WorldWideScience

Sample records for regulates airway surface

  1. Cholinergic Regulation of Airway Inflammation and Remodelling

    Directory of Open Access Journals (Sweden)

    Saeed Kolahian

    2012-01-01

    Full Text Available Acetylcholine is the predominant parasympathetic neurotransmitter in the airways that regulates bronchoconstriction and mucus secretion. Recent findings suggest that acetylcholine regulates additional functions in the airways, including inflammation and remodelling during inflammatory airway diseases. Moreover, it has become apparent that acetylcholine is synthesized by nonneuronal cells and tissues, including inflammatory cells and structural cells. In this paper, we will discuss the regulatory role of acetylcholine in inflammation and remodelling in which we will focus on the role of the airway smooth muscle cell as a target cell for acetylcholine that modulates inflammation and remodelling during respiratory diseases such as asthma and COPD.

  2. Airway smooth muscle cells : regulators of airway inflammation

    NARCIS (Netherlands)

    Zuyderduyn, Suzanne

    2007-01-01

    Airways from asthmatic subjects are more responsive to bronchoconstrictive stimuli than airways from healthy subjects. Airway smooth muscle (ASM) cells mediate contraction of the airways by responding to the bronchoconstrictive stimuli, which was thought to be the primary role of ASM cells. In this

  3. Regulated Mucin Secretion from Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Kenneth Bruce Adler

    2013-09-01

    Full Text Available Secretory epithelial cells of the proximal airways synthesize and secrete gel-forming polymeric mucins. The secreted mucins adsorb water to form mucus that is propelled by neighboring ciliated cells, providing a mobile barrier which removes inhaled particles and pathogens from the lungs. Several features of the intracellular trafficking of mucins make the airway secretory cell an interesting comparator for the cell biology of regulated exocytosis. Polymeric mucins are exceedingly large molecules (up to 3x10^6 D per monomer whose folding and initial polymerization in the ER requires the protein disulfide isomerase Agr2. In the Golgi, mucins further polymerize to form chains and possibly branched networks comprising more than 20 monomers. The large size of mucin polymers imposes constraints on their packaging into transport vesicles along the secretory pathway. Sugar side chains account for >70% of the mass of mucins, and their attachment to the protein core by O-glycosylation occurs in the Golgi. Mature polymeric mucins are stored in large secretory granules ~1 um in diameter. These are translocated to the apical membrane to be positioned for exocytosis by cooperative interactions among MARCKS, cysteine string protein (CSP, HSP70 and the cytoskeleton. Mucin granules undergo exocytic fusion with the plasma membrane at a low basal rate and a high stimulated rate. Both rates are mediated by a regulated exocytic mechanism as indicated by phenotypes in both basal and stimulated secretion in mice lacking Munc13-2, a sensor of the second messengers calcium and diacylglycerol (DAG. Basal secretion is induced by low levels of activation of P2Y2 purinergic and A3 adenosine receptors by extracellular ATP released in paracrine fashion and its metabolite adenosine. Stimulated secretion is induced by high levels of the same ligands, and possibly by inflammatory mediators as well. Activated receptors are coupled to phospholipase C by Gq, resulting in the

  4. Glucose depletion in the airway surface liquid is essential for sterility of the airways.

    Directory of Open Access Journals (Sweden)

    Alejandro A Pezzulo

    2011-01-01

    Full Text Available Diabetes mellitus predisposes the host to bacterial infections. Moreover, hyperglycemia has been shown to be an independent risk factor for respiratory infections. The luminal surface of airway epithelia is covered by a thin layer of airway surface liquid (ASL and is normally sterile despite constant exposure to bacteria. The balance between bacterial growth and killing in the airway determines the outcome of exposure to inhaled or aspirated bacteria: infection or sterility. We hypothesized that restriction of carbon sources--including glucose--in the ASL is required for sterility of the lungs. We found that airway epithelia deplete glucose from the ASL via a novel mechanism involving polarized expression of GLUT-1 and GLUT-10, intracellular glucose phosphorylation, and low relative paracellular glucose permeability in well-differentiated cultures of human airway epithelia and in segments of airway epithelia excised from human tracheas. Moreover, we found that increased glucose concentration in the ASL augments growth of P. aeruginosa in vitro and in the lungs of hyperglycemic ob/ob and db/db mice in vivo. In contrast, hyperglycemia had no effect on intrapulmonary bacterial growth of a P. aeruginosa mutant that is unable to utilize glucose as a carbon source. Our data suggest that depletion of glucose in the airway epithelial surface is a novel mechanism for innate immunity. This mechanism is important for sterility of the airways and has implications in hyperglycemia and conditions that result in disruption of the epithelial barrier in the lung.

  5. Surface Airways Observations (SAO) Hourly Data 1928-1948 (CDMP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The dataset consists of hourly U.S. surface airways observations (SAO). These observations extend as far back as 1928, from the time when commercial aviation began...

  6. beta-Catenin regulates airway smooth muscle contraction

    NARCIS (Netherlands)

    Jansen, Sepp R.; Van Ziel, Anna M.; Baarsma, Hoeke A.; Gosens, Reinoud

    Jansen SR, Van Ziel AM, Baarsma HA, Gosens R. beta-Catenin regulates airway smooth muscle contraction. Am J Physiol Lung Cell Mol Physiol 299: L204-L214, 2010. First published May 14, 2010; doi:10.1152/ajplung.00020.2010.-beta-Catenin is an 88-kDa member of the armadillo family of proteins that is

  7. Autocrine regulation of asthmatic airway inflammation: role of airway smooth muscle

    NARCIS (Netherlands)

    S. McKay (Sue); H.S. Sharma (Hari)

    2002-01-01

    textabstractChronic airway inflammation is one of the main features of asthma. Release of mediators from infiltrating inflammatory cells in the airway mucosa has been proposed to contribute directly or indirectly to changes in airway structure and function. The airway smooth

  8. Drug targeting of airway surface liquid: a pharmacological MRI approach.

    Science.gov (United States)

    Boschi, Federico; Nicolato, Elena; Benati, Donatella; Marzola, Pasquina; Sbarbati, Andrea

    2008-01-01

    Pharmacological MRI at 4.7 T was used to investigate the secretory response to Sylvestris pine oil stimuli in the rat airways, with the aim of developing an in vivo model in a small laboratory animal. The availability of such a model would greatly facilitate the drug discovery process using compounds active on airway surface liquid (ASL) production, and would make it possible to obtain information on chemoreceptoral mechanisms and to test the effects of environmental substances on the airways. T1- and T2-weighted images were acquired in the trachea and larynx before and at various times after exposure to pine oil. Several post-processing procedures were tested in order to improve the visibility of the secretory response and to measure the enhancement of the signal intensity of ASL. A semiautomatic application software was written to localize and to measure the volume involved in the secretory response to a compound administration. A significant effect of the pine oil administration on the secretory response was founded in trachea (p<0.01) and in the salivary glands (p<0.01). 3D reconstructions of MRI data and virtual endoscopy permitted a quick visualization of tracheal morphology and localization of the greatest response to stimulus. The study demonstrated that, despite technical problems due to the air/tissue interface and to the small dimensions of the experimental animals, the secretory response can be evaluated and the pharmacological MRI (phMRI) of the rat airways is feasible. The potential and the limitations of phMRI investigation in drug targeting of ASL are discussed.

  9. Cystic fibrosis swine fail to secrete airway surface liquid in response to inhalation of pathogens.

    Science.gov (United States)

    Luan, Xiaojie; Belev, George; Tam, Julian S; Jagadeeshan, Santosh; Hassan, Noman; Gioino, Paula; Grishchenko, Nikolay; Huang, Yanyun; Carmalt, James L; Duke, Tanya; Jones, Teela; Monson, Bev; Burmester, Monique; Simovich, Tomer; Yilmaz, Orhan; Campanucci, Veronica A; Machen, Terry E; Chapman, L Dean; Ianowski, Juan P

    2017-10-05

    Cystic fibrosis is caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) channel, which can result in chronic lung disease. The sequence of events leading to lung disease is not fully understood but recent data show that the critical pathogenic event is the loss of the ability to clear bacteria due to abnormal airway surface liquid secretion (ASL). However, whether the inhalation of bacteria triggers ASL secretion and whether this is abnormal in cystic fibrosis has never been tested. Here we show, using a novel synchrotron-based in vivo imaging technique, that wild-type pigs display both a basal and a Toll-like receptor-mediated ASL secretory response to the inhalation of cystic fibrosis relevant bacteria. Both mechanisms fail in CFTR-/- swine, suggesting that cystic fibrosis airways do not respond to inhaled pathogens, thus favoring infection and inflammation that may eventually lead to tissue remodeling and respiratory disease.Cystic fibrosis is caused by mutations in the CFTR chloride channel, leading to reduced airway surface liquid secretion. Here the authors show that exposure to bacteria triggers secretion in wild-type but not in pig models of cystic fibrosis, suggesting an impaired response to pathogens contributes to infection.

  10. Airway Surface Dehydration Aggravates Cigarette Smoke-Induced Hallmarks of COPD in Mice.

    Science.gov (United States)

    Seys, Leen J M; Verhamme, Fien M; Dupont, Lisa L; Desauter, Elke; Duerr, Julia; Seyhan Agircan, Ayca; Conickx, Griet; Joos, Guy F; Brusselle, Guy G; Mall, Marcus A; Bracke, Ken R

    2015-01-01

    Airway surface dehydration, caused by an imbalance between secretion and absorption of ions and fluid across the epithelium and/or increased epithelial mucin secretion, impairs mucociliary clearance. Recent evidence suggests that this mechanism may be implicated in chronic obstructive pulmonary disease (COPD). However, the role of airway surface dehydration in the pathogenesis of cigarette smoke (CS)-induced COPD remains unknown. We aimed to investigate in vivo the effect of airway surface dehydration on several CS-induced hallmarks of COPD in mice with airway-specific overexpression of the β-subunit of the epithelial Na⁺ channel (βENaC). βENaC-Tg mice and wild-type (WT) littermates were exposed to air or CS for 4 or 8 weeks. Pathological hallmarks of COPD, including goblet cell metaplasia, mucin expression, pulmonary inflammation, lymphoid follicles, emphysema and airway wall remodelling were determined and lung function was measured. Airway surface dehydration in βENaC-Tg mice aggravated CS-induced airway inflammation, mucin expression and destruction of alveolar walls and accelerated the formation of pulmonary lymphoid follicles. Moreover, lung function measurements demonstrated an increased compliance and total lung capacity and a lower resistance and hysteresis in βENaC-Tg mice, compared to WT mice. CS exposure further altered lung function measurements. We conclude that airway surface dehydration is a risk factor that aggravates CS-induced hallmarks of COPD.

  11. Measuring airway surface liquid depth in ex vivo mouse airways by x-ray imaging for the assessment of cystic fibrosis airway therapies.

    Directory of Open Access Journals (Sweden)

    Kaye S Morgan

    Full Text Available In the airways of those with cystic fibrosis (CF, the leading pathophysiological hypothesis is that an ion channel defect results in a relative decrease in airway surface liquid (ASL volume, producing thick and sticky mucus that facilitates the establishment and progression of early fatal lung disease. This hypothesis predicts that any successful CF airway treatment for this fundamental channel defect should increase the ASL volume, but up until now there has been no method of measuring this volume that would be compatible with in vivo monitoring. In order to accurately monitor the volume of the ASL, we have developed a new x-ray phase contrast imaging method that utilizes a highly attenuating reference grid. In this study we used this imaging method to examine the effect of a current clinical CF treatment, aerosolized hypertonic saline, on ASL depth in ex vivo normal mouse tracheas, as the first step towards non-invasive in vivo ASL imaging. The ex vivo tracheas were treated with hypertonic saline, isotonic saline or no treatment using a nebuliser integrated within a small animal ventilator circuit. Those tracheas exposed to hypertonic saline showed a transient increase in the ASL depth, which continued for nine minutes post-treatment, before returning to baseline by twelve minutes. These findings are consistent with existing measurements on epithelial cell cultures, and therefore suggest promise for the future development of in vivo testing of treatments. Our grid-based imaging technique measures the ASL depth with micron resolution, and can directly observe the effect of treatments expected to increase ASL depth, prior to any changes in overall lung health. The ability to non-invasively observe micron changes in the airway surface, particularly if achieved in an in vivo setting, may have potential in pre-clinical research designed to bring new treatments for CF and other airway diseases to clinical trials.

  12. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics.

    Directory of Open Access Journals (Sweden)

    Sonia R Rosner

    Full Text Available Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.

  13. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Science.gov (United States)

    Ally, Javed; Roa, Wilson; Amirfazli, A.

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  14. Use of mucolytics to enhance magnetic particle retention at a model airway surface

    Energy Technology Data Exchange (ETDEWEB)

    Ally, Javed [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada); Roa, Wilson [Department of Oncology, University of Alberta, Edmonton, Alta., T6G 1Z2 (Canada); Amirfazli, A. [Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., T6G 2G8 (Canada)], E-mail: a.amirfazli@ualberta.ca

    2008-06-15

    A previous study has shown that retention of magnetic particles at a model airway surface requires prohibitively strong magnetic fields. As mucus viscoelasticity is the most significant factor contributing to clearance of magnetic particles from the airway surface, mucolytics are considered in this study to reduce mucus viscoelasticity and enable particle retention with moderate strength magnetic fields. The excised frog palate model was used to simulate the airway surface. Two mucolytics, N-acetylcysteine (NAC) and dextran sulfate (DS) were tested. NAC was found to enable retention at moderate field values (148 mT with a gradient of 10.2 T/m), whereas DS was found to be effective only for sufficiently large particle concentrations at the airway surface. The possible mechanisms for the observed behavior with different mucolytics are also discussed based on aggregate formation and the loading of cilia.

  15. Silibinin regulates gene expression, production and secretion of mucin from cultured airway epithelial cells.

    Science.gov (United States)

    Kim, Kil-Dong; Lee, Hyun Jae; Lim, Seung Pyong; Sikder, Asaduzzaman; Lee, Su Yel; Lee, Choong Jae

    2012-09-01

    We investigated whether silibinin significantly affects gene expression, production and secretion of mucin from cultured airway epithelial cells. Confluent NCI-H292 cells were pretreated with silibinin for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or TNF-α for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). The effect of silibinin on TNF-α-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of silibinin to assess the effect on mucin secretion using ELISA. The results were as follows: (i) silibinin inhibited the expression of the MUC5AC mucin gene induced by EGF, PMA or TNF-α from NCI-H292 cells; (ii) silibinin also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (iii) silibinin inhibited the activation of NF-κB p65 by TNF-α in NCI-H292 cells; (iv) silibinin significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that silibinin can regulate gene expression, production and secretion of mucin by directly acting on airway epithelial cells. Copyright © 2012 John Wiley & Sons, Ltd.

  16. Effects of continuous positive airway pressure on energy balance regulation: a systematic review

    OpenAIRE

    Shechter, Ari

    2016-01-01

    Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in weight gain.

  17. PPARγ Ligands Regulate Noncontractile and Contractile Functions of Airway Smooth Muscle: Implications for Asthma Therapy

    Directory of Open Access Journals (Sweden)

    Chantal Donovan

    2012-01-01

    Full Text Available In asthma, the increase in airway smooth muscle (ASM can contribute to inflammation, airway wall remodeling and airway hyperresponsiveness (AHR. Targetting peroxisome proliferator-activated receptor γ (PPARγ, a receptor upregulated in ASM in asthmatic airways, may provide a novel approach to regulate these contributions. This review summarises experimental evidence that PPARγ ligands, such as rosiglitazone (RGZ and pioglitazone (PGZ, inhibit proliferation and inflammatory cytokine production from ASM in vitro. In addition, inhaled administration of these ligands reduces inflammatory cell infiltration and airway remodelling in mouse models of allergen-induced airways disease. PPARγ ligands can also regulate ASM contractility, with acute treatment eliciting relaxation of mouse trachea in vitro through a PPARγ-independent mechanism. Chronic treatment can protect against the loss of bronchodilator sensitivity to β2-adrenoceptor agonists and inhibit the development of AHR associated with exposure to nicotine in utero or following allergen challenge. Of particular interest, a small clinical trial has shown that oral RGZ treatment improves lung function in smokers with asthma, a group that is generally unresponsive to conventional steroid treatment. These combined findings support further investigation of the potential for PPARγ agonists to target the noncontractile and contractile functions of ASM to improve outcomes for patients with poorly controlled asthma.

  18. Computational analysis of microbubble flows in bifurcating airways: role of gravity, inertia, and surface tension.

    Science.gov (United States)

    Chen, Xiaodong; Zielinski, Rachel; Ghadiali, Samir N

    2014-10-01

    Although mechanical ventilation is a life-saving therapy for patients with severe lung disorders, the microbubble flows generated during ventilation generate hydrodynamic stresses, including pressure and shear stress gradients, which damage the pulmonary epithelium. In this study, we used computational fluid dynamics to investigate how gravity, inertia, and surface tension influence both microbubble flow patterns in bifurcating airways and the magnitude/distribution of hydrodynamic stresses on the airway wall. Direct interface tracking and finite element techniques were used to simulate bubble propagation in a two-dimensional (2D) liquid-filled bifurcating airway. Computational solutions of the full incompressible Navier-Stokes equation were used to investigate how inertia, gravity, and surface tension forces as characterized by the Reynolds (Re), Bond (Bo), and Capillary (Ca) numbers influence pressure and shear stress gradients at the airway wall. Gravity had a significant impact on flow patterns and hydrodynamic stress magnitudes where Bo > 1 led to dramatic changes in bubble shape and increased pressure and shear stress gradients in the upper daughter airway. Interestingly, increased pressure gradients near the bifurcation point (i.e., carina) were only elevated during asymmetric bubble splitting. Although changes in pressure gradient magnitudes were generally more sensitive to Ca, under large Re conditions, both Re and Ca significantly altered the pressure gradient magnitude. We conclude that inertia, gravity, and surface tension can all have a significant impact on microbubble flow patterns and hydrodynamic stresses in bifurcating airways.

  19. Microscale distribution and dynamic surface tension of pulmonary surfactant normalize the recruitment of asymmetric bifurcating airways.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Nolan, Liam P; Gaver, Donald P

    2017-05-01

    We investigate the influence of bifurcation geometry, asymmetry of daughter airways, surfactant distribution, and physicochemical properties on the uniformity of airway recruitment of asymmetric bifurcating airways. To do so, we developed microfluidic idealized in vitro models of bifurcating airways, through which we can independently evaluate the impact of carina location and daughter airway width and length. We explore the uniformity of recruitment and its relationship to the dynamic surface tension of the lining fluid and relate this behavior to the hydraulic (P Hyd ) and capillary (P Cap ) pressure drops. These studies demonstrate the extraordinary importance of P Cap in stabilizing reopening, even in highly asymmetric systems. The dynamic surface tension of pulmonary surfactant is integral to this stability because it modulates P Cap in a velocity-dependent manner. Furthermore, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, aiding in gas exchange, and reducing ventilator-induced lung injury. NEW & NOTEWORTHY The dynamic surface tension of pulmonary surfactant is integral to the uniformity of asymmetric bifurcation airway recruitments because it modulates capillary pressure drop in a velocity-dependent manner. Also, the surfactant distribution at the propagating interface can have a very large influence on recruitment stability by focusing surfactant preferentially to specific daughter airways. This implies that modification of the surfactant distribution through novel modes of ventilation could be useful in inducing uniformly recruited lungs, reducing ventilator-induced lung injury. Copyright © 2017 the American Physiological Society.

  20. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    Science.gov (United States)

    Huff, Ryan D; Hsu, Alan C-Y; Nichol, Kristy S; Jones, Bernadette; Knight, Darryl A; Wark, Peter A B; Hansbro, Philip M; Hirota, Jeremy A

    2017-01-01

    The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  1. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Ryan D Huff

    Full Text Available The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production.Allergen and cigarette smoke mouse models were performed using house dust mite (HDM and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies.HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4 inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells.Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines.

  2. Regulation of xanthine dehydrogensase gene expression and uric acid production in human airway epithelial cells

    Science.gov (United States)

    Huff, Ryan D.; Hsu, Alan C-Y.; Nichol, Kristy S.; Jones, Bernadette; Knight, Darryl A.; Wark, Peter A. B.; Hansbro, Philip M.

    2017-01-01

    Introduction The airway epithelium is a physical and immunological barrier that protects the pulmonary system from inhaled environmental insults. Uric acid has been detected in the respiratory tract and can function as an antioxidant or damage associated molecular pattern. We have demonstrated that human airway epithelial cells are a source of uric acid. Our hypothesis is that uric acid production by airway epithelial cells is induced by environmental stimuli associated with chronic respiratory diseases. We therefore examined how airway epithelial cells regulate uric acid production. Materials and methods Allergen and cigarette smoke mouse models were performed using house dust mite (HDM) and cigarette smoke exposure, respectively, with outcome measurements of lung uric acid levels. Primary human airway epithelial cells isolated from clinically diagnosed patients with asthma and chronic obstructive pulmonary disease (COPD) were grown in submerged cultures and compared to age-matched healthy controls for uric acid release. HBEC-6KT cells, a human airway epithelial cell line, were grown under submerged monolayer conditions for mechanistic and gene expression studies. Results HDM, but not cigarette smoke exposure, stimulated uric acid production in vivo and in vitro. Primary human airway epithelial cells from asthma, but not COPD patients, displayed elevated levels of extracellular uric acid in culture. In HBEC-6KT, production of uric acid was sensitive to the xanthine dehydrogenase (XDH) inhibitor, allopurinol, and the ATP Binding Cassette C4 (ABCC4) inhibitor, MK-571. Lastly, the pro-inflammatory cytokine combination of TNF-α and IFN-γ elevated extracellular uric acid levels and XDH gene expression in HBEC-6KT cells. Conclusions Our results suggest that the active production of uric acid from human airway epithelial cells may be intrinsically altered in asthma and be further induced by pro-inflammatory cytokines. PMID:28863172

  3. SPLUNC1 regulation in airway epithelial cells: role of toll-like receptor 2 signaling

    Directory of Open Access Journals (Sweden)

    Smith Sean

    2010-11-01

    Full Text Available Abstract Background Respiratory infections including Mycoplasma pneumoniae (Mp contribute to various chronic lung diseases. We have shown that mouse short palate, lung, and nasal epithelium clone 1 (SPLUNC1 protein was able to inhibit Mp growth. Further, airway epithelial cells increased SPLUNC1 expression upon Mp infection. However, the mechanisms underlying SPLUNC1 regulation remain unknown. In the current study, we investigated if SPLUNC1 production following Mp infection is regulated through Toll-like receptor 2 (TLR2 signaling. Methods Airway epithelial cell cultures were utilized to reveal the contribution of TLR2 signaling including NF-κB to SPLUNC1 production upon bacterial infection and TLR2 agonist stimulation. Results Mp and TLR2 agonist Pam3CSK4 increased SPLUNC1 expression in tracheal epithelial cells from wild type, but not TLR2-/- BALB/c mice. RNA interference (short-hairpin RNA of TLR2 in normal human bronchial epithelial cells under air-liquid interface cultures significantly reduced SPLUNC1 levels in Mp-infected or Pam3CSK4-treated cells. Inhibition and activation of NF-κB pathway decreased and increased SPLUNC1 production in airway epithelial cells, respectively. Conclusions Our data for the first time suggest that airway epithelial TLR2 signaling is pivotal in mycoplasma-induced SPLUNC1 production, thus improving our understanding of the aberrant SPLUNC1 expression in airways of patients suffering from chronic lung diseases with bacterial infections.

  4. Effects of Coal Fly Ash Particulate Matter on the Antimicrobial Activity of Airway Surface Liquid.

    Science.gov (United States)

    Vargas Buonfiglio, Luis G; Mudunkotuwa, Imali A; Abou Alaiwa, Mahmoud H; Vanegas Calderón, Oriana G; Borcherding, Jennifer A; Gerke, Alicia K; Zabner, Joseph; Grassian, Vicki H; Comellas, Alejandro P

    2017-07-05

    Sustained exposure to ambient particulate matter (PM) is a global cause of mortality. Coal fly ash (CFA) is a byproduct of coal combustion and is a source of anthropogenic PM with worldwide health relevance. The airway epithelia are lined with fluid called airway surface liquid (ASL), which contains antimicrobial proteins and peptides (AMPs). Cationic AMPs bind negatively charged bacteria to exert their antimicrobial activity. PM arriving in the airways could potentially interact with AMPs in the ASL to affect their antimicrobial activity. We hypothesized that PM can interact with ASL AMPs to impair their antimicrobial activity. We exposed pig and human airway explants, pig and human ASL, and the human cationic AMPs β-defensin-3, LL-37, and lysozyme to CFA or control. Thereafter, we assessed the antimicrobial activity of exposed airway samples using both bioluminescence and standard colony-forming unit assays. We investigated PM-AMP electrostatic interaction by attenuated total reflection Fourier-transform infrared spectroscopy and measuring the zeta potential. We also studied the adsorption of AMPs on PM. We found increased bacterial survival in CFA-exposed airway explants, ASL, and AMPs. In addition, we report that PM with a negative surface charge can adsorb cationic AMPs and form negative particle-protein complexes. We propose that when CFA arrives at the airway, it rapidly adsorbs AMPs and creates negative complexes, thereby decreasing the functional amount of AMPs capable of killing pathogens. These results provide a novel translational insight into an early mechanism for how ambient PM increases the susceptibility of the airways to bacterial infection. https://doi.org/10.1289/EHP876.

  5. Cooperative regulation of GSK-3 by muscarinic and PDGF receptors is associated with airway myocyte proliferation

    NARCIS (Netherlands)

    Gosens, Reinoud; Dueck, Gordon; Rector, Edward; Nunes, Raquel O.; Gerthoffer, William T.; Unruh, Helmut; Zaagsma, Johan; Meurs, Herman; Halayko, Andrew J.

    2007-01-01

    Muscarinic receptors and platelet-derived growth factor (PDGF) receptors synergistically induce proliferation of airway smooth muscle (ASM), but the pathways that regulate these effects are not yet completely identified. We hypothesized that glycogen synthase kinase-3 (GSK-3), a kinase that

  6. Regulation of ion transport via apical purinergic receptors in intact rabbit airway epithelium

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Klausen, Thomas Levin; Pedersen, Peter Steen

    2005-01-01

    We investigated purinergic receptors involved in ion transport regulation in the intact rabbit nasal airway epithelium. Stimulation of apical membrane P2Y receptors with ATP or UTP (200 microM) induced transient increases in short-circuit current (Isc) of 13 and 6% followed by sustained inhibitions...

  7. Smoking-mediated up-regulation of GAD67 expression in the human airway epithelium.

    Science.gov (United States)

    Wang, Guoqing; Wang, Rui; Ferris, Barbara; Salit, Jacqueline; Strulovici-Barel, Yael; Hackett, Neil R; Crystal, Ronald G

    2010-10-29

    The production of gamma-amino butyric acid (GABA) is dependent on glutamate decarboxylases (GAD65 and GAD67), the enzymes that catalyze the decarboxylation of glutamate to GABA. Based on studies suggesting a role of the airway epithelial GABAergic system in asthma-related mucus overproduction, we hypothesized that cigarette smoking, another disorder associated with increased mucus production, may modulate GABAergic system-related gene expression levels in the airway epithelium. We assessed expression of the GABAergic system in human airway epithelium obtained using bronchoscopy to sample the epithelium and microarrays to evaluate gene expression. RT-PCR was used to confirm gene expression of GABAergic system gene in large and small airway epithelium from heathy nonsmokers and healthy smokers. The differences in the GABAergic system gene was further confirmed by TaqMan, immunohistochemistry and Western analysis. The data demonstrate there is a complete GABAergic system expressed in the large and small human airway epithelium, including glutamate decarboxylase, GABA receptors, transporters and catabolism enzymes. Interestingly, of the entire GABAergic system, smoking modified only the expression of GAD67, with marked up-regulation of GAD67 gene expression in both large (4.1-fold increase, p smoking. In the context that GAD67 is the rate limiting enzyme in GABA synthesis, the correlation of GAD67 gene expression with MUC5AC expressions suggests that the up-regulation of airway epithelium expression of GAD67 may contribute to the increase in mucus production observed in association with cigarette smoking. NCT00224198; NCT00224185.

  8. Effects of Ginger and Its Constituents on Airway Smooth Muscle Relaxation and Calcium Regulation

    Science.gov (United States)

    Siviski, Matthew E.; Zhang, Yi; Xu, Carrie; Hoonjan, Bhupinder; Emala, Charles W.

    2013-01-01

    The prevalence of asthma has increased in recent years, and is characterized by airway hyperresponsiveness and inflammation. Many patients report using alternative therapies to self-treat asthma symptoms as adjuncts to short-acting and long-acting β-agonists and inhaled corticosteroids (ICS). As many as 40% of patients with asthma use herbal therapies to manage asthma symptoms, often without proven efficacy or known mechanisms of action. Therefore, investigations of both the therapeutic and possible detrimental effects of isolated components of herbal treatments on the airway are important. We hypothesized that ginger and its active components induce bronchodilation by modulating intracellular calcium ([Ca2+]i) in airway smooth muscle (ASM). In isolated human ASM, ginger caused significant and rapid relaxation. Four purified constituents of ginger were subsequently tested for ASM relaxant properties in both guinea pig and human tracheas: [6]-gingerol, [8]-gingerol, and [6]-shogaol induced rapid relaxation of precontracted ASM (100–300 μM), whereas [10]-gingerol failed to induce relaxation. In human ASM cells, exposure to [6]-gingerol, [8]-gingerol, and [6]-shogaol, but not [10]-gingerol (100 μM), blunted subsequent Ca2+ responses to bradykinin (10 μM) and S-(−)-Bay K 8644 (10 μM). In A/J mice, the nebulization of [8]-gingerol (100 μM), 15 minutes before methacholine challenge, significantly attenuated airway resistance, compared with vehicle. Taken together, these novel data show that ginger and its isolated active components, [6]-gingerol, [8]-gingerol, and [6]-shogaol, relax ASM, and [8]-gingerol attenuates airway hyperresponsiveness, in part by altering [Ca2+]i regulation. These purified compounds may provide a therapeutic option alone or in combination with accepted therapeutics, including β2-agonists, in airway diseases such as asthma. PMID:23065130

  9. Different regulation of cigarette smoke induced inflammation in upper versus lower airways

    Directory of Open Access Journals (Sweden)

    Bracke Ken R

    2010-07-01

    Full Text Available Abstract Background Cigarette smoke (CS is known to initiate a cascade of mediator release and accumulation of immune and inflammatory cells in the lower airways. We investigated and compared the effects of CS on upper and lower airways, in a mouse model of subacute and chronic CS exposure. Methods C57BL/6 mice were whole-body exposed to mainstream CS or air, for 2, 4 and 24 weeks. Bronchoalveolar lavage fluid (BAL was obtained and tissue cryosections from nasal turbinates were stained for neutrophils and T cells. Furthermore, we evaluated GCP-2, KC, MCP-1, MIP-3α, RORc, IL-17, FoxP3, and TGF-β1 in nasal turbinates and lungs by RT-PCR. Results In both upper and lower airways, subacute CS-exposure induced the expression of GCP-2, MCP-1, MIP-3α and resulted in a neutrophilic influx. However, after chronic CS-exposure, there was a significant downregulation of inflammation in the upper airways, while on the contrary, lower airway inflammation remained present. Whereas nasal FoxP3 mRNA levels already increased after 2 weeks, lung FoxP3 mRNA increased only after 4 weeks, suggesting that mechanisms to suppress inflammation occur earlier and are more efficient in nose than in lungs. Conclusions Altogether, these data demonstrate that CS induced inflammation may be differently regulated in the upper versus lower airways in mice. Furthermore, these data may help to identify new therapeutic targets in this disease model.

  10. Nuclear matrix binding protein SMAR1 regulates T-cell differentiation and allergic airway disease.

    Science.gov (United States)

    Chemmannur, S V; Badhwar, A J; Mirlekar, B; Malonia, S K; Gupta, M; Wadhwa, N; Bopanna, R; Mabalirajan, U; Majumdar, S; Ghosh, B; Chattopadhyay, S

    2015-11-01

    Asthma is a complex airway allergic disease involving the interplay of various cell types, cytokines, and transcriptional factors. Though many factors contribute to disease etiology, the molecular control of disease phenotype and responsiveness is not well understood. Here we report an essential role of the matrix attachment region (MAR)-binding protein SMAR1 in regulating immune response during allergic airway disease. Conditional knockout of SMAR1 in T cells rendered the mice resistant to eosinophilic airway inflammation against ovalbumin (OVA) allergen with low immunoglobulin E (IgE) and interleukin-5 (IL-5) levels. Moreover, a lower IgE/IgG2a ratio and higher interferon-γ (IFN-γ) response suggested aberrant skewing of T-cell differentiation toward type 1 helper T cell (Th1) response. We show that SMAR1 functions as a negative regulator of Th1 and Th17 differentiation by interacting with two potential and similar MAR regions present on the promoters of T-bet and IL-17. Thus, we present SMAR1 as a regulator of T-cell differentiation that favors the establishment of Th2 cells by modulating Th1 and Th17 responses.

  11. Airway surface liquid contains endogenous DNase activity which can be activated by exogenous magnesium

    Directory of Open Access Journals (Sweden)

    Rosenecker J

    2009-07-01

    Full Text Available Abstract Introduction The removal of highly viscous mucus from the airways is an important task in the treatment of chronic lung disease like in cystic fibrosis. The inhalation of recombinant human DNase-I (rhDNase-I is used to facilitate the removal of tenacious airway secretions in different lung diseases and especially in CF. Little is known about endogenous DNase activity in the airway surface liquid. Therefore, we analysed bronchoalveolar lavage fluid (BAL and exhaled breath condensate (EBC for the presence of endogenous DNase activity. Methods The degradation of plasmid DNA by BAL from patients who had diagnostic bronchoscopy and bronchoalveolar lavage was analyzed. In a group of CF patients and healthy control volunteers the exhaled breath condensate was obtained and also analyzed for the ability to degrade plasmid DNA. In addition, the ability of magnesium to activate endogenous DNase activity in BAL and exhaled breath condensate was investigated. Results The analyzed BAL samples degraded plasmid DNA only after preincubation with magnesium. When analyzing the exhaled breath condensate the samples obtained from the healthy volunteers showed no DNase activity even after preincubation with magnesium, whereas in one of the two samples obtained from CF patients we found a DNase activity after preincubation with magnesium. Conclusion Increasing the magnesium concentration in the airway surface liquid by aerosolisation of magnesium solutions or oral magnesium supplements could improve the removal of highly viscous mucus in chronic lung disease by activating endogenous DNase activity.

  12. Up-Regulation of Endothelin Receptors Induced by Cigarette Smoke — Involvement of MAPK in Vascular and Airway Hyper-Reactivity

    Directory of Open Access Journals (Sweden)

    Yaping Zhang

    2010-01-01

    Full Text Available Cigarette smoke exposure is well known to cause cardiovascular and airway diseases, both of which are leading causes of death and disability in the world. However, the molecular mechanisms that link cigarette smoke to cardiovascular and airway diseases are not fully understood. Vascular and airway hyper-reactivity plays an important role in the pathogenesis of cardiovascular and airway diseases. Recent studies have demonstrated that endothelin receptor up-regulation mediates vascular and airway hyper-reactivity in response to endothelin-1 (ET-1, endothelin receptor agonist in cardiovascular and airway diseases. In the vasculature and airways, the main functional consequences of up-regulated endothelin receptors by cigarette smoke exposure are enhanced contraction and proliferation of the smooth muscle cells, which subsequently result in abnormal contraction (spasm and adverse proliferation (remodeling of the vasculature and airways. The structural alteration by adverse remodeling involves changes in cell growth, cell death, cell migration, and production or degradation of the extracellular matrix. This review focuses on cigarette smoke exposure that induces activation of intracellular mitogen-activated protein kinase (MAPK and subsequently results in the up-regulation of endothelin receptors in the vasculature and airways, which mediates vascular and airway hyper-reactivity, one of the important pathogenic characteristics of cardiovascular and airway diseases. Understanding the molecular mechanisms of how cigarette smoke causes up-regulation of endothelin receptors in the vasculature and airways may provide new strategies for the treatment of cigarette smoke—associated cardiovascular and lung diseases.

  13. Locating Fetal Facial Surface, Oral Cavity and Airways by a 3D Ultrasound Calibration Using a Novel Cones' Phantom

    National Research Council Canada - National Science Library

    XU, Rong; OHYA, Jun; SATO, Yoshinobu; ZHANG, Bo; FUJIE, Masakatsu G

    2014-01-01

    ...) surgery, this paper proposes a 3D ultrasound (US) calibration-based approach that can locate the fetal facial surface, oral cavity, and airways by a registration between a 3D fetal model and 3D US images...

  14. Sialic acid-to-urea ratio as a measure of airway surface hydration.

    Science.gov (United States)

    Esther, Charles R; Hill, David B; Button, Brian; Shi, Shuai; Jania, Corey; Duncan, Elizabeth A; Doerschuk, Claire M; Chen, Gang; Ranganathan, Sarath; Stick, Stephen M; Boucher, Richard C

    2017-03-01

    Although airway mucus dehydration is key to pathophysiology of cystic fibrosis (CF) and other airways diseases, measuring mucus hydration is challenging. We explored a robust method to estimate mucus hydration using sialic acid as a marker for mucin content. Terminal sialic acid residues from mucins were cleaved by acid hydrolysis from airway samples, and concentrations of sialic acid, urea, and other biomarkers were analyzed by mass spectrometry. In mucins purified from human airway epithelial (HAE), sialic acid concentrations after acid hydrolysis correlated with mucin concentrations (r2 = 0.92). Sialic acid-to-urea ratios measured from filters applied to the apical surface of cultured HAE correlated to percent solids and were elevated in samples from CF HAEs relative to controls (2.2 ± 1.1 vs. 0.93 ± 1.8, P urea ratios were elevated in bronchoalveolar lavage fluid (BALF) from β-epithelial sodium channel (ENaC) transgenic mice, known to have reduced mucus hydration, and mice sensitized to house dust mite allergen. In a translational application, elevated sialic acid-to-urea ratios were measured in BALF from young children with CF who had airway infection relative to those who did not (5.5 ± 3.7 vs. 1.9 ± 1.4, P urea ratio performed similarly to percent solids, the gold standard measure of mucus hydration. The method proved robust and has potential to serve as flexible techniques to assess mucin hydration, particularly in samples like BALF in which established methods such as percent solids cannot be utilized. Copyright © 2017 the American Physiological Society.

  15. Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins.

    Science.gov (United States)

    Hodges, Robin R; Dartt, Darlene A

    2013-12-01

    The ocular surface including the cornea and conjunctiva and its overlying tear film are the first tissues of the eye to interact with the external environment. The tear film is complex containing multiple layers secreted by different glands and tissues. Each layer contains specific molecules and proteins that not only maintain the health of the cells on the ocular surface by providing nourishment and removal of waste products but also protect these cells from environment. A major protective mechanism that the corneal and conjunctival cells have developed is secretion of the innermost layer of the tear film, the mucous layer. Both the cornea and conjunctiva express membrane spanning mucins, whereas the conjunctiva also produces soluble mucins. The mucins present in the tear film serve to maintain the hydration of the ocular surface and to provide lubrication and anti-adhesive properties between the cells of the ocular surface and conjunctiva during the blink. A third function is to contribute to the epithelial barrier to prevent pathogens from binding to the ocular surface. This review will focus on the different types of mucins produced by the corneal and conjunctival epithelia. Also included in this review will be a presentation of the structure of mucins, regulation of mucin production, role of mucins in ocular surface diseases, and the differences in mucin production by the ocular surface, airways and gastrointestinal tract. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Increased phosphatidylcholine concentration in saliva reduces surface tension and improves airway patency in obstructive sleep apnoea.

    Science.gov (United States)

    Kawai, M; Kirkness, J P; Yamamura, S; Imaizumi, K; Yoshimine, H; Oi, K; Ayuse, T

    2013-10-01

    Surface tension may have important role for maintaining upper airway patency in patients with obstructive sleep apnoea. It has been demonstrated that elevated surface tension increases the pharyngeal pressures required to reopen the upper airway following collapse. The aim of the study was to evaluate the associations between the concentrations of endogenous surfactants in saliva with indices of upper airway patency in obstructive sleep apnoea. We studied 20 male patients with obstructive sleep apnoea (age: 60·3 ± 10·3 years; BMI: 25·9 ± 4·6 kg m(-2); AHI: 41·5 ± 18·6 events h(-1)). We obtained 100-μL samples of saliva prior to overnight polysomnographic sleep study. The surface tension was determined using the pull-off force technique. The concentration of phosphatidylcholine (PC) was evaluated by liquid chromatography-mass spectrometry (LC-MS/MS). Regression analysis between apnoea, hypopnoea and apnoea/hypopnoea indices and the ratio of hypopnoea time/total disordered breathing time (HT/DBT) with surface tension and PC were performed. P surface tension was 48·8 ± 8·0 mN m(-1) and PC concentration was 15·7 ± 11·1 nM. The surface tension was negatively correlated with the PC concentration (r = -0·48, P = 0·03). There was a significant positive correlation between surface tension with hypopnoea index (r = 0·50, P = 0·03) and HT/DBT (r = 0·6, P = 0·006), but not apnoea or apnoea/hypopnoea index (P > 0·11). Similarly, PC concentration negatively correlated with hypopnoea index (r = -0·45, P = 0·04) and HT/DBT (r = -0·6, P = 0·004), but not with apnoea index or AHI (P > 0·08). An increase in salivary PC concentration may increase upper airway patency in obstructive sleep apnoea through a reduction in surface tension. © 2013 John Wiley & Sons Ltd.

  17. Capsaicinoids regulate airway anion transporters through Rho kinase- and cyclic AMP-dependent mechanisms.

    Science.gov (United States)

    Hibino, Yoshitaka; Morise, Masahiro; Ito, Yasushi; Mizutani, Takefumi; Matsuno, Tadakatsu; Ito, Satoru; Hashimoto, Naozumi; Sato, Mitsuo; Kondo, Masashi; Imaizumi, Kazuyoshi; Hasegawa, Yoshinori

    2011-10-01

    To investigate the effects of capsaicinoids on airway anion transporters, we recorded and analyzed transepithelial currents in human airway epithelial Calu-3 cells. Application of capsaicin (100 μM) attenuated vectorial anion transport, estimated as short-circuit currents (I(SC)), before and after stimulation by forskolin (10 μM) with concomitant reduction of cytosolic cyclic AMP (cAMP) levels. The capsaicin-induced inhibition of I(SC) was also observed in the response to 8-bromo-cAMP (1 mM, a cell-permeable cAMP analog) and 3-isobutyl-1-methylxanthine (1 mM, an inhibitor of phosphodiesterases). The capsaicin-induced inhibition of I(SC) was attributed to suppression of bumetanide (an inhibitor of the basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1)- and 4,4'-dinitrostilbene-2,2'-disulfonic acid (an inhibitor of basolateral HCO(3)(-)-dependent anion transporters)-sensitive components, which reflect anion uptake via basolateral cAMP-dependent anion transporters. In contrast, capsaicin potentiated apical Cl(-) conductance, which reflects conductivity through the cystic fibrosis transmembrane conductance regulator, a cAMP-regulated Cl(-) channel. All these paradoxical effects of capsaicin were mimicked by capsazepine. Forskolin application also increased phosphorylated myosin phosphatase target subunit 1, and the phosphorylation was prevented by capsaicin and capsazepine, suggesting that these capsaicinoids assume aspects of Rho kinase inhibitors. We also found that the increments in apical Cl(-) conductance were caused by conventional Rho kinase inhibitors, Y-27632 (20 μM) and HA-1077 (20 μM), with selective inhibition of basolateral Na(+)-K(+)-2 Cl(-) cotransporter 1. Collectively, capsaicinoids inhibit cAMP-mediated anion transport through down-regulation of basolateral anion uptake, paradoxically accompanied by up-regulation of apical cystic fibrosis transmembrane conductance regulator-mediated anion conductance. The latter is mediated by inhibition of Rho

  18. Global expression profiling of theophylline response genes in macrophages: evidence of airway anti-inflammatory regulation

    Science.gov (United States)

    Yao, Pei-Li; Tsai, Meng-Feng; Lin, Yi-Chen; Wang, Chien-Hsun; Liao, Wei-Yu; Chen, Jeremy JW; Yang, Pan-Chyr

    2005-01-01

    Background Theophylline has been used widely as a bronchodilator for the treatment of bronchial asthma and has been suggested to modulate immune response. While the importance of macrophages in asthma has been reappraised and emphasized, their significance has not been well investigated. We conducted a genome-wide profiling of the gene expressions of macrophages in response to theophylline. Methods Microarray technology was used to profile the gene expression patterns of macrophages modulated by theophylline. Northern blot and real-time quantitative RT-PCR were also used to validate the microarray data, while Western blot and ELISA were used to measure the levels of IL-13 and LTC4. Results We identified dozens of genes in macrophages that were dose-dependently down- or up-regulated by theophylline. These included genes related to inflammation, cytokines, signaling transduction, cell adhesion and motility, cell cycle regulators, and metabolism. We observed that IL-13, a central mediator of airway inflammation, was dramatically suppressed by theophylline. Real-time quantitative RT-PCR and ELISA analyses also confirmed these results, without respect to PMA-treated THP-1 cells or isolated human alveolar macrophages. Theophylline, rolipram, etazolate, db-cAMP and forskolin suppressed both IL-13 mRNA expression (~25%, 2.73%, 8.12%, 5.28%, and 18.41%, respectively) and protein secretion (theophylline may be through cAMP mediation and may decrease LTC4 production. This study supports the role of theophylline as a signal regulator of inflammation, and that down regulation of IL-13 by theophylline may have beneficial effects in inflammatory airway diseases. PMID:16083514

  19. Identification of novel genetic regulations associated with airway epithelial homeostasis using next-generation sequencing data and bioinformatics approaches.

    Science.gov (United States)

    Sheu, Chau-Chyun; Tsai, Ming-Ju; Chen, Feng-Wei; Chang, Kuo-Feng; Chang, Wei-An; Chong, Inn-Wen; Kuo, Po-Lin; Hsu, Ya-Ling

    2017-10-10

    Airway epithelial cells play important roles in airway remodeling. Understanding gene regulations in airway epithelial homeostasis may provide new insights into pathogenesis and treatment of asthma. This study aimed to combine gene expression (GE) microarray, next generation sequencing (NGS), and bioinformatics to explore genetic regulations associated with airway epithelial homeostasis. We analyzed expression profiles of mRNAs (GE microarray) and microRNAs (NGS) in normal and asthmatic bronchial epithelial cells, and identified 9 genes with potential microRNA-mRNA interactions. Of these 9 dysregulated genes, downregulation of MEF2C and MDGA1 were validated in a representative microarray (GSE43696) from the gene expression omnibus (GEO) database. Our findings suggested that upregulated mir-203a may repress MEF2C, a transcription factor, leading to decreased cellular proliferation. In addition, upregulated mir-3065-3p may repress MDGA1, a cell membrane anchor protein, resulting in suppression of cell-cell adhesion. We also found that KCNJ2, a potassium channel, was downregulated in severe asthma and may promote epithelial cell apoptosis. We proposed that aberrant regulations of mir-203a-MEF2C and mir-3065-3p-MDGA1, as well as downregulation of KCNJ2, play important roles in airway epithelial homeostasis in asthma. These findings provide new perspectives on diagnostic or therapeutic strategies targeting bronchial epithelium for asthma. The approach in this study also provides a new aspect of studying asthma.

  20. Effect of airway surface liquid on the forces on the pharyngeal wall: Experimental fluid-structure interaction study.

    Science.gov (United States)

    Pirnar, Jernej; Širok, Brane; Bombač, Andrej

    2017-10-03

    Obstructive sleep apnoea syndrome (OSAS) is a breathing disorder with a multifactorial etiology. The respiratory epithelium is lined with a thin layer of airway surface liquid preventing interactions between the airflow and epithelium. The effect of the liquid lining in OSAS pathogenesis remains poorly understood despite clinical research. Previous studies have shown that the physical properties of the airway surface liquid or altered stimulation of the airway mechanoreceptors could alleviate or intensify OSAS; however, these studies do not provide a clear physical interpretation. To study the forces transmitted from the airflow to the liquid-lined compliant wall and to discuss the effects of the airway surface liquid properties on the stimulation of the mechanoreceptors, a novel and simplified experimental system mimicking the upper airway fundamental characteristics (i.e., liquid-lined compliant wall and complex unsteady airflow features) was constructed. The fluctuating force on the compliant wall was reduced through a damping mechanism when the liquid film thickness and/or the viscosity were increased. Conversely, the liquid film damping was reduced when the surface tension decreased. Based on the experimental data, empirical correlations were developed to predict the damping potential of the liquid film. In the future, this will enable us to extend the existing computational fluid-structure interaction simulations of airflow in the human upper airway by incorporating the airway surface liquid effect without adopting two-phase flow interface tracking methods. Furthermore, the experimental system developed in this study could be used to investigate the fundamental principles of the complex once/twice-coupled physical phenomena. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Regulation of high glucose-mediated mucin expression by matrix metalloproteinase-9 in human airway epithelial cells.

    Science.gov (United States)

    Yu, Hongmei; Yang, Juan; Xiao, Qian; Lü, Yang; Zhou, Xiangdong; Xia, Li; Nie, Daijing

    2015-04-10

    Mucus hypersecretion is the key manifestation in patients with chronic inflammatory airway diseases and mucin 5AC (MUC5AC) is a major component of airway mucus. Matrix metalloproteinases (MMP)-9, have been found to be involved in the pathogenesis of inflammatory airway diseases. Hyperglycemia has been shown to be an independent risk factor for respiratory infections. We hypothesize that high glucose (HG)-regulates MMP-9 production and MMP-9 activity through nicotinamide adenine dinucleotide phosphate (NADPH)/reactive oxygen species (ROS) cascades pathways, leading to mucin production in human airway epithelial cells (16HBE). We show that HG increases MMP-9 production, MMP-9 activity and MUC5AC expression. These effects are prevented by small interfering RNA (siRNA) for MMP-9, indicating that HG-induced mucin production is MMP-9-dependent. HG activates MMP-9 production, MMP-9 activity and MUC5AC overproduction, which is inhibited by nPG, DMSO and DPI (inhibitors of ROS and NADPH), suggesting that HG-activated mucin synthesis is mediated by NADPH/ROS in 16HBE cells. These observations demonstrate an important role for MMP-9 activated by NADPH/ROS signaling pathways in regulating HG-induced MUC5AC expression. These findings may bring new insights into the molecular pathogenesis of the infections related to diabetes mellitus and lead to novel therapeutic intervention for mucin overproduction in chronic inflammatory airway diseases. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Effects of continuous positive airway pressure on energy balance regulation: a systematic review.

    Science.gov (United States)

    Shechter, Ari

    2016-12-01

    Obesity is both a cause and a possible consequence of obstructive sleep apnoea (OSA), as OSA seems to affect parameters involved in energy balance regulation, including food intake, hormonal regulation of hunger/satiety, energy metabolism and physical activity. It is known that weight loss improves OSA, yet it remains unclear why continuous positive airway pressure (CPAP) often results in weight gain.The goal of this systematic review is to explore if and how CPAP affects the behaviour and/or metabolism involved in regulating energy balance.CPAP appears to correct for a hormonal profile characterised by abnormally high leptin and ghrelin levels in OSA, by reducing the circulating levels of each. This is expected to reduce excess food intake. However, reliable measures of food intake are lacking, and not yet sufficient to make conclusions. Although studies are limited and inconsistent, CPAP may alter energy metabolism, with reports of reductions in resting metabolic rate or sleeping metabolic rate. CPAP appears to not have an appreciable effect on altering physical activity levels. More work is needed to characterise how CPAP affects energy balance regulation.It is clear that promoting CPAP in conjunction with other weight loss approaches should be used to encourage optimal outcomes in OSA patients. Copyright ©ERS 2016.

  3. Optimal surface segmentation using flow lines to quantify airway abnormalities in chronic obstructive pulmonary disease

    DEFF Research Database (Denmark)

    Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau

    2014-01-01

    are not well suited for surfaces with high curvature, we therefore propose to derive columns from properly generated, non-intersecting flow lines. This guarantees solutions that do not self-intersect. The method is applied to segment human airway walls in computed tomography images in three-dimensions. Phantom...... measurements show that the inner and outer radii are estimated with sub-voxel accuracy. Two-dimensional manually annotated cross-sectional images were used to compare the results with those of another recently published graph based method. The proposed approach had an average overlap of 89.......3±5.8%, and was on average within 0.096±0.097mm of the manually annotated surfaces, which is significantly better than what the previously published approach achieved. A medical expert visually evaluated 499 randomly extracted cross-sectional images from 499 scans and preferred the proposed approach in 68...

  4. Early cystic fibrosis lung disease: Role of airway surface dehydration and lessons from preventive rehydration therapies in mice.

    Science.gov (United States)

    Mall, Marcus A; Graeber, Simon Y; Stahl, Mirjam; Zhou-Suckow, Zhe

    2014-07-01

    Cystic fibrosis (CF) lung disease starts in the first months of life and remains one of the most common fatal hereditary diseases. Early therapeutic interventions may provide an opportunity to prevent irreversible lung damage and improve outcome. Airway surface dehydration is a key disease mechanism in CF, however, its role in the in vivo pathogenesis and as therapeutic target in early lung disease remains poorly understood. Mice with airway-specific overexpression of the epithelial Na(+) channel (βENaC-Tg) recapitulate airway surface dehydration and phenocopy CF lung disease. Recent studies in neonatal βENaC-Tg mice demonstrated that airway surface dehydration produces early mucus plugging in the absence of mucus hypersecretion, which triggers airway inflammation, promotes bacterial infection and causes early mortality. Preventive rehydration therapy with hypertonic saline or amiloride effectively reduced mucus plugging and mortality in neonatal βENaC-Tg mice. These results support clinical testing of preventive/early rehydration strategies in infants and young children with CF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Acidic pH increases airway surface liquid viscosity in cystic fibrosis

    Science.gov (United States)

    Tang, Xiao Xiao; Ostedgaard, Lynda S.; Hoegger, Mark J.; Moninger, Thomas O.; Karp, Philip H.; McMenimen, James D.; Choudhury, Biswa; Varki, Ajit; Stoltz, David A.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) disrupts respiratory host defenses, allowing bacterial infection, inflammation, and mucus accumulation to progressively destroy the lungs. Our previous studies revealed that mucus with abnormal behavior impaired mucociliary transport in newborn CF piglets prior to the onset of secondary manifestations. To further investigate mucus abnormalities, here we studied airway surface liquid (ASL) collected from newborn piglets and ASL on cultured airway epithelia. Fluorescence recovery after photobleaching revealed that the viscosity of CF ASL was increased relative to that of non-CF ASL. CF ASL had a reduced pH, which was necessary and sufficient for genotype-dependent viscosity differences. The increased viscosity of CF ASL was not explained by pH-independent changes in HCO3– concentration, altered glycosylation, additional pH-induced disulfide bond formation, increased percentage of nonvolatile material, or increased sulfation. Treating acidic ASL with hypertonic saline or heparin largely reversed the increased viscosity, suggesting that acidic pH influences mucin electrostatic interactions. These findings link loss of cystic fibrosis transmembrane conductance regulator–dependent alkalinization to abnormal CF ASL. In addition, we found that increasing Ca2+ concentrations elevated ASL viscosity, in part, independently of pH. The results suggest that increasing pH, reducing Ca2+ concentration, and/or altering electrostatic interactions in ASL might benefit early CF. PMID:26808501

  6. Lipoxin A4 stimulates calcium-activated chloride currents and increases airway surface liquid height in normal and cystic fibrosis airway epithelia.

    LENUS (Irish Health Repository)

    2012-01-01

    Cystic Fibrosis (CF) is a genetic disease characterised by a deficit in epithelial Cl(-) secretion which in the lung leads to airway dehydration and a reduced Airway Surface Liquid (ASL) height. The endogenous lipoxin LXA(4) is a member of the newly identified eicosanoids playing a key role in ending the inflammatory process. Levels of LXA(4) are reported to be decreased in the airways of patients with CF. We have previously shown that in normal human bronchial epithelial cells, LXA(4) produced a rapid and transient increase in intracellular Ca(2+). We have investigated, the effect of LXA(4) on Cl(-) secretion and the functional consequences on ASL generation in bronchial epithelial cells obtained from CF and non-CF patient biopsies and in bronchial epithelial cell lines. We found that LXA(4) stimulated a rapid intracellular Ca(2+) increase in all of the different CF bronchial epithelial cells tested. In non-CF and CF bronchial epithelia, LXA(4) stimulated whole-cell Cl(-) currents which were inhibited by NPPB (calcium-activated Cl(-) channel inhibitor), BAPTA-AM (chelator of intracellular Ca(2+)) but not by CFTRinh-172 (CFTR inhibitor). We found, using confocal imaging, that LXA(4) increased the ASL height in non-CF and in CF airway bronchial epithelia. The LXA(4) effect on ASL height was sensitive to bumetanide, an inhibitor of transepithelial Cl(-) secretion. The LXA(4) stimulation of intracellular Ca(2+), whole-cell Cl(-) currents, conductances and ASL height were inhibited by Boc-2, a specific antagonist of the ALX\\/FPR2 receptor. Our results provide, for the first time, evidence for a novel role of LXA(4) in the stimulation of intracellular Ca(2+) signalling leading to Ca(2+)-activated Cl(-) secretion and enhanced ASL height in non-CF and CF bronchial epithelia.

  7. Measuring surface temperature and grading pathological changes of airway tissue in a canine model of inhalational thermal injury.

    Science.gov (United States)

    Zhao, Ran; Di, La-na; Zhao, Xiao-zhuo; Wang, Cheng; Zhang, Guo-an

    2013-06-01

    Airway tissue shows unexpected invulnerability to heated air. The mechanisms of this phenomenon are open to debate. This study was designed to measure the surface temperatures at different locations of the airway, and to explore the relationship between the tissue's surface temperature and injury severity. Twenty dogs were randomly divided into four groups, including three experimental groups (six dogs in each) to inhale heated air at 70-80 °C (group I), 150-160 °C (group II) and 310-320 °C (group III) and a control group (two dogs, only for histological observation). Injury time was 20 min. Mucosal surface temperatures of the epiglottis (point A), cricoid cartilage (point B) and lower trachea (point C) were measured. Dogs in group I-III were divided into three subgroups (two in each), to be assayed at 12, 24 and 36 h after injury, respectively. For each dog, four tissue parts (epiglottis, larynx, lower trachea and terminal bronchiole) were microscopically observed and graded according to an original pathological scoring system (score range: 0-27). Surface temperatures of the airway mucosa increased slowly to 40.60±3.29 °C, and the highest peak temperature was 48.3 °C (group III, point A). The pathological score of burned tissues was 4.12±4.94 (0.0-18.0), suggesting slight to moderate injuries. Air temperature and airway location both influenced mucosal temperature and pathological scores very significantly, and there was a very significant positive correlation between tissue temperature and injury severity. Compared to the inhalational air hyperthermia, airway surface temperature was much lower, but was still positively correlated with thermal injury severity. Copyright © 2012 Elsevier Ltd and ISBI. All rights reserved.

  8. MiR-221 and miR-130a regulate lung airway and vascular development.

    Directory of Open Access Journals (Sweden)

    Sana Mujahid

    Full Text Available Epithelial-mesenchymal interactions play a crucial role in branching morphogenesis, but very little is known about how endothelial cells contribute to this process. Here, we examined how anti-angiogenic miR-221 and pro-angiogenic miR-130a affect airway and vascular development in the fetal lungs. Lung-specific effects of miR-130a and miR-221 were studied in mouse E14 whole lungs cultured for 48 hours with anti-miRs or mimics to miR-130a and miR-221. Anti-miR 221 treated lungs had more distal branch generations with increased Hoxb5 and VEGFR2 around airways. Conversely, mimic 221 treated lungs had reduced airway branching, dilated airway tips and decreased Hoxb5 and VEGFR2 in mesenchyme. Anti-miR 130a treatment led to reduced airway branching with increased Hoxa5 and decreased VEGFR2 in the mesenchyme. Conversely, mimic 130a treated lungs had numerous finely arborized branches extending into central lung regions with diffusely localized Hoxa5 and increased VEGFR2 in the mesenchyme. Vascular morphology was analyzed by GSL-B4 (endothelial cell-specific lectin immunofluorescence. Observed changes in airway morphology following miR-221 inhibition and miR-130a enhancement were mirrored by changes in vascular plexus formation around the terminal airways. Mouse fetal lung endothelial cells (MFLM-91U were used to study microvascular cell behavior. Mimic 221 treatment resulted in reduced tube formation and cell migration, where as the reverse was observed with mimic 130a treatment. From these data, we conclude that miR-221 and miR-130a have opposing effects on airway and vascular morphogenesis of the developing lung.

  9. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-kappaB and hypoxia-inducible factor-1alpha.

    Science.gov (United States)

    Lee, Kyung Sun; Kim, So Ri; Park, Hee Sun; Park, Seoung Ju; Min, Kyung Hoon; Lee, Ka Young; Choe, Yeong Hun; Hong, Sang Hyun; Han, Hyo Jin; Lee, Young Rae; Kim, Jong Suk; Atlas, Daphne; Lee, Yong Chul

    2007-12-31

    Reactive oxygen species (ROS) play an important role in the pathogenesis of airway inflammation and hyperresponsiveness. Recent studies have demonstrated that antioxidants are able to reduce airway inflammation and hyperreactivity in animal models of allergic airway disease. A newly developed antioxidant, small molecular weight thiol compound, N-acetylcysteine amide (AD4) has been shown to increase cellular levels of glutathione and to attenuate oxidative stress related disorders such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis. However, the effects of AD4 on allergic airway disease such as asthma are unknown. We used ovalbumin (OVA)-inhaled mice to evaluate the role of AD4 in allergic airway disease. In this study with OVA-inhaled mice, the increased ROS generation, the increased levels of Th2 cytokines and VEGF, the increased vascular permeability, the increased mucus production, and the increased airway resistance in the lungs were significantly reduced by the administration of AD4. We also found that the administration of AD4 decreased the increases of the NF-kappaB and hypoxia-inducible factor-1alpha (HIF-1alpha) levels in nuclear protein extracts of lung tissues after OVA inhalation. These results suggest that AD4 attenuates airway inflammation and hyperresponsiveness by regulating activation of NF-kappaB and HIF-1alpha as well as reducing ROS generation in allergic airway disease.

  10. Tidal stretches differently regulate the contractile and cytoskeletal elements in intact airways.

    Directory of Open Access Journals (Sweden)

    Erzsébet Bartolák-Suki

    Full Text Available Recent reports suggest that tidal stretches do not cause significant and sustainable dilation of constricted intact airways ex vivo. To better understand the underlying mechanisms, we aimed to map the physiological stretch-induced molecular changes related to cytoskeletal (CSK structure and contractile force generation through integrin receptors. Using ultrasound, we measured airway constriction in isolated intact airways during 90 minutes of static transmural pressure (Ptm of 7.5 cmH2O or dynamic variations between Ptm of 5 and 10 cmH20 mimicking breathing. Integrin and focal adhesion kinase activity increased during Ptm oscillations which was further amplified during constriction. While Ptm oscillations reduced β-actin and F-actin formation implying lower CSK stiffness, it did not affect tubulin. However, constriction was amplified when the microtubule structure was disassembled. Without constriction, α-smooth muscle actin (ASMA level was higher and smooth muscle myosin heavy chain 2 was lower during Ptm oscillations. Alternatively, during constriction, overall molecular motor activity was enhanced by Ptm oscillations, but ASMA level became lower. Thus, ASMA and motor protein levels change in opposite directions due to stretch and contraction maintaining similar airway constriction levels during static and dynamic Ptm. We conclude that physiological Ptm variations affect cellular processes in intact airways with constriction determined by the balance among contractile and CSK molecules and structure.

  11. Curcumin regulates airway epithelial cell cytokine responses to the pollutant cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Rennolds, Jessica; Malireddy, Smitha; Hassan, Fatemat; Tridandapani, Susheela; Parinandi, Narasimham [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States); Boyaka, Prosper N. [Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210 (United States); Cormet-Boyaka, Estelle, E-mail: Estelle.boyaka@osumc.edu [Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, The Ohio State University, Columbus, OH 43210 (United States)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cadmium induces secretion of IL-6 and IL-8 by two distinct pathways. Black-Right-Pointing-Pointer Cadmium increases NAPDH oxidase activity leading to Erk activation and IL-8 secretion. Black-Right-Pointing-Pointer Curcumin prevents cadmium-induced secretion of both IL-6 and IL-8 by airway cells. Black-Right-Pointing-Pointer Curcumin could be use to suppress lung inflammation due to cadmium inhalation. -- Abstract: Cadmium is a toxic metal present in the environment and its inhalation can lead to pulmonary disease such as lung cancer and chronic obstructive pulmonary disease. These lung diseases are characterized by chronic inflammation. Here we show that exposure of human airway epithelial cells to cadmium promotes a polarized apical secretion of IL-6 and IL-8, two pivotal pro-inflammatory cytokines known to play an important role in pulmonary inflammation. We also determined that two distinct pathways controlled secretion of these proinflammatory cytokines by human airway epithelial cells as cadmium-induced IL-6 secretion occurs via an NF-{kappa}B dependent pathway, whereas IL-8 secretion involves the Erk1/2 signaling pathway. Interestingly, the natural antioxidant curcumin could prevent both cadmium-induced IL-6 and IL-8 secretion by human airway epithelial cells. In conclusion, curcumin could be used to prevent airway inflammation due to cadmium inhalation.

  12. Expression of surface platelet receptors (CD62P and CD41/61) in horses with recurrent airway obstruction (RAO).

    Science.gov (United States)

    Iwaszko-Simonik, Alicja; Niedzwiedz, Artur; Graczyk, Stanislaw; Slowikowska, Malwina; Pliszczak-Krol, Aleksandra

    2015-03-15

    Recurrent airway obstruction (RAO) is an allergic disease of horses similar to human asthma, which is characterized by airway inflammation and activation of neutrophils, lymphocytes and platelets. Platelet activation and an increase in circulating platelet-leukocyte aggregates may lead to airway remodeling. The aim of this study was to investigate platelet status in RAO-affected horses based on the platelet morphology and platelet surface expression of CD41/61 and CD62P. Ten RAO-affected horses and ten healthy horses were included in this study. Blood samples were obtained to determine the platelet count (PLT), mean platelet volume (MPV) and platelet large cell ratio (P-LCR). Expression of CD62P and CD41/61 was detected by flow cytometry on activated platelets. The median PLT was significantly reduced in horses with RAO compared to the controls. The MPV and the P-LCR values were significantly higher in RAO horses than controls. Expression of CD41/61 on platelets was increased in RAO horses, while CD62P expression was reduced. This study demonstrated the morphological changes in platelets and expression of platelet surface receptors. Despite the decrease of CD62P expression, the observed increased surface expression of CD41/61 on platelets in horses with RAO may contribute to the formation of platelet aggregates in their respiratory system. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid.

    Science.gov (United States)

    Smith, D J; Gaffney, E A; Blake, J R

    2007-07-01

    We discuss in detail techniques for modelling flows due to finite and infinite arrays of beating cilia. An efficient technique, based on concepts from previous 'singularity models' is described, that is accurate in both near and far-fields. Cilia are modelled as curved slender ellipsoidal bodies by distributing Stokeslet and potential source dipole singularities along their centrelines, leading to an integral equation that can be solved using a simple and efficient discretisation. The computed velocity on the cilium surface is found to compare favourably with the boundary condition. We then present results for two topics of current interest in biology. 1) We present the first theoretical results showing the mechanism by which rotating embryonic nodal cilia produce a leftward flow by a 'posterior tilt,' and track particle motion in an array of three simulated nodal cilia. We find that, contrary to recent suggestions, there is no continuous layer of negative fluid transport close to the ciliated boundary. The mean leftward particle transport is found to be just over 1 mum/s, within experimentally measured ranges. We also discuss the accuracy of models that represent the action of cilia by steady rotlet arrays, in particular, confirming the importance of image systems in the boundary in establishing the far-field fluid transport. Future modelling may lead to understanding of the mechanisms by which morphogen gradients or mechanosensing cilia convert a directional flow to asymmetric gene expression. 2) We develop a more complex and detailed model of flow patterns in the periciliary layer of the airway surface liquid. Our results confirm that shear flow of the mucous layer drives a significant volume of periciliary liquid in the direction of mucus transport even during the recovery stroke of the cilia. Finally, we discuss the advantages and disadvantages of the singularity technique and outline future theoretical and experimental developments required to apply this

  14. Synergistic up-regulation of CXCL10 by virus and IFN γ in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Karen L Oslund

    Full Text Available Airway epithelial cells are the first line of defense against viral infections and are instrumental in coordinating the inflammatory response. In this study, we demonstrate the synergistic stimulation of CXCL10 mRNA and protein, a key chemokine responsible for the early immune response to viral infection, following treatment of airway epithelial cells with IFN γ and influenza virus. The synergism also occurred when the cells were treated with IFN γ and a viral replication mimicker (dsRNA both in vitro and in vivo. Despite the requirement of type I interferon (IFNAR signaling in dsRNA-induced CXCL10, the synergism was independent of the IFNAR pathway since it wasn't affected by the addition of a neutralizing IFNAR antibody or the complete lack of IFNAR expression. Furthermore, the same synergistic effect was also observed when a CXCL10 promoter reporter was examined. Although the responsive promoter region contains both ISRE and NFκB sites, western blot analysis indicated that the combined treatment of IFN γ and dsRNA significantly augmented NFκB but not STAT1 activation as compared to the single treatment. Therefore, we conclude that IFN γ and dsRNA act in concert to potentiate CXCL10 expression in airway epithelial cells via an NFκB-dependent but IFNAR-STAT independent pathway and it is at least partly regulated at the transcriptional level.

  15. CXCL8 histone H3 acetylation is dysfunctional in airway smooth muscle in asthma: regulation by BET.

    Science.gov (United States)

    Clifford, Rachel L; Patel, Jamie K; John, Alison E; Tatler, Amanda L; Mazengarb, Lisa; Brightling, Christopher E; Knox, Alan J

    2015-05-01

    Asthma is characterized by airway inflammation and remodeling and CXCL8 is a CXC chemokine that drives steroid-resistant neutrophilic airway inflammation. We have shown that airway smooth muscle (ASM) cells isolated from asthmatic individuals secrete more CXCL8 than cells from nonasthmatic individuals. Here we investigated chromatin modifications at the CXCL8 promoter in ASM cells from nonasthmatic and asthmatic donors to further understand how CXCL8 is dysregulated in asthma. ASM cells from asthmatic donors had increased histone H3 acetylation, specifically histone H3K18 acetylation, and increased binding of histone acetyltransferase p300 compared with nonasthmatic donors but no differences in CXCL8 DNA methylation. The acetylation reader proteins Brd3 and Brd4 were bound to the CXCL8 promoter and Brd inhibitors inhibited CXCL8 secretion from ASM cells by disrupting Brd4 and RNA polymerase II binding to the CXCL8 promoter. Our results show a novel dysregulation of CXCL8 transcriptional regulation in asthma characterized by a promoter complex that is abnormal in ASM cells isolated from asthmatic donors and can be modulated by Brd inhibitors. Brd inhibitors may provide a new therapeutic strategy for steroid-resistant inflammation. Copyright © 2015 the American Physiological Society.

  16. Expression and activation of the oxytocin receptor in airway smooth muscle cells: Regulation by TNFα and IL-13

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2010-07-01

    Full Text Available Abstract Background During pregnancy asthma may remain stable, improve or worsen. The factors underlying the deleterious effect of pregnancy on asthma remain unknown. Oxytocin is a neurohypophyseal protein that regulates a number of central and peripheral responses such as uterine contractions and milk ejection. Additional evidence suggests that oxytocin regulates inflammatory processes in other tissues given the ubiquitous expression of the oxytocin receptor. The purpose of this study was to define the role of oxytocin in modulating human airway smooth muscle (HASMCs function in the presence and absence of IL-13 and TNFα, cytokines known to be important in asthma. Method Expression of oxytocin receptor in cultured HASMCs was performed by real time PCR and flow cytomery assays. Responses to oxytocin was assessed by fluorimetry to detect calcium signals while isolated tracheal rings and precision cut lung slices (PCLS were used to measure contractile responses. Finally, ELISA was used to compare oxytocin levels in the bronchoalveloar lavage (BAL samples from healthy subjects and those with asthma. Results PCR analysis demonstrates that OXTR is expressed in HASMCs under basal conditions and that both interleukin (IL-13 and tumor necrosis factor (TNFα stimulate a time-dependent increase in OXTR expression at 6 and 18 hr. Additionally, oxytocin increases cytosolic calcium levels in fura-2-loaded HASMCs that were enhanced in cells treated for 24 hr with IL-13. Interestingly, TNFα had little effect on oxytocin-induced calcium response despite increasing receptor expression. Using isolated murine tracheal rings and PCLS, oxytocin also promoted force generation and airway narrowing. Further, oxytocin levels are detectable in bronchoalveolar lavage (BAL fluid derived from healthy subjects as well as from those with asthma. Conclusion Taken together, we show that cytokines modulate the expression of functional oxytocin receptors in HASMCs suggesting a

  17. Actin cortex architecture regulates cell surface tension.

    Science.gov (United States)

    Chugh, Priyamvada; Clark, Andrew G; Smith, Matthew B; Cassani, Davide A D; Dierkes, Kai; Ragab, Anan; Roux, Philippe P; Charras, Guillaume; Salbreux, Guillaume; Paluch, Ewa K

    2017-06-01

    Animal cell shape is largely determined by the cortex, a thin actin network underlying the plasma membrane in which myosin-driven stresses generate contractile tension. Tension gradients result in local contractions and drive cell deformations. Previous cortical tension regulation studies have focused on myosin motors. Here, we show that cortical actin network architecture is equally important. First, we observe that actin cortex thickness and tension are inversely correlated during cell-cycle progression. We then show that the actin filament length regulators CFL1, CAPZB and DIAPH1 regulate mitotic cortex thickness and find that both increasing and decreasing thickness decreases tension in mitosis. This suggests that the mitotic cortex is poised close to a tension maximum. Finally, using a computational model, we identify a physical mechanism by which maximum tension is achieved at intermediate actin filament lengths. Our results indicate that actin network architecture, alongside myosin activity, is key to cell surface tension regulation.

  18. Biochemical regulation of airway smooth muscle tone: current knowledge and therapeutic implications.

    Science.gov (United States)

    Torphy, T J

    1987-01-01

    Evidence collected during the last decade indicates that the molecular processes responsible for smooth muscle contraction are fundamentally different from those responsible for skeletal muscle contraction. Furthermore, because of the diverse functional roles of various smooth muscles, it would not be surprising if significant differences in regulatory processes also exist among different smooth muscles. Such diversity may already be exemplified by differences in cross-bridge kinetics and sources of activator Ca2+. Additional unique regulatory features of various smooth muscle types will undoubtedly be uncovered by further research. A convincing body of data suggests that activation of the adenylate cyclase/protein kinase cascade is responsible for the bronchodilation produced by beta-adrenoceptor agonists. Although the exact mechanism by which the activation of cAMP-dependent protein kinase induces relaxation is not clear, the phosphorylation of multiple substrates may be involved. Phosphorylation of these substrates can promote relaxation by decreasing the myoplasmic Ca2+ concentration, decreasing the Ca2+ sensitivity of the contractile apparatus, or both. Thus, because beta-adrenoceptor agonists act as physiologic antagonists of broncho-constriction, they should relax airway smooth muscle regardless of the mediator(s) responsible for the bronchospasm. Perhaps this is the major reason that the beta-adrenoceptor agonists have become the premier class of drugs used in the treatment of bronchial asthma. As useful as the sympathomimetic bronchodilators have been, they are not without liabilities. These liabilities include: cardiovascular and skeletal muscle side effects, an inherent subsensitivity of the asthmatic patient population to beta-adrenoceptor agonists, the development of tolerance and a loss of efficacy during severe asthmatic episodes. The fact that these drawbacks are probably shared by all sympathomimetic bronchodilators suggests that little therapeutic

  19. miR-126 is downregulated in cystic fibrosis airway epithelial cells and regulates TOM1 expression.

    LENUS (Irish Health Repository)

    Oglesby, Irene K

    2010-02-15

    Cystic fibrosis (CF) is one of the most common lethal genetic diseases in which the role of microRNAs has yet to be explored. Predicted to be regulated by miR-126, TOM1 (target of Myb1) has been shown to interact with Toll-interacting protein, forming a complex to regulate endosomal trafficking of ubiquitinated proteins. TOM1 has also been proposed as a negative regulator of IL-1beta and TNF-alpha-induced signaling pathways. MiR-126 is highly expressed in the lung, and we now show for the first time differential expression of miR-126 in CF versus non-CF airway epithelial cells both in vitro and in vivo. MiR-126 downregulation in CF bronchial epithelial cells correlated with a significant upregulation of TOM1 mRNA, both in vitro and in vivo when compared with their non-CF counterparts. Introduction of synthetic pre-miR-126 inhibited luciferase activity in a reporter system containing the full length 3\\'-untranslated region of TOM1 and resulted in decreased TOM1 protein production in CF bronchial epithelial cells. Following stimulation with LPS or IL-1beta, overexpression of TOM1 was found to downregulate NF-kappaB luciferase activity. Conversely, TOM1 knockdown resulted in a significant increase in NF-kappaB regulated IL-8 secretion. These data show that miR-126 is differentially regulated in CF versus non-CF airway epithelial cells and that TOM1 is a miR-126 target that may have an important role in regulating innate immune responses in the CF lung. To our knowledge, this study is the first to report of a role for TOM1 in the TLR2\\/4 signaling pathways and the first to describe microRNA involvement in CF.

  20. The Wurst protein: A novel endocytosis regulator involved in airway clearance and respiratory tube size control

    OpenAIRE

    Wingen, Christian; Aschenbrenner, Anna C; Stümpges, Birgit; Hoch, Michael; Behr, Matthias

    2009-01-01

    The mammalian lung and the Drosophila airways are composed of an intricate network of epithelial tubes that transports fluids or gases and converts during late embryogenesis from liquid- to air-filling. Conserved growth factor pathways have been characterized in model organisms such as Drosophila or the mouse that control patterning and branching of tubular networks. In contrast, knowledge of the coordination of respiratory tube size and physiology is still limited. Latest studies have shown ...

  1. Regulation of nasal airway homeostasis and inflammation in mice by SHP-1 and Th2/Th1 signaling pathways.

    Directory of Open Access Journals (Sweden)

    Seok Hyun Cho

    Full Text Available Allergic rhinitis is a chronic inflammatory disease orchestrated by Th2 lymphocytes. Src homology 2 domain-containing protein tyrosine phosphatase (SHP-1 is known to be a negative regulator in the IL-4α/STAT-6 signaling pathway of the lung. However, the role of SHP-1 enzyme and its functional relationship with Th2 and Th1 cytokines are not known in the nasal airway. In this study, we aimed to study the nasal inflammation as a result of SHP-1 deficiency in viable motheaten (mev mice and to investigate the molecular mechanisms involved. Cytology, histology, and expression of cytokines and chemokines were analyzed to define the nature of the nasal inflammation. Targeted gene depletion of Th1 (IFN-γ and Th2 (IL-4 and IL-13 cytokines was used to identify the critical pathways involved. Matrix metalloproteinases (MMPs were studied to demonstrate the clearance mechanism of recruited inflammatory cells into the nasal airway. We showed here that mev mice had a spontaneous allergic rhinitis-like inflammation with eosinophilia, mucus metaplasia, up-regulation of Th2 cytokines (IL-4 and IL-13, chemokines (eotaxin, and MMPs. All of these inflammatory mediators were clearly counter-regulated by Th2 and Th1 cytokines. Deletion of IFN-γ gene induced a strong Th2-skewed inflammation with transepithelial migration of the inflammatory cells. These findings suggest that SHP-1 enzyme and Th2/Th1 paradigm may play a critical role in the maintenance of nasal immune homeostasis and in the regulation of allergic rhinitis.

  2. Ezrin/Exocyst complex regulates mucin 5AC secretion induced by neutrophil elastase in human airway epithelial cells.

    Science.gov (United States)

    Li, Qi; Li, Na; Liu, Chun-Yi; Xu, Rui; Kolosov, Victor P; Perelman, Juliy M; Zhou, Xiang-Dong

    2015-01-01

    Increased mucin secretion is a characteristic feature of many chronic airway diseases, particularly during periods of exacerbation; however, the exact mechanism of mucin secretion remains unclear. Ezrin, which is a specific marker of apical membranes, is predominantly concentrated in exocyst-rich cell surface structures, crosslinking the actin cytoskeleton with the plasma membrane. In the present study, we examined whether Ezrin is involved in mucin 5AC (MUC5AC) secretion after neutrophil elastase (NE) attack, and we investigated the role of the exocyst complex docking protein Sec3 in this process. NE was used as a stimulator in a 16HBE14o- cell culture model. The expression and location of Ezrin and Sec3 were investigated, and the interaction between Ezrin and Sec3 in 16HBE14o-cells was assayed after treatment with NE, Ezrin siRNA, Sec3 siRNA, neomycin or PIP2-Ab. We found that Ezrin was highly expressed in the bronchi of humans with chronic airway diseases. NE induced robust MUC5AC protein secretion. The Ezrin siRNA, Sec3 siRNA, and neomycin treatments led to impaired MUC5AC secretion in cells. Both Ezrin and Sec3 were recruited primarily to the cytoplasmic membrane after NE stimulation, and the neomycin and PIP2-Ab treatments abrogated this effect. Immunoprecipitation analysis revealed that Ezrin and Sec3 combined to form complexes; however, these complexes could not be detected in Ezrin∆1-333 mutant-transfected cells, even when PIP2 was added. These results demonstrate that Ezrin/Sec3 complexes are essential for MUC5AC secretion in NE-stimulated airway epithelial cells and that PIP2 is of critical importance in the formation of these complexes. © 2015 S. Karger AG, Basel.

  3. Ezrin/Exocyst Complex Regulates Mucin 5AC Secretion Induced by Neutrophil Elastase in Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Qi Li

    2015-01-01

    Full Text Available Background/Aim: Increased mucin secretion is a characteristic feature of many chronic airway diseases, particularly during periods of exacerbation; however, the exact mechanism of mucin secretion remains unclear. Ezrin, which is a specific marker of apical membranes, is predominantly concentrated in exocyst-rich cell surface structures, crosslinking the actin cytoskeleton with the plasma membrane. In the present study, we examined whether Ezrin is involved in mucin 5AC (MUC5AC secretion after neutrophil elastase (NE attack, and we investigated the role of the exocyst complex docking protein Sec3 in this process. Methods: NE was used as a stimulator in a 16HBE14o- cell culture model. The expression and location of Ezrin and Sec3 were investigated, and the interaction between Ezrin and Sec3 in 16HBE14o-cells was assayed after treatment with NE, Ezrin siRNA, Sec3 siRNA, neomycin or PIP2-Ab. Results: We found that Ezrin was highly expressed in the bronchi of humans with chronic airway diseases. NE induced robust MUC5AC protein secretion. The Ezrin siRNA, Sec3 siRNA, and neomycin treatments led to impaired MUC5AC secretion in cells. Both Ezrin and Sec3 were recruited primarily to the cytoplasmic membrane after NE stimulation, and the neomycin and PIP2-Ab treatments abrogated this effect. Immunoprecipitation analysis revealed that Ezrin and Sec3 combined to form complexes; however, these complexes could not be detected in Ezrin∆1-333 mutant-transfected cells, even when PIP2 was added. Conclusions: These results demonstrate that Ezrin/Sec3 complexes are essential for MUC5AC secretion in NE-stimulated airway epithelial cells and that PIP2 is of critical importance in the formation of these complexes.

  4. Dry deposition of pollutant and marker particles onto live mouse airway surfaces enhances monitoring of individual particle mucociliary transit behaviour.

    Science.gov (United States)

    Donnelley, Martin; Morgan, Kaye S; Siu, Karen K W; Parsons, David W

    2012-07-01

    Particles suspended in the air are inhaled during normal respiration and unless cleared by airway defences, such as the mucociliary transit (MCT) system, they can remain and affect lung and airway health. Synchrotron phase-contrast X-ray imaging (PCXI) methods have been developed to non-invasively monitor the behaviour of individual particles in live mouse airways and in previous studies the MCT behaviour of particles and fibres in the airways of live mice after deposition in a saline carrier fluid have been examined. In this study a range of common respirable pollutant particles (lead dust, quarry dust and fibreglass fibres) as well as marker particles (hollow glass micro-spheres) were delivered into the trachea of live mice using a dry powder insufflator to more accurately mimic normal environmental particulate exposure and deposition via inhalation. The behaviour of the particles once delivered onto the airway surface was tracked over a five minute period via PCXI. All particles were visible after deposition. Fibreglass fibres remained stationary throughout while all other particle types transited the tracheal surface throughout the imaging period. In all cases the majority of the particle deposition and any airway surface activity was located close to the dorsal tracheal wall. Both the individual and bulk motions of the glass bead marker particles were visible and their behaviour enabled otherwise hidden MCT patterns to be revealed. This study verified the value of PCXI for examining the post-deposition particulate MCT behaviour in the mouse trachea and highlighted that MCT is not a uniform process as suggested by radiolabel studies. It also directly revealed the advantages of dry particle delivery for establishing adequate particulate presence for visualizing MCT behaviour. The MCT behaviour and rate seen after dry particle delivery was different from that in previous carrier-fluid studies. It is proposed that dry particle delivery is essential for producing

  5. Histone deacetylase inhibitors up-regulate LL-37 expression independent of toll-like receptor mediated signalling in airway epithelial cells

    NARCIS (Netherlands)

    Liu, Quan; Liu, Juan; Roschmann, Kristina Irene Lisolette; van Egmond, Danielle; Golebski, Korneliusz; Fokkens, Wytske Johanna; Wang, Dehui; van Drunen, Cornelis Maria

    2013-01-01

    HDAC inhibitors have been proposed as anticancer agents. However, their roles in innate genes expression remain not well known. Cathelicidin LL-37 is one of the few human bactericidal peptides, but the regulation of histone acetylation on LL-37 expression in airway epithelium remains largely

  6. CXCR3 surface expression in human airway epithelial cells: cell cycle dependence and effect on cell proliferation.

    Science.gov (United States)

    Aksoy, Mark O; Yang, Yi; Ji, Rong; Reddy, P J; Shahabuddin, Syed; Litvin, Judith; Rogers, Thomas J; Kelsen, Steven G

    2006-05-01

    We recently demonstrated that human bronchial epithelial cells (HBEC) constitutively express the CXC chemokine receptor CXCR3, which when activated, induces directed cell migration. The present study in HBEC examined the relative expression of the CXCR3 splice variants CXCR3-A and -B, cell cycle dependence of CXCR3 expression, and the effects of the CXCR3 ligand, the interferon-gamma-inducible CXC chemokine I-TAC/CXCL11, on DNA synthesis and cell proliferation. Both CXCR3-A and -B mRNA, assessed by real-time RT-PCR, were expressed in normal HBEC (NHBEC) and the HBEC line 16-HBE. However, CXCR3-B mRNA was 39- and 6-fold greater than CXCR3-A mRNA in NHBEC and 16-HBE, respectively. Although most HBEC (>80%) assessed by flow cytometry and immunofluorescence microscopy contained intracellular CXCR3, only a minority (75%) were in the S + G(2)/M phases of the cell cycle. Stimulation of CXCR3 with I-TAC enhanced thymidine incorporation and cell proliferation and increased p38 and ERK1/2 phosphorylation. These data indicate that 1) human airway epithelial cells primarily express CXCR3-B mRNA, 2) surface expression of CXCR3 is largely confined to the S + G(2)/M phases of the cell cycle, and 3) activation of CXCR3 induces DNA synthesis, cell proliferation, and activation of MAPK pathways. We speculate that activation of CXCR3 exerts a mitogenic effect in HBEC, which may be important during airway mucosal injury in obstructive airway diseases such as asthma and chronic obstructive pulmonary disease.

  7. Restoring Cystic Fibrosis Transmembrane Conductance Regulator Function Reduces Airway Bacteria and Inflammation in People with Cystic Fibrosis and Chronic Lung Infections.

    Science.gov (United States)

    Hisert, Katherine B; Heltshe, Sonya L; Pope, Christopher; Jorth, Peter; Wu, Xia; Edwards, Rachael M; Radey, Matthew; Accurso, Frank J; Wolter, Daniel J; Cooke, Gordon; Adam, Ryan J; Carter, Suzanne; Grogan, Brenda; Launspach, Janice L; Donnelly, Seamas C; Gallagher, Charles G; Bruce, James E; Stoltz, David A; Welsh, Michael J; Hoffman, Lucas R; McKone, Edward F; Singh, Pradeep K

    2017-06-15

    Previous work indicates that ivacaftor improves cystic fibrosis transmembrane conductance regulator (CFTR) activity and lung function in people with cystic fibrosis and G551D-CFTR mutations but does not reduce density of bacteria or markers of inflammation in the airway. These findings raise the possibility that infection and inflammation may progress independently of CFTR activity once cystic fibrosis lung disease is established. To better understand the relationship between CFTR activity, airway microbiology and inflammation, and lung function in subjects with cystic fibrosis and chronic airway infections. We studied 12 subjects with G551D-CFTR mutations and chronic airway infections before and after ivacaftor. We measured lung function, sputum bacterial content, and inflammation, and obtained chest computed tomography scans. Ivacaftor produced rapid decreases in sputum Pseudomonas aeruginosa density that began within 48 hours and continued in the first year of treatment. However, no subject eradicated their infecting P. aeruginosa strain, and after the first year P. aeruginosa densities rebounded. Sputum total bacterial concentrations also decreased, but less than P. aeruginosa. Sputum inflammatory measures decreased significantly in the first week of treatment and continued to decline over 2 years. Computed tomography scans obtained before and 1 year after ivacaftor treatment revealed that ivacaftor decreased airway mucous plugging. Ivacaftor caused marked reductions in sputum P. aeruginosa density and airway inflammation and produced modest improvements in radiographic lung disease in subjects with G551D-CFTR mutations. However, P. aeruginosa airway infection persisted. Thus, measures that control infection may be required to realize the full benefits of CFTR-targeting treatments.

  8. MiR-21 modulates human airway smooth muscle cell proliferation and migration in asthma through regulation of PTEN expression.

    Science.gov (United States)

    Liu, Yun; Yang, Kunzheng; Shi, Hongyang; Xu, Jing; Zhang, Dexin; Wu, Yuanyuan; Zhou, Shuru; Sun, Xiuzhen

    2015-01-01

    Asthma is characterized by airway remodeling arising from an increase in airway smooth muscle (ASM) mass. This increase is regulated in part by ASM cell proliferation and migration. MicroRNA (miR)-21 also plays a role in asthma, but the molecular mechanisms underlying its effects are not completely understood. This study investigated the effects and mechanism of miR-21 on the human ASM (HASM) cell proliferation and migration. HASM cells were transduced with a miR-21 vector, and the expression of miR-21 was determined by quantitative real-time polymerase chain reaction (qRT-PCR). The effect of the miR-21 on HASM cell proliferation and migration was analyzed by CCK8 and transwell assay. The expression level of PTEN (phosphatase and tensin homolog deleted on chromosome 10) in HASM cells was assessed by qRT-PCR and Western blot analysis. Meanwhile, the activity of PTEN was measured by PTEN malachite green assay kit. Lentivirus-mediated miR-21 overexpression markedly enhanced the proliferation and migration of HASM cells (P migration. We demonstrated that miR-21 overexpression significantly reduced the expression of PTEN (P migration. Furthermore, we found that overexpression of PTEN led to a decrease of HASM cell proliferation and migration. MiR-21 mediated HASM cell proliferation and migration through activation of the phosphoinositide 3-kinase pathway. This study provides the first in vitro evidence that overexpression of miR-21 in HASM cells can trigger cell proliferation and migration, and the effects of miR-21 depend on the level of PTEN.

  9. The role of regulatory T cells in the regulation of upper airway inflammation

    Science.gov (United States)

    Palmer, Charlie; Mulligan, Jennifer K.; Smith, Sarah E.

    2017-01-01

    Allergic rhinitis (AR) and chronic rhinosinusitis with nasal polyps (CRSwNP) are inflammatory diseases of the upper airway, with a similar immunologic profile, characterized by aberrant and persistent type 2 inflammation. One cell population that has been identified as altered in both disease types is regulatory T cell (Treg). Tregs have the capacity to modulate T-effector function and suppress inflammatory cytokine production in a broad range of cell types. Given the ability of Tregs to control inflammation, the role of Tregs in respiratory diseases has attracted much attention. As discussed in this article, alterations in the Treg numbers and function, or both, have been identified in AR and CRSwNP, although much of the data is conflicting. Here, we explored what is known and, in many cases, unknown about the mechanisms by which Tregs differentiate and function, and how these functions can be controlled in the mucosal microenvironment. By gaining a greater understanding of these processes, it may be possible to harness the natural immunosuppressive activity of Tregs to ameliorate the chronic inflammation associated with AR and CRSwNP. PMID:29122078

  10. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema......-dose CT for a period of 5 years (table 1). Images were reconstructed both with high contrast resolution (3 mm, kernel C) for emphysema analysis and with high spatial resolution (1 mm, kernel D) for airway analysis. Images were analysed by in-house developed software designed to segment lungs and localize...... the interior and exterior airway wall surface in three dimensions, and branches were matched in consecutive scans by image registration. Emphysema was defined as attenuation Emphysema limits were set at

  11. Regulation of COX-2 expression and IL-6 release by particulate matter in airway epithelial cells.

    Science.gov (United States)

    Zhao, Yutong; Usatyuk, Peter V; Gorshkova, Irina A; He, Donghong; Wang, Ting; Moreno-Vinasco, Liliana; Geyh, Alison S; Breysse, Patrick N; Samet, Jonathan M; Spannhake, Ernst Wm; Garcia, Joe G N; Natarajan, Viswanathan

    2009-01-01

    Particulate matter (PM) in ambient air is a risk factor for human respiratory and cardiovascular diseases. The delivery of PM to airway epithelial cells has been linked to release of proinflammatory cytokines; however, the mechanisms of PM-induced inflammatory responses are not well-characterized. This study demonstrates that PM induces cyclooxygenase (COX)-2 expression and IL-6 release through both a reactive oxygen species (ROS)-dependent NF-kappaB pathway and an ROS-independent C/EBPbeta pathway in human bronchial epithelial cells (HBEpCs) in culture. Treatment of HBEpCs with Baltimore PM induced ROS production, COX-2 expression, and IL-6 release. Pretreatment with N-acetylcysteine (NAC) or EUK-134, in a dose-dependent manner, attenuated PM-induced ROS production, COX-2 expression, and IL-6 release. The PM-induced ROS was significantly of mitochondrial origin, as evidenced by increased oxidation of the mitochondrially targeted hydroethidine to hydroxyethidium by reaction with superoxide. Exposure of HBEpCs to PM stimulated phosphorylation of NF-kappaB and C/EBPbeta, while the NF-kappaB inhibitor, Bay11-7082, or C/EBPbeta siRNA attenuated PM-induced COX-2 expression and IL-6 release. Furthermore, NAC or EUK-134 attenuated PM-induced activation of NF-kappaB; however, NAC or EUK-134 had no effect on phosphorylation of C/EBPbeta. In addition, inhibition of COX-2 partly attenuated PM-induced Prostaglandin E2 and IL-6 release.

  12. Oral Administration of N-Acetyl-D Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    National Research Council Canada - National Science Library

    Shibata, Yoshimi

    2006-01-01

    ... (IL-12, IL-18 and TNFo) that down-regulate allergic immune responses. We also found that administration of chitin particles resulted in less likely induce the production of IL-10 and prostaglandin E2 (PGE2...

  13. Expression of a TGF-{beta} regulated cyclin-dependent kinase inhibitor in normal and immortalized airway epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, L.A.; Bloomfield, C.; Johnson, N.F. [and others

    1995-12-01

    Tumors arising from epithelial cells, including lung cancers are frequently resistant to factors that regulate growth and differentiation in normal in normal cells. Once such factor is transforming growth factor-{Beta} (TGF-{Beta}). Escape from the growth-inhibitory effects of TGF-{Beta} is thought to be a key step in the transformation of airway epithelial cells. most lung cancer cell lines require serum for growth. In contrast, normal human bronchial epithelial (NHBE) cells are exquisitely sensitive to growth-inhibitory and differentiating effects of TGF-{Beta}. The recent identification of a novel cyclin-dependent kinase inhibitor, p15{sup INK4B}, which is regulated by TGF-{Beta}, suggests a mechanism by which TGF-{Beta} mediates growth arrest in NHBE cells. The purpose of this study was two-fold: (1) to determine if p15{sup INK4B} is induced by TGF-{Beta} in NHBE cells or immortalized bronchial epithelial (R.1) cells and if that induction corresponds to a G1/S cell-cycle arrest; (2) to determine the temporal relationship between p15{sup INK4B} induction, cell-cycle arrest, and the phosphorylation state of the pRB because it is thought that p15{sup INK4B} acts indirectly by preventing phosphorylation of the RB gene product. In this study, expression of p15{sup INK4B} was examined in NHBE cells and R.1 cells at different time intervals following TGF-{Beta} treatment. The expression of this kinase inhibitor and its relationship to the cell and the pRb phosphorylation state were examined in cells that were both sensitive (NHBE) and resistant (R.1) to the effects of TGF-{Beta}. These results suggest that the cyclin-dependent kinase inhibitor, p15{sup INK4B}, is involved in airway epithelial cell differentiation and that loss or reduction of expression plays a role in the resistance of transformed or neoplastic cells to the growth-inhibitory effects of TGF-{Beta}.

  14. Clearing the airways: advocacy and regulation for smoke-free airlines.

    Science.gov (United States)

    Holm, A L; Davis, R M

    2004-03-01

    To examine the advocacy and regulatory history surrounding bans on smoking in commercial airliners. Review of historical documents, popular press articles, and other sources to trace the timeline of events leading up to the US ban on smoking in airliners and subsequent efforts by airlines and other nations. In early years, efforts by flight attendants and health advocates to make commercial airliners smoke-free were not productive. Advocacy efforts between 1969 and 1984 resulted in maintenance of the status quo, with modest exceptions (creation of smoking and non-smoking sections of aircraft, and a ban on cigar and pipe smoking). Several breakthrough events in the mid 1980s, however, led to an abrupt turnaround in regulatory efforts. The first watershed event was the publication in 1986 of the National Academy of Science's report on the airliner cabin environment, which recommended banning smoking on all commercial flights. Subsequently, following concerted lobbying efforts by health advocates, Congress passed legislation banning smoking on US domestic flights of less than two hours, which became effective in 1988. The law was made permanent and extended to flights of less than six hours in 1990. This landmark legislation propelled the adoption of similar rules internationally, both by airlines and their industry's governing bodies. Though the tobacco industry succeeded in stalling efforts to create smoke-free airways, it was ultimately unable to muster sufficient grassroots support or scientific evidence to convince the general public or policymakers that smoking should continue to be allowed on airlines. The movement to ban smoking in aircraft represents a case study in effective advocacy for smoke-free workplaces. Health advocates, with crucial assistance from flight attendants, used an incremental advocacy process to push for smoking and non-smoking sections on US commercial flights, then for smoking bans on short domestic flights, and finally for completely

  15. Clearing the airways: advocacy and regulation for smoke-free airlines

    Science.gov (United States)

    Holm, A; Davis, R

    2004-01-01

    Objective: To examine the advocacy and regulatory history surrounding bans on smoking in commercial airliners. Methods: Review of historical documents, popular press articles, and other sources to trace the timeline of events leading up to the US ban on smoking in airliners and subsequent efforts by airlines and other nations. Results: In early years, efforts by flight attendants and health advocates to make commercial airliners smoke-free were not productive. Advocacy efforts between 1969 and 1984 resulted in maintenance of the status quo, with modest exceptions (creation of smoking and non-smoking sections of aircraft, and a ban on cigar and pipe smoking). Several breakthrough events in the mid 1980s, however, led to an abrupt turnaround in regulatory efforts. The first watershed event was the publication in 1986 of the National Academy of Science's report on the airliner cabin environment, which recommended banning smoking on all commercial flights. Subsequently, following concerted lobbying efforts by health advocates, Congress passed legislation banning smoking on US domestic flights of less than two hours, which became effective in 1988. The law was made permanent and extended to flights of less than six hours in 1990. This landmark legislation propelled the adoption of similar rules internationally, both by airlines and their industry's governing bodies. Though the tobacco industry succeeded in stalling efforts to create smoke-free airways, it was ultimately unable to muster sufficient grassroots support or scientific evidence to convince the general public or policymakers that smoking should continue to be allowed on airlines. Conclusions: The movement to ban smoking in aircraft represents a case study in effective advocacy for smoke-free workplaces. Health advocates, with crucial assistance from flight attendants, used an incremental advocacy process to push for smoking and non-smoking sections on US commercial flights, then for smoking bans on short

  16. The effect of continuous positive airway pressure treatment for obstructive sleep apnea syndrome on the ocular surface.

    Science.gov (United States)

    Hayirci, Emre; Yagci, Ayse; Palamar, Melis; Basoglu, O K; Veral, Ali

    2012-06-01

    To evaluate the effect of continuous positive airway pressure (CPAP) treatment for obstructive sleep apnea syndrome on the ocular surface. This is a prospective, sectional cohort study of 80 eyes of 40 patients diagnosed with obstructive sleep apnea syndrome. Routine ophthalmologic examination and ocular surface evaluation, including biomicroscopy, Schirmer 1 testing, tear break-up time measurement, ocular surface staining, and conjunctival impression cytology, were performed in both of each patient's eyes before and 4 months after starting CPAP therapy. After CPAP therapy, increases in squamous metaplasia (Nelson classification: t = 0.34, P = 0.014) and Schirmer 1 score (t = 3.20, P = 0.008), and decreases in tear break-up time (t = -1.38, P = 0.008) in the right eyes were statistically significant, as compared with the pretreatment values. Although these parameters changed in a similar fashion in the left eyes, differences between the pre-CPAP and post-CPAP values were not significant. The findings indicate that CPAP therapy increased ocular irritation, tear evaporation, and squamous metaplasia in the conjunctiva of the patients' right and left eyes. Although the parameters measured were similar in both eyes before CPAP therapy, these parameters changed significantly after CPAP therapy only in the right eyes. The observed differences between the right and left eyes require further investigation to determine the possible effects of sleeping position, CPAP mask displacement, and the other factors involved.

  17. IL-1ra Secreted by ATP-Induced P2Y2 Negatively Regulates MUC5AC Overproduction via PLCβ3 during Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Jee-Yeong Jeong

    2016-01-01

    Full Text Available Mucus secretion is often uncontrolled in many airway inflammatory diseases of humans. Identifying the regulatory pathway(s of mucus gene expression, mucus overproduction, and hypersecretion is important to alleviate airway inflammation in these diseases. However, the regulatory signaling pathway controlling mucus overproduction has not been fully identified yet. In this study, we report that the ATP/P2Y2 complex secretes many cytokines and chemokines to regulate airway inflammation, among which IL-1 receptor antagonist (IL-1ra downregulates MUC5AC gene expression via the inhibition of Gαq-induced Ca2+ signaling. IL-1ra inhibited IL-1α protein expression and secretion, and vice versa. Interestingly, ATP/P2Y2-induced IL-1ra and IL-1α secretion were both mediated by PLCβ3. A dominant-negative mutation in the PDZ-binding domain of PLCβ3 inhibited ATP/P2Y2-induced IL-1ra and IL-1α secretion. IL-1α in the presence of the ATP/P2Y2 complex activated the ERK1/2 pathway in a greater degree and for a longer duration than the ATP/P2Y2 complex itself, which was dramatically inhibited by IL-1ra. These findings suggest that secreted IL-1ra exhibits a regulatory effect on ATP/P2Y2-induced MUC5AC gene expression, through inhibition of IL-1α secretion, to maintain the mucus homeostasis in the airway. Therefore, IL-1ra could be an excellent modality for regulating inflamed airway microenvironments in respiratory diseases.

  18. Dendritic cells inversely regulate airway inflammation in cigarette smoke-exposed mice

    NARCIS (Netherlands)

    Ezzati Givi, Masoumeh; Akbari, Peyman; Boon, Louis; Puzovic, Vladimir S; Bezemer, Gillina F G; Ricciardolo, Fabio L M; Folkerts, Gert; Redegeld, Frank A; Mortaz, Esmaeil

    The recruitment and activation of inflammatory cells into the respiratory system is considered a crucial feature in the pathophysiology of chronic obstructive pulmonary disease (COPD). Since dendritic cells (DCs) have a pivotal role in the onset and regulation of immune responses, we investigated

  19. Oral Administration of N-Acetyl-D-Glucosamine Polymer Particles Down-Regulates Airway Allergic Responses

    Science.gov (United States)

    2007-03-01

    PGE2 release by splenic F4/80+ COX-2+ macrophages (M∅) isolated from mice treated with mycobacterial components plays a major role in the regulation...FL 33431-0991. Telephone number (561) 297-0606, Fax number (561) 297-2221, E-mail yshibata@fau.edu Running head: Phagocytosis, mycobacteria and...M∅ freshly isolated from normal spleens and peritonea and treated with HK-BCG in vitro express catalytically active COX-2 within 1 day. Thus, on

  20. Regulation of Surface Charge by Biological Osmolytes.

    Science.gov (United States)

    Govrin, Roy; Schlesinger, Itai; Tcherner, Shani; Sivan, Uri

    2017-10-25

    Osmolytes, small molecules synthesized by all organisms, play a crucial role in tuning protein stability and function under variable external conditions. Despite their electrical neutrality, osmolyte action is entwined with that of cellular salts and protons in a mechanism only partially understood. To elucidate this mechanism, we utilize an ultrahigh-resolution frequency modulation-AFM for measuring the effect of two biological osmolytes, urea and glycerol, on the surface charge of silica, an archetype protic surface with a pK value similar to that of acidic amino acids. We find that addition of urea, a known protein destabilizer, enhances silica's surface charge by more than 50%, an effect equivalent to a 4-unit increase of pH. Conversely, addition of glycerol, a protein stabilizer, practically neutralizes the silica surface, an effect equivalent to 2-units' reduction of pH. Simultaneous measurements of the interfacial liquid viscosity indicate that urea accumulates extensively near the silica surface, while glycerol depletes there. Comparison between the measured surface charge and Gouy-Chapman-Stern model for the silica surface shows that the modification of surface charge is 4 times too large to be explained by the change in dielectric constant upon addition of urea or glycerol. The model hence leads to the conclusion that surface charge is chiefly governed by the effect of osmolytes on the surface reaction constants, namely, on silanol deprotonation and on cation binding. These findings highlight the unexpectedly large effect that neutral osmolytes may have on surface charging and Coulomb interactions.

  1. Impact of tobacco smoke on upper airway dendritic cell accumulation and regulation by sinonasal epithelial cells.

    Science.gov (United States)

    Mulligan, Jennifer K; O'Connell, Brendan P; Pasquini, Whitney; Mulligan, Ryan M; Smith, Sarah; Soler, Zachary M; Atkinson, Carl; Schlosser, Rodney J

    2017-08-01

    In these studies we examined the impact of environmental tobacco smoke (ETS) and active smoking on sinonasal dendritic cell (DC) subsets in controls or patients with chronic rhinosinusitis with nasal polyps (CRSwNP). In subsequent in-vitro investigations, we examined the influence of cigarette smoke extract (CSE) on human sinonasal epithelial cells' (HSNECs) ability to regulate DC functions. Sinonasal tissue, blood, and hair were collected from patients undergoing sinus surgery. Smoking status and ETS exposure were determined by hair nicotine. DC subsets were examined by flow cytometric analysis. Monocyte-derived dendritic cells (moDCs) were treated with conditioned medium from non-smoked-exposed HSNECs (NS-HSNECs) or cigarette-smoke-extract-exposed HSNECs (CSE-HSNECs) to assess the impact of CSE exposure on HSNEC regulation of moDC functions. Control subjects who were active smokers displayed increased sinonasal moDC and myeloid dendritic 1 (mDC1) cells and reduced mDC2 cells, whereas, in CRSwNP patients, only moDC and mDC2 cells were altered. ETS was found to increase only moDCs in the CRSwNP patients. In vitro, CSE stimulated HSNEC secretion of the moDC regulatory products chemokine (C-C motif) ligand 20, prostaglandin E2 , and granulocyte-macrophage colony-stimulating factor. CSE exposure also promoted HSNECs to stimulate monocyte and moDC migration. moDCs treated with CSE-HSNEC media stimulated an increase in antigen uptake and expression of CD80 and CD86. Last, CSE-HSNEC-treated moDCs secreted increased levels of interleukin-10, interferon-γ, and thymic stromal lymphopoietin. Active smoking, and to a lesser degree ETS, alters the sinonasal composition of DCs. A potential mechanism to account for this is that cigarette smoke stimulates HSNECs to induce moDC migration, maturation, and activation. © 2017 ARS-AAOA, LLC.

  2. A Respiratory Airway-Inspired Low-Pressure, Self-Regulating Valve for Drip Irrigation

    Science.gov (United States)

    Wang, Ruo-Qian; Winter, Amos G.; GEAR Lab Team

    2015-11-01

    One of the most significant barriers to achieving large-scale dissemination of drip irrigation is the cost of the pump and power system. An effective means of reducing power consumption is by reducing pumping pressure. The principle source of pressure drop in a drip system is the high flow resistance in the self-regulating flow resistors installed at the outlets of the pips, which evenly distribute water over a field. Traditional architectures require a minimum pressure of ~1 bar to maintain a constant flow rate; our aim is to reduce this pressure by 90% and correspondingly lower pumping power to facilitate the creation of low-cost, off-grid drip irrigation systems. This study presents a new Starling resistor architecture that enables the adjustment of flow rate with a fixed minimum pressure demand of ~0.1 bar. A Starling resistor is a flexible tube subjected to a transmural pressure, which collapses the tube to restrict flow. Our design uses a single pressure source to drive flow through the flexible tube and apply a transmural pressure. Flow into the flexible tube is restricted with a needle valve, to increase the transmural pressure. Using this device, a series of experiments were conducted with different flexible tube diameters, lengths and wall thickness. We found that the resistance of the needle valve changes flow rate but not the minimum transmural pressure required to collapse the tube. A lumped-parameter model was developed to capture the relationships between valve openings, pressure, and flow rates.

  3. Simvastatin alleviates airway inflammation and remodelling through up-regulation of autophagy in mouse models of asthma.

    Science.gov (United States)

    Gu, Wen; Cui, Rong; Ding, Tao; Li, Xiaoming; Peng, Juan; Xu, Weiguo; Han, Fengfeng; Guo, Xuejun

    2017-04-01

    Statins have been widely used in inflammatory diseases including asthma, because of their anti-inflammatory and immunomodulatory properties. It has been shown that simvastatin induces autophagy and cell death in some circumstances. However, the possible cross-talk between simvastatin and autophagic processes in lung disease is largely unknown. Thus, we investigated the impact of simvastatin on airway inflammation and airway remodelling and the possible relationship of these processes to a simvastatin-induced autophagic pathway in mouse models of asthma. Ovalbumin (OVA)-sensitized and challenged mice were treated with simvastatin and sacrificed. The autophagy-related proteins Atg5, LC3B and Beclin1 were quantified, as well as the autophagy flux in bronchial smooth muscle cells (BSMCs). The relationship between airway inflammation and the autophagic process was investigated. We show that simvastatin treatment mediates activation of autophagy in BSMCs, which is correlated with airway inflammation and airway remodelling in mouse models of asthma. Simvastatin increases autophagy-related protein Atg5, LC3B and Beclin1 expression and autophagosome formation in lung tissue. Simvastatin-induced autophagy is associated with increased interferon-gamma (IFN-γ) and decreased IL-4, IL-5 and IL-13 cytokines production in BSMCs, as well as reversed extracellular matrix (ECM) deposition. In contrast, autophagy inhibitor 3-methyladenine (3-MA) eliminates the therapeutic effect of simvastatin. These findings demonstrate that simvastatin inhibits airway inflammation and airway remodelling through an activated autophagic process in BSMCs. We propose a crucial function of autophagy in statin-based therapeutic approaches in asthma. © 2016 Asian Pacific Society of Respirology.

  4. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. Most are easy ... to loosen mucus from airway walls. See how different airway clearance techniques work to help you clear ...

  5. Involvement of the MAPK and PI3K pathways in chitinase 3-like 1-regulated hyperoxia-induced airway epithelial cell death

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi Na; Lee, Kyung Eun; Hong, Jung Yeon; Heo, Won Il; Kim, Kyung Won; Kim, Kyu Earn [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of); Sohn, Myung Hyun, E-mail: mhsohn@yuhs.ac [Department of Pediatrics and Institute of Allergy, Severance Medical Research Institute, Brain Korea 21 Project for Medical Science, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2012-05-18

    , phosphorylation of ERK1/2, p38, and Akt were affected by CHI3L1 knockdown. Conclusion: This study indicates that CHI3L1 is involved in hyperoxia-induced cell death, suggesting that CHI3L1 may be one of several cell death regulators influencing the MAPK and PI3K pathways during oxidative stress in human airway epithelial cells.

  6. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  7. Substrate chemistry regulates the surface phase separation of polyurethane films

    Science.gov (United States)

    Xing, Juan; Pan, Xianchao; Wang, Jinfeng; Luo, Yanfeng

    The effect of substrate chemistry on surface phase separation of polyurethane films were investigated by using self-assembled monolayer (SAM) with chemically different modifications, i.e. hydroxy (-OH) and methyl (-CH3) end groups. Results showed that hydrophilic (-OH) and hydrophobic end groups (-CH3) could respectively promote the aggregation of hard and soft segments at polyurethane-substrate interface, which further regulates the phase separation of polyurethane surface that contacts the substrate. The aggregation of hard segments tended to enhance the surface smoothness of polyurethane films, especially on hydrophilic substrates with hydroxy modification. Further analysis of tensile testing revealed that the regulation of surface phase separation had no effect on the shape memory effect of polyurethane films. These findings suggest that the chemical properties of the substrates could regulate the phase separation and may provide some guidance on the design of specific polyurethane with desired morphology and properties.

  8. Azithromycin ameliorates airway remodeling via inhibiting airway epithelium apoptosis.

    Science.gov (United States)

    Liu, Yuanqi; Pu, Yue; Li, Diandian; Zhou, Liming; Wan, Lihong

    2017-02-01

    Azithromycin can benefit treating allergic airway inflammation and remodeling. In the present study, we hypothesized that azithromycin alleviated airway epithelium injury through inhibiting airway epithelium apoptosis via down regulation of caspase-3 and Bax/Bcl2 ratio in vivo and in vitro. Ovalbumin induced rat asthma model and TGF-β1-induced BEAS-2B cell apoptosis model were established, respectively. In vivo experiments, airway epithelium was stained with hematoxylin and eosin (HE) and periodic acid-Schiff (PAS) to histologically evaluate the airway inflammation and remodeling. Airway epithelium apoptotic index (AI) was further analyzed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL), while expression of apoptosis related gene (Bax, Bcl2, Caspase-3) in lungs were measured by qRT-PCR and western blotting, respectively. In vitro experiments, apoptosis were evaluated by Flow cytometry (FCM) and TUNEL. Above apoptosis related gene were also measured by qRT-PCR and western blotting. Compared with the OVA group, azithromycin significantly reduced the inflammation score, peribronchial smooth muscle layer thickness, epithelial thickening and goblet cell metaplasia (Pazithromycin-treated rats (Pazithromycin significantly suppressed TGF-β1-induced BEAS-2B cells apoptosis (PAzithromycin is an attractive treatment option for reducing airway epithelial cell apoptosis by improving the imbalance of Bax/Bcl-2 ratio and inhibiting Caspase-3 level in airway epithelium. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Mechano-regulated surface for manipulating liquid droplets

    Science.gov (United States)

    Tang, Xin; Zhu, Pingan; Tian, Ye; Zhou, Xuechang; Kong, Tiantian; Wang, Liqiu

    2017-04-01

    The effective transfer of tiny liquid droplets is vital for a number of processes such as chemical and biological microassays. Inspired by the tarsi of meniscus-climbing insects, which can climb menisci by deforming the water/air interface, we developed a mechano-regulated surface consisting of a background mesh and a movable microfibre array with contrastive wettability. The adhesion of this mechano-regulated surface to liquid droplets can be reversibly switched through mechanical reconfiguration of the microfibre array. The adhesive force can be tuned by varying the number and surface chemistry of the microfibres. The in situ adhesion of the mechano-regulated surface can be used to manoeuvre micro-/nanolitre liquid droplets in a nearly loss-free manner. The mechano-regulated surface can be scaled up to handle multiple droplets in parallel. Our approach offers a miniaturized mechano-device with switchable adhesion for handling micro-/nanolitre droplets, either in air or in a fluid that is immiscible with the droplets.

  10. Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells.

    Science.gov (United States)

    Seo, Hyo-Seok; Sikder, Mohamed Asaduzzaman; Lee, Hyun Jae; Ryu, Jiho; Lee, Choong Jae

    2014-11-01

    In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-α (TNF-α)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-α for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-α in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-α-induced nuclear factor kappa B (NF-κB) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-κB activation induced by TNF-α. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha (IκBα) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-κB signaling pathway in airway epithelial cells.

  11. Dual Oxidase 2 (Duox2) Regulates Pannexin 1-mediated ATP Release in Primary Human Airway Epithelial Cells via Changes in Intracellular pH and Not H2O2 Production.

    Science.gov (United States)

    Krick, Stefanie; Wang, Junjie; St-Pierre, Melissa; Gonzalez, Carlos; Dahl, Gerhard; Salathe, Matthias

    2016-03-18

    Human airway epithelial cells express pannexin 1 (Panx1) channels to release ATP, which regulates mucociliary clearance. Airway inflammation causes mucociliary dysfunction. Exposure of primary human airway epithelial cell cultures to IFN-γ for 48 h did not alter Panx1 protein expression but significantly decreased ATP release in response to hypotonic stress. The IFN-γ-induced functional down-regulation of Panx1 was due to the up-regulation of dual oxidase 2 (Duox2). Duox2 suppression by siRNA led to an increase in ATP release in control cells and restoration of ATP release in cells treated with IFN-γ. Both effects were reduced by the pannexin inhibitor probenecid. Duox2 up-regulation stoichiometrically increases H2O2 and proton production. H2O2 inhibited Panx1 function temporarily by formation of disulfide bonds at the thiol group of its terminal cysteine. Long-term exposure to H2O2, however, had no inhibitory effect. To assess the role of cellular acidification upon IFN-γ treatment, fully differentiated airway epithelial cells were exposed to ammonium chloride to alkalinize the cytosol. This led to a 2-fold increase in ATP release in cells treated with IFN-γ that was also inhibited by probenecid. Duox2 knockdown also partially corrected IFN-γ-mediated acidification. The direct correlation between intracellular pH and Panx1 open probability was shown in oocytes. Therefore, airway epithelial cells release less ATP in response to hypotonic stress in an inflammatory environment (IFN-γ exposure). Decreased Panx1 function is a response to cell acidification mediated by IFN-γ-induced up-regulation of Duox2, representing a novel mechanism for mucociliary dysfunction in inflammatory airway diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Sensory regulation of swallowing and airway protection: a role for the internal superior laryngeal nerve in humans

    Science.gov (United States)

    Jafari, Samah; Prince, Rebecca A; Kim, Daniel Y; Paydarfar, David

    2003-01-01

    During swallowing, the airway is protected from aspiration of ingested material by brief closure of the larynx and cessation of breathing. Mechanoreceptors innervated by the internal branch of the superior laryngeal nerve (ISLN) are activated by swallowing, and connect to central neurones that generate swallowing, laryngeal closure and respiratory rhythm. This study was designed to evaluate the hypothesis that the ISLN afferent signal is necessary for normal deglutition and airway protection in humans. In 21 healthy adults, we recorded submental electromyograms, videofluoroscopic images of the upper airway, oronasal airflow and respiratory inductance plethysmography. In six subjects we also recorded pressures in the hypopharynx and upper oesophagus. We analysed swallows that followed a brief infusion (4–5 ml) of liquid barium onto the tongue, or a sip (1–18 ml) from a cup. In 16 subjects, the ISLN was anaesthetised by transcutaneous injection of bupivacaine into the paraglottic compartment. Saline injections using the identical procedure were performed in six subjects. Endoscopy was used to evaluate upper airway anatomy, to confirm ISLN anaesthesia, and to visualise vocal cord movement and laryngeal closure. Comparisons of swallowing and breathing were made within subjects (anaesthetic or saline injection vs. control, i.e. no injection) and between subjects (anaesthetic injection vs. saline injection). In the non-anaesthetised condition (saline injection, 174 swallows in six subjects; no injection, 522 swallows in 20 subjects), laryngeal penetration during swallowing was rare (1.4 %) and tracheal aspiration was never observed. During ISLN anaesthesia (16 subjects, 396 swallows), all subjects experienced effortful swallowing and an illusory globus sensation in the throat, and 15 subjects exhibited penetration of fluid into the larynx during swallowing. The incidence of laryngeal penetration in the anaesthetised condition was 43 % (P deglutition, especially for

  13. Regulator of G-protein signaling-21 (RGS21) is an inhibitor of bitter gustatory signaling found in lingual and airway epithelia.

    Science.gov (United States)

    Cohen, Staci P; Buckley, Brian K; Kosloff, Mickey; Garland, Alaina L; Bosch, Dustin E; Cheng, Gang; Radhakrishna, Harish; Brown, Michael D; Willard, Francis S; Arshavsky, Vadim Y; Tarran, Robert; Siderovski, David P; Kimple, Adam J

    2012-12-07

    The gustatory system detects tastants and transmits signals to the brain regarding ingested substances and nutrients. Although tastant receptors and taste signaling pathways have been identified, little is known about their regulation. Because bitter, sweet, and umami taste receptors are G protein-coupled receptors (GPCRs), we hypothesized that regulators of G protein signaling (RGS) proteins may be involved. The recent cloning of RGS21 from taste bud cells has implicated this protein in the regulation of taste signaling; however, the exact role of RGS21 has not been precisely defined. Here, we sought to determine the role of RGS21 in tastant responsiveness. Biochemical analyses confirmed in silico predictions that RGS21 acts as a GTPase-accelerating protein (GAP) for multiple G protein α subunits, including adenylyl cyclase-inhibitory (Gα(i)) subunits and those thought to be involved in tastant signal transduction. Using a combination of in situ hybridization, RT-PCR, immunohistochemistry, and immunofluorescence, we demonstrate that RGS21 is not only endogenously expressed in mouse taste buds but also in lung airway epithelial cells, which have previously been shown to express components of the taste signaling cascade. Furthermore, as shown by reverse transcription-PCR, the immortalized human airway cell line 16HBE was found to express transcripts for tastant receptors, RGS21, and downstream taste signaling components. Over- and underexpression of RGS21 in 16HBE cells confirmed that RGS21 acts to oppose bitter tastant signaling to cAMP and calcium second messenger changes. Our data collectively suggests that RGS21 modulates bitter taste signal transduction.

  14. [Serum proteomic analysis of cicatricial airway stenosis].

    Science.gov (United States)

    Wang, Li-huan; Zhang, Jie; Wang, Juan; Wang, Ting; Zhang, Ying-ying; Xu, Min

    2013-07-01

    To establish serum protein fingerprint profile in patients with cicatricial airway stenosis and compared with healthy control. Serum samples of 17 cicatricial airway stenosis patients and 17 healthy persons were analyzed by SELDI-TOF-MS to select the differently expressed proteins through Biomarker Wizard software. Compared with healthy control, 49 protein biomarkers were identified. Among them, 25 proteins were up-regulated, 24 proteins were down-regulated. These proteins were confirmed by searching database. There are obvious differentially expressed proteins in patients with cicatricial airway stenosis and controls, which may related with the development of airway scar.

  15. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    Science.gov (United States)

    Zhang, Zhiyu; Shi, Lei; Pang, Wenhui; Liu, Wenwen; Li, Jianfeng; Wang, Haibo; Shi, Guanggang

    2016-01-01

    Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD). We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms. The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g.) administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight), respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA) to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA) content in fecal samples using real-time PCR. Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ) cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly. Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes effectively the

  16. Dietary Fiber Intake Regulates Intestinal Microflora and Inhibits Ovalbumin-Induced Allergic Airway Inflammation in a Mouse Model.

    Directory of Open Access Journals (Sweden)

    Zhiyu Zhang

    Full Text Available Recently, academic studies suggest that global growth of airway allergic disease has a close association with dietary changes including reduced consumption of fiber. Therefore, appropriate dietary fiber supplementation might be potential to prevent airway allergic disease (AAD.We investigated whether dietary fiber intake suppressed the induction of AAD and tried to elucidate the possible underlying mechanisms.The control mice and AAD model mice fed with 4% standard-fiber chow, while low-fiber group of mice fed with a 1.75% low-fiber chow. The two fiber-intervened groups including mice, apart from a standard-fiber diet, were also intragastric (i.g. administrated daily with poorly fermentable cellulose or readily fermentable pectin (0.4% of daily body weight, respectively. All animals except normal mice were sensitized and challenged with ovalbumin (OVA to induce airway allergic inflammation. Hallmarks of AAD were examined by histological analysis and ELISA. The variation in intestinal bacterial composition was assessed by qualitative analysis of 16S ribosomal DNA (rDNA content in fecal samples using real-time PCR.Low-fiber diet aggravated inflammatory response in ovalbumin-induced allergic mice, whereas dietary fiber intake significantly suppressed the allergic responses, attenuated allergic symptoms of nasal rubbing and sneezing, decreased the pathology of eosinophil infiltration and goblet cell metaplasia in the nasal mucosa and lung, inhibited serum OVA-specific IgE levels, and lowered the levels of Th2 cytokines in NALF and BALF, but, increased Th1 (IFN-γ cytokines. Additionally, dietary fiber intake also increased the proportion of Bacteroidetes and Actinobacteria, and decreased Firmicutes and Proteobacteria. Levels of probiotic bacteria, such as Lactobacillus and Bifidobacterium, were upgraded significantly.Long-term deficiency of dietary fiber intake increases the susceptibility to AAD, whereas proper fiber supplementation promotes

  17. Intranasal administration of recombinant TRAIL down-regulates CXCL-1/KC in an ovalbumin-induced airway inflammation murine model.

    Directory of Open Access Journals (Sweden)

    Veronica Tisato

    Full Text Available Ovalbumin (OVA-sensitized BALB/c mice were i.n. instilled with recombinant TNF-related apoptosis inducing ligand (TRAIL 24 hours before OVA challenge. The total number of leukocytes and the levels of the chemokine CXCL-1/KC significantly increased in the bronchoalveolar lavage (BAL fluids of allergic animals with respect to control littermates, but not in the BAL of mice i.n. pretreated with recombinant TRAIL before OVA challenge. In particular, TRAIL pretreatment significantly reduced the BAL percentage of both eosinophils and neutrophils. On the other hand, when TRAIL was administrated simultaneously to OVA challenge its effect on BAL infiltration was attenuated. Overall, the results show that the i.n. pretreatment with TRAIL down-modulated allergic airway inflammation.

  18. Regulation of tissue factor coagulant activity on cell surfaces.

    Science.gov (United States)

    Rao, L V M; Pendurthi, U R

    2012-11-01

    Tissue factor (TF) is a transmembrane glycoprotein and an essential component of the factor VIIa-TF enzymatic complex that triggers activation of the coagulation cascade. Formation of TF-FVIIa complexes on cell surfaces not only trigger the coagulation cascade but also transduce cell signaling via activation of protease-activated receptors. Tissue factor is expressed constitutively on cell surfaces of a variety of extravascular cell types, including fibroblasts and pericytes in and surrounding blood vessel walls and epithelial cells, but is generally absent on cells that come into contact with blood directly. However, TF expression could be induced in some blood cells, such as monocytes and endothelial cells, following an injury or pathological stimuli. Tissue factor is essential for hemostasis, but aberrant expression of TF leads to thrombosis. Therefore, a proper regulation of TF activity is critical for the maintenance of hemostatic balance and health in general. TF-FVIIa coagulant activity at the cell surface is influenced not only by TF protein expression levels but also independently by a variety of mechanisms, including alterations in membrane phospholipid composition and cholesterol content, thiol-dependent modifications of TF allosteric disulfide bonds, and other post-translational modifications of TF. In this article, we critically review the key literature on mechanisms by which TF coagulant activity is regulated at the cell surface in the absence of changes in TF protein levels with specific emphasis on recently published data and provide the authors' perspective on the subject. © 2012 International Society on Thrombosis and Haemostasis.

  19. Quorum Sensing Down-Regulation Counteracts the Negative Impact of Pseudomonas aeruginosa on CFTR Channel Expression, Function and Rescue in Human Airway Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Émilie Maillé

    2017-11-01

    Full Text Available The function of cystic fibrosis transmembrane conductance regulator (CFTR channels is crucial in human airways. However unfortunately, chronic Pseudomonas aeruginosa infection has been shown to impair CFTR proteins in non-CF airway epithelial cells (AEC and to alter the efficiency of new treatments with CFTR modulators designed to correct the basic CFTR default in AEC from cystic fibrosis (CF patients carrying the F508del mutation. Our aim was first to compare the effect of laboratory strains, clinical isolates, engineered and natural mutants to determine the role of the LasR quorum sensing system in CFTR impairment, and second, to test the efficiency of a quorum sensing inhibitor to counteract the deleterious impact of P. aeruginosa both on wt-CFTR and on the rescue of F508del-CFTR by correctors. We first report that exoproducts from either the laboratory PAO1 strain or a clinical ≪Early≫ isolate (from an early stage of infection altered CFTR expression, localization and function in AEC expressing wt-CFTR. Genetic inactivation of the quorum-sensing LasR in PAO1 (PAO1ΔlasR or in a natural clinical mutant (≪Late≫ CF-adapted clinical isolate abolished wt-CFTR impairment. PAO1 exoproducts also dampened F508del-CFTR rescue by VRT-325 or Vx-809 correctors in CF cells, whereas PAO1ΔlasR had no impact. Importantly, treatment of P. aeruginosa cultures with a quorum sensing inhibitor (HDMF prevented the negative effect of P. aeruginosa exoproducts on wt-CFTR and preserved CFTR rescue by correctors in CF AEC. These findings indicate that LasR-interfering strategies could be of benefits to counteract the deleterious effect of P. aeruginosa in infected patients.

  20. Quorum Sensing Down-Regulation Counteracts the Negative Impact of Pseudomonas aeruginosa on CFTR Channel Expression, Function and Rescue in Human Airway Epithelial Cells.

    Science.gov (United States)

    Maillé, Émilie; Ruffin, Manon; Adam, Damien; Messaoud, Hatem; Lafayette, Shantelle L; McKay, Geoffrey; Nguyen, Dao; Brochiero, Emmanuelle

    2017-01-01

    The function of cystic fibrosis transmembrane conductance regulator (CFTR) channels is crucial in human airways. However unfortunately, chronic Pseudomonas aeruginosa infection has been shown to impair CFTR proteins in non-CF airway epithelial cells (AEC) and to alter the efficiency of new treatments with CFTR modulators designed to correct the basic CFTR default in AEC from cystic fibrosis (CF) patients carrying the F508del mutation. Our aim was first to compare the effect of laboratory strains, clinical isolates, engineered and natural mutants to determine the role of the LasR quorum sensing system in CFTR impairment, and second, to test the efficiency of a quorum sensing inhibitor to counteract the deleterious impact of P. aeruginosa both on wt-CFTR and on the rescue of F508del-CFTR by correctors. We first report that exoproducts from either the laboratory PAO1 strain or a clinical ≪Early≫ isolate (from an early stage of infection) altered CFTR expression, localization and function in AEC expressing wt-CFTR. Genetic inactivation of the quorum-sensing LasR in PAO1 (PAO1ΔlasR) or in a natural clinical mutant (≪Late≫ CF-adapted clinical isolate) abolished wt-CFTR impairment. PAO1 exoproducts also dampened F508del-CFTR rescue by VRT-325 or Vx-809 correctors in CF cells, whereas PAO1ΔlasR had no impact. Importantly, treatment of P. aeruginosa cultures with a quorum sensing inhibitor (HDMF) prevented the negative effect of P. aeruginosa exoproducts on wt-CFTR and preserved CFTR rescue by correctors in CF AEC. These findings indicate that LasR-interfering strategies could be of benefits to counteract the deleterious effect of P. aeruginosa in infected patients.

  1. Ambroxol inhalation ameliorates LPS-induced airway inflammation and mucus secretion through the extracellular signal-regulated kinase 1/2 signaling pathway.

    Science.gov (United States)

    Zhang, Shui-juan; Jiang, Juan-xia; Ren, Qian-qian; Jia, Yong-liang; Shen, Jian; Shen, Hui-juan; Lin, Xi-xi; Lu, Hong; Xie, Qiang-min

    2016-03-15

    Ambroxol, a metabolite of bromhexine, is shown to exert several pharmacological activities, including secretolytic, anti-inflammatory and antioxidant actions. Oral and intravenous administration of ambroxol is useful for the airway inflammatory diseases. However, little is known about its potential in inhalation therapy for lipopolysaccharide (LPS)-induced mucous hypersecretion and inflammatory response. In the present study, we compared the pharmacological effects of ambroxol by inhalation with intravenous administration and preliminarily explored its mechanism of action. Our results demonstrated that ambroxol administered by inhalation inhibited MUC5AC expression, reduced glycosaminoglycan levels, enhanced the function of mucociliary clearance and promoted sputum excretion, suggesting that ambroxol increases expectoration of sputum by reducing its viscosity. Moreover, ambroxol significantly alleviated LPS-induced the influx of inflammatory cells and the extracellular signal-regulated kinase 1/2 (Erk 1/2) expression in lung tissues, and inhibited increases in the mRNA expression of the pro-inflammatory cytokines tumor necrosis factor (TNF)-α, CCL-2 (monocyte chemotactic protein-1), KC (keratinocyte cell protein) and interleukin (IL)-1β in lung tissues. The secretolytic and anti-inflammatory effects of inhaled ambroxol at a dose of 7.5 mg/ml was comparable to that of ambroxol at 20 mg/ml i.v. and dexamethasone at 0.5 mg/kg i.p. In addition, we found that ambroxol dose-dependently inhibited LPS-induced increases in the mRNA expression of MUC5AC, TNF-α, and IL-1β in human bronchial epithelial cell (NCI-H292) by inhibiting the Erk signaling pathway. These results demonstrate the beneficial effects of ambroxol in inhalation therapy for the airway inflammatory diseases. Copyright © 2016 Elsevier B.V. All rights reserved.

  2. Pulmonary surfactant in the airway physiology: a direct relaxing effect on the smooth muscle.

    Science.gov (United States)

    Calkovska, A; Uhliarova, B; Joskova, M; Franova, S; Kolomaznik, M; Calkovsky, V; Smolarova, S

    2015-04-01

    Beside alveoli, surface active material plays an important role in the airway physiology. In the upper airways it primarily serves in local defense. Lower airway surfactant stabilizes peripheral airways, provides the transport and defense, has barrier and anti-edematous functions, and possesses direct relaxant effect on the smooth muscle. We tested in vitro the effect of two surfactant preparations Curosurf® and Alveofact® on the precontracted smooth muscle of intra- and extra-pulmonary airways. Relaxation was more pronounced for lung tissue strip containing bronchial smooth muscle as the primary site of surfactant effect. The study does not confirm the participation of ATP-dependent potassium channels and cAMP-regulated epithelial chloride channels known as CFTR chloride channels, or nitric oxide involvement in contractile response of smooth muscle to surfactant.By controlling wall thickness and airway diameter, pulmonary surfactant is an important component of airway physiology. Thus, surfactant dysfunction may be included in pathophysiology of asthma, COPD, or other diseases with bronchial obstruction. Copyright © 2015. Published by Elsevier B.V.

  3. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Team Your cystic fibrosis care team includes a group of CF health care professionals who partner with ... Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. Most are easy ...

  4. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Treatments and Therapies Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. ... or caregiver. Older kids and adults can choose ACTs that they can do on their own. Share ...

  5. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Twitter YouTube Instagram Email DONATE Breadcrumb Navigation Home Life With CF Treatments and Therapies Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your airways. Most are easy to ...

  6. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... CF Treatments and Therapies Airway Clearance Airway Clearance Techniques (ACTs) There are different ways to clear your ... for fitting ACTs into daily life Airway Clearance Techniques | Webcast To learn more about how you can ...

  7. The TAK1→IKKβ→TPL2→MKK1/MKK2 signaling cascade regulates IL-33 expression in Cystic Fibrosis airway epithelial cells following infection by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Raquel eFarias

    2016-01-01

    Full Text Available In cystic fibrosis (CF, chronic respiratory infections result in an exaggerated and uncontrolled inflammatory response that ultimately lead to a decrease in pulmonary function. We have previously described the presence of the alarmin IL-33 in lung explants from CF patients. The signals regulating IL-33 expression in the airway epithelium following a gram-negative bacterial infection are currently unknown. Our objective was to characterize the pathways in CF airway epithelial cells (AECs leading to an increase in IL-33 expression. We found that, in CF AECs expressing a deletion of a phenylalanine at position 508 of the gene coding for Cystic Fibrosis Transmembrane Conductance Regulator (CFTRdelF508, exposure to live Pseudomonas aeruginosa upregulates IL-33 via the TLR2 and TLR5 signalling pathways. This up-regulation can be partially or fully reverted by pre-incubating CFTRdelF508 AECs with a CFTR corrector (VX-809 and/or a CFTR potentiator (VX-770. Similarly, incubation with the CFTR corrector and/or the CFTR potentiator also decreased IL-8 expression in response to infection. Moreover, using different protein kinase inhibitors that target elements downstream of TLR signalling, we show that the TAK1→IKKβ→TPL2→MKK1/MKK2 pathway regulates IL-33 expression following an infection with P. aeruginosa. Our findings represent the first characterization of the signals regulating IL-33 expression in CF airway epithelial cells in response to a bacterial infection.

  8. De novo synthesis of beta-catenin via H-Ras and MEK regulates airway smooth muscle growth

    NARCIS (Netherlands)

    Gosens, Reinoud; Baarsma, Hoeke A.; Heijink, Irene; Oenema, Tjitske A.; Halayko, Andrew J.; Meurs, Herman; Schmidt, Martina

    beta-Catenin is a component of adherens junctions that also acts as a transcriptional coactivator when expressed in the nucleus. Growth factors are believed to regulate the nuclear expression of beta-catenin via inactivation of glycogen synthase kinase 3 (GSK-3) by phosphorylation, resulting in

  9. Muscarinic M3 receptors on structural cells regulate cigarette smoke-induced neutrophilic airway inflammation in mice

    NARCIS (Netherlands)

    Kistemaker, Loes E.M.; van Os, Ronald P.; Dethmers-Ausema, Albertina; Bos, I. Sophie T.; Hylkema, Machteld N.; van den Berge, Maarten; Hiemstra, Pieter S; Wess, Jürgen; Meurs, Herman; Kerstjens, Huib A.M.; Gosens, Reinoud

    2015-01-01

    Anticholinergics, blocking the muscarinic M-3 receptor, are effective bronchodilators for patients with chronic obstructive pulmonary disease. Recent evidence from M-3 receptor-deficient mice (M3R-/-) indicates that M-3 receptors also regulate neutrophilic inflammation in response to cigarette smoke

  10. Perturbed airway closure

    Science.gov (United States)

    Grotberg, James B.; Halpern, David

    1998-11-01

    The small airways of the lungs are lined with a thin viscous film. A surface-tension driven instability at the air-liquid interface may induce the formation of a liquid bridge blocking airflow if there is sufficient fluid within the film. As a result of the pressures generated within the non-uniform film, the airway wall may also collapse. These instabilities often occur in premature neonates who do not produce sufficient quantities of surfactant. Often, they are placed in ventilators to diminish the risk of airway closure. Two fundamental parameters are the frequency of the ventilation and the tidal volume of the delivered gas. In the current study, we consider the effect of an oscillatory shear stress impinged by the air on a thin film coating a single compliant tube. Nonlinear evolution equations are derived for the film thickness and the wall position. Numerical solutions show that the oscillatory shear stress can saturate the growth of a disturbance at the air-liquid interface. For a given film thickness, there is a critical frequency, dependent on wall parameters, above which closure does not occur when forced by oscillatory shear but will close when unforced.

  11. The effect of synthetic salidroside on cytokines and airway inflammation of asthma induced by diisocyanate (TDI) in mice by regulating GATA3/T-bet.

    Science.gov (United States)

    Wang, Jing; Xiao, Lu; Zhu, Lingpeng; Hu, Mei; Wang, Qiujuan; Yan, Tianhua

    2015-04-01

    This study was conducted to explore the anti-asthma effects of synthetic salidroside on cytokines and airway inflammation of asthma induced by diisocyanate (TDI) in mice. The experiment was carried out 60 female BALB/C mice which were randomly assigned to six experimental groups: control, vehicle, model, dexamethasone (2 mg/kg), and salidroside (24 and 48 mg/kg). After the experiment, histological studies were evaluated by the hematoxylin and eosin staining, the bronchoalveolar lavage fluid (BALF) and blood were collected from the animals, and the composition of the induced inflammatory cells, and the concentrations of certain cytokines (IL-4, INF-γ) were evaluated. GATA3 and T-bet mRNAs were evaluated by QPCR. Our study demonstrated that salidroside inhibited TDI-induced increases in eosinophil count; IL-4 and INF-γ were recovered. Histological studies demonstrated that salidroside substantially inhibited TDI-induced eosinophilia in lung tissue. Salidroside can improve T-bet mRNA and reduce GATA3 mRNA in lung. These findings suggest that salidroside may effectively ameliorate the progression of asthma and could be used as a therapy for patients with allergic asthma by regulating GATA3/T-bet balance.

  12. Surface chemistry and surface reactivity of fibrous amphiboles that are not regulated as asbestos.

    Science.gov (United States)

    Fantauzzi, M; Pacella, A; Fournier, J; Gianfagna, A; Andreozzi, G B; Rossi, A

    2012-08-01

    Three fibrous amphiboles that are not regulated as asbestos--two from Biancavilla (Sicily, Italy) and one from Libby (MT, USA)--were studied in order to establish relationships between surface chemistry and surface reactivity. The three fibrous samples, plus one prismatic fluoro-edenite from Biancavilla that was used for comparison, were investigated by X-ray photoelectron spectroscopy (XPS) in order to obtain their quantitative surface compositions and to determine the chemical environment of the Fe in each case. In particular, the Fe 2p(3/2) peak was fitted and, for the first for these materials, the binding energies of Fe(II) oxide, Fe(III) oxide and Fe(III) oxyhydroxide were identified. Bulk chemistries and Fe oxidation states were obtained from previous studies for the samples from Biancavilla, and were investigated in the present work by electron microprobe (EMP) and (57)Fe Mössbauer spectroscopy (MS) for the sample from Libby. Comparison between surface and bulk data revealed that the sample with the lowest bulk Fe oxidation state was the one most affected by surface oxidation, while the samples with bulk highly-oxidised Fe were showing very high signal of Fe (III) oxy-hydroxide probably due to weathering. The surface reactivities of the fibrous amphiboles were investigated by measuring the production of the [DMPO, HO]• radical adduct using electron paramagnetic resonance (EPR) spectroscopy. Notably, significant chemical reactivity was observed; it was found to be comparable with--or, for the Libby sample, even higher than--that of fibrous tremolite (one of the six asbestos minerals). A positive linear correlation was observed when the production of HO• radical was plotted versus the Fe(II) content on the fibre surface. Data on fibrous tremolite obtained from previous studies were added to substantiate the correlation. These results provide evidence that Fe(II) at the fibre surface controls the production of radicals at the fibre surface. The observed

  13. Delayed extubation to nasal continuous positive airway pressure in the immature baboon model of bronchopulmonary dysplasia: lung clinical and pathological findings.

    Science.gov (United States)

    Thomson, Merran A; Yoder, Bradley A; Winter, Vicki T; Giavedoni, Luis; Chang, Ling Yi; Coalson, Jacqueline J

    2006-11-01

    Using the 125-day baboon model of bronchopulmonary dysplasia treated with prenatal steroid and exogenous surfactant, we hypothesized that a delay of extubation from low tidal volume positive pressure ventilation to nasal continuous positive airway pressure at 5 days (delayed nasal continuous positive airway pressure group) would not induce more lung injury when compared with baboons aggressively weaned to nasal continuous positive airway pressure at 24 hours (early nasal continuous positive airway pressure group), because both received positive pressure ventilation. After delivery by cesarean section at 125 days (term: 185 days), infants received 2 doses of Curosurf (Chiesi Farmaceutica S.p.A., Parma, Italy) and daily caffeine citrate. The delay in extubation to 5 days resulted in baboons in the delayed nasal continuous positive airway pressure group having a lower arterial to alveolar oxygen ratio, high PaCO2, and worse respiratory function. The animals in the delayed nasal continuous positive airway pressure group exhibited a poor respiratory drive that contributed to more reintubations and time on mechanical ventilation. A few animals in both groups developed necrotizing enterocolitis and/or sepsis, but infectious pneumonias were not documented. Cellular bronchiolitis and peribronchiolar alveolar wall thickening were more frequently seen in the delayed nasal continuous positive airway pressure group. Bronchoalveolar lavage levels of interleukin-6, interleukin-8, monocyte chemotactic protein-1, macrophage inflammatory protein-1 alpha, and growth-regulated oncogene-alpha were significantly increased in the delayed nasal continuous positive airway pressure group. Standard and digital morphometric analyses showed no significant differences in internal surface area and nodal measurements between the groups. Platelet endothelial cell adhesion molecule vascular staining was not significantly different between the 2 nasal continuous positive airway pressure groups

  14. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... of treatment options. Airway Clearance Active Cycle of Breathing Technique Airway Clearance Techniques Autogenic Drainage Basics of ... Pulmonary Exacerbations Clinical Care Guidelines SCREENING & TREATING DEPRESSION & ANXIETY GUIDELINES Clinician Resources As a clinician, you’re ...

  15. Emergency airway puncture

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/003017.htm Emergency airway puncture To use the sharing features on this page, please enable JavaScript. Emergency airway puncture is the placement of a hollow ...

  16. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Consider Regarding a Lung Transplant Medications Antibiotics Bronchodilators Mucus Thinners Nebulizer Care at Home Vascular Access Devices ... them use percussion (clapping) or vibration to loosen mucus from airway walls. See how different airway clearance ...

  17. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Make a Charitable Gift Our Corporate Supporters Workplace Engagement DONATE YOUR PROPERTY eCards for a Cure About ... airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ...

  18. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    Rationale – Chronic Obstructive Pulmonary Disease (COPD) is a combination of chronic bronchitis and emphysema, which both may lead to airway obstruction. Under normal circumstances, airway dimensions vary as a function of inspiration level. We aim to study the influence of COPD and emphysema......-20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter...... and emphysema, respectively. Conclusions – Airway distensibility decreases significantly with increasing severity of both GOLD status and emphysema, indicating that in COPD the dynamic change in airway calibre during respiration is compromised. Chronic bronchitis and emphysema appear to be interacting...

  19. Anisotropic cell growth-regulated surface micropatterns in flower petals

    Directory of Open Access Journals (Sweden)

    Xiao Huang

    2017-05-01

    Full Text Available Flower petals have not only diverse macroscopic morphologies but are rich in microscopic surface patterns, which are crucial to their biological functions. Both experimental measurements and theoretical analysis are conducted to reveal the physical mechanisms underlying the formation of minute wrinkles on flower petals. Three representative flowers, daisy, kalanchoe blossfeldiana, and Eustoma grandiflorum, are investigated as examples. A surface wrinkling model, incorporating the measured mechanical properties and growth ratio, is used to elucidate the difference in their surface morphologies. The mismatch between the anisotropic epidermal cell growth and the isotropic secretion of surficial wax is found to dictate the surface patterns.

  20. Suppression of adenosine-activated chloride transport by ethanol in airway epithelia.

    Directory of Open Access Journals (Sweden)

    Sammeta V Raju

    Full Text Available Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (I(SC in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR, a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A(2B adenosine receptor (A(2BAR, largely abolished the adenosine-stimulated chloride transport, suggesting that A(2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A(2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections.

  1. Apigenin and Wogonin Regulate Epidermal Growth Factor Receptor Signaling Pathway Involved in MUC5AC Mucin Gene Expression and Production from Cultured Airway Epithelial Cells.

    Science.gov (United States)

    Sikder, Md Asaduzzaman; Lee, Hyun Jae; Ryu, Jiho; Park, Su Hyun; Kim, Ju-Ock; Hong, Jang-Hee; Seok, Jeong Ho; Lee, Choong Jae

    2014-03-01

    We investigated whether wogonin and apigenin significantly affect the epidermal growth factor receptor (EGFR) signaling pathway involved in MUC5AC mucin gene expression, and production from cultured airway epithelial cells; this was based on our previous report that apigenin and wogonin suppressed MUC5AC mucin gene expression and production from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with wogonin or apigenin for 15 minutes or 24 hours and then stimulated with epidermal growth factor (EGF) for 24 hours or the indicated periods. We found that incubation of NCI-H292 cells with wogonin or apigenin inhibited the phosphorylation of EGFR. The downstream signals of EGFR such as phosphorylation of MEK1/2 and ERK1/2 were also inhibited by wogonin or apigenin. The results suggest that wogonin and apigenin inhibits EGFR signaling pathway, which may explain how they inhibit MUC5AC mucin gene expression and production induced by EGF.

  2. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Quorum Sensing Regulation of Adhesion in Serratia Marcescens MG1 is surface dependent

    DEFF Research Database (Denmark)

    Labbate, M.; Zhu, H.; Thung, L.

    2007-01-01

    not able to identify a single QS-regulated adhesin essential for attachment to the abiotic surface, four AHL-regulated genes involved in adhesion to the abiotic surface were identified. Interestingly, two of these genes, bsmA and bsmB, were also shown to be involved in adhesion to the biotic surface...... in a non-QS-controlled fashion. Therefore, the expression of these two genes appears to be cocontrolled by regulators other than the QS system for mediation of attachment to HCE cells. We also found that QS in S. marcescens regulates other potential cell surface adhesins, including exopolysaccharide......Serratia marcescens is an opportunistic pathogen and a major cause of ocular infections. In previous studies of S. marcescens MG1, we showed that biofilm maturation and sloughing were regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). Because of the importance of adhesion...

  4. Mechanical forces regulate stem cell response to surface topography.

    Science.gov (United States)

    Saldaña, Laura; Crespo, Lara; Bensiamar, Fátima; Arruebo, Manuel; Vilaboa, Nuria

    2014-01-01

    The interactions between bone tissue and orthopedic implants are strongly affected by mechanical forces at the bone-implant interface, but the interplay between surface topographies, mechanical stimuli, and cell behavior is complex and not well understood yet. This study reports on the influence of mechanical stretch on human mesenchymal stem cells (hMSCs) attached to metallic substrates with different roughness. Controlled forces were applied to plasma membrane of hMSCs cultured on smooth and rough stainless steel surfaces using magnetic collagen-coated particles and an electromagnet system. Degree of phosphorylation of focal adhesion kinase (p-FAK) on the active form (Tyr-397), prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels increased on rough samples under static conditions. Cell viability and fibronectin production decreased on rough substrates, while hMSCs maturated to the osteoblastic lineage to a similar extent on both surfaces. PGE2 production and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand ratio increased after force application on both surfaces, although to a greater extent on smooth substrates. p-FAK on Tyr-397 was induced fairly rapidly by mechanical stimulation on rough surfaces while cells cultured on smooth samples failed to activate this kinase in response to tensile forces. Mechanical forces enhanced VEGF secretion and reduced cell viability, fibronetin levels and osteoblastic maturation on smooth surfaces but not on rough samples. The magnetite beads model used in this study is well suited to characterize the response of hMSCs cultured on metallic surfaces to tensile forces and collected data suggest a mechanism whereby mechanotransduction driven by FAK is essential for stem cell growth and functioning on metallic substrates. Copyright © 2013 Wiley Periodicals, Inc., a Wiley Company.

  5. Engineering Airway Epithelium

    Directory of Open Access Journals (Sweden)

    John P. Soleas

    2012-01-01

    Full Text Available Airway epithelium is constantly presented with injurious signals, yet under healthy circumstances, the epithelium maintains its innate immune barrier and mucociliary elevator function. This suggests that airway epithelium has regenerative potential (I. R. Telford and C. F. Bridgman, 1990. In practice, however, airway regeneration is problematic because of slow turnover and dedifferentiation of epithelium thereby hindering regeneration and increasing time necessary for full maturation and function. Based on the anatomy and biology of the airway epithelium, a variety of tissue engineering tools available could be utilized to overcome the barriers currently seen in airway epithelial generation. This paper describes the structure, function, and repair mechanisms in native epithelium and highlights specific and manipulatable tissue engineering signals that could be of great use in the creation of artificial airway epithelium.

  6. Measuring the role of seagrasses in regulating sediment surface elevation

    KAUST Repository

    Potouroglou, Maria

    2017-09-13

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other \\'blue carbon\\' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  7. Measuring the role of seagrasses in regulating sediment surface elevation

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C.; Krauss, Ken W.; Kennedy, Hilary A.; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M.; Githaiga, Michael N.; Diele, Karen; Huxham, Mark

    2017-01-01

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other ‘blue carbon’ habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  8. Measuring the role of seagrasses in regulating sediment surface elevation.

    Science.gov (United States)

    Potouroglou, Maria; Bull, James C; Krauss, Ken W; Kennedy, Hilary A; Fusi, Marco; Daffonchio, Daniele; Mangora, Mwita M; Githaiga, Michael N; Diele, Karen; Huxham, Mark

    2017-09-20

    Seagrass meadows provide numerous ecosystem services and their rapid global loss may reduce human welfare as well as ecological integrity. In common with the other 'blue carbon' habitats (mangroves and tidal marshes) seagrasses are thought to provide coastal defence and encourage sediment stabilisation and surface elevation. A sophisticated understanding of sediment elevation dynamics in mangroves and tidal marshes has been gained by monitoring a wide range of different sites, located in varying hydrogeomorphological conditions over long periods. In contrast, similar evidence for seagrasses is sparse; the present study is a contribution towards filling this gap. Surface elevation change pins were deployed in four locations, Scotland, Kenya, Tanzania and Saudi Arabia, in both seagrass and unvegetated control plots in the low intertidal and shallow subtidal zone. The presence of seagrass had a highly significant, positive impact on surface elevation at all sites. Combined data from the current work and the literature show an average difference of 31 mm per year in elevation rates between vegetated and unvegetated areas, which emphasizes the important contribution of seagrass in facilitating sediment surface elevation and reducing erosion. This paper presents the first multi-site study for sediment surface elevation in seagrasses in different settings and species.

  9. Human airway smooth muscle

    OpenAIRE

    Jongste, Johan

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less likely, squeezing mucus out of mucous glands and pulling open the alveoli next to the airways1 . Any role of airway smooth muscle is necessarily limited, because an important degree of contraction will l...

  10. Metformin prevents the effects of Pseudomonas aeruginosa on airway epithelial tight junctions and restricts hyperglycaemia-induced bacterial growth.

    Science.gov (United States)

    Patkee, Wishwanath R A; Carr, Georgina; Baker, Emma H; Baines, Deborah L; Garnett, James P

    2016-04-01

    Lung disease and elevation of blood glucose are associated with increased glucose concentration in the airway surface liquid (ASL). Raised ASL glucose is associated with increased susceptibility to infection by respiratory pathogens including Staphylococcus aureus and Pseudomonas aeruginosa. We have previously shown that the anti-diabetes drug, metformin, reduces glucose-induced S. aureus growth across in vitro airway epithelial cultures. The aim of this study was to investigate whether metformin has the potential to reduce glucose-induced P. aeruginosa infections across airway epithelial (Calu-3) cultures by limiting glucose permeability. We also explored the effect of P. aeruginosa and metformin on airway epithelial barrier function by investigating changes in tight junction protein abundance. Apical P. aeruginosa growth increased with basolateral glucose concentration, reduced transepithelial electrical resistance (TEER) and increased paracellular glucose flux. Metformin pre-treatment of the epithelium inhibited the glucose-induced growth of P. aeruginosa, increased TEER and decreased glucose flux. Similar effects on bacterial growth and TEER were observed with the AMP activated protein kinase agonist, 5-aminoimidazole-4-carboxamide ribonucleotide. Interestingly, metformin was able to prevent the P. aeruginosa-induced reduction in the abundance of tight junction proteins, claudin-1 and occludin. Our study highlights the potential of metformin to reduce hyperglycaemia-induced P. aeruginosa growth through airway epithelial tight junction modulation, and that claudin-1 and occludin could be important targets to regulate glucose permeability across airway epithelia and supress bacterial growth. Further investigation into the mechanisms regulating metformin and P. aeruginosa action on airway epithelial tight junctions could yield new therapeutic targets to prevent/suppress hyperglycaemia-induced respiratory infections, avoiding the use of antibiotics. © 2016 The

  11. Inhibition of p21 activated kinase (PAK reduces airway responsiveness in vivo and in vitro in murine and human airways.

    Directory of Open Access Journals (Sweden)

    Wyn C Hoover

    Full Text Available The p21-activated protein kinases (Paks have been implicated in the regulation of smooth muscle contractility, but the physiologic effects of Pak activation on airway reactivity in vivo are unknown. A mouse model with a genetic deletion of Pak1 (Pak1(-/- was used to determine the role of Pak in the response of the airways in vivo to challenge with inhaled or intravenous acetylcholine (ACh. Pulmonary resistance was measured in anesthetized mechanically ventilated Pak1(-/- and wild type mice. Pak1(-/- mice exhibited lower airway reactivity to ACh compared with wild type mice. Tracheal segments dissected from Pak1(-/- mice and studied in vitro also exhibited reduced responsiveness to ACh compared with tracheas from wild type mice. Morphometric assessment and pulmonary function analysis revealed no differences in the structure of the airways or lung parenchyma, suggesting that that the reduced airway responsiveness did not result from structural abnormalities in the lungs or airways due to Pak1 deletion. Inhalation of the small molecule synthetic Pak1 inhibitor, IPA3, also significantly reduced in vivo airway responsiveness to ACh and 5-hydroxytryptamine (5-Ht in wild type mice. IPA3 inhibited the contractility of isolated human bronchial tissues to ACh, confirming that this inhibitor is also effective in human airway smooth muscle tissue. The results demonstrate that Pak is a critical component of the contractile activation process in airway smooth muscle, and suggest that Pak inhibition could provide a novel strategy for reducing airway hyperresponsiveness.

  12. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    Science.gov (United States)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  13. TGF-β-activated kinase 1 (TAK1 signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin.

    Directory of Open Access Journals (Sweden)

    Kuldeep Kumawat

    Full Text Available WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth muscle cells and demonstrated its function as a mediator of airway remodeling. Here, we investigated the molecular mechanisms underlying TGF-β-induced WNT-5A expression. We show that TGF-β-activated kinase 1 (TAK1 is a critical mediator of WNT-5A expression as its pharmacological inhibition or siRNA-mediated silencing reduced TGF-β induction of WNT-5A. Furthermore, we show that TAK1 engages p38 and c-Jun N-terminal kinase (JNK signaling which redundantly participates in WNT-5A induction as only simultaneous, but not individual, inhibition of p38 and JNK suppressed TGF-β-induced WNT-5A expression. Remarkably, we demonstrate a central role of β-catenin in TGF-β-induced WNT-5A expression. Regulated by TAK1, β-catenin is required for WNT-5A induction as its silencing repressed WNT-5A expression whereas a constitutively active mutant augmented basal WNT-5A abundance. Furthermore, we identify Sp1 as the transcription factor for WNT-5A and demonstrate its interaction with β-catenin. We discover that Sp1 is recruited to the WNT-5A promoter in a TGF-β-induced and TAK1-regulated manner. Collectively, our findings describe a TAK1-dependent, β-catenin- and Sp1-mediated signaling cascade activated downstream of TGF-β which regulates WNT-5A induction.

  14. Obstetric airway management

    African Journals Online (AJOL)

    high rate of general anaesthesia (30% of emergency, and 8% of elective, Caesarean sections), readily available senior cover ... better training and preparation, earlier identification of the difficult airway, and potentially increased regional .... in high-volume theatres. References. 1. Preston R, Jee R. Obstetric airway ...

  15. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... toddlers will need help from a parent or caregiver. Older kids and adults can choose ACTs that they can do on their ... (clapping) or vibration to loosen mucus from airway walls. See how different airway clearance techniques work to help you clear the thick, sticky mucus ...

  16. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    on the airway distensibility, defined as the ratio of relative change in lumen diameter to the relative change in total lung volume (TLV) divided by predicted total lung capacity (pTLC) . Methods – We included 1900 participants from the Danish Lung Cancer Screening Trial (DLCST); all randomized to annual low......-dose CT for a period of 5 years (table 1). Images were reconstructed both with high contrast resolution (3 mm, kernel C) for emphysema analysis and with high spatial resolution (1 mm, kernel D) for airway analysis. Images were analysed by in-house developed software designed to segment lungs and localize......-20% (mild), 20%-30% (moderate) or >30% (severe). Spirometry was performed annually and participants were divided into severity groups according to the Global Initiative for Chronic Obstructive Lung Disease (GOLD). Data were analysed in a mixed effects regression model with log(airway lumen diameter...

  17. Salidroside attenuates allergic airway inflammation through negative regulation of nuclear factor-kappa B and p38 mitogen-activated protein kinase.

    Science.gov (United States)

    Yan, Guang Hai; Choi, Yun Ho

    2014-01-01

    Salidroside is a biologically active ingredient of Rhodiola rosea, which has several interesting biological properties, including anti-oxidant and anti-inflammatory; however, its anti-allergic effects are poorly understood. The objective of this study is to determine whether salidroside attenuates the inflammatory response in an ovalbumin (OVA)-induced asthma model. OVA-sensitized/challenged mice show airway hyperresponsiveness (AHR) to inhaled methacholine and have an increased amount of T-helper2 type cytokines [interleukin (IL)-4, IL-5, and IL-13] and eosinophils in their bronchoalveolar lavage fluids and lung tissues. However, three successive intraperitoneal administrations of salidroside before the last OVA challenge result in significant inhibition of these asthmatic reactions. Moreover, OVA significantly increases the activation of nuclear factor-kappa B (NFκB) and p38 mitogen-activated protein kinase (MAPK) in lung tissues, whereas salidroside markedly suppresses NF-κB translocation and reduces phosphorylation of p38 MAPK. Furthermore, salidroside attenuates the expression of intercellular adhesion molecule 1 and IL-6 through modulating the activities of p38 MAPK and NF-κB in the BEAS-2B cells stimulated by proinflammatory cytokines. These findings indicate that salidroside protects against OVA-induced airway inflammation and AHR, at least in part via downregulation of NF-κB and p38 MAPK activities. Our data support the utility of salidroside as a potential medicine for the treatment of asthma.

  18. Microbead-regulated surface wrinkling patterns in a film-substrate system

    Science.gov (United States)

    Zhang, Cheng; Wang, Jiawen; Cao, Yan-Ping; Lu, Conghua; Li, Bo; Feng, Xi-Qiao

    2017-10-01

    The control of surface wrinkling patterns at the microscale is a concern in many applications. In this letter, we regulate surface wrinkling patterns on a film-substrate system by introducing microbeads atop the film. Both experiments and theoretical analysis reveal the changes in surface wrinkles induced by microbeads. Under equibiaxial compression, the film-substrate system without microbeads bonded on its upper surface often buckles into global, uniform labyrinths, whereas the labyrinthine pattern locally gives way to radial stripes emanating from the microbeads. This regulation of surface wrinkles depends on the sizes and spacing of microbeads. We combine the finite element method and the Fourier spectral method to explore the physical mechanisms underlying the phenomena. This study offers a viable technique for engineering surfaces with tunable functions.

  19. Neurotrophins in chronic allergic airway inflammation and remodeling.

    Science.gov (United States)

    Renz, Harald; Kiliç, Ayşe

    2012-01-01

    Allergic asthma is a chronic inflammatory disease characterized by the production of allergen-specific IgE antibodies, TH2 inflammation, airway hyperresponsiveness and airway remodeling. Airway remodeling represents the disease-limiting stage during disease progression, and the underlying cellular molecular network resulting in airway remodeling are still poorly defined. In addition to the well-established TH2-dependent inflammatory response, several lines of investigation reveal that this regulation in the peripheral central nervous system contributes to disease development, exacerbation and progression. Several members of the neurotrophin family (e.g. nerve growth factor, brain-derived neurotrophic factor) are important transmitters of signals between the immune and the nervous system. Recent data indicate that NGF contributes to the development of airway remodeling in an inflammation and TGF-independent manner. These and other data open the opportunity to therapeutically interfere also on this level of regulation as a novel approach. Copyright © 2012 S. Karger AG, Basel.

  20. The cell surface mucin podocalyxin regulates collective breast tumor budding.

    Science.gov (United States)

    Graves, Marcia L; Cipollone, Jane A; Austin, Pamela; Bell, Erin M; Nielsen, Julie S; Gilks, C Blake; McNagny, Kelly M; Roskelley, Calvin D

    2016-01-22

    tumor cells there was a decrease in collective invasion in three-dimensional culture. Podocalyxin is a tumor cell-intrinsic regulator of experimental collective tumor cell invasion and tumor budding.

  1. Increased proinflammatory responses from asthmatic human airway smooth muscle cells in response to rhinovirus infection

    Directory of Open Access Journals (Sweden)

    King Nicholas JC

    2006-05-01

    Full Text Available Abstract Background Exacerbations of asthma are associated with viral respiratory tract infections, of which rhinoviruses (RV are the predominant virus type. Airway smooth muscle is important in asthma pathogenesis, however little is known about the potential interaction of RV and human airway smooth muscle cells (HASM. We hypothesised that rhinovirus induction of inflammatory cytokine release from airway smooth muscle is augmented and differentially regulated in asthmatic compared to normal HASM cells. Methods HASM cells, isolated from either asthmatic or non-asthmatic subjects, were infected with rhinovirus. Cytokine production was assayed by ELISA, ICAM-1 cell surface expression was assessed by FACS, and the transcription regulation of IL-6 was measured by luciferase activity. Results RV-induced IL-6 release was significantly greater in HASM cells derived from asthmatic subjects compared to non-asthmatic subjects. This response was RV specific, as 5% serum- induced IL-6 release was not different in the two cell types. Whilst serum stimulated IL-8 production in cells from both subject groups, RV induced IL-8 production in only asthmatic derived HASM cells. The transcriptional induction of IL-6 was differentially regulated via C/EBP in the asthmatic and NF-κB + AP-1 in the non-asthmatic HASM cells. Conclusion This study demonstrates augmentation and differential transcriptional regulation of RV specific innate immune response in HASM cells derived from asthmatic and non-asthmatics, and may give valuable insight into the mechanisms of RV-induced asthma exacerbations.

  2. PPARγ as a Potential Target to Treat Airway Mucus Hypersecretion in Chronic Airway Inflammatory Diseases

    Directory of Open Access Journals (Sweden)

    Yongchun Shen

    2012-01-01

    Full Text Available Airway mucus hypersecretion (AMH is a key pathophysiological feature of chronic airway inflammatory diseases such as bronchial asthma, cystic fibrosis, and chronic obstructive pulmonary disease. AMH contributes to the pathogenesis of chronic airway inflammatory diseases, and it is associated with reduced lung function and high rates of hospitalization and mortality. It has been suggested that AMH should be a target in the treatment of chronic airway inflammatory diseases. Recent evidence suggests that a key regulator of airway inflammation, hyperresponsiveness, and remodeling is peroxisome proliferator-activated receptor gamma (PPARγ, a ligand-activated transcription factor that regulates adipocyte differentiation and lipid metabolism. PPARγ is expressed in structural, immune, and inflammatory cells in the lung. PPARγ is involved in mucin production, and PPARγ agonists can inhibit mucin synthesis both in vitro and in vivo. These findings suggest that PPARγ is a novel target in the treatment of AMH and that further work on this transcription factor may lead to new therapies for chronic airway inflammatory diseases.

  3. Automated quantification of bronchiectasis, airway wall thickening and lumen tapering in chest CT

    DEFF Research Database (Denmark)

    Perez-Rovira, Adria; Kuo, Wieying; Petersen, Jens

    Purpose: To automatically quantify airway structural properties visualised on CT in children with cystic fibrosis (CF) and controls, including: bronchiectasis, airway wall thickening, and lumen tapering. Methods and materials: The 3D surface of the airway lumen, outer wall, and bronchial arteries...

  4. Downregulation of integrin β4 decreases the ability of airway epithelial cells to present antigens.

    Directory of Open Access Journals (Sweden)

    Chi Liu

    Full Text Available Airway epithelial cells have been demonstrated to be accessory antigen presentation cells (APC capable of activating T cells and may play an important role in the development of allergic airway inflammation of asthma. In asthmatic airways, loss of expression of the adhesion molecule integrin β4 (ITGB4 and an increase in Th2 inflammation bias has been observed in our previous study. Given that ITGB4 is engaged in multiple signaling pathways, we studied whether disruption of ITGB4-mediated cell adhesion may contribute to the adaptive immune response of epithelial cells, including their ability to present antigens, induce the activate and differentiate of T cells. We silenced ITGB4 expression in bronchial epithelial cells with an effective siRNA vector and studied the effects of ITGB4 silencing on the antigen presentation ability of airway epithelial cells. T cell proliferation and cytokine production was investigated after co-culturing with ITGB4-silenced epithelial cells. Surface expression of B7 homologs and the major histocompatibility complex (MHC class II was also detected after ITGB4 was silenced. Our results demonstrated that silencing of ITGB4 resulted in impaired antigen presentation processes and suppressed T cell proliferation. Meanwhile, decrease in Th1 cytokine production and increase in Th17 cytokine production was induced after co-culturing with ITGB4-silenced epithelial cells. Moreover, HLA-DR was decreased and the B7 homologs expression was different after ITGB4 silencing. Overall, this study suggested that downregulation of ITGB4 expression in airway epithelial cells could impair the antigen presentation ability of these cells, which further regulate airway inflammation reaction in allergic asthma.

  5. Airway distensibility in Chronic Obstructive Airway Disease

    DEFF Research Database (Denmark)

    Winkler Wille, Mathilde Marie; Pedersen, Jesper Holst; Dirksen, Asger

    2013-01-01

    on the airway distensibility, defined as the ratio of relative change in lumen diameter to the relative change in total lung volume (TLV) divided by predicted total lung capacity (pTLC) . Methods – We included 1900 participants from the Danish Lung Cancer Screening Trial (DLCST); all randomized to annual low...

  6. Surfactant in airway disease.

    Science.gov (United States)

    Enhorning, Goran

    2008-04-01

    Beta(2)-adrenergic agonists cause a release of pulmonary surfactant into lung airways. The surfactant phospholipids maintain the patency of the conducting airways, but this function is inhibited by plasma proteins entering an inflamed airway. The physical behavior of the surfactant can be studied with a pulsating bubble surfactometer and a capillary surfactometer. Calf lung surfactant extract was found to be inhibited by plasma proteins and by a lowering of temperature. Severe breathing difficulties and malfunctioning surfactant developed in BALB/c mice inhaling ozone or infected with respiratory syncytial virus, mainly as a result of proteins invading the airways. Patients with asthma were challenged with allergens in an area of one lung. BAL fluid (BALF) from such an area contained a surfactant that functioned poorly (ie, an inability to maintain airway openness) compared with BALF from the other lung or from the lungs of healthy volunteers. When proteins in the BALF were removed, surfactant performance clearly improved. Eosinophils, so prominent in asthmatic patients, synthesize the enzyme lysophospholipase, which, together with the enzyme phospholipase A(2), catalyzes the hydrolysis of the main component of the surfactant, phosphatidylcholine. Such hydrolysis incapacitates the ability of the surfactant to maintain airway patency. The treatment of asthma with beta(2)-adrenergic agonists and steroids will have a valuable effect on the surfactant system. It will cause a release of fresh surfactant into terminal airways. Surfactant can also be nebulized and inhaled, which has been shown to be an effective treatment.

  7. Scratching the surface: Regulation of cell surface receptors in cholesterol metabolism

    NARCIS (Netherlands)

    Nelson, J.K.

    2016-01-01

    Elevated plasma levels of low density lipoprotein cholesterol (LDL) are an established risk factor for the development of atherosclerosis and cardiovascular diseases. The LDL-Receptor is a key determinant in regulating LDL levels in plasma, and current lipid-lowering strategies aim to increase its

  8. The site and nature of airway obstruction after lung transplantation.

    Science.gov (United States)

    Verleden, Stijn E; Vasilescu, Dragoş M; Willems, Stijn; Ruttens, David; Vos, Robin; Vandermeulen, Elly; Hostens, Jeroen; McDonough, John E; Verbeken, Erik K; Verschakelen, Johny; Van Raemdonck, Dirk E; Rondelet, Benoît; Knoop, Christiane; Decramer, Marc; Cooper, Joel; Hogg, James C; Verleden, Geert M; Vanaudenaerde, Bart M

    2014-02-01

    The chronic rejection of lung allografts is attributable to progressive small airway obstruction. To determine precisely the site and nature of this type of airway obstruction. Lungs from patients with rejected lung allografts treated by a second transplant (n = 7) were compared with unused donor (control) lungs (n = 7) using multidetector computed tomography (MDCT) to determine the percentage of visible airways obstructed in each airway generation, micro-computed tomography (microCT) to visualize the site of obstruction, and histology to determine the nature of this obstruction. The number of airways visible with MDCT was not different between rejected and control lungs. However, 10 ± 7% of observed airways greater than 2 mm in diameter, 50 ± 22% of airways between 1 and 2 mm in diameter, and 73 ± 10% of airways less than 1 mm in diameter were obstructed in the rejected lungs. MicroCT confirmed that the mean lumen diameter of obstructed airways was 647 ± 317 μm but showed no difference in either total number and cross-sectional area of the terminal bronchioles or in alveolar dimensions (mean linear intercept) between groups (P > 0.05). In addition, microCT demonstrated that only segments of the airways are obstructed. Histology confirmed a constrictive form of bronchiolitis caused by expansion of microvascular-rich granulation tissue in some locations and collagen-rich scar tissue in others. Chronic lung allograft rejection is associated with a progressive form of constrictive bronchiolitis that targets conducting airways while sparing larger airways as well as terminal bronchioles and the alveolar surface.

  9. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... decisions about your health care. CF Genetics: The Basics CF Mutations Video Series CFTR2 Personalized Medicine Types ... of Breathing Technique Airway Clearance Techniques Autogenic Drainage Basics of Lung Care Chest Physical Therapy Coughing and ...

  10. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... and Resources Bioinformatics Tools for CF CFTR Antibodies Distribution Program CFTR Assays CFFT Biorepository CFTR Chemical Compound ... huffing . Many of them use percussion (clapping) or vibration to loosen mucus from airway walls. See how ...

  11. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Guidelines Bone Disease in CF Clinical Care Guidelines Cystic Fibrosis-Related Diabetes Clinical Care Guidelines Liver Disease Clinical Care Guidelines Respiratory Care Guidelines CF Airway ...

  12. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Clinical Care Guidelines Liver Disease Clinical Care Guidelines Respiratory Care Guidelines CF Airway Clearance Therapies Clinical Care ... attack bacteria. Choose What's Best for You Your respiratory therapist or another member of your CF care ...

  13. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Medications Antibiotics Bronchodilators Mucus Thinners Nebulizer Care at Home Vascular Access Devices: PICCs and Ports Partnerships for ... Facebook Twitter YouTube Instagram Email DONATE Breadcrumb Navigation Home Life With CF Treatments and Therapies Airway Clearance ...

  14. Emergency airway puncture - slideshow

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/presentations/100113.htm Emergency airway puncture - series—Normal anatomy To use the ... 2016 Updated by: Jacob L. Heller, MD, MHA, Emergency Medicine, Virginia Mason Medical Center, Seattle, WA. Also ...

  15. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... a Family Parenting as an Adult With CF Treatments & Therapies People with cystic fibrosis are living longer ... to specialized CF care and a range of treatment options. Airway Clearance Active Cycle of Breathing Technique ...

  16. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Clinician Career Development Awards Clinician Training Awards Mutation Analysis Program Network News Network News: NACFC 2017 Network ... for airway clearance. Facebook Twitter Email More Related Content Medications Autogenic Drainage Positive Expiratory Pressure High-Frequency ...

  17. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Advocacy Achievements Advocacy News Briefings, Testimonies, and Regulatory Comments Congressional Cystic Fibrosis Caucus Our Policy Agenda Policy ... for airway clearance. Facebook Twitter Email More Related Content Medications Autogenic Drainage Positive Expiratory Pressure High-Frequency ...

  18. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... GI Care Guidelines Antioxidants Clinical Care Guidelines Enteral Tube Feeding Clinical Care Guidelines Nutrition in Children and ... clear your airways. Most are easy to do. Infants and toddlers will need help from a parent ...

  19. Human airway smooth muscle

    NARCIS (Netherlands)

    J.C. de Jongste (Johan)

    1987-01-01

    textabstractThe function of airway smooth muscle in normal subjects is not evident. Possible physiological roles include maintenance of optimal regional ventilation/perfusion ratios, reduction of anatomic dead space, stabilisation of cartilaginous bronchi, defense against impurities and, less

  20. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... people with cystic fibrosis so that they make smart decisions about CF-related research, treatment, and access ... Facebook Twitter YouTube Instagram Email DONATE Breadcrumb Navigation Home Life With CF Treatments and Therapies Airway Clearance ...

  1. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... Medications Antibiotics Bronchodilators Mucus Thinners Nebulizer Care at Home Vascular Access Devices PICCs and Ports Partnerships for ... Facebook Twitter YouTube Instagram Email DONATE Breadcrumb Navigation Home Life With CF Treatments and Therapies Airway Clearance ...

  2. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... in CF Clinical Care Guidelines Cystic Fibrosis-Related Diabetes Clinical Care Guidelines Liver Disease Clinical Care Guidelines Respiratory Care Guidelines CF Airway Clearance Therapies Clinical Care Guidelines Chronic Medications to Maintain Lung Health Clinical Care Guidelines ...

  3. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... a Family Parenting as an Adult With CF Treatments & Therapies People with cystic fibrosis are living longer and ... to specialized CF care and a range of treatment options. Airway Clearance Active Cycle of Breathing Technique ( ...

  4. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... in CF Clinical Care Guidelines Cystic Fibrosis-Related Diabetes Clinical Care Guidelines Liver Disease Clinical Care Guidelines Respiratory Care Guidelines CF Airway Clearance Therapies Clinical Care Guidelines Chronic Medications to Maintain Lung ...

  5. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... huffing . Many of them use percussion (clapping) or vibration to loosen mucus from airway walls. See how ... 20814 301-951-4422 800-344-4823 (toll free) We will not rest until we find a ...

  6. Blockage of upper airway

    Science.gov (United States)

    ... obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx J, ed. Rosen's Emergency Medicine: Concepts and Clinical Practice . 8th ed. Philadelphia, PA: Elsevier ...

  7. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... many challenges, including medical, social, and financial. By learning more about how you can manage your disease every day, you can ... Clearance Active Cycle of Breathing Technique (ACBT) Airway Clearance Techniques ( ...

  8. Quantitative analysis of airway abnormalities in CT

    DEFF Research Database (Denmark)

    Petersen, Jens; Lo, Pechin Chien Pau; Nielsen, Mads

    2010-01-01

    manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior...

  9. Silibinin attenuates allergic airway inflammation in mice

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Yun Ho [Department of Anatomy, Medical School, Institute for Medical Sciences, Chonbuk National University, Jeonju, Jeonbuk 561-756 (Korea, Republic of); Jin, Guang Yu [Department of Radiology, Yanbian University Hospital, YanJi 133002 (China); Guo, Hui Shu [Centralab, The First Affiliated Hospital of Dalian Medical University, Dalian 116011 (China); Piao, Hong Mei [Department of Respiratory Medicine, Yanbian University Hospital, YanJi 133000 (China); Li, Liang chang; Li, Guang Zhao [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China); Lin, Zhen Hua [Department of Pathology, Yanbian University School of Basic Medical Sciences, YanJi 133000 (China); Yan, Guang Hai, E-mail: ghyan@ybu.edu.cn [Department of Anatomy and Histology and Embryology, Yanbian University School of Basic Medical Sciences, 977 Gongyuan Road, YanJi 133002, Jilin (China)

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  10. The trafficking protein, EHD2, positively regulates cardiac sarcolemmal KATP channel surface expression: role in cardioprotection.

    Science.gov (United States)

    Yang, Hua Qian; Jana, Kundan; Rindler, Michael J; Coetzee, William A

    2017-11-13

    ATP-sensitive K+ (KATP) channels uniquely link cellular energy metabolism to membrane excitability and are expressed in diverse cell types that range from the endocrine pancreas to neurons and smooth, skeletal, and cardiac muscle. A decrease in the surface expression of KATP channels has been linked to various disorders, including dysregulated insulin secretion, abnormal blood pressure, and impaired resistance to cardiac injury. In contrast, up-regulation of KATP channel surface expression may be protective, for example, by mediating the beneficial effect of ischemic preconditioning. Molecular mechanisms that regulate KATP channel trafficking are poorly understood. Here, we used cellular assays with immunofluorescence, surface biotinylation, and patch clamping to demonstrate that Eps15 homology domain-containing protein 2 (EHD2) is a novel positive regulator of KATP channel trafficking to increase surface KATP channel density. EHD2 had no effect on cardiac Na+ channels (Nav1.5). The effect is specific to EHD2 as other members of the EHD family-EHD1, EHD3, and EHD4-had no effect on KATP channel surface expression. EHD2 did not directly affect KATP channel properties as unitary conductance and ATP sensitivity were unchanged. Instead, we observed that the mechanism by which EHD2 increases surface expression is by stabilizing KATP channel-containing caveolar structures, which results in a reduced rate of endocytosis. EHD2 also regulated KATP channel trafficking in isolated cardiomyocytes, which validated the physiologic relevance of these observations. Pathophysiologically, EHD2 may be cardioprotective as a dominant-negative EHD2 mutant sensitized cardiomyocytes to ischemic damage. Our findings highlight EHD2 as a potential pharmacologic target in the treatment of diseases with KATP channel trafficking defects.-Yang, H. Q., Jana, K., Rindler, M. J., Coetzee, W. A. The trafficking protein, EHD2, positively regulates cardiac sarcolemmal KATP channel surface expression

  11. PPARγ regulates expression of carbohydrate sulfotransferase 11 (CHST11/C4ST1, a regulator of LPL cell surface binding.

    Directory of Open Access Journals (Sweden)

    Ismayil Tasdelen

    Full Text Available The transcription factor PPARγ is the key regulator of adipocyte differentiation, function and maintenance, and the cellular target of the insulin-sensitizing thiazolidinediones. Identification and functional characterization of genes regulated by PPARγ will therefore lead to a better understanding of adipocyte biology and may also contribute to the development of new anti-diabetic drugs. Here, we report carbohydrate sulfotransferase 11 (Chst11/C4st1 as a novel PPARγ target gene. Chst11 can sulphate chondroitin, a major glycosaminoglycan involved in development and disease. The Chst11 gene contains two functional intronic PPARγ binding sites, and is up-regulated at the mRNA and protein level during 3T3-L1 adipogenesis. Chst11 knockdown reduced intracellular lipid accumulation in mature adipocytes, which is due to a lowered activity of lipoprotein lipase, which may associate with the adipocyte cell surface through Chst11-mediated sulfation of chondroitin, rather than impaired adipogenesis. Besides directly inducing Lpl expression, PPARγ may therefore control lipid accumulation by elevating the levels of Chst11-mediated proteoglycan sulfation and thereby increasing the binding capacity for Lpl on the adipocyte cell surface.

  12. Relationship between airway pathophysiology and airway inflammation in older asthmatics

    DEFF Research Database (Denmark)

    Porsbjerg, Celeste M; Gibson, Peter G; Pretto, Jeffrey J

    2013-01-01

    BACKGROUND AND OBJECTIVE: Asthma-related morbidity is greater in older compared with younger asthmatics. Airway closure is also greater in older asthmatics, an observation that may be explained by differences in airway inflammation. We hypothesized that in older adult patients with asthma......, neutrophil airway inflammation increases airway closure during bronchoconstriction, while eosinophil airway inflammation increases airway hyperresponsiveness (AHR). METHODS: Asthmatic subjects (n = 26), aged ≥55 years (68% female), were studied, and AHR to 4.5% saline challenge was measured by the response......-dose ratio (%fall in forced expiratory volume in 1 s (FEV1 )/mg saline). Airway closure was assessed during bronchoconstriction percent change in forced vital capacity (FVC)/percent change in FEV1 (i.e. Closing Index). Airway inflammation was assessed by induced sputum and exhaled nitric oxide (eNO). RESULTS...

  13. Electrostatic interactions between double layers: influence of surface roughness, regulation, and chemical heterogeneities

    NARCIS (Netherlands)

    Duval, J.F.L.; Leermakers, F.A.M.; Leeuwen, van H.P.

    2004-01-01

    Electrostatic interactions between two surfaces as measured by atomic force microscopy (AFM) are usually analyzed in terms of DLVO theory. The discrepancies often observed between the experimental and theoretical behavior are usually ascribed to the occurrence of chemical regulation processes and/or

  14. Dual function of novel pollen coat (surface proteins: IgE-binding capacity and proteolytic activity disrupting the airway epithelial barrier.

    Directory of Open Access Journals (Sweden)

    Mohamed Elfatih H Bashir

    Full Text Available BACKGROUND: The pollen coat is the first structure of the pollen to encounter the mucosal immune system upon inhalation. Prior characterizations of pollen allergens have focused on water-soluble, cytoplasmic proteins, but have overlooked much of the extracellular pollen coat. Due to washing with organic solvents when prepared, these pollen coat proteins are typically absent from commercial standardized allergenic extracts (i.e., "de-fatted", and, as a result, their involvement in allergy has not been explored. METHODOLOGY/PRINCIPAL FINDINGS: Using a unique approach to search for pollen allergenic proteins residing in the pollen coat, we employed transmission electron microscopy (TEM to assess the impact of organic solvents on the structural integrity of the pollen coat. TEM results indicated that de-fatting of Cynodon dactylon (Bermuda grass pollen (BGP by use of organic solvents altered the structural integrity of the pollen coat. The novel IgE-binding proteins of the BGP coat include a cysteine protease (CP and endoxylanase (EXY. The full-length cDNA that encodes the novel IgE-reactive CP was cloned from floral RNA. The EXY and CP were purified to homogeneity and tested for IgE reactivity. The CP from the BGP coat increased the permeability of human airway epithelial cells, caused a clear concentration-dependent detachment of cells, and damaged their barrier integrity. CONCLUSIONS/SIGNIFICANCE: Using an immunoproteomics approach, novel allergenic proteins of the BGP coat were identified. These proteins represent a class of novel dual-function proteins residing on the coat of the pollen grain that have IgE-binding capacity and proteolytic activity, which disrupts the integrity of the airway epithelial barrier. The identification of pollen coat allergens might explain the IgE-negative response to available skin-prick-testing proteins in patients who have positive symptoms. Further study of the role of these pollen coat proteins in allergic

  15. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buh, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Sarabia, A. M. Cepeda; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; De Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Wagner, A. Fink; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garces, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzman, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Carlsen, K. C. Lodrup; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; Keenoy, E. de Manuel; Masjedi, M. R.; Meten, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Mamas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Pontal, F. Radier; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schunemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; Van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  16. Integrated care pathways for airway diseases (AIRWAYS-ICPs)

    NARCIS (Netherlands)

    Bousquet, J.; Addis, A.; Adcock, I.; Agache, I.; Agusti, A.; Alonso, A.; Annesi-Maesano, I.; Anto, J. M.; Bachert, C.; Baena-Cagnani, C. E.; Bai, C.; Baigenzhin, A.; Barbara, C.; Barnes, P. J.; Bateman, E. D.; Beck, L.; Bedbrook, A.; Bel, E. H.; Benezet, O.; Bennoor, K. S.; Benson, M.; Bernabeu-Wittel, M.; Bewick, M.; Bindslev-Jensen, C.; Blain, H.; Blasi, F.; Bonini, M.; Bonini, S.; Boulet, L. P.; Bourdin, A.; Bourret, R.; Bousquet, P. J.; Brightling, C. E.; Briggs, A.; Brozek, J.; Buhl, R.; Bush, A.; Caimmi, D.; Calderon, M.; Calverley, P.; Camargos, P. A.; Camuzat, T.; Canonica, G. W.; Carlsen, K. H.; Casale, T. B.; Cazzola, M.; Cepeda Sarabia, A. M.; Cesario, A.; Chen, Y. Z.; Chkhartishvili, E.; Chavannes, N. H.; Chiron, R.; Chuchalin, A.; Chung, K. F.; Cox, L.; Crooks, G.; Crooks, M. G.; Cruz, A. A.; Custovic, A.; Dahl, R.; Dahlen, S. E.; de Blay, F.; Dedeu, T.; Deleanu, D.; Demoly, P.; Devillier, P.; Didier, A.; Dinh-Xuan, A. T.; Djukanovic, R.; Dokic, D.; Douagui, H.; Dubakiene, R.; Eglin, S.; Elliot, F.; Emuzyte, R.; Fabbri, L.; Fink Wagner, A.; Fletcher, M.; Fokkens, W. J.; Fonseca, J.; Franco, A.; Frith, P.; Furber, A.; Gaga, M.; Garcés, J.; Garcia-Aymerich, J.; Gamkrelidze, A.; Gonzales-Diaz, S.; Gouzi, F.; Guzmán, M. A.; Haahtela, T.; Harrison, D.; Hayot, M.; Heaney, L. G.; Heinrich, J.; Hellings, P. W.; Hooper, J.; Humbert, M.; Hyland, M.; Iaccarino, G.; Jakovenko, D.; Jardim, J. R.; Jeandel, C.; Jenkins, C.; Johnston, S. L.; Jonquet, O.; Joos, G.; Jung, K. S.; Kalayci, O.; Karunanithi, S.; Keil, T.; Khaltaev, N.; Kolek, V.; Kowalski, M. L.; Kull, I.; Kuna, P.; Kvedariene, V.; Le, L. T.; Lodrup Carlsen, K. C.; Louis, R.; MacNee, W.; Mair, A.; Majer, I.; Manning, P.; de Manuel Keenoy, E.; Masjedi, M. R.; Melen, E.; Melo-Gomes, E.; Menzies-Gow, A.; Mercier, G.; Mercier, J.; Michel, J. P.; Miculinic, N.; Mihaltan, F.; Milenkovic, B.; Molimard, M.; Momas, I.; Montilla-Santana, A.; Morais-Almeida, M.; Morgan, M.; N'Diaye, M.; Nafti, S.; Nekam, K.; Neou, A.; Nicod, L.; O'Hehir, R.; Ohta, K.; Paggiaro, P.; Palkonen, S.; Palmer, S.; Papadopoulos, N. G.; Papi, A.; Passalacqua, G.; Pavord, I.; Pigearias, B.; Plavec, D.; Postma, D. S.; Price, D.; Rabe, K. F.; Radier Pontal, F.; Redon, J.; Rennard, S.; Roberts, J.; Robine, J. M.; Roca, J.; Roche, N.; Rodenas, F.; Roggeri, A.; Rolland, C.; Rosado-Pinto, J.; Ryan, D.; Samolinski, B.; Sanchez-Borges, M.; Schünemann, H. J.; Sheikh, A.; Shields, M.; Siafakas, N.; Sibille, Y.; Similowski, T.; Small, I.; Sola-Morales, O.; Sooronbaev, T.; Stelmach, R.; Sterk, P. J.; Stiris, T.; Sud, P.; Tellier, V.; To, T.; Todo-Bom, A.; Triggiani, M.; Valenta, R.; Valero, A. L.; Valiulis, A.; Valovirta, E.; van Ganse, E.; Vandenplas, O.; Vasankari, T.; Vestbo, J.; Vezzani, G.; Viegi, G.; Visier, L.; Vogelmeier, C.; Vontetsianos, T.; Wagstaff, R.; Wahn, U.; Wallaert, B.; Whalley, B.; Wickman, M.; Williams, D. M.; Wilson, N.; Yawn, B. P.; Yiallouros, P. K.; Yorgancioglu, A.; Yusuf, O. M.; Zar, H. J.; Zhong, N.; Zidarn, M.; Zuberbier, T.

    2014-01-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will

  17. Airway structural components drive airway smooth muscle remodeling in asthma

    NARCIS (Netherlands)

    Dekkers, Bart G J; Maarsingh, Harm; Meurs, Herman; Gosens, Reinoud

    2009-01-01

    Chronic asthma is an inflammatory airways disease characterized by pathological changes in the airway smooth muscle (ASM) bundle that contribute to airway obstruction and hyperresponsiveness. Remodeling of the ASM is associated with an increased smooth muscle mass, involving components of cellular

  18. Effects of in vitro exposure to hay dust on the gene expression of chemokines and cell-surface receptors in primary bronchial epithelial cell cultures established from horses with chronic recurrent airway obstruction.

    Science.gov (United States)

    Ainsworth, Dorothy M; Matychak, Marybeth; Reyner, Claudia L; Erb, Hollis N; Young, Jean C

    2009-03-01

    To examine effects of in vitro exposure to solutions of hay dust, lipopolysaccharide (LPS), or beta-glucan on chemokine and cell-surface receptor (CSR) gene expression in primary bronchial epithelial cell cultures (BECCs) established from healthy horses and horses with recurrent airway obstruction (RAO). BECCs established from bronchial biopsy specimens of 6 RAO-affected horses and 6 healthy horses. 5-day-old BECCs were treated with PBS solution, hay dust solutions, LPS, or beta-glucan for 6 or 24 hours. Gene expression of interleukin (IL)-8, chemokine (C-X-C motif) ligand 2 (CXCL2), IL-1beta, toll-like receptor 2, toll-like receptor 4, IL-1 receptor 1, and glyceraldehyde 3-phosphate dehydrogenase was measured with a kinetic PCR assay. Treatment with PBS solution for 6 or 24 hours was not associated with a significant difference in chemokine or CSR expression between BECCs from either group of horses. In all BECCs, treatment with hay dust or LPS for 6 hours increased IL-8, CXCL2, and IL-1beta gene expression > 3-fold; at 24 hours, only IL-1beta expression was upregulated by > 3-fold. In all BECCs, CSR gene expression was not increased following any treatment. With the exception of a 3.7-fold upregulation of CXCL2 in BECCs from RAO-affected horses (following 6-hour hay dust treatment), no differences in chemokine or CSR gene expression were detected between the 2 groups. At 24 hours, CXCL2 gene expression in all BECCs was downregulated. Epithelial CXCL2 upregulation in response to hay dust particulates may incite early airway neutrophilia in horses with RAO.

  19. The Role of IgE-Receptors in IgE-Dependent Airway Smooth Muscle Cell Remodelling

    OpenAIRE

    Michael Roth; Jun Zhong; Celine Zumkeller; Chong Teck S'ng; Stephanie Goulet; Michael Tamm

    2013-01-01

    BACKGROUND: In allergic asthma, IgE increases airway remodelling but the mechanism is incompletely understood. Airway remodelling consists of two independent events increased cell numbers and enhanced extracellular matrix deposition, and the mechanism by which IgE up-regulates cell proliferation and extracellular matrix deposition by human airway smooth muscle cells in asthma is unclear. OBJECTIVE: Characterise the role of the two IgE receptors and associated signalling cascades in airway smo...

  20. Smoking is associated with shortened airway cilia.

    Directory of Open Access Journals (Sweden)

    Philip L Leopold

    2009-12-01

    Full Text Available Whereas cilia damage and reduced cilia beat frequency have been implicated as causative of reduced mucociliary clearance in smokers, theoretically mucociliary clearance could also be affected by cilia length. Based on models of mucociliary clearance predicting that cilia length must exceed the 6-7 microm airway surface fluid depth to generate force in the mucus layer, we hypothesized that cilia height may be decreased in airway epithelium of normal smokers compared to nonsmokers.Cilia length in normal nonsmokers and smokers was evaluated in aldehyde-fixed, paraffin-embedded endobronchial biopsies, and air-dried and hydrated samples were brushed from human airway epithelium via fiberoptic bronchoscopy. In 28 endobronchial biopsies, healthy smoker cilia length was reduced by 15% compared to nonsmokers (p<0.05. In 39 air-dried samples of airway epithelial cells, smoker cilia length was reduced by 13% compared to nonsmokers (p<0.0001. Analysis of the length of individual, detached cilia in 27 samples showed that smoker cilia length was reduced by 9% compared to nonsmokers (p<0.05. Finally, in 16 fully hydrated, unfixed samples, smoker cilia length was reduced 7% compared to nonsmokers (p<0.05. Using genome-wide analysis of airway epithelial gene expression we identified 6 cilia-related genes whose expression levels were significantly reduced in healthy smokers compared to healthy nonsmokers.Models predict that a reduction in cilia length would reduce mucociliary clearance, suggesting that smoking-associated shorter airway epithelial cilia play a significant role in the pathogenesis of smoking-induced lung disease.

  1. Incidence of unanticipated difficult airway using an objective airway score versus a standard clinical airway assessment

    DEFF Research Database (Denmark)

    Nørskov, Anders Kehlet; Rosenstock, Charlotte Valentin; Wetterslev, Jørn

    2013-01-01

    Pre-operative airway assessment in Denmark is based on a non-specific clinical assessment. Systematic, evidence-based and consistent airway assessment may reduce the incidence of unanticipated difficult airway management. By assessing multiple predictors for difficult airway management......, the predictive value of the assessment increases. The Simplified Airway Risk Index (SARI) is a multivariate risk score for predicting difficult intubation.This study aims to compare the use of the SARI with a non-specified clinical airway assessment on predicting difficult intubation. Further, to compare......-specific assessment. Data from patients' pre-operative airway assessment are registered in the Danish Anaesthesia Database. Objective scores for intubation and mask ventilation grade the severity of airway managements. The accuracy of predicting difficult intubation and mask ventilation is measured for each group...

  2. Distinct PKA and Epac compartmentalization in airway function and plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G. J.; Racke, Kurt; Schmidt, Martina

    Asthma and chronic obstructive pulmonary disease (COPD) are obstructive lung diseases characterized by airway obstruction, airway inflammation and airway remodelling. Next to inflammatory cells and airway epithelial cells, airway mesenchymal cells, including airway smooth muscle cells and

  3. Regulation of ADAM12 cell-surface expression by protein kinase C epsilon

    DEFF Research Database (Denmark)

    Sundberg, Christina; Thodeti, Charles Kumar; Kveiborg, Marie

    2004-01-01

    The ADAM (a disintegrin and metalloprotease) family consists of multidomain cell-surface proteins that have a major impact on cell behavior. These transmembrane-anchored proteins are synthesized as proforms that have (from the N terminus): a prodomain; a metalloprotease-, disintegrin...... as a constitutively active protein. However, little is known about the regulation of ADAM12 cell-surface translocation. Here, we used human RD rhabdomyosarcoma cells, which express ADAM12 at the cell surface, in a temporal pattern. We report that protein kinase C (PKC) epsilon induces ADAM12 translocation to the cell......-like-, cysteine-rich, epidermal growth factor-like, and transmembrane domain; and a cytoplasmic tail. The 90-kDa mature form of human ADAM12 is generated in the trans-Golgi through cleavage of the prodomain by a furin-peptidase and is stored intracellularly until translocation to the cell surface...

  4. Obstetric airway management

    African Journals Online (AJOL)

    The use of video laryngoscopy in obstetric theatres must be explored and consideration given to it being placed permanently in high-volume theatres. References. 1. Preston R, Jee R. Obstetric airway management. Int Anesthesiol Clin. 2014;52(2):1-28. 2. Boutonnet M, Faitot V, Katz A, et al. Mallampati class changes during.

  5. The HIV Airway

    African Journals Online (AJOL)

    Adele

    been reported to result in airway obstruction. Conditions not limited to immunocomromised states such as epiglottitis, retropharyngeal abcesses, mediastinal masses and. Ludwig's angina are seen, with increased severity, in HIV in- fected individuals. Knowledge of a patients' HIV status may alert one to potential.

  6. Total airway reconstruction.

    Science.gov (United States)

    Connor, Matthew P; Barrera, Jose E; Eller, Robert; McCusker, Scott; O'Connor, Peter

    2013-02-01

    We present a case of obstructive sleep apnea (OSA) that required multilevel surgical correction of the airway and literature review and discuss the role supraglottic laryngeal collapse can have in OSA. A 34-year-old man presented to a tertiary otolaryngology clinic for treatment of OSA. He previously had nasal and palate surgeries and a Repose tongue suspension. His residual apnea hypopnea index (AHI) was 67. He had a dysphonia associated with a true vocal cord paralysis following resection of a benign neck mass in childhood. He also complained of inspiratory stridor with exercise and intolerance to continuous positive airway pressure. Physical examination revealed craniofacial hypoplasia, full base of tongue, and residual nasal airway obstruction. On laryngoscopy, the paretic aryepiglottic fold arytenoid complex prolapsed into the laryngeal inlet with each breath. This was more pronounced with greater respiratory effort. Surgical correction required a series of operations including awake tracheostomy, supraglottoplasty, midline glossectomy, genial tubercle advancement, maxillomandibular advancement, and reconstructive rhinoplasty. His final AHI was 1.9. Our patient's supraglottic laryngeal collapse constituted an area of obstruction not typically evaluated in OSA surgery. In conjunction with treating nasal, palatal, and hypopharyngeal subsites, our patient's supraglottoplasty represented a key component of his success. This case illustrates the need to evaluate the entire upper airway in a complicated case of OSA. Copyright © 2012 The American Laryngological, Rhinological, and Otological Society, Inc.

  7. Airway Clearance Techniques (ACTs)

    Medline Plus

    Full Text Available ... NACFC Carolyn and C. Richard Mattingly Leadership in Mental Health Care Award Mary M. Kontos Award NACFC Reflections ... help your infant or child manage their lung health, watch parents of children with CF and a respiratory therapist talk about the different techniques they use for airway ... Autogenic Drainage Positive Expiratory Pressure High-Frequency Chest ...

  8. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    airway and the function of the lungs (decreased residual capacity and aggravated ventilation perfusion mismatch) worse than in lean patients. Proper planning and preparation of airway management is essential, including elevation of the patient's upper body, head and neck. Preoxygenation is mandatory...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...

  9. Elevated paracellular glucose flux across cystic fibrosis airway epithelial monolayers is an important factor for Pseudomonas aeruginosa growth.

    Science.gov (United States)

    Garnett, James P; Gray, Michael A; Tarran, Robert; Brodlie, Malcolm; Ward, Christopher; Baker, Emma H; Baines, Deborah L

    2013-01-01

    People with cystic fibrosis (CF) who develop related diabetes (CFRD) have accelerated pulmonary decline, increased infection with antibiotic-resistant Pseudomonas aeruginosa and increased pulmonary exacerbations. We have previously shown that glucose concentrations are elevated in airway surface liquid (ASL) of people with CF, particularly in those with CFRD. We therefore explored the hypotheses that glucose homeostasis is altered in CF airway epithelia and that elevation of glucose flux into ASL drives increased bacterial growth, with an effect over and above other cystic fibrosis transmembrane conductance regulator (CFTR)-related ASL abnormalities. The aim of this study was to compare the mechanisms governing airway glucose homeostasis in CF and non-CF primary human bronchial epithelial (HBE) monolayers, under normal conditions and in the presence of Ps. aeruginosa filtrate. HBE-bacterial co-cultures were performed in the presence of 5 mM or 15 mM basolateral glucose to investigate how changes in blood glucose, such as those seen in CFRD, affects luminal Ps. aeruginosa growth. Calu-3 cell monolayers were used to evaluate the potential importance of glucose on Ps. aeruginosa growth, in comparison to other hallmarks of the CF ASL, namely mucus hyperviscosity and impaired CFTR-dependent fluid secretions. We show that elevation of basolateral glucose promotes the apical growth of Ps. aeruginosa on CF airway epithelial monolayers more than non-CF monolayers. Ps. aeruginosa secretions elicited more glucose flux across CF airway epithelial monolayers compared to non-CF monolayers which we propose increases glucose availability in ASL for bacterial growth. In addition, elevating basolateral glucose increased Ps. aeruginosa growth over and above any CFTR-dependent effects and the presence or absence of mucus in Calu-3 airway epithelia-bacteria co-cultures. Together these studies highlight the importance of glucose as an additional factor in promoting Ps. aeruginosa growth

  10. Elevated paracellular glucose flux across cystic fibrosis airway epithelial monolayers is an important factor for Pseudomonas aeruginosa growth.

    Directory of Open Access Journals (Sweden)

    James P Garnett

    Full Text Available People with cystic fibrosis (CF who develop related diabetes (CFRD have accelerated pulmonary decline, increased infection with antibiotic-resistant Pseudomonas aeruginosa and increased pulmonary exacerbations. We have previously shown that glucose concentrations are elevated in airway surface liquid (ASL of people with CF, particularly in those with CFRD. We therefore explored the hypotheses that glucose homeostasis is altered in CF airway epithelia and that elevation of glucose flux into ASL drives increased bacterial growth, with an effect over and above other cystic fibrosis transmembrane conductance regulator (CFTR-related ASL abnormalities. The aim of this study was to compare the mechanisms governing airway glucose homeostasis in CF and non-CF primary human bronchial epithelial (HBE monolayers, under normal conditions and in the presence of Ps. aeruginosa filtrate. HBE-bacterial co-cultures were performed in the presence of 5 mM or 15 mM basolateral glucose to investigate how changes in blood glucose, such as those seen in CFRD, affects luminal Ps. aeruginosa growth. Calu-3 cell monolayers were used to evaluate the potential importance of glucose on Ps. aeruginosa growth, in comparison to other hallmarks of the CF ASL, namely mucus hyperviscosity and impaired CFTR-dependent fluid secretions. We show that elevation of basolateral glucose promotes the apical growth of Ps. aeruginosa on CF airway epithelial monolayers more than non-CF monolayers. Ps. aeruginosa secretions elicited more glucose flux across CF airway epithelial monolayers compared to non-CF monolayers which we propose increases glucose availability in ASL for bacterial growth. In addition, elevating basolateral glucose increased Ps. aeruginosa growth over and above any CFTR-dependent effects and the presence or absence of mucus in Calu-3 airway epithelia-bacteria co-cultures. Together these studies highlight the importance of glucose as an additional factor in promoting Ps

  11. An escort for GPCRs: implications for regulation of receptor density at the cell surface.

    Science.gov (United States)

    Achour, Lamia; Labbé-Jullié, Catherine; Scott, Mark G H; Marullo, Stefano

    2008-10-01

    G-protein-coupled receptors (GPCRs) are dynamically regulated by various mechanisms that tune their response to external stimuli. Modulation of their plasma membrane density, via trafficking between subcellular compartments, constitutes an important process in this context. Substantial information has been accumulated on cellular pathways that remove GPCRs from the cell surface for subsequent degradation or recycling. In comparison, much less is known about the mechanisms controlling trafficking of neo-synthesized GPCRs from intracellular compartments to the cell surface. Although GPCR export to the plasma membrane is commonly considered to mostly implicate the default, unregulated secretory pathway, an increasing number of observations indicate that trafficking to the plasma membrane from the endoplasmic reticulum might be tightly regulated and involve specific protein partners. Moreover, a new paradigm is emerging in some cellular contexts, in which stocks of functional receptors retained within intracellular compartments can be rapidly mobilized to the plasma membrane to maintain sustained physiological responsiveness.

  12. Neuronal NOS localises to human airway cilia.

    Science.gov (United States)

    Jackson, Claire L; Lucas, Jane S; Walker, Woolf T; Owen, Holly; Premadeva, Irnthu; Lackie, Peter M

    2015-01-30

    Airway NO synthase (NOS) isoenzymes are responsible for rapid and localised nitric oxide (NO) production and are expressed in airway epithelium. We sought to determine the localisation of neuronal NOS (nNOS) in airway epithelium due to the paucity of evidence. Sections of healthy human bronchial tissue in glycol methacrylate resin and human nasal polyps in paraffin wax were immunohistochemically labelled and reproducibly demonstrated nNOS immunoreactivity, particularly at the proximal portion of cilia; this immunoreactivity was blocked by a specific nNOS peptide fragment. Healthy human epithelial cells differentiated at an air-liquid interface (ALI) confirmed the presence of all three NOS isoenzymes by immunofluorescence labelling. Only nNOS immunoreactivity was specific to the ciliary axonemeand co-localised with the cilia marker β-tubulin in the proximal part of the ciliary axoneme. We report a novel localisation of nNOS at the proximal portion of cilia in airway epithelium and conclude that its independent and local regulation of NO levels is crucial for normal cilia function. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. CD38/cADPR Signaling Pathway in Airway Disease: Regulatory Mechanisms

    Directory of Open Access Journals (Sweden)

    Deepak A. Deshpande

    2018-01-01

    Full Text Available Asthma is an inflammatory disease in which proinflammatory cytokines have a role in inducing abnormalities of airway smooth muscle function and in the development of airway hyperresponsiveness. Inflammatory cytokines alter calcium (Ca2+ signaling and contractility of airway smooth muscle, which results in nonspecific airway hyperresponsiveness to agonists. In this context, Ca2+ regulatory mechanisms in airway smooth muscle and changes in these regulatory mechanisms encompass a major component of airway hyperresponsiveness. Although dynamic Ca2+ regulation is complex, phospholipase C/inositol tris-phosphate (PLC/IP3 and CD38-cyclic ADP-ribose (CD38/cADPR are two major pathways mediating agonist-induced Ca2+ regulation in airway smooth muscle. Altered CD38 expression or enhanced cyclic ADP-ribosyl cyclase activity associated with CD38 contributes to human pathologies such as asthma, neoplasia, and neuroimmune diseases. This review is focused on investigations on the role of CD38-cyclic ADP-ribose signaling in airway smooth muscle in the context of transcriptional and posttranscriptional regulation of CD38 expression. The specific roles of transcription factors NF-kB and AP-1 in the transcriptional regulation of CD38 expression and of miRNAs miR-140-3p and miR-708 in the posttranscriptional regulation and the underlying mechanisms of such regulation are discussed.

  14. Analysis of the proteome of human airway epithelial secretions

    Directory of Open Access Journals (Sweden)

    Park Yongsung

    2011-01-01

    Full Text Available Abstract Background Airway surface liquid, often referred to as mucus, is a thin layer of fluid covering the luminal surface that plays an important defensive role against foreign particles and chemicals entering the lungs. Airway mucus contains various macromolecules, the most abundant being mucin glycoproteins, which contribute to its defensive function. Airway epithelial cells cultured in vitro secrete mucins and nonmucin proteins from their apical surface that mimics mucus production in vivo. The current study was undertaken to identify the polypeptide constituents of human airway epithelial cell secretions to gain a better understanding of the protein composition of respiratory mucus. Results Fifty-five proteins were identified in the high molecular weight fraction of apical secretions collected from in vitro cultures of well-differentiated primary human airway epithelial cells and isolated under physiological conditions. Among these were MUC1, MUC4, MUC5B, and MUC16 mucins. By proteomic analysis, the nonmucin proteins could be classified as inflammatory, anti-inflammatory, anti-oxidative, and/or anti-microbial. Conclusions Because the majority of the nonmucin proteins possess molecular weights less than that selected for analysis, it is theoretically possible that they may associate with the high molecular weight and negatively charged mucins to form a highly ordered structural organization that is likely to be important for maintaining the proper defensive function of airway mucus.

  15. Regulating spin and Fermi surface topology of a quantum metal film by the surface (interface) monatomic layer

    Science.gov (United States)

    Matsuda, Iwao

    2012-02-01

    the Rashba-type surface alloy reduces the spin-relaxation time in the ultrathin film significantly [5]. These results demonstrate that spin and Fermi surface topology of a quantum metal film can be regulated by the surface (interface) monatomic layer.[0pt] [1] T. Okuda, Y. Takeichi, K. He, A. Harasawa, A. Kakizaki, and I. Matsuda, Phys. Rev. B 80, 113409 (2009).[0pt] [2] K. He, T. Hirahara, T. Okuda, S. Hasegawa, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 101, 107604 (2008).[0pt] [3] K. He, Y. Takeichi, M. Ogawa, T. Okuda, P. Moras, D. Topwal, A. Harasawa, T. Hirahara, C. Carbone, A. Kakizaki, and I. Matsuda, Phys. Rev. Lett. 104, 156805 (2010).[0pt] [4] N. Miyata, R. Hobara, H. Narita, T. Hirahara, S. Hasegawa, and I. Matsuda, Japanese Journal of Applied Physics 50, 036602 (2011).[0pt] [5] N. Miyata, H. Narita, M. Ogawa, A. Harasawa, R. Hobara, T. Hirahara, P. Moras, D.Topwal, C.Carbone, S.Hasegawa, and I. Matsuda, Phys. Rev. B, 83, 195305 (2011).

  16. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    Science.gov (United States)

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  17. Biomarkers in Airway Diseases

    Directory of Open Access Journals (Sweden)

    Janice M Leung

    2013-01-01

    Full Text Available The inherent limitations of spirometry and clinical history have prompted clinicians and scientists to search for surrogate markers of airway diseases. Although few biomarkers have been widely accepted into the clinical armamentarium, the authors explore three sources of biomarkers that have shown promise as indicators of disease severity and treatment response. In asthma, exhaled nitric oxide measurements can predict steroid responsiveness and sputum eosinophil counts have been used to titrate anti-inflammatory therapies. In chronic obstructive pulmonary disease, inflammatory plasma biomarkers, such as fibrinogen, club cell secretory protein-16 and surfactant protein D, can denote greater severity and predict the risk of exacerbations. While the multitude of disease phenotypes in respiratory medicine make biomarker development especially challenging, these three may soon play key roles in the diagnosis and management of airway diseases.

  18. Controlled surface topography regulates collective 3D migration by epithelial-mesenchymal composite embryonic tissues.

    Science.gov (United States)

    Song, Jiho; Shawky, Joseph H; Kim, YongTae; Hazar, Melis; LeDuc, Philip R; Sitti, Metin; Davidson, Lance A

    2015-07-01

    Cells in tissues encounter a range of physical cues as they migrate. Probing single cell and collective migratory responses to physically defined three-dimensional (3D) microenvironments and the factors that modulate those responses are critical to understanding how tissue migration is regulated during development, regeneration, and cancer. One key physical factor that regulates cell migration is topography. Most studies on surface topography and cell mechanics have been carried out with single migratory cells, yet little is known about the spreading and motility response of 3D complex multi-cellular tissues to topographical cues. Here, we examine the response to complex topographical cues of microsurgically isolated tissue explants composed of epithelial and mesenchymal cell layers from naturally 3D organized embryos of the aquatic frog Xenopus laevis. We control topography using fabricated micropost arrays (MPAs) and investigate the collective 3D migration of these multi-cellular systems in these MPAs. We find that the topography regulates both collective and individual cell migration and that dense MPAs reduce but do not eliminate tissue spreading. By modulating cell size through the cell cycle inhibitor Mitomycin C or the spacing of the MPAs we uncover how 3D topographical cues disrupt collective cell migration. We find surface topography can direct both single cell motility and tissue spreading, altering tissue-scale processes that enable efficient conversion of single cell motility into collective movement. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Direct numerical simulation of expiratory crackles: Relationship between airway closure dynamics and acoustic fluctuations.

    Science.gov (United States)

    Ii, Satoshi; Wada, Shigeo

    2017-01-04

    This paper investigates the relationship between airway closure dynamics and acoustic fluctuations in expiratory crackles using direct numerical simulation. A unified mathematical model is proposed to deal with flow in an airway, elastic deformation of the airway wall, surface tension driven motion of the liquid film that lines the airway, and their acoustic fluctuations because of material compressibility. Airway closure is induced by increasing the surrounding pressure, then the source of the pressure fluctuations is measured over time. Our results show that the airway closure occurs suddenly because of a bridge formation of the liquid film, and high energy transfer occurs between the kinetic energy, the surface energy of the liquid interface, and the elastic energy of the airway wall, invoking a large acoustic fluctuation that causes the expiratory crackles. Nonlinear behavior is observed in terms of the airway wall stiffness; the dynamic motion of the airway closure becomes moderate and both the energy transfer and acoustic fluctuations are dramatically reduced with an increase in airway wall stiffness. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Regulating urban surface runoff through nature-based solutions - An assessment at the micro-scale.

    Science.gov (United States)

    Zölch, Teresa; Henze, Lisa; Keilholz, Patrick; Pauleit, Stephan

    2017-08-01

    Urban development leads to changes of surface cover that disrupt the hydrological cycle in cities. In particular, impermeable surfaces and the removal of vegetation reduce the ability to intercept, store and infiltrate rainwater. Consequently, the volume of stormwater runoff and the risk of local flooding rises. This is further amplified by the anticipated effects of climate change leading to an increased frequency and intensity of heavy rain events. Hence, urban adaptation strategies are required to mitigate those impacts. A nature-based solution, more and more promoted in politics and academia, is urban green infrastructure as it contributes to the resilience of urban ecosystems by providing services to maintain or restore hydrological functions. However, this poses a challenge to urban planners in deciding upon effective adaptation measures as they often lack information on the performance of green infrastructure to moderate surface runoff. It remains unclear what type of green infrastructure (e.g. trees, green roofs), offers the highest potential to reduce discharge volumes and to what extent. Against this background, this study provides an approach to gather quantitative evidence on green infrastructure's regulation potential. We use a micro-scale scenario modelling approach of different variations of green cover under current and future climatic conditions. The scenarios are modelled with MIKE SHE, an integrated hydrological simulation tool, and applied to a high density residential area of perimeter blocks in Munich, Germany. The results reveal that both trees and green roofs increase water storage capacities and hence reduce surface runoff, although the main contribution of trees lies in increasing interception and evapotranspiration, whereas green roofs allow for more retention through water storage in their substrate. With increasing precipitation intensities as projected under climate change their regulating potential decreases due to limited water

  1. Anticholinergic treatment in airways diseases.

    LENUS (Irish Health Repository)

    Flynn, Robert A

    2009-10-01

    The prevalence of chronic airways diseases such as chronic obstructive pulmonary disease and asthma is increasing. They lead to symptoms such as a cough and shortness of breath, partially through bronchoconstriction. Inhaled anticholinergics are one of a number of treatments designed to treat bronchoconstriction in airways disease. Both short-acting and long-acting agents are now available and this review highlights their efficacy and adverse event profile in chronic airways diseases.

  2. Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences

    Directory of Open Access Journals (Sweden)

    Fei Ran

    2017-11-01

    Full Text Available The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Chinese Academy of Sciences, is a research institution focusing on processes and mechanisms of mountain environmental variation and its ecological regulation in China, especially in the upper reaches of the Yangtze River and the Qinghai-Tibet Plateau. By studying the movement of soil and water, as well as the material circulation of carbon, nitrogen, phosphorus, and more, the laboratory aims to reveal processes and mechanisms of mountain environmental variation specific to soil erosion and nonpoint source pollution, the vulnerability of mountain environments, and responses and adaptations of mountain environments under global change. Based on this, it seeks to propose countermeasures of environmental conservation and ecological control in mountain areas and to provide scientific evidence and technical support for sustainable development and ecological security in mountainous areas of China.

  3. ΔF508 CFTR surface stability is regulated by DAB2 and CHIP-mediated ubiquitination in post-endocytic compartments.

    Directory of Open Access Journals (Sweden)

    Lianwu Fu

    Full Text Available The ΔF508 mutant form of the cystic fibrosis transmembrane conductance regulator (ΔF508 CFTR that is normally degraded by the ER-associated degradative pathway can be rescued to the cell surface through low-temperature (27°C culture or small molecular corrector treatment. However, it is unstable on the cell surface, and rapidly internalized and targeted to the lysosomal compartment for degradation. To understand the mechanism of this rapid turnover, we examined the role of two adaptor complexes (AP-2 and Dab2 and three E3 ubiquitin ligases (c-Cbl, CHIP, and Nedd4-2 on low-temperature rescued ΔF508 CFTR endocytosis and degradation in human airway epithelial cells. Our results demonstrate that siRNA depletion of either AP-2 or Dab2 inhibits ΔF508 CFTR endocytosis by 69% and 83%, respectively. AP-2 or Dab2 depletion also increases the rescued protein half-life of ΔF508 CFTR by ~18% and ~91%, respectively. In contrast, the depletion of each of the E3 ligases had no effect on ΔF508 CFTR endocytosis, whereas CHIP depletion significantly increased the surface half-life of ΔF508 CFTR. To determine where and when the ubiquitination occurs during ΔF508 CFTR turnover, we monitored the ubiquitination of rescued ΔF508 CFTR during the time course of CFTR endocytosis. Our results indicate that ubiquitination of the surface pool of ΔF508 CFTR begins to increase 15 min after internalization, suggesting that CFTR is ubiquitinated in a post-endocytic compartment. This post-endocytic ubiquination of ΔF508 CFTR could be blocked by either inhibiting endocytosis, by siRNA knockdown of CHIP, or by treating cells with the CFTR corrector, VX-809. Our results indicate that the post-endocytic ubiquitination of CFTR by CHIP is a critical step in the peripheral quality control of cell surface ΔF508 CFTR.

  4. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Background: To evaluate the possibility of airway management using a laryngeal mask airway (LMA) during dental procedures on mentally retarded (MR) patients and patients with genetic diseases. Design: A prospective pilot study. Setting: University Hospital. Methods: A pilot study was designed to induce general ...

  5. Airways Disease: Phenotyping Heterogeneity Using Measures of Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Siddiqui Salman

    2007-06-01

    Full Text Available Despite asthma and chronic obstructive pulmonary disease being widely regarded as heterogeneous diseases, a consensus for an accurate system of classification has not been agreed. Recent studies have suggested that the recognition of subphenotypes of airway disease based on the pattern of airway inflammation may be particularly useful in increasing our understanding of the disease. The use of non-invasive markers of airway inflammation has suggested the presence of four distinct phenotypes: eosinophilic, neutrophilic, mixed inflammatory and paucigranulocytic asthma. Recent studies suggest that these subgroups may differ in their etiology, immunopathology and response to treatment. Importantly, novel treatment approaches targeted at specific patterns of airway inflammation are emerging, making an appreciation of subphenotypes particularly relevant. New developments in phenotyping inflammation and other facets of airway disease mean that we are entering an era where careful phenotyping will lead to targeted therapy.

  6. An integrated modelling framework for regulated river systems in Land Surface Hydrological Models

    Science.gov (United States)

    Rehan Anis, Muhammad; razavi, Saman; Wheater, Howard

    2017-04-01

    Many of the large river systems around the world are highly regulated with numerous physical flow control and storage structures as well as a range of water abstraction rules and regulations. Most existing Land Surface Models (LSM) do not represent the modifications to the hydrological regimes introduced by water management (reservoirs, irrigation diversions, etc.). The interactions between natural hydrological processes and changes in water and energy fluxes and storage due to human interventions are important to the understanding of how these systems may respond to climate change amongst other drivers for change as well as to the assessment of their feedbacks to the climate system at regional and global scales. This study presents an integrated modelling approach to include human interventions within natural hydrological systems using a fully coupled modelling platform. The Bow River Basin in Alberta (26,200 km2), one of the most managed Canadian rivers, is used to demonstrate the approach. We have dynamically linked the MESH modelling system, which embeds the Canadian Land Surface Scheme (CLASS), with the MODSIM-DSS water management modelling tool. MESH models the natural hydrology while MODSIM optimizes the reservoir operation of 4 simulated reservoirs to satisfy demands within the study basin. MESH was calibrated for the catchments upstream the reservoirs and gave good performance (NSE = 0.81) while BIAS was only 2.3% at the catchment outlet. Without coupling with MODSIM (i.e. no regulation), simulated hydrographs at the catchment outlet were in complete disagreement with observations (NSE = 0.28). The coupled model simulated the optimization introduced by the operation of the multi-reservoir system in the Bow river basin and shows excellent agreement between observed and simulated hourly flows (NSE = 0.98). Irrigation demands are fully satisfied during summer, however, there are some shortages in winter demand from industries, which can be rectified by

  7. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    Science.gov (United States)

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  8. Distribution of Major Basic Protein on Human Airway following In Vitro Eosinophil Incubation

    Directory of Open Access Journals (Sweden)

    Ailing Xue

    2010-01-01

    Full Text Available Major basic protein (MBP released from activated eosinophils may influence airway hyperresponsiveness (AHR by either direct effects on airway myocytes or by an indirect effect. In this study, human bronchi, freshly isolated human eosinophils, or MBP purified from human eosinophil granules were incubated for studying eosinophil infiltration and MBP localization. Eosinophils immediately adhered to intact human airway as well as to cultured human airway myocytes and epithelium. Following incubation 18–24 h, eosinophils migrated into the airway media, including the smooth muscle layer, but had no specific recruitment to airway neurons. Eosinophils released significant amounts of MBP within the airway media, including areas comprising the smooth muscle layer. Most deposits of MBP were focally discrete and restricted by immunologic detection to a maximum volume of ∼300 μm3 about the eosinophil. Native MBP applied exogenously was immediately deposited on the surface of the airway, but required at least 1 h to become detected within the media of the airway wall. Tissue MBP infiltration and deposition increased in a time- and concentration-dependent manner. Taken together, these findings suggest that eosinophil-derived cationic proteins may alter airway hyperresponsiveness (AHR in vivo by an effect that is not limited to the bronchial epithelium.

  9. Chemotoxicity of doxorubicin and surface expression of P-glycoprotein (MDR1) is regulated by the Pseudomonas aeruginosa toxin Cif.

    Science.gov (United States)

    Ye, Siying; MacEachran, Daniel P; Hamilton, Joshua W; O'Toole, George A; Stanton, Bruce A

    2008-09-01

    P-glycoprotein (Pgp), a member of the adenosine triphosphate-binding cassette (ABC) transporter superfamily, is a major drug efflux pump expressed in normal tissues, and is overexpressed in many human cancers. Overexpression of Pgp results in reduced intracellular drug concentration and cytotoxicity of chemotherapeutic drugs and is thought to contribute to multidrug resistance of cancer cells. The involvement of Pgp in clinical drug resistance has led to a search for molecules that block Pgp transporter activity to improve the efficacy and pharmacokinetics of therapeutic agents. We have recently identified and characterized a secreted toxin from Pseudomonas aeruginosa, designated cystic fibrosis transmembrane conductance regulator (CFTR) inhibitory factor (Cif). Cif reduces the apical membrane abundance of CFTR, also an ABC transporter, and inhibits the CFTR-mediated chloride ion secretion by human airway and kidney epithelial cells. We report presently that Cif also inhibits the apical membrane abundance of Pgp in kidney, airway, and intestinal epithelial cells but has no effect on plasma membrane abundance of multidrug resistance protein 1 or 2. Cif increased the drug sensitivity to doxorubicin in kidney cells expressing Pgp by 10-fold and increased the cellular accumulation of daunorubicin by 2-fold. Thus our studies show that Cif increases the sensitivity of Pgp-overexpressing cells to doxorubicin, consistent with the hypothesis that Cif affects Pgp functional expression. These results suggest that Cif may be useful to develop a new class of specific inhibitors of Pgp aimed at increasing the sensitivity of tumors to chemotherapeutic drugs, and at improving the bioavailability of Pgp transport substrates.

  10. Anaesthesia and subglottic airway obstruction

    African Journals Online (AJOL)

    2009-07-14

    Jul 14, 2009 ... Keywords: shared airway; jet ventilation; TIVA/TCI; laser excision; monitoring. Abstract. In this article, we describe the anaesthetic management and laser excision of a subglottic tumour that caused upper airway obstruction. Stridor was the presenting feature. A good history and careful assessment will ...

  11. THE BUFFER CAPACITY OF AIRWAY EPITHELIAL SECRETIONS

    Directory of Open Access Journals (Sweden)

    Dusik eKim

    2014-06-01

    Full Text Available The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF. The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 µl volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO3- is the major buffer. Peak buffer capacity (β increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO3- secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO3- secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  12. The buffer capacity of airway epithelial secretions.

    Science.gov (United States)

    Kim, Dusik; Liao, Jie; Hanrahan, John W

    2014-01-01

    The pH of airway epithelial secretions influences bacterial killing and mucus properties and is reduced by acidic pollutants, gastric reflux, and respiratory diseases such as cystic fibrosis (CF). The effect of acute acid loads depends on buffer capacity, however the buffering of airway secretions has not been well characterized. In this work we develop a method for titrating micro-scale (30 μl) volumes and use it to study fluid secreted by the human airway epithelial cell line Calu-3, a widely used model for submucosal gland serous cells. Microtitration curves revealed that HCO(-) 3 is the major buffer. Peak buffer capacity (β) increased from 17 to 28 mM/pH during forskolin stimulation, and was reduced by >50% in fluid secreted by cystic fibrosis transmembrane conductance regulator (CFTR)-deficient Calu-3 monolayers, confirming an important role of CFTR in HCO(-) 3 secretion. Back-titration with NaOH revealed non-volatile buffer capacity due to proteins synthesized and released by the epithelial cells. Lysozyme and mucin concentrations were too low to buffer Calu-3 fluid significantly, however model titrations of porcine gastric mucins at concentrations near the sol-gel transition suggest that mucins may contribute to the buffer capacity of ASL in vivo. We conclude that CFTR-dependent HCO(-) 3 secretion and epithelially-derived proteins are the predominant buffers in Calu-3 secretions.

  13. Pulmonary Surfactant Function in Alveoli and Conducting Airways

    Directory of Open Access Journals (Sweden)

    Goran Enhorning

    1996-01-01

    Full Text Available Surface tension plays a very important role in aeration of the neonate's lungs. Pulmonary surfactant, which is inadequate in the premature infant, modifies surface tension during the act of breathing and is necessary for maintenance of alveolar stability. These facts led to the development of the concept that it might be possible to treat the premature infant by supplementing the infant's inadequate surfactant supply. In addition to maintaining alveolar stability, pulmonary surfactant might also be of vital importance for maintenance of small airway patency. Various conditions, most importantly asthma, might be the reason for a surfactant dysfunction to develop. This in turn might cause airway resistance to increase.

  14. Predominant constitutive CFTR conductance in small airways

    Directory of Open Access Journals (Sweden)

    Lytle Christian

    2005-01-01

    Full Text Available Abstract Background The pathological hallmarks of chronic obstructive pulmonary disease (COPD are inflammation of the small airways (bronchiolitis and destruction of lung parenchyma (emphysema. These forms of disease arise from chronic prolonged infections, which are usually never present in the normal lung. Despite the fact that primary hygiene and defense of the airways presumably requires a well controlled fluid environment on the surface of the bronchiolar airway, very little is known of the fluid and electrolyte transport properties of airways of less than a few mm diameter. Methods We introduce a novel approach to examine some of these properties in a preparation of minimally traumatized porcine bronchioles of about 1 mm diameter by microperfusing the intact bronchiole. Results In bilateral isotonic NaCl Ringer solutions, the spontaneous transepithelial potential (TEP; lumen to bath of the bronchiole was small (mean ± sem: -3 ± 1 mV; n = 25, but when gluconate replaced luminal Cl-, the bionic Cl- diffusion potentials (-58 ± 3 mV; n = 25 were as large as -90 mV. TEP diffusion potentials from 2:1 NaCl dilution showed that epithelial Cl- permeability was at least 5 times greater than Na+ permeability. The anion selectivity sequence was similar to that of CFTR. The bionic TEP became more electronegative with stimulation by luminal forskolin (5 μM+IBMX (100 μM, ATP (100 μM, or adenosine (100 μM, but not by ionomycin. The TEP was partially inhibited by NPPB (100 μM, GlyH-101* (5–50 μM, and CFTRInh-172* (5 μM. RT-PCR gave identifying products for CFTR, α-, β-, and γ-ENaC and NKCC1. Antibodies to CFTR localized specifically to the epithelial cells lining the lumen of the small airways. Conclusion These results indicate that the small airway of the pig is characterized by a constitutively active Cl- conductance that is most likely due to CFTR.

  15. Antimicrobial Peptide P60.4Ac-Containing Creams and Gel for Eradication of Methicillin-Resistant Staphylococcus aureus from Cultured Skin and Airway Epithelial Surfaces.

    Science.gov (United States)

    Haisma, Elisabeth M; Göblyös, Anikó; Ravensbergen, Bep; Adriaans, Alwin E; Cordfunke, Robert A; Schrumpf, Jasmijn; Limpens, Ronald W A L; Schimmel, Kirsten J M; den Hartigh, Jan; Hiemstra, Pieter S; Drijfhout, Jan Wouter; El Ghalbzouri, Abdoelwaheb; Nibbering, Peter H

    2016-07-01

    We previously found the LL-37-derived peptide P60.4Ac to be effective against methicillin-resistant Staphylococcus aureus (MRSA) on human epidermal models (EMs). The goal of this study was to identify the preferred carrier for this peptide for topical application on skin and mucosal surfaces. We prepared P60.4Ac in three formulations, i.e., a water-in-oil cream with lanolin (Softisan 649), an oil-in-water cream with polyethylene glycol hexadecyl ether (Cetomacrogol), and a hydroxypropyl methylcellulose (hypromellose) 4000 gel. We tested the antimicrobial efficacy of the peptide in these formulations against mupirocin-resistant and -sensitive MRSA strains on EMs and bronchial epithelial models (BEMs). The cytotoxic effects of formulated P60.4Ac on these models were determined using histology and WST-1 and lactate dehydrogenase assays. Moreover, we assessed the stability of the peptide in these formulations with storage for up to 3 months. Killing of MRSA by P60.4Ac in the two creams was less effective than that by P60.4Ac in the hypromellose gel. In agreement with those findings, P60.4Ac in the hypromellose gel was highly effective in eradicating the two MRSA strains from EMs. We found that even 0.1% (wt/wt) P60.4Ac in the hypromellose gel killed >99% of the viable planktonic bacteria and >85% of the biofilm-associated bacteria on EMs. Hypromellose gels containing 0.1% and 0.5% (wt/wt) P60.4Ac effectively reduced the numbers of viable MRSA cells from BEMs by >90%. No cytotoxic effects of P60.4Ac in the hypromellose gel with up to 2% (wt/wt) P60.4Ac on keratinocytes in EMs and in the hypromellose gel with up to 0.5% (wt/wt) P60.4Ac on epithelial cells in BEMs were observed. High-performance liquid chromatography analysis showed that P60.4Ac was stable in the Softisan cream and the hypromellose gel but not in the Cetomacrogol cream. We conclude that P60.4Ac formulated in hypromellose gel is both stable and highly effective in eradicating MRSA from colonized EMs and

  16. Mechanisms and regulation of surface interactions and biofilm formation in Agrobacterium

    Science.gov (United States)

    Heindl, Jason E.; Wang, Yi; Heckel, Brynn C.; Mohari, Bitan; Feirer, Nathan; Fuqua, Clay

    2014-01-01

    For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA) into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review, we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental) cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and biofilm formation

  17. Mechanisms and Regulation of Surface Interactions and Biofilm Formation in Agrobacterium

    Directory of Open Access Journals (Sweden)

    Jason E. Heindl

    2014-05-01

    Full Text Available For many pathogenic bacteria surface attachment is a required first step during host interactions. Attachment can proceed to invasion of host tissue or cells or to establishment of a multicellular bacterial community known as a biofilm. The transition from a unicellular, often motile, state to a sessile, multicellular, biofilm-associated state is one of the most important developmental decisions for bacteria. Agrobacterium tumefaciens genetically transforms plant cells by transfer and integration of a segment of plasmid-encoded transferred DNA (T-DNA into the host genome, and has also been a valuable tool for plant geneticists. A. tumefaciens attaches to and forms a complex biofilm on a variety of biotic and abiotic substrates in vitro. Although rarely studied in situ, it is hypothesized that the biofilm state plays an important functional role in the ecology of this organism. Surface attachment, motility, and cell division are coordinated through a complex regulatory network that imparts an unexpected asymmetry to the A. tumefaciens life cycle. In this review we describe the mechanisms by which A. tumefaciens associates with surfaces, and regulation of this process. We focus on the transition between flagellar-based motility and surface attachment, and on the composition, production, and secretion of multiple extracellular components that contribute to the biofilm matrix. Biofilm formation by A. tumefaciens is linked with virulence both mechanistically and through shared regulatory molecules. We detail our current understanding of these and other regulatory schemes, as well as the internal and external (environmental cues mediating development of the biofilm state, including the second messenger cyclic-di-GMP, nutrient levels, and the role of the plant host in influencing attachment and biofilm formation. A. tumefaciens is an important model system contributing to our understanding of developmental transitions, bacterial cell biology, and

  18. RabGDI controls axonal midline crossing by regulating Robo1 surface expression

    Directory of Open Access Journals (Sweden)

    Philipp Melanie

    2012-11-01

    Full Text Available Abstract Background Axons navigate to their future synaptic targets with the help of choice points, intermediate targets that express axon guidance cues. Once they reach a choice point, axons need to switch their response from attraction to repulsion in order to move on with the next stage of their journey. The mechanisms underlying the change in axonal responsiveness are poorly understood. Commissural axons become sensitive to the repulsive activity of Slits when they cross the ventral midline of the CNS. Responsiveness to Slits depends on surface expression of Robo receptors. In Drosophila, Commissureless (Comm plays a crucial regulatory role in midline crossing by keeping Robo levels low on precommissural axons. Interestingly, to date no vertebrate homolog of comm has been identified. Robo3/Rig1 has been shown to control Slit sensitivity before the midline, but without affecting Robo1 surface expression. Results We had identified RabGDI, a gene linked to human mental retardation and an essential component of the vesicle fusion machinery, in a screen for differentially expressed floor-plate genes. Downregulation of RabGDI by in ovo RNAi caused commissural axons to stall in the floor plate, phenocopying the effect observed after downregulation of Robo1. Conversely, premature expression of RabGDI prevented commissural axons from entering the floor plate. Furthermore, RabGDI triggered Robo1 surface expression in cultured commissural neurons. Taken together, our results identify RabGDI as a component of the switching mechanism that is required for commissural axons to change their response from attraction to repulsion at the intermediate target. Conclusion RabGDI takes over the functional role of fly Comm by regulating the surface expression of Robo1 on commissural axons in vertebrates. This in turn allows commissural axons to switch from attraction to repulsion at the midline of the spinal cord.

  19. Exercise and airway injury in athletes.

    Science.gov (United States)

    Couto, Mariana; Silva, Diana; Delgado, Luis; Moreira, André

    2013-01-01

    Olympic level athletes present an increased risk for asthma and allergy, especially those who take part in endurance sports, such as swimming or running, and in winter sports. Classical postulated mechanisms behind EIA include the osmotic, or airway-drying, hypothesis. Hyperventilation leads to evaporation of water and the airway surface liquid becomes hyperosmolar, providing a stimulus for water to move from any cell nearby, which results in the shrinkage of cells and the consequent release of inflammatory mediators that cause airway smooth muscle contraction. But the exercise-induced asthma/bronchoconstriction explanatory model in athletes probably comprises the interaction between environmental training factors, including allergens and ambient conditions such as temperature, humidity and air quality; and athlete's personal risk factors, such as genetic and neuroimmuneendocrine determinants. After the stress of training and competitions athletes experience higher rate of upper respiratory tract infections (URTI), compared with lesser active individuals. Increasing physical activity in non-athletes is associated with a decreased risk of URTI. Heavy exercise induces marked immunodepression which is multifactorial in origin. Prolonged, high intensity exercise temporarily impairs the immune competence while moderate activity may enhance immune function. The relationship between URTI and exercise is affected by poorly known individual determinants such genetic susceptibility, neurogenic mediated immune inflammation and epithelial barrier dysfunction. Further studies should better define the aetiologic factors and mechanisms involved in the development of asthma in athletes, and propose relevant preventive and therapeutic measures.

  20. TGF-β-activated kinase 1 (TAK1) signaling regulates TGF-β-induced WNT-5A expression in airway smooth muscle cells via Sp1 and β-catenin

    NARCIS (Netherlands)

    Kumawat, Kuldeep; Menzen, Mark H; Slegtenhorst, Ralph M; Halayko, Andrew J; Schmidt, Martina; Gosens, Reinoud

    2014-01-01

    WNT-5A, a key player in embryonic development and post-natal homeostasis, has been associated with a myriad of pathological conditions including malignant, fibroproliferative and inflammatory disorders. Previously, we have identified WNT-5A as a transcriptional target of TGF-β in airway smooth

  1. Surface acoustic wave regulated single photon emission from a coupled quantum dot–nanocavity system

    Energy Technology Data Exchange (ETDEWEB)

    Weiß, M.; Kapfinger, S.; Wixforth, A.; Krenner, H. J., E-mail: hubert.krenner@physik.uni-augsburg.de [Lehrstuhl für Experimentalphysik 1 and Augsburg Centre for Innovative Technologies (ACIT), Universität Augsburg, Universitätsstr. 1, 86159 Augsburg (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Reichert, T.; Finley, J. J. [Walter Schottky Institut and Physik Department E24, TU München, Am Coulombwall 4, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstr. 4, 80799 München (Germany); Kaniber, M. [Walter Schottky Institut and Physik Department E24, TU München, Am Coulombwall 4, 85748 Garching (Germany)

    2016-07-18

    A coupled quantum dot–nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a f{sub SAW} ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g{sup (2)}. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g{sup (2)}, demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  2. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    CERN Document Server

    Weiß, Matthias; Reichert, Thorsten; Finley, Jonathan J; Wixforth, Achim; Kaniber, Michael; Krenner, Hubert J

    2016-01-01

    A coupled quantum dot--nanocavity system in the weak coupling regime of cavity quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a $f_{\\rm SAW}\\simeq800\\,\\mathrm{MHz}$ surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function $g^{(2)}$. All relevant frequencies of our experiment are faithfully identified in the Fourier transform of $g^{(2)}$, demonstrating high fidelity regulation of the stream of single photons emitted by the system. The implemented scheme can be directly extended to strongly coupled systems and acoustically drives non-adiabatic entangling quantum gates based on Landau-Zener transitions.

  3. Airway management and morbid obesity.

    Science.gov (United States)

    Kristensen, Michael S

    2010-11-01

    Morbidly obese patients present with excess fatty tissue externally on the breast, neck, thoracic wall and abdomen and internally in the mouth, pharynx and abdomen. This excess tissue tends to make access (intubation, tracheostomy) to and patency (during sedation or mask ventilation) of the upper airway and the function of the lungs (decreased residual capacity and aggravated ventilation perfusion mismatch) worse than in lean patients. Proper planning and preparation of airway management is essential, including elevation of the patient's upper body, head and neck. Preoxygenation is mandatory in morbidly obese patients and should be followed by actions to counteract atelectasis formation. The decision as to weather to use a rapid sequence induction, an awake intubation or a standard induction with hypnotics should depend on the thorough airway examination and comorbidity and should not be based solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more efficient in the morbidly obese patients than in lean patients and serves as a rescue device for both failed ventilation and failed intubation. In the 24 h following anaesthesia, morbidly obese patients experience frequent oxygen desaturation periods that can be counteracted by continuous positive airway pressure, noninvasive ventilation and physiotherapy.

  4. Interplay between evaporation radiation, and ocean mixing in the regulation of equatorial Pacific sea surface temperature

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, R. [Univ. of Colorado, Boulder, CO (United States)

    1995-09-01

    Sea surface temperature (SST) regulation in the tropical oceans is an important aspect of global climate change. It has been observed that SST in the equatorial zone has not exceeded 304K over, at least, the past 10,000 years, and probably longer. Furthermore, recent satellite observations from the Earth Radiation Budget Experiment (ERBE) suggest that the greenhouse effect associated with mesoscale organized convection increases with increasing SST at a rate faster than this energy can be re-radiated to space. This suggests that a runaway greenhouse effect is possible in those parts of the tropical oceans where mesoscale convective systems (MCS) are prevalent. However, this is not observed. A search for mechanism(s) which can account for SST regulation is underway. Observational and theoretical evidence exists to suggest the importance of other feedback mechanisms as opposed to the cirrus shading and `super greenhouse effect` supported by the thermostat hypothesis. At least some of the time warm SSTs are associated with low wind speeds and low SSTs follow periods of high wind speed. 2 figs.

  5. Application of inorganic-contaminated groundwater to surface soils and compliance with toxicity characteristic (TCLP) regulations

    Energy Technology Data Exchange (ETDEWEB)

    Bergren, C.L.; Flora, M.A. [Westinghouse Savannah River Co., Aiken, SC (United States); Jackson, J.L.; Hicks, E.M. [Sirrine Environmental Consultants, Greenville, SC (United States)

    1991-12-31

    The Westinghouse Savannah River Company (WSRC) is currently implementing a Purged Water Management Program (PWMP) at the Savannah River Site (SRS) near Aiken, South Carolina. A variety of constituents and disposal strategies are being considered. Constituents investigated in the PWMP include radionuclides, organics, and inorganics (As, Ba, Cd, Cr, Pb, Hg, Se, and Ag). One practical disposal alternative is to discharge purged water (all constituents below regulatory levels) to the ground surface near the monitoring well that is being purged. The purpose of this investigation is to determine if long-term application of purged water that contains inorganic constituents (below regulatory levels) to surface soils will result in the accumulation of inorganics such that the soil becomes a hazardous waste according to the Toxicity Characteristic regulations (40 CFR Part 261.24). Two study soils were selected that encompass the range of soils found at the SRS: Lakeland and Orangeburg. Laboratory batch equilibrium studies indicate that the soils, although able to retain a large amount of inorganics, will not exceed Toxicity Characteristic concentrations when subjected to the TCLP. Field studies are underway to confirm this.

  6. Airway management and morbid obesity

    DEFF Research Database (Denmark)

    Kristensen, Michael S

    2010-01-01

    Morbidly obese patients present with excess fatty tissue externally on the breast, neck, thoracic wall and abdomen and internally in the mouth, pharynx and abdomen. This excess tissue tends to make access (intubation, tracheostomy) to and patency (during sedation or mask ventilation) of the upper...... in morbidly obese patients and should be followed by actions to counteract atelectasis formation. The decision as to weather to use a rapid sequence induction, an awake intubation or a standard induction with hypnotics should depend on the thorough airway examination and comorbidity and should not be based...... solely on whether morbid obesity is present or not. It is important to ensure sufficient depth of anaesthesia before initiating manipulation of the airway because inadequate anaesthesia depth predisposes to aspiration if airway management becomes difficult. The intubating laryngeal mask airway is more...

  7. Pseudomonas aeruginosa exotoxin pyocyanin causes cystic fibrosis airway pathogenesis.

    Science.gov (United States)

    Caldwell, Charles C; Chen, Yi; Goetzmann, Holly S; Hao, Yonghua; Borchers, Michael T; Hassett, Daniel J; Young, Lisa R; Mavrodi, Dmitri; Thomashow, Linda; Lau, Gee W

    2009-12-01

    The cystic fibrosis (CF) airway bacterial pathogen Pseudomonas aeruginosa secretes multiple virulence factors. Among these, the redox active exotoxin pyocyanin (PCN) is produced in concentrations up to 100 mumol/L during infection of CF and other bronchiectatic airways. However, the contributions of PCN during infection of bronchiectatic airways are not appreciated. In this study, we demonstrate that PCN is critical for chronic infection in mouse airways and orchestrates adaptive immune responses that mediate lung damage. Wild-type FVBN mice chronically exposed to PCN developed goblet cell hyperplasia and metaplasia, airway fibrosis, and alveolar airspace destruction. Furthermore, after 12 weeks of exposure to PCN, mouse lungs down-regulated the expression of T helper (Th) type 1 cytokines and polarized toward a Th2 response. Cellular analyses indicated that chronic exposure to PCN profoundly increased the lung population of recruited macrophages, CD4(+) T cells, and neutrophils responsible for the secretion of these cytokines. PCN-mediated goblet cell hyperplasia and metaplasia required Th2 cytokine signaling through the Stat6 pathway. In summary, this study establishes that PCN is an important P. aeruginosa virulence factor capable of directly inducing pulmonary pathophysiology in mice, consistent with changes observed in CF and other bronchiectasis lungs.

  8. Airway Inflammation and Structural Changes in Airway Hyper-Responsiveness and Asthma: An Overview

    Directory of Open Access Journals (Sweden)

    Louis-Philippe Boulet

    1998-01-01

    Full Text Available Asthma treatment has moved from bronchodilator therapy to an emphasis on anti-inflammatory therapy. Airway inflammation is believed to induce airway hyper-responsiveness (AHR through the release of mediators that increase the airway response to agonists. However, the exact contribution of airway inflammation in the physiology of airway hyper-responsiveness remains undefined. Structural modifications in airways resulting from inflammation may contribute to the development and persistence of AHR and the development of asthma. This paper reviews some of the main components of airway inflammation and structural changes in asthma, and discusses how these processes may interact to modify airway function and induce respiratory symptoms.

  9. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    Science.gov (United States)

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases.

  10. Airway-Specific Inducible Transgene Expression Using Aerosolized Doxycycline

    Science.gov (United States)

    Tata, Purushothama Rao; Pardo-Saganta, Ana; Prabhu, Mythili; Vinarsky, Vladimir; Law, Brandon M.; Fontaine, Benjamin A.; Tager, Andrew M.

    2013-01-01

    Tissue-specific transgene expression using tetracycline (tet)-regulated promoter/operator elements has been used to revolutionize our understanding of cellular and molecular processes. However, because most tet-regulated mouse strains use promoters of genes expressed in multiple tissues, to achieve exclusive expression in an organ of interest is often impossible. Indeed, in the extreme case, unwanted transgene expression in other organ systems causes lethality and precludes the study of the transgene in the actual organ of interest. Here, we describe a novel approach to activating tet-inducible transgene expression solely in the airway by administering aerosolized doxycycline. By optimizing the dose and duration of aerosolized doxycycline exposure in mice possessing a ubiquitously expressed Rosa26 promoter–driven reverse tet-controlled transcriptional activator (rtTA) element, we induce transgene expression exclusively in the airways. We detect no changes in the cellular composition or proliferative behavior of airway cells. We used this newly developed method to achieve airway basal stem cell–specific transgene expression using a cytokeratin 5 (also known as keratin 5)–driven rtTA driver line to induce Notch pathway activation. We observed a more robust mucous metaplasia phenotype than in mice receiving doxycycline systemically. In addition, unwanted phenotypes outside of the lung that were evident when doxycycline was received systemically were now absent. Thus, our approach allows for rapid and efficient airway-specific transgene expression. After the careful strain by strain titration of the dose and timing of doxycycline inhalation, a suite of preexisting transgenic mice can now be used to study airway biology specifically in cases where transient transgene expression is sufficient to induce a phenotype. PMID:23848320

  11. Selective response of human airway epithelia to luminal but not serosal solution hypertonicity. Possible role for proximal airway epithelia as an osmolality transducer

    DEFF Research Database (Denmark)

    Willumsen, Niels J.; Davis, C.W.; Boucher, R.C.

    1994-01-01

    exposure (10 min) to 430 mosM luminal solution elicited no regulation of any parameter. Optical measurements revealed a reduction in the thickness of preparations only in response to luminal hypertonic solutions. We conclude that (a) airway epithelial cells exhibit asymmetric water transport properties......- secretion; and (d) cell volume loss increases the resistance of the paracellular path. We speculate that these properties configure human nasal epithelium to behave as an osmotic sensor, transducing information about luminal solutions to the airway wall....

  12. Vessel-guided airway tree segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Ashraf, Haseem

    2010-01-01

    method is evaluated on 250 low dose computed tomography images from a lung cancer screening trial. Our experiments showed that applying the region growing algorithm on the airway appearance model produces more complete airway segmentations, leading to on average 20% longer trees, and 50% less leakage......This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. We propose a voxel classification approach for the appearance model, which uses a classifier that is trained...... to differentiate between airway and non-airway voxels. This is in contrast to previous works that use either intensity alone or hand crafted models of airway appearance. We show that the appearance model can be trained with a set of easily acquired, incomplete, airway tree segmentations. A vessel orientation...

  13. Siblings Promote a Type 1/Type 17-oriented immune response in the airways of asymptomatic neonates

    DEFF Research Database (Denmark)

    Wolsk, Helene Mygind; Chawes, Bo L.; Følsgaard, Nilofar V.

    2016-01-01

    BACKGROUND: Siblings have been shown to reduce the risk of later asthma and allergy, but the mechanism driving this association is unknown. The objective was to study whether siblings affect the airway immune response in healthy neonates. We hypothesized that siblings exert immune modulatory...... effects on neonates mirrored in the airway mucosa. METHODS: We measured 20 immune-mediators related to the Type 1, Type 2, Type 17 or regulatory immune pathways in the airway mucosa of 571 one-month-old asymptomatic neonates from the Copenhagen Prospective Studies on Asthma in Childhood2010 birth......-cohort (COPSAC2010). The association between airway mediator levels and presence of siblings was investigated using conventional statistics and principle component analyses (PCA). RESULTS: Neonates with siblings had an up-regulated level of airway immune-mediators, with predominance of Type 1- and Type 17...

  14. SIGNR3-dependent immune regulation by Lactobacillus acidophilus surface layer protein A in colitis

    Science.gov (United States)

    Lightfoot, Yaíma L; Selle, Kurt; Yang, Tao; Goh, Yong Jun; Sahay, Bikash; Zadeh, Mojgan; Owen, Jennifer L; Colliou, Natacha; Li, Eric; Johannssen, Timo; Lepenies, Bernd; Klaenhammer, Todd R; Mohamadzadeh, Mansour

    2015-01-01

    Intestinal immune regulatory signals govern gut homeostasis. Breakdown of such regulatory mechanisms may result in inflammatory bowel disease (IBD). Lactobacillus acidophilus contains unique surface layer proteins (Slps), including SlpA, SlpB, SlpX, and lipoteichoic acid (LTA), which interact with pattern recognition receptors to mobilize immune responses. Here, to elucidate the role of SlpA in protective immune regulation, the NCK2187 strain, which solely expresses SlpA, was generated. NCK2187 and its purified SlpA bind to the C-type lectin SIGNR3 to exert regulatory signals that result in mitigation of colitis, maintenance of healthy gastrointestinal microbiota, and protected gut mucosal barrier function. However, such protection was not observed in Signr3−/− mice, suggesting that the SlpA/SIGNR3 interaction plays a key regulatory role in colitis. Our work presents critical insights into SlpA/SIGNR3-induced responses that are integral to the potential development of novel biological therapies for autoinflammatory diseases, including IBD. PMID:25666591

  15. Regulation of surface and subterranean fresh water in the MERCOSUR regional integration

    Directory of Open Access Journals (Sweden)

    Celso Maran de Oliveira1

    2016-04-01

    Full Text Available This work discusses the regulatory standardization among countries that are party to MERCOSUR. This standardization forms the legal and institutional framework for maintaining important and strategic water resources, which require such regulation in order to be preserved and protected for present and future generations. Due to the lack of general legislation relating to MERCOSUR’s water resources, it was necessary to study the main multilateral agreements among the MERCOSUR countries, such as the Amazon Cooperation Treaty and the River Plate Basin Treaty relating to surface water, and also the legal points included in a recent joint statement of the presidents of the Mercosur States regarding the Guarani Aquifer, which is an important resource for current and future generations of the MERCOSUR. The survey was developed using the hermeneutical method, based upon surveys and analysis of international legislation involving MERCOSUR member states, multilateral treaties relating to transboundary waters and groundwater zones and also included a search of bibliographic materials, books, journals, thematic maps, information and documents available on the Internet. The combination of the sparse legal rules covers most legal relationships between MERCOSUR member states relating to water.

  16. Upper airway resistance syndrome.

    Science.gov (United States)

    Montserrat, J M; Badia, J R

    1999-03-01

    This article reviews the clinical picture, diagnosis and management of the upper airway resistance syndrome (UARS). Presently, there is not enough data on key points like the frequency of UARS and the morbidity associated with this condition. Furthermore, the existence of LIARS as an independent sleep disorder and its relation with snoring and obstructive events is in debate. The diagnosis of UARS is still a controversial issue. The technical limitations of the classic approach to monitor airflow with thermistors and inductance plethysmography, as well as the lack of a precise definition of hypopnea, may have led to a misinterpretation of UARS as an independent diagnosis from the sleep apnea/hypopnea syndrome. The diagnosis of this syndrome can be missed using a conventional polysomnographic setting unless appropriate techniques are applied. The use of an esophageal balloon to monitor inspiratory effort is currently the gold standard. However, other sensitive methods such as the use of a pneumotachograph and, more recently, nasal cannula/pressure transducer systems or on-line monitoring of respiratory impedance with the forced oscillation technique may provide other interesting possibilities. Recognition and characterization of this subgroup of patients within sleep breathing disorders is important because they are symptomatic and may benefit from treatment. Management options to treat UARS comprise all those currently available for sleep apnea/hypopnea syndrome (SAHS). However, the subset of patients classically identified as LIARS that exhibit skeletal craneo-facial abnormalities might possibly obtain further benefit from maxillofacial surgery.

  17. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Science.gov (United States)

    Li, Bobby W. S.; Stadhouders, Ralph; de Bruijn, Marjolein J. W.; Lukkes, Melanie; Beerens, Dior M. J. M.; Brem, Maarten D.; KleinJan, Alex; Bergen, Ingrid; Vroman, Heleen; Kool, Mirjam; van IJcken, Wilfred F. J.; Rao, Tata Nageswara; Fehling, Hans Jörg; Hendriks, Rudi W.

    2017-01-01

    Group 2 innate lymphoid cells (ILC2) are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM)-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL) fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than previously thought

  18. Group 2 Innate Lymphoid Cells Exhibit a Dynamic Phenotype in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Bobby W. S. Li

    2017-12-01

    Full Text Available Group 2 innate lymphoid cells (ILC2 are implicated in allergic asthma as an early innate source of the type 2 cytokines IL-5 and IL-13. However, their induction in house dust mite (HDM-mediated airway inflammation additionally requires T cell activation. It is currently unknown whether phenotypic differences exist between ILC2s that are activated in a T cell-dependent or T cell-independent fashion. Here, we compared ILC2s in IL-33- and HDM-driven airway inflammation. Using flow cytometry, we found that surface expression levels of various markers frequently used to identify ILC2s were dependent on their mode of activation, highly variable over time, and differed between tissue compartments, including bronchoalveolar lavage (BAL fluid, lung, draining lymph nodes, and spleen. Whereas in vivo IL-33-activated BAL fluid ILC2s exhibited an almost uniform CD25+CD127+T1/ST2+ICOS+KLRG1+ phenotype, at a comparable time point after HDM exposure BAL fluid ILC2s had a very heterogeneous surface marker phenotype. A major fraction of HDM-activated ILC2s were CD25lowCD127+T1/ST2low ICOSlowKLRG1low, but nevertheless had the capacity to produce large amounts of type 2 cytokines. HDM-activated CD25low ILC2s in BAL fluid and lung rapidly reverted to CD25high ILC2s upon in vivo stimulation with IL-33. Genome-wide transcriptional profiling of BAL ILC2s revealed ~1,600 differentially expressed genes: HDM-stimulated ILC2s specifically expressed genes involved in the regulation of adaptive immunity through B and T cell interactions, whereas IL-33-stimulated ILC2s expressed high levels of proliferation-related and cytokine genes. In both airway inflammation models ILC2s were present in the lung submucosa close to epithelial cells, as identified by confocal microscopy. In chronic HDM-driven airway inflammation ILC2s were also found inside organized cellular infiltrates near T cells. Collectively, our findings show that ILC2s are phenotypically more heterogeneous than

  19. Regulation of NKG2D-ligand cell surface expression by intracellular calcium after HDAC-inhibitor treatment

    DEFF Research Database (Denmark)

    Jensen, Helle; Hagemann-Jensen, Michael Henrik; Lauridsen, Felicia Kathrine Bratt

    2013-01-01

    cell surface expression on melanoma cells and Jurkat T-cells. A NKG2D-dependent cytolytic assay and staining with a recombinant NKG2D-Fc fusion protein showed that calcium chelation impaired the functional ability of NKG2D-ligands induced by HDAC-inhibitor treatment. The HDAC-inhibitor induced cell......-cells. We further show that secretion and cell surface binding of the calcium-regulating protein galectin-1 is enhanced upon HDAC-inhibitor treatment of melanoma cells. However, binding of galectin-1 to cell surface glycoproteins was not critical for constitutive or HDAC-inhibitor induced MICA/B and ULBP2...

  20. Distal airways are protected from goblet cell metaplasia by diminished expression of IL-13 signalling components.

    Science.gov (United States)

    Vock, C; Yildirim, A Ö; Wagner, C; Schlick, S; Lunding, L P; Lee, C G; Elias, J A; Fehrenbach, H; Wegmann, M

    2015-09-01

    Increased mucus production is a critical factor impairing lung function in patients suffering from bronchial asthma, the most common chronic inflammatory lung disease worldwide. This study aimed at investigating whether goblet cell (GC) metaplasia and mucus production are differentially regulated in proximal and distal airways. Female Balb/c mice were sensitized to ovalbumin (OVA) and challenged with an OVA-aerosol on two consecutive days for 1 week (acute) or 12 weeks (chronic). Real-time RT-PCR analysis was applied on microdissected airways. In acutely and chronically OVA-challenged mice, GC metaplasia and mucus production were observed in proximal but not in distal airways. In contrast, inflammation reflected by the infiltration of eosinophils and expression of the TH2-type cytokines IL-4 and IL-13 was increased in both proximal and distal airways. Abundance of IL-13Rα1 was lower in distal airways of healthy control mice. Under acute and chronic OVA-exposure, activation of IL-13Rα1-dependent signalling cascade, reflected by Spdef and Foxo3A transcription factors, was attenuated in distal compared to proximal airways. These data indicate that distal airways might be less sensitive to IL-13-induced GC metaplasia and mucus production through lower expression of IL-13Rα1 and attenuated activation of downstream signalling. This might represent a protective strategy to prevent mucus plugging of distal airways and thus impaired ventilation of attached alveoli. © 2015 John Wiley & Sons Ltd.

  1. CGRP induction in cystic fibrosis airways alters the submucosal gland progenitor cell niche in mice.

    Science.gov (United States)

    Xie, Weiliang; Fisher, John T; Lynch, Thomas J; Luo, Meihui; Evans, Turan I A; Neff, Traci L; Zhou, Weihong; Zhang, Yulong; Ou, Yi; Bunnett, Nigel W; Russo, Andrew F; Goodheart, Michael J; Parekh, Kalpaj R; Liu, Xiaoming; Engelhardt, John F

    2011-08-01

    In cystic fibrosis (CF), a lack of functional CF transmembrane conductance regulator (CFTR) chloride channels causes defective secretion by submucosal glands (SMGs), leading to persistent bacterial infection that damages airways and necessitates tissue repair. SMGs are also important niches for slow-cycling progenitor cells (SCPCs) in the proximal airways, which may be involved in disease-related airway repair. Here, we report that calcitonin gene-related peptide (CGRP) activates CFTR-dependent SMG secretions and that this signaling pathway is hyperactivated in CF human, pig, ferret, and mouse SMGs. Since CGRP-expressing neuroendocrine cells reside in bronchiolar SCPC niches, we hypothesized that the glandular SCPC niche may be dysfunctional in CF. Consistent with this hypothesis, CFTR-deficient mice failed to maintain glandular SCPCs following airway injury. In wild-type mice, CGRP levels increased following airway injury and functioned as an injury-induced mitogen that stimulated SMG progenitor cell proliferation in vivo and altered the proliferative potential of airway progenitors in vitro. Components of the receptor for CGRP (RAMP1 and CLR) were expressed in a very small subset of SCPCs, suggesting that CGRP indirectly stimulates SCPC proliferation in a non-cell-autonomous manner. These findings demonstrate that CGRP-dependent pathways for CFTR activation are abnormally upregulated in CF SMGs and that this sustained mitogenic signal alters properties of the SMG progenitor cell niche in CF airways. This discovery may have important implications for injury/repair mechanisms in the CF airway.

  2. Surface-bound galectin-4 regulates gene transcription and secretion of chemokines in human colorectal cancer cell lines.

    Science.gov (United States)

    Rao, U Subrahmanyeswara; Rao, Prema S

    2017-03-01

    One long-term complication of chronic intestinal inflammation is the development of colorectal cancer. However, the mechanisms linking inflammation to the colorectal tumorigenesis are poorly defined. Previously, we have demonstrated that galectin-4 is predominantly expressed in the luminal epithelia of the gastrointestinal tract, and its loss of expression plays a key role in the colorectal tumorigenesis. However, the mechanism by which galectin-4 regulates inflammation-induced tumorigenesis is unclear. Here, we show that galectin-4 secreted by the colorectal cancer cell lines was bound to the cell surface. Neutralization of surface-bound galectin-4 with anti-galectin-4 antibody resulted in increased cell proliferation with concomitant secretion of several chemokines into the extracellular medium. Neutralization of the surface-bound galectin-4 also resulted in the up-regulation of transcription of 29 genes, several of which are components of multiple inflammation signaling pathways. In an alternate experiment, binding of recombinant galectin-4 protein to cell surface of the galectin-4-negative colorectal cancer cells resulted in increased p27, and decreased cyclin D1 and c-Myc levels, leading to cell cycle arrest and apoptosis. Together, these data demonstrated that surface-bound galectin-4 is a dual function protein-down-regulating cell proliferation and chemokine secretion in galectin-4-expressing colorectal cancer cells on one hand and inducing apoptosis in galectin-4-negative colorectal cancer cells on the other hand.

  3. Down-regulation of platelet surface CD47 expression in Escherichia coli O157:H7 infection-induced thrombocytopenia.

    Directory of Open Access Journals (Sweden)

    Ya-Lan Guo

    Full Text Available BACKGROUND: Platelet depletion is a key feature of hemolytic uremic syndrome (HUS caused by Shiga toxin-producing Escherichia coli (STEC infection. The mechanism underlying STEC-induced platelet depletion, however, is not completely understood. METHODOLOGY/PRINCIPAL FINDINGS: Here we demonstrated for the first time that platelet surface expression of CD47 was significantly decreased in C57BL6 mice treated with concentrated culture filtrates (CCF from STEC O157:H7. STEC O157:H7 CCF treatment also led to a sharp drop of platelet counts. The reduction of cell surface CD47 was specific for platelets but not for neutrophil, monocytes and red blood cells. Down-regulation of platelet surface CD47 was also observed in isolated human platelets treated with O157:H7 CCF. Platelet surface CD47 reduction by O157:H7 CCF could be blocked by anti-TLR4 antibody but not anti-CD62 antibody. Down-regulation of platelet surface CD47 was positively correlated with platelet activation and phagocytosis by human monocyte-derived macrophages. Furthermore, the enhanced phagocytosis process of O157:H7 CCF-treated platelets was abolished by addition of soluble CD47 recombinants. CONCLUSIONS/SIGNIFICANCE: Our results suggest that platelet CD47 down-regulation may be a novel mechanism underneath STEC-induced platelet depletion, and that the interactions between CD47 and its receptor, signal regulatory protein alpha (SIRPalpha, play an essential role in modulating platelet homeostasis.

  4. United airway disease: current perspectives

    Directory of Open Access Journals (Sweden)

    Giavina-Bianchi P

    2016-05-01

    Full Text Available Pedro Giavina-Bianchi,* Marcelo Vivolo Aun,* Priscila Takejima, Jorge Kalil, Rosana Câmara Agondi Clinical Immunology and Allergy Division, Faculty of Medicine, University of São Paulo, São Paulo, Brazil*These authors contributed equally to this work. Abstract: Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. Keywords: ARIA, united airway disease, rhinitis, asthma, allergy, atopy, immediate hypersensitivity reaction, guideline

  5. Endothelial surface glycocalyx can regulate flow-induced nitric oxide production in microvessels in vivo.

    Directory of Open Access Journals (Sweden)

    Wanyi Yen

    Full Text Available Due to its unique location, the endothelial surface glycocalyx (ESG at the luminal side of the microvessel wall may serve as a mechano-sensor and transducer of blood flow and thus regulate endothelial functions. To examine this role of the ESG, we used fluorescence microscopy to measure nitric oxide (NO production in post-capillary venules and arterioles of rat mesentery under reduced (low and normal (high flow conditions, with and without enzyme pretreatment to remove heparan sulfate (HS of the ESG and in the presence of an endothelial nitric oxide synthase (eNOS inhibitor, NG-monomethyl-L-arginine (L-NMMA. Rats (SD, 250-300 g were anesthetized. The mesentery was gently taken out from the abdominal cavity and arranged on the surface of a glass coverslip for the measurement. An individual post-capillary venule or arteriole was cannulated and loaded for 45 min with 5 μM 4, 5-Diaminofluorescein diacetate, a membrane permeable fluorescent indictor for NO, then the NO production was measured for ~10 min under a low flow (~300 μm/s and for ~60 min under a high flow (~1000 μm/s. In the 15 min after switching to the high flow, DAF-2-NO fluorescence intensity increased to 1.27-fold of its baseline, DAF-2-NO continuously increased under the high flow, to 1.53-fold of its baseline in 60 min. Inhibition of eNOS by 1 mM L-NMMA attenuated the flow-induced NO production to 1.13-fold in 15 min and 1.30-fold of its baseline in 60 min, respectively. In contrast, no significant increase in NO production was observed after switching to the high flow for 60 min when 1 h pretreatment with 50 mU/mL heparanase III to degrade the ESG was applied. Similar NO production was observed in arterioles under low and high flows and under eNOS inhibition. Our results suggest that ESG participates in endothelial cell mechanosensing and transduction through its heparan sulfate to activate eNOS.

  6. Airway smooth muscle excitation-contraction coupling and airway hyperresponsiveness.

    Science.gov (United States)

    Hirota, Simon; Helli, Peter B; Catalli, Adriana; Chew, Allyson; Janssen, Luke J

    2005-01-01

    The primary complaints from patients with asthma pertain to function of airway smooth muscle (ASM) function including shortness of breath, wheezing, and coughing. Thus, it is imperative to better understand the mechanisms underlying excitation-contraction coupling in ASM. Here, we review the various signaling pathways underlying contraction in ASM, and then examine how these are altered in asthma and airway hyperresponsiveness (a hallmark feature of asthma). Throughout, we highlight how studies of vascular smooth muscle have helped or hindered progress in understanding ASM physiology and pathophysiology.

  7. Components of Lens Power That Regulate Surface Principal Powers and Relative Meridians Independently

    Directory of Open Access Journals (Sweden)

    H. Abelman

    2016-01-01

    Full Text Available Paraxial light rays incident in air on alternate refracting surfaces of a thick lens can yield complementary powers. This paper aims to test when these powers are invariant as surface refractive powers interchange in the expression. We solve for relevant surface powers. Potential anticommutators yield the nature of surface principal refractions along obliquely crossing perpendicular meridians; commutators yield meridians that align with those on the next surface. An invariant power component orients relative meridians or the nature of the matrix power on each noncylindrical surface demands that the other component varies. Another component of lens power aligns relative meridian positions for distinct principal powers. Interchanging surface power matrices affects this component. A symmetric lens power results if perpendicular principal meridians are associated with meridians on an opposite rotationally symmetric surface. For thin lenses, meridian alignment may be waived. An astigmatic contact lens can be specified by symmetric power despite having separated surfaces.

  8. Postoperative Airway Obstruction by a Bone Fragment

    Directory of Open Access Journals (Sweden)

    Patrick Schober

    2017-01-01

    Full Text Available Postoperative airway obstructions are potentially life-threatening complications. These obstructions may be classified as functional (sagging tongue, laryngospasm, or bronchospasm, pathoanatomical (airway swelling or hematoma within the airways, or foreign body-related. Various cases of airway obstruction by foreign bodies have previously been reported, for example, by broken teeth or damaged airway instruments. Here we present the exceptional case of a postoperative airway obstruction due to a large fragment of the patient’s maxillary bone, left accidentally in situ after transoral surgical tumor resection. Concerning this type of airway obstruction, we discuss possible causes, diagnosis, and treatment options. Although it is an exceptional case after surgery, clinicians should be aware of this potentially life-threatening complication. In summary, this case demonstrates that the differential diagnosis of postoperative airway obstructions should include foreign bodies derived from surgery, including tissue and bone fragments.

  9. Comparing the Laryngeal Mask Airway, Cobra Perilaryngeal Airway and Face Mask in Children Airway Management.

    Science.gov (United States)

    Tekin, Beyza; Hatipoğlu, Zehra; Türktan, Mediha; Özcengiz, Dilek

    2016-04-01

    We compared the effects of the laryngeal mask airway (LMA), face mask and Cobra perilaryngeal airway (PLA) in the airway management of spontaneously breathing paediatric patients undergoing elective inguinal surgery. In this study, 90 cases of 1-14-year-old children undergoing elective inguinal surgery were scheduled. The patients were randomly divided into three groups. Anaesthesia was provided with sevoflurane and 50%-50% nitrous oxide and oxygen. After providing an adequate depth of anaesthesia, supraglottic airway devices were inserted in the group I and II patients. The duration and number of insertion, haemodynamic parameters, plateau and peak inspiratory pressure and positive end-expiratory pressure of the patients were recorded preoperatively, after induction and at 5, 10, 15 and 30 min peroperatively. There were no statistical differences between the groups in terms of haemodynamic parameters (p>0.05). In group II, instrumentation success was higher and instrumentation time was shorter than group II. The positive end-expiratory pressure and plateau and peak inspiratory pressure values were statistically lower in group II (pairway safety and to avoid possible complications, LMA and Cobra PLA could be alternatives to face mask and that the Cobra PLA provided lower airway pressure and had a faster and more easy placement than LMA.

  10. Association of TMEM16A chloride channel overexpression with airway goblet cell metaplasia.

    Science.gov (United States)

    Scudieri, Paolo; Caci, Emanuela; Bruno, Silvia; Ferrera, Loretta; Schiavon, Marco; Sondo, Elvira; Tomati, Valeria; Gianotti, Ambra; Zegarra-Moran, Olga; Pedemonte, Nicoletta; Rea, Federico; Ravazzolo, Roberto; Galietta, Luis J V

    2012-12-01

    The TMEM16A protein has a potential role as a Ca(2+)-activated Cl(-) channel (CaCC) in airway epithelia where it may be important in the homeostasis of the airway surface fluid. We investigated the function and expression of TMEM16A in primary human bronchial epithelial cells and in a bronchial cell line (CFBE41o-). Under resting conditions, TMEM16A protein expression was relatively low. However, TMEM16A silencing with short-interfering RNAs caused a marked inhibition of CaCC activity, thus demonstrating that a low TMEM16A expression is sufficient to support Ca(2+)-dependent Cl(-) transport. Following treatment for 24-72 h with interleukin-4 (IL-4), a cytokine that induces mucous cell metaplasia, TMEM16A protein expression was strongly increased in approximately 50% of primary bronchial epithelial cells, with a specific localization in the apical membrane. IL-4 treatment also increased the percentage of cells expressing MUC5AC, a marker of goblet cells. Interestingly, MUC5AC was detected specifically in cells expressing TMEM16A. In particular, MUC5AC was found in 15 and 60% of TMEM16A-positive cells when epithelia were treated with IL-4 for 24 or 72 h, respectively. In contrast, ciliated cells showed expression of the cystic fibrosis transmembrane conductance regulator Cl(-) channel but not of TMEM16A. Our results indicate that TMEM16A protein is responsible for CaCC activity in airway epithelial cells, particularly in cells treated with IL-4, and that TMEM16A upregulation by IL-4 appears as an early event of goblet cell differentiation. These findings suggest that TMEM16A expression is particularly required under conditions of mucus hypersecretion to ensure adequate secretion of electrolytes and water.

  11. RNA-Seq quantification of the human small airway epithelium transcriptome

    Directory of Open Access Journals (Sweden)

    Hackett Neil R

    2012-02-01

    Full Text Available Abstract Background The small airway epithelium (SAE, the cell population that covers the human airway surface from the 6th generation of airway branching to the alveoli, is the major site of lung disease caused by smoking. The focus of this study is to provide quantitative assessment of the SAE transcriptome in the resting state and in response to chronic cigarette smoking using massive parallel mRNA sequencing (RNA-Seq. Results The data demonstrate that 48% of SAE expressed genes are ubiquitous, shared with many tissues, with 52% enriched in this cell population. The most highly expressed gene, SCGB1A1, is characteristic of Clara cells, the cell type unique to the human SAE. Among other genes expressed by the SAE are those related to Clara cell differentiation, secretory mucosal defense, and mucociliary differentiation. The high sensitivity of RNA-Seq permitted quantification of gene expression related to infrequent cell populations such as neuroendocrine cells and epithelial stem/progenitor cells. Quantification of the absolute smoking-induced changes in SAE gene expression revealed that, compared to ubiquitous genes, more SAE-enriched genes responded to smoking with up-regulation, and those with the highest basal expression levels showed most dramatic changes. Smoking had no effect on SAE gene splicing, but was associated with a shift in molecular pattern from Clara cell-associated towards the mucus-secreting cell differentiation pathway with multiple features of cancer-associated molecular phenotype. Conclusions These observations provide insights into the unique biology of human SAE by providing quantit-ative assessment of the global transcriptome under physiological conditions and in response to the stress of chronic cigarette smoking.

  12. Airway management in Ludwig's angina.

    Science.gov (United States)

    Neff, S P; Merry, A F; Anderson, B

    1999-12-01

    A 37-year-old 91 kg man presented with features of Ludwig's angina. Anaesthesia for incision and drainage of his submandibular abscess was undertaken by two specialist anaesthetists with an otorhinolaryngological surgeon prepared for immediate tracheostomy. After preoxygenation, gas induction with sevoflurane in oxygen was followed by a gush of pus into the oral cavity and laryngospam causing acute upper airway obstruction. This resolved with 25 mg of suxamethonium and an endotracheal tube was passed into the trachea with difficulty. Options for management of the difficult airway in Ludwig's angina are discussed.

  13. Outcomes following prehospital airway management in severe ...

    African Journals Online (AJOL)

    Outcomes following prehospital airway management in severe traumatic brain injury. ... Patients were categorised by their method of airway management: rapid sequence intubation (RSI), sedation-assisted intubation, failed intubation, basic airway management, and intubated without drugs. Good outcomes were defined by ...

  14. Emergency surgical airway management in Denmark

    DEFF Research Database (Denmark)

    Rosenstock, C V; Nørskov, A K; Wetterslev, J

    2016-01-01

    BACKGROUND: The emergency surgical airway (ESA) is the final option in difficult airway management. We identified ESA procedures registered in the Danish Anaesthesia Database (DAD) and described the performed airway management. METHODS: We extracted a cohort of 452 461 adult patients undergoing...

  15. The Laryngeal Mask Airway (LMA) as an alternative to airway ...

    African Journals Online (AJOL)

    Adele

    The altered anatomy of the upper airways ... problems with tracheal intubation.2 Nasotracheal intubation may cause bleeding and contamination of the tube with the nasal cavity content. Post-intubation pain in the throat may. P Michalek. 1 ... All patients were examined preoperatively, and were given oral pretreatment using ...

  16. Functional phenotype of airway myocytes from asthmatic airways

    NARCIS (Netherlands)

    Wright, David B.; Trian, Thomas; Siddiqui, Sana; Pascoe, Chris D.; Ojo, Oluwaseun O.; Johnson, Jill R.; Dekkers, Bart G. J.; Dakshinamurti, Shyamala; Bagchi, Rushita; Burgess, Janette K.; Kanabar, Varsha

    In asthma, the airway smooth muscle (ASM) cell plays a central role in disease pathogenesis through cellular changes which may impact on its microenvironment and alter ASM response and function. The answer to the long debated question of what makes a 'healthy' ASM cell become 'asthmatic' still

  17. The regulation of sepiolite surface free energy and its impact on the thermal insulation property of coating.

    Science.gov (United States)

    Chen, Cong; Liang, Jinsheng; Wang, Fei; Tang, Qingguo; Chen, Yalei

    2014-05-01

    Surface modification is used to regulate surface free energy of sepiolite with 3-glycidoxypropyltrimethoxysilanes (3-GPTMS), 3-methacryloxypropyltrimethoxysilanes (3-MAPTMS) and 3-mercaptopropyltrimethoxysilane (3-MPTMS). Through characterization by Fourier transform infrared spectroscopy, surface free energy, zeta potential and sedimentation measurements and infrared emissivity, it is found that the surface free energy of 3-MPTMS modified sepiolite decreases to 31.72 mJ/m2 and the percentage of polar component increases to 89.75%, thus leading to that the infrared emissivity of 3-MPTMS modified sepiolite increase to be higher than 0.8 and the dispersion of sepiolite has been improved. The excellent thermal insulation property of coating is prepared with 10% additive amount of 3-MPTMS modified sepiolite and the temperature difference between upper and lower box of modified sepiolite coatings is 10 degrees C which is higher than the untreated sepiolite.

  18. Is surgical airway necessary for airway management in deep neck infections and Ludwig angina?

    Science.gov (United States)

    Wolfe, Mary M; Davis, James W; Parks, Steven N

    2011-02-01

    Deep neck infections are potentially life-threatening conditions because of airway compromise. Management requires early recognition, antibiotics, surgical drainage, and effective airway control. The Surgical Education and Self-Assessment Program 12 states that awake tracheostomy is the treatment of choice for these patients. With advanced airway control techniques such as retrograde intubation, GlideScope, and fiberoptic intubation, surgical airway is not required. A retrospective analysis of all deep neck abscesses treated from December 1999 to July 2006 was performed. All patients who underwent urgent or emergent surgery for Ludwig angina and submental, submandibular, sublingual, and parapharyngeal abscesses (Current Procedural Terminology codes 41015, 41016, 41017, 42320, and 42725) were included in our review. Charts were studied for age, presence of true Ludwig angina, presence of airway compromise, airway management, morbidity/mortality, and the requirement for surgical airway. Of 29 patients, 6 (20%) had symptoms consistent with true Ludwig angina. Nineteen (65.5%) had evidence of airway compromise. Eight (42%) of these 19 patients required advanced airway control techniques. No patient required a surgical airway, and no mortality resulted from airway compromise. Advance airway control techniques were required more often in patients with airway compromise (P Ludwig angina and deep neck abscesses requires good clinical judgment. Patients with deep neck infections and symptoms of airway compromise may be safely managed with advanced airway control techniques. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Prolonged ozone exposure in an allergic airway disease model: Adaptation of airway responsiveness and airway remodeling

    Directory of Open Access Journals (Sweden)

    Park Chang-Soo

    2006-02-01

    Full Text Available Abstract Background Short-term exposure to high concentrations of ozone has been shown to increase airway hyper-responsiveness (AHR. Because the changes in AHR and airway inflammation and structure after chronic ozone exposure need to be determined, the goal of this study was to investigate these effects in a murine model of allergic airway disease. Methods We exposed BALB/c mice to 2 ppm ozone for 4, 8, and 12 weeks. We measured the enhanced pause (Penh to methacholine and performed cell differentials in bronchoalveolar lavage fluid. We quantified the levels of IL-4 and IFN-γ in the supernatants of the bronchoalveolar lavage fluids using enzyme immunoassays, and examined the airway architecture under light and electron microscopy. Results The groups exposed to ozone for 4, 8, and 12 weeks demonstrated decreased Penh at methacholine concentrations of 12.5, 25, and 50 mg/ml, with a dose-response curve to the right of that for the filtered-air group. Neutrophils and eosinophils increased in the group exposed to ozone for 4 weeks compared to those in the filtered-air group. The ratio of IL-4 to INF-γ increased significantly after exposure to ozone for 8 and 12 weeks compared to the ratio for the filtered-air group. The numbers of goblet cells, myofibroblasts, and smooth muscle cells showed time-dependent increases in lung tissue sections from the groups exposed to ozone for 4, 8, and 12 weeks. Conclusion These findings demonstrate that the increase in AHR associated with the allergic airway does not persist during chronic ozone exposure, indicating that airway remodeling and adaptation following repeated exposure to air pollutants can provide protection against AHR.

  20. A Case Study on the Strata Movement Mechanism and Surface Deformation Regulation in Chengchao Underground Iron Mine

    Science.gov (United States)

    Cheng, Guanwen; Chen, Congxin; Ma, Tianhui; Liu, Hongyuan; Tang, Chunan

    2017-04-01

    findings, the degree of damage to the infrastructure in different locations can be determined based on the surface deformation zones. As the mining continues deeper, the development regulation of the zones on the surface and in deep rock mass can be further studied based on the zones in the deep rock.

  1. Simulation of the Cystic Fibrosis patient airway habitats using microfluidic devices

    DEFF Research Database (Denmark)

    Skolimowski, Maciej

    2013-01-01

    are still not ideal, mainly because the immune response differs between man and e.g. mouse, and because the lung pathology after infection is very different in animals compared to humans. In flow cell based systems the bacteria are allowed to form a biofilm on the surface, as in the airways......, and their growth is then monitored using confocal microscopy. However, this is not either a suitable CF model as the human airways are subdivided into aerobic and anaerobic compartments. To investigate the different compartments of the human airways system it is crucial importance to construct a microfluidic model...

  2. allergy, asthma airway and anaphylaxis

    African Journals Online (AJOL)

    The perioperative preparation of children presenting for surgery aims to identify medical problems that might influence the outcome and to institute management strategies to reduce those risks. Respiratory and airway complications remain the most significant cause of morbidity and mortality in modern paediatric ...

  3. Analysis of airways in computed tomography

    DEFF Research Database (Denmark)

    Petersen, Jens

    Chronic Obstructive Pulmonary Disease (COPD) is major cause of death and disability world-wide. It affects lung function through destruction of lung tissue known as emphysema and inflammation of airways, leading to thickened airway walls and narrowed airway lumen. Computed Tomography (CT) imaging...... have become the standard with which to assess emphysema extent but airway abnormalities have so far been more challenging to quantify. Automated methods for analysis are indispensable as the visible airway tree in a CT scan can include several hundreds of individual branches. However, automation...

  4. Airway Disease and Management in Bronchopulmonary Dysplasia.

    Science.gov (United States)

    Amin, Raouf S; Rutter, Michael J

    2015-12-01

    This article presents an overview of the diagnosis and management of airway problems encountered in infants with severe bronchopulmonary dysplasia (BPD). Respiratory failure in premature infants develops as a result of parenchymal and airway diseases. The survival of increasingly premature infants and the ventilatory support required by premature lungs may result in airway disease. The management of respiratory failure depends on whether it is primarily caused by parenchymal versus airway diseases. Continuous airway pressure early in the neonatal period has favorably changed the incidence of BPD. This article discusses the indications, timing, and guidelines for care of tracheotomy. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. UV laser-ablated surface textures as potential regulator of cellular response.

    Science.gov (United States)

    Chandra, Prafulla; Lai, Karen; Sung, Hak-Joon; Murthy, N Sanjeeva; Kohn, Joachim

    2010-06-01

    Textured surfaces obtained by UV laser ablation of poly(ethylene terephthalate) films were used to study the effect of shape and spacing of surface features on cellular response. Two distinct patterns, cones and ripples with spacing from 2 to 25 μm, were produced. Surface features with different shapes and spacings were produced by varying pulse repetition rate, laser fluence, and exposure time. The effects of the surface texture parameters, i.e., shape and spacing, on cell attachment, proliferation, and morphology of neonatal human dermal fibroblasts and mouse fibroblasts were studied. Cell attachment was the highest in the regions with cones at ∼4 μm spacing. As feature spacing increased, cell spreading decreased, and the fibroblasts became more circular, indicating a stress-mediated cell shrinkage. This study shows that UV laser ablation is a useful alternative to lithographic techniques to produce surface patterns for controlling cell attachment and growth on biomaterial surfaces.

  6. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona

    Science.gov (United States)

    Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mahdieh; Kim, Sung Tae; Moyano, Daniel F.; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M.

    2017-01-01

    Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of chemical motifs on NP surface. The NPs were uptaken in macrophages in a corona-dependent manner, predominantly through recognition of specific complement proteins in the NP corona. Taken together, this study shows that surface functionality can be used to tune the protein corona formed on NP surface, dictating the interaction of NPs with macrophages. PMID:27040442

  7. Immunomodulatory Effects of Ambroxol on Airway Hyperresponsiveness and Inflammation.

    Science.gov (United States)

    Takeda, Katsuyuki; Miyahara, Nobuaki; Matsubara, Shigeki; Taube, Christian; Kitamura, Kenichi; Hirano, Astushi; Tanimoto, Mitsune; Gelfand, Erwin W

    2016-06-01

    Ambroxol is used in COPD and asthma to increase mucociliary clearance and regulate surfactant levels, perhaps through anti-oxidant and anti-inflammatory activities. To determine the role and effect of ambroxol in an experimental model of asthma, BALB/c mice were sensitized to ovalbumin (OVA) followed by 3 days of challenge. Airway hyperresponsiveness (AHR), lung cell composition and histology, and cytokine and protein carbonyl levels in bronchoalveolar lavage (BAL) fluid were determined. Ambroxol was administered either before the first OVA challenge or was begun after the last allergen challenge. Cytokine production levels from lung mononuclear cells (Lung MNCs) or alveolar macrophages (AM) were also determined. Administration of ambroxol prior to challenge suppressed AHR, airway eosinophilia, goblet cell metaplasia, and reduced inflammation in subepithelial regions. When given after challenge, AHR was suppressed but without effects on eosinophil numbers. Levels of IL-5 and IL-13 in BAL fluid were decreased when the drug was given prior to challenge; when given after challenge, increased levels of IL-10 and IL-12 were detected. Decreased levels of protein carbonyls were detected in BAL fluid following ambroxol treatment after challenge. In vitro, ambroxol increased levels of IL-10, IFN-γ, and IL-12 from Lung MNCs and AM, whereas IL-4, IL-5, and IL-13 production was not altered. Taken together, ambroxol was effective in preventing AHR and airway inflammation through upregulation of Th1 cytokines and protection from oxidative stress in the airways.

  8. Airway smooth muscle dysfunction in Pompe (Gaa-/- ) mice.

    Science.gov (United States)

    Keeler, Allison M; Liu, Donghai; Zieger, Marina; Xiong, Lang; Salemi, Jeffrey; Bellvé, Karl; Byrne, Barry J; Fuller, David D; ZhuGe, Ronghua; ElMallah, Mai K

    2017-06-01

    Pompe disease is an autosomal recessive disorder caused by a deficiency of acid α-glucosidase (GAA), an enzyme responsible for hydrolyzing lysosomal glycogen. Deficiency of GAA leads to systemic glycogen accumulation in the lysosomes of skeletal muscle, motor neurons, and smooth muscle. Skeletal muscle and motor neuron pathology are known to contribute to respiratory insufficiency in Pompe disease, but the role of airway pathology has not been evaluated. Here we propose that GAA enzyme deficiency disrupts the function of the trachea and bronchi and this lower airway pathology contributes to respiratory insufficiency in Pompe disease. Using an established mouse model of Pompe disease, the Gaa-/- mouse, we compared histology, pulmonary mechanics, airway smooth muscle (ASM) function, and calcium signaling between Gaa-/- and age-matched wild-type (WT) mice. Lysosomal glycogen accumulation was observed in the smooth muscle of both the bronchi and the trachea in Gaa-/- but not WT mice. Furthermore, Gaa-/- mice had hyporesponsive airway resistance and bronchial ring contraction to the bronchoconstrictive agents methacholine (MCh) and potassium chloride (KCl) and to a bronchodilator (albuterol). Finally, calcium signaling during bronchiolar smooth muscle contraction was impaired in Gaa-/- mice indicating impaired extracellular calcium influx. We conclude that GAA enzyme deficiency leads to glycogen accumulation in the trachea and bronchi and impairs the ability of lower ASM to regulate calcium and respond appropriately to bronchodilator or constrictors. Accordingly, ASM dysfunction may contribute to respiratory impairments in Pompe disease. Copyright © 2017 the American Physiological Society.

  9. Airway malacia in children with achondroplasia.

    Science.gov (United States)

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments. © 2013 Wiley Periodicals, Inc.

  10. CD47: A Cell Surface Glycoprotein Which Regulates Multiple Functions of Hematopoietic Cells in Health and Disease

    Science.gov (United States)

    2013-01-01

    Interactions between cells and their surroundings are important for proper function and homeostasis in a multicellular organism. These interactions can either be established between the cells and molecules in their extracellular milieu, but also involve interactions between cells. In all these situations, proteins in the plasma membranes are critically involved to relay information obtained from the exterior of the cell. The cell surface glycoprotein CD47 (integrin-associated protein (IAP)) was first identified as an important regulator of integrin function, but later also was shown to function in ways that do not necessarily involve integrins. Ligation of CD47 can induce intracellular signaling resulting in cell activation or cell death depending on the exact context. By binding to another cell surface glycoprotein, signal regulatory protein alpha (SIRPα), CD47 can regulate the function of cells in the monocyte/macrophage lineage. In this spotlight paper, several functions of CD47 will be reviewed, although some functions may be more briefly mentioned. Focus will be on the ways CD47 regulates hematopoietic cells and functions such as CD47 signaling, induction of apoptosis, and regulation of phagocytosis or cell-cell fusion. PMID:23401787

  11. Ultrasonography in the management of the airway

    DEFF Research Database (Denmark)

    Kristensen, M S

    2011-01-01

    In this study, it is described how to use ultrasonography (US) for real-time imaging of the airway from the mouth, over pharynx, larynx, and trachea to the peripheral alveoli, and how to use this in airway management. US has several advantages for imaging of the airway - it is safe, quick......, repeatable, portable, widely available, and it must be used dynamically for maximum benefit in airway management, in direct conjunction with the airway management, i.e. immediately before, during, and after airway interventions. US can be used for direct observation of whether the tube enters the trachea...... or the esophagus by placing the ultrasound probe transversely on the neck at the level of the suprasternal notch during intubation, thus confirming intubation without the need for ventilation or circulation. US can be applied before anesthesia induction and diagnose several conditions that affect airway management...

  12. Protein phosphatase 2A isotypes regulate cell surface expression of the T cell receptor

    DEFF Research Database (Denmark)

    Lauritsen, Jens Peter Holst; Menné, C; Kastrup, J

    2001-01-01

    show that inhibition of the serine/threonine protein phosphatase PP2A family had a biphasic effect on TCR expression. Thus, low concentrations of PP2A inhibitors induced TCR down-regulation, whereas higher concentrations of PP2A inhibitors induced TCR up-regulation. The effect of PP2A inhibition...... regulatory role for PP2A in both exocytosis and endocytosis....

  13. The surface nanostructures of titanium alloy regulate the proliferation of endothelial cells

    Directory of Open Access Journals (Sweden)

    Min Lai

    2014-02-01

    Full Text Available To investigate the effect of surface nanostructures on the behaviors of human umbilical vein endothelial cells (HUVECs, surface nanostructured titanium alloy (Ti-3Zr2Sn-3Mo-25Nb, TLM was fabricated by surface mechanical attrition treatment (SMAT technique. Field emission scanning electron microscopy (FE-SEM, atomic force microscopy (AFM, transmission electron microscopy (TEM and X-ray diffraction (XRD were employed to characterize the surface nanostructures of the TLM, respectively. The results demonstrated that nano-crystalline structures with several tens of nanometers were formed on the surface of TLM substrates. The HUVECs grown onto the surface nanostructured TLM spread well and expressed more vinculin around the edges of cells. More importantly, HUVECs grown onto the surface nanostructured TLM displayed significantly higher (p < 0.01 or p < 0.05 cell adhesion and viabilities than those of native titanium alloy. HUVECs cultured on the surface nanostructured titanium alloy displayed significantly higher (p < 0.01 or p < 0.05 productions of nitric oxide (NO and prostacyclin (PGI2 than those of native titanium alloy, respectively. This study provides an alternative for the development of titanium alloy based vascular stents.

  14. Degrees of reality: airway anatomy of high-fidelity human patient simulators and airway trainers.

    Science.gov (United States)

    Schebesta, Karl; Hüpfl, Michael; Rössler, Bernhard; Ringl, Helmut; Müller, Michael P; Kimberger, Oliver

    2012-06-01

    Human patient simulators and airway training manikins are widely used to train airway management skills to medical professionals. Furthermore, these patient simulators are employed as standardized "patients" to evaluate airway devices. However, little is known about how realistic these patient simulators and airway-training manikins really are. This trial aimed to evaluate the upper airway anatomy of four high-fidelity patient simulators and two airway trainers in comparison with actual patients by means of radiographic measurements. The volume of the pharyngeal airspace was the primary outcome parameter. Computed tomography scans of 20 adult trauma patients without head or neck injuries were compared with computed tomography scans of four high-fidelity patient simulators and two airway trainers. By using 14 predefined distances, two cross-sectional areas and three volume parameters of the upper airway, the manikins' similarity to a human patient was assessed. The pharyngeal airspace of all manikins differed significantly from the patients' pharyngeal airspace. The HPS Human Patient Simulator (METI®, Sarasota, FL) was the most realistic high-fidelity patient simulator (6/19 [32%] of all parameters were within the 95% CI of human airway measurements). The airway anatomy of four high-fidelity patient simulators and two airway trainers does not reflect the upper airway anatomy of actual patients. This finding may impact airway training and confound comparative airway device studies.

  15. Recombinant Rat CC10 Protein Inhibits PDGF-Induced Airway Smooth Muscle Cells Proliferation and Migration

    Directory of Open Access Journals (Sweden)

    Ying Wei

    2013-01-01

    Full Text Available Abnormal migration and proliferation of airway smooth muscle cells (ASMCs in the airway cause airway wall thickening, which is strongly related with the development of airway remodeling in asthma. Clara cell 10 kDa protein (CC10, which is secreted by the epithelial clara cells of the pulmonary airways, plays an important role in the regulation of immunological and inflammatory processes. Previous studies suggested that CC10 protein had great protective effects against inflammation in asthma. However, the effects of CC10 protein on ASMCs migration and proliferation in airway remodeling were poorly understood. In this study, we constructed the pET-22b-CC10 recombinant plasmid, induced expression and purified the recombinant rat CC10 protein from E. coli by Ni2+ affinity chromatography and ion exchange chromatography purification. We investigated the effect of recombinant rat CC10 protein on platelet-derived growth factor (PDGF-BB-induced ASMCs proliferation and migration. Our results demonstrated that the recombinant CC10 protein could inhibit PDGF-BB-induced cell viability, proliferation and migration. Western blot analysis showed that PDGF-BB-induced activation of cyclin D1 was inhibited by CC10. These findings implicated that CC10 could inhibit increased ASMCs proliferation, and migration induced by PDGF-BB, and this suppression effect might be associated with inhibition of cyclin D1 expression, which might offer hope for the future treatment of airway remodeling.

  16. Airway epithelial transcription factor NK2 homeobox 1 inhibits mucous cell metaplasia and Th2 inflammation.

    Science.gov (United States)

    Maeda, Yutaka; Chen, Gang; Xu, Yan; Haitchi, Hans Michael; Du, Lingling; Keiser, Angela R; Howarth, Peter H; Davies, Donna E; Holgate, Stephen T; Whitsett, Jeffrey A

    2011-08-15

    Airway mucous cell metaplasia and chronic inflammation are pathophysiological features that influence morbidity and mortality associated with asthma and other chronic pulmonary disorders. Elucidation of the molecular mechanisms regulating mucous metaplasia and hypersecretion provides the scientific basis for diagnostic and therapeutic opportunities to improve the care of chronic pulmonary diseases. To determine the role of the airway epithelial–specific transcription factor NK2 homeobox 1 (NKX2-1, also known as thyroid transcription factor-1 [TTF-1]) in mucous cell metaplasia and lung inflammation. Expression of NKX2-1 in airway epithelial cells from patients with asthma was analyzed. NKX2-1 +/-gene targeted or transgenic mice expressing NKX2-1 in conducting airway epithelial cells were sensitized to the aeroallergen ovalbumin. In vitro studies were used to identify mechanisms by which NKX2-1 regulates mucous cell metaplasia and inflammation. NKX2-1 was suppressed in airway epithelial cells from patients with asthma. Reduced expression of NKX2-1 in heterozygous NKX2-1 +/- gene targeted mice increased mucous metaplasia in the small airways after pulmonary sensitization to ovalbumin. Conversely, mucous cell metaplasia induced by aeroallergen was inhibited by expression of NKX2-1 in the respiratory epithelium in vivo. Genome-wide mRNA analysis of lung tissue from ovalbumin-treated mice demonstrated that NKX2-1 inhibited mRNAs associated with mucous metaplasia and Th2-regulated inflammation,including Spdef, Ccl17, and Il13. In vitro, NKX2-1 inhibited SPDEF, a critical regulator of airway mucous cell metaplasia,and the Th2 chemokine CCL26. The present data demonstrate a novel function for NKX2-1 in a gene network regulating mucous cell metaplasia and allergic inflammation in the respiratory epithelium.

  17. RAGE: a new frontier in chronic airways disease

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter AB; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-01-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand–RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. PMID:22506507

  18. Microbial survival on food contact surfaces in the context of food hygiene regulation

    Energy Technology Data Exchange (ETDEWEB)

    Stuart-Moonlight, Belinda Isobel

    2001-07-01

    Bacterial food poisoning causes substantial suffering and financial loss worldwide. One way organisms enter foods is via cross contamination directly or indirectly from structural and food contact surfaces. An 'in situ' method was developed for the detection of surviving bacteria on surfaces. Samples of test surfaces were overlaid with agar and after incubation, colonies were visualised by reaction with nitroblue tetrazolium, which was reduced to a purple insoluble dye. It was shown that the death of bacteria applied as liquid films to surfaces, occurred largely at the point of drying. For impervious surfaces (ceramic, stainless steel, glass and polystyrene), surface type had little effect on survival. In contrast, survival was markedly affected by the nature of the suspension fluid in which cells were dried. In deionised water, survival was low and for Gram negative organisms was strongly influenced by cell density. Where cells were dried in simulated food films (containing brain heart infusion, NaCI, serum or sucrose), survival values increased with increasing concentrations and approached 100% for Staphylococcus aureus cells suspended in 10% w/v sucrose. The survival of Gram positive organisms on impervious surfaces was generally greater than for Gram negative organisms and consistent with this observation, scanning electron microscopy indicated that Gram negative cells collapsed during drying. On wood surfaces, survival was generally similar to or higher than on impervious surfaces. However, neither of the Gram positive organisms tested (Staphylococcus aureus and Listeria monocytogenes) could be recovered following inoculation onto the surface of the African hard-wood, iroko, although Gram negative organisms survived well. Scanning electron microscopy confirmed that cells had not been adsorbed below the wood surface and an ethanol-soluble toxic factor was extracted from iroko, which killed Staphylococcus aureus cells, but had no effect on the

  19. Wnt/β-catenin signaling modulates human airway sensitization induced by β2-adrenoceptor stimulation.

    Directory of Open Access Journals (Sweden)

    Christophe Faisy

    Full Text Available BACKGROUND: Regular use of β2-agonists may enhance non-specific airway responsiveness. The wingless/integrated (Wnt signaling pathways are responsible for several cellular processes, including airway inflammation and remodeling while cAMP-PKA cascade can activate the Wnt signaling. We aimed to investigate whether the Wnt signaling pathways are involved in the bronchial hyperresponsiveness induced by prolonged exposure to β2-adrenoceptor agonists in human isolated airways. METHODS: Bronchi were surgically removed from 44 thoracic surgery patients. After preparation, bronchial rings and primary cultures of bronchial epithelial cells were incubated with fenoterol (0.1 µM, 15 hours, 37 °C, a β2-agonist with high intrinsic efficacy. The effects of inhibitors/blockers of Wnt signaling on the fenoterol-induced airway sensitization were examined and the impact of fenoterol exposure on the mRNA expression of genes interacting with Wnt signaling or cAMP-PKA cascade was assessed in complete bronchi and in cultured epithelial cells. RESULTS: Compared to paired controls, fenoterol-sensitization was abolished by inhibition/blockage of the Wnt/β-catenin signaling, especially the cell-surface LRP5/6 co-receptors or Fzd receptors (1 µM SFRP1 or 1 µM DKK1 and the nuclear recruitment of TCF/LEF transcriptions factors (0.3 µM FH535. Wnt proteins secretion did not seem to be involved in the fenoterol-induced sensitization since the mRNA expression of Wnt remained low after fenoterol exposure and the inactivator of Wnt secretion (1 µM IWP2 had no effect on the fenoterol-sensitization. Fenoterol exposure did not change the mRNA expression of genes regulating Wnt signaling or cAMP-PKA cascade. CONCLUSIONS: Collectively, our pharmacological investigations indicate that fenoterol-sensitization is modulated by the inhibition/blockage of canonical Wnt/β-catenin pathway, suggesting a phenomenon of biased agonism in connection with the β2-adrenoceptor stimulation

  20. Automatic airway-artery analysis on lung CT to quantify airway wall thickening and bronchiectasis

    DEFF Research Database (Denmark)

    Perez-Rovira, Adria; Kuo, Wieying; Petersen, Jens

    2016-01-01

    Purpose: Bronchiectasis and airway wall thickening are commonly assessed in computed tomography (CT) by comparing the airway size with the size of the accompanying artery. Thus, in order to automate the quantification of bronchiectasis and wall thickening following a similar principle......, and pairs airway branches with the accompanying artery, then quantifies airway wall thickening and bronchiectasis by measuring the wall-artery ratio (WAR) and lumen and outer wall airway-artery ratio (AAR). Measurements that do not use the artery size for normalization are also extracted, including wall......-consuming manual annotations and visual scoring methods to quantify abnormal widening and thickening of airways....

  1. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation

    Energy Technology Data Exchange (ETDEWEB)

    Rancourt, Raymond C., E-mail: raymond.rancourt@ucdenver.edu; Veress, Livia A., E-mail: livia.veress@ucdenver.edu; Ahmad, Aftab, E-mail: aftab.ahmad@ucdenver.edu; Hendry-Hofer, Tara B., E-mail: tara.hendry-hofer@ucdenver.edu; Rioux, Jacqueline S., E-mail: jacqueline.rioux@ucdenver.edu; Garlick, Rhonda B., E-mail: rhonda.garlick@ucdenver.edu; White, Carl W., E-mail: carl.w.white@ucdenver.edu

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Methods: Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5 mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O{sub 2} saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin–antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Results: Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Conclusions: Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. - Highlights: • TFPI administration to rats after mustard inhalation reduces airway cast formation. • Inhibition of thrombin activation is the likely mechanism for limiting casts. • Rats given TFPI

  2. A novel role of protein tyrosine kinase2 in mediating chloride secretion in human airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Lihua Liang

    Full Text Available Ca(2+ activated Cl(- channels (CaCC are up-regulated in cystic fibrosis (CF airway surface epithelia. The presence and functional properties of CaCC make it a possible therapeutic target to compensate for the deficiency of Cl(- secretion in CF epithelia. CaCC is activated by an increase in cytosolic Ca(2+, which not only activates epithelial CaCCs, but also inhibits epithelial Na(+ hyperabsorption, which may also be beneficial in CF. Our previous study has shown that spiperone, a known antipsychotic drug, activates CaCCs and stimulates Cl(- secretion in polarized human non-CF and CF airway epithelial cell monolayers in vitro, and in Cystic Fibrosis Transmembrane Conductance Regulator (CFTR knockout mice in vivo. Spiperone activates CaCC not by acting in its well-known role as an antagonist of either 5-HT2 or D2 receptors, but through a protein tyrosine kinase-coupled phospholipase C-dependent pathway. Moreover, spiperone independently activates CFTR through a novel mechanism. Herein, we performed a mass spectrometry analysis and identified the signaling molecule that mediates the spiperone effect in activating chloride secretion through CaCC and CFTR. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor protein tyrosine kinase, which belongs to the focal adhesion kinase family. The inhibition of PYK2 notably reduced the ability of spiperone to increase intracellular Ca(2+ and Cl(- secretion. In conclusion, we have identified the tyrosine kinase, PYK2, as the modulator, which plays a crucial role in the activation of CaCC and CFTR by spiperone. The identification of this novel role of PYK2 reveals a new signaling pathway in human airway epithelial cells.

  3. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona

    OpenAIRE

    Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mahdieh; Kim, Sung Tae; Moyano, Daniel F.; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M.

    2016-01-01

    Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of chemical motifs on NP surface. The NPs were uptaken in macrophages in a corona-dependent manner, predominantly through recognition of specific complement proteins in the NP corona. Taken together,...

  4. Bactericidal/Permeability-increasing protein fold-containing family member A1 in airway host protection and respiratory disease.

    Science.gov (United States)

    Britto, Clemente J; Cohn, Lauren

    2015-05-01

    Bactericidal/permeability-increasing protein fold-containing family member A1 (BPIFA1), formerly known as SPLUNC1, is one of the most abundant proteins in respiratory secretions and has been identified with increasing frequency in studies of pulmonary disease. Its expression is largely restricted to the respiratory tract, being highly concentrated in the upper airways and proximal trachea. BPIFA1 is highly responsive to airborne pathogens, allergens, and irritants. BPIFA1 actively participates in host protection through antimicrobial, surfactant, airway surface liquid regulation, and immunomodulatory properties. Its expression is modulated in multiple lung diseases, including cystic fibrosis, chronic obstructive pulmonary disease, respiratory malignancies, and idiopathic pulmonary fibrosis. However, the role of BPIFA1 in pulmonary pathogenesis remains to be elucidated. This review highlights the versatile properties of BPIFA1 in antimicrobial protection and its roles as a sensor of environmental exposure and regulator of immune cell function. A greater understanding of the contribution of BPIFA1 to disease pathogenesis and activity may clarify if BPIFA1 is a biomarker and potential drug target in pulmonary disease.

  5. Biofilm-dependent airway infections: a role for ambroxol?

    Science.gov (United States)

    Cataldi, M; Sblendorio, V; Leo, A; Piazza, O

    2014-08-01

    Biofilms are a key factor in the development of both acute and chronic airway infections. Their relevance is well established in ventilator associated pneumonia, one of the most severe complications in critically ill patients, and in cystic fibrosis, the most common lethal genetic disease in Caucasians. Accumulating evidence suggests that biofilms could have also a role in chronic obstructive pulmonary disease and their involvement in bronchiectasis has been proposed as well. When they grow in biofilms, microorganisms become multidrug-resistant. Therefore the treatment of biofilm-dependent airway infections is problematic. Indeed, it still largely based on measures aiming to prevent the formation of biofilms or remove them once that they are formed. Here we review recent evidence suggesting that the mucokinetic drug ambroxol has specific anti-biofilm properties. We also discuss how additional pharmacological properties of this drug could be beneficial in biofilm-dependent airway infections. Specifically, we review the evidence showing that: 1-ambroxol exerts anti-inflammatory effects by inhibiting at multiple levels the activity of neutrophils, and 2-it improves mucociliary clearance by interfering with the activity of airway epithelium ion channels and transporters including sodium/bicarbonate and sodium/potassium/chloride cotransporters, cystic fibrosis transmembrane conductance regulator and aquaporins. As a whole, the data that we review here suggest that ambroxol could be helpful in biofilm-dependent airway infections. However, considering the limited clinical evidence available up to date, further clinical studies are required to support the use of ambroxol in these diseases. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Airway Inflammation after Bronchial Thermoplasty for Severe Asthma.

    Science.gov (United States)

    Denner, Darcy R; Doeing, Diana C; Hogarth, D Kyle; Dugan, Karen; Naureckas, Edward T; White, Steven R

    2015-09-01

    Bronchial thermoplasty is an alternative treatment for patients with severe, uncontrolled asthma in which the airway smooth muscle is eliminated using radioablation. Although this emerging therapy shows promising outcomes, little is known about its effects on airway inflammation. We examined the presence of bronchoalveolar lavage cytokines and expression of smooth muscle actin in patients with severe asthma before and in the weeks after bronchial thermoplasty. Endobronchial biopsies and bronchoalveolar lavage samples from 11 patients with severe asthma were collected from the right lower lobe before and 3 and 6 weeks after initial bronchial thermoplasty. Samples were analyzed for cell proportions and cytokine concentrations in bronchoalveolar lavage and for the presence of α-SMA in endobronchial biopsies. α-SMA expression was decreased in endobronchial biopsies of 7 of 11 subjects by Week 6. In bronchoalveolar lavage fluid, both transforming growth factor-β1 and regulated upon activation, normal T-cell expressed and secreted (RANTES)/CCL5 were substantially decreased 3 and 6 weeks post bronchial thermoplasty in all patients. The cytokine tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL), which induces apoptosis in several cell types, was increased in concentration both 3 and 6 weeks post bronchial thermoplasty. Clinical improvement and reduction in α-SMA after bronchial thermoplasty in severe, uncontrolled asthma is associated with substantial changes in key mediators of inflammation. These data confirm the substantial elimination of airway smooth muscle post thermoplasty in the human asthmatic airway and represent the first characterization of significant changes in airway inflammation in the first weeks after thermoplasty.

  7. Airway epithelial NF-κB activation promotes Mycoplasma pneumoniae clearance in mice.

    Directory of Open Access Journals (Sweden)

    Di Jiang

    Full Text Available Respiratory infections including atypical bacteria Mycoplasma pneumoniae (Mp contribute to the pathobiology of asthma and chronic obstructive pulmonary disease (COPD. Mp infection mainly targets airway epithelium and activates various signaling pathways such as nuclear factor κB (NF-κB. We have shown that short palate, lung, and nasal epithelium clone 1 (SPLUNC1 serves as a novel host defense protein and is up-regulated upon Mp infection through NF-κB activation in cultured human and mouse primary airway epithelial cells. However, the in vivo role of airway epithelial NF-κB activation in host defense against Mp infection has not been investigated. In the current study, we investigated the effects of in vivo airway epithelial NF-κB activation on lung Mp clearance and its association with airway epithelial SPLUNC1 expression.Non-antimicrobial tetracycline analog 9-t-butyl doxycycline (9-TB was initially optimized in mouse primary tracheal epithelial cell culture, and then utilized to induce in vivo airway epithelial specific NF-κB activation in conditional NF-κB transgenic mice (CC10-(CAIKKβ with or without Mp infection. Lung Mp load and inflammation were evaluated, and airway epithelial SPLUNC1 protein was examined by immunohistochemistry. We found that 9-TB treatment in NF-κB transgene positive (Tg+, but not transgene negative (Tg- mice significantly reduced lung Mp load. Moreover, 9-TB increased airway epithelial SPLUNC1 protein expression in NF-κB Tg+ mice.By using the non-antimicrobial 9-TB, our study demonstrates that in vivo airway epithelial NF-κB activation promotes lung bacterial clearance, which is accompanied by increased epithelial SPLUNC1 expression.

  8. Cell recognition molecule L1 promotes embryonic stem cell differentiation through the regulation of cell surface glycosylation

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ying [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Huang, Xiaohua [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Clinical Biochemistry, College of Laboratory Medicine, Dalian Medical University, Dalian 116044 (China); An, Yue [Department of Clinical Laboratory, Second Affiliated Hospital of Dalian Medical University, Dalian 116023 (China); Ren, Feng [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Yang, Zara Zhuyun; Zhu, Hongmei; Zhou, Lei [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); He, Xiaowen; Schachner, Melitta [Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers University, New Brunswick, NJ (United States); Xiao, Zhicheng, E-mail: zhicheng.xiao@monash.edu [The Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Molecular and Clinical Medicine, Kunming Medical University, Kunming 650228 (China); Department of Anatomy and Developmental Biology, Monash University, Clayton 3800 (Australia); Ma, Keli, E-mail: makeli666@aliyun.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Li, Yali, E-mail: yalilipaper@gmail.com [Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044 (China); Department of Anatomy, National University of Singapore, Singapore 119078 (Singapore)

    2013-10-25

    Highlights: •Down-regulating FUT9 and ST3Gal4 expression blocks L1-induced neuronal differentiation of ESCs. •Up-regulating FUT9 and ST3Gal4 expression in L1-ESCs depends on the activation of PLCγ. •L1 promotes ESCs to differentiate into neuron through regulating cell surface glycosylation. -- Abstract: Cell recognition molecule L1 (CD171) plays an important role in neuronal survival, migration, differentiation, neurite outgrowth, myelination, synaptic plasticity and regeneration after injury. Our previous study has demonstrated that overexpressing L1 enhances cell survival and proliferation of mouse embryonic stem cells (ESCs) through promoting the expression of FUT9 and ST3Gal4, which upregulates cell surface sialylation and fucosylation. In the present study, we examined whether sialylation and fucosylation are involved in ESC differentiation through L1 signaling. RNA interference analysis showed that L1 enhanced differentiation of ESCs into neurons through the upregulation of FUT9 and ST3Gal4. Furthermore, blocking the phospholipase Cγ (PLCγ) signaling pathway with either a specific PLCγ inhibitor or knockdown PLCγ reduced the expression levels of both FUT9 and ST3Gal4 mRNAs and inhibited L1-mediated neuronal differentiation. These results demonstrate that L1 promotes neuronal differentiation from ESCs through the L1-mediated enhancement of FUT9 and ST3Gal4 expression.

  9. A new emission-based approach for regulation of N losses from agricultural areas to surface waters

    Science.gov (United States)

    Rosenstand Poulsen, Jane; Kronvang, Brian; Bering Ovesen, Niels; Piil, Kristoffer; Kolind Hvid, Søren

    2015-04-01

    Demands for a reduction and hence regulation of nitrogen (N) emissions to streams, lakes and coastal areas are a central part of many river basin management plans under the EU Water Framework Directive. Therefore, large focus has been placed on exploring different mitigation options that can assist in reducing the N emission from agricultural areas. However, the spatial variability in landscape, geology and hydrology entails significant differences in the vulnerability of catchments to intense agricultural activities. Hence, if rigid regulations of N emissions are applied without considering this variability, it will not necessarily lead to an optimum balance between applied fertilisers, yields and loss of excess N to the surrounding surface waters. Therefore, the overall purpose of this pilot study is to develop a concept for regulation of nutrient emissions to surface waters based on a comprehensive stream monitoring design in order to measure the temporal and spatial transport of N at sub-catchment scale. The purpose of such a monitoring design is twofold: i) quantification of the actual N emissions from a given agricultural sub-catchment or even individual farms; ii) quantification at sub-catchment scale of nitrate retention that may ultimately lead to a more precise regulation of N emissions from agricultural areas to surface waters. In order to investigate down to which scale it is feasible to quantify N emissions to surface waters and to develop the best monitoring concept, three catchments subdivided into several sub-catchments in Denmark will be studied during the period 2014-2017. The catchments represent different landscapes and geological settings as well as three different hydrological regimes. In the three catchments, hydrometric stations have been established at the outlet of the drainage networks where continuous measurements are made of water stage. In addition daily water samples and weekly grab samples of water are taken and weekly discharge

  10. Genetics of complex airway disease.

    Science.gov (United States)

    Cookson, William O C; Moffatt, Miriam F

    2011-05-01

    The past 3 years have seen highly significant genetic effects identified for a wide variety of common complex diseases, including the airway disorders of asthma and chronic obstructive pulmonary disease. It appears that only a portion of the genetically mediated susceptibility to complex diseases has been identified, and there is much left to be discovered. This review briefly describes the results of the genome-wide association studies of asthma and gives an overview of the parallel and increasingly large-scale studies that are taking place with chronic obstructive pulmonary disease. The future impact is discussed of technological advances that allow increasingly large-scale gene expression studies, next-generation sequencing, and genome-wide testing for epigenetic effects. The use of genetic technology to examine the airway microbiota that interact with the mucosa in health and disease is described.

  11. Rhinoscleroma Causing Upper Airway Obstruction

    Directory of Open Access Journals (Sweden)

    Geetika Verma

    2005-01-01

    Full Text Available Rhinoscleroma is a chronic granulomatous condition of the respiratory tract, and is not uncommon in tropical regions; particularly, Mexico, Central America and the Middle East. A few cases have been reported in North America, primarily involving immigrants from endemic countries. The causative organism is Klebsiella rhinoscleromatis, a Gram-negative coccobacillus. Diagnosis is made on the basis of culture of the organism and the characteristic pathology of Mikulicz cells on light microscopy. The condition primarily affects the upper airway, and frequently presents with nasal discharge, nasal obstruction or frontal facial pain. Despite the term 'rhinoscleroma', there may be involvement of the entire respiratory tract. Although the condition is slowly progressive, its natural course portends extensive destruction. Laryngotracheal involvement occurs in approximately 15% to 80% of cases, but patients rarely present with isolated laryngotracheal disease. In the present paper, a case of rhinoscleroma presenting with symptoms of upper airway obstruction is described.

  12. Molecular architecture of the fruit fly's airway epithelial immune system

    Directory of Open Access Journals (Sweden)

    Fehrenbach Heinz

    2008-09-01

    Full Text Available Abstract Background Airway epithelial cells not only constitute a physical barrier, but also the first line of defence against airborne pathogens. At the same time, they are constantly exposed to reactive oxygen species. Therefore, airway epithelia cells have to possess a sophisticated innate immune system and a molecular armamentarium to detoxify reactive oxygen species. It has become apparent that deregulation of epithelial innate immunity is a major reason for the development of chronic inflammatory lung diseases. To elucidate the molecular architecture of the innate immune system of airway epithelial cells, we choose the fruit fly Drosophila melanogaster as a model, because it has the simplest type of airways, consisting of epithelial cells only. Elucidating the structure of the innate immune system of this "airway epithelial cell culture" might enable us to understand why deregulatory processes in innate immune signalling cascades lead to long lasting inflammatory events. Results All airway epithelial cells of the fruit fly are able to launch an immune response. They contain only one functional signal transduction pathway that converges onto NF-κB factors, namely the IMD-pathway, which is homologous to the TNF-α receptor pathway. Although vital parts of the Toll-pathway are missing, dorsal and dif, the NF-κB factors dedicated to this signalling system, are present. Other pathways involved in immune regulation, such as the JNK- and the JAK/STAT-pathway, are completely functional in these cells. In addition, most peptidoglycan recognition proteins, representing the almost complete collection of pattern recognition receptors, are part of the epithelial cells equipment. Potential effector molecules are different antimicrobial peptides and lysozymes, but also transferrin that can inhibit bacterial growth through iron-depletion. Reactive oxygen species can be inactivated through the almost complete armamentarium of enzymatic antioxidants that

  13. Airway inflammatory and atopy-related responses in athletes

    African Journals Online (AJOL)

    may influence the respiratory system through altering airway function5, and possibly inducing airway remodelling, .... oedema which together reduce airway function, resulting in atopy-related airway symptoms.1,4 .... ual or abnormal healing process resulting in airway structural alterations.23 This remodelling process is ...

  14. Genetics of Complex Airway Disease

    OpenAIRE

    Cookson, William O. C.; Moffatt, Miriam F.

    2011-01-01

    The past 3 years have seen highly significant genetic effects identified for a wide variety of common complex diseases, including the airway disorders of asthma and chronic obstructive pulmonary disease. It appears that only a portion of the genetically mediated susceptibility to complex diseases has been identified, and there is much left to be discovered. This review briefly describes the results of the genome-wide association studies of asthma and gives an overview of the parallel and incr...

  15. Apical Localization of Zinc Transporter ZnT4 in Human Airway Epithelial Cells and Its Loss in a Murine Model of Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Chiara Murgia

    2011-10-01

    Full Text Available The apical cytoplasm of airway epithelium (AE contains abundant labile zinc (Zn ions that are involved in the protection of AE from oxidants and inhaled noxious substances. A major question is how dietary Zn traffics to this compartment. In rat airways, in vivo selenite autometallographic (Se-AMG-electron microscopy revealed labile Zn-selenium nanocrystals in structures resembling secretory vesicles in the apical cytoplasm. This observation was consistent with the starry-sky Zinquin fluorescence staining of labile Zn ions confined to the same region. The vesicular Zn transporter ZnT4 was likewise prominent in both the apical and basal parts of the epithelium both in rodent and human AE, although the apical pools were more obvious. Expression of ZnT4 mRNA was unaffected by changes in the extracellular Zn concentration. However, levels increased 3-fold during growth of cells in air liquid interface cultures and decreased sharply in the presence of retinoic acid. When comparing nasal versus bronchial human AE cells, there were significant positive correlations between levels of ZnT4 from the same subject, suggesting that nasal brushings may allow monitoring of airway Zn transporter expression. Finally, there were marked losses of both basally-located ZnT4 protein and labile Zn in the bronchial epithelium of mice with allergic airway inflammation. This study is the first to describe co-localization of zinc vesicles with the specific zinc transporter ZnT4 in airway epithelium and loss of ZnT4 protein in inflamed airways. Direct evidence that ZnT4 regulates Zn levels in the epithelium still needs to be provided. We speculate that ZnT4 is an important regulator of zinc ion accumulation in secretory apical vesicles and that the loss of labile Zn and ZnT4 in airway inflammation contributes to AE vulnerability in diseases such as asthma.

  16. Recent Advances on Nitric Oxide in the Upper Airways.

    Science.gov (United States)

    Maniscalco, Mauro; Bianco, Andrea; Mazzarella, Gennaro; Motta, Andrea

    2016-01-01

    Exhaled nitric oxide (NO) originates from the upper airways, and takes action, to varying extents, in regulation, protection and defense, as well as in noxious processes. Nitric oxide retains important functions in a wide range of physiological and pathophysiological processes of the human body, including vaso-regulation, antimicrobial activity, neurotransmission and respiration. This review article reports the ongoing investigations regarding the source, biology and relevance of NO within upper respiratory tract. In addition, we discuss the role of NO, originating from nasal and paranasal sinuses, in inflammatory disorders such as allergic rhinitis, sinusitis, primary ciliary dyskinesia, and cystic fibrosis.

  17. Airway injury during emergency transcutaneous airway access: a comparison at cricothyroid and tracheal sites.

    LENUS (Irish Health Repository)

    Salah, Nazar

    2009-12-01

    Oxygenation via the cricothyroid membrane (CTM) may be required in emergencies, but inadvertent tracheal cannulation may occur. In this study, we compared airway injury between the tracheal and CTM sites using different techniques for airway access.

  18. Extraction of airways from CT (EXACT’09)

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Ginneken, Bram van; Reinhardt, Joseph M.

    2012-01-01

    This paper describes a framework for establishing a reference airway tree segmentation, which was used to quantitatively evaluate 15 different airway tree extraction algorithms in a standardized manner. Because of the sheer difficulty involved in manually constructing a complete reference standard...... from scratch, we propose to construct the reference using results from all algorithms that are to be evaluated. We start by subdividing each segmented airway tree into its individual branch segments. Each branch segment is then visually scored by trained observers to determine whether...... or not it is a correctly segmented part of the airway tree. Finally, the reference airway trees are constructed by taking the union of all correctly extracted branch segments. Fifteen airway tree extraction algorithms from different research groups are evaluated on a diverse set of 20 chest computed tomography (CT) scans...

  19. Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells.

    Science.gov (United States)

    Dickinson, Rachel E; Fegan, K Scott; Ren, Xia; Hillier, Stephen G; Duncan, W Colin

    2011-01-01

    The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE) to facilitate its repair and that this regulatory pathway was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to normal OSE (Pcancer.

  20. The Rho-GTPase cdc42 regulates neural progenitor fate at the apical surface

    DEFF Research Database (Denmark)

    Cappello, Silvia; Attardo, Alessio; Wu, Xunwei

    2006-01-01

    the fundamental difference between these progenitors. Here we show that the conditional deletion of the small Rho-GTPase cdc42 at different stages of neurogenesis in mouse telencephalon results in an immediate increase in basal mitoses. Whereas cdc42-deficient progenitors have normal cell cycle length...... progenitors. Thus, cdc42 has a crucial role at the apical pole of progenitors, thereby regulating the position of mitoses and cell fate....

  1. Serotonin-induced down-regulation of cell surface serotonin transporter

    DEFF Research Database (Denmark)

    Jørgensen, Trine Nygaard; Christensen, Peter Møller; Gether, Ulrik

    2014-01-01

    SERT inhibitor S-citalopram. 5-HT-induced reduction in SERT expression was further supported by surface biotinylation experiments showing 5-HT-induced reduction in wild type SERT plasma membrane levels. Moreover, preincubation with 5-HT lowered the Vmax for 5-HT uptake in cultured raphe serotonergic...

  2. Regulation of Macrophage Recognition through the Interplay of Nanoparticle Surface Functionality and Protein Corona

    NARCIS (Netherlands)

    Saha, Krishnendu; Rahimi, Mehran; Yazdani, Mandieh; Kim, Sung Tae; Moyano, Daniel F.; Hou, Singyuk; Das, Ridhha; Mout, Rubul; Rezaee, Farhad; Mahmoudi, Morteza; Rotello, Vincent M.

    Using a family of cationic gold nanoparticles (NPs) with similar size and charge, we demonstrate that proper surface engineering can control the nature and identity of protein corona in physiological serum conditions. The protein coronas were highly dependent on the hydrophobicity and arrangement of

  3. Redesigning an airway cart using lean methodology.

    Science.gov (United States)

    Weigel, Wade A

    2016-09-01

    Use lean methodology to create a more efficient difficult airway management equipment transport and setup. The 5S steps of sort, set in order, sweep, standardize, and sustain were used to create a redesigned airway cart. The 5S steps provided the framework to separate the needed from unneeded equipment, logical equipment placement on the cart, and a plan to maintain improvements. Simulations were utilized to compare the revised airway cart to the previous airway equipment storage. Hospital operating rooms and equipment storage rooms. Simulated difficult airway scenarios without patient involvement. Difficult airway equipment 5S process. Total pieces and cost of airway equipment before and after intervention. Walking distance and time to retrieve equipment, setup equipment, and setup defect rate during a simulation. Previously, airway equipment was stored in 4 locations which was reduced a single difficult airway cart. The total pieces of equipment stored was reduced 89% and the cost of disposable equipment inventory was reduced 81%. Simulations looking at the acquisition and setup of equipment during a difficult airway scenario revealed a 39% reduction in equipment set up time, a 77% reduction in non-valued-added set up time, and a 74% reduction in walking distance. There was no difference in set up defect rates. Application of this lean method resulted in a revised single cart with equipment pared down to only what is needed, arranged according to frequency and order of use in a difficult airway. In a simulated difficult airway, there was a reduction in non-value-added time and walking distance to retrieve the equipment. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Management of antenatally detected fetal airway obstruction.

    Science.gov (United States)

    Walker, Paul; Cassey, John; O'callaghan, Stephen

    2005-06-01

    Five cases of antenatally diagnosed fetal airway obstruction have been cared for at the John Hunter Children's Hospital, Newcastle, Australia. A multidisciplinary team manages them during the perinatal period. We present our technique at the time of delivery, which aims to afford us the greatest flexibility in managing both the mother, her child's airway, and the underlying lesion. We begin with an ex utero intrapartum technique (EXIT) and favor routine rigid bronchoscopy to secure the neonate's airway without preliminary attempts at endotracheal intubation.

  5. Multiscale Vessel-guided Airway Tree Segmentation

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; de Bruijne, Marleen

    2009-01-01

    This paper presents a method for airway tree segmentation that uses a combination of a trained airway appearance model, vessel and airway orientation information, and region growing. The method uses a voxel classification based appearance model, which involves the use of a classifier...... is evaluated within EXACT’09 on a diverse set of CT scans. Results show a favorable combination of a relatively large portion of the tree detected correctly with very few false positives....

  6. Development of a dynamic model for the lung lobes and airway tree in the NCAT phantom

    Science.gov (United States)

    Garrity, J. M.; Segars, W. P.; Knisley, S. B.; Tsui, B. M. W.

    2003-06-01

    The four-dimensional (4-D) NCAT phantom was developed to realistically model human anatomy based on the visible human data and cardiac and respiratory motions based on 4-D tagged magnetic resonance imaging and respiratory-gated CT data from normal human subjects. Currently, the 4-D NCAT phantom does not include the airway tree or its motion within the lungs. Also, each lung is defined with a single surface; the individual lobes are not distinguished. The authors further the development of the phantom by creating dynamic models for the individual lung lobes and for the airway tree in each lobe. NURBS surfaces for the lobes and an initial airway tree model (/spl sim/ 4 generations) were created through manual segmentation of the visible human data. A mathematical algorithm with physiological constraints was used to extend the original airway model to fill each lobe. For each parent airway branch inside a lobe, the algorithm extends the airway tree by creating two daughter branches modeled with cylindrical tubes. Parameters for the cylindrical tubes such as diameter, length, and angle are constrained based on flow parameters and available lung space.

  7. Improvised bubble continuous positive airway pressure (BCPAP ...

    African Journals Online (AJOL)

    Improvised bubble continuous positive airway pressure (BCPAP) device at the National Hospital Abuja gives immediate improvement in respiratory rate and oxygenation in neonates with respiratory distress.

  8. Automated Lobe-Based Airway Labeling

    Directory of Open Access Journals (Sweden)

    Suicheng Gu

    2012-01-01

    Full Text Available Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1 airway skeletonization or centerline extraction, (2 individual airway branch identification, (3 initial rule-based airway classification/labeling, and (4 self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm.

  9. Anatomic Optical Coherence Tomography of Upper Airways

    Science.gov (United States)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  10. Airway Secretory microRNAome Changes during Rhinovirus Infection in Early Childhood.

    Directory of Open Access Journals (Sweden)

    Maria J Gutierrez

    secretion of EVs containing miR-155, which is predicted in silico to regulate antiviral immunity. Further characterization of the airway secretory microRNAome during health and disease may lead to completely new strategies to treat and monitor respiratory conditions in all ages.

  11. In situ regulating of surface morphologies, anti-corrosion and tribological properties of epoxy resin coatings by heat treatment

    Science.gov (United States)

    Liu, Dan; Zhao, Wenjie; Liu, Shuan; Cen, Qihong; Xue, Qunji

    2017-06-01

    A simple and in situ formation method through controlling curing temperature was used to regulate the surface morphology of epoxy resin (EP) coating. Multi-functional tribology test equipment and an electrochemistry workstation were used to evaluate the tribological and anti-corrosion properties of the EP coating cured with diethylenetriamine at room temperature, 80 °C, 100 °C and 120 °C, respectively. The results indicated that the diameter and depth of pores or pits existing on the surface of EP coatings decreased significantly with the increase of curing temperature. The EP coating cured at 120 °C exhibited the best tribological performance, the friction coefficient and wear trace area were 0.56 and 0.003 02 mm2 under dry conditions, 0.18 and 1.873  ×  10-5 mm2 under seawater conditions, respectively. The excellent tribological performance could be attributed to the surface morphologies and high hardness of EP coatings. The EP coating cured at 80 °C exhibited the best anti-corrosion performance that the impedance modulus at 0.01 Hz was close to 5.0 KΩ cm2 even after being immersed in 3.5 wt% NaCl solution for 24 h, which was closely related to its hydrophobic behavior and surface morphology.

  12. Airway contractility and remodeling : Links to asthma symptoms

    NARCIS (Netherlands)

    West, Adrian R.; Syyong, Harley T.; Siddiqui, Sana; Pascoe, Chris D.; Murphy, Thomas M.; Maarsingh, Harm; Deng, Linhong; Maksym, Geoffrey N.; Bosse, Ynuk

    Respiratory symptoms are largely caused by obstruction of the airways. In asthma, airway narrowing mediated by airway smooth muscle (ASM) contraction contributes significantly to obstruction. The spasmogens produced following exposure to environmental triggers, such as viruses or allergens, are

  13. Airway inflammation and mannitol challenge test in COPD

    NARCIS (Netherlands)

    de Nijs, Selma B.; Fens, Niki; Lutter, Rene; Dijkers, Erica; Krouwels, Frans H.; Smids-Dierdorp, Barbara S.; van Steenwijk, Reindert P.; Sterk, Peter J.

    2011-01-01

    ABSTRACT: BACKGROUND: Eosinophilic airway inflammation has successfully been used to tailor anti-inflammatory therapy in chronic obstructive pulmonary disease (COPD). Airway hyperresponsiveness (AHR) by indirect challenges is associated with airway inflammation. We hypothesized that AHR to inhaled

  14. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Hoteit, Ibrahim

    2015-04-01

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast.

  15. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    Energy Technology Data Exchange (ETDEWEB)

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.; Liu, Corey W.; Nygaard, Rie; Rosenbaum, Daniel M.; Fung, Juan José; Choi, Hee-Jung; Thian, Foon Sun; Kobilka, Tong Sun; Puglisi, Joseph D.; Weis, William I.; Pardo, Leonardo; Prosser, R. Scott; Mueller, Luciano; Kobilka, Brian K. (Stanford-MED); (Toronto); (BMS); (UAB, Spain)

    2010-01-14

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the native ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.

  16. Airway, responsiveness and inflammation in adolescent elite swimmers

    DEFF Research Database (Denmark)

    Pedersen, Lise; Lund, T.K.; Barnes, P.J.

    2008-01-01

    Background: Whereas increased airway hyperresponsiveness (AHR) and airway inflammation are well documented in adult elite athletes, it remains uncertain whether the same airway changes are present in adolescents involved in elite sport. Objective: To investigate airway responsiveness and airway...... at airway responsiveness as a continuous variable, the swimmers were more responsive to EVH than unselected subjects, but less responsive to metbacholine compared with subjects with asthma. We found no differences in the prevalence of respiratory symptoms between the swimmers and the unselected adolescents...

  17. Tissue factor pathway inhibitor prevents airway obstruction, respiratory failure and death due to sulfur mustard analog inhalation.

    Science.gov (United States)

    Rancourt, Raymond C; Veress, Livia A; Ahmad, Aftab; Hendry-Hofer, Tara B; Rioux, Jacqueline S; Garlick, Rhonda B; White, Carl W

    2013-10-01

    Sulfur mustard (SM) inhalation causes airway injury, with enhanced vascular permeability, coagulation, and airway obstruction. The objective of this study was to determine whether recombinant tissue factor pathway inhibitor (TFPI) could inhibit this pathogenic sequence. Rats were exposed to the SM analog 2-chloroethyl ethyl sulfide (CEES) via nose-only aerosol inhalation. One hour later, TFPI (1.5mg/kg) in vehicle, or vehicle alone, was instilled into the trachea. Arterial O2 saturation was monitored using pulse oximetry. Twelve hours after exposure, animals were euthanized and bronchoalveolar lavage fluid (BALF) and plasma were analyzed for prothrombin, thrombin-antithrombin complex (TAT), active plasminogen activator inhibitor-1 (PAI-1) levels, and fluid fibrinolytic capacity. Lung steady-state PAI-1 mRNA was measured by RT-PCR analysis. Airway-capillary leak was estimated by BALF protein and IgM, and by pleural fluid measurement. In additional animals, airway cast formation was assessed by microdissection and immunohistochemical detection of airway fibrin. Airway obstruction in the form of fibrin-containing casts was evident in central conducting airways of rats receiving CEES. TFPI decreased cast formation, and limited severe hypoxemia. Findings of reduced prothrombin consumption, and lower TAT complexes in BALF, demonstrated that TFPI acted to limit thrombin activation in airways. TFPI, however, did not appreciably affect CEES-induced airway protein leak, PAI-1 mRNA induction, or inhibition of the fibrinolytic activity present in airway surface liquid. Intratracheal administration of TFPI limits airway obstruction, improves gas exchange, and prevents mortality in rats with sulfur mustard-analog-induced acute lung injury. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression.

    Science.gov (United States)

    Lubick, Kirk J; Robertson, Shelly J; McNally, Kristin L; Freedman, Brett A; Rasmussen, Angela L; Taylor, R Travis; Walts, Avram D; Tsuruda, Seitaro; Sakai, Mizuki; Ishizuka, Mariko; Boer, Elena F; Foster, Erin C; Chiramel, Abhilash I; Addison, Conrad B; Green, Richard; Kastner, Daniel L; Katze, Michael G; Holland, Steven M; Forlino, Antonella; Freeman, Alexandra F; Boehm, Manfred; Yoshii, Kentaro; Best, Sonja M

    2015-07-08

    Type I interferon (IFN-α/β or IFN-I) signals through two receptor subunits, IFNAR1 and IFNAR2, to orchestrate sterile and infectious immunity. Cellular pathways that regulate IFNAR1 are often targeted by viruses to suppress the antiviral effects of IFN-I. Here we report that encephalitic flaviviruses, including tick-borne encephalitis virus and West Nile virus, antagonize IFN-I signaling by inhibiting IFNAR1 surface expression. Loss of IFNAR1 was associated with binding of the viral IFN-I antagonist, NS5, to prolidase (PEPD), a cellular dipeptidase implicated in primary immune deficiencies in humans. Prolidase was required for IFNAR1 maturation and accumulation, activation of IFNβ-stimulated gene induction, and IFN-I-dependent viral control. Human fibroblasts derived from patients with genetic prolidase deficiency exhibited decreased IFNAR1 surface expression and reduced IFNβ-stimulated signaling. Thus, by understanding flavivirus IFN-I antagonism, prolidase is revealed as a central regulator of IFN-I responses. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Regulation of Pannexin 1 Surface Expression by Extracellular ATP: Potential Implications for Nervous System Function in Health and Disease

    Directory of Open Access Journals (Sweden)

    Leigh A. Swayne

    2017-08-01

    Full Text Available Pannexin 1 (Panx1 channels are widely recognized for their role in ATP release, and as follows, their function is closely tied to that of ATP-activated P2X7 purinergic receptors (P2X7Rs. Our recent work has shown that extracellular ATP induces clustering of Panx1 with P2X7Rs and their subsequent internalization through a non-canonical cholesterol-dependent mechanism. In other words, we have demonstrated that extracellular ATP levels can regulate the cell surface expression of Panx1. Here we discuss two situations in which we hypothesize that ATP modulation of Panx1 surface expression could be relevant for central nervous system function. The first scenario involves the development of new neurons in the ventricular zone. We propose that ATP-induced Panx1 endocytosis could play an important role in regulating the balance of cell proliferation, survival, and differentiation within this neurogenic niche in the healthy brain. The second scenario relates to the spinal cord, in which we posit that an impairment of ATP-induced Panx1 endocytosis could contribute to pathological neuroplasticity. Together, the discussion of these hypotheses serves to highlight important outstanding questions regarding the interplay between extracellular ATP, Panx1, and P2X7Rs in the nervous system in health and disease.

  20. A Candida albicans regulator of disseminated infection operates primarily as a repressor and governs cell surface remodeling.

    Science.gov (United States)

    Böhm, Lena; Muralidhara, Prathibha; Pérez, J Christian

    2016-04-01

    Virulence traits are often controlled by transcription regulators, i.e. sequence-specific DNA-binding proteins. The regulators that sustain microbial proliferation in the host typically work by promoting the expression of the genes that mediate such traits. Here, we report a singular example in the human fungal pathogen Candida albicans in which a transcription regulator functions by repressing the expression of virulence genes, yet its overall role is to promote virulence. We explain this apparent paradox by establishing that a major function of this protein, Zcf21p, is to set a default state of low expression of multiple cell wall components which include virulence determinants. These components comprise GPI-anchored proteins, adhesins and enzymes that synthesize cell wall sugar decorations. Deletion or overexpression of ZCF21 results in cell wall structure modifications that influence recognition and elimination of the fungus by macrophages. By leveling off the expression of adhesins, ZCF21 also prevents C. albicans self-aggregation. Balancing the expression of cell wall components - virulence determinants included - is, therefore, critical for C. albicans to assemble a cell surface configuration that is suitable to colonize mammalian tissues and evade immune surveillance. © 2015 John Wiley & Sons Ltd.

  1. The Staphylococcus aureus Global Regulator MgrA Modulates Clumping and Virulence by Controlling Surface Protein Expression.

    Directory of Open Access Journals (Sweden)

    Heidi A Crosby

    2016-05-01

    Full Text Available Staphylococcus aureus is a human commensal and opportunistic pathogen that causes devastating infections in a wide range of locations within the body. One of the defining characteristics of S. aureus is its ability to form clumps in the presence of soluble fibrinogen, which likely has a protective benefit and facilitates adhesion to host tissue. We have previously shown that the ArlRS two-component regulatory system controls clumping, in part by repressing production of the large surface protein Ebh. In this work we show that ArlRS does not directly regulate Ebh, but instead ArlRS activates expression of the global regulator MgrA. Strains lacking mgrA fail to clump in the presence of fibrinogen, and clumping can be restored to an arlRS mutant by overexpressing either arlRS or mgrA, indicating that ArlRS and MgrA constitute a regulatory pathway. We used RNA-seq to show that MgrA represses ebh, as well as seven cell wall-associated proteins (SraP, Spa, FnbB, SasG, SasC, FmtB, and SdrD. EMSA analysis showed that MgrA directly represses expression of ebh and sraP. Clumping can be restored to an mgrA mutant by deleting the genes for Ebh, SraP and SasG, suggesting that increased expression of these proteins blocks clumping by steric hindrance. We show that mgrA mutants are less virulent in a rabbit model of endocarditis, and virulence can be partially restored by deleting the genes for the surface proteins ebh, sraP, and sasG. While mgrA mutants are unable to clump, they are known to have enhanced biofilm capacity. We demonstrate that this increase in biofilm formation is partially due to up-regulation of SasG, a surface protein known to promote intercellular interactions. These results confirm that ArlRS and MgrA constitute a regulatory cascade, and that they control expression of a number of genes important for virulence, including those for eight large surface proteins.

  2. A novel surface protein of Trichomonas vaginalis is regulated independently by low iron and contact with vaginal epithelial cells

    Directory of Open Access Journals (Sweden)

    Chang T-H

    2006-01-01

    Full Text Available Abstract Background Trichomonosis caused by Trichomonas vaginalis is the number one, non-viral sexually transmitted disease (STD that affects more than 250 million people worldwide. Immunoglobulin A (IgA has been implicated in resistance to mucosal infections by pathogens. No reports are available of IgA-reactive proteins and the role, if any, of this class of antibody in the control of this STD. The availability of an IgA monoclonal antibody (mAb immunoreactive to trichomonads by whole cell (WC-ELISA prompted us to characterize the IgA-reactive protein of T. vaginalis. Results An IgA mAb called 6B8 was isolated from a library of mAbs reactive to surface proteins of T. vaginalis. The 6B8 mAb recognized a 44-kDa protein (TV44 by immunoblot analysis, and a full-length cDNA clone encoded a protein of 438 amino acids. Southern analysis revealed the gene (tv44 of T. vaginalis to be single copy. The tv44 gene was down-regulated at both the transcriptional and translational levels in iron-depleted trichomonads as well as in parasites after contact with immortalized MS-74 vaginal epithelial cells (VECs. Immunofluorescence on non-permeabilized organisms confirmed surface localization of TV44, and the intensity of fluorescence was reduced after parasite adherence to VECs. Lastly, an identical protein and gene were present in Tritrichomonas foetus and Trichomonas tenax. Conclusion This is the first report of a T. vaginalis gene (tv44 encoding a surface protein (TV44 reactive with an IgA mAb, and both gene and protein were conserved in human and bovine trichomonads. Further, TV44 is independently down-regulated in expression and surface placement by iron and contact with VECs. TV44 is another member of T. vaginalis genes that are regulated by at least two independent signaling mechanisms involving iron and contact with VECs.

  3. Fruit-surface flavonoid accumulation in tomato is controlled by a SlMYB12-regulated transcriptional network.

    Directory of Open Access Journals (Sweden)

    Avital Adato

    2009-12-01

    Full Text Available The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive organs. The y mutant peel lacks the yellow flavonoid pigment naringenin chalcone, which has been suggested to influence the characteristics and function of the cuticular layer. Large-scale metabolic and transcript profiling revealed broad effects on both primary and secondary metabolism, related mostly to the biosynthesis of phenylpropanoids, particularly flavonoids. These were not restricted to the fruit or to a specific stage of its development and indicated that the y mutant phenotype is due to a mutation in a regulatory gene. Indeed, expression analyses specified three R2R3-MYB-type transcription factors that were significantly down-regulated in the y mutant fruit peel. One of these, SlMYB12, was mapped to the genomic region on tomato chromosome 1 previously shown to harbor the y mutation. Identification of an additional mutant allele that co-segregates with the colorless-peel trait, specific down-regulation of SlMYB12 and rescue of the y phenotype by overexpression of SlMYB12 on the mutant background, confirmed that a lesion in this regulator underlies the y phenotype. Hence, this work provides novel insight to the study of fleshy fruit cuticular structure and paves the way for the elucidation of the regulatory network that controls flavonoid accumulation in tomato fruit cuticle.

  4. Surface binding sites (SBSs), mechanism and regulation of enzymes degrading amylopectin and α-limit dextrins

    DEFF Research Database (Denmark)

    Møller, Marie Sofie; Cockburn, Darrell; Nielsen, Jonas W.

    2013-01-01

    into barley seed α-amylase 1 (AMY1) and limit dextrinase (LD) includes i. kinetics of bi-exponential amylopectin hydrolysis by AMY1, one reaction having low Km (8 μg/mL) and high kcat (57 s-1) and the other high Km (97 μg/mL) and low kcat (23 s-1). β-Cyclodextrin (β-CD) inhibits the first reaction by binding...... with domains including CBM21 present in other proteins and involved in various molecular interactions, but no binding site identity. LD is controlled by barley limit dextrinase inhibitor (LDI) which belongs to the cereal-type inhibitor family and forms a tight 1:1 complex with LD. iii. LDI in turn is regulated...

  5. Muc5b is required for airway defence

    Science.gov (United States)

    Roy, Michelle G.; Livraghi-Butrico, Alessandra; Fletcher, Ashley A.; McElwee, Melissa M.; Evans, Scott E.; Boerner, Ryan M.; Alexander, Samantha N.; Bellinghausen, Lindsey K.; Song, Alfred S.; Petrova, Youlia M.; Tuvim, Michael J.; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S.; Bowden, M. Gabriela; Sisson, Joseph H.; Woodruff, Prescott G.; Thornton, David J.; Rousseau, Karine; de La Garza, Maria M.; Moghaddam, Seyed J.; Karmouty-Quintana, Harry; Blackburn, Michael R.; Drouin, Scott M.; Davis, C. William; Terrell, Kristy A.; Grubb, Barbara R.; O'Neal, Wanda K.; Flores, Sonia C.; Cota-Gomez, Adela; Lozupone, Catherine A.; Donnelly, Jody M.; Watson, Alan M.; Hennessy, Corinne E.; Keith, Rebecca C.; Yang, Ivana V.; Barthel, Lea; Henson, Peter M.; Janssen, William J.; Schwartz, David A.; Boucher, Richard C.; Dickey, Burton F.; Evans, Christopher M.

    2014-01-01

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b-/- mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.

  6. Muc5b Is Required for Airway Defense

    Science.gov (United States)

    Roy, Michelle G.; Livraghi-Butrico, Alessandra; Fletcher, Ashley A.; McElwee, Melissa M.; Evans, Scott E.; Boerner, Ryan M.; Alexander, Samantha N.; Bellinghausen, Lindsey K.; Song, Alfred S.; Petrova, Youlia M.; Tuvim, Michael J.; Adachi, Roberto; Romo, Irlanda; Bordt, Andrea S.; Gabriela Bowden, M.; Sisson, Joseph H.; Woodruff, Prescott G.; Thornton, David J.; Rousseau, Karine; De la Garza, Maria M.; Moghaddam, Seyed J.; Karmouty-Quintana, Harry; Blackburn, Michael R.; Drouin, Scott M.; William Davis, C.; Terrell, Kristy A.; Grubb, Barbara R.; O’Neal, Wanda K.; Flores, Sonia C.; Cota-Gomez, Adela; Lozupone, Catherine A.; Donnelly, Jody M.; Watson, Alan M.; Hennessy, Corinne E.; Keith, Rebecca C.; Yang, Ivana V.; Barthel, Lea; Henson, Peter M.; Janssen, William J.; Schwartz, David A.; Boucher, Richard C.; Dickey, Burton F.; Evans, Christopher M.

    2014-01-01

    Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them via mucociliary clearance (MCC)1,2. However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases1. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus1,3. Genetic variants are linked to diverse lung diseases4-6, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in the lungs. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally7. Apoptotic macrophages accumulated, phagocytosis was impaired, and IL-23 production was reduced inMuc5b−/− mice. By contrast, in Muc5b transgenic (Tg) mice, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum1,8. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%9-11. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC. PMID:24317696

  7. Thermocline Regulated Seasonal Evolution of Surface Chlorophyll in the Gulf of Aden

    KAUST Repository

    Yao, Fengchao

    2015-03-19

    The Gulf of Aden, although subject to seasonally reversing monsoonal winds, has been previously reported as an oligotrophic basin during summer, with elevated chlorophyll concentrations only occurring during winter due to convective mixing. However, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) ocean color data reveal that the Gulf of Aden also exhibits a prominent summer chlorophyll bloom and sustains elevated chlorophyll concentrations throughout the fall, and is a biophysical province distinct from the adjacent Arabian Sea. Climatological hydrographic data suggest that the thermocline, hence the nutricline, in the entire gulf is markedly shoaled by the southwest monsoon during summer and fall. Under this condition, cyclonic eddies in the gulf can effectively pump deep nutrients to the surface layer and lead to the chlorophyll bloom in late summer, and, after the transition to the northeast monsoon in fall, coastal upwelling driven by the northeasterly winds produces a pronounced increase in surface chlorophyll concentrations along the Somali coast. © 2015 Yao, Hoteit.

  8. Airway epithelial cell exposure to distinct e-cigarette liquid flavorings reveals toxicity thresholds and activation of CFTR by the chocolate flavoring 2,5-dimethypyrazine.

    Science.gov (United States)

    Sherwood, Cara L; Boitano, Scott

    2016-05-17

    that the increases in ion conductance evoked by 2,5-dimethylpyrazine were largely attributed to a protein kinase A-dependent (PKA) activation of the cystic fibrosis transmembrane conductance regulator (CFTR) ion channel. Data from our high-capacity screening assays demonstrates that individual e-cigarette liquid flavoring chemicals vary in their cytotoxicity profiles and that some constituents evoke a cellular physiological response on their own independent of cell death. The activation of CFTR by 2,5-dimethylpyrazine may have detrimental consequences for airway surface liquid homeostasis in individuals that use e-cigarettes habitually.

  9. Human apolipoprotein E genotypes differentially modify house dust mite-induced airway disease in mice

    DEFF Research Database (Denmark)

    Yao, Xianglan; Dai, Cuilian; Fredriksson, Karin

    2012-01-01

    Apolipoprotein E (apoE) is an endogenous negative regulator of airway hyperreactivity (AHR) and mucous cell metaplasia in experimental models of house dust mite (HDM)-induced airway disease. The gene encoding human apoE is polymorphic, with three common alleles (e2, e3, and e4) reflecting single...... amino acid substitutions at amino acids 112 and 158. The objective of this study was to assess whether the human apoE alleles modify airway responses to repeated nasal HDM challenges. Mice expressing the human apoE e2 (huApoE2), e3 (huApoE3), or e4 (huApoE4) alleles received nasal HDM challenges......, and airway responses were compared with mice expressing the endogenous murine apoE gene (muApoE). huApoE3 mice displayed significant reductions in AHR, mucous cell metaplasia, and airway inflammation compared with muApoE mice. The attenuated severity of airway inflammation in huApoE3 mice was associated...

  10. Alternaria extract activates autophagy that induces IL-18 release from airway epithelial cells.

    Science.gov (United States)

    Murai, Hiroki; Okazaki, Shintaro; Hayashi, Hisako; Kawakita, Akiko; Hosoki, Koa; Yasutomi, Motoko; Sur, Sanjiv; Ohshima, Yusei

    2015-09-04

    Alternaria alternata is a major outdoor allergen that causes allergic airway diseases. Alternaria extract (ALT-E) has been shown to induce airway epithelial cells to release IL-18 and thereby initiate Th2-type responses. We investigated the underlying mechanisms involved in IL-18 release from ALT-E-stimulated airway epithelial cells. Normal human bronchial epithelial cells and A549 human lung adenocarcinoma cells were stimulated with ALT-E in the presence of different inhibitors of autophagy or caspases. IL-18 levels in culture supernatants were measured by ELISA. The numbers of autophagosomes, an LC3-I to LC3-II conversion, and p62 degradation were determined by immunofluorescence staining and immunoblotting. 3-methyladenine and bafilomycin, which inhibit the formation of preautophagosomal structures and autolysosomes, respectively, suppressed ALT-E-induced IL-18 release by cells, whereas caspase 1 and 8 inhibitors did not. ALT-E-stimulation increased autophagosome formation, LC-3 conversion, and p62 degradation in airway epithelial cells. LPS-stimulation induced the LC3 conversion in A549 cells, but did not induce IL-18 release or p62 degradation. Unlike LPS, ALT-E induced airway epithelial cells to release IL-18 via an autophagy dependent, caspase 1 and 8 independent pathway. Although autophagy has been shown to negatively regulate canonical inflammasome activity in TLR-stimulated macrophages, our data indicates that this process is an unconventional mechanism of IL-18 secretion by airway epithelial cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.

    Science.gov (United States)

    Tsay, Jun-Chieh J; Li, Zhiguo; Yie, Ting-An; Wu, Feng; Segal, Leopoldo; Greenberg, Alissa K; Leibert, Eric; Weiden, Michael D; Pass, Harvey; Munger, John; Statnikov, Alexander; Tchou-Wong, Kam-Meng; Rom, William N

    2015-01-01

    Field of cancerization in the airway epithelium has been increasingly examined to understand early pathogenesis of non-small cell lung cancer. However, the extent of field of cancerization throughout the lung airways is unclear. Here we sought to determine the differential gene and microRNA expressions associated with field of cancerization in the peripheral airway epithelial cells of patients with lung adenocarcinoma. We obtained peripheral airway brushings from smoker controls (n=13) and from the lung contralateral to the tumor in cancer patients (n=17). We performed gene and microRNA expression profiling on these peripheral airway epithelial cells using Affymetrix GeneChip and TaqMan Array. Integrated gene and microRNA analysis was performed to identify significant molecular pathways. We identified 26 mRNAs and 5 miRNAs that were significantly (FDR cancer patients when compared to smoker controls. Functional analysis identified differential transcriptomic expressions related to tumorigenesis. Integration of miRNA-mRNA data into interaction network analysis showed modulation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) pathway in the contralateral lung field of cancerization. In conclusion, patients with lung adenocarcinoma have tumor related molecules and pathways in histologically normal appearing peripheral airway epithelial cells, a substantial distance from the tumor itself. This finding can potentially provide new biomarkers for early detection of lung cancer and novel therapeutic targets.

  12. Evaluation of Surface Hydrological Connectivity Between a Forested Coastal Wetland and Regulated Waters of the United States

    Science.gov (United States)

    Dean, D. D.; Wilcox, B. P.; Jacob, J. S.; Sipocz, A.; Munster, C.

    2008-12-01

    Rapid urbanization, industry, and agriculture have put enormous developmental pressure on coastal forested wetlands along the Texas coast. At least 97,000 acres of freshwater forested wetlands on the Texas coast have been lost since 1955, amid much larger losses of other coastal wetland types (TPWD-Texas Wetlands Conservation Plan, 1996). Some coastal wetlands are protected by federal regulations under the Clean Water Act in an effort to maintain wetland hydrological and ecological services, such as water quality improvement and flood control. However, federal protection of many important coastal wetlands is dependent upon documented proof of a hydrologic connection to federally protected Waters of the United States and reasonable influence on the quality of those waters. This study focuses on a 13 acre catchment of coastal flatwoods wetland with an ambiguous legal status because of a possible , but undocumented, hydrologic connection to regulated Waters of the United States. Documentation of the hydrologic connectivity of this type of wetland is critical because of the geographic extent of similar wetlands and their contributions to water quality. The objective of the study was to determine if a hydrologic connection exists, and if so, to quantify the strength of the connection. A surface connection was established based on runoff and rainfall data collected since April of 2005, with the wetland discharging surface water directly into an adjacent protected wetland. The connection was weak during dry years, but in years with average rainfall, surface runoff accounted for a much more significant portion of the water budget. These results suggest that runoff water from similar wetlands contributes directly to protected wetland waters, and may influence water quality downstream.

  13. Nasal continuous positive airway pressure

    DEFF Research Database (Denmark)

    Scholze, Alexandra; Lamwers, Stephanie; Tepel, Martin

    2012-01-01

    Obstructive sleep apnoea (OSA) is linked to increased cardiovascular risk. This risk can be reduced by nasal continuous positive airway pressure (nCPAP) treatment. As OSA is associated with an increase of several vasoconstrictive factors, we investigated whether nCPAP influences the digital volume...... pulse wave. We performed digital photoplethysmography during sleep at night in 94 consecutive patients who underwent polysomnography and 29 patients treated with nCPAP. Digital volume pulse waves were obtained independently of an investigator and were quantified using an algorithm for continuous...

  14. Airway management in spontaneously breathing anaesthetized children: comparison of the Laryngeal Mask Airway with the cuffed oropharyngeal airway.

    Science.gov (United States)

    Mamaya, Biruta

    2002-06-01

    The efficacy and safety of the smallest size of the cuffed oropharyngeal airway (COPA) for school age, spontaneously breathing children was investigated and compared with the Laryngeal Mask Airway (LMA). Seventy children of school age (7-16 years) were divided into two groups: the COPA (n=35) and the LMA (n=35). Induction was with propofol i.v. or halothane, nitrous oxide, oxygen and fentanyl. After depression of laryngopharyngeal reflexes, a COPA size 8 cm or an LMA was inserted. Ventilation was manually assisted until spontaneous breathing was established. For maintenance, propofol i.v. and fentanyl or halothane with nitrous oxide were used. Local anaesthesia or peripheral blocks were also used. Both extratracheal airways had a highly successful insertion rate, but more positional manoeuvres to achieve a satisfactory airway were required with the COPA, 28.6% versus LMA 2.9%. The need to change the method of airway management was higher (8.6%) in the COPA group. After induction, the need for assisted ventilation was higher in the LMA group 54.3% versus 20% in the COPA group. Airway reaction to cuff inflation was higher in the LMA group 14.3% versus COPA 5.7%. Problems during surgery were similar, except continuous chin support to establish an effective airway was more frequent (11.4%) in the COPA group. In the postoperative period, blood on the device and incidence of sore throat were detected less in the COPA group. The COPA is a good extratracheal airway that provides new possibilities for airway management in school age children with an adequate and well sealed airway, during spontaneous breathing or during short-term assisted manual ventilation.

  15. The Trypomastigote Small Surface Antigen (TSSA) regulates Trypanosoma cruzi infectivity and differentiation.

    Science.gov (United States)

    Cámara, María de Los Milagros; Cánepa, Gaspar E; Lantos, Andrés B; Balouz, Virginia; Yu, Hai; Chen, Xi; Campetella, Oscar; Mucci, Juan; Buscaglia, Carlos A

    2017-08-01

    TSSA (Trypomastigote Small Surface Antigen) is an antigenic, adhesion molecule displayed on the surface of Trypanosoma cruzi trypomastigotes. TSSA displays substantial sequence identity to members of the TcMUC gene family, which code for the trypomastigote mucins (tGPI-mucins). In addition, TSSA bears sequence polymorphisms among parasite strains; and two TSSA variants expressed as recombinant molecules (termed TSSA-CL and TSSA-Sy) were shown to exhibit contrasting features in their host cell binding and signaling properties. Here we used a variety of approaches to get insights into TSSA structure/function. We show that at variance with tGPI-mucins, which rely on their extensive O-glycoslylation to achieve their protective function, TSSA seems to be displayed on the trypomastigote coat as a hypo-glycosylated molecule. This has a functional correlate, as further deletion mapping experiments and cell binding assays indicated that exposition of at least two peptidic motifs is critical for the engagement of the 'adhesive' TSSA variant (TSSA-CL) with host cell surface receptor(s) prior to trypomastigote internalization. These motifs are not conserved in the 'non-adhesive' TSSA-Sy variant. We next developed transgenic lines over-expressing either TSSA variant in different parasite backgrounds. In strict accordance to recombinant protein binding data, trypomastigotes over-expressing TSSA-CL displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. These phenotypes could be specifically counteracted by exogenous addition of peptides spanning the TSSA-CL adhesion motifs. In addition, and irrespective of the TSSA variant, over-expression of this molecule leads to an enhanced trypomastigote-to-amastigote conversion, indicating a possible role of TSSA also in parasite differentiation. In this study we provided novel evidence indicating that TSSA plays an important role not only on the

  16. The Trypomastigote Small Surface Antigen (TSSA regulates Trypanosoma cruzi infectivity and differentiation.

    Directory of Open Access Journals (Sweden)

    María de Los Milagros Cámara

    2017-08-01

    Full Text Available TSSA (Trypomastigote Small Surface Antigen is an antigenic, adhesion molecule displayed on the surface of Trypanosoma cruzi trypomastigotes. TSSA displays substantial sequence identity to members of the TcMUC gene family, which code for the trypomastigote mucins (tGPI-mucins. In addition, TSSA bears sequence polymorphisms among parasite strains; and two TSSA variants expressed as recombinant molecules (termed TSSA-CL and TSSA-Sy were shown to exhibit contrasting features in their host cell binding and signaling properties.Here we used a variety of approaches to get insights into TSSA structure/function. We show that at variance with tGPI-mucins, which rely on their extensive O-glycoslylation to achieve their protective function, TSSA seems to be displayed on the trypomastigote coat as a hypo-glycosylated molecule. This has a functional correlate, as further deletion mapping experiments and cell binding assays indicated that exposition of at least two peptidic motifs is critical for the engagement of the 'adhesive' TSSA variant (TSSA-CL with host cell surface receptor(s prior to trypomastigote internalization. These motifs are not conserved in the 'non-adhesive' TSSA-Sy variant. We next developed transgenic lines over-expressing either TSSA variant in different parasite backgrounds. In strict accordance to recombinant protein binding data, trypomastigotes over-expressing TSSA-CL displayed improved adhesion and infectivity towards non-macrophagic cell lines as compared to those over-expressing TSSA-Sy or parental lines. These phenotypes could be specifically counteracted by exogenous addition of peptides spanning the TSSA-CL adhesion motifs. In addition, and irrespective of the TSSA variant, over-expression of this molecule leads to an enhanced trypomastigote-to-amastigote conversion, indicating a possible role of TSSA also in parasite differentiation.In this study we provided novel evidence indicating that TSSA plays an important role not only on

  17. Human immunodeficiency virus and the airway

    African Journals Online (AJOL)

    Analee Milner

    Therefore, it is still of value to recognise and understand the pathology caused by degrees of immune compromise from HIV/AIDS. Ironically, ART may impact on the airway owing to immune reconstitution inflammatory syndrome and lipodystrophy. Keywords: AIDS, ART, airway, head and neck manifestation, HIV, human ...

  18. Recovery room nurses' knowledge regarding postoperative airway ...

    African Journals Online (AJOL)

    Background: Recovery room nurses should have the knowledge and skill to identify and manage postoperative airway emergencies in adult patients. Aim: To determine the knowledge of recovery room nurses regarding postoperative airway emergencies in adult patients in private hospitals in Northern Gauteng. Methods: A ...

  19. Early Airway Intervention for Craniofacial Anomalies.

    Science.gov (United States)

    Bohm, Lauren A; Sidman, James D; Roby, Brianne

    2016-11-01

    This article reviews the presentation of children with craniofacial anomalies by the most common sites of airway obstruction. Major craniofacial anomalies may be categorized into those with midface hypoplasia, mandible hypoplasia, combined midface and mandible hypoplasia, and midline deformities. Algorithms of airway interventions are provided to guide the initial management of these complex patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Airway Management in Severe Combat Maxillofacial Trauma.

    Science.gov (United States)

    Keller, Matthew W; Han, Peggy P; Galarneau, Michael R; Brigger, Matthew T

    2015-10-01

    Airway stabilization is critical in combat maxillofacial injury as normal anatomical landmarks can be obscured. The study objective was to characterize the epidemiology of airway management in maxillofacial trauma. Retrospective database analysis. Military treatment facilities in Iraq and Afghanistan and stateside tertiary care centers. In total, 1345 military personnel with combat-related maxillofacial injuries sustained March 2004 to August 2010 were identified from the Expeditionary Medical Encounter Database using International Classification of Diseases, 9th Revision, Clinical Modification (ICD-9-CM) codes. Descriptive statistics, including basic demographics, injury severity, associated injuries, and airway interventions, were collected. A logistic regression was performed to determine factors associated with the need for tracheostomy. A total of 239 severe maxillofacial injuries were identified. The most common mechanism of injury was improvised explosive devices (66%), followed by gunshot wounds (8%), mortars (5%), and landmines (4%). Of the subjects, 51.4% required intubation on their initial presentation. Of tracheostomies, 30.4% were performed on initial presentation. Of those who underwent bronchoscopy, 65.2% had airway inhalation injury. There was a significant relationship between the presence of head and neck burn and association with airway inhalation injury (P maxillofacial fracture and the need for tracheostomy (P = .0001). There is a high incidence of airway injury in combat maxillofacial trauma, which may be underestimated. Airway management in this population requires a high degree of suspicion and low threshold for airway stabilization. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.

  1. Airway and Extracellular Matrix Mechanics in COPD

    NARCIS (Netherlands)

    Bidan, Cécile M; Veldsink, Annemiek C; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing

  2. Down-regulation of Cell Surface Cyclic AMP Receptors and Desensitization of Cyclic AMP-stimulated Adenylate Cyclase by Cyclic AMP in Dictyostelium discoideum. Kinetics and Concentration Dependence

    NARCIS (Netherlands)

    Haastert, Peter J.M. van

    1987-01-01

    cAMP binds to Dictyostelium discoideum surface receptors and induces a transient activation of adenylate cyclase, which is followed by desensitization. cAMP also induces a loss of detectable surface receptors (down-regulation). Cells were incubated with constant cAMP concentrations, washed free of

  3. Airway Epithelial Cell Cilia and Obstructive Lung Disease

    Directory of Open Access Journals (Sweden)

    Asma Yaghi

    2016-11-01

    Full Text Available Airway epithelium is the first line of defense against exposure of the airway and lung to various inflammatory stimuli. Ciliary beating of airway epithelial cells constitutes an important part of the mucociliary transport apparatus. To be effective in transporting secretions out of the lung, the mucociliary transport apparatus must exhibit a cohesive beating of all ciliated epithelial cells that line the upper and lower respiratory tract. Cilia function can be modulated by exposures to endogenous and exogenous factors and by the viscosity of the mucus lining the epithelium. Cilia function is impaired in lung diseases such as COPD and asthma, and pharmacologic agents can modulate cilia function and mucus viscosity. Cilia beating is reduced in COPD, however, more research is needed to determine the structural-functional regulation of ciliary beating via all signaling pathways and how this might relate to the initiation or progression of obstructive lung diseases. Additionally, genotypes and how these can influence phenotypes and epithelial cell cilia function and structure should be taken into consideration in future investigations.

  4. Clearance of 99mTc DTPA from guinea pig nasal, tracheobronchial, and bronchoalveolar airways.

    Science.gov (United States)

    Greiff, L; Wollmer, P; Erjefält, I; Pipkorn, U; Persson, C G

    1990-01-01

    Technetium-99m labelled diethylenetriamine penta-acetate (99mTc-DTPA) was used to compare small solute absorption (clearance) from nasal, tracheobronchial, and bronchoalveolar airways in anaesthetised guinea pigs. 99mTc DTPA dissolved in saline was superfused through nasal and orolaryngeal catheters on to nasal and tracheobronchial airways; a small particle aerosol of nebulised 99mTc DTPA was delivered to the bronchoalveolar airways through a tracheostomy. Radioactivity over the appropriate region was then determined with a gamma camera. Mucociliary transport of 99mTc DTPA appeared not to contribute to the disappearance of 99mTc DTPA. Time-activity curves were obtained and half life values calculated by fitting a monoexponential equation to the experimental data. A progressive reduction in 99mTc DTPA was recorded from the nasal and tracheobronchial airways and from the bronchoalveolar airway, suggesting that absorption was occurring. The disappearance of 99mTc DTPA was fastest from the bronchoalveolar region, which also had the largest mucosal surface. The similar shape of the retention curves for the nasal and tracheobronchial regions suggests that the characteristics of nasal absorption of 99mTc DTPA could prove applicable to the tracheobronchial region. It is proposed that the present methods are suited for comparing the pharmacology of small solute absorption across nasal, tracheobronchial, and bronchoalveolar airway mucosa. Images PMID:2256011

  5. [Laryngeal tube II : alternative airway for children?].

    Science.gov (United States)

    Schalk, R; Scheller, B; Peter, N; Rosskopf, W; Byhahn, C; Zacharowski, K; Meininger, D

    2011-06-01

    Difficult airway situations both expected and unexpected, present major challenges to every anesthesiologist, especially in pediatric anesthesia. However, the integration of extraglottic airway devices, such as the laryngeal mask, into the algorithm of difficult airways has improved the handling of difficult airway situations. A device for establishing a supraglottic airway, the laryngeal tube (LT), was introduced in 1999. The LT is an extraglottic airway designed to secure a patent airway during either spontaneous breathing or controlled ventilation. The design of the device has been revised several times and a further development is the LTS II/LTS-D, which provides an additional channel for the insertion of a gastric drain tube. This article reports on the successful use of the LTS II in 12 children aged from 2 days to 6 years when endotracheal intubation, alternative mask or laryngeal mask ventilation failed. Use of the LTS II was associated with a high level of success, securing the airway when other techniques had failed. The potential advantage of the LTS II over the standard LT is an additional suction port, which allows gastric tube placement and can be used as an indirect indicator of correct placement. With a modified insertion technique using an Esmarch manoeuvre, placement was simple and fast to perform. In emergency situations when direct laryngoscopy fails or is too time-consuming the LTS II tube is recommended as an alternative device to secure the airway. As with all extraglottic airway devices, familiarity and clinical experience with the respective device and the corresponding insertion technique are essential for safe and successful use, especially in emergency situations.

  6. Distinctive regulation of contact activation by antithrombin and C1-inhibitor on activated platelets and material surfaces.

    Science.gov (United States)

    Bäck, Jennie; Lang, Markus Huber; Elgue, Graciela; Kalbitz, Miriam; Sanchez, Javier; Ekdahl, Kristina Nilsson; Nilsson, Bo

    2009-12-01

    Activated human plate lets trigger FXII-mediated contact activation, which leads to the generation of FXIIa-antithrombin (AT) and FXIa-AT complexes. This suggests that contact activation takes place at different sites, on activated platelets and material surfaces, during therapeutic procedures involving biomaterials in contact with blood and is differentially regulated. Here we show that activation in platelet-poor plasma, platelet-rich plasma (PRP), and whole blood induced by glass, kaolin, and polyphosphate elicited high levels of FXIIa-C1-inhibitor (C1INH), low levels of FXIa-C1INH and KK-C1INH, and almost no AT complexes. Platelet activation, in both PRP and blood, led to the formation of FXIIa-AT, FXIa-AT, and kallikrein (KK)-AT but almost no C1INH complexes. In severe trauma patients, FXIIa-AT and FXIa-AT were correlated with the release of thrombospondin-1 (TSP-1) from activated platelets. In contrast, FXIIa-C1INH complexes were detected when the FXIIa-AT levels were low. No correlations were found between FXIIa-C1INH and FXIIa-AT or TSP-1. Inhibition of FXIIa on material surfaces was also shown to affect the function of aggregating platelets. In conclusion, formation of FXIIa-AT and FXIIa-C1INH complexes can help to distinguish between contact activation triggered by biomaterial surfaces and by activated platelets. Platelet aggregation studies also demonstrated that platelet function is influenced by material surface-mediated contact activation and that generation of FXIIa-AT complexes may serve as a new biomarker for thrombotic reactions during therapeutic procedures employing biomaterial devices.

  7. Ca2+ oscillations, Ca2+ sensitization, and contraction activated by protein kinase C in small airway smooth muscle.

    Science.gov (United States)

    Mukherjee, Seema; Trice, Jacquelyn; Shinde, Paurvi; Willis, Ray E; Pressley, Thomas A; Perez-Zoghbi, Jose F

    2013-02-01

    Protein kinase C (PKC) has been implicated in the regulation of smooth muscle cell (SMC) contraction and may contribute to airway hyperresponsiveness. Here, we combined optical and biochemical analyses of mouse lung slices to determine the effects of PKC activation on Ca(2+) signaling, Ca(2+) sensitivity, protein phosphorylation, and contraction in SMCs of small intrapulmonary airways. We found that 10 µM phorbol-12-myristate-13-acetate or 1 µM phorbol 12,13-dibutyrate induced repetitive, unsynchronized, and transient contractions of the SMCs lining the airway lumen. These contractions were associated with low frequency Ca(2+) oscillations in airway SMCs that resulted from Ca(2+) influx through L-type voltage-gated Ca(2+) channels and the subsequent release of Ca(2+) from intracellular stores through ryanodine receptors. Phorbol ester stimulation of lung slices in which SMC intracellular Ca(2+) concentration ([Ca(2+)](i)) was "clamped" at a high concentration induced strong airway contraction, indicating that PKC mediated sensitization of the contractile response to [Ca(2+)](i). This Ca(2+) sensitization was accompanied by phosphorylation of both the PKC-potentiated PP1 inhibitory protein of 17 kD (CPI-17) and the regulatory myosin light chain. Thrombin, like the phorbol esters, induced a strong Ca(2+) sensitization that was inhibited by the PKC inhibitor GF-109203X and also potentiated airway contraction to membrane depolarization with KCl. In conclusion, we suggest that PKC activation in small airways leads to both the generation of Ca(2+) oscillations and strong Ca(2+) sensitization; agents associated with airway inflammation, such as thrombin, may activate this pathway to sensitize airway smooth muscle to agonists that cause membrane depolarization and Ca(2+) entry and induce airway hyperresponsiveness.

  8. Twenty-five years of airway research: personal thoughts.

    Science.gov (United States)

    Nadel, Jay A

    2010-11-01

    The airway research presented for 25 years annually at the Transatlantic Airway Conferences is impressive! The imaginative Conference design, the quality of speakers, and the generosity of the sponsor are outstanding. The breadth of the Conferences is too broad for an objective review here. Instead, I offer some subjective thoughts by one who has observed the evolution of modern pulmonology. Pulmonology came late as a specialty. The National Institutes of Health deserves credit for recognizing the increasing importance of lung disease through its funded grants and changing the designation to the Heart and Lung Institute. The combined effect of enthusiastic young investigators and an increasing commitment from what was to become the National Heart, Lung, and Blood Institute provided us pulmonologists with a jump start. Here, I note the importance of the emergence of modern biology in shaping evolving airway research, and our special opportunities because of accessible anatomic features of airways. My presentation of opportunities here in immunology and in signaling may be the result of individual prejudice! Cystic fibrosis was chosen for discussion because of the importance of cloning the cystic fibrosis transmembrane regulator gene and the limited novel therapies thus far, with a plea for new ideas. The gene was (brilliantly) cloned 2 decades ago, but insights that give rise to novel life-saving therapies are still lacking. I finish with accolades to those who seek to learn from a variety of sources, including artists; I am proud and grateful that I became an early convert from cardiology to pulmonology. It continues to be an exciting experience.

  9. Solvent Role in the Formation of Electric Double Layers with Surface Charge Regulation: A Bystander or a Key Participant?

    Science.gov (United States)

    Fleharty, Mark E.; van Swol, Frank; Petsev, Dimiter N.

    2016-01-01

    The charge formation at interfaces involving electrolyte solutions is due to the chemical equilibrium between the surface reactive groups and the potential determining ions in the solution (i.e., charge regulation). In this Letter we report our findings that this equilibrium is strongly coupled to the precise molecular structure of the solution near the charged interface. The neutral solvent molecules dominate this structure due to their overwhelmingly large number. Treating the solvent as a structureless continuum leads to a fundamentally inadequate physical picture of charged interfaces. We show that a proper account of the solvent effect leads to an unexpected and complex system behavior that is affected by the molecular and ionic excluded volumes and van der Waals interactions.

  10. An airway tree-shape model for geodesic airway branch labeling

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lo, Pechin Chien Pau; Gorbunova, Vladlena

    2011-01-01

    We present a mathematical airway tree-shape framework where airway trees are compared using geodesic distances. The framework consists of a rigorously dened shape space for treelike shapes, endowed with a metric such that the shape space is a geodesic metric space. This means that the distance be...... tree and a set of labeled airway trees are combined with a voting scheme to perform automatic branch labeling of segmented airways from the challenging EXACT'09 test set. In spite of the varying quality of the data, we obtain robust labeling results.......We present a mathematical airway tree-shape framework where airway trees are compared using geodesic distances. The framework consists of a rigorously dened shape space for treelike shapes, endowed with a metric such that the shape space is a geodesic metric space. This means that the distance...... between two tree-shapes can be realized as the length of the geodesic, or shortest deformation, connecting the two shapes. By computing geodesics between airway trees, as well as the corresponding airway deformation, we generate airway branch correspondences. Correspondences between an unlabeled airway...

  11. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways.

    Directory of Open Access Journals (Sweden)

    Margaret A Scull

    2009-05-01

    Full Text Available Transmission of avian influenza viruses from bird to human is a rare event even though avian influenza viruses infect the ciliated epithelium of human airways in vitro and ex vivo. Using an in vitro model of human ciliated airway epithelium (HAE, we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C, avian, but not human, influenza viruses are restricted for infection at the cooler temperatures of the human proximal airways (32 degrees C. These data support the hypothesis that avian influenza viruses, ordinarily adapted to the temperature of the avian enteric tract (40 degrees C, rarely infect humans, in part due to differences in host airway regional temperatures. Previously, a critical residue at position 627 in the avian influenza virus polymerase subunit, PB2, was identified as conferring temperature-dependency in mammalian cells. Here, we use reverse genetics to show that avianization of residue 627 attenuates a human virus, but does not account for the different infection between 32 degrees C and 37 degrees C. To determine the mechanism of temperature restriction of avian influenza viruses in HAE at 32 degrees C, we generated recombinant human influenza viruses in either the A/Victoria/3/75 (H3N2 or A/PR/8/34 (H1N1 genetic background that contained avian or avian-like glycoproteins. Two of these viruses, A/Victoria/3/75 with L226Q and S228G mutations in hemagglutinin (HA and neuraminidase (NA from A/Chick/Italy/1347/99 and A/PR/8/34 containing the H7 and N1 from A/Chick/Italy/1347/99, exhibited temperature restriction approaching that of wholly avian influenza viruses. These data suggest that influenza viruses bearing avian or avian-like surface glycoproteins have a reduced capacity to establish productive infection at the temperature of the human proximal airways. This temperature restriction may limit zoonotic transmission of avian influenza viruses and

  12. Nox enzymes in allergic airway inflammation.

    Science.gov (United States)

    van der Vliet, Albert

    2011-11-01

    Chronic airway diseases such as asthma are linked to oxidative environmental factors and are associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in the treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, with a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, involving many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. This article is part of a Special Issue entitled: Biochemistry of Asthma. 2011 Elsevier B.V. All rights reserved.

  13. Pentraxin 3 (PTX3 expression in allergic asthmatic airways: role in airway smooth muscle migration and chemokine production.

    Directory of Open Access Journals (Sweden)

    Jingbo Zhang

    Full Text Available Pentraxin 3 (PTX3 is a soluble pattern recognition receptor with non-redundant functions in inflammation and innate immunity. PTX3 is produced by immune and structural cells. However, very little is known about the expression of PTX3 and its role in allergic asthma.We sought to determine the PTX3 expression in asthmatic airways and its function in human airway smooth muscle cells (HASMC. In vivo PTX3 expression in bronchial biopsies of mild, moderate and severe asthmatics was analyzed by immunohistochemistry. PTX3 mRNA and protein were measured by real-time RT-PCR and ELISA, respectively. Proliferation and migration were examined using (3H-thymidine incorporation, cell count and Boyden chamber assays.PTX3 immunoreactivity was increased in bronchial tissues of allergic asthmatics compared to healthy controls, and mainly localized in the smooth muscle bundle. PTX3 protein was expressed constitutively by HASMC and was significantly up-regulated by TNF, and IL-1β but not by Th2 (IL-4, IL-9, IL-13, Th1 (IFN-γ, or Th-17 (IL-17 cytokines. In vitro, HASMC released significantly higher levels of PTX3 at the baseline and upon TNF stimulation compared to airway epithelial cells (EC. Moreover, PTX3 induced CCL11/eotaxin-1 release whilst inhibited the fibroblast growth factor-2 (FGF-2-driven HASMC chemotactic activity.Our data provide the first evidence that PTX3 expression is increased in asthmatic airways. HASMC can both produce and respond to PTX3. PTX3 is a potent inhibitor of HASMC migration induced by FGF-2 and can upregulate CCL11/eotaxin-1 release. These results raise the possibility that PTX3 may play a dual role in allergic asthma.

  14. The Cell Surface Estrogen Receptor, G Protein- Coupled Receptor 30 (GPR30, is Markedly Down Regulated During Breast Tumorigenesis

    Directory of Open Access Journals (Sweden)

    Indira Poola

    2008-01-01

    Full Text Available Background: GPR30 is a cell surface estrogen receptor that has been shown to mediate a number of non-genomic rapid effects of estrogen and appear to balance the signaling of estrogen and growth factors. In addition, progestins appear to use GPR30 for their actions. Therefore, GPR30 could play a critical role in hormonal regulation of breast epithelial cell integrity. Deregulation of the events mediated by GPR30 could contribute to tumorigenesis.Methods: To understand the role of GPR30 in the deregulation of estrogen signaling processes during breast carcinogenesis, we have undertaken this study to investigate its expression at mRNA levels in tumor tissues and their matched normal tissues. We compared its expression at mRNA levels by RT quantitative real-time PCR relative to GAPDH in ERα”—positive (n = 54 and ERα”—negative (n = 45 breast cancer tissues to their matched normal tissues.Results: We report here, for the first time, that GPR30 mRNA levels were significantly down-regulated in cancer tissues in comparison with their matched normal tissues (p 0.0001 by two sided paired t-test. The GPR30 expression levels were significantly lower in tumor tissues from patients (n = 29 who had lymph node metastasis in comparison with tumors from patients (n = 53 who were negative for lymph node metastasis (two sample t-test, p 0.02, but no association was found with ERα, PR and other tumor characteristics.Conclusions: Down-regulation of GPR30 could contribute to breast tumorigenesis and lymph node metastasis.

  15. A microRNA derived from an apparent canonical biogenesis pathway regulates variant surface protein gene expression in Giardia lamblia

    Science.gov (United States)

    Saraiya, Ashesh A.; Li, Wei; Wang, Ching C.

    2011-01-01

    We have previously shown that a snoRNA-derived microRNA, miR2, in Giardia lamblia potentially regulates the expression of 22 variant surface protein (VSP) genes. Here, we identified another miRNA, miR4, also capable of regulating the expression of several VSPs but derived from an unannotated open reading frame (ORF) rather than a snoRNA, suggesting a canonical miRNA biogenesis pathway in Giardia. miR4 represses expression of a reporter containing two miR4 antisense sequences at the 3′ UTR without causing a corresponding decrease in the mRNA level. This repression requires the presence of the Giardia Argonaute protein (GlAgo) and is reversed by 2′ O–methylated antisense oligo to miR4, suggesting an RNA-induced silencing complex (RISC)–mediated mechanism. Furthermore, in vivo and in vitro evidence suggested that the Giardia Dicer protein (GlDcr) is required for miR4 biogenesis. Coimmunoprecipitation of miR4 with GlAgo further verified miR4 as a miRNA. A total of 361 potential target sites for miR4 were bioinformatically identified in Giardia, out of which 69 (32.7%) were associated with VSP genes. miR4 reduces the expression of a reporter containing two copies of the target site from VSP (GL50803_36493) at the 3′ UTR. Sixteen of the 69 VSP genes were further found to contain partially overlapping miR2 and miR4 targeting sites. Expression of a reporter carrying the two overlapping sites was inhibited by either miR2 or miR4, but the inhibition was neither synergistic nor additive, suggesting a complex mechanism of miRNA regulation of VSP expression and the presence of a rich miRNAome in Giardia. PMID:22033329

  16. Resveratrol inhibits mucin gene expression, production and secretion from airway epithelial cells.

    Science.gov (United States)

    Lee, Su Yel; Lee, Hyun Jae; Sikder, Md Asaduzzaman; Shin, Hyun-Dae; Kim, Jang-Hyun; Chang, Gyu Tae; Seok, Jeong Ho; Lee, Choong Jae

    2012-07-01

    The study investigated whether resveratrol significantly affects mucin gene expression, production and secretion from airway epithelial cells. Confluent NCI-H292 cells were pretreated with resveratrol for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) and TNF-α (tumor necrosis factor-α) for 24 h, respectively. The MUC5AC gene expression and mucin protein production were measured by RT-PCR and ELISA. The effect of resveratrol on TNF-α- or PMA-induced activation of NF-κB p65 was also examined. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min in the presence of resveratrol to assess the effect on mucin secretion using ELISA. The results were as follows: (1) resveratrol inhibited the expression of MUC5AC gene induced by EGF or PMA or TNF-α from NCI-H292 cells; (2) resveratrol also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells; (3) resveratrol inhibited the activation of NF-κB p65 by TNF-α or PMA in NCI-H292 cells; (4) resveratrol significantly decreased ATP-induced mucin secretion from cultured RTSE cells. This result suggests that resveratrol can regulate mucin gene expression, production and secretion, by directly acting on airway epithelial cells. Copyright © 2011 John Wiley & Sons, Ltd.

  17. RAGE: a new frontier in chronic airways disease.

    Science.gov (United States)

    Sukkar, Maria B; Ullah, Md Ashik; Gan, Wan Jun; Wark, Peter A B; Chung, Kian Fan; Hughes, J Margaret; Armour, Carol L; Phipps, Simon

    2012-11-01

    Asthma and chronic obstructive pulmonary disease (COPD) are heterogeneous inflammatory disorders of the respiratory tract characterized by airflow obstruction. It is now clear that the environmental factors that drive airway pathology in asthma and COPD, including allergens, viruses, ozone and cigarette smoke, activate innate immune receptors known as pattern-recognition receptors, either directly or indirectly by causing the release of endogenous ligands. Thus, there is now intense research activity focused around understanding the mechanisms by which pattern-recognition receptors sustain the airway inflammatory response, and how these mechanisms might be targeted therapeutically. One pattern-recognition receptor that has recently come to attention in chronic airways disease is the receptor for advanced glycation end products (RAGE). RAGE is a member of the immunoglobulin superfamily of cell surface receptors that recognizes pathogen- and host-derived endogenous ligands to initiate the immune response to tissue injury, infection and inflammation. Although the role of RAGE in lung physiology and pathophysiology is not well understood, recent genome-wide association studies have linked RAGE gene polymorphisms with airflow obstruction. In addition, accumulating data from animal and clinical investigations reveal increased expression of RAGE and its ligands, together with reduced expression of soluble RAGE, an endogenous inhibitor of RAGE signalling, in chronic airways disease. In this review, we discuss recent studies of the ligand-RAGE axis in asthma and COPD, highlight important areas for future research and discuss how this axis might potentially be harnessed for therapeutic benefit in these conditions. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  18. Method for quantitative study of airway functional microanatomy using micro-optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Linbo Liu

    Full Text Available We demonstrate the use of a high resolution form of optical coherence tomography, termed micro-OCT (μOCT, for investigating the functional microanatomy of airway epithelia. μOCT captures several key parameters governing the function of the airway surface (airway surface liquid depth, periciliary liquid depth, ciliary function including beat frequency, and mucociliary transport rate from the same series of images and without exogenous particles or labels, enabling non-invasive study of dynamic phenomena. Additionally, the high resolution of μOCT reveals distinguishable phases of the ciliary stroke pattern and glandular extrusion. Images and functional measurements from primary human bronchial epithelial cell cultures and excised tissue are presented and compared with measurements using existing gold standard methods. Active secretion from mucus glands in tissue, a key parameter of epithelial function, was also observed and quantified.

  19. The genus Prevotella in cystic fibrosis airways.

    Science.gov (United States)

    Field, Tyler R; Sibley, Christopher D; Parkins, Michael D; Rabin, Harvey R; Surette, Michael G

    2010-08-01

    Airway disease resulting from chronic bacterial colonization and consequential inflammation is the leading cause of morbidity and mortality in patients with Cystic Fibrosis (CF). Although traditionally considered to be due to only a few pathogens, recent re-examination of CF airway microbiology has revealed that polymicrobial communities that include many obligate anaerobes colonize lower airways. The purpose of this study was to examine Prevotella species in CF airways by quantitative culture and phenotypic characterization. Expectorated sputum was transferred to an anaerobic environment immediately following collection and examined by quantitative microbiology using a variety of culture media. Isolates were identified as facultative or obligate anaerobes and the later group was identified by 16S rRNA sequencing. Prevotella spp. represented the majority of isolates. Twelve different species of Prevotella were recovered from 16 patients with three species representing 65% of isolates. Multiple Prevotella species were often isolated from the same sputum sample. These isolates were biochemically characterized using Rapid ID 32A kits (BioMérieux), and for their ability to produce autoinducer-2 and beta-lactamases. Considerable phenotypic variability between isolates of the same species was observed. The quantity and composition of Prevotella species within a patients' airway microbiome varied over time. Our results suggest that the diversity and dynamics of Prevotella in CF airways may contribute to airway disease. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Post-extubation airway obstruction. Literature review

    Directory of Open Access Journals (Sweden)

    Álvaro SÁNCHEZ-TABERNERO

    2017-03-01

    Full Text Available Introduction and objective: airway obstruction after extubation in any surgery is a critical event with low incidence, which may require reintubation or tracheostomy, which often otolaryngologist is required. Objective: To determine the prevalence of BVA and its causes through systematic literature review. Method: Literature review in PubMed, Scopus and Cochrane clinical trials, meta-analysis, reviews and case series and control over airway obstruction after extubation that requires reintubation in adults. Results: 6 studies and one clinical practice guidelines were selected. The most common cause of extubation failure is blocking the airway for various reasons (pharyngeal muscle weakness residual effect -often farmacologycal-, laryngospasm, vocal cord paralysis, edema of upper respiratory tract, cervical postoperative hematoma, foreign bodies or secretions. Most cases of re-intubation occurred within 2 hours after extubation. Conclusions: The most common cause of failure after general anesthesia extubation is blocking the airway generally caused by residual neuromuscular blocking effect. Airway obstruction risk increases in airway and head and neck surgery. Difficult intubation guidlines have improved performance and reduced adverse events and similar strategies must be implemented in extubation. The procedure extubation and reintubation should be documented. Working groups airway must be multidisciplinary and include specialists in otolaryngology.

  1. Impact of bacterial infections on airway diseases

    Directory of Open Access Journals (Sweden)

    G. B. Toews

    2005-12-01

    Full Text Available Bacterial infections play an important role as aetiologic agents in acute exacerbations of chronic obstructive pulmonary disease (COPD. Modern investigational tools, including bronchoscopy, microbial molecular epidemiology and measurement of specific immunity have established that bacteria cause up to 50% of acute exacerbations in COPD. Acute exacerbations have enormous economic costs and contribute to morbidity, mortality and impairment in health related quality of life. Chronic bacterial persistence in the lower airways and lower respiratory tract in patients with COPD is not innocuous. It is likely to contribute to persistent airway inflammation and might contribute to acute airway exacerbations or progression of airway obstruction. Further investigation is required in these fertile areas of investigation. Bacteria also play a role in asthma exacerbations, but their role is less well defined than with patients with COPD. Mycoplasma pneumoniae may be associated with asthma chronicity. Chronic airway infection models document that M. pneumoniae plays a role in airway remodelling, including angiogenesis, vascular remodelling and airway wall thickening. Recent studies have identified patients with asthma as an at-risk group for invasive pneumococcal disease. The feasibility and cost effectiveness of a pneumococcal vaccination strategy among persons with asthma deserves careful, immediate attention.

  2. 21 CFR 868.2600 - Airway pressure monitor.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper airway...

  3. Effect of chlorhexidine on oral airway biofilm formation of Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Ünase Büyükkoçak

    2015-12-01

    Full Text Available Objective: Biofilm formation of microorganisms on the surface of airways may lead to supraglottic colonization that may cause lower respiratuar tract infections. Studies searching the efficiency of local disinfectants on biofilm formation are limited. The aim of this study was to investigate the effects of chlorhexidine coated airways on biofilm formation of Staphylococcus epidermidis. Methods: Culture and electron microscopy methods were used for biofilm assessment. Airways were divided into two groups to investigate the effects of chlorhexidine on number of bacteria attached to the airway and biofilm formation. Group 1(control: naive material, S. epidermidis, Group 2: chlorhexidine coated material, S. epidermidis. No process was applied in Group 1. Chlorhexidine gluconate (0.2% was sprayed on the surface of naive material for four seconds and then left to dry in air, in Group to. Number of bacteria attached to the airway were counted by microbiological methods and biofilm formation was shown by Scanning Electron Microscope (SEM. Mann-Whitney u test was performed for statistical analyses. Results: In Group 2, bacteria numbers were 1x102-8x102 cfu/ml, whereas they were 3x103-1x104 cfu/ml in Group 1. Chlorhexidine decreased number of microorganisms attached to the airways with statistical significance (p=0.04. The results of the electron microscopic evaluation were in accordance with the acteriological findings. Conclusion: This study has shown that chlorhexidine coating can successfully reduce the number of adhered bacteria and biofilm formation on airways. J Microbiol Infect Dis 2015;5(4: 162-166

  4. Phenotype and functional plasticity of airway smooth muscle : role of caveolae and caveolins

    NARCIS (Netherlands)

    Halayko, Andrew J; Tran, Thai; Gosens, Reinoud

    2008-01-01

    Airway smooth muscle (ASM) cells exhibit phenotype plasticity that is under control of external stimuli such as growth factors and the extracellular matrix, and is regulated by a network of intracellular signaling cascades that control transcription and protein translation of phenotype-specific

  5. Reduction of tumstatin in asthmatic airways contributes to angiogenesis, inflammation, and hyperresponsiveness

    NARCIS (Netherlands)

    Burgess, Janette K; Boustany, Sarah; Moir, Lyn M; Weckmann, Markus; Lau, Justine Y; Grafton, Karryn; Baraket, Melissa; Hansbro, Philip M; Hansbro, Nicole G; Foster, Paul S; Black, Judith L; Oliver, Brian G

    2010-01-01

    RATIONALE: Angiogenesis is a prominent feature of remodeling in asthma. Many proangiogenic factors are up-regulated in asthma, but little is known about levels of endogenous antiangiogenic agents. Collagen IV is decreased in the airway basement membrane in asthma. It has six alpha chains, of which

  6. Molecular characterization of the peripheral airway field of cancerization in lung adenocarcinoma.

    Directory of Open Access Journals (Sweden)

    Jun-Chieh J Tsay

    Full Text Available Field of cancerization in the airway epithelium has been increasingly examined to understand early pathogenesis of non-small cell lung cancer. However, the extent of field of cancerization throughout the lung airways is unclear. Here we sought to determine the differential gene and microRNA expressions associated with field of cancerization in the peripheral airway epithelial cells of patients with lung adenocarcinoma. We obtained peripheral airway brushings from smoker controls (n=13 and from the lung contralateral to the tumor in cancer patients (n=17. We performed gene and microRNA expression profiling on these peripheral airway epithelial cells using Affymetrix GeneChip and TaqMan Array. Integrated gene and microRNA analysis was performed to identify significant molecular pathways. We identified 26 mRNAs and 5 miRNAs that were significantly (FDR <0.1 up-regulated and 38 mRNAs and 12 miRNAs that were significantly down-regulated in the cancer patients when compared to smoker controls. Functional analysis identified differential transcriptomic expressions related to tumorigenesis. Integration of miRNA-mRNA data into interaction network analysis showed modulation of the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK pathway in the contralateral lung field of cancerization. In conclusion, patients with lung adenocarcinoma have tumor related molecules and pathways in histologically normal appearing peripheral airway epithelial cells, a substantial distance from the tumor itself. This finding can potentially provide new biomarkers for early detection of lung cancer and novel therapeutic targets.

  7. Cigarette smoke decreases airway epithelial FABP5 expression and promotes Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Fabienne Gally

    Full Text Available Cigarette smoking is the primary cause of Chronic Obstructive Pulmonary Disease (COPD, which is characterized by chronic inflammation of the airways and destruction of lung parenchyma. Repeated and sustained bacterial infections are clearly linked to disease pathogenesis (e.g., exacerbations and a huge burden on health care costs. The airway epithelium constitutes the first line of host defense against infection and our previous study indicated that Fatty Acid Binding Protein 5 (FABP5 is down regulated in airway epithelial cells of smokers with COPD as compared to smokers without COPD. We hypothesized that cigarette smoke (CS exposure down regulates FABP5, thus, contributing to a more sustained inflammation in response to bacterial infection. In this report, we show that FABP5 is increased following bacterial infection but decreased following CS exposure of primary normal human bronchial epithelial (NHBE cells. The goal of this study was to address FABP5 function by knocking down or overexpressing FABP5 in primary NHBE cells exposed to CS. Our data indicate that FABP5 down regulation results in increased P. aeruginosa bacterial load and inflammatory cytokine levels (e.g., IL-8 and decreased expression of the anti-bacterial peptide, β defensin-2. On the contrary, FABP5 overexpression exerts a protective function in airway epithelial cells against P. aeruginosa infection by limiting the production of IL-8 and increasing the expression of β defensin-2. Our study indicates that FABP5 exerts immunomodulatory functions in the airway epithelium against CS exposure and subsequent bacterial infection through its modulation of the nuclear receptor peroxisome proliferator-activated receptor (PPAR-γ activity. These findings support the development of FABP5/PPAR-γ-targeted therapeutic approach to prevent airway inflammation by restoring antimicrobial immunity during COPD exacerbations.

  8. PLUNC is a novel airway surfactant protein with anti-biofilm activity.

    Directory of Open Access Journals (Sweden)

    Lokesh Gakhar

    2010-02-01

    Full Text Available The PLUNC ("Palate, lung, nasal epithelium clone" protein is an abundant secretory product of epithelia present throughout the conducting airways of humans and other mammals, which is evolutionarily related to the lipid transfer/lipopolysaccharide binding protein (LT/LBP family. Two members of this family--the bactericidal/permeability increasing protein (BPI and the lipopolysaccharide binding protein (LBP--are innate immune molecules with recognized roles in sensing and responding to Gram negative bacteria, leading many to propose that PLUNC may play a host defense role in the human airways.Based on its marked hydrophobicity, we hypothesized that PLUNC may be an airway surfactant. We found that purified recombinant human PLUNC greatly enhanced the ability of aqueous solutions to spread on a hydrophobic surface. Furthermore, we discovered that PLUNC significantly reduced surface tension at the air-liquid interface in aqueous solutions, indicating novel and biologically relevant surfactant properties. Of note, surface tensions achieved by adding PLUNC to solutions are very similar to measurements of the surface tension in tracheobronchial secretions from humans and animal models. Because surfactants of microbial origin can disperse matrix-encased bacterial clusters known as biofilms [1], we hypothesized that PLUNC may also have anti-biofilm activity. We found that, at a physiologically relevant concentration, PLUNC inhibited biofilm formation by the airway pathogen Pseudomonas aeruginosa in an in vitro model.Our data suggest that the PLUNC protein contributes to the surfactant properties of airway secretions, and that this activity may interfere with biofilm formation by an airway pathogen.

  9. Eosinophilic airway inflammation in asthmatic patients is associated with an altered airway microbiome

    DEFF Research Database (Denmark)

    Sverrild, Asger; Kiilerich, Pia; Brejnrod, Asker Daniel

    2017-01-01

    BACKGROUND: Asthmatic patients have higher microbiome diversity and an altered composition, with more Proteobacteria and less Bacteroidetes compared with healthy control subjects. Studies comparing airway inflammation and the airway microbiome are sparse, especially in subjects not receiving anti......-inflammatory treatment. OBJECTIVE: We sought to describe the relationship between the airway microbiome and patterns of airway inflammation in steroid-free patients with asthma and healthy control subjects. METHODS: Bronchoalveolar lavage fluid was collected from 23 steroid-free nonsmoking patients with asthma and 10...... of eosinophilic airway inflammation correlates with variations in the microbiome across asthmatic patients, whereas neutrophilic airway inflammation does not. This warrants further investigation on molecular pathways involved in both patients with eosinophilic and those with noneosinophilic asthma....

  10. Airway uric acid is a sensor of inhaled protease allergens and initiates type 2 immune responses in respiratory mucosa1

    Science.gov (United States)

    Hara, Kenichiro; Iijima, Koji; Elias, Martha K.; Seno, Satoshi; Tojima, Ichiro; Kobayashi, Takao; Kephart, Gail M.; Kurabayashi, Masahiko; Kita, Hirohito

    2014-01-01

    While type 2 immune responses to environmental antigens are thought to play pivotal roles in asthma and allergic airway diseases, the immunological mechanisms that initiate the responses are largely unknown. Many allergens have biologic activities, including enzymatic activities and abilities to engage innate pattern-recognition receptors such as TLR4. Here we report that IL-33 and thymic stromal lymphopoietin (TSLP) were produced quickly in the lungs of naïve mice exposed to cysteine proteases, such as bromelain and papain, as a model for allergens. IL-33 and TSLP sensitized naïve animals to an innocuous airway antigen OVA, which resulted in production of type 2 cytokines and IgE antibody and eosinophilic airway inflammation when mice were challenged with the same antigen. Importantly, upon exposure to proteases, uric acid (UA) was rapidly released into the airway lumen, and removal of this endogenous UA by uricase prevented type 2 immune responses. UA promoted secretion of IL-33 by airway epithelial cells in vitro, and administration of UA into the airways of naïve animals induced extracellular release of IL-33, followed by both innate and adaptive type 2 immune responses in vivo. Finally, a potent UA synthesis inhibitor, febuxostat, mitigated asthma phenotypes that were caused by repeated exposure to natural airborne allergens. These findings provide mechanistic insights into the development of type 2 immunity to airborne allergens and recognize airway UA as a key player that regulates the process in respiratory mucosa. PMID:24663677

  11. Effect of Continuous Positive Airway Pressure on Airway Reactivity in Asthma. A Randomized, Sham-controlled Clinical Trial

    OpenAIRE

    Holbrook, Janet T.; Sugar, Elizabeth A.; Brown, Robert H., Jr.; Drye, Lea T.; Irvin, Charles G.; Schwartz, Alan R.; Tepper, Robert S.; Wise, Robert A; Yasin, Razan Z.; Busk, Michael F.

    2016-01-01

    Rationale: Studies have demonstrated that application of stress suppresses airway smooth muscle contractility. In animal models of asthma, continuous positive airway pressure (CPAP) reduced airway reactivity. Short-term studies of CPAP in patients with asthma showed reductions in airway reactivity.

  12. Hereditary and microbiological factors influencing the airway immunological profile of neonates

    DEFF Research Database (Denmark)

    Følsgaard, Nilofar

    2012-01-01

    . influenzae and S. aureus affects the expression of immune mediators in 4 week old infants. In paper I we explore the effect of atopic heredity on the immune expression, showing that children of mothers with atopic disease express down-regulation of nearly all their chemokines and cytokines in the airway...... specific and significant stimulations of the immune profile of the airway mucosa indicating that particularly M. catarrhalis and H. influenzae are not just innocent bystanders but may likely induce a chronic inflammatory response. In these studies we have shown for the first time that known perinatal...

  13. Waterpipe smoking induces epigenetic changes in the small airway epithelium.

    Directory of Open Access Journals (Sweden)

    Matthew S Walters

    Full Text Available Waterpipe (also called hookah, shisha, or narghile smoking is a common form of tobacco use in the Middle East. Its use is becoming more prevalent in Western societies, especially among young adults as an alternative form of tobacco use to traditional cigarettes. While the risk to cigarette smoking is well documented, the risk to waterpipe smoking is not well defined with limited information on its health impact at the epidemiologic, clinical and biologic levels with respect to lung disease. Based on the knowledge that airway epithelial cell DNA methylation is modified in response to cigarette smoke and in cigarette smoking-related lung diseases, we assessed the impact of light-use waterpipe smoking on DNA methylation of the small airway epithelium (SAE and whether changes in methylation were linked to the transcriptional output of the cells. Small airway epithelium was obtained from 7 nonsmokers and 7 light-use (2.6 ± 1.7 sessions/wk waterpipe-only smokers. Genome-wide comparison of SAE DNA methylation of waterpipe smokers to nonsmokers identified 727 probesets differentially methylated (fold-change >1.5, p<0.05 representing 673 unique genes. Dominant pathways associated with these epigenetic changes include those linked to G-protein coupled receptor signaling, aryl hydrocarbon receptor signaling and xenobiotic metabolism signaling, all of which have been associated with cigarette smoking and lung disease. Of the genes differentially methylated, 11.3% exhibited a corresponding significant (p<0.05 change in gene expression with enrichment in pathways related to regulation of mRNA translation and protein synthesis (eIF2 signaling and regulation of eIF4 and p70S6K signaling. Overall, these data demonstrate that light-use waterpipe smoking is associated with epigenetic changes and related transcriptional modifications in the SAE, the cell population demonstrating the earliest pathologic abnormalities associated with chronic cigarette smoking.

  14. Attenuation of cigarette smoke-induced airway mucus production by hydrogen-rich saline in rats.

    Directory of Open Access Journals (Sweden)

    Yunye Ning

    Full Text Available BACKGROUND: Over-production of mucus is an important pathophysiological feature in chronic airway disease such as chronic obstructive pulmonary disease (COPD and asthma. Cigarette smoking (CS is the leading cause of COPD. Oxidative stress plays a key role in CS-induced airway abnormal mucus production. Hydrogen protected cells and tissues against oxidative damage by scavenging hydroxyl radicals. In the present study we investigated the effect of hydrogen on CS-induced mucus production in rats. METHODS: Male Sprague-Dawley rats were divided into four groups: sham control, CS group, hydrogen-rich saline pretreatment group and hydrogen-rich saline control group. Lung morphology and tissue biochemical changes were determined by immunohistochemistry, Alcian Blue/periodic acid-Schiff staining, TUNEL, western blot and realtime RT-PCR. RESULTS: Hydrogen-rich saline pretreatment attenuated CS-induced mucus accumulation in the bronchiolar lumen, goblet cell hyperplasia, muc5ac over-expression and abnormal cell apoptosis in the airway epithelium as well as malondialdehyde increase in the BALF. The phosphorylation of EGFR at Tyr1068 and Nrf2 up-regulation expression in the rat lungs challenged by CS exposure were also abrogated by hydrogen-rich saline. CONCLUSION: Hydrogen-rich saline pretreatment ameliorated CS-induced airway mucus production and airway epithelium damage in rats. The protective role of hydrogen on CS-exposed rat lungs was achieved at least partly by its free radical scavenging ability. This is the first report to demonstrate that intraperitoneal administration of hydrogen-rich saline protected rat airways against CS damage and it could be promising in treating abnormal airway mucus production in COPD.

  15. Differential trypanosome surface coat regulation by a CCCH protein that co-associates with procyclin mRNA cis-elements.

    Directory of Open Access Journals (Sweden)

    Pegine Walrad

    2009-02-01

    Full Text Available The genome of Trypanosoma brucei is unusual in being regulated almost entirely at the post-transcriptional level. In terms of regulation, the best-studied genes are procyclins, which encode a family of major surface GPI-anchored glycoproteins (EP1, EP2, EP3, GPEET that show differential expression in the parasite's tsetse-fly vector. Although procyclin mRNA cis-regulatory sequences have provided the paradigm for post-transcriptional control in kinetoplastid parasites, trans-acting regulators of procyclin mRNAs are unidentified, despite intensive effort over 15 years. Here we identify the developmental regulator, TbZFP3, a CCCH-class predicted RNA binding protein, as an isoform-specific regulator of Procyclin surface coat expression in trypanosomes. We demonstrate (i that endogenous TbZFP3 shows sequence-specific co-precipitation of EP1 and GPEET, but not EP2 and EP3, procyclin mRNA isoforms, (ii that ectopic overexpression of TbZFP3 does not perturb the mRNA abundance of procyclin transcripts, but rather that (iii their protein expression is regulated in an isoform-specific manner, as evidenced by mass spectrometric analysis of the Procyclin expression signature in the transgenic cell lines. The TbZFP3 mRNA-protein complex (TbZFP3mRNP is identified as a trans-regulator of differential surface protein expression in trypanosomes. Moreover, its sequence-specific interactions with procyclin mRNAs are compatible with long-established predictions for Procyclin regulation. Combined with the known association of TbZFP3 with the translational apparatus, this study provides a long-sought missing link between surface protein cis-regulatory signals and the gene expression machinery in trypanosomes.

  16. Airway Tree Extraction with Locally Optimal Paths

    DEFF Research Database (Denmark)

    Lo, Pechin Chien Pau; Sporring, Jon; Pedersen, Jesper Johannes Holst

    2009-01-01

    This paper proposes a method to extract the airway tree from CT images by continually extending the tree with locally optimal paths. This is in contrast to commonly used region growing based approaches that only search the space of the immediate neighbors. The result is a much more robust method...... for tree extraction that can overcome local occlusions. The cost function for obtaining the optimal paths takes into account of an airway probability map as well as measures of airway shape and orientation derived from multi-scale Hessian eigen analysis on the airway probability. Significant improvements...... were achieved compared to a region growing based method, with up to 36% longer trees at a slight increase of false positive rate....

  17. Non-invasive airway health measurement using synchrotron x-ray microscopy of high refractive index glass microbeads

    Energy Technology Data Exchange (ETDEWEB)

    Donnelley, Martin, E-mail: martin.donnelley@adelaide.edu.au; Farrow, Nigel; Parsons, David [Respiratory & Sleep Medicine, Women’s and Children’s Hospital, North Adelaide, South Australia (Australia); Robinson Research Institute, University of Adelaide, South Australia (Australia); School of Paediatrics and Reproductive Health, University of Adelaide, South Australia (Australia); Morgan, Kaye; Siu, Karen [School of Physics, Monash University, Victoria (Australia)

    2016-01-28

    Cystic fibrosis (CF) is caused by a gene defect that compromises the ability of the mucociliary transit (MCT) system to clear the airways of debris and pathogens. To directly characterise airway health and the effects of treatments we have developed a synchrotron X-ray microscopy method that non-invasively measures the local rate and patterns of MCT behaviour. Although the nasal airways of CF mice exhibit the CF pathophysiology, there is evidence that nasal MCT is not altered in CF mice1. The aim of this experiment was to determine if our non-invasive local airway health assessment method could identify differences in nasal MCT rate between normal and CF mice, information that is potentially lost in bulk MCT measurements. Experiments were performed on the BL20XU beamline at the SPring-8 Synchrotron in Japan. Mice were anaesthetized, a small quantity of micron-sized marker particles were delivered to the nose, and images of the nasal airways were acquired for 15 minutes. The nasal airways were treated with hypertonic saline or mannitol to increase surface hydration and MCT. Custom software was used to locate and track particles and calculate individual and bulk MCT rates. No statistically significant differences in MCT rate were found between normal and CF mouse nasal airways or between treatments. However, we hope that the improved sensitivity provided by this technique will accelerate the ability to identify useful CF lung disease-modifying interventions in small animal models, and enhance the development and efficacy of proposed new therapies.

  18. Sound transmission in porcine thorax through airway insonification.

    Science.gov (United States)

    Peng, Ying; Dai, Zoujun; Mansy, Hansen A; Henry, Brian M; Sandler, Richard H; Balk, Robert A; Royston, Thomas J

    2016-04-01

    Many pulmonary injuries and pathologies may lead to structural and functional changes in the lungs resulting in measurable sound transmission changes on the chest surface. Additionally, noninvasive imaging of externally driven mechanical wave motion in the chest (e.g., using magnetic resonance elastography) can provide information about lung structural property changes and, hence, may be of diagnostic value. In the present study, a comprehensive computational simulation (in silico) model was developed to simulate sound wave propagation in the airways, lung, and chest wall under normal and pneumothorax conditions. Experiments were carried out to validate the model. Here, sound waves with frequency content from 50 to 700 Hz were introduced into airways of five porcine subjects via an endotracheal tube, and transmitted waves were measured by scanning laser Doppler vibrometry at the chest wall surface. The computational model predictions of decreased sound transmission with pneumothorax were consistent with experimental measurements. The in silico model can also be used to visualize wave propagation inside and on the chest wall surface for other pulmonary pathologies, which may help in developing and interpreting diagnostic procedures that utilize sound and vibration.

  19. Recruitment of EB1, a Master Regulator of Microtubule Dynamics, to the Surface of the Theileria annulata Schizont

    KAUST Repository

    Woods, Kerry L.

    2013-05-09

    The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs) surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell\\'s astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability). Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1), a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton. 2013 Woods et al.

  20. Glucocorticoid regulation of SLIT/ROBO tumour suppressor genes in the ovarian surface epithelium and ovarian cancer cells.

    Directory of Open Access Journals (Sweden)

    Rachel E Dickinson

    Full Text Available The three SLIT ligands and their four ROBO receptors have fundamental roles in mammalian development by promoting apoptosis and repulsing aberrant cell migration. SLITs and ROBOs have emerged as candidate tumour suppressor genes whose expression is inhibited in a variety of epithelial tumours. We demonstrated that their expression could be negatively regulated by cortisol in normal ovarian luteal cells. We hypothesised that after ovulation the locally produced cortisol would inhibit SLIT/ROBO expression in the ovarian surface epithelium (OSE to facilitate its repair and that this regulatory pathway was still present, and could be manipulated, in ovarian epithelial cancer cells. Here we examined the expression and regulation of the SLIT/ROBO pathway in OSE, ovarian cancer epithelial cells and ovarian tumour cell lines. Basal SLIT2, SLIT3, ROBO1, ROBO2 and ROBO4 expression was lower in primary cultures of ovarian cancer epithelial cells when compared to normal OSE (P<0.05 and in poorly differentiated SKOV-3 cells compared to the more differentiated PEO-14 cells (P<0.05. Cortisol reduced the expression of certain SLITs and ROBOs in normal OSE and PEO-14 cells (P<0.05. Furthermore blocking SLIT/ROBO activity reduced apoptosis in both PEO-14 and SKOV-3 tumour cells (P<0.05. Interestingly SLIT/ROBO expression could be increased by reducing the expression of the glucocorticoid receptor using siRNA (P<0.05. Overall our findings indicate that in the post-ovulatory phase one role of cortisol may be to temporarily inhibit SLIT/ROBO expression to facilitate regeneration of the OSE. Therefore this pathway may be a target to develop strategies to manipulate the SLIT/ROBO system in ovarian cancer.

  1. Recruitment of EB1, a master regulator of microtubule dynamics, to the surface of the Theileria annulata schizont.

    Directory of Open Access Journals (Sweden)

    Kerry L Woods

    2013-05-01

    Full Text Available The apicomplexan parasite Theileria annulata transforms infected host cells, inducing uncontrolled proliferation and clonal expansion of the parasitized cell population. Shortly after sporozoite entry into the target cell, the surrounding host cell membrane is dissolved and an array of host cell microtubules (MTs surrounds the parasite, which develops into the transforming schizont. The latter does not egress to invade and transform other cells. Instead, it remains tethered to host cell MTs and, during mitosis and cytokinesis, engages the cell's astral and central spindle MTs to secure its distribution between the two daughter cells. The molecular mechanism by which the schizont recruits and stabilizes host cell MTs is not known. MT minus ends are mostly anchored in the MT organizing center, while the plus ends explore the cellular space, switching constantly between phases of growth and shrinkage (called dynamic instability. Assuming the plus ends of growing MTs provide the first point of contact with the parasite, we focused on the complex protein machinery associated with these structures. We now report how the schizont recruits end-binding protein 1 (EB1, a central component of the MT plus end protein interaction network and key regulator of host cell MT dynamics. Using a range of in vitro experiments, we demonstrate that T. annulata p104, a polymorphic antigen expressed on the schizont surface, functions as a genuine EB1-binding protein and can recruit EB1 in the absence of any other parasite proteins. Binding strictly depends on a consensus SxIP motif located in a highly disordered C-terminal region of p104. We further show that parasite interaction with host cell EB1 is cell cycle regulated. This is the first description of a pathogen-encoded protein to interact with EB1 via a bona-fide SxIP motif. Our findings provide important new insight into the mode of interaction between Theileria and the host cell cytoskeleton.

  2. Cortex phellodendri Extract Relaxes Airway Smooth Muscle

    OpenAIRE

    Qiu-Ju Jiang; Weiwei Chen; Hong Dan; Li Tan; He Zhu; Guangzhong Yang; Jinhua Shen; Yong-Bo Peng; Ping Zhao; Lu Xue; Meng-Fei Yu; Liqun Ma; Xiao-Tang Si; Zhuo Wang; Jiapei Dai

    2016-01-01

    Cortex phellodendri is used to reduce fever and remove dampness and toxin. Berberine is an active ingredient of C. phellodendri. Berberine from Argemone ochroleuca can relax airway smooth muscle (ASM); however, whether the nonberberine component of C. phellodendri has similar relaxant action was unclear. An n-butyl alcohol extract of C. phellodendri (NBAECP, nonberberine component) was prepared, which completely inhibits high K+- and acetylcholine- (ACH-) induced precontraction of airway smoo...

  3. Human Metapneumovirus Attachment Protein Contributes to Neutrophil Recruitment into the Airways of Infected Mice

    Directory of Open Access Journals (Sweden)

    Nagarjuna R. Cheemarla

    2017-10-01

    Full Text Available Human Metapneumovirus (HMPV is a leading respiratory pathogen that causes lower respiratory tract infections worldwide. Acute HMPV infection induces an exacerbated inflammatory neutrophilic response leading to bronchiolitis and pneumonia. However, the mechanism by which the virus regulates neutrophil infiltration into the airways still remains unexplored. In this work, we used an experimental mouse model of HMPV infection to demonstrate that the attachment (G protein of HMPV contributes to the recruitment of neutrophils into the airways and modulate the production of neutrophil chemoattractants and Type I IFN responses, specifically IFN-α. These findings provide the first evidence that the HMPV G protein contributes to the in vivo neutrophilic response to HMPV infection and furthers our understanding on virus induced inflammatory responses in the airways.

  4. Patient-specific three-dimensional explant spheroids derived from human nasal airway epithelium

    DEFF Research Database (Denmark)

    Marthin, June Kehlet; Stevens, Elizabeth Munkebjerg; Larsen, Lars Allan

    2017-01-01

    surface facing the outside and accessible for analysis of ciliary function. METHODS: We performed a two-group comparison study of ciliary beat pattern and ciliary beat frequency in spheroids derived from nasal airway epithelium in patients with primary ciliary dyskinesia (PCD) and in healthy controls...

  5. IL-10 is necessary for the expression of airway hyperresponsiveness but not pulmonary inflammation after allergic sensitization

    Science.gov (United States)

    Mäkelä, M. J.; Kanehiro, A.; Borish, L.; Dakhama, A.; Loader, J.; Joetham, A.; Xing, Z.; Jordana, M.; Larsen, G. L.; Gelfand, E. W.

    2000-05-01

    Cytokines play an important role in modulating inflammatory responses and, as a result, airway tone. IL-10 is a regulatory cytokine that has been suggested for treatment of asthma because of its immunosuppressive and anti-inflammatory properties. In contrast to these suggestions, we demonstrate in a model of allergic sensitization that mice deficient in IL-10 (IL-10/) develop a pulmonary inflammatory response but fail to exhibit airway hyperresponsiveness in both in vitro and in vivo assessments of lung function. Reconstitution of these deficient mice with the IL-10 gene fully restores development of airway hyperresponsiveness comparable to control mice. These results identify an important role of IL-10, downstream of the inflammatory cascade, in regulating the tone of the airways after allergic sensitization and challenge.

  6. Ultrasound: A novel tool for airway imaging

    Directory of Open Access Journals (Sweden)

    Siddharthkumar Bhikhabhai Parmar

    2014-01-01

    Full Text Available Context: The scope of ultrasound is emerging in medical science, particularly outside traditional areas of radiology practice. Aims: We designed this study to evaluate feasibility of bedside sonography as a tool for airway assessment and to describe sonographic anatomy of airway. Settings and Design: A prospective, clinical study. Materials and Methods: We included 100 adult, healthy volunteers of either sex to undergo airway imaging systemically starting from floor of the mouth to the sternal notch in anterior aspect of neck by sonography. Results: We could visualize mandible and hyoid bone as a bright hyperechoic structure with hypoechoic acoustic shadow underneath. Epiglottis, thyroid cartilage, cricoid cartilage, and tracheal rings appeared hypoechoic. Vocal cords were visualized through thyroid cartilage. Interface between air and mucosa lining the airway produced a bright hyperechoic linear appearance. Artifacts created by intraluminal air prevented visualization of posterior pharynx, posterior commissure, and posterior wall of trachea. Conclusions: Ultrasound is safe, quick, noninvasive, repeatable, and bedside tool to assess the airway and can provide real-time dynamic images relevant for several aspects of airway management.

  7. Link between vitamin D and airway remodeling

    Directory of Open Access Journals (Sweden)

    Berraies A

    2014-04-01

    Full Text Available Anissa Berraies, Kamel Hamzaoui, Agnes HamzaouiPediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, TunisiaAbstract: In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.Keywords: vitamin D, asthma, airway remodeling, airway smooth muscle, supplementation

  8. Identification of CD4+ T-cell epitopes on iron-regulated surface determinant B of Staphylococcus aureus.

    Science.gov (United States)

    Yu, Simiao; Zhang, Hua; Yao, Di; Liu, Wei; Wang, Xintong; Chen, Xiaoting; Wei, Yuhua; Zhang, Zhenghai; Wang, Jiannan; Yu, Liquan; Sun, Hunan; Wu, Zhijun; Yu, Yongzhong; Song, Baifen; Ma, Jinzhu; Tong, Chunyu; Cui, Yudong

    2015-12-01

    Iron-regulated surface determinant B (IsdB) of Staphylococcus aureus (S. aureus) is a highly conserved surface protein that can induce protective CD4(+) T-cell immune response. A pivotal role of CD4(+) T-cells in effective immunity against S. aureus infection has been proved, but CD4(+) T-cell epitopes on the S. aureus IsdB have not been well identified. In this study, MHC binding assay was firstly used to predict CD4(+) T-cell epitopes on S. aureus IsdB protein, and six peptides were synthesized to validate the probable epitopes. Two novel IsdB CD4(+) T-cell epitopes, P1 (residues 159-178) and P4 (residues 287-306), were for the first time identified using CD4(+) T-cells obtained from IsdB-immunized C57BL/6 (H-2(b)) and BALB/c (H-2(d)) mice spleen based on cell proliferation and cytokines response. The results showed that P1 and P4 emulsified in Freund's adjuvant (FA) induced much higher cell proliferation compared with PBS emulsified in FA. CD4(+) T-cells stimulated with peptides P1 and P4 secreted significantly higher levels of IFN-γ and IL-17A. However, the level of the cytokine IL-4 almost remained unchanged, suggesting that P1 and P4 preferentially elicited polarized Th1-type responses. In addition, BALB/c mice just respond to P4 not P1, while C57BL/6 mice respond to P1 not P4, implying that epitope P1 and P4 were determined as H-2(b) and H-2(d) restricted epitope, respectively. Taken together, our data may provide an explanation of the IsdB-induced protection against S. aureus and highlight the possibility of developing the epitope-based vaccine against the S. aureus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Cell surface area regulation in neurons in hippocampal slice cultures is resistant to oxygen-glucose deprivation

    Directory of Open Access Journals (Sweden)

    Natalya Shulyakova

    2010-09-01

    Full Text Available Natalya Shulyakova1,2, Jamie Fong2, Diana Diec2, Adrian Nahirny1,2, Linda R Mills1,21Department of Physiology, University of Toronto, Toronto, ON, Canada, M5T 2S8; 2Toronto Western Hospital Research Institute, University Health Network, 11-430, 399 Bathurst St, Toronto, ON, Canada, M5T 2S8Background: Neurons swell in response to a variety of insults. The capacity to recover, ie, to shrink, is critical for neuronal function and survival. Studies on dissociated neurons have shown that during swelling and shrinking, neurons reorganize their plasma membrane; as neurons swell, in response to hypo-osmotic media, the bilayer area increases. Upon restoration of normo-osmotic media, neurons shrink, forming transient invaginations of the plasma membrane known as vacuole-like dilations (VLDs, to accommodate the decrease in the bilayer.Methods: Here we used confocal microscopy to monitor neuronal swelling and shrinking in the three-dimensional (3D environment of post-natal rat hippocampal slice cultures. To label neurons, we used biolistic transfection, to introduce enhanced green fluorescent protein (eGFP targeted to the cytoplasm; and a membrane targeted GFP (lckGFP, targeted to the plasma membrane.Results: Neurons in slice cultures swelled and shrank in response to hypo-osmotic to normo-osmotic media changes. Oxygen-glucose deprivation (OGD caused sustained neuronal swelling; after reperfusion, some neurons recovered but in others, VLD recovery was stalled. OGD did not impair neuronal capacity to recover from a subsequent osmotic challenge.Conclusion: These results suggest cell surface area regulation (SAR is an intrinsic property of neurons, and that neuronal capacity for SAR may play an important role in the brain’s response to ischemic insults.Keywords: neurons, swelling, ischemia, cell surface area, hippocampal slice culture

  10. Neurotrophins in allergic airway dysfunction: what the mouse model is teaching us.

    Science.gov (United States)

    Lommatzsch, Marek; Braun, Armin; Renz, Harald

    2003-05-01

    Neurotrophins such as nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are potent mediators of neuronal plasticity in the adult. There is increasing evidence that they regulate a variety of immune functions as well. Thus, neurotrophins are candidate molecules for neuroimmune interactions in allergic bronchial asthma, where elevated neurotrophin levels have been reported. In a mouse model of allergic airway inflammation we have identified macrophages and lymphocytes as additional cellular sources of NGF and BDNF in the inflamed lung. There was an unusual time course of BDNF in bronchoalveolar lavage fluid. BDNF levels peaked 1 week after the last allergen challenge, and did not correlate with the time course of the inflammatory response. In a series of experiments using blocking anti-NGF and anti-BDNF antibodies, we have shown that NGF specifically enhances inflammation and the allergic early-phase response. In contrast, BDNF influenced chronic airway obstruction and local neuronal hyperreactivity without affecting inflammation. Using transgenic mice overexpressing NGF in the airway epithelium, we have confirmed the data obtained from anti-NGF experiments. Allergen-challenged NGF overexpressors displayed a markedly augmented airway inflammation, early-phase response, and sensory irritation compared to wild-type mice. Studies with p75-NTR (-/-) knockout mice showed that these NGF effects are at least in part mediated by the low-affinity neurotrophin receptor. Thus, our experiments suggest that NGF and BDNF have a profound, but differential impact on allergic airway dysfunction.

  11. Bronchial Secretory Immunoglobulin A Deficiency Correlates With Airway Inflammation and Progression of Chronic Obstructive Pulmonary Disease

    Science.gov (United States)

    Cates, Justin M.; Lawson, William E.; Zaynagetdinov, Rinat; Milstone, Aaron P.; Massion, Pierre P.; Ocak, Sebahat; Ware, Lorraine B.; Lee, Jae Woo; Bowler, Russell P.; Kononov, Alexey V.; Randell, Scott H.; Blackwell, Timothy S.

    2011-01-01

    Rationale: Although airway inflammation can persist for years after smoking cessation in patients with chronic obstructive pulmonary disease (COPD), the mechanisms of persistent inflammation are largely unknown. Objectives: We investigated relationships between bronchial epithelial remodeling, polymeric immunoglobulin receptor (pIgR) expression, secretory IgA (SIgA), airway inflammation, and mural remodeling in COPD. Methods: Lung tissue specimens and bronchoalveolar lavage were obtained from lifetime nonsmokers and former smokers with or without COPD. Epithelial structural changes were quantified by morphometric analysis. Expression of pIgR was determined by immunostaining and real-time polymerase chain reaction. Immunohistochemistry was performed for IgA, CD4 and CD8 lymphocytes, and cytomegalovirus and Epstein-Barr virus antigens. Total IgA and SIgA were measured by ELISA and IgA transcytosis was studied using cultured human bronchial epithelial cells. Measurements and Main Results: Areas of bronchial mucosa covered by normal pseudostratified ciliated epithelium were characterized by pIgR expression with SIgA present on the mucosal surface. In contrast, areas of bronchial epithelial remodeling had reduced pIgR expression, localized SIgA deficiency, and increased CD4+ and CD8+ lymphocyte infiltration. In small airways (<2 mm), these changes were associated with presence of herpesvirus antigens, airway wall remodeling, and airflow limitation in patients with COPD. Patients with COPD had reduced SIgA in bronchoalveolar lavage. Air–liquid interface epithelial cell cultures revealed that complete epithelial differentiation was required for normal pIgR expression and IgA transcytosis. Conclusions: Our findings indicate that epithelial structural abnormalities lead to localized SIgA deficiency in COPD airways. Impaired mucosal immunity may contribute to persistent airway inflammation and progressive airway remodeling in COPD. PMID:21512171

  12. Non-Coding RNAs in Pediatric Airway Diseases

    Directory of Open Access Journals (Sweden)

    Beata Narożna

    2017-11-01

    Full Text Available Non-coding RNAs (ncRNAs are involved in the regulation of numerous biological processes and pathways and therefore have been extensively studied in human diseases. Previous reports have shown that non-coding RNAs play a crucial role in the pathogenesis and aberrant regulation of respiratory diseases. The altered expression of microRNAs (miRNAs and long non-coding RNAs in blood and also locally in sputum or exhaled breath condensate influences lung function, immune response, and disease phenotype and may be used for the development of biomarkers specific for airway disease. In this review, we provide an overview of the recent works studying the non-coding RNAs in airway diseases, with a particular focus on chronic respiratory diseases of childhood. We have chosen the most common chronic respiratory condition—asthma—and the most severe, chronic disease of the airways—cystic fibrosis. Study of the altered expression of non-coding RNAs in these diseases may be key to better understanding their pathogenesis and improving diagnosis, while also holding promise for the development of therapeutic strategies using the regulatory potential of non-coding RNAs.

  13. Airway foreign body in children

    Directory of Open Access Journals (Sweden)

    Marina GONZÁLEZ-HERRERO

    2017-11-01

    Full Text Available Introduction and objective: The aspiration of a foreign body in children is a frequent emergency in pediatrics, being potentially lethal. Method: Narrative review. Results: This pathology mainly affects children under 5 years of age with a peak of incidence between the first and third years of life. The clinic will depend on the type of foreign body (size, shape, possibility of breaking, organic or not, the age of the child and the location of the object. In our environment, the most frequent is the aspiration of nuts (peanuts and sunflower seeds. After the initial picture, an asymptomatic period tends to occur, which favors delayed diagnosis and leads to possible errors in the diagnosis. Discussion: An adequate clinical history and a high diagnostic suspicion are fundamental to favor an early treatment. The presence of a normal chest X-ray does not exclude the presence of a foreign body in the airway, so a bronchoscopy is indicated if the diagnostic suspicion is high. The treatment of choice is extraction by rigid bronchoscopy, being controversial the use of flexible fibrobronchoscope. Conclusions: Conclusions: The aspiration of a foreign body is a pediatric emergency that requires a diagnosis and early treatment. The highest incidence occurs in children under 3 years and more frequently in men. The most commonly aspirated material in our environment are nuts, mainly located in the bronchial tree. The initial episode may go unnoticed, delaying the diagnosis and may lead to progressive respiratory distress in the child. A detailed clinical history and suspicion of this pathology are essential in children at risk age who present with cough and dyspnea of sudden onset. The existence of a normal chest radiograph should not postpone bronchoscopy when there is high clinical suspicion. The treatment of choice for the extraction of foreign bodies in airways in children is rigid bronchoscopy, being controversial the use of the flexible fibrobronchoscope

  14. Redox warfare between airway epithelial cells and Pseudomonas: dual oxidase versus pyocyanin.

    Science.gov (United States)

    Rada, Balázs; Leto, Thomas L

    2009-01-01

    The importance of reactive oxygen species-dependent microbial killing by the phagocytic cell NADPH oxidase has been appreciated for some time, although only recently has an appreciation developed for the partnership of lactoperoxidase with related dual oxidases (Duox) within secretions of the airway surface layer. This system produces mild oxidants designed for extracellular killing that are effective against several airway pathogens, including Staphylococcus aureus, Burkholderia cepacia, and Pseudomonas aeruginosa. Establishment of chronic pseudomonas infections involves adaptations to resist oxidant-dependent killing by expression of a redox-active virulence factor, pyocyanin, that competitively inhibits epithelial Duox activity by consuming intracellular NADPH and producing superoxide, thereby inflicting oxidative stress on the host.

  15. Borrelia burgdorferi complement regulator-acquiring surface protein 2 does not contribute to complement resistance or host infectivity.

    Directory of Open Access Journals (Sweden)

    Adam S Coleman

    2008-08-01

    Full Text Available Borrelia burgdorferi, the pathogen of Lyme disease, cycles in nature through Ixodes ticks and mammalian hosts. At least five Complement Regulator-Acquiring Surface Proteins (BbCRASPs are produced by B. burgdorferi, which are thought to assist spirochetes in host immune evasion. Recent studies established that BbCRASP-2 is preferentially expressed in mammals, and elicits robust antibody response in infected hosts, including humans. We show that BbCRASP-2 is ubiquitously expressed in diverse murine tissues, but not in ticks, reinforcing a role of BbCRASP-2 in conferring B. burgdorferi defense against persistent host immune threats, such as complement. BbCRASP-2 immunization, however, fails to protect mice from B. burgdorferi infection and does not modify disease, as reflected by the development of arthritis. An infectious BbCRASP-2 mutant was generated, therefore, to examine the precise role of the gene product in spirochete infectivity. Similar to wild type B. burgdorferi, BbCRASP-2 mutants remain insensitive to complement-mediated killing in vitro, retain full murine infectivity and induce arthritis. Quantitative RT-PCR assessment indicates that survivability of BbCRASP-2-deficient B. burgdorferi is not due to altered expression of other BbCRASPs. Together, these results suggest that the function of a selectively expressed B. burgdorferi gene, BbCRASP-2, is not essential for complement resistance or infectivity in the murine host.

  16. Migration of myeloid cells during inflammation is differentially regulated by the cell surface receptors Slamf1 and Slamf8.

    Directory of Open Access Journals (Sweden)

    Guoxing Wang

    Full Text Available Previous studies have demonstrated that the cell surface receptor Slamf1 (CD150 is requisite for optimal NADPH-oxidase (Nox2 dependent reactive oxygen species (ROS production by phagocytes in response to Gram- bacteria. By contrast, Slamf8 (CD353 is a negative regulator of ROS in response to Gram+ and Gram- bacteria. Employing in vivo migration after skin sensitization, induction of peritonitis, and repopulation of the small intestine demonstrates that in vivo migration of Slamf1-/- dendritic cells and macrophages is reduced, as compared to wt mice. By contrast, in vivo migration of Slamf8-/- dendritic cells, macrophages and neutrophils is accelerated. These opposing effects of Slamf1 and Slamf8 are cell-intrinsic as judged by in vitro migration in transwell chambers in response to CCL19, CCL21 or CSF-1. Importantly, inhibiting ROS production of Slamf8-/- macrophages by diphenyleneiodonium chloride blocks this in vitro migration. We conclude that Slamf1 and Slamf8 govern ROS-dependent innate immune responses of myeloid cells, thus modulating migration of these cells during inflammation in an opposing manner.

  17. Taste Receptors: Regulators of Sinonasal Innate Immunity

    Science.gov (United States)

    Carey, Ryan M.; Adappa, Nithin D.; Palmer, James N.; Lee, Robert J.

    2016-01-01

    Taste receptors in the oral cavity guide our preferences for foods, preventing toxic ingestions and encouraging proper nutrient consumption. More recently, expression of taste receptors has been demonstrated in other locations throughout the body, including the airway, gastrointestinal tract, pancreas, and brain. The extent and specific roles of extraoral taste receptors are largely unknown, but a growing body of evidence suggests that taste receptors in the airway serve a critical role in sensing bacteria and regulating innate immunity. This review will focus on the function of bitter and sweet taste receptors in the human airway, with particular emphasis on T2R38, a bitter taste receptor found in sinonasal ciliated cells, and the bitter and sweet receptors found on specialized sinonasal solitary chemosensory cells. The importance of these novel taste receptor‐immune circuits in the human airway and their clinical relevance in airway disease will also be reviewed. PMID:27819057

  18. SIMPLE, TIMELY, SAFELY? LARYNGEAL MASK AND PEDIATRIC AIRWAY.

    Science.gov (United States)

    Karišik, Marijana

    2016-03-01

    Laryngeal mask airway (LMA) was a useful, powerful airway management device for routine pediatric airway management, pediatric difficult airway, and in pediatric emergency situations. Over years, various designs, induction and insertion techniques have been described. LMA provides ease of placement and removal as compared with endotracheal intubation, less traumatism for the respiratory tract, better tolerability by patients, improved hemodynamic stability during emergency, less coughing, less sore throat, avoidance of laryngoscopy, and hands free airway. On the other hand, LMA is not suitable to overcome functional airway problems and mechanical airway obstruction in children. Simple airway management in pediatric patients is normally easy in experienced hands, for anesthesiologists working in specialized hospitals with appropriate personnel and equipment that guarantee optimal safety in these patients. On the other hand, pediatric airway management is a great challenge for anesthesiologists working in departments with a small number of pediatric surgical procedures. Careful preoperative evaluation, preparation and training in the recognition of challenges in pediatric airway are essential for the management of the airway in children. LMA plays a special role in the management of difficult pediatric airway; as a supraglottic airway device, it is incorporated into difficult pediatric airway algorithms.

  19. Feasibility and speed of insertion of seven supraglottic airway devices under simulated airway conditions.

    Science.gov (United States)

    Robak, Oliver; Leonardelli, Marco; Zedtwitz-Liebenstein, Konstantin; Rützler, Kurt; Schuster, Ernst; Vaida, Sonia; Salem, Ramez; Frass, Michael

    2012-11-01

    Endotracheal intubation (ETI) is considered the gold standard for protecting the airway. Alternative devices for airway protection have been developed that can be used by untrained personnel, by those with less experience, and for when ETI is not possible. The main goals of our study were to evaluate the success rate and speed of insertion of different supraglottic airway devices and to determine whether the devices could be properly inserted under simulated critical conditions. Fifty medical students used an airway simulation trainer (Laerdal SimMan 3G) to assess the success rate and time used to insert seven different supraglottic airway devices under simulated physiologic and pathologic conditions in two different runs. Although all airway devices could be inserted without problems, only the Combitube and the EasyTube could be successfully inserted in simulations of trismus, limited mobility of the cervical spine, or a combination of pathologic conditions such as trismus plus limited mobility of the spine and trismus plus tongue edema. The insertion time was significantly longer with LMA Unique, Fastrach, and I-Gel devices in both the first and second runs. The Combitube and the EasyTube were most easily inserted under simulated conditions such as trismus, limited mobility of the cervical spine, and combined pathologic conditions. Although all devices are useful for establishing an airway by nontrained medical students in standard simulations, we suggest that the Combitube and the EasyTube may offer advantages in difficult airway situations.

  20. Airway management using the ProSeal laryngeal mask airway in a child with Goldenhar syndrome.

    Science.gov (United States)

    Aydogan, M S; Begec, Z; Erdogan, M A; Yücel, A; Ersoy, M O

    2012-04-01

    Children with congenital anomalies such as Goldenhar syndrome affecting the airway can be a problem for the anaesthesiologist. We present the case of an 18 month-old child with Goldenhar syndrome, in whom the ProSeal Laryngeal Mask Airway was successfully used for inguinal hernia surgery.

  1. Extracellular matrix in airway smooth muscle is associated with dynamics of airway function in asthma

    NARCIS (Netherlands)

    Yick, C. Y.; Ferreira, D. S.; Annoni, R.; von der Thüsen, J. H.; Kunst, P. W.; Bel, E. H.; Lutter, R.; Mauad, T.; Sterk, P. J.

    2012-01-01

    Background: Altered deposition of extracellular matrix (ECM) in the airway smooth muscle (ASM) layer as observed in asthma may influence ASM mechanical properties. We hypothesized that ECM in ASM is associated with airway function in asthma. First, we investigated the difference in ECM expression in

  2. Airway clearance techniques for bronchiectasis.

    Science.gov (United States)

    Lee, Annemarie L; Burge, Angela T; Holland, Anne E

    2015-11-23

    People with non-cystic fibrosis bronchiectasis commonly experience chronic cough and sputum production, features that may be associated with progressive decline in clinical and functional status. Airway clearance techniques (ACTs) are often prescribed to facilitate expectoration of sputum from the lungs, but the efficacy of these techniques in a stable clinical state or during an acute exacerbation of bronchiectasis is unclear. Primary: to determine effects of ACTs on rates of acute exacerbation, incidence of hospitalisation and health-related quality of life (HRQoL) in individuals with acute and stable bronchiectasis. Secondary: to determine whether:• ACTs are safe for individuals with acute and stable bronchiectasis; and• ACTs have beneficial effects on physiology and symptoms in individuals with acute and stable bronchiectasis. We searched the Cochrane Airways Group Specialised Register of trials from inception to November 2015 and PEDro in March 2015, and we handsearched relevant journals. Randomised controlled parallel and cross-over trials that compared an ACT versus no treatment, sham ACT or directed coughing in participants with bronchiectasis. We used standard methodological procedures as expected by The Cochrane Collaboration. Seven studies involving 105 participants met the inclusion criteria of this review, six of which were cross-over in design. Six studies included adults with stable bronchiectasis; the other study examined clinically stable children with bronchiectasis. Three studies provided single treatment sessions, two lasted 15 to 21 days and two were longer-term studies. Interventions varied; some control groups received a sham intervention and others were inactive. The methodological quality of these studies was variable, with most studies failing to use concealed allocation for group assignment and with absence of blinding of participants and personnel for outcome measure assessment. Heterogeneity between studies precluded inclusion of

  3. The shape of the epiglottis reflects improvement in upper airway obstruction after weight loss.

    Science.gov (United States)

    Gazayerli, Mohamed; Bleibel, Wissam; Elhorr, Ali; Elakkary, Ehab

    2006-07-01

    Obstructive sleep apnea (OSA) is a sleep disorder characterized by recurrent episodes of closure of the upper airway during sleep, and is highly prevalent among overweight individuals. A significant percentage of patients with OSA remain undiagnosed. This condition creates chronic nighttime hypoxemia that can result in significant complications including systemic and pulmonary hypertension, cor pulmonale, and stroke. Polysomnography is still the most widely used method for diagnosing OSA. Studies have shown that in the majority of patients with OSA the airway obstruction involves the retroglossal region. Upon performing esophagogastroduodenoscopy on patients with a wide range of body mass indices (from 21 to 63), we noticed a gradual increase in the concavity of the posterior epiglottal surface as the BMI increases. Upon following some of the patients who underwent laparoscopic gastric banding and lost significant weight, we noticed a dramatic change in the shape of the epiglottis. This reflects a relief in the pressure on the epiglottis created by the collapsing airways in periods of apnea. Thus, the deformity in the shape of the epiglottis reflects the chronic airway collapse in obese patients, and improvement in this deformity after weight loss indicates a relief of the chronic upper airway obstruction.

  4. Fluid flow regulator device, comprising a valve member and a valve seat defining a fluid flow surface area, as well as method of using the same

    NARCIS (Netherlands)

    Groen, Maarten; Brouwer, Dannis Michel; Brookhuis, Robert Anton; Wiegerink, Remco J.

    2014-01-01

    The invention relates to a fluid flow regulator device, comprising a valve member and a valve seat arranged to be movable with respect to each other such that a fluid flow surface area defined by the valve member and the valve seat can be changed. Furthermore, sensor means are provided for measuring

  5. Caveolae and propofol effects on airway smooth muscle

    Science.gov (United States)

    Grim, K. J.; Abcejo, A. J.; Barnes, A.; Sathish, V.; Smelter, D. F.; Ford, G. C.; Thompson, M. A.; Prakash, Y. S.; Pabelick, C. M.

    2012-01-01

    Background The i.v. anaesthetic propofol produces bronchodilatation. Airway relaxation involves reduced intracellular Ca2+ ([Ca2+]i) in airway smooth muscle (ASM) and lipid rafts (caveolae), and constitutional caveolin proteins regulate [Ca2+]i. We postulated that propofol-induced bronchodilatation involves caveolar disruption. Methods Caveolar fractions of human ASM cells were tested for propofol content. [Ca2+]i responses of ASM cells loaded with fura-2 were performed in the presence of 10 µM histamine with and without clinically relevant concentrations of propofol (10 and 30 μM and intralipid control). Effects on sarcoplasmic reticulum (SR) Ca2+ release were evaluated in zero extracellular Ca2+ using the blockers Xestospongin C and ryanodine. Store-operated Ca2+ entry (SOCE) after SR depletion was evaluated using established techniques. The role of caveolin-1 in the effect of propofol was tested using small interference RNA (siRNA) suppression. Changes in intracellular signalling cascades relevant to [Ca2+]i and force regulation were also evaluated. Results Propofol was present in ASM caveolar fractions in substantial concentrations. Exposure to 10 or 30 µM propofol form decreased [Ca2+]i peak (but not plateau) responses to histamine by ∼40%, an effect persistent in zero extracellular Ca2+. Propofol effects were absent in caveolin-1 siRNA-transfected cells. Inhibition of ryanodine receptors prevented propofol effects on [Ca2+]i, while propofol blunted [Ca2+]i responses to caffeine. Propofol reduced SOCE, an effect also prevented by caveolin-1 siRNA. Propofol effects were associated with decreased caveolin-1 expression and extracellular signal-regulated kinase phosphorylation. Conclusions These novel data suggest a role for caveolae (specifically caveolin-1) in propofol-induced bronchodilatation. Due to its lipid nature, propofol may transiently disrupt caveolar regulation, thus altering ASM [Ca2+]i. PMID:22542538

  6. Effects of Ex Vivo y-Tocopherol on Airway Macrophage ...

    Science.gov (United States)

    Elevated inflammation and altered immune responses are features found in atopic asthmatic airways. Recent studies indicate y-tocopherol (GT) supplementation can suppress airway inflammation in allergic asthma. We studied the effects of in vitro GT supplementation on receptor-mediated phagocytosis and expression of cell surface molecules associated with innate and adaptive immunity on sputum-derived macrophages. Cells from nonsmoking healthy (n = 6)and mild house dust mite-sensitive allergic asthmatics (n =6) were treated ex vivo with GT (300 uM) or saline (control). Phagocytosis of opsonized zymosan A bioparticles (Saccharomyces cerevisiae) and expression of surface molecules associated with innate and adaptive immunity were assessed using flow cytometry. GT caused significantly decreased (p innate and adaptive immune response elements, and atopic status appears to be an important factor. Recent studies on the effects of the fat-soluble steriod hormone vitamins D and E suggest that dietary suplementation with these vitamins may be helpful for the prevention or in the treatment of inflammatory and immune-mediated diseases, including atopic asthma.

  7. Arsenic alters transcriptional responses to Pseudomonas aeruginosa infection and decreases antimicrobial defense of human airway epithelial cells.

    Science.gov (United States)

    Goodale, Britton C; Rayack, Erica J; Stanton, Bruce A

    2017-09-15

    Arsenic contamination of drinking water and food threatens the health of hundreds of millions of people worldwide by increasing the risk of numerous diseases. Arsenic exposure has been associated with infectious lung disease in epidemiological studies, but it is not yet understood how ingestion of low levels of arsenic increases susceptibility to bacterial infection. Accordingly, the goal of this study was to examine the effect of arsenic on gene expression in primary human bronchial epithelial (HBE) cells and to determine if arsenic altered epithelial cell responses to Pseudomonas aeruginosa, an opportunistic pathogen. Bronchial epithelial cells line the airway surface, providing a physical barrier and serving critical roles in antimicrobial defense and signaling to professional immune cells. We used RNA-seq to define the transcriptional response of HBE cells to Pseudomonas aeruginosa, and investigated how arsenic affected HBE gene networks in the presence and absence of the bacterial challenge. Environmentally relevant levels of arsenic significantly changed the expression of genes involved in cellular redox homeostasis and host defense to bacterial infection, and decreased genes that code for secreted antimicrobial factors such as lysozyme. Using pathway analysis, we identified Sox4 and Nrf2-regulated gene networks that are predicted to mediate the arsenic-induced decrease in lysozyme secretion. In addition, we demonstrated that arsenic decreased lysozyme in the airway surface liquid, resulting in reduced lysis of Microccocus luteus. Thus, arsenic alters the expression of genes and proteins in innate host defense pathways, thereby decreasing the ability of the lung epithelium to fight bacterial infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Optimal graph based segmentation using flow lines with application to airway wall segmentation

    DEFF Research Database (Denmark)

    Petersen, Jens; Nielsen, Mads; Lo, Pechin Chien Pau

    2011-01-01

    This paper introduces a novel optimal graph construction method that is applicable to multi-dimensional, multi-surface segmentation problems. Such problems are often solved by refining an initial coarse surface within the space given by graph columns. Conventional columns are not well suited...... for surfaces with high curvature or complex shapes but the proposed columns, based on properly generated flow lines, which are non-intersecting, guarantee solutions that do not self-intersect and are better able to handle such surfaces. The method is applied to segment human airway walls in computed tomography...... images. Comparison with manual annotations on 649 cross-sectional images from 15 different subjects shows significantly smaller contour distances and larger area of overlap than are obtained with recently published graph based methods. Airway abnormality measurements obtained with the method on 480 scan...

  9. Populations of selected microbial and fungal species growing on the surface of rape seeds following treatment with desiccants or plant growth regulators.

    Science.gov (United States)

    Frac, Magdalena; Jezierska-Tys, Stefania; Tys, Jerzy

    2010-01-01

    The aim of this study was to determine the effects of desiccants and plant growth regulators on selected microbial species affecting rape seeds, with special emphasis on the growth of fungi and identification of the genus and species composition. The experimental material in the study was seeds of winter rape cv. Californium that were collected from the field during combine harvest. The chemical agents applied, both desiccants and growth regulators, generally decreased the populations of bacteria occurring on the surface of rape seeds. The responses of fungi depended upon the type of agent applied and were manifested as either stimulation or inhibition of the growth of the fungal species. The fungi isolated from the surface of rape seeds were characteristic of those found in the field environment (Cladosporium and Penicillium) and typical for those present on the surface of rape seeds (Alternaria).

  10. Airway epithelium directed gene therapy for cystic fibrosis.

    Science.gov (United States)

    White, April F; Ponnazhagan, Selvarangan

    2006-09-01

    Gene therapy is a promising therapeutic modality for the treatment of cystic fibrosis (CF). Despite a better understanding of the molecular organization of the cystic fibrosis transmembrane conductance regulator (CFTR) gene and mutations resulting in pathophysiological and phenotypic alterations, several forms of treatments including gene therapy have failed to yield clinical success. Major limitations for the delivery of drugs and gene therapy vectors from reaching target cells in CF patients lie in physical and immunological barriers of airway epithelium. Over the last decade, non-viral and viral gene therapy approaches have been tested in preclinical studies and human clinical trials of CF. Outcomes of these studies have helped to identify hurdles that need to be overcome before such approaches can be routinely applied to patients. In addition to the physiological and immunological barriers of airway epithelium, vector transduction is also impaired by the absence or low-abundance of cellular receptors and co-receptors for viral binding and internalization. Thus, the initial enthusiasm for gene replacement therapy for CF following cloning of the CFTR gene dampened, as more limitations were recognized. Research directed towards improving the efficiency of gene transfer technology in CF, is focused on testing of compounds to enhance vector permeability and trafficking, identification and development of vectors which can transduce through alternate pathways, identification of airway epithelium-specific targeting ligands, and the identification of stem cells for combining cell therapy and gene therapy by ex vivo methods. Details provided in this article will give a comprehensive analysis of the prospects and limitations in CF gene therapy using viral and non-viral vectors.

  11. The adipocyte fatty acid–binding protein aP2 is required in allergic airway inflammation

    Science.gov (United States)

    Shum, Bennett O.V.; Mackay, Charles R.; Gorgun, Cem Z.; Frost, Melinda J.; Kumar, Rakesh K.; Hotamisligil, Gökhan S.; Rolph, Michael S.

    2006-01-01

    The adipocyte fatty acid–binding protein aP2 regulates systemic glucose and lipid metabolism. We report that aP2, in addition to being abundantly expressed by adipocytes, is also expressed by human airway epithelial cells and shows a striking upregulation following stimulation of epithelial cells with the Th2 cytokines IL-4 and IL-13. Regulation of aP2 mRNA expression by Th2 cytokines was highly dependent on STAT6, a transcription factor with a major regulatory role in allergic inflammation. We examined aP2-deficient mice in a model of allergic airway inflammation and found that infiltration of leukocytes, especially eosinophils, into the airways was highly dependent on aP2 function. T cell priming was unaffected by aP2 deficiency, suggesting that aP2 was acting locally within the lung, and analysis of bone marrow chimeras implicated non-hematopoietic cells, most likely bronchial epithelial cells, as the site of action of aP2 in allergic airway inflammation. Thus, aP2 regulates allergic airway inflammation and may provide a link between fatty acid metabolism and asthma. PMID:16841093

  12. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping, E-mail: wpxie@njmu.edu.cn; Wang, Hong, E-mail: hongwang@njmu.edu.cn

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (K{sub ATP}) channels have been identified in ASMCs. Mount evidence has suggested that K{sub ATP} channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K{sup +} channels triggers K{sup +} efflux, which leading to membrane hyperpolarization, preventing Ca{sup 2+}entry through closing voltage-operated Ca{sup 2+} channels. Intracellular Ca{sup 2+} is the most important regulator of muscle contraction, cell proliferation and migration. K{sup +} efflux decreases Ca{sup 2+} influx, which consequently influences ASMCs proliferation and migration. As a K{sub ATP} channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2′-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca{sup 2+}/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective K{sub ATP} channel antagonist. These findings provide a strong evidence to support that Ipt

  13. XB130 promotes bronchioalveolar stem cell and Club cell proliferation in airway epithelial repair and regeneration.

    Science.gov (United States)

    Toba, Hiroaki; Wang, Yingchun; Bai, Xiaohui; Zamel, Ricardo; Cho, Hae-Ra; Liu, Hongmei; Lira, Alonso; Keshavjee, Shaf; Liu, Mingyao

    2015-10-13

    Proliferation of bronchioalveolar stem cells (BASCs) is essential for epithelial repair. XB130 is a novel adaptor protein involved in the regulation of epithelial cell survival, proliferation and migration through the PI3K/Akt pathway. To determine the role of XB130 in airway epithelial injury repair and regeneration, a naphthalene-induced airway epithelial injury model was used with XB130 knockout (KO) mice and their wild type (WT) littermates. In XB130 KO mice, at days 7 and 14, small airway epithelium repair was significantly delayed with fewer number of Club cells (previously called Clara cells). CCSP (Club cell secreted protein) mRNA expression was also significantly lower in KO mice at day 7. At day 5, there were significantly fewer proliferative epithelial cells in the KO group, and the number of BASCs significantly increased in WT mice but not in KO mice. At day 7, phosphorylation of Akt, GSK-3β, and the p85α subunit of PI3K was observed in airway epithelial cells in WT mice, but to a much lesser extent in KO mice. Microarray data also suggest that PI3K/Akt-related signals were regulated differently in KO and WT mice. An inhibitory mechanism for cell proliferation and cell cycle progression was suggested in KO mice. XB130 is involved in bronchioalveolar stem cell and Club cell proliferation, likely through the PI3K/Akt/GSK-3β pathway.

  14. Vaccination against IL-33 Inhibits Airway Hyperresponsiveness and Inflammation in a House Dust Mite Model of Asthma.

    Directory of Open Access Journals (Sweden)

    Ying Lei

    Full Text Available In several clinical and experimental studies IL-33 and its receptor have been found to play important roles in the development of asthma and allergic airway inflammation. We evaluated the effects of vaccination against IL-33 in a mouse model of airway inflammation induced by house dust mite (HDM allergen. Balb/c mice received the IL-33 vaccine subcutaneously, followed by intranasal administration of HDM for up to six weeks. Vaccination against IL-33 induced high titers of specific anti-IL-33 IgG antibodies that inhibited HDM-induced airway hyperresponsiveness (AHR in the conducting airways and tissue damping. The vaccination also attenuated the HDM-induced elevation in the numbers of eosinophils in bronchoalveolar lavage fluid (BALF and suppressed the accumulation of inflammatory cells in the airways. Furthermore, the levels of IL-17A, IL-25, IL-33 and TSLP in lung tissue homogenates were reduced by vaccination against IL-33. These observations demonstrate that vaccination against IL-33 inhibits HDM-induced development of AHR, airway inflammation and production of inflammatory cytokines. The results also indicate an important role of IL-33 in the regulation of AHR of the distal lung compartments. Thus, administration of such a vaccine is potentially an effective therapeutic tool for treating allergic asthma.

  15. Lubiprostone targets prostanoid EP4 receptors in ovine airways

    Science.gov (United States)

    Cuthbert, AW

    2011-01-01

    BACKGROUND AND PURPOSE Lubiprostone, a prostaglandin E1 derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. EXPERIMENTAL APPROACH All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. KEY RESULTS The EP4 antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP1,2&3 receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a Kd value of 0.058 µM, close to its value for binding to human EP4 receptors (0.024 µM). The selective EP4 agonist L-902688 and lubiprostone behaved similarly with respect to EP4 receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a Gs-protein coupled EP4 receptor/cAMP cascade. CONCLUSIONS AND IMPLICATIONS Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP4 receptor antagonists. The results suggest EP4 receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. PMID:20883477

  16. Lubiprostone targets prostanoid EP₄ receptors in ovine airways.

    Science.gov (United States)

    Cuthbert, A W

    2011-01-01

    Lubiprostone, a prostaglandin E₁ derivative, is reported to activate ClC-2 chloride channels located in the apical membranes of a number of transporting epithelia. Lack of functioning CFTR chloride channels in epithelia is responsible for the genetic disease cystic fibrosis, therefore, surrogate channels that can operate independently of CFTR are of interest. This study explores the target receptor(s) for lubiprostone in airway epithelium. All experiments were performed on the ventral tracheal epithelium of sheep. Epithelia were used to measure anion secretion from the apical surface as short circuit current or as fluid secretion from individual airway submucosal glands, using an optical method. The EP₄ antagonists L-161982 and GW627368 inhibited short circuit current responses to lubiprostone, while EP₁(,)₂(&)₃ receptor antagonists were without effect. Similarly, lubiprostone induced secretion in airway submucosal glands was inhibited by L-161982. L-161982 effectively competed with lubiprostone with a K(d) value of 0.058 µM, close to its value for binding to human EP₄ receptors (0.024 µM). The selective EP₄ agonist L-902688 and lubiprostone behaved similarly with respect to EP₄ receptor antagonists. Results of experiments with H89, a protein kinase A inhibitor, were consistent with lubiprostone acting through a G(s) -protein coupled EP₄ receptor/cAMP cascade. Lubiprostone-induced short-circuit currents and submucosal gland secretions were inhibited by selective EP₄ receptor antagonists. The results suggest EP₄ receptor activation by lubiprostone triggers cAMP production necessary for CFTR activation and the secretory responses, a possibility precluded in CF tissues. © 2010 The Author. British Journal of Pharmacology © 2010 The British Pharmacological Society.

  17. Mechanism of cooperative effects of rhinovirus and atopic sensitization on airway responsiveness.

    Science.gov (United States)

    Grunstein, M M; Hakonarson, H; Hodinka, R L; Maskeri, N; Kim, C; Chuang, S

    2001-02-01

    To elucidate the mechanistic interplay between rhinovirus (RV) exposure and atopic sensitization in regulating airway smooth muscle (ASM) responsiveness, isolated rabbit ASM tissue and cultured human ASM cells were passively sensitized with sera from atopic asthmatic or nonatopic nonasthmatic (control) subjects in the absence and presence of inoculation with RV serotype 16. Relative to control subjects, atopic asthmatic serum-sensitized and RV-inoculated ASM exhibited significantly increased contractility to acetylcholine, impaired relaxation to isoproterenol, and enhanced release of the proinflammatory cytokine interleukin-1beta. These effects were potentiated in atopic asthmatic serum-sensitized ASM concomitantly inoculated with RV and inhibited by pretreating the tissues with monoclonal blocking antibodies against intercellular adhesion molecule (ICAM)-1 (CD54), the host receptor for RV serotype 16, or lymphocyte function-associated antigen (LFA)-1 (CD11a/CD18), the endogenous counterreceptor for ICAM-1. Moreover, RV inoculation was found to potentiate the induction of mRNA and surface protein expression of FcepsilonRII (CD23), the low-affinity receptor for IgE, in atopic asthmatic serum-sensitized ASM. Collectively, these observations provide new evidence demonstrating that 1) RV exposure and atopic sensitization act cooperatively to potentiate induction of proasthmatic changes in ASM responsiveness in association with upregulated proinflammatory cytokine release and FcepsilonRII expression and 2) the effects of RV exposure and atopic sensitization are mediated by cooperative ICAM-1-coupled LFA-1 signaling in the ASM itself.

  18. Functional consequences of human airway smooth muscle phenotype plasticity

    NARCIS (Netherlands)

    Dekkers, Bart G J; Bos, I Sophie T; Zaagsma, Johan; Meurs, Herman

    BACKGROUND AND PURPOSE: Airway smooth muscle (ASM) phenotype plasticity, characterized by reversible switching between contractile and proliferative phenotypes, is considered to contribute to increased ASM mass and airway hyper-responsiveness in asthma. Further, increased expression of collagen I

  19. Airway Science curriculum demonstration project : summary of initial evaluation findings.

    Science.gov (United States)

    1988-10-01

    The performance, perceptions, and characteristics of Airway Science hires were compared with those of traditional hires. As of May 12, 1987. a total of 197 Airway Science candidates had been selected into FAA occupations. The demographic characterist...

  20. Optical imaging of subacute airway remodeling and adipose stem cell engraftment after airway injury.

    Science.gov (United States)

    Ahn, Yeh-Chan; Kim, Sung Won; Hwang, Sang Seok; Chae, Yu-Gyeong; Lee, Andrew Sungwan; Jung, Maan Hong; Chun, Bong Kwon; Lee, Sang Joon; Park, Eun-Kee; Oak, Chulho

    2013-12-20

    Acquired airway injury is frequently caused by endotracheal intubations, long-term tracheostomies, trauma, airway burns, and some systemic diseases. An effective and less invasive technique for both the early assessment and the early interventional treatment of acquired airway stenosis is therefore needed. Optical coherence tomography (OCT) has been proposed to have unique potential for early monitoring from the proliferative epithelium to the cartilage in acute airway injury. Additionally, stem cell therapy using adipose stem cells is being investigated as an option for early interventional treatment in airway and lung injury. Over the past decade, it has become possible to monitor the level of injury using OCT and to track the engraftment of stem cells using stem cell imaging in regenerative tissue. The purpose of this study was to assess the engraftment of exogenous adipose stem cells in injured tracheal epithelium with fluorescent microscopy and to detect and monitor the degree of airway injury in the same tracheal epithelium with OCT. OCT detected thickening of both the epithelium and basement membrane after tracheal scraping. The engraftment of adipose stem cells was successfully detected by fluorescent staining in the regenerative epithelium of injured tracheas. OCT has the potential to be a high-resolution imaging modality capable of detecting airway injury in combination with stem cell imaging in the same tracheal mucosa.

  1. Computed tomography assessment of airways throughout bronchial tree demonstrates airway narrowing in severe asthma.

    Science.gov (United States)

    Brillet, Pierre-Yves; Debray, Marie-Pierre; Golmard, Jean-Louis; Ould Hmeidi, Yahya; Fetita, Catalin; Taillé, Camille; Aubier, Michel; Grenier, Philippe A

    2015-06-01

    To analyze airway dimensions throughout the bronchial tree in severe asthmatic patients using multidetector row computed tomography (MDCT) focusing on airway narrowing. Thirty-two patients with severe asthma underwent automated (BronCare software) analysis of their right lung bronchi, with counts of airways >3 mm long arising from the main bronchi (airway count) and bronchial dimension quantification at segmental and subsegmental levels (lumen area [LA], wall area [WA], and WA%). Focal bronchial stenosis was defined as >50% narrowing of maximal LA on contiguous cross-sectional slices. Severe asthmatics were compared to 13 nonsevere asthmatic patients and nonasthmatic (pooled) subjects (Wilcoxon rank tests, then stepwise logistic regression). Finally, cluster analysis of severe asthmatic patients and stepwise logistic regression identified specific imaging subgroups. The most significant differences between severe asthmatic patients and the pooled subjects were bronchial stenosis (subsegmental and all bronchi: P bronchial stenosis: P = .009). Airway count was as discriminant as forced expiratory volume in 1 second/forced vital capacity (P = .01) to identify patients in each cluster, with both variables being correlated (r = 0.59, P = .005). Severe asthma-associated morphologic changes were characterized by focal bronchial stenoses and diffuse airway narrowing; the latter was associated with airflow obstruction. WA%, dependent on airway caliber, is the best parameter to identify severe asthmatic patients from pooled subjects. Copyright © 2015 AUR. Published by Elsevier Inc. All rights reserved.

  2. Quorum-sensing inhibition abrogates the deleterious impact of Pseudomonas aeruginosa on airway epithelial repair.

    Science.gov (United States)

    Ruffin, Manon; Bilodeau, Claudia; Maillé, Émilie; LaFayette, Shantelle L; McKay, Geoffrey A; Trinh, Nguyen Thu Ngan; Beaudoin, Trevor; Desrosiers, Martin-Yvon; Rousseau, Simon; Nguyen, Dao; Brochiero, Emmanuelle

    2016-09-01

    Chronic Pseudomonas aeruginosa lung infections are associated with progressive epithelial damage and lung function decline. In addition to its role in tissue injury, the persistent presence of P. aeruginosa-secreted products may also affect epithelial repair ability, raising the need for new antivirulence therapies. The purpose of our study was to better understand the outcomes of P. aeruginosa exoproducts exposure on airway epithelial repair processes to identify a strategy to counteract their deleterious effect. We found that P. aeruginosa exoproducts significantly decreased wound healing, migration, and proliferation rates, and impaired the ability of directional migration of primary non-cystic fibrosis (CF) human airway epithelial cells. Impact of exoproducts was inhibited after mutations in P. aeruginosa genes that encoded for the quorum-sensing (QS) transcriptional regulator, LasR, and the elastase, LasB, whereas impact was restored by LasB induction in ΔlasR mutants. P. aeruginosa purified elastase also induced a significant decrease in non-CF epithelial repair, whereas protease inhibition with phosphoramidon prevented the effect of P. aeruginosa exoproducts. Furthermore, treatment of P. aeruginosa cultures with 4-hydroxy-2,5-dimethyl-3(2H)-furanone, a QS inhibitor, abrogated the negative impact of P. aeruginosa exoproducts on airway epithelial repair. Finally, we confirmed our findings in human airway epithelial cells from patients with CF, a disease featuring P. aeruginosa chronic respiratory infection. These data demonstrate that secreted proteases under the control of the LasR QS system impair airway epithelial repair and that QS inhibitors could be of benefit to counteract the deleterious effect of P. aeruginosa in infected patients.-Ruffin, M., Bilodeau, C., Maillé, É., LaFayette, S. L., McKay, G. A., Trinh, N. T. N., Beaudoin, T., Desrosiers, M.-Y., Rousseau, S., Nguyen, D., Brochiero, E. Quorum-sensing inhibition abrogates the deleterious impact

  3. Can tidal breathing with deep inspirations of intact airways create sustained bronchoprotection or bronchodilation?

    Science.gov (United States)

    Harvey, Brian C; Parameswaran, Harikrishnan; Lutchen, Kenneth R

    2013-08-15

    Fluctuating forces imposed on the airway smooth muscle due to breathing are believed to regulate hyperresponsiveness in vivo. However, recent animal and human isolated airway studies have shown that typical breathing-sized transmural pressure (Ptm) oscillations around a fixed mean are ineffective at mitigating airway constriction. To help understand this discrepancy, we hypothesized that Ptm oscillations capable of producing the same degree of bronchodilation as observed in airway smooth muscle strip studies requires imposition of strains larger than those expected to occur in vivo. First, we applied increasingly larger amplitude Ptm oscillations to a statically constricted airway from a Ptm simulating normal functional residual capacity of 5 cmH2O. Tidal-like oscillations (5-10 cmH2O) imposed 4.9 ± 2.0% strain and resulted in 11.6 ± 4.8% recovery, while Ptm oscillations simulating a deep inspiration at every breath (5-30 cmH2O) achieved 62.9 ± 12.1% recovery. These same Ptm oscillations were then applied starting from a Ptm = 1 cmH2O, resulting in approximately double the strain for each oscillation amplitude. When extreme strains were imposed, we observed full recovery. On combining the two data sets, we found a linear relationship between strain and resultant recovery. Finally, we compared the impact of Ptm oscillations before and after constriction to Ptm oscillations applied only after constriction and found that both loading conditions had a similar effect on narrowing. We conclude that, while sufficiently large strains applied to the airway wall are capable of producing substantial bronchodilation, the Ptm oscillations necessary to achieve those strains are not expected to occur in vivo.

  4. The effect of rhinovirus on airway inflammation in a murine asthma model

    Directory of Open Access Journals (Sweden)

    Eugene Kim

    2013-11-01

    Full Text Available Purpose: The aim of the present study was to investigate the differences in lower airway inflammatory immune responses, including cellular responses and responses in terms of inflammatory mediators in bronchoalveolar lavage fluid (BALF and the airway, to rhinovirus (RV infection on asthma exacerbation by comparing a control and a murine asthma model, with or without RV infection. Methods: BALB/c mice were intraperitoneally injected with a crude extract of Dermatophagoides farinae (Df or phosphate buffered saline (PBS and were subsequently intranasally treated with a crude extract of Df or PBS. Airway responsiveness and cell infiltration, differential cell counts in BALF, and cytokine and chemokine concentrations in BALF were measured 24 hours after intranasal RV1B infection. Results: RV infection increased the enhanced pause (Penh in both the Df sensitized and challenged mice (Df mice and PBS-treated mice (PBS mice (P&lt;0.05. Airway eosinophil infiltration increased in Df mice after RV infection (P&lt;0.05. The levels of interleukin (IL 13, tumor necrosis factor alpha, and regulated on activation, normal T cells expressed and secreted (RANTES increased in response to RV infection in Df mice, but not in PBS mice (P&lt;0.05. The level of IL-10 significantly decreased following RV infection in Df mice (P&lt;0.05. Conclusion: Our findings suggest that the augmented induction of proinflammatory cytokines, Th2 cytokines, and chemokines that mediate an eosinophil response and the decreased induction of regulatory cytokines after RV infection may be important manifestations leading to airway inflammation with eosinophil infiltration and changes in airway responsiveness in the asthma model.

  5. Long acting β2-agonist and corticosteroid restore airway glandular cell function altered by bacterial supernatant

    Directory of Open Access Journals (Sweden)

    Nawrocki-Raby Béatrice

    2010-01-01

    Full Text Available Abstract Background Staphylococcus aureus releases virulence factors (VF that may impair the innate protective functions of airway cells. The aim of this study was to determine whether a long-acting β2 adrenergic receptor agonist (salmeterol hydroxynaphthoate, Sal combined with a corticosteroid (fluticasone propionate, FP was able to regulate ion content and cytokine expression by airway glandular cells after exposure to S. aureus supernatant. Methods A human airway glandular cell line was incubated with S. aureus supernatant for 1 h and then treated with the combination Sal/FP for 4 h. The expression of actin and CFTR proteins was analyzed by immunofluorescence. Videomicroscopy was used to evaluate chloride secretion and X-ray microanalysis to measure the intracellular ion and water content. The pro-inflammatory cytokine expression was assessed by RT-PCR and ELISA. Results When the cells were incubated with S. aureus supernatant and then with Sal/FP, the cellular localisation of CFTR was apical compared to the cytoplasmic localisation in cells incubated with S. aureus supernatant alone. The incubation of airway epithelial cells with S. aureus supernatant reduced by 66% the chloride efflux that was fully restored by Sal/FP treatment. We also observed that Sal/FP treatment induced the restoration of ion (Cl and S and water content within the intracellular secretory granules of airway glandular cells and reduced the bacterial supernatant-dependent increase of pro-inflammatory cytokines IL8 and TNFα. Conclusions Our results demonstrate that treatment with the combination of a corticosteroid and a long-acting β2 adrenergic receptor agonist after bacterial infection restores the airway glandular cell function. Abnormal mucus induced by defective ion transport during pulmonary infection could benefit from treatment with a combination of β2 adrenergic receptor agonist and glucocorticoid.

  6. Human Rhinovirus Infection of Epithelial Cells Modulates Airway Smooth Muscle Migration.

    Science.gov (United States)

    Shariff, Sami; Shelfoon, Christopher; Holden, Neil S; Traves, Suzanne L; Wiehler, Shahina; Kooi, Cora; Proud, David; Leigh, Richard

    2017-06-01

    Airway remodeling, a characteristic feature of asthma, begins in early life. Recurrent human rhinovirus (HRV) infections are a potential inciting stimulus for remodeling. One component of airway remodeling is an increase in airway smooth muscle cell (ASMC) mass with a greater proximity of the ASMCs to the airway epithelium. We asked whether human bronchial epithelial cells infected with HRV produced mediators that are chemotactic for ASMCs. ASMC migration was investigated using the modified Boyden Chamber and the xCELLigence Real-Time Cell Analyzer (ACEA Biosciences Inc., San Diego, CA). Multiplex bead analysis was used to measure HRV-induced epithelial chemokine release. The chemotactic effects of CCL5, CXCL8, and CXCL10 were also examined. Supernatants from HRV-infected epithelial cells caused ASMC chemotaxis. Pretreatment of ASMCs with pertussis toxin abrogated chemotaxis, as did treatment with formoterol, forskolin, or 8-bromo-cAMP. CCL5, CXCL8, and CXCL10 were the most up-regulated chemokines produced by HRV-infected airway epithelial cells. When recombinant CCL5, CXCL8, and CXCL10 were used at levels found in epithelial supernatants, they induced ASMC chemotaxis similar to that seen with epithelial cell supernatants. When examined individually, CCL5 was the most effective chemokine in causing ASMC migration, and treatment of supernatant from HRV-infected epithelial cells with anti-CCL5 antibodies significantly attenuated ASMC migration. These findings suggest that HRV-induced CCL5 can induce ASMC chemotaxis and thus may contribute to the pathogenesis of airway remodeling in patients with asthma.

  7. Use of continuous positive airway pressure reduces airway reactivity in adults with asthma.

    Science.gov (United States)

    Busk, Michael; Busk, Nancy; Puntenney, Paula; Hutchins, Janet; Yu, Zhangsheng; Gunst, Susan J; Tepper, Robert S

    2013-02-01

    Asthma is characterised by airway hyperreactivity, which is primarily treated with β-adrenergic bronchodilators and anti-inflammatory agents. However, mechanical strain during breathing is an important modulator of airway responsiveness and we have previously demonstrated in animal models that continuous positive airway pressure (CPAP) resulted in lower in vivo airway reactivity. We now evaluated whether using nocturnal CPAP decreased airway reactivity in clinically-stable adults with asthma. Adults with stable asthma and normal spirometry used nocturnal CPAP (8-10 cmH(2)O) or sham treatment (0-2 cmH(2)O) for 7 days. Spirometry and bronchial challenges were obtained before and after treatment. The primary outcome was the provocative concentration of methacholine causing a 20% fall in forced expiratory volume in 1 s (PC(20)). The CPAP group (n=16) had a significant decrease in airway reactivity (change in (Δ)logPC(20) 0.406, p<0.0017) while the sham group (n=9) had no significant change in airway reactivity (ΔlogPC(20) 0.003, p=0.9850). There was a significant difference in the change in airway reactivity for the CPAP versus the sham group (ΔlogPC(20) 0.41, p<0.043). Our findings indicate that chronic mechanical strain of the lungs produced using nocturnal CPAP for 7 days reduced airway reactivity in clinically stable asthmatics. Future studies of longer duration are required to determine whether CPAP can also decrease asthma symptoms and/or medication usage.

  8. Validation of airway wall measurements by optical coherence tomography in porcine airways.

    Directory of Open Access Journals (Sweden)

    Anthony M D Lee

    Full Text Available Examining and quantifying changes in airway morphology is critical for studying longitudinal pathogenesis and interventions in diseases such as chronic obstructive pulmonary disease and asthma. Here we present fiber-optic optical coherence tomography (OCT as a nondestructive technique to precisely and accurately measure the 2-dimensional cross-sectional areas of airway wall substructure divided into the mucosa (WAmuc, submucosa (WAsub, cartilage (WAcart, and the airway total wall area (WAt. Porcine lung airway specimens were dissected from freshly resected lung lobes (N = 10. Three-dimensional OCT imaging using a fiber-optic rotary-pullback probe was performed immediately on airways greater than 0.9 mm in diameter on the fresh airway specimens and subsequently on the same specimens post-formalin-fixation. The fixed specimens were serially sectioned and stained with H&E. OCT images carefully matched to selected sections stained with Movat's pentachrome demonstrated that OCT effectively identifies airway epithelium, lamina propria, and cartilage. Selected H&E sections were digitally scanned and airway total wall areas were measured. Traced measurements of WAmuc, WAsub, WAcart, and WAt from OCT images of fresh specimens by two independent observers found there were no significant differences (p>0.05 between the observer's measurements. The same wall area measurements from OCT images of formalin-fixed specimens found no significant differences for WAsub, WAcart and WAt, and a small but significant difference for WAmuc. Bland-Altman analysis indicated there were negligible biases between the observers for OCT wall area measurements in both fresh and formalin-fixed specimens. Bland-Altman analysis also indicated there was negligible bias between histology and OCT wall area measurements for both fresh and formalin-fixed specimens. We believe this study sets the groundwork for quantitatively monitoring pathogenesis and interventions in the airways

  9. SAM-pointed domain ETS factor mediates epithelial cell-intrinsic innate immune signaling during airway mucous metaplasia.

    Science.gov (United States)

    Korfhagen, Thomas R; Kitzmiller, Joseph; Chen, Gang; Sridharan, Anusha; Haitchi, Hans-Michael; Hegde, Rashmi S; Divanovic, Senad; Karp, Christopher L; Whitsett, Jeffrey A

    2012-10-09

    Airway mucus plays a critical role in clearing inhaled toxins, particles, and pathogens. Diverse toxic, inflammatory, and infectious insults induce airway mucus secretion and goblet cell metaplasia to preserve airway sterility and homeostasis. However, goblet cell metaplasia, mucus hypersecretion, and airway obstruction are integral features of inflammatory lung diseases, including asthma, chronic obstructive lung disease, and cystic fibrosis, which cause an immense burden of morbidity and mortality. These chronic lung diseases are united by susceptibility to microbial colonization and recurrent airway infections. Whether these twinned phenomena (mucous metaplasia, compromised host defenses) are causally related has been unclear. Here, we demonstrate that SAM pointed domain ETS factor (SPDEF) was induced by rhinoviral infection of primary human airway cells and that cytoplasmic activities of SPDEF, a transcriptional regulator of airway goblet cell metaplasia, inhibited Toll-like receptor (TLR) activation of epithelial cells. SPDEF bound to and inhibited activities of TLR signaling adapters, MyD88 and TRIF, inhibiting MyD88-induced cytokine production and TRIF-induced interferon β production. Conditional expression of SPDEF in airway epithelial cells in vivo inhibited LPS-induced neutrophilic infiltration and bacterial clearance. SPDEF-mediated inhibition of both TLR and type I interferon signaling likely protects the lung against inflammatory damage when inciting stimuli are not eradicated. Present findings provide, at least in part, a molecular explanation for increased susceptibility to infection in lung diseases associated with mucous metaplasia and a mechanism by which patients with florid mucous metaplasia may tolerate microbial burdens that are usually associated with fulminant inflammatory disease in normal hosts.

  10. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Umesh C S Yadav

    Full Text Available BACKGROUND: Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR regulates the mucus cell metaplasia in vitro and in vivo. METHODOLOGY/FINDINGS: Metaplasia in primary human small airway epithelial cells (SAEC was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. CONCLUSIONS: The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors

  11. Aldose reductase inhibition prevents metaplasia of airway epithelial cells.

    Science.gov (United States)

    Yadav, Umesh C S; Aguilera-Aguirre, Leopoldo; Ramana, Kota V; Boldogh, Istvan; Srivastava, Satish K

    2010-12-28

    Goblet cell metaplasia that causes mucus hypersecretion and obstruction in the airway lumen could be life threatening in asthma and chronic obstructive pulmonary disease patients. Inflammatory cytokines such as IL-13 mediate the transformation of airway ciliary epithelial cells to mucin-secreting goblet cells in acute as well as chronic airway inflammatory diseases. However, no effective and specific pharmacologic treatment is currently available. Here, we investigated the mechanisms by which aldose reductase (AR) regulates the mucus cell metaplasia in vitro and in vivo. Metaplasia in primary human small airway epithelial cells (SAEC) was induced by a Th2 cytokine, IL-13, without or with AR inhibitor, fidarestat. After 48 h of incubation with IL-13 a large number of SAEC were transformed into goblet cells as determined by periodic acid-schiff (PAS)-staining and immunohistochemistry using antibodies against Mucin5AC. Further, IL-13 significantly increased the expression of Mucin5AC at mRNA and protein levels. These changes were significantly prevented by treatment of the SAEC with AR inhibitor. AR inhibition also decreased IL-13-induced expression of Muc5AC, Muc5B, and SPDEF, and phosphorylation of JAK-1, ERK1/2 and STAT-6. In a mouse model of ragweed pollen extract (RWE)-induced allergic asthma treatment with fidarestat prevented the expression of IL-13, phosphorylation of STAT-6 and transformation of epithelial cells to goblet cells in the lung. Additionally, while the AR-null mice were resistant, wild-type mice showed goblet cell metaplasia after challenge with RWE. The results show that exposure of SAEC to IL-13 caused goblet cell metaplasia, which was significantly prevented by AR inhibition. Administration of fidarestat to mice prevented RWE-induced goblet cell metaplasia and AR null mice were largely resistant to allergen induced changes in the lung. Thus our results indicate that AR inhibitors such as fidarestat could be developed as therapeutic agents to

  12. Roles of IL-22 in Allergic Airway Inflammation

    Directory of Open Access Journals (Sweden)

    Koichi Hirose

    2013-01-01

    Full Text Available IL-23- and IL-17A-producing CD4+ T cell (Th17 cell axis plays a crucial role in the development of chronic inflammatory diseases. In addition, it has been demonstrated that Th17 cells and their cytokines such as IL-17A and IL-17F are involved in the pathogenesis of severe asthma. Recently, IL-22, an IL-10 family cytokine that is produced by Th17 cells, has been shown to be expressed at the site of allergic airway inflammation and to inhibit allergic inflammation in mice. In addition to Th17 cells, innate lymphoid cells also produce IL-22 in response to allergen challenge. Functional IL-22 receptor complex is expressed on lung epithelial cells, and IL-22 inhibits cytokine and chemokine production from lung epithelial cells. In this paper, we summarize the recent progress on the roles of IL-22 in the regulation of allergic airway inflammation and discuss its therapeutic potential in asthma.

  13. Cellular ATP release in the lung and airway

    Directory of Open Access Journals (Sweden)

    Satoru Ito

    2016-11-01

    Full Text Available Adenosine triphosphate (ATP is a universal energy source synthesized by mitochondrial oxidative phosphorylation and cytosolic glycolysis and transported by the vesicular nucleotide transporter for storage in secretory vesicles. Extracellular ATP regulates physiological functions and homeostasis of the respiratory system and is associated with pathogenesis of respiratory diseases. Thus, modulation of ATP and purinergic signaling may be a novel therapeutic approach to pulmonary disease. ATP is released from alveolar epithelial cells, airway epithelial cells, airway smooth muscle cells, fibroblasts and endothelial cells in response to various chemical and mechanical stimuli. In addition to conductive pathways such as connexins and pannexins, vesicular exocytosis is involved in the mechanisms of ATP release from the cells. Imaging approaches enable us to visualize ATP release from not only cultured cells but also lung tissue ex vivo. Extracellular vesicles, exosomes and membrane-derived microvesicles, containing cytoplasmic proteins, mRNA and microRNA, represent important mediators of cell-to-cell communication and the intercellular microenvironment. However, it is not known whether extracellular vesicles contain ATP as an intercellular messenger. Future studies are necessary to elucidate the mechanisms of cellular ATP release and purinergic signaling in the respiratory system.

  14. Role of TRPV1 in inflammation-induced airway hypersensitivity

    OpenAIRE

    Lee, Lu-Yuan; Gu, Qihai

    2009-01-01

    Airway hypersensitivity is a common pathophysiological feature in various airway inflammatory diseases. Increasing evidence suggests that activation of the transient receptor potential vanilloid type 1 receptor (TRPV1) plays an important part in the manifestation of various symptoms of airway hypersensitivity. This mini-review focuses on recent studies that have revealed several potential contributing factors to the increase in TRPV1 sensitivity in pulmonary sensory neurons during airway infl...

  15. Dilemmas, Confusion, and Misconceptions Related to Small Airways Directed Therapy.

    Science.gov (United States)

    Lavorini, Federico; Pedersen, Søren; Usmani, Omar S

    2017-06-01

    During the past decade, there has been increasing evidence that the small airways (ie, airways misconceptions related to small airways directed therapy. To this end, we have reviewed all studies on small-particle aerosol therapy systematically to address the dilemmas, confusion, and misconceptions related to small airways directed therapy. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Bachert, Claus; Konge, Lars

    2015-01-01

    ) bronchial inflammation exists in all CRSwNP patients irrespective of clinical asthma status. Methods We collected biopsies from nasal polyps, inferior turbinates and bronchi of 27 CRSwNP patients and 6 controls. All participants were evaluated for lower airway disease according to international guidelines......Background It has been established that patients with chronic rhinosinusitis with nasal polyps (CRSwNP) often have co-existing asthma. Objective We aimed to test two hypotheses: (i) upper and lower airway inflammation in CRSwNP is uniform in agreement with the united airways concept; and (ii...

  17. Airway Inflammation in Chronic Rhinosinusitis with Nasal Polyps and Asthma: The United Airways Concept Further Supported

    DEFF Research Database (Denmark)

    Håkansson, Kåre; Bachert, Claus; Konge, Lars

    2015-01-01

    Background It has been established that patients with chronic rhinosinusitis with nasal polyps (CRSwNP) often have co-existing asthma. Objective We aimed to test two hypotheses: (i) upper and lower airway inflammation in CRSwNP is uniform in agreement with the united airways concept; and (ii...... cytokines measured, IL-13 was significantly increased in bronchial biopsies from CRSwNP patients with, but not without asthma. Conclusion Our findings support the united airways concept; however, we did not find evidence for subclinical bronchial inflammation in CRSwNP patients without asthma. Finally...

  18. Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Daqing [Department of Respiration, Xi’an Children’s Hospital, Xi’an 710003 (China); Wang, Jing [Department of Neonatology, Xi’an Children’s Hospital, Xi’an 710003 (China); Yang, Niandi [Outpatient Department, School of Aerospace Engineering, Air Force Engineering University, Xi’an 710038 (China); Ma, Haixin, E-mail: drhaixinma@163.com [Department of Quality Control, Xi’an Children’s Hospital, Xi’an 710003 (China)

    2016-08-12

    Matrine has been demonstrated to attenuate allergic airway inflammation. Elevated suppressor of cytokine signaling 3 (SOCS3) was correlated with the severity of asthma. The aim of this study was to investigate the effect of matrine on SOCS3 expression in airway inflammation. In this study, we found that matrine significantly inhibited OVA-induced AHR, inflammatory cell infiltration, goblet cell differentiation, and mucous production in a dose-dependent manner in mice. Matrine also abrogated the level of interleukin (IL)-4 and IL-13, but enhanced interferon (IFN)-γ expression, both in BALF and in lung homogenates. Furthermore, matrine impeded TNF-α-induced the expression of IL-6 and adhesion molecules in airway epithelial cells (BEAS-2B and MLE-12). Additionally, we found that matrine inhibited SOCS3 expression, both in asthmatic mice and TNF-α-stimulated epithelial cells via suppression of the NF-κB signaling pathway by using pcDNA3.1-SOCS3 plasmid, SOCS3 siRNA, or nuclear factor kappa-B (NF-κB) inhibitor PDTC. Conclusions: Matrine suppresses airway inflammation by downregulating SOCS3 expression via inhibition of NF-κB signaling in airway epithelial cells and asthmatic mice. - Highlights: • Matrine attenuates asthmatic symptoms and regulates Th1/Th2 balance in vivo. • Matrine suppresses inflammation responses in vitro. • Matrine decreases SOCS3 expression both in vivo and in vitro. • Matrine inhibits SOCS3 expression by suppressing NF-κB signaling.

  19. Interleukin-13–Induced Mucous Metaplasia Increases Susceptibility of Human Airway Epithelium to Rhinovirus Infection

    Science.gov (United States)

    Lachowicz-Scroggins, Marrah E.; Boushey, Homer A.; Finkbeiner, Walter E.; Widdicombe, Jonathan H.

    2010-01-01

    Infection of airway epithelium by rhinovirus is the most common cause of asthma exacerbations. Even in mild asthma, airway epithelium exhibits mucous metaplasia, which increases with increasing severity of the disease. We previously showed that squamous cultures of human airway epithelium manifest rhinoviral infection at levels many times higher than in well-differentiated cultures of a mucociliary phenotype. Here we tested the hypothesis that mucous metaplasia is also associated with increased levels of rhinoviral infection. Mucous metaplasia was induced with IL-13, which doubled the numbers of goblet cells. In both control (mucociliary) and IL-13– treated (mucous metaplastic) cultures, goblet cells were preferentially infected by rhinovirus. IL-13 doubled the numbers of infected cells by increasing the numbers of infected goblet cells. Furthermore, IL-13 increased both the maturity of goblet cells and the probability that a goblet cell would be infected. The infection of cells other than goblet cells was unaltered by IL-13. Treatment with IL-13 did not alter the levels of rhinovirus receptor ICAM-1, nor did the proliferative effects of IL-13 enhance infection, because rhinovirus did not colocalize with dividing cells. However, the induction of mucous metaplasia caused changes in the apical membrane structure, notably a marked decrease in overall ciliation, and an increase in the overall flatness of the apical surface. We conclude that mucous metaplasia in asthma increases the susceptibility of airway epithelium to infection by rhinovirus because of changes in the overall architecture of the apical surface. PMID:20081054

  20. Avian Influenza virus glycoproteins restrict virus replication and spread through human airway epithelium at temperatures of the proximal airways

    National Research Council Canada - National Science Library

    Scull, Margaret A; Gillim-Ross, Laura; Santos, Celia; Roberts, Kim L; Bordonali, Elena; Subbarao, Kanta; Barclay, Wendy S; Pickles, Raymond J

    2009-01-01

    .... Using an in vitro model of human ciliated airway epithelium (HAE), we demonstrate that while human and avian influenza viruses efficiently infect at temperatures of the human distal airways (37 degrees C...

  1. Rigid fibrescope Bonfils: use in simulated difficult airway by novices

    Directory of Open Access Journals (Sweden)

    Piepho Tim

    2009-07-01

    Full Text Available Abstract Background The Bonfils intubation fibrescope is a promising alternative device for securing the airway. We examined the success rate of intubation and the ease of use in standardized simulated difficult airway scenarios by physicians. We compared the Bonfils to a classical laryngoscope with Macintosh blade. Methods 30 physicians untrained in the use of rigid fibrescopes but experienced in airway management performed endotracheal intubation in an airway manikin (SimMan, Laerdal, Kent, UK with three different airway conditions. We evaluated the success rate using the Bonfils (Karl Storz, Tuttlingen, Germany or the Macintosh laryngoscope, the time needed for securing the airway, and subjective rating of both techniques. Results In normal airway all intubations were successful using laryngoscope (100% vs. 82% using the Bonfils (p Conclusion The Bonfils can be successfully used by physicians unfamiliar with this technique in an airway manikin. The airway could be secured with at least the same success rate as using a Macintosh laryngoscope in difficult airway scenarios. Use of the Bonfils did not delay intubation in the presence of a difficult airway. These results indicate that intensive special training is advised to use the Bonfils effectively in airway management.

  2. Editorial Intubation through supraglottic airways: Are we on target, or ...

    African Journals Online (AJOL)

    practitioner skill/experience make 'big data' studies of airway devices very challenging. Nonetheless, some developments have brought about dramatic changes in airway management and become enshrined into protocols and guidelines.2, 3. The ideal airway device would be reliably fast and easy to insert, cause no.

  3. Successful management of difficult airway: A case series

    Directory of Open Access Journals (Sweden)

    Balraj Hariharasudhan

    2016-01-01

    Full Text Available Management of difficult airway is widely recognized as one of the important tasks of an anesthesiologist. The problems related to it are known to be primary causes of life-threatening consequences. Herewith, we present a case series of difficult airway scenarios managed successfully with different techniques and airway gadgets. The following cases were managed successfully with appropriate airway techniques: 1 Ludwig′s angina for drainage with awake fiberoptic intubation, 2 temporomandibular joint (TMJ ankylosis for bilateral gap arthroplasty with fiberoptic intubation, 3 burn contractures for the release managed with intubating laryngeal mask airway (ILMA. Airway management is one of the vital aspects of clinical care provided by an anesthesiologist. The airway-related complications have significantly decreased due to better knowledge, skills of the anesthesiologist, and an array of airway gadgets. The three case scenarios of difficult airway were successfully managed with the appropriate airway gadgets suitable for each case without any untoward complication. Most airway problems can be solved with available gadgets and techniques, but clinical judgement borne of experience and expertise is crucial in implementing the skills in any difficult airway scenario.

  4. Airways inflammatory and atopy-related responses in athletes ...

    African Journals Online (AJOL)

    Repeated hyperventilation of unconditioned air, as well as air containing irritants and/or allergens has been suggested to cause thermal, mechanical, or osmotic airway trauma resulting in damage to the airway epithelium. Subsequent airway inflammatory responses may be responsible for the development of atopy-related

  5. Dysfunctional lung anatomy and small airways degeneration in COPD

    Directory of Open Access Journals (Sweden)

    Burgel PR

    2013-01-01

    Full Text Available Clémence Martin, Justine Frija, Pierre-Régis BurgelDepartment of Respiratory Medicine, Cochin Hospital, AP-HP and Université Paris Descartes, Sorbonne Paris Cité, Paris, FranceAbstract: Chronic obstructive pulmonary disease (COPD is characterized by incompletely reversible airflow obstruction. Direct measurement of airways resistance using invasive techniques has revealed that the site of obstruction is located in the small conducting airways, ie, bronchioles with a diameter < 2 mm. Anatomical changes in these airways include structural abnormalities of the conducting airways (eg, peribronchiolar fibrosis, mucus plugging and loss of alveolar attachments due to emphysema, which result in destabilization of these airways related to reduced elastic recoil. The relative contribution of structural abnormalities in small conducting airways and emphysema has been a matter of much debate. The present article reviews anatomical changes and inflammatory mechanisms in small conducting airways and in the adjacent lung parenchyma, with a special focus on recent anatomical and imaging data suggesting that the initial event takes place in the small conducting airways and results in a dramatic reduction in the number of airways, together with a reduction in the cross-sectional area of remaining airways. Implications of these findings for the development of novel therapies are briefly discussed.Keywords: emphysema, small airways disease, airway mucus, innate immunity, adaptive immunity

  6. Update on Regulation of Sand Transport in the Colorado River by Changes in the Surface Grain Size of Eddy Sandbars over Multiyear Timescales

    Science.gov (United States)

    Topping, David J.; Rubin, David M.; Schmidt, John C.

    2008-01-01

    In settings where the transport of sand is partially or fully supply limited, changes in the upstream supply of sand are coupled to changes in the grain size of sand on the bed. In this manner, the transport of sand under the supply-limited case is ?grain-size regulated.? Since the closure of Glen Canyon Dam in 1963, the downstream reach of the Colorado River in Marble and Grand Canyons has exhibited evidence of sand-supply limitation. Sand transport in the river is now about equally regulated by changes in the discharge of water and changes in the grain sizes of sand on the channel bed and eddy sandbars. Previous work has shown that changes in the grain size of sand on the channel bed (driven by changes in the upstream supply of sand owing to both tributary floods and high dam releases) are important in regulating sand transport over timescales of days to months. In this study, suspended-sand data are analyzed in conjunction with bed grain-size data to determine whether changes in the sand grain size on the channel bed, or changes in the sand grain size on the surface of eddy sandbars, have been more important in regulating sand transport in the postdam Colorado River over longer, multiyear timescales. The results of this study show that this combined theory- and field-based approach can be used to deduce which environments in a complicated setting are most important for regulating sediment transport. In the case of the regulated Colorado River in Marble and upper Grand Canyons, suspended-sand transport has been regulated mostly by changes in the surface grain size of eddy sandbars.

  7. Absorption of 51Cr EDTA across the human nasal airway barriers in the presence of topical histamine.

    Science.gov (United States)

    Greiff, L; Wollmer, P; Pipkorn, U; Persson, C G

    1991-01-01

    Whether histamine, a mediator that causes exudation, affects the airway absorption of luminal solutes has been examined in a study of eight healthy volunteers. Fluid containing the absorption tracer chromium-51 labelled EDTA was instilled into one nasal cavity for 15 minutes, with a nasal pool-device (total volume 14 ml). The airway absorption of 51Cr EDTA determined by urinary recovery of radioactivity corresponded to 0.095 (SE 0.023) ml of the instillate in the absence of histamine. When histamine was added to the nasal instillate at a concentration of 2.0 mg/ml, which is known to produce substantial exudation of plasma into the airway lumen, the absorption of 51Cr EDTA was unchanged (0.093 (0.025) ml of the instillate). Separate experiments excluded the possibility that any swallowed portion of 51Cr EDTA could have contributed significantly to the amount absorbed. The present data agree with previous observations in guinea pig tracheobronchial airways, where histamine and other exudative agents did not increase the mucosal absorption of solutes from the airway lumen. These data suggest that the potent protein systems of blood plasma can transverse the endothelial-epithelial linings and operate on the surface of the airway mucosa without compromising its integrity as a barrier to luminal material. PMID:1948790

  8. Airway responsiveness to mannitol in asthma is associated with chymase-positive mast cells and eosinophilic airway inflammation

    DEFF Research Database (Denmark)

    Sverrild, Asger; Bergqvist, A; Baines, K J

    2016-01-01

    BACKGROUND: Airway hyperresponsiveness (AHR) to inhaled mannitol is associated with indirect markers of mast cell activation and eosinophilic airway inflammation. It is unknown how AHR to mannitol relates to mast cell phenotype, mast cell function and measures of eosinophilic inflammation in airway...... levels of TSLP and CPA3. The degree of AHR to mannitol is correlated with the degree of eosinophilic inflammation in the airway submucosa....

  9. A randomised trial comparing the laryngeal mask airway Supreme™ with the laryngeal mask airway Unique™ in children.

    Science.gov (United States)

    Jagannathan, N; Sohn, L E; Sawardekar, A; Chang, E; Langen, K E; Anderson, K

    2012-02-01

    We conducted a randomised controlled trial comparing the laryngeal mask airway Supreme(™) with the laryngeal mask airway Unique(™) in children. Fifty children presenting for elective surgery were randomly assigned to receive either the laryngeal mask airway Supreme or laryngeal mask airway Unique. The outcomes measured were airway leak pressure, ease and time for insertion, insertion success rate, fibreoptic examination, incidence of gastric insufflation, ease of gastric tube placement through the laryngeal mask airway Supreme, quality of airway during anaesthetic maintenance and complications. Median (IQR [range]) time to successful device placement was shorter with the laryngeal mask airway Unique, 14.5 [13.5-16.3 (10.0-23.6)] s than with the laryngeal mask airway Supreme, 17.4 [14.8-19.8 (11.5-29.2)] s; p = 0.007. Median (IQR [range]) airway leak pressures for the laryngeal mask airway Supreme and laryngeal mask airway Unique were 20 [16-21 (12-22)] cmH(2)O and 15 [14-18 (10-24)] cmH(2)O, respectively (p = 0.001). The incidence of gastric insufflation was lower with the laryngeal mask airway Supreme (zero vs six patients), p = 0.01. In conclusion, the laryngeal mask airway Supreme performed as well as the laryngeal mask airway Unique and is a useful alternative for airway maintenance, particularly in children who require evacuation of gastric contents during anaesthesia. Anaesthesia © 2011 The Association of Anaesthetists of Great Britain and Ireland.

  10. The profile of snoRNA-derived microRNAs that regulate expression of variant surface proteins in Giardia lamblia

    Science.gov (United States)

    Li, Wei; Saraiya, Ashesh A.; Wang, Ching C.

    2012-01-01

    Summary In the current investigation, we analyzed all the known small nucleolar RNAs (snoRNAs) in the deeply branching protozoan parasite Giardia lamblia for potential microRNAs (miRNAs) that might be derived from them. Two putative miRNAs have since been identified by Northern blot, primer extension, 3′-RACE and co-immunoprecipitation with Giardia Argonaute (GlAgo), and designated miR6 and miR10. Giardia Dicer (GlDcr) is capable of processing the snoRNAs into the corresponding miRNAs in vitro. Potential miR6 and miR10 binding sites in Giardia genome were predicted bioinformatically. A miR6 binding site was found at the 3′-untranslated regions (UTR) of 44 variant surface protein (vsp) genes, whereas a miR10 binding site was identified at the 3′-end of 159 vsp open-reading frames. Thirty-three of these vsp genes turned out to contain binding sites for both miR6 and miR10. A reporter mRNA tagged with the 3′ end of vsp1267, which contains the target sites for both miRNAs, was translationally repressed by both miRNAs in Giardia. Episomal expression of an N-terminal c-myc tagged VSP1267 was found significantly repressed by introducing either miR6 or miR10 into the cells and the repressive effects were additive. When the 2′-O-methyl antisense oligos (ASOs) of either miR6 or miR10 was introduced, however, there was an enhancement of tagged VSP1267 expression suggesting an inhibition of the repressive effects of endogenous miR6 or miR10 by the ASOs. Of the total 220 vsp genes in Giardia, we have now found 178 of them carrying putative binding sites for all the miRNAs that have been currently identified, suggesting that miRNAs are likely the regulators of VSP expression in Giardia. PMID:22568619

  11. The Surface Sensor NlpE of Enterohemorrhagic Escherichia coli Contributes to Regulation of the Type III Secretion System and Flagella by the Cpx Response to Adhesion.

    Science.gov (United States)

    Shimizu, Takeshi; Ichimura, Kimitoshi; Noda, Masatoshi

    2015-12-07

    Although the adhesion of enterohemorrhagic Escherichia coli (EHEC) is central to the EHEC-host interaction during infection, it remains unclear how such adhesion regulates virulence factors. Adhesion to abiotic surfaces by E. coli has been reported to be an outer membrane lipoprotein NlpE-dependent activation cue of the Cpx pathway. Therefore, we investigated the role of NlpE in EHEC on the adhesion-mediated expression of virulence genes. NlpE in EHEC contributed to upregulation of the locus of enterocyte effacement (LEE) genes encoded type III secretion system and to downregulated expression of the flagellin gene by activation of the Cpx pathway during adherence to hydrophobic glass beads and undifferentiated Caco-2 cells. Moreover, LysR homologue A (LrhA) in EHEC was involved in regulating the expression of the LEE genes and flagellin gene in response to adhesion. Gel mobility shift analysis revealed that response regulator CpxR bound to the lrhA promoter region and thereby regulated expressions of the LEE genes and flagellin gene via the transcriptional regulator LrhA in EHEC. Therefore, these results suggest that the sensing of adhesion signals via NlpE is important for regulation of the expression of the type III secretion system and flagella in EHEC during infection. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  12. The prolonged use of the laryngeal mask airway in a neonate with airway obstruction and Treacher Collins syndrome

    NARCIS (Netherlands)

    Bucx, Martin J. L.; Grolman, W.; Kruisinga, Frea H.; Lindeboom, Jerôme A. H.; van Kempen, Anne A. M. W.

    2003-01-01

    Upper airway obstruction and difficult tracheal intubation are often encountered in patients with Treacher Collins syndrome (mandibulofacial dysostosis). In this case report, the use of a laryngeal mask airway (LMA(TM)) in a 10-day-old newborn with severe Treacher Collins syndrome and acute airway

  13. The effect of cathepsin K deficiency on airway development and TGF-β1 degradation

    Directory of Open Access Journals (Sweden)

    Saftig Paul

    2011-05-01

    airway development is partly regulated by cathepsin K and that its expression contributes to the maintenance of the airway structural integrity. The anticipated use of therapeutic cathepsin K inhibitors needs to take potential changes in human lungs into consideration.

  14. A Zinc Chelator TPEN Attenuates Airway Hyperresponsiveness Airway Inflammation in Mice In Vivo

    Directory of Open Access Journals (Sweden)

    Satoru Fukuyama

    2011-01-01

    Conclusions: In pulmonary allergic inflammation induced in mice immunized with antigen without alum, zinc chelator inhibits airway inflammation and hyperresponsiveness. These findings suggest that zinc may be a therapeutic target of allergic asthma.

  15. Als1 and Als3 regulate the intracellular uptake of copper ions when Candida albicans biofilms are exposed to metallic copper surfaces.

    Science.gov (United States)

    Zheng, Sha; Chang, Wenqiang; Li, Chen; Lou, Hongxiang

    2016-05-01

    Copper surfaces possess efficient antimicrobial effect. Here, we reported that copper surfaces could inactivate Candida albicans biofilms within 40 min. The intracellular reactive oxygen species in C. albicans biofilms were immediately stimulated during the contact of copper surfaces, which might be an important factor for killing the mature biofilms. Copper release assay demonstrated that the copper ions automatically released from the surface of 1 mm thick copper coupons with over 99.9% purity are not the key determinant for the copper-mediated killing action. The susceptibility test to copper surfaces by using C. albicans mutant strains, which were involved in efflux pumps, adhesins, biofilms formation or osmotic stress response showed that als1/als1 and als3/als3 displayed higher resistance to the copper surface contact than other mutants did. The intracellular concentration of copper ions was lower in als1/als1 and als3/als3 than that in wild-type strain. Transcriptional analysis revealed that the expression of copper transporter-related gene, CRP1, was significantly increased in als1/als1, als3/als3, suggesting a potential role of ALS1 and ALS3 in absorbing ions by regulating the expression of CRP1 This study provides a potential application in treating pathogenic fungi by using copper surfaces and uncovers the roles of ALS1 and ALS3 in absorbing copper ions for C. albicans. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. McWRI1, a transcription factor of the AP2/SHEN family, regulates the biosynthesis of the cuticular waxes on the apple fruit surface under low temperature.

    Science.gov (United States)

    Hao, Suxiao; Ma, Yiyi; Zhao, Shuang; Ji, Qianlong; Zhang, Kezhong; Yang, Mingfeng; Yao, Yuncong

    2017-01-01

    Cuticular waxes of plant and organ surfaces play an important role in protecting plants from biotic and abiotic stress and extending the freshness, storage time and shelf life in the post-harvest agricultural products. WRI1, a transcription factor of AP2/SHEN families, had been found to trigger the related genes taking part in the biosynthesis of seed oil in many plants. But whether WRI1 is involved in the biosynthesis of the cuticular waxes on the Malus fruits surface has been unclear. We investigated the changes of wax composition and structure, the related genes and WRI1 expression on Malus asiatica Nakai and sieversii fruits with the low temperature treatments, found that low temperature induced the up-regulated expression of McWRI1, which promoted gene expression of McKCS, McLACs and McWAX in very-long-chain fatty acid biosynthesis pathway, resulting in the accumulation of alkanes component and alteration of wax structure on the fruit surface. Corresponding results were verified in McWRI1 silenced by VIGS, and WRI1 silenced down-regulated the related genes on two kinds of fruits, it caused the diversity alteration in content of some alkanes, fatty acid and ester component in two kinds of fruits. We further conducted Y1H assay to find that McWRI1 transcription factor activated the promoter of McKCS, McLAC and McWAX to regulate their expression. These results demonstrated that McWRI1 is involved in regulating the genes related synthesis of very long chain fatty acid on surface of apple fruits in storage process, providing a highlight for improvement of the modified atmosphere storage of apple fruits.

  17. Management of difficult airway patients and the use of a difficult airway registry at a tertiary care pediatric hospital.

    Science.gov (United States)

    Sheeran, Paul W; Walsh, Brian K; Finley, Andre M; Martin, Aleta K; Brenski, Amy C

    2014-08-01

    Appropriate recognition and management of the pediatric difficult airway is essential. Two patient deaths in a 2-year period involving children with a known difficult airway led to the formation of the institution's multidisciplinary Difficult Airway Committee. Patients with a suspected difficult airway or a known difficult airway are entered into a registry of difficult airway patients. A note describing the airway and any experiences at airway manipulation is entered as part of a difficult airway note in the patient's electronic medical record as soon as the patient is recognized as having a difficult airway. A call system has been developed to mobilize expert emergency airway assistance for these patients. Multiple additional methods are employed to ensure that all hospital personnel are aware that these patients are difficult to intubate. Since inception almost 6 years ago, 164 patients (mean age 9.2 years) have been enrolled in the difficult airway registry. Eighty-seven patients (53%) had one of 28 identified syndromes or diagnoses. The most common reasons for airway obstruction were mandibular hypoplasia/micrognathia, decreased neck extension, and limited temporomandibular joint mobility. One hundred sixty-one patients (98%) in the registry were predicted by history or physical to have a difficult airway. The mortality of registry patients was 9.8% (n = 16) and was most commonly due to co-existing diseases. During the time period reviewed, there was one in-hospital death of a known difficult airway patient, in which expert airway assistance was not obtained in a timely fashion. The institution's difficult airway registry identifies patients with a suspected or known difficult airway. The presence of a difficult airway in children can usually be predicted based on history and physical examination by anesthesiologists and otolaryngologists. Providers without advanced airway skills, however, may not appreciate that an airway is difficult to intubate until

  18. Airway epithelial cells produce neurotrophins and promote the survival of eosinophils during allergic airway inflammation.

    Science.gov (United States)

    Hahn, Christian; Islamian, Ariyan Pirayesh; Renz, Harald; Nockher, Wolfgang Andreas

    2006-04-01

    Eosinophil-epithelial cell interactions make a major contribution to asthmatic airway inflammation. Nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and other members of the neurotrophin family, originally defined as a class of neuronal growth factors, are now recognized to support the survival and activation of immune cells. Neurotrophin levels are increased in bronchoalveolar lavage fluid during allergic asthma. We sought to investigate the role of neurotrophins as inflammatory mediators in eosinophil-epithelial cell interactions during the allergic immune response. Neurotrophin expression in the lung was investigated by means of immunohistochemistry and ELISA in a mouse model of chronic experimental asthma. Coculture experiments were performed with airway epithelial cells and bronchoalveolar lavage fluid eosinophils. Neurotrophin levels increased continuously during chronic allergic airway inflammation, and airway epithelial cells were the major source of NGF and BDNF within the inflamed lung. Epithelial neurotrophin production was upregulated by IL-1beta, TNF-alpha, and T(H)2 cytokines. Lung eosinophils expressed the BDNF and NGF receptors tropomyosin-related kinase (Trk) A and TrkB, and coculture with airway epithelial cells resulted in enhanced epithelial neurotrophin production, as well as in prolonged survival of eosinophils. Eosinophil survival was completely abolished in the presence of the neurotrophin receptor Trk antagonist K252a. During allergic inflammation, airway epithelial cells express increased amounts of NGF and BDNF that promote the survival of tissue eosinophils. Controlling epithelial neurotrophin production might be an important therapeutic target to prevent allergic airway eosinophilia. Attenuating the release of inflammatory mediators from the activated airway epithelium will become an important strategy to disrupt the pathogenesis of chronic allergic asthma.

  19. Atopy, cytokine production, and airway reactivity as predictors of pre-school asthma and airway responsiveness.

    Science.gov (United States)

    Sarria, Edgar E; Mattiello, Rita; Yao, Weiguo; Chakr, Valentina; Tiller, Christina J; Kisling, Jeffrey; Tabbey, Rebeka; Yu, Zhangsheng; Kaplan, Mark H; Tepper, Robert S

    2014-02-01

    Childhood asthma is often characterized by recurrent wheezing, airway hyper-reactivity, atopy, and altered immune characteristics; however, our understanding of the development of these relationships from early in life remains unclear. The aim of our study was to evaluate whether atopy, cytokine production by peripheral blood mononuclear cells (PBMCs), and airway responsiveness, assessed in infants and toddlers, are associated with asthma and airway responsiveness at 4-years of age. Infants with eczema (N = 116), enrolled prior to wheezing, were assessed at entry (mean age of 10.7 months), at 1-year follow-up (N = 112), and at 4-years of age (N = 94). Total serum IgE, specific IgE to allergens, and cytokines produced by stimulated PBMCs, were assessed at entry and 1-year follow-up. Spirometry was obtained at all 3-visits, while airway reactivity to methacholine was assessed at entry and 1-year follow-up, and bronchodilator (BD) responsiveness, as well as current asthma was assessed at 4-years of age. We found that pre-school children with asthma had lower spirometry and a greater BD-response. Serum IgE, particularly to egg and/or milk, and altered cytokine production by PBMCs at entry to the study were associated with asthma, lower spirometry, and greater airway responsiveness at 4-years of age. In addition, we found that airway responsiveness, as well as spirometry, tracked from infancy to 4-years of age. While spirometry and airway responsiveness track longitudinally from early in life, atopy and cytokine production by PBMCs are associated not only with an increased risk of pre-school asthma, but also lower spirometry and increased airway responsiveness. © 2013 Wiley Periodicals, Inc.

  20. Recovery room nurses' knowledge regarding postoperative airway ...

    African Journals Online (AJOL)

    Adele

    9. Recovery room nurses' knowledge regarding postoperative airway emergencies in adults in private hospitals in Northern Gauteng,. South Africa. Correspondence: Dr ADH Botha email: annali.botha@up.ac.za. T van Huyssteen. Critical care unit, Zuid-Afrikaans Hospitaal, Muckleneuk, Pretoria, South Africa. ADH Botha.

  1. [Airway anatomy : Relevant structures in emergency medicine].

    Science.gov (United States)

    Schulze, M; Wree, A

    2017-09-01

    The subject of this article is the anatomy of the respiratory tract with an emphasis on the larynx. A differentiation is made between the upper and lower airways according to topographical and functional aspects, the limits of which are marked by the lower section of the larynx. The focus is on the anatomy of the structures involved, which are relevant for emergency medicine.

  2. Unique™ Laryngeal Mask airway versus Cobra™ Perilaryngeal ...

    African Journals Online (AJOL)

    Adele

    Introduction. Both the Unique™ LMA, and lately the Cobra™ PLA, is available in most of the larger state hospitals in South Africa. This study's objective is to evaluate and compare the learning curves for insertion of these two single-use airway devices. This is to ascertain which of these two devices is easier and safer to ...

  3. CT quantification of central airway in tracheobronchomalacia

    Energy Technology Data Exchange (ETDEWEB)

    Im, Won Hyeong; Jin, Gong Yong; Han, Young Min; Kim, Eun Young [Dept. of Radiology, Chonbuk National University Hospital, Jeonju (Korea, Republic of)

    2016-05-15

    To know which factors help to diagnose tracheobronchomalacia (TBM) using CT quantification of central airway. From April 2013 to July 2014, 19 patients (68.0 ± 15.0 years; 6 male, 13 female) were diagnosed as TBM on CT. As case-matching, 38 normal subjects (65.5 ± 21.5 years; 6 male, 13 female) were selected. All 57 subjects underwent CT with end-inspiration and end-expiration. Airway parameters of trachea and both main bronchus were assessed using software (VIDA diagnostic). Airway parameters of TBM patients and normal subjects were compared using the Student t-test. In expiration, both wall perimeter and wall thickness in TBM patients were significantly smaller than normal subjects (wall perimeter: trachea, 43.97 mm vs. 49.04 mm, p = 0.020; right main bronchus, 33.52 mm vs. 42.69 mm, p < 0.001; left main bronchus, 26.76 mm vs. 31.88 mm, p = 0.012; wall thickness: trachea, 1.89 mm vs. 2.22 mm, p = 0.017; right main bronchus, 1.64 mm vs. 1.83 mm, p = 0.021; left main bronchus, 1.61 mm vs. 1.75 mm, p = 0.016). Wall thinning and decreased perimeter of central airway of expiration by CT quantification would be a new diagnostic indicators in TBM.

  4. Airway inflammation in mild cystic fibrosis.

    Science.gov (United States)

    Eckrich, Jonas; Zissler, Ulrich M; Serve, Friederike; Leutz, Patricia; Smaczny, Christina; Schmitt-Grohé, Sabina; Fussbroich, Daniela; Schubert, Ralf; Zielen, Stefan; Eickmeier, Olaf

    2017-01-01

    Airway infection and inflammation play major roles in the progression of cystic fibrosis (CF) lung disease. In patients with mild disease, airway inflammation is a clinically relevant and often underdiagnosed feature. Lung function, sputum cell counts, and cytokine profiles in CF with mild disease might be different in patients with and without involvement of small airway disease (SAD). Patients with mild CF (n=32) and 22 healthy controls were enrolled in this study. Patients with CF were assigned to two groups: (1) patients without SAD (n=19, median age 12.3years, MEF 25 >50% predicted), and (2) patients with SAD (n=13 median age, 13.2years, MEF 25 inflammation compared to controls as indicated by elevated levels of sputum biomarkers like total cells, neutrophils, and IL6. Our study demonstrated that patients with CF with mild disease defined by lung function might be further endotyped according to their involvement of SAD. In patients with CF and SAD, airway neutrophilic inflammation is more pronounced and is in part distinct from that seen in patients without SAD. Copyright © 2016 European Cystic Fibrosis Society. Published by Elsevier B.V. All rights reserved.

  5. Manual airway labeling has limited reproducibility

    DEFF Research Database (Denmark)

    Petersen, Jens; Feragen, Aasa; Thomsen, Laura Hohwü

    Purpose: Quantitative airway assessment is often performed in specific branches to enable comparison of measurements between patients and over time. Little is known on the accuracy in locating these branches. We determined inter- and intra-observer agreement of manual labeling of segmental bronch...

  6. Essential ultrasound techniques of the pediatric airway

    DEFF Research Database (Denmark)

    Stafrace, Samuel; Engelhardt, Thomas; Teoh, Wendy H

    2016-01-01

    Ultrasound of the airways is a technique which has been described in a number of recent articles and reviews highlighting the diagnostic possibilities and simple methodology. However, there is a paucity of information focusing specifically on such methods in children where equipment, technique, a...

  7. Qualitative analysis of unanticipated difficult airway management

    DEFF Research Database (Denmark)

    Rosenstock, C; Hansen, E G; Kristensen, M S

    2006-01-01

    Unanticipated difficult airway management (DAM) is a major challenge for the anaesthesiologist and is associated with a risk of severe patient damage. We analysed 24 cases of unanticipated DAM for actual case management and anaesthesiologists knowledge, technical and non-technical skills....... Anaesthesiologists' opinions, as well as environmental factors of importance for DAM proficiency, were also assessed....

  8. The role of surface electrostatics on the stability, function and regulation of human cystathionine β-synthase, a complex multidomain and oligomeric protein.

    Science.gov (United States)

    Pey, Angel L; Majtan, Tomas; Kraus, Jan P

    2014-09-01

    Human cystathionine β-synthase (hCBS) is a key enzyme of sulfur amino acid metabolism, controlling the commitment of homocysteine to the transsulfuration pathway and antioxidant defense. Mutations in hCBS cause inherited homocystinuria (HCU), a rare inborn error of metabolism characterized by accumulation of toxic homocysteine in blood and urine. hCBS is a complex multidomain and oligomeric protein whose activity and stability are independently regulated by the binding of S-adenosyl-methionine (SAM) to two different types of sites at its C-terminal regulatory domain. Here we study the role of surface electrostatics on the complex regulation and stability of hCBS using biophysical and biochemical procedures. We show that the kinetic stability of the catalytic and regulatory domains is significantly affected by the modulation of surface electrostatics through noticeable structural and energetic changes along their denaturation pathways. We also show that surface electrostatics strongly affect SAM binding properties to those sites responsible for either enzyme activation or kinetic stabilization. Our results provide new insight into the regulation of hCBS activity and stability in vivo with implications for understanding HCU as a conformational disease. We also lend experimental support to the role of electrostatic interactions in the recently proposed binding modes of SAM leading to hCBS activation and kinetic stabilization. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Indications of airway stenting for severe central airway obstruction due to advanced cancer.

    Science.gov (United States)

    Nagano, Hiroaki; Kishaba, Tomoo; Nei, Yuichirou; Yamashiro, Shin; Takara, Hiroaki

    2017-01-01

    Management of severe central airway obstruction due to advanced cancer is a medical and technical challenge. The impact of airway stenting on the clinical outcome of such patients is unclear. This single-center, retrospective study evaluated 21 patients who underwent airway stenting for advanced cancer. We examined predictors of the post-stenting mortality, including age, serum albumin, tracheal diameter, smoking, opioid use, respiratory failure, and performance status (PS). We also compared survival according to the PS. The mean survival period after stenting was 85.2 days. On univariate analysis, age, albumin, PS before airway stenting, respiratory failure, admission route, and PS grade were the candidates as possible predictors of prognosis after the procedure. On multivariate analysis, PS before airway stenting was identified as possible predictor of prognosis after stenting (HR 1.6180, 95% CI 0.969 to 2.7015, p = 0.066). The mean survival period after stenting was significantly longer in the good PS group, compared to the poor PS group (147.8 days vs. 38.2 days,p = 0.0346). Airway stenting for advanced cancer may be more effective for patients in good general condition than in those with poor performance status.

  10. Indications of airway stenting for severe central airway obstruction due to advanced cancer.

    Directory of Open Access Journals (Sweden)

    Hiroaki Nagano

    Full Text Available Management of severe central airway obstruction due to advanced cancer is a medical and technical challenge. The impact of airway stenting on the clinical outcome of such patients is unclear.This single-center, retrospective study evaluated 21 patients who underwent airway stenting for advanced cancer. We examined predictors of the post-stenting mortality, including age, serum albumin, tracheal diameter, smoking, opioid use, respiratory failure, and performance status (PS. We also compared survival according to the PS.The mean survival period after stenting was 85.2 days. On univariate analysis, age, albumin, PS before airway stenting, respiratory failure, admission route, and PS grade were the candidates as possible predictors of prognosis after the procedure. On multivariate analysis, PS before airway stenting was identified as possible predictor of prognosis after stenting (HR 1.6180, 95% CI 0.969 to 2.7015, p = 0.066. The mean survival period after stenting was significantly longer in the good PS group, compared to the poor PS group (147.8 days vs. 38.2 days,p = 0.0346.Airway stenting for advanced cancer may be more effective for patients in good general condition than in those with poor performance status.

  11. Genes associated with MUC5AC expression in small airway epithelium of human smokers and non-smokers

    Directory of Open Access Journals (Sweden)

    Wang Guoqing

    2012-06-01

    Full Text Available Abstract Background Mucus hypersecretion contributes to the morbidity and mortality of smoking-related lung diseases, especially chronic obstructive pulmonary disease (COPD, which starts in the small airways. Despite progress in animal studies, the genes and their expression pattern involved in mucus production and secretion in human airway epithelium are not well understood. We hypothesized that comparison of the transcriptomes of the small airway epithelium of individuals that express high vs low levels of MUC5AC, the major macromolecular component of airway mucus, could be used as a probe to identify the genes related to human small airway mucus production/secretion. Methods Flexible bronchoscopy and brushing were used to obtain small airway epithelium (10th to 12th order bronchi from healthy nonsmokers (n=60 and healthy smokers (n=72. Affymetrix HG-U133 plus 2.0 microarrays were used to assess gene expression. Massive parallel sequencing (RNA-Seq was used to verify gene expression of small airway epithelium from 5 nonsmokers and 6 smokers. Results MUC5AC expression varied 31-fold among the healthy nonsmokers. Genome-wide comparison between healthy nonsmokers (n = 60 grouped as “high MUC5AC expressors” vs “low MUC5AC expressors” identified 528 genes significantly up-regulated and 15 genes significantly down-regulated in the high vs low expressors. This strategy identified both mucus production and secretion related genes under control of a network composed of multiple transcription factors. Based on the literature, genes in the up-regulated list were used to identify a 73 “MUC5AC-associated core gene” list with 9 categories: mucus component; mucus-producing cell differentiation-related transcription factor; mucus-producing cell differentiation-related pathway or mediator; post-translational modification of mucin; vesicle transport; endoplasmic reticulum stress-related; secretory granule-associated; mucus secretion

  12. The effect of ambroxol on chloride transport, CFTR and ENaC in cystic fibrosis airway epithelial cells.

    Science.gov (United States)

    Varelogianni, Georgia; Hussain, Rashida; Strid, Hilja; Oliynyk, Igor; Roomans, Godfried M; Johannesson, Marie

    2013-11-01

    Ambroxol, a mucokinetic anti-inflammatory drug, has been used for treatment of cystic fibrosis (CF). The respiratory epithelium is covered by the airway surface liquid (ASL), the thickness and composition of which is determined by Cl(-) efflux via the cystic fibrosis transmembrane conductance regulator (CFTR) and Na(+) influx via the epithelial Na(+) channel (ENaC). In cells expressing wt-CFTR, ambroxol increased the Cl(-) conductance, but not the bicarbonate conductance of the CFTR channels. We investigated whether treatment with ambroxol enhances chloride transport and/or CFTR and ENaC expression in CF airway epithelial cells (CFBE) cells. CFBE cells were treated with 100 µM ambroxol for 2, 4 or 8 h. mRNA expression for CFTR and ENaC subunits was analysed by real-time polymerase chain reaction (RT-PCR); protein expression was measured by Western blot. The effect of ambroxol on Cl(-) transport was measured by Cl(-) efflux measurements with a fluorescent chloride probe. Ambroxol significantly stimulated Cl(-) efflux from CFBE cells (a sixfold increase after 8 h treatment), and enhanced the expression of the mRNA of CFTR and α-ENaC, and of the CFTR protein. No significant difference was observed in β-ENaC after exposure to ambroxol, whereas mRNA expression of γ-ENaC was reduced. No significant effects of ambroxol on the ENaC subunits were observed by Western blot. Ambroxol did not significantly affect the intracellular Ca(2+) concentration. Upregulation of CFTR and enhanced Cl(-) efflux after ambroxol treatment should promote transepithelial ion and water transport, which may improve hydration of the mucus, and therefore be beneficial to CF-patients. © 2013 International Federation for Cell Biology.

  13. Iptakalim inhibits PDGF-BB-induced human airway smooth muscle cells proliferation and migration.

    Science.gov (United States)

    Liu, Wenrui; Kong, Hui; Zeng, Xiaoning; Wang, Jingjing; Wang, Zailiang; Yan, Xiaopei; Wang, Yanli; Xie, Weiping; Wang, Hong

    2015-08-15

    Chronic airway diseases are characterized by airway remodeling which is attributed partly to the proliferation and migration of airway smooth muscle cells (ASMCs). ATP-sensitive potassium (KATP) channels have been identified in ASMCs. Mount evidence has suggested that KATP channel openers can reduce airway hyperresponsiveness and alleviate airway remodeling. Opening K(+) channels triggers K(+) efflux, which leading to membrane hyperpolarization, preventing Ca(2+)entry through closing voltage-operated Ca(2+) channels. Intracellular Ca(2+) is the most important regulator of muscle contraction, cell proliferation and migration. K(+) efflux decreases Ca(2+) influx, which consequently influences ASMCs proliferation and migration. As a KATP channel opener, iptakalim (Ipt) has been reported to restrain the proliferation of pulmonary arterial smooth muscle cells (PASMCs) involved in vascular remodeling, while little is known about its impact on ASMCs. The present study was designed to investigate the effects of Ipt on human ASMCs and the mechanisms underlying. Results obtained from cell counting kit-8 (CCK-8), flow cytometry and 5-ethynyl-2'-deoxyuridine (EdU) incorporation showed that Ipt significantly inhibited platelet-derived growth factor (PDGF)-BB-induced ASMCs proliferation. ASMCs migration induced by PDGF-BB was also suppressed by Ipt in transwell migration and scratch assay. Besides, the phosphorylation of Ca(2+)/calmodulin-dependent kinase II (CaMKII), extracellular regulated protein kinases 1/2 (ERK1/2), protein kinase B (Akt), and cyclic adenosine monophosphate (cAMP) response element binding protein (CREB) were as well alleviated by Ipt administration. Furthermore, we found that the inhibition of Ipt on the PDGF-BB-induced proliferation and migration in human ASMCs was blocked by glibenclamide (Gli), a selective KATP channel antagonist. These findings provide a strong evidence to support that Ipt antagonize the proliferating and migrating effects of PDGF-BB on

  14. Lung sound analysis helps localize airway inflammation in patients with bronchial asthma

    Directory of Open Access Journals (Sweden)

    Shimoda T

    2017-03-01

    Full Text Available Terufumi Shimoda,1 Yasushi Obase,2 Yukio Nagasaka,3 Hiroshi Nakano,1 Akiko Ishimatsu,1 Reiko Kishikawa,1 Tomoaki Iwanaga1 1Clinical Research Center, Fukuoka National Hospital, Fukuoka, 2Second Department of Internal Medicine, School of Medicine, Nagasaki University, Nagasaki, 3Kyoto Respiratory Center, Otowa Hospital, Kyoto, Japan Purpose: Airway inflammation can be detected by lung sound analysis (LSA at a single point in the posterior lower lung field. We performed LSA at 7 points to examine whether the technique could identify the location of airway inflammation in patients with asthma. Patients and methods: Breath sounds were recorded at 7 points on the body surface of 22 asthmatic subjects. Inspiration sound pressure level (ISPL, expiration sound pressure level (ESPL, and the expiration-to-inspiration sound pressure ratio (E/I were calculated in 6 frequency bands. The data were analyzed for potential correlation with spirometry, airway hyperresponsiveness (PC20, and fractional exhaled nitric oxide (FeNO. Results: The E/I data in the frequency range of 100–400 Hz (E/I low frequency [LF], E/I mid frequency [MF] were better correlated with the spirometry, PC20, and FeNO values than were the ISPL or ESPL data. The left anterior chest and left posterior lower recording positions were associated with the best correlations (forced expiratory volume in 1 second/forced vital capacity: r=–0.55 and r=–0.58; logPC20: r=–0.46 and r=–0.45; and FeNO: r=0.42 and r=0.46, respectively. The majority of asthmatic subjects with FeNO ≥70 ppb exhibited high E/I MF levels in all lung fields (excluding the trachea and V50%pred <80%, suggesting inflammation throughout the airway. Asthmatic subjects with FeNO <70 ppb showed high or low E/I MF levels depending on the recording position, indicating uneven airway inflammation. Conclusion: E/I LF and E/I MF are more useful LSA parameters for evaluating airway inflammation in bronchial asthma; 7-point lung

  15. Staphylococcus aureus Infection Reduces Nutrition Uptake and Nucleotide Biosynthesis in a Human Airway Epithelial Cell Line

    Directory of Open Access Journals (Sweden)

    Philipp Gierok

    2016-11-01

    Full Text Available The Gram positive opportunistic human pathogen Staphylococcus aureus induces a variety of diseases including pneumonia. S. aureus is the second most isolated pathogen in cystic fibrosis patients and accounts for a large proportion of nosocomial pneumonia. Inside the lung, the human airway epithelium is the first line in defence with regard to microbial recognition and clearance as well as regulation of the immune response. The metabolic host response is, however, yet unknown. To address the question of whether the infection alters the metabolome and metabolic activity of airway epithelial cells, we used a metabolomics approach. The nutrition uptake by the human airway epithelial cell line A549 was monitored over time by proton magnetic resonance spectroscopy (1H-NMR and the intracellular metabolic fingerprints were investigated by gas chromatography and high performance liquid chromatography (GC-MS and (HPLC-MS. To test the metabolic activity of the host cells, glutamine analogues and labelled precursors were applied after the infection. We found that A549 cells restrict uptake of essential nutrients from the medium after S. aureus infection. Moreover, the infection led to a shutdown of the purine and pyrimidine synthesis in the A549 host cell, whereas other metabolic routes such as the hexosamine biosynthesis pathway remained active. In summary, our data show that the infection with S. aureus negatively affects growth, alters the metabolic composition and specifically impacts the de novo nucleotide biosynthesis in this human airway epithelial cell model.

  16. FOXJ1 Prevents Cilia Growth Inhibition by Cigarette Smoke in Human Airway Epithelium In Vitro

    Science.gov (United States)

    Brekman, Angelika; Walters, Matthew S.; Tilley, Ann E.

    2014-01-01

    Airway epithelium ciliated cells play a central role in clearing the lung of inhaled pathogens and xenobiotics, and cilia length and coordinated beating are important for airway clearance. Based on in vivo studies showing that the airway epithelium of healthy smokers has shorter cilia than that of healthy nonsmokers, we investigated the mechanisms involved in cigarette smoke–mediated inhibition of ciliogenesis by assessing normal human airway basal cell differentiation in air–liquid interface (ALI) cultures in the presence of nontoxic concentrations of cigarette smoke extract (CSE). Measurements of cilia length from Day 28 ALI cultures demonstrated that CSE exposure was associated with shorter cilia (P cilia length observed in vivo. This phenotype correlated with a broad CSE-mediated suppression of genes involved in cilia-related transcriptional regulation, intraflagellar transport, cilia motility, structural integrity, and basal body development but not of control genes or epithelial barrier integrity. The CSE-mediated inhibition of cilia growth could be prevented by lentivirus-mediated overexpression of FOXJ1, the major cilia-related transcription factor, which led to partial reversal of expression of cilia-related genes suppressed by CSE. Together, the data suggest that components of cigarette smoke are responsible for a broad suppression of genes involved in cilia growth, but, by stimulating ciliogenesis with the transcription factor FOXJ1, it may be possible to maintain close to normal cilia length despite the stress of cigarette smoking. PMID:24828273

  17. Does leptin play a cytokine-like role within the airways of COPD patients?

    Science.gov (United States)

    Bruno, A; Chanez, P; Chiappara, G; Siena, L; Giammanco, S; Gjomarkaj, M; Bonsignore, G; Bousquet, J; Vignola, A M

    2005-09-01

    The leptin-leptin receptor system might be up-regulated in the airways of chronic obstructive pulmonary disease (COPD). In bronchial biopsies obtained from normal subjects and smokers, with and without COPD, the present study examined leptin and leptin-receptor expression and their co-localisation in airway and inflammatory cells. Combining immunohistochemistry with terminal deoxynucleotidyl transferase dUTP nick end-labelling techniques, apoptosis in airway and inflammatory cells and in leptin and leptin-receptor expressing cells was investigated. In the epithelial cells both leptin and leptin-receptor expression was higher in normal subjects than in smokers and COPD subjects. By contrast, in the sub-mucosa, leptin was over-expressed in COPD when compared with normal subjects and smokers. Leptin and its receptor were co-localised, mainly with activated T cells (CD45R0) and CD8+ T lymphocytes. In smokers, apoptosis was found in some inflammatory cells, whereas in COPD inflammatory cells, leptin and leptin-receptor positive cells were not apoptotic. Leptin expression was related to COPD severity and assessed using the Global initiative for Chronic Obstructive Lung Disease classification. In conclusion, the present study shows an increased leptin expression in bronchial mucosa of chronic obstructive pulmonary disease patients, associated with airway inflammation and airflow obstruction.

  18. Neutrophil-Derived Exosomes: A New Mechanism Contributing to Airway Smooth Muscle Remodeling.

    Science.gov (United States)

    Vargas, Amandine; Roux-Dalvai, Florence; Droit, Arnaud; Lavoie, Jean-Pierre

    2016-09-01

    Neutrophils infiltrate the airways of patients with asthma of all severities, yet their role in the pathogenesis of asthma and their contribution to airway remodeling is largely unknown. We hypothesized that neutrophils modulate airway smooth muscle (ASM) proliferation in asthma by releasing bioactive exosomes. These newly discovered nano-sized vesicles have the capacity to modulate immune responses, cell migration, cell differentiation, and other aspects of cell-to-cell communication. The aim of the study is to determine whether bioactive exosomes are released by neutrophils, and, if so, characterize their proteomic profile and evaluate their capacity to modulate ASM cell proliferation. Exosomes were isolated from equine neutrophil supernatants by differential centrifugation and filtration methods, followed by size-exclusion chromatography. Nanovesicles were characterized using electron microscopy, particle size determination, and proteomic analyses. Exosomes were cocultured with ASM cells and analyzed for exosome internalization by confocal microscopy. ASM proliferation was measured using an impedance-based system. Neutrophils release exosomes that have characteristic size, morphology, and exosomal markers. We identified 271 proteins in exosomes from both LPS and unstimulated neutrophils, and 16 proteins that were differentially expressed, which carried proteins associated with immune response and positive regulation of cell communication. Furthermore, neutrophil-derived exosomes were rapidly internalized by ASM cells and altered their proliferative properties. Upon stimulation of LPS, neutrophil-derived exosomes can enhance the proliferation of ASM cells and could therefore play an important role in the progression of asthma and promoting airway remodeling in severe and corticosteroid-insensitive patients with asthma.

  19. Trehalose-mediated autophagy impairs the anti-viral function of human primary airway epithelial cells.

    Directory of Open Access Journals (Sweden)

    Qun Wu

    Full Text Available Human rhinovirus (HRV is the most common cause of acute exacerbations of chronic lung diseases including asthma. Impaired anti-viral IFN-λ1 production and increased HRV replication in human asthmatic airway epithelial cells may be one of the underlying mechanisms leading to asthma exacerbations. Increased autophagy has been shown in asthmatic airway epithelium, but the role of autophagy in anti-HRV response remains uncertain. Trehalose, a natural glucose disaccharide, has been recognized as an effective autophagy inducer in mammalian cells. In the current study, we used trehalose to induce autophagy in normal human primary airway epithelial cells in order to determine if autophagy directly regulates the anti-viral response against HRV. We found that trehalose-induced autophagy significantly impaired IFN-λ1 expression and increased HRV-16 load. Inhibition of autophagy via knockdown of autophagy-related gene 5 (ATG5 effectively rescued the impaired IFN-λ1 expression by trehalose and subsequently reduced HRV-16 load. Mechanistically, ATG5 protein interacted with retinoic acid-inducible gene I (RIG-I and IFN-β promoter stimulator 1 (IPS-1, two critical molecules involved in the expression of anti-viral interferons. Our results suggest that induction of autophagy in human primary airway epithelial cells inhibits the anti-viral IFN-λ1 expression and facilitates HRV infection. Intervention of excessive autophagy in chronic lung diseases may provide a novel approach to attenuate viral infections and associated disease exacerbations.

  20. Airway Epithelial Cells Are Crucial Targets of Glucocorticoids in a Mouse Model of Allergic Asthma.

    Science.gov (United States)

    Klaßen, Carina; Karabinskaya, Anna; Dejager, Lien; Vettorazzi, Sabine; Van Moorleghem, Justine; Lühder, Fred; Meijsing, Sebastiaan H; Tuckermann, Jan P; Bohnenberger, Hanibal; Libert, Claude; Reichardt, Holger M

    2017-07-01

    Although glucocorticoids (GCs) are a mainstay in the clinical management of asthma, the target cells that mediate their therapeutic effects are unknown. Contrary to our expectation, we found that GC receptor (GR) expression in immune cells was dispensable for successful therapy of allergic airway inflammation (AAI) with dexamethasone. Instead, GC treatment was compromised in mice expressing a defective GR in the nonhematopoietic compartment or selectively lacking the GR in airway epithelial cells. Further, we found that an intact GR dimerization interface was a prerequisite for the suppression of AAI and airway hyperresponsiveness by GCs. Our observation that the ability of dexamethasone to modulate gene expression in airway epithelial cells coincided with its potency to resolve AAI supports a crucial role for transcriptional regulation by the GR in this cell type. Taken together, we identified an unknown mode of GC action in the treatment of allergic asthma that might help to develop more specific therapies in the future. Copyright © 2017 by The American Association of Immunologists, Inc.

  1. Distinct microRNA Expression in Human Airway Cells of Asthmatic Donors Identifies a Novel Asthma-associated Gene

    Science.gov (United States)

    Airway inflammation is the hallmark of asthma and suggests a dysregulation of homeostatic mechanisms. MicroRNAs (miRNAs) are key regulators of gene expression, necessary for the proper function of cellular processes. Here, we tested the hypothesis that differences between healthy...

  2. Fruit-Surface Flavonoid Accumulation in Tomato Is Controlled by a SlMYB12-Regulated Transcriptional Network

    NARCIS (Netherlands)

    Adato, A.; Mandel, T.; Mintz-Orion, S.; Venger, I.; Levy, D.; Yativ, M.; Dominguez, E.; Wang, Z.; Vos, de C.H.; Jetter, R.; Schreiber, L.; Heredia, A.; Rogachev, I.; Aharoni, A.

    2009-01-01

    The cuticle covering plants' aerial surfaces is a unique structure that plays a key role in organ development and protection against diverse stress conditions. A detailed analysis of the tomato colorless-peel y mutant was carried out in the framework of studying the outer surface of reproductive

  3. Ex