveira

    Full Text Available ABSTRACT Basal ganglia calcifications (BGC may be present in various medical conditions, such as infections, metabolic, psychiatric and neurological diseases, associated with different etiologies and clinical outcomes, including parkinsonism, psychosis, mood swings and dementia. A literature review was performed highlighting the main neuropsychological findings of BGC, with particular attention to clinical reports of cognitive decline. Neuroimaging studies combined with neuropsychological analysis show that some patients have shown progressive disturbances of selective attention, declarative memory and verbal perseveration. Therefore, the calcification process might represent a putative cause for dementia syndromes, suggesting a probable link among calcinosis, the aging process and eventually with neuronal death. The increasing number of reports available will foster a necessary discussion about cerebral calcinosis and its role in determining symptomatology in dementia patients

  14. Giant morphea-form basal cell carcinoma of the umbilicus: Successful debulking with vismodegib.

    Science.gov (United States)

    Orduz Robledo, Mariana; Lebas, Eve; Reginster, Marie-Annick; Baghaie, Mahmoud; Groves, Sabine; Nikkels, Arjen F

    2018-01-01

    Basal cell carcinoma of the umbilicus is very rare. The nodular subtype is the main representative. Giant basal cell carcinomas represent around 1% of all basal cell carcinomas. The hedgehog pathway inhibitor vismodegib is indicated for advanced basal cell carcinoma and CD56-negative immunostaining seems indicative for successful treatment. A 54-year-old man presented a 10 cm × 14 cm large and 4.5 cm deep morphea-form basal cell carcinoma with faint immunohistochemical CD56 expression arising from the umbilicus. A sequential treatment was initiated with debulking using vismodegib 150 mg per day for 4 months, followed by reconstructive surgery. To the best of our knowledge, this is the first report of a giant basal cell carcinoma of the morphea-form type of the umbilicus. The sequential treatment plan reduces the duration of vismodegib inherent adverse effects and significantly reduces the tumor mass prior to surgery. Besides increasing adherence to vismodegib treatment, this approach facilitates the surgical technique and improves cosmetic outcome.

  15. Basal hypercortisolism and trauma in patients with psychogenic nonepileptic seizures.

    Science.gov (United States)

    Bakvis, Patricia; Spinhoven, Philip; Giltay, Erik J; Kuyk, Jarl; Edelbroek, Peter M; Zitman, Frans G; Roelofs, Karin

    2010-05-01

    Several studies have indicated that psychogenic nonepileptic seizures (PNES) are associated with psychological trauma, but only a few studies have examined the associations with neurobiologic stress systems, such as the hypothalamus-pituitary-adrenal (HPA) axis and its end-product cortisol. We tested several relevant HPA-axis functions in patients with PNES and related them to trauma history. Cortisol awakening curve, basal diurnal cortisol, and negative cortisol feedback (using a 1 mg dexamethasone suppression test) were examined in 18 patients with PNES and 19 matched healthy controls (HCs) using saliva cortisol sampling on two consecutive days at 19 time points. Concomitant sympathetic nervous system (SNS) activity was assessed by analyzing saliva alpha-amylase (sAA). Patients with PNES showed significantly increased basal diurnal cortisol levels compared to HCs. This effect was driven mainly by patients reporting sexual trauma who showed a trend toward higher cortisol levels as compared to patients without a sexual trauma report. Importantly, the increased basal diurnal cortisol levels in patients were not explained by depression, medication, or smoking, or by current seizures or group differences in SNS activity. This is the first study showing that basal hypercortisolism in patients with PNES is independent of the acute occurrence of seizures. In addition, basal hypercortisolism was more pronounced in traumatized patients with PNES as compared to nontraumatized patients with PNES. These findings suggest that HPA-axis activity provides a significant neurobiologic marker for PNES.

  16. Basal Cell Carcinoma in Cases with or without Xeroderma Pigmentosum.

    Science.gov (United States)

    Ghartimagar, Dilasma; Ghosh, Arnab; Shrestha, Sushil Ram; Shrestha, Sachet; Thapa, Sushma; Narasimhan, Raghavan; Talwar, O P

    2017-01-01

    Basal cell carcinoma is the most common form of cancer in humans and comprises the vast majority of skin cancers. It predominantly affects fair-skinned individuals, and its incidence is rapidly increasing. The objective of the study is to identify the epidemiology, its topography and different histological subtypes of basal cell carcinoma in patients with or without Xeroderma Pigmentosum. A cross-sectional descriptive study was conducted at Manipal Teaching Hospital, Pokhara from Jan 2009 to Dec 2016. Ethical approval was taken from MEMG/IRC/GA. The study included patients with a confirmed diagnosis of basal cell carcinoma irrespective of their age and sex. This study showed 77 individuals with 91 biopsies of BCC including 5 cases of Xeroderma Pigmentosum. The predominant histological subtype was nodular with 41 (53.94%) cases, followed by the 14 (18.42%) cases of pigmented and 10 (13.15%) cases baso-squamous subtype. The most frequent sites of involvement were the head and neck, with predominance in the nasal and orbital region. The mean age was 57.68 years but the basal cell carcinoma in cases of Xeroderma Pigmentosum was seen more in younger age groups. There were 43 (55.84 %) male patients and 34 (44.16 %) female patients with a male to female ratio of 1.26:1. Nodular and pigmented varieties were the most frequent subtypes with nose being the commonest site of involvement. Basal cell carcinomas in cases of Xeroderma Pigmentosum were noted in younger age group with multiple lesions.

  17. Primary brain lymphoma presenting as Parkinson's disease

    International Nuclear Information System (INIS)

    Sanchez-Guerra, M.; Leno, C.; Berciano, J.; Cerezal, L.; Diez, C.; Figols, J.

    2001-01-01

    Neoplasm is an uncommon cause of a parkinsonian syndrome. We report a woman with primary brain B-cell lymphoma presenting as Parkinson's disease. After 1 year of the illness, CT and MRI showed lesions without mass effect in the basal ganglia and corpus callosum. The patient did not respond to levodopa and right cerebellar and brain-stem signs appeared, which prompted further neuroimaging, showing an increase in size of the lesions and a right cerebellar and pontine mass. Stereotactic biopsy of the basal ganglia showed high-grade B-cell lymphoma. Despite the basal ganglia frequently being involved in lymphoma of the brain, presentation with typical or atypical parkinsonism is exceptional. (orig.)

  18. Effects of short-term hormonal replacement on learning and on basal forebrain ChAT and TrkA content in ovariectomized rats.

    Science.gov (United States)

    Espinosa-Raya, Judith; Plata-Cruz, Noemí; Neri-Gómez, Teresa; Camacho-Arroyo, Ignacio; Picazo, Ofir

    2011-02-23

    It has been proposed that sex steroid hormones improve performance in some cognitive tasks by regulating the basal forebrain cholinergic function. However, the molecular basis of such influence still remains unknown. Current study analyzed the performance of ovariectomized rats in an autoshaping learning task after a short-term treatment with 17β-estradiol (E2: 4 and 40μg/kg) and/or progesterone (P4: 4mg/kg). These results were correlated with basal forebrain choline acetyltransferase (ChAT) and TrkA protein content. The high dose of E2 enhanced both acquisition in the autoshaping task and the content of ChAT and TrkA. P4 treatment increased ChAT and TrkA content without affecting performance of rats in the autoshaping learning task. Interestingly, the continuous and simultaneous administration of E2 plus P4 did not significantly modify behavioral and biochemical evaluated parameters. These results address the influence of both E2 and P4 on cholinergic and TrkA activity and suggest that the effects of ovarian hormones on cognitive performance involve basal forebrain cholinergic neurons. Copyright © 2010 Elsevier B.V. All rights reserved.

  19. Cortical restricted diffusion as the predominant MRI finding in sporadic Creutzfeldt-Jakob disease

    Energy Technology Data Exchange (ETDEWEB)

    Talbott, Sabrina D.; Sattenberg, Ronald J.; Heidenreich, Jens O. (Dept. of Radiology, Univ. of Louisville, Louisville (United States)), e-mail: sdtalb02@gwise.louisville.edu; Plato, Brian M (Dept. of Neurology, Univ. of Louisville, Louisville (United States)); Parker, John (Dept. of Pathology and Laboratory Medicine, Univ. of Louisville, Louisville (United States))

    2011-04-15

    Creutzfeldt-Jakob disease is a rare and fatal neurodegenerative disorder with MR findings predominantly limited to the grey matter of the cortex and the basal ganglia. Sporadic Creutzfeldt-Jakob disease can produce a spectrum of MR imaging findings of the brain, most notably on DWI and FLAIR sequences. Involvement of the basal ganglia and neocortex is the most common finding, but isolated involvement of the cortex can also be seen. We describe the clinical history and MRI findings of three patients with sporadic Creutzfeldt-Jakob disease confirmed by brain biopsy or autopsy and review the literature of imaging manifestations of this disease

  20. Cortical restricted diffusion as the predominant MRI finding in sporadic Creutzfeldt-Jakob disease

    International Nuclear Information System (INIS)

    Talbott, Sabrina D.; Sattenberg, Ronald J.; Heidenreich, Jens O.; Plato, Brian M; Parker, John

    2011-01-01

    Creutzfeldt-Jakob disease is a rare and fatal neurodegenerative disorder with MR findings predominantly limited to the grey matter of the cortex and the basal ganglia. Sporadic Creutzfeldt-Jakob disease can produce a spectrum of MR imaging findings of the brain, most notably on DWI and FLAIR sequences. Involvement of the basal ganglia and neocortex is the most common finding, but isolated involvement of the cortex can also be seen. We describe the clinical history and MRI findings of three patients with sporadic Creutzfeldt-Jakob disease confirmed by brain biopsy or autopsy and review the literature of imaging manifestations of this disease

  1. Basal Cell Carcinoma with Myoepithelial Differentiation: Case Report and Literature Review.

    Science.gov (United States)

    Cohen, Philip R

    2018-01-17

    Basal cell carcinoma is the most common skin cancer. Myoepithelial cells are specialized epithelial cells. Basal cell carcinoma with myoepithelial differentiation is a rare tumor. A 71-year-old man with a basal cell carcinoma with myoepithelial differentiation that presented as an asymptomatic red papule of two months duration on his forehead is described. Including the reported patient, this variant of basal cell carcinoma has been described in 16 patients: 11 men and five women. The patients ranged in age at diagnosis from 43 years to 83 years; the median age at diagnosis was 66 years. All of the tumors were located on the face-most were papules or nodules of less than 10 x 10 mm. Their pathology demonstrated two components: one was that of a typical basal cell carcinoma and the other was myoepithelioma-like in which the tumor cells were plasmacytoid or signet ring in appearance and contained abundant eosinophilic cytoplasm or hyaline inclusions or both. The myoepithelial tumor cells had variable immunohistochemical expression that included not only cytokeratin but also actin, glial fibrillary acid protein, S100, and vimentin. The most common clinical impression, prior to biopsy, was a basal cell carcinoma. The pathologic differential diagnosis included cutaneous mixed sweat gland tumor of the skin, myoepithelioma, myoepithelial carcinoma, and tumors that contain a prominent signet ring cell component (such as metastatic gastrointestinal and breast carcinoma, melanoma, plasmacytoid squamous cell carcinoma, and T-cell lymphoma). Mohs micrographic surgical excision, with complete removal of the tumor, was recommended for treatment of the carcinoma.

  2. Innate Lymphoid Cells: A Promising New Regulator in Fibrotic Diseases.

    Science.gov (United States)

    Zhang, Yi; Tang, Jun; Tian, Zhiqiang; van Velkinburgh, Jennifer C; Song, Jianxun; Wu, Yuzhang; Ni, Bing

    2016-09-02

    Fibrosis is a consequence of chronic inflammation and the persistent accumulation of extracellular matrix, for which the cycle of tissue injury and repair becomes a predominant feature. Both the innate and adaptive immune systems play key roles in the progress of fibrosis. The recently identified subsets of innate lymphoid cells (ILCs), which are mainly localize to epithelial surfaces, have been characterized as regulators of chronic inflammation and tissue remodeling, representing a functional bridge between the innate and adaptive immunity. Moreover, recent research has implicated ILCs as potential contributing factors to several kinds of fibrosis diseases, such as hepatic fibrosis and pulmonary fibrosis. Here, we will summarize and discuss the key roles of ILCs and their related factors in fibrotic diseases and their potential for translation to the clinic.

  3. HJV and HFE Play Distinct Roles in Regulating Hepcidin.

    Science.gov (United States)

    Wu, Qian; Wang, Hao; An, Peng; Tao, Yunlong; Deng, Jiali; Zhang, Zhuzhen; Shen, Yuanyuan; Chen, Caiyong; Min, Junxia; Wang, Fudi

    2015-05-20

    Hereditary hemochromatosis (HH) is an iron overload disease that is caused by mutations in HFE, HJV, and several other genes. However, whether HFE-HH and HJV-HH share a common pathway via hepcidin regulation is currently unclear. Recently, some HH patients have been reported to carry concurrent mutations in both the HFE and HJV genes. To dissect the roles and molecular mechanisms of HFE and/or HJV in the pathogenesis of HH, we studied Hfe(-/-), Hjv(-/-), and Hfe(-/-)Hjv(-/-) double-knockout mouse models. Hfe(-/-)Hjv(-/-) mice developed iron overload in multiple organs at levels comparable to Hjv(-/-) mice. After an acute delivery of iron, the expression of hepcidin (i.e., Hamp1 mRNA) was increased in the livers of wild-type and Hfe(-/-) mice, but not in either Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. Furthermore, iron-induced phosphorylation of Smad1/5/8 was not detected in the livers of Hjv(-/-) or Hfe(-/-)Hjv(-/-) mice. We generated and phenotypically characterized Hfe(-/-)Hjv(-/-) double-knockout mice. In addition, because they faithfully phenocopy clinical HH patients, these mouse models are an invaluable tool for mechanistically dissecting how HFE and HJV regulate hepcidin expression. Based on our results, we conclude that HFE may depend on HJV for transferrin-dependent hepcidin regulation. The presence of residual hepcidin in the absence of HFE suggests either the presence of an unknown regulator (e.g., TFR2) that is synergistic with HJV or that HJV is sufficient to maintain basal levels of hepcidin.

  4. RUNX1: A Regulator of NF-kB Signaling in Pulmonary Diseases.

    Science.gov (United States)

    Tang, Xiaoju; Sun, Ling; Wang, Gang; Chen, Bojiang; Luo, Fengming

    2018-01-01

    Runt-related transcription factor 1 (RUNX1), a member of the RUNX family, is one of the key regulatory proteins in vertebrates. RUNX1 is involved in embryonic development, hematopoiesis, angiogenesis, tumorigenesis and immune response. In the past few decades, studies mainly focused on the effect of RUNX1 on acute leukemia and cancer. Only few studies about the function of RUNX1 in the pathological process of pulmonary diseases have been reported. Recent studies have demonstrated that RUNX1 is highly expressed in both mesenchymal and epithelial compartments of the developing and postnatal lung and that it plays a critical role in the lipopolysaccharide induced lung inflammation by regulating the NF-kB pathway. RUNX1 participates in the regulation of the NF-kB signaling pathway through interaction with IkB kinase complex in the cytoplasm or interaction with the NF-kB subunit P50. NF-kB is well-known signaling pathway necessary for inflammatory response in the lung. This review is to highlight the RUNX1 structure, isoforms and to present the mechanism that RUNX1 regulates NF-kB. This will illustrate the great potential role of RUNX1 in the inflammation signaling pathway in pulmonary diseases. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  5. Basal activity of voltage-gated Ca(2+) channels controls the IP3-mediated contraction by α(1)-adrenoceptor stimulation of mouse aorta segments.

    Science.gov (United States)

    Leloup, Arthur J; Van Hove, Cor E; De Meyer, Guido R Y; Schrijvers, Dorien M; Fransen, Paul

    2015-08-05

    α1-Adrenoceptor stimulation of mouse aorta causes intracellular Ca(2+) release from sarcoplasmic reticulum Ca(2+) stores via stimulation of inositoltriphosphate (IP3) receptors. It is hypothesized that this Ca(2+) release from the contractile and IP3-sensitive Ca(2+) store is under the continuous dynamic control of time-independent basal Ca(2+) influx via L-type voltage-gated Ca(2+) channels (LCC) residing in their window voltage range. Mouse aortic segments were α1-adrenoceptor stimulated with phenylephrine in the absence of external Ca(2+) (0Ca) to measure phasic isometric contractions. They gradually decreased with time in 0Ca, were inhibited with 2-aminoethoxydiphenyl borate, and declined with previous membrane potential hyperpolarization (levcromakalim) or with previous inhibition of LCC (diltiazem). Former basal stimulation of LCC with depolarization (15 mM K(+)) or with BAY K8644 increased the subsequent phasic contractions by phenylephrine in 0Ca. Although exogenous NO (diethylamine NONOate) reduced the phasic contractions by phenylephrine, stimulation of endothelial cells with acetylcholine in 0Ca failed to attenuate these phasic contractions. Finally, inhibition of the basal release of NO with N(Ω)-nitro-L-arginine methyl ester also attenuated the phasic contractions by phenylephrine. Results indicated that α1-adrenoceptor stimulation with phenylephrine causes phasic contractions, which are controlled by basal LCC and endothelial NO synthase activity. Endothelial NO release by acetylcholine was absent in 0Ca. Given the growing interest in the active regulation of arterial compliance, the dependence of contractile SR Ca(2+) store-refilling in basal conditions on the activity of LCC and basal eNOS may contribute to a more thorough understanding of physiological mechanisms leading to arterial stiffness. Copyright © 2015. Published by Elsevier B.V.

  6. Metastatic basal cell carcinoma caused by carcinoma misdiagnosed as acne - case report and literature review

    DEFF Research Database (Denmark)

    Aydin, Dogu; Hölmich, Lisbet Rosenkrantz; Jakobsen, Linda Plovmand

    2016-01-01

    Basal cell carcinoma can be misdiagnosed as acne; thus, carcinoma should be considered in treatment-resistant acne. Although rare, neglected basal cell carcinoma increases the risk of metastasis.......Basal cell carcinoma can be misdiagnosed as acne; thus, carcinoma should be considered in treatment-resistant acne. Although rare, neglected basal cell carcinoma increases the risk of metastasis....

  7. Sas-4 proteins are required during basal body duplication in Paramecium

    Science.gov (United States)

    Gogendeau, Delphine; Hurbain, Ilse; Raposo, Graca; Cohen, Jean; Koll, France; Basto, Renata

    2011-01-01

    Centrioles and basal bodies are structurally related organelles composed of nine microtubule (MT) triplets. Studies performed in Caenorhabditis elegans embryos have shown that centriole duplication takes place in sequential way, in which different proteins are recruited in a specific order to assemble a procentriole. ZYG-1 initiates centriole duplication by triggering the recruitment of a complex of SAS-5 and SAS-6, which then recruits the final player, SAS-4, to allow the incorporation of MT singlets. It is thought that a similar mechanism (that also involves additional proteins) is present in other animal cells, but it remains to be investigated whether the same players and their ascribed functions are conserved during basal body duplication in cells that exclusively contain basal bodies. To investigate this question, we have used the multiciliated protist Paramecium tetraurelia. Here we show that in the absence of PtSas4, two types of defects in basal body duplication can be identified. In the majority of cases, the germinative disk and cartwheel, the first structures assembled during duplication, are not detected. In addition, if daughter basal bodies were formed, they invariably had defects in MT recruitment. Our results suggest that PtSas4 has a broader function than its animal orthologues. PMID:21289083

  8. Basal insulin analogues in the treatment of diabetes mellitus: What progress have we made?

    OpenAIRE

    Kalra, Sanjay

    2015-01-01

    Over the past few decades, continuous progress has been made in the development of insulin therapy. Basal insulins were developed around 60 years ago. However, existing basal insulins were found to have limitations. An ideal basal insulin should have the following properties viz. longer duration of action, a flat time-action profile, low day-to-day glycaemic variability, and the potential for flexible dosing. Basal insulins have advanced over the years, from lectin and neutral protamine Haged...

  9. Alpha-Secretase ADAM10 Regulation: Insights into Alzheimer’s Disease Treatment

    Science.gov (United States)

    Peron, Rafaela; Vatanabe, Izabela Pereira; Manzine, Patricia Regina; Camins, Antoni

    2018-01-01

    ADAM (a disintegrin and metalloproteinase) is a family of widely expressed, transmembrane and secreted proteins of approximately 750 amino acids in length with functions in cell adhesion and proteolytic processing of the ectodomains of diverse cell-surface receptors and signaling molecules. ADAM10 is the main α-secretase that cleaves APP (amyloid precursor protein) in the non-amyloidogenic pathway inhibiting the formation of β-amyloid peptide, whose accumulation and aggregation leads to neuronal degeneration in Alzheimer’s disease (AD). ADAM10 is a membrane-anchored metalloprotease that sheds, besides APP, the ectodomain of a large variety of cell-surface proteins including cytokines, adhesion molecules and notch. APP cleavage by ADAM10 results in the production of an APP-derived fragment, sAPPα, which is neuroprotective. As increased ADAM10 activity protects the brain from β-amyloid deposition in AD, this strategy has been proved to be effective in treating neurodegenerative diseases, including AD. Here, we describe the physiological mechanisms regulating ADAM10 expression at different levels, aiming to propose strategies for AD treatment. We report in this review on the physiological regulation of ADAM10 at the transcriptional level, by epigenetic factors, miRNAs and/or translational and post-translational levels. In addition, we describe the conditions that can change ADAM10 expression in vitro and in vivo, and discuss how this knowledge may help in AD treatment. Regulation of ADAM10 is achieved by multiple mechanisms that include transcriptional, translational and post-translational strategies, which we will summarize in this review. PMID:29382156

  10. Biotin deficiency up-regulates TNF-alpha production in murine macrophages.

    Science.gov (United States)

    Kuroishi, Toshinobu; Endo, Yasuo; Muramoto, Koji; Sugawara, Shunji

    2008-04-01

    Biotin, a water-soluble vitamin of the B complex, functions as a cofactor of carboxylases that catalyze an indispensable cellular metabolism. Although significant decreases in serum biotin levels have been reported in patients with chronic inflammatory diseases, the biological roles of biotin in inflammatory responses are unclear. In this study, we investigated the effects of biotin deficiency on TNF-alpha production. Mice were fed a basal diet or a biotin-deficient diet for 8 weeks. Serum biotin levels were significantly lower in biotin-deficient mice than biotin-sufficient mice. After i.v. administration of LPS, serum TNF-alpha levels were significantly higher in biotin-deficient mice than biotin-sufficient mice. A murine macrophage-like cell line, J774.1, was cultured in a biotin-sufficient or -deficient medium for 4 weeks. Cell proliferation and biotinylation of intracellular proteins were decreased significantly in biotin-deficient cells compared with biotin-sufficient cells. Significantly higher production and mRNA expression of TNF-alpha were detected in biotin-deficient J774.1 cells than biotin-sufficient cells in response to LPS and even without LPS stimulation. Intracellular TNF-alpha expression was inhibited by actinomycin D, indicating that biotin deficiency up-regulates TNF-alpha production at the transcriptional level. However, the expression levels of TNF receptors, CD14, and TLR4/myeloid differentiation protein 2 complex were similar between biotin-sufficient and -deficient cells. No differences were detected in the activities of the NF-kappaB family or AP-1. The TNF-alpha induction by biotin deficiency was down-regulated by biotin supplementation in vitro and in vivo. These results indicate that biotin deficiency may up-regulate TNF-alpha production or that biotin excess down-regulates TNF-alpha production, suggesting that biotin status may influence inflammatory diseases.

  11. Sexually dimorphic regulation and induction of P450s by the constitutive androstane receptor (CAR)

    International Nuclear Information System (INIS)

    Hernandez, J.P.; Mota, L.C.; Huang, W.; Moore, D.D.; Baldwin, W.S.

    2009-01-01

    The constitutive androstane receptor (CAR) is a xenosensing nuclear receptor and regulator of cytochrome P450s (CYPs). However, the role of CAR as a basal regulator of CYP expression nor its role in sexually dimorphic responses have been thoroughly studied. We investigated basal regulation and sexually dimorphic regulation and induction by the potent CAR activator TCPOBOP and the moderate CAR activator Nonylphenol (NP). NP is an environmental estrogen and one of the most commonly found environmental toxicants in Europe and the United States. Previous studies have demonstrated that NP induces several CYPs in a sexually dimorphic manner, however the role of CAR in regulating NP-mediated sexually dimorphic P450 expression and induction has not been elucidated. Therefore, wild-type and CAR-null male and female mice were treated with honey as a carrier, NP, or TCPOBOP and CYP expression monitored by QPCR and Western blotting. CAR basally regulates the expression of Cyp2c29, Cyp2b13, and potentially Cyp2b10 as demonstrated by QPCR. Furthermore, we observed a shift in the testosterone 6α/15α-hydroxylase ratio in untreated CAR-null female mice to the male pattern, which indicates an alteration in androgen status and suggests a role for androgens as CAR inverse agonists. Xenobiotic-treatments with NP and TCPOBOP induced Cyp2b10, Cyp2c29, and Cyp3a11 in a CAR-mediated fashion; however NP only induced these CYPs in females and TCPOBOP induced these CYPs in both males and females. Interestingly, Cyp2a4, was only induced in wild-type male mice by TCPOBOP suggesting Cyp2a4 induction is not sensitive to CAR-mediated induction in females. Overall, TCPOBOP and NP show similar CYP induction profiles in females, but widely different profiles in males potentially related to lower sensitivity of males to either indirect or moderate CAR activators such as NP. In summary, CAR regulates the basal and chemically inducible expression of several sexually dimorphic xenobiotic metabolizing P

  12. Targeting of regulated necrosis in kidney disease

    Directory of Open Access Journals (Sweden)

    Diego Martin-Sanchez

    2018-03-01

    Full Text Available The term acute tubular necrosis was thought to represent a misnomer derived from morphological studies of human necropsies and necrosis was thought to represent an unregulated passive form of cell death which was not amenable to therapeutic manipulation. Recent advances have improved our understanding of cell death in acute kidney injury. First, apoptosis results in cell loss, but does not trigger an inflammatory response. However, clumsy attempts at interfering with apoptosis (e.g. certain caspase inhibitors may trigger necrosis and, thus, inflammation-mediated kidney injury. Second, and most revolutionary, the concept of regulated necrosis emerged. Several modalities of regulated necrosis were described, such as necroptosis, ferroptosis, pyroptosis and mitochondria permeability transition regulated necrosis. Similar to apoptosis, regulated necrosis is modulated by specific molecules that behave as therapeutic targets. Contrary to apoptosis, regulated necrosis may be extremely pro-inflammatory and, importantly for kidney transplantation, immunogenic. Furthermore, regulated necrosis may trigger synchronized necrosis, in which all cells within a given tubule die in a synchronized manner. We now review the different modalities of regulated necrosis, the evidence for a role in diverse forms of kidney injury and the new opportunities for therapeutic intervention. Resumen: La idea de que el término necrosis tubular aguda supone una denominación inapropiada se deriva de estudios morfológicos de necropsias humanas. La opinión generalizada ha sido que la necrosis representa una forma pasiva de muerte celular no regulada que no es susceptible de manipulación terapéutica. Los recientes avances han mejorado nuestra comprensión de la muerte celular en la lesión renal aguda. En primer lugar, la apoptosis origina una pérdida celular, pero no desencadena una respuesta inflamatoria. Sin embargo, los intentos rudimentarios de interferir en la apoptosis

  13. 7a, 25-dihydroxycholesterol-mediated activation of EBI2 in immune regulation and diseases

    Directory of Open Access Journals (Sweden)

    Siquan eSun

    2015-03-01

    Full Text Available EBI2, aka GPR183, is a G-couple receptor originally identified in 1993 as one of main genes induced in Burkitt’s lymphoma cell line BL41 by Epstein-Barr virus (EBV infection. After it was reported in 2009 that the receptor played a key role in regulating B cell migration and responses, we initiated an effort in looking for its endogenous ligand. In 2011 we and another group reported the identification of 7a, 25-dihydroxyxcholesterol (7a, 25-OHC, an oxysterol, as the likely physiological ligand of EBI2. A few subsequently published studies further elucidated how 7a, 25-OHC bound to EBI2, and how a gradient of 7a, 25-OHC could be generated in vivo and regulated migration, activation, and functions of B cells, T cells, dendritic cells (DC, monocytes/macrophages and astrocytes. The identification of 7a, 25-OHC as a GPCR ligand revealed a previously unknown signaling system of oxysterols, a class of molecules which exert profound biological functions. Dysregulation of the synthesis or functions of these molecules is believed to contribute to inflammation and autoimmune diseases, cardiovascular diseases, neurodegenerative diseases, cancer as well as metabolic diseases such as diabetes, obesity, and dyslipidemia. Therefore EBI2 may represent a promising target for therapeutic interventions for human diseases.

  14. Probing the Surface Charge on the Basal Planes of Kaolinite Particles with High-Resolution Atomic Force Microscopy.

    Science.gov (United States)

    Kumar, N; Andersson, M P; van den Ende, D; Mugele, F; Siretanu, I

    2017-12-19

    High-resolution atomic force microscopy is used to map the surface charge on the basal planes of kaolinite nanoparticles in an ambient solution of variable pH and NaCl or CaCl 2 concentration. Using DLVO theory with charge regulation, we determine from the measured force-distance curves the surface charge distribution on both the silica-like and the gibbsite-like basal plane of the kaolinite particles. We observe that both basal planes do carry charge that varies with pH and salt concentration. The silica facet was found to be negatively charged at pH 4 and above, whereas the gibbsite facet is positively charged at pH below 7 and negatively charged at pH above 7. Investigations in CaCl 2 at pH 6 show that the surface charge on the gibbsite facet increases for concentration up to 10 mM CaCl 2 and starts to decrease upon further increasing the salt concentration to 50 mM. The increase of surface charge at low concentration is explained by Ca 2+ ion adsorption, while Cl - adsorption at higher CaCl 2 concentrations partially neutralizes the surface charge. Atomic resolution imaging and density functional theory calculations corroborate these observations. They show that hydrated Ca 2+ ions can spontaneously adsorb on the gibbsite facet of the kaolinite particle and form ordered surface structures, while at higher concentrations Cl - ions will co-adsorb, thereby changing the observed ordered surface structure.

  15. Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016

    Science.gov (United States)

    Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.; Padman, Laurie; Paolo, Fernando S.; Ligtenberg, Stefan R. M.

    2018-05-01

    We have constructed 23-year (1994-2016) time series of Antarctic Peninsula (AP) ice-shelf height change using data from four satellite radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2). Combining these time series with output from atmospheric and firn models, we partitioned the total height-change signal into contributions from varying surface mass balance, firn state, ice dynamics, and basal mass balance. On the Bellingshausen coast of the AP, ice shelves lost 84 ± 34 Gt a-1 to basal melting, compared to contributions of 50 ± 7 Gt a-1 from surface mass balance and ice dynamics. Net basal melting on the Weddell coast was 51 ± 71 Gt a-1. Recent changes in ice-shelf height include increases over major AP ice shelves driven by changes in firn state. Basal melt rates near Bawden Ice Rise, a major pinning point of Larsen C Ice Shelf, showed large increases, potentially leading to substantial loss of buttressing if sustained.

  16. A comparison of basal reflectivity and ice velocity in East Antarctica

    Directory of Open Access Journals (Sweden)

    R. W. Jacobel

    2010-10-01

    Full Text Available Ground-based radio echo sounding data acquired along the 1700 km US-ITASE traverse have been used to determine ice attenuation and relative basal reflectivity across the major catchments funneling ice from East Antarctica to the Ross Ice Shelf. We find that basal reflectivity varies locally by up to 40 dB which we interpret as due to changes in the phase state at the bed. Some, though not all, areas of high local reflectivity are observed to have flat-lying bed reflections indicative of sub-glacial lakes. We compare basal reflectivity to ice balance velocity and find a general association of higher flow speeds with high radar reflection strength. This set of observations from two independent remotely sensed geophysical data sets extends the range of field observations to the interior of East Antarctica and confirms the importance of basal lubrication on modulating the ice dynamics of the largest ice sheet on the planet.

  17. Mast cell inflammasome activity in the meninges regulates EAE disease severity.

    Science.gov (United States)

    Russi, Abigail E; Walker-Caulfield, Margaret E; Brown, Melissa A

    2018-04-01

    Inflammasomes are multiprotein complexes that assemble in response to microbial and other danger signals and regulate the secretion of biologically active IL-1β and IL-18. Although they are important in protective immunity against bacterial, viral and parasitic infections, aberrant inflammasome activity promotes chronic inflammation associated with autoimmune disease. Inflammasomes have been described in many immune cells, but the majority of studies have focused on their activity in macrophages. Here we discuss an important role for mast cell-inflammasome activity in EAE, the rodent model of multiple sclerosis, a CNS demyelinating disease. We review our evidence that mast cells in the meninges, tissues that surround the brain and spinal cord, interact with infiltrating myelin-specific T cells in early disease. This interaction elicits IL-1β expression by mast cells, which in turn, promotes GM-CSF expression by T cells. In view of the essential role that GM-CSF plays in T cell encephalitogenicity, we propose this mast cell-T cell crosstalk in the meninges is critical for EAE disease development. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Directed differentiation of basal forebrain cholinergic neurons from human pluripotent stem cells.

    Science.gov (United States)

    Hu, Yao; Qu, Zhuang-Yin; Cao, Shi-Ying; Li, Qi; Ma, Lixiang; Krencik, Robert; Xu, Min; Liu, Yan

    2016-06-15

    Basal forebrain cholinergic neurons (BFCNs) play critical roles in learning, memory and cognition. Dysfunction or degeneration of BFCNs may connect to neuropathology, such as Alzheimer's disease, Down's syndrome and dementia. Generation of functional BFCNs may contribute to the studies of cell-based therapy and pathogenesis that is related to learning and memory deficits. Here we describe a detail method for robust generation of BFCNs from human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs). In this method, BFCN progenitors are patterned from hESC or hiPSC-derived primitive neuroepithelial cells, with the treatment of sonic hedgehog (SHH) or combination with its agonist Purmorphamine, and by co-culturing with human astrocytes. At day 20, ∼90% hPSC-derived progenitors expressed NKX2.1, which is a transcriptional marker for MGE. Moreover, around 40% of NKX2.1+ cells co-expressed OLIG2 and ∼15% of NKX2.1+ cells co-expressed ISLET1, which are ventral markers. At day 35, ∼40% neurons robustly express ChAT, most of which are co-labeled with NKX2.1, ISLET1 and FOXG1, indicating the basal forebrain-like identity. At day 45, these neurons express mature neuronal markers MAP2, Synapsin, and VAChT. In this method, undefined conditions including genetic modification or cell-sorting are avoided. As a choice, feeder free conditions are used to avoid ingredients of animal origin. Moreover, Purmorphamine can be substituted for SHH to induce ventral progenitors effectively and economically. We provide an efficient method to generate BFCNs from multiple hPSC lines, which offers the potential application for disease modeling and pharmacological studies. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Skeletal and dermatological manifestations of the nevoid basal cell carcinoma syndrome (Gorlin-Goltz syndrome). Results of 8 patients in 12 years

    International Nuclear Information System (INIS)

    Rupprecht, M.; Barvencik, F.; Amling, M.; Pogoda, P.; Universitaetsklinikum Hamburg-Eppendorf; Mensing, C.H.; Ittrich, H.; Heiland, M.; Rueger, J.M.

    2007-01-01

    Purpose: In 1960 Gorlin and Goltz defined the nevoid basal cell carcinoma syndrome (NBCCS, Gorlin-Goltz Syndrome) as a syndrome comprising multiple basal cell carcinoma, odontogenic keratocysts, and skeletal anomalies. NBCCS is an autosomal dominantly inherited disease with an estimated prevalence of 1:150 000 and diagnosis of this syndrome is often an accidental finding of radiological investigations. The purpose of this study was to report the varied radiological and dermatological manifestations of our patients affected with NBCCS and to present this rare syndrome as a differential diagnosis of skeletal anomalies. Materials and Methods: Between 1994 and 2005 the demographic, clinical, radiological and histological data of 8 patients with NBCCS were retrospectively analyzed. Nevoid basal cell carcinoma syndrome was diagnosed in the event of two major or one major and two minor criteria. The major criteria are more than 2 basal cell carcinoma, odontogenic keratocysts, three or more palmar pits, and calcification of the falx cerebri. Results: Between 1994 and 2005 8 patients (3 females and 5 males) with NBCCS were treated in our departments. The average age at the time of diagnosis of NBCCS was 49.9 years. All patients had a minimum of two major criteria. The major criteria with the most frequency were the basal cell carcinoma (6 patients) and the odontogenic keratocysts (5 patients), followed by the calcification of the falx cerebri and palmoplantar pits (4 patients). There was no gender-related or age-related predilection and only one patient was affected with pain in his fingers which radiologically correlated to small cystic bone lesions (''flame-shaped lucencies''). (orig.)

  20. Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in Parkinson's disease patients.

    Science.gov (United States)

    Kolb, Rachel; Abosch, Aviva; Felsen, Gidon; Thompson, John A

    2017-06-01

    Identification of brain structures traversed during implantation of deep brain-stimulating (DBS) electrodes into the subthalamic nucleus (STN-DBS) for the treatment of Parkinson's disease (PD) frequently relies on subjective correspondence between kinesthetic response and multiunit activity. However, recent work suggests that local field potentials (LFP) could be used as a more robust signal to objectively differentiate subcortical structures. The goal of this study was to analyze the spectral properties of LFP collected during STN-DBS in order to objectively identify commonly traversed brain regions and improve our understanding of aberrant oscillations in the PD-related pathophysiological cortico-basal ganglia network. In 21 PD patients, LFP were collected and analyzed during STN-DBS implantation surgery. Spectral power for delta-, theta-, alpha-, low-beta-, and high-beta-frequency bands was assessed at multiple depths throughout the subcortical structures traversed on the trajectory to the ventral border of STN. Similar to previous findings, beta-band oscillations had an increased magnitude within the borders of the motor-related area of STN, however, across several subjects, we also observed increased high-beta magnitude within the borders of thalamus. Comparing across all patients using relative power, we observed a gradual increase in the magnitude of both low- and high-beta-frequency bands as the electrode descended from striatum to STN. These results were also compared with frequency bands below beta, and similar trends were observed. Our results suggest that LFP signals recorded during the implantation of a DBS electrode evince distinct oscillatory signatures that distinguish subcortical structures. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.